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[1] Laboratory experiments investigated the relationship
between oxidation level and hygroscopic properties of
secondary organic aerosol (SOA) particles generated via
OH radical oxidation in an aerosol flow reactor. The
hygroscopic growth factor at 90% RH (HGF90%), the CCN
activity (�ORG,CCN) and the level of oxidation (atomic O:C
ratio) of the SOA particles were measured. Both HGF90%
and �ORG,CCN increased with O:C; the HGF90% varied
linearly with O:C, while �ORG,CCN mostly followed a
nonlinear trend. An average HGF90% of 1.25 and �ORG,CCN
of 0.19 were measured for O:C of 0.65, in agreement with
results reported for ambient data. The �ORG values
estimated from the HGF90% (�ORG,HGF) were 20 to 50%
lower than paired �ORG,CCN values for all SOA particles
except 1 ,3 ,5‐ t r imethylbenzene (TMB), the leas t
hygroscopic of the SOA systems. Within the limitations of
instrumental capabilities, we show that differences in
hygroscopic behavior among the investigated SOA systems
may correspond to differences in elemental composition.
Citation: Massoli, P., et al. (2010), Relationship between aerosol
oxidation level and hygroscopic properties of laboratory generated
secondary organic aerosol (SOA) particles, Geophys. Res. Lett., 37,
L24801, doi:10.1029/2010GL045258.

1. Introduction

[2] The magnitudes of the direct and indirect effects
exerted by aerosol particles on the Earth’s radiation budget
are influenced by their ability to take up water (changing the
amount of scattered light) and to modify cloud properties by
acting as cloud condensation nuclei (CCN). Including aerosol
hygroscopicity in models is critical for improving aerosol
forcing estimates [Bates et al., 2006; Massoli et al., 2009].
[3] A significant fraction of the global aerosol mass is

represented by organic aerosol (OA) particles [Zhang et al.,
2007]. Typically, the average hygroscopic growth factor
HGF (ratio of the diameter of a droplet in equilibrium with

water vapor and its dry size in the sub‐saturated regime) for
secondary organic aerosol (SOA) particles is 1.2 ± 0.09 at
relative humidity (RH) ≈ 90% and it is inversely propor-
tional to the molecular weight of the gas‐phase precursor
[Varutbangkul et al., 2006; Gysel et al., 2007]. Jimenez et al.
[2009] reported progressively larger HGF with increasing
oxygen‐to‐carbon ratio O:C, a proxy for the aerosol oxida-
tion level, for both ambient and laboratory SOA particles.
[4] The CCN potential of aerosol particles can be

expressed via the parameter � [Petters and Kreidenweis,
2007]. Depending on aerosol mixing state and oxidation
level, the ambient organic fraction has hygroscopicity 0 <�ORG
< 0.2 [Ervens et al., 2010, and references therein], with parti-
cles becoming more CCN active away from fresh pollution
sources. Shantz et al. [2010] demonstrated that predictions
of CCN growth kinetics for biogenic SOA improve upon
assuming �ORG = 0.20.
[5] For organic aerosols, discrepancies between � directly

obtained by CCN activity measurements (hereafter �ORG,CCN)
and � estimated from HGF values (�ORG, HGF) have been
observed [Prenni et al., 2007; Engelhart et al., 2008; Roberts
et al., 2010; Irwin et al., 2010]. Recent studies suggested that
measurements of HGF at RH > 95% are needed to determine
the steepness of the HGF curve close to the point of CCN
activation [Wex et al., 2009; Juranyi et al., 2009], and that
factors such as gas‐phase precursor concentration, molecular
size, solubility and functional groups should be considered in
predicting the CCN activity of SOA particles [Duplissy et al.,
2008; Petters and Kreidenweis, 2008; Petters et al., 2009a,
2009b; Poulain et al., 2010; Good et al., 2010].
[6] Here we report a study that systematically correlates

the HGF, �ORG,CCN, �ORG,HGF and O:C of laboratory gen-
erated SOA particles.

2. Experimental Methods and Measurements

[7] Experiments were conducted using the Boston College
aerosol flow reactor, a cylindrical chamber similar to the
design of Kang et al. [2007]. SOA particles were generated
via OH oxidation and homogeneous nucleation of gas‐
phase precursor species: a‐pinene (proxy for biogenic SOA),
1,3,5‐trimethylbenzene (TMB) and m‐xylene (proxies for
anthropogenic SOA) and a 50:50 mixture of a‐pinene and
m‐xylene. OH radicals were produced by the reaction of
excited oxygen [O(1D)] atoms with water vapor at RH of
20 ± 2%. O(1D) atoms were produced from in situ UV
photolysis of O3 at l = 254 nm using four mercury lamps.
The integrated OH exposure was varied by stepping the
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lamp voltages from 0–110V, and it was estimated by moni-
toring the SO2 decay in offline calibrations. Particles were
generated at OH exposures of 2 × 1010, 4.3 × 1011, 8.4 × 1011

and 1.2 × 1012 molec cm−3 s (corresponding to 0.4, 5, 10
and 13 days of oxidative ageing at an ambient OH concen-
tration of 1.5 × 106 molec cm−3 [Mao et al., 2009]), up to
ten times higher than typical smog chamber studies [Chhabra
et al., 2010].
[8] The Aerodyne Research Inc. High‐Resolution Time of

Flight Aerosol Mass Spectrometer (HR‐ToF‐AMS)
[DeCarlo et al., 2006] was used to obtain atomic O:C and
H:C ratios of the bulk submicron condensed‐phase chem-
istry via elemental analysis [Aiken et al., 2008]. The gen-
erated SOA particles had O:C ratios varying from 0.3 to
1.0, reaching values representative of highly oxygenated
ambient particles. Table S1 of the auxiliary material gives
the HR‐ToF‐AMS SOA mass loadings for each experi-
mental condition.1 The measurement accuracies for O:C
and H:C, determined by comparison to laboratory standards,
are 31% and 10%, respectively [Aiken et al., 2008]. These
values are an upper bound to the uncertainty of measure-
ments of complex OA [Chhabra et al., 2010]. The precision
of the O:C and H:C measurements was ±15%.
[9] A hygroscopicity tandem differential mobility analyzer

(HTDMA) instrument [Liu et al., 1978] measured the
hygroscopic growth factor HGF at 90% RH (hereafter
HGF90%) as the ratio of wet (RH = 90%)‐to‐dry (RH < 10%)
particle mobility diameters. HGF90% values are reported for
the dry diameter Dd = 50 nm. The stable operation of
the HTDMA was routinely verified with ammonium sulfate.
The absolute error (accuracy) in the HGF90% values was 5%,
the precision was 2%.
[10] The CCN activity of the SOA particles was measured

with a Droplet Measurement Technologies CCN Counter
[Roberts and Nenes, 2005] and it was expressed using the
�CCN formulation of Petters and Kreidenweis [2007],

�CCN ¼ 4A3

27D3
d ln

2 Sc
; A ¼ 4�wMw

RT�w
ð1Þ

where Sc is the critical supersaturation, and Mw, rw and
sw are the molecular weight, density, and surface tension of
water (sw = 0.072 J m−2). Accuracy and precision in the
CCN data were 15%. Additional information on particle
generation, instrumentation and experimental methods are
provided in the auxiliary material.

3. Results and Discussion

[11] The HGF90% values of the SOA particles are reported
in Figure 1 as a function of O:C. Data points are colored
according to the integrated OH exposure. HGF90% values
increase with O:C for all of the SOA systems investigated,
and vary from almost non‐hygroscopic (1.05) to moderately
hygroscopic (1.35). The HGF90%‐to‐O:C relationship is
linear, although some HGF90% values deviate slightly from
the orthogonal regression (solid line) at O:C > 0.75. The
m‐xylene SOA particles exhibit the highest O:C (and
HGF90%), consistent with smog chamber SOA data [Chhabra

et al., 2010]. a‐pinene SOA generated from lower gas‐phase
precursor loading (40 ppb) have slightly higher O:C (and
HGF90%) compared to a‐pinene SOA generated at higher
precursor loading (80 ppb), consistent with Shilling et al.
[2009] and Duplissy et al. [2008].
[12] Our results agree with ambient HGF obtained at the

Hyytiälä forest site [Raatikainen et al., 2010] for low‐
volatility and semivolatile oxygenated organic aerosol par-
ticles (LVOOA and SVOOA, respectively [Ng et al., 2010])
having the same dry diameter Dd = 50 nm. At O:C = 0.75,
the HGF of the Hyytiälä LVOOA adjusted to 90% RH is
1.33 and it compares well with HGF90% of 1.31 that we
obtain at the same O:C.
[13] Figure 2 plots the �ORG,CCN values as a function of

O:C and shows that �ORG,CCN increases with the O:C ratio.
The m‐xylene SOA is the most CCN active relative to other
systems; the TMB SOA has the lowest �ORG,CCN, especially
at O:C < 0.75. The �ORG,CCN value of 0.22 ± 0.04 reported
for ambient OOA at O:C of 0.59 [Chang et al., 2010] agrees
with our laboratory data within measurement uncer-
tainties. For most data, the �ORG,CCN does not vary linearly
with O:C, as shown by the power fits to individual SOA
systems (dotted lines). The �ORG,CCN‐O:C relationship is
steep at O:C > 0.75, whereas �ORG,CCN is rather insensitive
to O:C at O:C < ∼0.5. Only for low‐loading a‐pinene SOA
is the �ORG,CCN‐O:C relationship almost linear. For refer-
ence, we show the �CCN‐O:C parameterization of Chang
et al. [2010] (�ORG,CCN = (0.29 ± 0.05)*O:C) obtained for
an O:C range of 0.3–0.6 (with �ORG,CCN = 0 at O:C = 0).
Such linear parameterization captures the data trend only
partially because the �ORG,CCN to O:C relationship is both
non‐uniform and SOA system‐dependent, making it diffi-
cult to univocally predict the �ORG,CCN from O:C.
[14] Figure 3 compares paired �ORG,CCN and �ORG,HGF

values derived from HGF90% using the �‐Köhler method
[Petters and Kreidenweis, 2007]. Most �ORG,HGF values are
20% to 50% lower than the corresponding �ORG,CCN values,
consistent with the result of Prenni et al. [2007] also shown
in Figure 3. Recent theoretical modeling suggests that such
deviations may reflect nonlinear changes in hygroscopic
behavior at RH > 90% as a function of solute concentra-
tion [Petters et al., 2009b; Good et al., 2010]. However, the
�ORG,CCN and �ORG,HGF for TMB SOA are in excellent
agreement. Because the TMB particles have similar HGF90%
but lower �ORG,CCN than the other SOA, one possible expla-
nation is that TMB SOA particles undergo linear changes
in hygroscopicity between sub and supersaturated regimes.
Duplissy et al. [2008] reported good agreement between
�ORG,CCN and �ORG,HGF values for both a‐pinene and TMB
SOA generated at near atmospheric loadings. Conversely,
our results do not appear to be loading‐dependent, as a
similar level of agreement between �ORG,CCN and �ORG,HGF
is seen, for instance, at all a‐pinene concentrations ranging
from 8 to 80 mg/m3 (see Table S1 of the auxiliary material).
[15] Figure 4 plots the aerosol hydrogen‐to‐carbon ratio

(H:C) versus O:C for the data shown in Figures 1–3. Our
data display in the H:C versus O:C space in a similar way to
that observed for multiple laboratory and field datasets
[Heald et al., 2010] We note that the TMB SOA particles
have slightly higher H:C than the a‐pinene, m‐xylene and
mixture SOA for the same O:C. This difference is most
pronounced at low OH exposures (or O:C < 0.75), where the
deviation in CCN activity between TMB and the other SOA

1Auxiliary materials are available in the HTML. doi:10.1029/
2010GL045258.
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systems is largest (Figure 2) and full mass spectra (not
shown here) also exhibit significant differences. Recent
work attributed the lower hygroscopicity of TMB SOA
photo‐oxidation products compared to that of a‐pinene
SOA to differences in molecular weight and functional
groups [Duplissy et al., 2010, and references therein]. Fur-

ther molecular information will be needed to complement
this result.

4. Summary and Conclusions

[16] We investigated the relationship between the oxida-
tion level and the hygroscopic properties of laboratory SOA
particles generated via OH radical oxidation in a flow
reactor. The hygroscopic growth factor (HGF90%) and
the CCN activity (�ORG,CCN) were measured over an O:C

Figure 3. �ORG,HGF vs �ORG,CCN values for the laboratory
SOA particles generated in this study. The error bars (shown
for m‐xylene and the TMB SOA only) represent measure-
ment precision of ±15% in �ORG,CCN and ±15% in �ORG,
HGF. Literature data from Prenni et al. [2007] is shown for
comparison.

Figure 4. Elemental H:C vs O:C for the SOA systems plot-
ted in Figures 1–3. For comparable OH exposure, the TMB
particles have higher H:C than the other SOA types. The
dashed line (H:C = 2, O:C = 1, from Heald et al. [2010]) is
shown as a guide to the eye.

Figure 1. HGF90% (Dd = 50 nm) vs. O:C for the laboratory
SOA particles generated in this study. Markers are colored
by integrated OH exposure. The solid line is the orthogonal
regression through the dataset yielding HGF90% = (0.58 ±
0.15)*O:C + (0.85 ± 0.08). The error bars (shown for m‐
xylene and TMB SOA only) represent a measurement preci-
sion of ±2% in HGF90% and ±15% in O:C. HGF values for
ambient SVOOA and LVOOA [Raatikainen et al., 2010]
scaled to 90%RH are also reported.

Figure 2. �ORG,CCN vs O:C for the laboratory SOA parti-
cles generated in this study. The �ORG,CCN for ambient
OOA and the parameterization �ORG,CCN = (0.29 ± 0.05)
*O:C of Chang et al. [2010] (dashed line) are also plot-
ted. Error bars (shown for m‐xylene and TMB SOA only)
represent measurement precision of ±15% in �ORG,CCN and
±15% in O:C.
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range of 0.3 to 1.0. We confirm the link existing between
hygroscopic properties and chemical composition of SOA
particles. HGF90% values increased linearly with O:C for
all SOA systems. �ORG,CCN also increased as a function of
O:C, but this relationship appeared to be system‐dependent
and not a linear one. At comparable O:C, our HGF90% and
�ORG,CCN values are in good agreement with ambient data
for organic‐dominated aerosol particles. The �ORG,HGF
values were 20 to 50% lower than �ORG,CCN except for the
TMB SOA, which also produced the less CCN active SOA
particles. We observed difference in the elemental compo-
sition between TMB and the other SOA systems that may
relate to different hygroscopic behaviors. Based on these
laboratory results, we provide a semi‐empirical parameter-
ization of HGF90% vs. O:C, whereas a univocal parameter-
ization for the �ORG,CCN vs. O:C relationship was difficult to
establish. Such trends observed for laboratory generated
SOA systems should be tested with ambient data to deter-
mine if and to what extent a relationship between aerosol
hygroscopicity and oxidation level can be defined in a
simple manner and perhaps generalized for use in model
parameterizations.
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