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For humans, healthy and productive living depends on navigating through the world and 

behaving appropriately along the way. But in order to do this, humans must first 

recognize their visual surroundings. The technical difficulty of this task is hard to 

comprehend: the number of possible scenes that can fall on the retina approaches infinity, 

and yet humans often effortlessly and rapidly recognize their surroundings. 

Understanding how humans accomplish this task has long been a goal of psychology and 

neuroscience, and more recently, has proven useful in inspiring and constraining the 

development of new algorithms for artificial intelligence (AI). In this thesis I begin by 

reviewing the current state of scene recognition research, drawing upon evidence from 

each of these areas, and discussing an unchallenged assumption in the literature: that 

scene recognition emerges from independently processing information about scenes’ 

local visual features (i.e. the kinds of objects they contain) and global visual features (i.e., 

spatial parameters). Over the course of several projects, I challenge this assumption with 

a new framework for scene recognition that indicates a crucial role for information 

sharing between these resources. Development and validation of this framework will 

expand our understanding of scene recognition in humans and provide new avenues for 

research by expanding these concepts to other domains spanning psychology, 

neuroscience, and AI
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GENERAL INTRODUCTION 

Rapid and accurate recognition of the local environment is a hallmark of the human 

visual system and essential for a normal life. The importance of this ability is highlighted 

during navigation, as it allows us to identify our surroundings, determine when we have 

reached our destination, and engage with the local environment with appropriate 

behaviors along the way. A body of research amassed over the last 40 years has 

investigated how humans recognize scenes, and explored the types of mechanisms 

contributing to its effectiveness. This chapter begins with a review of this work, touching 

on (1) the types of scene information used during scene categorization, (2) how this 

information is represented in the brain, and (3) to what extent these representations 

ultimately influence behavior. Building upon the reviewed work, I will propose an 

updated framework for scene recognition that updates a long held assumption in the study 

of scene recognition and generates predictions for future research.  

Information resources for scene categorization 

Seminal studies of scene recognition have cast it as drawing on two separate 

sources of information. The first and most salient resource is information about the 

objects in a scene. Object identities are often highly diagnostic of scene identity, with 

many scenes closely associated with semantically related objects. For instance, stoves, 

ovens, and refrigerators are typically found in kitchens, whereas toilets and showers are 
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typically found in bathrooms. Computational research has leveraged this idea and 

decomposed scene recognition into a set of operations performed on scenes’ objects. 

Through operations that extract information about the identities and spatial relationships 

of objects, certain algorithms are able to produce similar judgments of scene identity as 

humans [1–4]. Consistent with this perspective of objects as the atomic unit of scenes, 

human recognition accuracy is significantly reduced when a scene’s objects are obscured 

with perceptual masks, are violating physical laws, or are in conflict with a scene’s 

semantic context (e.g. a quarterback throwing a pass in a church; [2,5–7]). Humans are 

also sensitive to high-level object features, such as their physical affordances, during 

scene recognition [5]. 

The second information source for scene recognition is scenes’ global or spatial 

properties, which describe its holistic features such as size or 3-dimensional layout [8–

11]. Spatial properties are particularly useful when determining the category of a scene. 

For instance, an observer distinguishing between a bathroom and a kitchen can simplify 

this task with the insight that bathrooms are typically smaller than kitchens [12]. 

Although spatial properties would appear a less precise and possibly less important 

information source for scene recognition than objects, several pieces of evidence indicate 

a significant role. First, scenes can be identified approximately as quickly as the objects 

they contain [6,13,14], suggesting that something other than object recognition is at work.  

Second, observers are adept at using spatial properties to categorize scenes, with the 

ability to base their decisions on a variety of these features such as scenes’ expanse or 

mean depth [10,15–17]. Third, computer vision algorithms emphasizing scene spatial 

properties for categorization generate similar patterns of judgments – both hits and misses 
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– as humans [15,18]. Despite their importance in scene categorization, a precise 

description of spatial properties remains nebulous, with humans showing sensitivity 

along multiple dimensions beyond the ones already mentioned, such as openness, 

navigability, and “clutter” [15,19]. 

Neural representations of scenes 

Over the past two decades, research into human neuroscience has extensively 

used functional magnetic resonance imaging (fMRI). These studies often adopt a 

stimulus-referred approach, in which the brain is parcellated into regions with functional 

response profiles tuned to certain visual features more than others [20]. This approach has 

been particularly productive in exploring how visual information for scene recognition is 

represented in the brain. Most significant is the finding that the visual system contains a 

set of regions that are putatively sensative to either scenes’ object or spatial property 

information – aligning with the perceptual distinctiveness of these resources and positing 

a neural framework for scene recognition that perhaps contains two distinct pathways. 

Regions of the visual system sensitive to scene information span the occipital and 

temporal lobes of the brain, extending from the early visual cortex (EVC) through the 

ventral temporal cortex (VTC). Within VTC, lateral occipital (LO) and posterior fusiform 

sulcus (pF) regions of lateral occipital complex (LOC) respond significantly more 

strongly to images of objects than to full scenes (objects > scenes) [21–23], while the 

opposite pattern (scenes > objects) is observed in a region near the caudal horn of 

parahippocampal cortex, referred to as parahippocampal place area (PPA), as well as the 

retrosplenial cortex (RSC), and the transverse occipital sulcus [24–26] (TOS).  
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Recent methodological advances have provided a more nuanced account of the 

representations of object and spatial property information in these areas. This group of 

methods, referred to as multi voxel pattern analysis (MVPA), characterizes the spatially 

distributed patterns of activation in response to images of scenes (i.e. the covariance 

structure of neural activity). In essence, MVPA expands upon simple scalar descriptions 

of neural response profiles to capture their “multidimensional” sensitivity. 

Using MVPA, researchers have found evidence for a complex role of LOC in 

scene recognition. LOC encodes representations of objects within real-world scenes that 

exhibit invariance to low-level visual feature transformations, such as variations in their 

color, shape, or luminance. Its representations also capture information corresponding to 

objects’ semantic category, causing objects with similar affordances (e.g. a knife and 

cutting block) to have convergent representations [21,27–29]. Representations of objects 

within LOC’s subfields however demonstrate different levels of invariance. Patterns of 

activity elicited by objects in LO but not pF show sensitivity to their position and 

orientation in space [30,31], and also correlate with their scene category, suggesting a 

potential contribution of LO to scene recognition [7].  

Consistent with its robust responses to scenes, multivoxel activity patterns in PPA 

carry information related to both scene category and scene spatial properties. These 

spatial property representations span multiple spatial and textural dimensions, aligning 

with perceptual ratings of scenes’ expanse, “spaciousness”, low-dimensional estimates of 

their spectral information, and basic textural properties [19,32–36]. Kravitz and 

colleagues (2011) recently explored this sensitivity by recording activity in PPA with 

fMRI while participants viewed images of real-world scenes that had been ranked by 
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their expanse (open/closed), depth (near/far), and whether they were natural or manmade 

[32]. They found a striking sensitivity in PPA for scene expanse but not depth or content. 

Others have noted that representations in PPA are for the most part tolerant to 

transformations of scenes’ low-level properties (e.g. line-drawings of scenes and 

untouched scene images are represented similarly [37]) but not to differences in scene 

viewing angles or content [33,38]. PPA is also sensitive to the presence and identities of 

objects within scenes, although the invariance of its object representations has not been 

extensively tested [39]. 

Similar to PPA, RSC patterns of activation contain information about spatial 

properties [39]. However, its role in the act of scene recognition remains somewhat 

contentious, as its representations have been considered more relevant to navigation and 

route-planning than scene recognition per se [40,41]. Recent work by Marchette and 

colleagues (2014) reinforced this distinction, showing that RSC patterns of activation 

maintain an allocentric, “birds eye view” map of the local environment [42]. Reinforcing 

this idea, RSC representations are tolerant to low- [37] and mid-level [33] 

transformations of scenes, as its encodings are insensitive to alterations of scene content.  

Another region strongly associated with scene recognition is the TOS: it is 

selective to scenes’ spatial properties, responding more strongly to scenes versus other 

types of stimuli, and has a response profile that attenuates as a function of the similarity 

between sequentially presented scenes, suggesting a spatiotemporal sensitivity that may 

be useful for recognizing scenes while navigating through the world [43–47]. Although 

TOS representations are invariant to low-level transformations of scene information 

[48,49], the characteristics of its computations have yet to be pinned down. It has been 
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suggested that this ambiguity is due to the proximity of TOS to multiple functionally 

distinct units [50] such as the inferior parietal sulcus (IPS) and superior parietal sulcus 

(SPS), which have recently been associated with scene categorization despite long-held 

associations with strictly attention-based processing [34,51]. 

From neural representations to behavior 

That the regions discussed above encode information about scenes does not mean 

that they are necessary for scene recognition. For instance, the presence of this 

information could be epiphenomenal – feedback from some other neural process. For this 

reason, researchers have sought a more direct connection by measuring what happens to 

scene recognition performance following ablation to one of these regions (from a lesion 

caused by disease, stroke, or brain injury).  

Patients with lesions to the lingual gyrus or parahippocampal gyrus, anatomical 

structures overlapping with the PPA, are often impaired in navigation and perception of 

environmental global properties while retaining the ability to understand spatial 

relationships between locations [40,52,53]. In contrast, patients with RSC lesions can still 

identify scenes but are unable to navigate, possibly due to a damaged allocentric 

perspective of their surroundings [40]. And while focal lesions to LOC are rare, case 

studies have demonstrated that its ablation impairs object perception while sparing 

egocentric spatial processing [54–58]. To my knowledge, no research exists on the effects 

of focal lesions to TOS on scene categorization behavior.  

Transcranial magnetic stimulation (TMS) has provided an alternative method for 

ablating brain function by temporally “knocking out” activity in regions with extremely 

high spatial precision (the mechanism of function is limited to areas proximal to the 



  17 

skull) [59,60]. For scene recognition research, this method has been successfully applied 

to infer the contributions of TOS and LO. Dilks and colleagues (2013) applied TMS to 

participants’ TOS while they viewed images of scenes, faces, and objects [61]. They 

found that this manipulation caused a significant decrease in scene recognition or 

discriminating scene layout, but did not affect perception of other stimuli. This evidence 

supported the hypothesis that information processed within the TOS is causally involved 

with scene recognition. More recently, TMS has been used to directly link TOS to the 

perception of scene boundary information [62].  

TMS stimulation of LO on the other hand has provided a less definitive story of 

its involvement in scene recognition. Mullin and colleagues (2011) reported that TMS 

stimulation of LO paradoxically facillitated reaction times during a task in which subjects 

indicated if scenes were manmade or natural [63]. This result contradicted fMRI evidence 

indicating a role (albeit an indirect one) for LO in scene categorization [7]. However, 

recent work indicates that Mullin’s result may be a function of the type of task they used. 

Preliminary evidence for this is provided in a control experiment in Dilks’s 2011 study, 

in which they saw that TMS to LO during a 4-choice scene categorization did not affect 

accuracy. More direct evidence has come from an investigation of the role of LO in scene 

recognition. We asked if LO patterns of activation could decode participants’ decisions 

during a task in which participants categorized images of computer-generated bathrooms 

and kitchens, whose spatial properties made them range from easy to difficult to 

distinguish. We found that LO activity patterns directly impact scene category decisions 

when subjects base their decisions on scenes’ objects [12]. Taken together, these results 
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indicate that LO’s impact on scene categorization decisions may depend on the precise 

task asked of participants.   

Neuroimaging research has identified several regions of cortex with response 

profiles closely tied to scene recognition. Neuropsychological research has advanced this 

association by demonstrated that disabling these regions produces deficits in scene 

recognition that align with their response profiles. PPA, RSC, and TOS encode spatial 

properties and impart debilitating spatial deficits when damaged, whereas scene 

categorization deficits are less debilitating when object-selective cortex is disabled.  

Understanding biological vision through artificial intelligence 

 Recent years have seen an explosion of interest and applied success in the field of 

artificial intelligence (AI). This boom can be pinned on the extraordinary 

accomplishments of a simple algorithm based on neural principles, which has been fueled 

by advances in computational power and the availability of better data. Indeed, this field 

has a long history of borrowing from neuroscience [64], with algorithmic advances often 

coming from clever application of insights into brain function [65,66]. 

But the relationship between Neuroscience and AI does not run in a single 

direction, and has recently proven reciprocal through the application of powerful AI 

algorithms to help uncover the neural basis of object and scene recognition. These 

algorithms are broadly known as artificial neural networks (ANN), with a structure 

loosely inspired by observations of how biological neurons process information. Given an 

input (e.g. weather for the past week) and a target (e.g. what clothes were worn), a neuron 

in an ANN will identify a set of transformations to map the input to the target, which 

creates a model that can generate predictions for novel instances of the same problem. 
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Taking this analogy to the grand scale necessary for scene recognition, millions of 

artificial neurons work together to transform an image of a scene into a label such as 

“kitchen”. Similar to the architecture of the VTC, these neurons are assembled into a 

hierarchical structure, in which the computation performed by each successive neuron 

transforms the input into a progressively more abstract representation (i.e. from 

information about the edges in an image to its object contents). Astoundingly, this 

incredibly simple abstraction of the VTC not only reaches near-human performance in 

many recognition tasks, but also captures representations from images that are consistent 

with humans. An ANN applied to images of real-world scenes learns representations that 

roughly align with the progression from low- to high-level features found in cortex [67]. 

The similarity between these representations has been quantified as a function of 

algorithm performance: the better the algorithm is at recognizing images, the more 

similar its underlying representations are to those elicited in human VTC [68–73].  

 In this way, the ANN offers a potentially powerful model for understanding the 

neural basis of scene recognition. Within this model, the response profiles of regions in 

the visual system (e.g. LO versus PPA) are developed through a high-level learning 

algorithm that adjusts them to optimize recognition performance. That every healthy 

human has the same set of visual regions in roughly the same areas reflects the existence 

of a single unique solution to this recognition problem that all brains converge upon 

during development (given other biological constraints such as structure and genetics).  

A revised framework for scene recognition 

 Behavioral, neural, and computation perspectives provide a consistent perspective 

on scene recognition: it emerges from a feedforward sweep of computations through the 
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visual system, in which complementary object and spatial property resources are 

processed into a behaviorally useful representation of the viewed scene. But is this 

relatively simplistic portrayal of the visual system incomplete? Recent work examining 

the independence of object and spatial property information in the visual system suggests 

that this might be the case.  

Extant theory holds that scenes’ object contents and spatial properties are 

processed in parallel and independently in the visual system, only converging once they 

reach regions responsible for cognition and decision making (reviewed in [74]). 

However, recent evidence indicates that this dichotomy is not strictly followed by the 

visual system. We demonstrated that objects strongly associated with a particular scene 

category can bias scenes’ encoded spatial properties towards values associated with that 

category – an effect we termed “centripetal bias” [35]. We found that images of spatially 

large bathrooms were perceived as significantly more “average”-sized (i.e., smaller) 

when their objects (toilets, showers, and sinks) were visible versus when they were 

obscured with wavelet-scrambled masks. Importantly, the opposite observation was also 

true: small bathrooms were perceived as significantly more “average”-sized (i.e., larger) 

when their objects were visible versus masked. This result indicates that information 

extracted from scenes’ objects and spatial properties are first combined during 

perception, rather than later stages of processing when a decision of scene category is 

produced [75]. This finding of centripetal bias cannot be explained by existing 

feedforward frameworks for scene recognition.  

In this thesis, I propose the alternative framework for scene recognition depicted 

in Figure 0.1. Consistent with a typical feedforward framework for scene recognition, the 



  21 

figure shows an input image (at the top) being processed and correctly recognized as a 

kitchen (the label “Kitchen” at the bottom). However, this framework is drastically 

different than existing accounts in what happens between these two points.  

The arrows extending down from the image towards the label “Kitchen” represent 

the information resources humans use to recognize scenes: spatial properties in red and 

object features in blue. Consistent with evidence of centripetal bias explained in Chapter 

1, spatial property information is influenced by the identities of a scene’s objects (blue 

“object” dots over the red spatial property). But is this influence only brought to bear 

from objects onto spatial properties, or is the opposite also true?  In a set of studies, we 

demonstrate that spatial properties have the ability to “fill-in” missing object information 

(blue object arrow with red spatial property dots; Chapter 2) – an effect supported by a 

simple form of statistical learning instantiated in the visual system (grey circle; Chapter 

3). Importantly, these perceptual biases are not epiphenomenal as they significantly 

improve scene recognition accuracy by filling in missing or obscured visual features 

without drawing from computationally slow cognitive feedback mechanisms (black 

circled X; Chapter 4). Further development and validation of this framework for scene 

recognition will bring us closer to understanding how humans recognize the visual world. 
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Experiment 1

“Kitchen”

Chapter 4

Figure 0.1. A revised framework for scene recognition. Similar to existing models, the 

observer recognizes the viewed scene as a kitchen through a combination of 

information about its objects (in blue) and spatial properties (in red). Here we provide 

evidence for the combination of these resources during perception, the learning 

mechanisms supporting this combination, and its impact on scene recognition. 
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1.0  ENCODING-STAGE CROSSTALK BETWEEN OBJECT- AND SPATIAL 

PROPERTY-BASED SCENE PROCESSING PATHWAYS 
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Scene categorization is a central task of the visual system, and draws on two information 

sources: the identities of objects scenes contain, and scenes’ intrinsic spatial properties. 

Because these resources are formally independent, it is possible for them to produce 

conflicting estimates of scene category. We tested the hypothesis that the potential for 

such conflicts is mitigated by a system of “crosstalk” between object- and spatial layout-

processing pathways, under which the encoded spatial properties of scenes are biased by 

scenes’ object contents. Specifically, we show that the presence of objects strongly 

associated with a given scene category can bias the encoded spatial properties of scenes 

containing them towards the average of that category, an effect which is evident both in 

behavioral measures of scenes’ perceived spatial properties, and in scene-evoked 

multivoxel patterns recorded with fMRI from the parahippocampal place area (PPA), a 

region associated with the processing of scenes’ spatial properties. These results indicate 

that harmonization of object- and spatial property-based estimates of scene identity 

begins when spatial properties are encoded, and that the PPA plays a central role in this 

process.  

1.1 INTRODUCTION 

Fast and accurate scene recognition is critical to daily life, allowing us to navigate from 

one place to another and interact efficiently and appropriately with the environment at 

each point along the way. Objects have often been cast as the fundamental building 

blocks of scenes, with scene recognition proposed to emerge from a cataloging of the 

types of objects in a scene and the spatial relationships among them [76–80]. Consistent 
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with this view, behavioral studies have shown that scene recognition falters when highly 

informative objects (e.g., refrigerators or toilets) are removed from their associated 

scenes [81] or when scenes contain incongruent objects [82,83]. More recently, however, 

theoretical and behavioral studies of scene recognition have demonstrated a substantial 

role for scenes’ intrinsic global properties, particularly spatial properties such as depth, 

openness, and navigability, complementing the category cues provided by objects [84–

92].  

From a physical perspective, the kinds of objects scenes contain and scenes’ 

spatial properties are often unrelated. To be sure, these factors place constraints on each 

other: objects help define a scene’s spatial dimensions, and a scene’s spatial dimensions 

may place limits on the types of objects it can contain. Yet many scene categories that 

differ from each other in their spatial properties can nevertheless accommodate each 

other’s associated objects without grossly altering their properties or violating physical 

law. For instance, although bathrooms and kitchens may differ in their average 

dimensions at the category level, there is usually no physical (as opposed to semantic) 

impediment to replacing a kitchen’s refrigerator with a shower, or a bathroom’s bathtub 

with a stove, and little change in either scene’s spatial properties as a consequence of the 

switch. In general, all other things (e.g., object size) being equal, the identities of objects 

in a scene and the scenes’ spatial properties are, with a few exceptions, logically 

independent.  

The reliance of scene recognition on two cues, objects and spatial properties, that 

can vary fairly freely with respect to each other raises a problem: how do scene 

categorization decisions cope with the potential for conflicts between the categories most 
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associated with each cue? Consider, for example, the problem of categorizing a large 

bathroom. While the objects present (a sink, toilet, and bathtub) might be closely 

associated with bathrooms, the spatial dimensions of the room might be more closely 

associated with a different room category, such as a kitchen. Drawing from models 

positing that both objects and scenes’ spatial properties can activate schemata or context 

frames for specific scene categories [77,79,80,93–100], we might imagine that this 

conflict is resolved via some negotiation between the schemata activated by each 

resource. In this view, objects and spatial properties are processed independently through 

the stage at which each triggers a “hypothesis” of the room’s category. An alternative is 

that potential conflicts between the room’s object contents and spatial properties are 

blunted at the stage at which those resources are encoded; i.e., before schemata are 

activated by each. Information from whichever resource is likely to be more reliable 

under the circumstances (likely objects in this scenario) is used to bias the how the other 

resource is encoded, with the goal of maximizing the likelihood that each resource 

ultimately activates the same schema.  

In the present study we used a combination of behavioral and neuroimaging 

techniques to assess whether any such encoding-stage bias occurs during scene viewing, 

specifically asking whether the encoded values of scenes’ spatial properties are 

influenced by scenes’ object contents. Taking advantage of the susceptibility of perceived 

spatial properties to negative aftereffects [101], we first asked participants in a series of 

behavioral experiments to judge the spatial scales of average-sized bathrooms and 

kitchens after prolonged exposure to either very large or very small scenes from the same 

category. We find that the magnitudes of aftereffects produced by both small and large 
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adapting rooms were significantly smaller when objects which were strongly informative 

of scene category, such as refrigerators or toilets, were visible in adapting scenes versus 

when they were masked. These results indicate that the presence of informative objects in 

adapting scenes biased their encoded spatial properties towards values associated with the 

“average” of their category. Next, using fMRI we observed an essentially identical bias in 

scene-evoked activity patterns in the parahippocampal place area (PPA), a region which 

has been associated with the encoding of scenes’ spatial properties [102–107], as well as 

processing of scenes’ contextual associations [108–111]. We propose that these 

behavioral and physiological biases reflect “crosstalk” between object- and spatial 

property-processing pathways that serves scene recognition by harmonizing estimates of 

scene identity derived from each of these information resources, and that this process is 

mediated by PPA.  

1.2 MATERIALS AND METHODS 

1.2.1 Behavioral Experiments 

1.2.1.1 Participants 

A total of 119 participants (25 male) between 18-27 years old were recruited for the 

study, chiefly from among Boston College undergraduates enrolled in introductory 

psychology courses. All had normal or corrected-to-normal vision and provided written 

informed consent in accordance with the procedures of the Boston College Institutional 

Review Board. Participants were either paid $15 or received course credit.  
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1.2.1.2 Stimuli 

We assessed the influence of objects on scenes’ encoded spatial properties by measuring 

changes in the magnitudes of negative aftereffect produced by adaptation to scenes with 

extreme spatial properties varied with the visibility of objects within them. Visual stimuli 

were 500 full-color photographs of real-world bathrooms and kitchens (1,000 

photographs total), and 500 computer-rendered images of exemplars of kitchens (Figure 

1.1.A; see Appendix A Figure 1 for additional exemplars). Bathrooms and kitchens were 

selected for use because they are strongly associated with distinct sets of objects, as 

judged by the authors, and because, as indoor scenes, they have clearly identifiable 

bounding features (such as walls) that make relative judgments of spatial scale intuitive 

to naïve observers. Real-world scenes were assigned to quintiles according to perceived 

size (hereafter referred to as “spaciousness”), as judged by web-based ratings made by a 

pool of paid raters recruited through Amazon Mechanical Turk (AMT), while rendered 

scenes were assigned to size quintiles according to their simulated floor areas. Scenes 

from the first and fifth quintiles (i.e., those that were very small and very large for their 

category, respectively) were selected for use as spatially-extreme adapting scenes, and 

scenes in the middle three quintiles were designated for use as spatially-average “test” 

scenes against which the effects of adaptation would be measured. Please see Appendix 

A for details of the AMT scene rating procedure and methods of rendered scene 

generation.  

Because we wished to understand how the objects in scenes might bias scenes’ 

encoded spatial properties, we generated a second version of each adapting scene in 

which informative objects were obscured. Informative objects were identified based on 
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nominations made by each AMT rater of the three objects he or she most strongly 

associated with bathrooms and kitchens, with the three objects nominated objects most 

frequently for each category selected for use. Informative objects for bathrooms were 

toilets, sinks, and bath/showers; for kitchens they were refrigerators, sinks, and 

stoves/ovens. Within each real-world scene, the spatial boundaries of as many as visible 

of the three appropriate objects were segmented with the LabelMe image annotation tool 

[112], and a “masked” version of each scene was generated by replacing those objects 

with scrambled biorthogonal 3.1 discrete wavelet transforms [113]. On average, the 

number of informative objects masked in each scene was 2.89 for high-spaciousness 

bathrooms, 2.31 for low-spaciousness 
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Figure 1.1. Experimental stimuli and design (A) Participants judged the spaciousness 

of images of exemplars of (top row, left to right) average-sized bathrooms, kitchens 

and computer rendered kitchens. Judgments were preceded by adaptation to low- or 

high-spaciousness exemplars from the same categories (second and third rows, 

respectively) that had informative objects either unmasked or masked (left and right 

images in each cell, respectively). (B) Each adaptation block began with 800 adapting 

scenes (100 exemplars repeated 8 times, totaling 160 seconds) during which 

participants performed a one-back repetition detection task to ensure attention. 

Participants then rated the spaciousness of 30 test scenes. Test scenes always had all 

informative objects unmasked, and were preceded by a 10 second top-up adaptation 

period containing 100 images from the initial adaptation period. 
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bathrooms, 2.98 for high-spaciousness kitchens, and 2.54 for low-spaciousness kitchens. 

Objects in rendered scenes were masked in the same way.  

1.2.1.3 Procedure 

Behavioral adaptation experiments were created and executed in MATLAB using the 

Psychophysics Toolbox [114]. All scenes subtended 10° square when viewed from a 

chinrest positioned 57cm from an LCD monitor. Each participant judged the spaciousness 

of test scenes in a series of adaptation blocks. Following the design of a previous study 

demonstrating negative aftereffects in judgments of scenes’ global properties after 

adaptation to scenes with extreme properties [101] (Figure 1.1.B), each block began with 

800 exemplars from either the high- or low-spaciousness quintiles of a single scene 

category, corresponding to 8 presentations of each of the 100 exemplars from the 

appropriate quintile, in random order. Each adapting scene was shown for 100ms and 

followed by a 100ms gray screen, with exact timing yoked to the 60 Hz frame rate of the 

monitor. During adaptation sequences, participants were asked to perform a 1-back 

repetition detection task to maintain attention. Following the initial adaptation period, 

participants reported the subjective spaciousness of test scenes from either the same or 

different category. Each test scene was shown for 100ms followed by a 100ms 1/f noise 

mask, after which participants rated the scene’s spaciousness according to the scheme 

outlined in the following paragraph. To maintain a consistent adaptation state, test scenes 

were separated by “top-up” adaptation periods consisting of 100 adapting scenes shown 

for 100ms each without interruption over 10s. Each participant rated 30 test scenes in 

each of four adaptation blocks corresponding to each combination of adapting scene 

spaciousness (high versus low) and informative object masking state (all unmasked 
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versus all masked). Each block used a unique set of randomly selected test scenes, 

equated for average spaciousness across blocks. Each test scene was viewed by a 

participant only once.  

In the first experiment undertaken, featuring adaptation to high- and low-

spaciousness bathrooms, participants rated the spaciousness of test bathrooms on a 5-

point scale (1 = “much less spacious than average “, 2 = “less spacious than average”, 3 = 

“about average spaciousness”, 4 = “more spacious than average”, 5 = “much more 

spacious than average”); ratings in all subsequent experiments were on a 4-point scale 

that was identical but for elimination of the middle “about average” option. This change 

was an attempt to improve the sensitivity of the rating scale to small changes in perceived 

spaciousness. Specifically, we were concerned that the “about average” response option 

in the 5-point scale was conceptually too broad, and therefore might be chosen by 

participants even for scenes which they felt were actually slightly above or below average 

in spaciousness. The 4-point scale theoretically avoided this problem by forcing 

participants to make a “more” versus “less” decision for every scene. Because the aim of 

the 4-point scale was to improve sensitivity to aftereffects that were already statistically 

significant in the initial bathroom experiment using the 5-point scale (see Results), 

repetition of that experiment with 4-point scale was not necessary.  

For reasons outlined in the Results, adaptation experiments were executed with 

five non-overlapping groups of participants. For the first three groups, the design was 

exactly as described above: participants rendered spaciousness judgments of scenes from 

a single category after adaptation to scenes from the same category. The categories used 

in these three experiments were bathrooms, kitchens, and computer-rendered kitchens; 
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participants in each of these experiments are referred to hereafter as the “real bathroom” 

(participant n = 35), “real kitchen” (n = 17) and “rendered kitchen” (n = 30) groups, 

respectively. As is described in the Results, the small size of the real kitchen group 

reflects early termination of that experiment when it became clear that the results were 

inconsistent with our hypothesis due to potential confounding factors in those 

photographs. 

To understand whether adaptation effects were category specific, two additional 

groups of participants judged scenes from one category of real-world scenes (kitchens or 

bathrooms) after adaptation to scenes from the other category. The first of these groups 

were subjected to a variant of the main experiment design in which they rated kitchens 

after adaptation to bathrooms, and vice versa, but with objects always unmasked in all 

scenes. This experiment was designed to measure whether “basic” aftereffects (i.e., 

different test scene judgments after adaptation to high- versus low-spaciousness scenes) 

could be observed between categories; participants in this experiment will be referred to 

as the “unmasked cross-category” group (n = 18). The small size of this participant group 

reflects the generally large magnitude of basic adaptation effects. Participants in the 

second “cross-category” group rated kitchens after adaptation to bathrooms that either 

had objects masked or unmasked. Participants in this experiment will be referred to as the 

“masked cross-category” group (n = 29).  

1.2.1.4 Data Analyses 

Due to the evanescence of aftereffects [115], we wished to exclude delayed spaciousness 

ratings. To do so, and to exclude trials in which participants responded implausibly 
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quickly, data for each participant were scanned for reaction times (RTs) and trials were 

excluded from analysis when RTs fell more than 4 standard deviations above or below 

the mean of trials accumulated across all members of his or her participant group. We 

also employed a clustering algorithm to provide an unbiased means of filtering responses 

of inattentive participants. Details of both of these procedures can be found in the 

Appendix A Table 1. Note that these procedures reduced the number of participants in 

each group who contributed data to final analyses. Final participant counts can be found 

in the Results.  

1.2.1.5 Statistical Analyses 

We used a series of permutation tests to assess the statistical significance of differences in 

judgments of test scene spaciousness among adapting scene types. For each comparison 

of interest between two types of adapting scenes (e.g., spaciousness ratings after 

adaptation to low- versus high-spaciousness scenes), we randomly permuted the 

condition labels of the 60 spaciousness judgments each participant made across the two 

types of adapting scenes. The difference between the average ratings in each pair was 

recomputed based on the permuted labels, and the average value of this difference across 

participants was stored. This permutation procedure was repeated 10,000 times, allowing 

us to construct the distribution of group-level rating differences to be expected under the 

null hypothesis that test scene spaciousness ratings were unaffected by adapting scenes. 

The p value of the actual rating difference between the adaptation conditions being 

compared was the proportion of elements in the null distribution that exceeded the actual 

rating difference. Permutation testing was selected to avoid distributional assumptions of 

parametric tests.  
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Separate planned tests were performed to assess the significance of differences in 

aftereffects within three pairings of adapting scene types. Each test involved its own 

independent set of label permutations. In the first test, labels were permuted between 

ratings following adaptation to high- and low-spaciousness unmasked adapting scenes in 

order to measure the strength of “basic” aftereffects that had been reported previously for 

spatial properties [116]. In the second test, labels were permuted between ratings 

following adaptation to high-spaciousness masked and unmasked adapting scenes in 

order to measure the effect of object masking on aftereffects produced by high-

spaciousness scenes. Finally, in the third test labels were permuted between ratings 

following adaptation to low-spaciousness masked and unmasked adapting scenes to 

measure the effect of object masking on aftereffects produced by low-spaciousness 

scenes. Because we had a clear hypothesis about the sign of the rating difference for each 

of these comparisons, p values were determined from one tail of null permutation 

distributions.   

1.2.2 fMRI EXPERIMENT 

1.2.2.1 Participants 

Thirteen participants (12 female, aged 18-23 years) with normal or corrected-to-normal 

visual acuity gave written informed consent in compliance with procedures approved by 

the Boston College Institutional Review Board. One participant with excessive motion 

artifacts was excluded from analysis. Participants were paid $45.  
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1.2.2.2 Stimuli 

Visual stimuli were real-world bathroom image exemplars assembled for the behavioral 

experiment, except in gray- or blue-scale format (Appendix A Figure 3). Both masked 

and unmasked versions of these images were used. Scenes subtended 9.3° of visual angle. 

1.2.2.3 Experimental Procedure 

Each stimulus event consisted of a bathroom image presented for 150ms, followed by a 

white fixation cross for 1350ms. Five types of bathrooms were shown: exemplars from 

the top and bottom spaciousness quintiles shown both with informative objects unmasked 

and masked, and exemplars from the middle quintile with objects unmasked. Participants 

indicated the color of the bathroom (gray or blue) by button press when the fixation cross 

appeared. The five scene types along with 3-second null events were ordered according to 

third-order counterbalanced de Bruijn sequences, a general class of pseudorandom 

sequences which provide the minimum length sequence needed to achieve a desired 

depth of stimulus counterbalance for a condition set of arbitrary size [117,118]. Each 

scan run contained 36 repetitions of each stimulus type. Runs lasted 6 minutes and 18 

seconds, including 15-second fixation-only intervals attached to the end of each run. 

Unique stimulus sequences were constructed for six scan runs for each subject. Scan 

sessions also included two functional localizer scans lasting 7 minutes 48 seconds each, 

during which subjects viewed blocks of color photographs of scenes, faces, common 

objects and scrambled objects presented at a rate of 1.33 pictures per second [119]. 

Localizer stimuli subtended 15° of visual angle. 
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1.2.2.4 MRI Acquisition 

All scan sessions were conducted at the Brown University MRI Research Facility using a 

3T Siemens Trio scanner and a 32-channel head coil. Structural T1* weighted images for 

anatomical localization were acquired using a 3D MPRAGE pulse sequences (TR = 1620 

ms, TE = 3 ms, TI = 950 ms, voxel size = 0.9766 x 0.9766 x 1mm, matrix size = 192 x 

256 x 160). T2* weighted scans sensitive to blood oxygenation level-dependent (BOLD) 

contrasts were acquired using a gradient-echo echo-planar pulse sequence (TR = 3000ms, 

TE = 30ms, voxel size = 3x3x3mm, matrix size = 64 x 64 x 45). Visual stimuli were rear 

projected onto a screen at the head end of the scanner bore and viewed through a mirror 

affixed to the head coil. The entire projected field subtended 24° x 18° at 1024 x 768 

pixel resolution. 

1.2.2.5 fMRI Analysis 

Functional images were corrected for differences in slice timing by resampling slices in 

time to match the first slice of each volume, realigned with respect to the first image of 

the scan, and spatially normalized to the Montreal Neurological Institute (MNI) template. 

Volumes from experimental scans were analyzed with general linear models (one for 

each scan run) implemented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm), including an 

empirically-derived 1/f noise model, filters that removed high and low temporal 

frequencies, and nuisance regressors to account for global signal variations, between-scan 

signal differences, and participant movements. Beta value maps were extracted for each 

stimulus condition for each scan. 
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Next, within each subject a permutation test was used to identify voxels whose 

responses varied significantly among scene types and thus would be passed to the 

multivoxel pattern analysis (MVPA) used for hypothesis testing. For each voxel we 

stored the F statistic from a one-way ANOVA performed on beta values from each of the 

five bathroom types, sampled across the six scans. This statistic was compared to a null 

distribution of F statistics computed from 10,000 within-scan permutations of condition 

labels, accumulated across all voxels. A voxel was passed to subsequent analysis if its 

unpermuted F statistic exceeded the 95th percentile of the null distribution. Selection 

based on a null distribution accumulated across all voxels was a conservative approach, 

ensuring that only the voxels with responses differing most consistently across conditions 

were selected for further analysis. Note, however, that while this procedure identified 

voxels whose responses varied among stimuli, it was not biased towards identifying 

voxels with any particular ordinal relationships among those responses. That is, a voxel 

could satisfy our selection criterion as easily with responses to stimuli labeled A, B,C,D 

and E that reliably fell in the order A>B>C>D>E as with responses that were reliably 

ordered B>C>A>E>D, or any other order. Because our hypotheses addressed ordinal 

relationships, as explained in the following paragraph, our ANOVA-based feature 

selection procedure thus did not amount to “peeking”. We required that at least 7 voxels 

be selected from each region of interest (ROI; see below for definitions) in each 

participant. This minimum was selected because it equaled the number of voxels in each 

searchlight cluster used for whole-brain analyses, as described in a following section. 

Response vectors composed of selected voxels were generated for each stimulus type and 
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averaged across scans, and pairwise Euclidean distances among all vectors were 

computed for each participant.  

1.2.2.6 Statistical Analysis 

To test the hypothesis that informative objects bias patterns of neural activity evoked by 

high- and low-spaciousness bathrooms, we used permutation tests to assess the group-

level significance of series of contrasts among pairwise Euclidean pattern distances for 

each ROI. First, we needed to ask whether patterns in each ROI were sensitive to scenes’ 

actual properties, without reference to any potential effects of object. An ROI was 

considered sensitive to spatial properties if it showed a significantly positive value for the 

distance contrast [(distance from unmasked high-spaciousness scenes to unmasked low-

spaciousness scenes) minus (average of distance from unmasked high-spaciousness to 

average-spaciousness and from unmasked low-spaciousness to average-spaciousness)]. 

The significance of this contrast was measured via 10,000 within-scan permutations of 

the condition labels for unmasked high-spaciousness, unmasked low-spaciousness, and 

average-spaciousness scenes, with the contrast computed for each permutation to 

generate a distribution of values expected under the null hypothesis that patterns were not 

related to scenes’ spatial properties. Second, to measure any biasing effect of objects on 

patterns evoked by low-spaciousness scenes relative to average-spaciousness scenes we 

computed the contrast [(distance from masked low-spaciousness to average-

spaciousness) minus (distance from unmasked low-spaciousness to average-

spaciousness)]. The significance of this contrast was tested by permuting labels for 

unmasked low-spaciousness and masked low-spaciousness scenes. Third, to measure any 

biasing effect of objects on patterns evoked by high-spaciousness relative to average-
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spaciousness scenes we computed the contrast [(distance from masked high-spaciousness 

to average-spaciousness) minus (distance from unmasked high-spaciousness to average 

spaciousness)]. The significance of this contrast was tested by permuting labels for 

unmasked high-spaciousness and masked high-spaciousness scenes. Finally, to provide 

context for any of significant values for the above contrast, we computed the contrast 

[(distance from masked high-spaciousness to masked low-spaciousness) minus (distance 

from unmasked high-spaciousness to unmasked low-spaciousness)]. The significance of 

this contrast was tested by simultaneously permuting labels between masked and 

unmasked high-spaciousness scenes and between masked and unmasked low-

spaciousness scenes. The utility of each of these contrasts is explained further in the 

Results. Because we had clear hypotheses about the sign of each contrast, one-tailed tests 

were applied, with values from unpermuted data considered significant if they were 

exceeded by fewer than 5% of permuted values. Our focus on specific distance contrasts 

obviated the need for cross-validation that is often employed with MVPA [120,121].  

Whole-brain searchlight pattern analysis was performed with 3 mm radius (7 

voxel) searchlights centered on each voxel in the brain [122]. To measure any local 

biasing effect of object visibility on scenes’ encoded spatial properties, Euclidean 

distances among patterns evoked by each stimulus at each searchlight position were used 

to compute the distance contrast [(distance from masked high-spaciousness to masked 

low-spaciousness) minus (distance from unmasked high-spaciousness to unmasked low-

spaciousness)]. The resulting value for each searchlight cluster was assigned to the voxel 

at its center. Resulting single-participant contrast volumes were passed to a second-level 

exact permutation test implemented with SnPM (http://go.warwick.ac.uk/tenichols/snpm) 
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and custom MATLAB scripts to assess the group-level significance of regions showing 

large subject-averaged contrast values, which were consistent with a biasing effect of 

objects. First, voxel-wise variance was smoothed with a 3 mm FWHM Gaussian filter 

under the nonparametric assumption of smooth underlying variance in the searchlight 

volumes [123]. Smoothed variance maps were used to compute maps of pseudo t values 

for each of the 212 sign permutations of the 12 single-subject contrast volumes, as well as 

for the original, unpermuted set of volumes. The resulting 4096-element distributions of 

pseudo t values for each voxel were used to identify voxels in each permuted volume 

whose pseudo t values were encountered with a probability less than 0.001, and the size 

of the largest six-connected cluster of such voxels recorded for each permutation volume. 

Clusters identified in the same way from unpermuted volumes were considered 

significant if their sizes were exceeded by fewer than 5% of elements in the distribution 

of maximum sizes accumulated across permuted volumes. The thresholded second-level 

volume was projected onto a surface based representation of the MNI canonical brain 

with the SPM Surfrend toolbox (http://spmsurfrend.sourceforge.net), and then rendered in 

NeuroLens (http://www.neurolens.org). 

1.2.2.7 Regions of Interest 

All ROIs were defined according to a recently-described algorithmic approach applied to 

data from localizer scans [124]. Briefly, for each contrast of interest (e.g., scenes > than 

objects), a whole-brain group volume was created in which each voxel was tagged with 

the proportion of subjects in which that voxel showed activation exceeding a threshold of 

t = 1.6. A 3mm FWHM Gaussian filter was applied to this volume, followed by a 

watershed algorithm with an 8-connected parts filter applied to each axial slice. The 
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resulting volumes contained segmented parcels corresponding to activations shared 

between subjects. To reduce extraneous activations present in the segmented group 

volumes, parcels generated from the activations of fewer than 50% of subjects were 

removed. Individual subject ROIs associated with a given contrast were defined from the 

intersection between the shared activation volume and each subject’s contrast map 

thresholded at t = 1.6. This procedure was performed for the contrasts of scenes > objects 

(to identify PPA, retrospenial complex (RSC), and transverse occipital sulcus (TOS)), 

objects > scrambled objects (lateral occipital (LO) and posterior fusiform sulcus (pFs) 

subdivisions of the lateral occipital complex (LOC)), and scrambled objects > objects 

(early visual cortex (EVC)). All voxels identified by the scenes > objects contrast that 

were inferior to the splenium of the corpus callosum were assigned to PPA, and all 

superior voxels assigned to RSC. An 11-voxel region of overlap between the group-

defined candidate regions for right PPA and right pFs was assigned to PPA. 

1.3 RESULTS 

1.3.1 Behavioral Experiments 

To measure the impact of informative objects on scenes’ encoded spatial properties, 

participants were asked to rate the subjective spaciousness of “test” exemplars of 

bathrooms and kitchens that possessed spatial properties at or near the average for their 

category, after adaptation to exemplars which were much more spacious or much less 

spacious than their category average (see Methods). In the critical experimental 
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manipulation, adapting scenes either had informative objects unmasked (i.e., fully 

visible) or masked. We reasoned that any effect of informative objects on adapting 

scenes’ encoded spatial properties should have been evident as a difference in the 

magnitude of aftereffects observed when objects were masked versus unmasked. This 

adaptation-based approach was selected over the alternative of having participants 

directly rate the spatial properties of scenes with and without masked objects because it 

avoided potential variability in participants’ interpretation of masks when rating scenes 

with masked objects. For instance, some participants could have interpreted masks as 

unspecified objects, while others might have interpreted them as empty space. Although 

this potential problem might have been addressed via appropriate instructions, it was 

more cleanly avoided using an adaptation approach in which participants were never 

forced to make judgments of manipulated scenes. The perceptual quantity of 

“spaciousness” was selected as the dependent measure because it is an easily understood 

concept that captures the scenes’ general spatial scales; we do not assert that spaciousness 

is a fundamental dimension along which scenes are encoded by the visual system, and 

acknowledge that it likely draws upon a number of more basic spatial properties which 

have been characterized previously [86–89].  

Consistent with the susceptibility of scene spatial properties to adaptation [116], 

participants in the real bathroom group (n=34) rated average bathrooms to be 

significantly less spacious after adaptation to high-spaciousness bathrooms than after 

adaptation to low-spaciousness bathrooms, all with objects unmasked (Figure 2A, vertical 

difference between data points on the left; one tailed permutation test, p = 0.0001). The 

presence of this “basic” aftereffect demonstrates 1) that the perceptual quantity of 
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Figure 1.2. Behavioral results. (A) Average-spaciousness test bathrooms were judged 

significantly smaller after adaptation to high-spaciousness bathrooms than after 

adaptation to low-spaciousness bathrooms (black versus gray filled squares). 

Spaciousness ratings after adaptation to high-spaciousness bathrooms were 

significantly lower when adapting scenes’ informative objects were masked. Object 

masking in low-spaciousness adapting scenes produced the opposite effect. (B) Real 

kitchens were similarly subject to basic (i.e., high versus low) aftereffects, although a 

significant impact of informative objects was only present in aftereffects produced by 

low-spaciousness exemplars. (C) Bidirectional enhancement of aftereffects was 

restored in computer-rendered kitchens, which allowed exact specification of object 

contents. (D) Bidirectional enhancement was also evident in ratings of kitchens after 

adaptation to extreme bathrooms. Error bars are s.e.m.; †, p = 0.065; *, p < 0.05; **, p 

< 0.01; ***, p < 0.001. 
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“spaciousness” is subject to aftereffects similar to those described previously for 

individuated spatial properties of scenes, and 2) that aftereffects can be observed even 

within the spatial constraints of a single indoor scene category.  

When informative objects in high-pole adapting bathrooms were masked, 

aftereffects were significantly enhanced: spaciousness ratings of average bathrooms were 

significantly lower after adaptation to high-spaciousness bathrooms with masked objects 

than after adaptation to the same scenes with unmasked objects (Figure 1.2.A, vertical 

difference between points connected by lower line; p = 0.018). Based on the general 

observation that negative aftereffects for high-level visual features generally increase 

with the perceptual distance between adapting and test stimuli [125–128], this indicates 

that large adapting bathrooms were encoded as more spacious when informative objects 

were masked versus when they were unmasked. Critically, this increase in encoded 

spaciousness did not simply reflect space “freed up” by object removal, as evident in the 

fact that the magnitude of the aftereffect produced by low-spaciousness bathrooms was 

also significantly enhanced by object masking (Figure 1.2.A, vertical difference between 

points connected by upper line; p = 0.002), and that this enhancement took the opposite 

sign. In sum, these results indicate that large bathrooms were encoded as smaller and 

small bathrooms encoded as larger when informative objects were unmasked versus 

masked. In other words, adapting bathrooms at both spatial extremes were encoded as 

more similar to the average bathroom when their informative objects were visible. 

Data from the real kitchen participant group (n = 16) showed the presence of a 

basic adaptation effect for kitchens (ratings after adaptation to low-spaciousness 

unmasked adapting scenes > after adaptation to high-spaciousness unmasked adapting 
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scenes = 0.0002). Furthermore, as with bathrooms, test kitchen spaciousness ratings after 

adaptation to low-spaciousness exemplars were significantly higher when adapting 

kitchens had objects masked than when they were unmasked (p = 0.013), indicating that 

object visibility biased adapting scenes to be encoded as more spacious (i.e., more similar 

to average kitchens; Figure 1.2.B). Unlike adaptation with bathrooms, however, 

aftereffects produced by high-spaciousness kitchens were not enhanced when objects 

were masked. (The relatively small size of this participant group was a result of our 

decision to terminate data collection after it became clear that there was no trend 

whatsoever towards enhanced aftereffects with object masking in high-spaciousness 

adapting scenes.)  

One explanation for the absence of aftereffect enhancement with high-

spaciousness kitchens is that the extra space in large kitchens allowed them to 

accommodate a greater number of objects carrying information about scene category than 

low-spaciousness kitchens, potentially blunting the impact of masking the fixed set of 

informative objects we targeted for masking; this potential complication applied less to 

bathrooms because they were associated with fewer informative objects to begin with 

(Table 1.1). Consistent with this explanation, high-spaciousness kitchens contained 

significantly more of the objects in Table 1 than did high-spaciousness bathrooms (6.99 

versus 5.01 objects per scene on average; t(198) = 11.84, p < 0.0001). Moreover, we 

observed that large kitchens often contained many objects that, while not appearing on 

the list in Table 1, may still have been associated with kitchens (e.g., kitchen counter 

stools). Large bathrooms did not appear to collect extra potentially informative objects in 

a similar way.  
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To avoid this potential confound, we repeated the kitchen adaptation experiment 

with a group of participants (n = 25) who viewed computer-rendered kitchens in which 

spatial parameters and object contents could be exactly and independently specified. As 

with real kitchens, average-sized rendered kitchens were susceptible to basic aftereffects 

(p = 0.001). Moreover, aftereffects were bidirectionally enhanced when objects were 

masked (Figure 1.2.C; ratings after adaptation to masked high-spaciousness scenes < 

after adaptation to unmasked high-spaciousness scenes, p = 0.025; ratings after 

adaptation to masked low-spaciousness scenes > after adaptation to unmasked low- 

spaciousness scenes, p = 0.002), indicating that both low- and high-spaciousness adapting 

kitchens were encoded as more similar to average kitchens when informative objects 

were unmasked.  

To understand whether aftereffects required that adapting and test scenes belong 

to the same category, participants in the unmasked cross-category group (n = 17) rated 

Table 1.1. List of all objects nominated by 
online raters as associated with bathrooms 
and kitchens 

Bathrooms Kitchens 
Bathtub Cabinet 
Mirror Countertop 
Shower Dish 
Sink Dishwasher 
Toilet Microwave 
Towel Oven 
Vanity Refrigerator 
 Sink 
 Stove 
 Table 
 Utensil 
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the spaciousness of scenes from one category after adaptation to extreme unmasked 

exemplars from the other. Adaptation to real-world bathrooms induced significant 

aftereffects in real-world kitchens and vice versa (kitchen ratings after adaptation to high-

spaciousness bathrooms < after adaptation to low-spaciousness bathrooms, p = 0.0001; 

bathroom ratings after adaptation to high-spaciousness kitchens < after adaptation to low-

spaciousness kitchens, p = 0.012). These cross-category aftereffects were enhanced by 

object masking (Figure 1.2.D), as demonstrated in the masked cross-category participant 

group (n = 24), who showed significantly greater aftereffects in ratings of real average-

spaciousness kitchens after adaptation to low-spaciousness bathrooms with objects 

masked (p = 0.003), and marginally greater aftereffects after adaptation to high-

spaciousness bathrooms with objects masked (p = 0.065). Because of the absence of an 

effect of object masking on aftereffects in the real kitchen participant group, we did not 

examine the impact of object masking state on aftereffects produced by real-world 

kitchen adapters on bathrooms.  

1.3.2 fMRI Experiment 

Our behavioral results indicate that the presence of objects strongly associated with a 

particular scene category produces a “centripetal bias” in the encoded spatial properties 

of scenes containing them. To understand where in the visual system this bias arises, we 

used fMRI to record activity patterns evoked by exemplars of each of the five types of 

bathrooms used in the behavioral experiments: high- and low-spaciousness exemplars, 

both with and without informative objects masked, plus average-spaciousness exemplars 

with objects unmasked. Note that this experiment sought to directly measure neural 
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responses to scenes varying in spaciousness and masking state rather than any neural 

signature of aftereffects those scenes produced. This direct approach was feasible because 

no perceptual judgments of scene spatial properties were required of subjects in the 

scanner, who solely judged whether scenes were shaded in gray or blue. Only bathrooms 
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Figure 1.3. Analysis of pattern distances in right PPA. (A) Average Euclidean 

distances between patterns evoked by high- and low-spaciousness bathrooms with 

unmasked objects were significantly greater than the average of distances between 

each of those extremes and the pattern evoked by average-spaciousness bathrooms. 

(B-D) Pattern distances satisfying the predictions made from behavioral results, 

demonstrating centripetal object bias in right PPA. The combination of these contrasts 

was not found in other ROIs. Distance data in each panel correspond to comparisons 

between patterns denoted by same-shaded arrows in the left half of each panel. Error 

bars are s.e.m. *, p < 0.05; **, p < 0.01; ***, p < 0.001.< 0.01; ***, p < 0.001. 
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were used because they were associated with a more reliable centripetal bias in the 

perceptual experiments. 

 

Our analysis focused on the PPA, within which activity patterns have been shown 

to track the spatial properties of scenes [104,107,129]. Consistent with these previous 

studies, distances among activity patterns evoked in right PPA by high-, low-, and 

average-spaciousness bathrooms, all with objects unmasked, qualitatively matched 

differences among their spatial properties: the average distance between patterns evoked 
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Figure 1.4. Visualization of relationships among scene-evoked patterns in right PPA. 

(A) Matrix of Euclidean distances among bathroom-evoked patterns, averaged across 

participants. (B) Corresponding positions of patterns in two-dimensional space 

returned by MDS; dimensions 1 and 2 capture 36.0% and 30.7%, respectively, of total 

between-pattern distance. Dashed contours are bootstrap 95% confidence ellipses for 

pattern coordinates, based on 10,000 resamples. Positions of patterns along the second 

(vertical) dimension qualitatively match relative encoded spaciousness of scenes 

indicated by behavioral experiments. 
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by high- and low-spaciousness rooms was significantly greater than the average of 

distances between each of those patterns and patterns evoked by average-spaciousness 

rooms (Figure 1.3.A, permutation test p = 0.028). This “basic” sensitivity to spatial 

properties was not significant in left PPA, consistent with previous results suggesting 

greater sensitivity to spatial properties in right PPA [130–132].  

Patterns evoked in right PPA by both high- and low-spaciousness bathrooms were 

significantly closer to patterns evoked by average-spaciousness bathrooms when 

informative objects in the two extreme scenes were unmasked versus when they were 

masked (Figure 1.3.B, 1.3.C; p < 0.0001 for each). This combination of pattern distances 

matches the combination of distances among encoded spatial properties that was revealed 

by our adaptation results, in which scenes with objects unmasked were encoded as more 

similar to their category average than scenes with objects masked. However, the greater 

similarity of unmasked extreme scenes to average-spaciousness scenes in fMRI patterns 

could have also reflected a simple effect of masking state per se, rather than an effect of 

masking on encoded spatial properties. To assess whether this was the case, we also 

compared similarities between patterns evoked by high- and low-spaciousness exemplars 

that had objects unmasked to similarities between patterns evoked by the same scenes 

when they had objects masked. If the greater similarity between patterns evoked by 

average-spaciousness scenes to those evoked by unmasked high- and low-spaciousness 

scenes was simply an outcome of object masking by itself, patterns evoked by high- and 

low-spaciousness scenes should be equally similar to each other when objects were 

masked and unmasked, i.e. when masking state was controlled. Instead, we find that 

patterns evoked by high- and low-spaciousness scenes were significantly more similar to 
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each other when objects were unmasked than when masked (Figure 1.3.D, p = 0.0022). 

Thus patterns evoked spatially extreme exemplars with objects unmasked were not only 

more similar to patterns evoked by average exemplars, but also more similar to those 

evoked by scenes at the opposite spatial pole. This combination exactly matches the 

relationships among encoded spatial properties inferred from our perceptual experiments. 

 

Although these results were encouraging, it was possible that the greater distances 

between patterns evoked by extreme scenes with objects masked arose from differences 

in cognitive processes related to object masking. Therefore there was still a risk that the 

greater similarity of patterns evoked by unmasked extreme scenes to patterns evoked by 

average spaciousness scenes reflected a direct effect of object masking state, rather than 

an effect of objects on encoded spatial properties. To achieve a more direct comparison 

between our behavioral results and PPA activity patterns, we used multidimensional 

scaling (MDS) to visualize and isolate PPA pattern dimensions that specifically 

corresponded to scenes’ spatial properties. Matrices of pairwise Euclidean distances 

among the five scene-evoked patterns from right PPA (Figure 1.4.A) were averaged 

across participants and passed to MDS, which produced as output the coordinates of 

patterns along the set of orthogonal dimensions that best accounted for the full suite of 

pairwise distances. 

The positions of right PPA patterns expressed in terms of the first two dimensions 

returned by MDS are shown in Figure 1.4.B. Together, these two dimensions accounted 

for the majority of total pairwise pattern distance, and individually accounted for similar 

shares of distance (36.0% for Dimension 1 and 30.7% for Dimension 2); the remaining 
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Figure 1.5. Results of searchlight analysis, showing results of second-level analysis of 

maps of the contrast [(pattern distance between high/low spaciousness masked 

bathrooms) minus (pattern distance between high/low spaciousness unmasked 

bathrooms)]. Statistical thresholds were determined via permutation testing, with 

voxel activations thresholded at p < 0.001 and a minimum cluster size of 7 voxels, 

which defined the 95th percentile of maximal cluster sizes across 10,000 condition 

label permutations. (A) A cluster of 8 voxels, centered at MNI 27/-34/-5, fell within 

the bounds of our group-localizer for right PPA (outlined in blue). (B) An additional 

cluster of 9 voxels was found in right frontal lobe, centered at MNI 21/47/13.  
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two dimensions each accounted for substantially less distance (17.5% for Dimension 3 

and 15.8% for Dimension 4). Dimension 1 (horizontal axis in Figure 1.4.B) appears to 

arrange patterns on the basis of masking state, legitimizing our concern that greater 

distances from patterns evoked by average-spaciousness scenes to those evoked by 

extreme scenes with objects masked versus unmasked might reflect object contents per se 

rather than spatial property coding. In contrast, dimension 2 (shown vertically in Figure 

1.4.B) clearly arranges patterns in order of their evoking scenes’ “ground-truth” 

spaciousness. The coordinate for average-spaciousness scenes along this dimension is 

roughly intermediate between the coordinates for high- and low-spaciousness unmasked 

scenes and roughly intermediate between the coordinates for high- and low-spaciousness 

masked scenes. Furthermore, coordinates for both masked and unmasked scenes at each 

extreme fall on the same side of the coordinate for the average spaciousness scene. These 

features identify this dimension as capturing PPA sensitivity to scenes’ spatial properties 

[104,107,129]. Neither of the two higher dimensions shared these features (Appendix A 

Figure 4).  

Critically, along dimension 2, coordinates of masked high- and low-spaciousness 

scenes are further from those of the average scene than are coordinates for their 

unmasked counterparts, exactly consistent with the centripetal bias we observed in our 

behavioral results. To assess the probability of observing this effect by chance, we 

performed MDS on new distance matrices that were computed after random within-

subject label swaps between activity patterns elicited by masked high-spaciousness 

scenes and by unmasked high-spaciousness scenes, and simultaneously between 

activation patterns elicited by masked low-spaciousness scenes and by unmasked low-
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spaciousness scenes. Across 10,000 sets of swaps, there was a probability of 0.019 of 

observing an MDS output dimension which 1) correctly ordered all 5 scenes in terms of 

their “ground-truth” spaciousness (as described in the previous paragraph) and 2) showed 

a mask dependent increase in average distance from average- to extreme-spaciousness 

exemplars that was at least as large as the increase along the second dimension of Figure 

1.4.B. (At least one dimension that correctly ordered coordinates was observed for every 

swap; in the event that two such dimensions were returned, only the dimension 

accounting for the greater portion of pattern distance was considered.) These analyses 

indicate that patterns evoked in PPA by extreme bathrooms with objects unmasked were 

more similar to patterns evoked by average bathrooms specifically along PPA pattern 

dimensions encoding scenes’ spatial properties. No other ROI possessed a profile of 

pattern similarity consistent with the perceptual experiments. Data from all other ROIs, 

including the retrosplenial complex (RSC), transverse occipital sulcus (TOS), and lateral 

occipital complex (LOC), can be found in Appendix A Figure 5 – 15.  

Finally, we used a searchlight analysis to identify any regions outside our selected 

ROIs in which relationships among scene-evoked patterns were consistent with a 

centripetal bias by informative objects. Consistent with our ROI analysis, in 

occipitotemporal cortex only voxel clusters corresponding to the anterior portions of PPA 

showed evidence of centripetal bias (Figure 1.5.A). Evidence for centripetal bias was also 

found in a single right hemisphere frontal lobe cluster (Figure 1.5.B).  
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1.4 DISCUSSION 

We find that scenes’ encoded spatial properties are influenced by the presence of 

informative objects, which bias encoded properties towards the average of each scene’s 

category. This centripetal bias was evident both perceptually and in activity patterns in 

PPA, a region that has been linked to processing of scenes spatial properties. Because 

scenes’ actual objective spatial properties are to some extent determined by the objects 

within them, it would not have been surprising to find that the addition of objects exerted 

a negative effect on scenes’ encoded spatial properties. Critically, however, we found that 

the presence of informative objects led both to high-spaciousness scenes being encoded 

as smaller and low-spaciousness scenes being encoded as larger. This contingent 

directionality indicates that the presence of objects influenced scenes’ encoded spatial 

properties above and beyond what would be expected from objects’ simple occupancy of 

space.  

1.4.1 Potential Explanations for Centripetal Bias 

Perhaps the simplest explanation for the centripetal bias is feedback from conscious scene 

category decisions. Assuming that such decisions can drive scenes’ encoded spatial 

properties towards the average of the adjudged category, and further that the presence of 

objects in scenes leads to more accurate recognition, it stands to reason that a greater 

proportion of adapting scenes would have been encoded as spatially “average” when 

informative objects were present. While this can theoretically explain the centripetal bias, 

it fails practically on several counts. First, category decisions were never required in 
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either the perceptual or fMRI experiments, and a majority of participants (including all in 

the fMRI study) viewed scenes from a single category, leaving no impetus for even latent 

categorization. Second, even though participants in the masked cross-category group did 

see scenes from both categories, and therefore might have had greater opportunity to 

categorize scenes, their centripetal bias was no stronger. Third, and most important, the 

design of our fMRI experiment, in which scenes with and without objects masked were 

interleaved, meant that the category of masked scenes was always obvious; this applied to 

our perceptual experiments as well, albeit on a coarser time scale. Thus, even if 

participants persisted in categorization in the absence of any external motivation to do so, 

or if such categorization were automatic, it is highly unlikely that categorization accuracy 

would have differed appreciably between scenes with and without objects masked. Note 

that this does not challenge our designation of masked objects as “informative”, as this 

designation was based on the frequency of their association with a scene category rather 

than their impact on categorization in this experiment, although such an impact has been 

demonstrated previously for these exact object categories [81]. It simply means that, in 

this particular experimental context, those objects provided no more information about 

scene category than was already available from other cues. 

Two other potential explanations for our results lie in differential attentional 

demands potentially placed by masked and unmasked scenes. Under both explanations, 

object masking led to greater attention to scenes’ spatial properties and a consequent 

improvement in the accuracy of their encoding, although in completely opposite ways. In 

the first, object masking potentially freed attentional resources ordinarily attracted by 

objects to be deployed to adapting scenes’ spatial properties, which were therefore 
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encoded with greater fidelity to scenes’ true extreme spatial scales than when objects 

were unmasked. To accept this explanation, however, one must adopt the general view 

that codes for spatial properties are inherently less accurate when objects are present. 

Considering that almost all real-world scenes contain objects, this inaccuracy would be 

maladaptive, and therefore unlikely. In the second attention-based explanation, object 

masking drew greater attention to masked adapting scenes as wholes as observers 

struggled to identify masked objects, with the outcome again that the encoded values of 

these scenes’ spatial properties was more faithful to their extreme natures than when 

objects were unmasked. While this explanation cannot be directly discounted, the rapid 

timing of adapting sequences is likely to have dampened any efforts by participants to 

decipher masked objects, particularly given the ongoing repetition detection task. One 

way to avoid this potential problem could have been to simply excise, rather than mask, 

informative objects in scenes. Doing so, however, would have introduced other 

differences between masked and unmasked adapting scenes, including alterations to 

scenes’ low-level statistical properties. We wished to avoid such differences for the sake 

of our subsequent fMRI experiment, given evidence that PPA is sensitive to them [133]. 

Moving beyond attention, it is very difficult to explain the centripetal bias as an 

outcome of some direct cognitive effect of object masking (i.e., an effect not mediated by 

some change in encoded spatial properties). Although it is possible and perhaps even 

likely that cognitive processes related to object recognition were differentially activated 

by masked and unmasked adapting scenes, this difference is unlikely to explain our 

results, for two reasons. First, it is unlikely that purely object-related cognitive 

differences would have influenced aftereffects exerted on the perceived spatial properties 
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of test scenes. Second, even if they were able to exert such an influence, it is even less 

likely that they could have produced the bidirectional enhancements in aftereffects we 

observed. This is because any object-based differences in cognitive processes between 

masked and unmasked adapting scenes would have been identical for both high- and low-

spaciousness adapters, and as a consequence any potential contamination of spatial codes 

should therefore have likewise been identical. This conflicts with our observation that 

object masking exerted opposite effects on the encoded spatial properties of high- and 

low-spaciousness adapting scenes.  

Finally, it is unlikely that the differing strength of aftereffects we observed with 

masked and unmasked adapters reflects the fact that test scenes “matched” the masking 

state of unmasked adapters but not of masked adapters. We acknowledge that, in general, 

the susceptibility of a test stimulus to aftereffects is dependent upon the degree to which 

it matches the adapting stimulus along non-adapted dimensions. For instance, face-

specific aftereffects are stronger when the adapting stimuli and judged stimuli occupy the 

same retinal location [134] and motion aftereffects are strongest when adapting and 

judged stimuli possess the same spatial frequency [135]. However, if we liken the 

masking states of adapting scenes in our study to different retinal positions or spatial 

frequencies, aftereffects should have been stronger for unmasked scenes because they 

matched the masking state of test scenes. This, of course, is the opposite of what we 

observed.  

“Crosstalk” theory 

Rather than an outcome of decision feedback or attention, we propose instead that 

the centripetal bias reflects a form of heretofore undescribed “crosstalk” between object- 
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and spatial property-encoding pathways. In this theory, objects associated with a given 

scene category contribute a “normalizing” signal to  

 

Figure 1.6. Hypothesized role for centripetal bias in scene categorization. (A) Histograms 

of crowd-sourced ratings of the spaciousness of the 100 bathrooms (gray) and 100 

kitchens (black), all with unmasked objects, from the middle spaciousness quintile of 

each category, accumulated across 61 observers (bathroom n = 609, kitchen n = 607). 

Ratings were solicited from paid online raters (separate from those who contributed to 

scenes’ quintile assignments) who were each asked to rank a pool of 50 bathroom and 50 

kitchen images in terms of perceived spaciousness of the depicted rooms, without regard 

to category. X-axis values are within-subject z-transforms of raw ratings. The means of 

these distributions are significantly different (two-tailed t-test, t(1214) = 4.93, p= 9.3 × 

10-7). These data are shown only to establish that average-sized real-world bathrooms 

tend to be judged as smaller than average-sized real-world kitchens, albeit with 

significant overlap. We infer from these data that average-sized rooms in each category 

possess similarly differing distributions of actual spatial scales. No inferences about 

scene categorization mechanisms are drawn from these data. Dashed curves are normal 

distributions fit to data. (B) Schematized version of distributions in A. Because the 

distributions of spatial properties overlap between the two room categories, any fixed 

spatial property-based decision criterion (vertical dashed line) will result in some 

proportion of spatial-property based categorizations which conflict with scenes’ object 

contents; this fraction is represented by the union of the horizontal-lined and dark gray-

shaded regions. (This example assumes that object contents are perfectly informative of 
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scene category.) By narrowing the distributions of encoded spatial properties (dotted 

curves), object-triggered centripetal bias reduces overlap between the distributions of the 

internal representations of the categories’ spatial properties, potentially producing a 

smaller proportion of conflicted categorizations (dark gray-shaded region alone). 

Although centripetal bias is illustrated here as a reduction in the standard deviations of 

normal distributions, non-uniform centripetal effects (e.g., applied only to distributions’ 

tails) would produce a similar outcome.  
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codes for spatial properties, bringing potentially large excursions in encoded values into 

closer register with those typical of the scene category the objects are associated with. In 

contrast to the feedback account rejected above, in this framework the centripetal 

influence of objects precedes scene recognition. Moreover, we propose that the purpose 

of this influence is to assist scene recognition by easing potential conflicts between scene 

category judgments derived from object contents and spatial properties.  

For an example of how this might work, let us return to the task, described in the 

introduction, of deciding whether a room in an unfamiliar house is a bathroom, perhaps 

after being told that both a bathroom and a kitchen (and no other room type) can be found 

along a hallway one is walking down. These room categories differ both in their object 

contents (Table 1) and in their average spatial properties (Figure 6A). As such, upon 

viewing the first encountered room it can be expected that hypotheses about its identity 

could be generated from both its object contents and its spatial properties. (We use the 

term “hypothesis” here to avoid any mechanistic implications attached to “schema” or 

“context frame”.) Let us assume that this room happens to be an inordinately large 

bathroom. Owing to the high degree of overlap between real-world distributions of the 

sizes of bathrooms and kitchens, it is quite possible that this room’s extreme spatial 

properties may place it on the “kitchen” side of a neutral spatial property-based category 

criterion, generating a spatial property-based hypothesis that conflicts with the hypothesis 

generated from its object contents, which we will assume for present purposes are fully 

dispositive of category. A final judgment of the room’s identity therefore requires some 

means of reconciling these competing hypotheses. This in turn requires consideration of 
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variety of factors to determine the appropriate weight that should be given to each 

hypothesis, a process that might take time and offer added opportunities for error.  

We propose that the object-triggered centripetal bias we observed aids scene 

recognition by reducing the frequency with which this reconciliation process is required. 

By driving the encoded spatial properties of the very large bathroom towards those of the 

average bathroom, centripetal bias reduces the probability that the hypothesis of scene 

identity derived from those properties will conflict with the hypothesis derived from the 

scene’s object contents. Assessed across encounters with many scenes, we propose that 

centripetal bias narrows the distributions of each scene category’s encoded spatial 

properties, reducing the degree of overlap between categories relative to their 

distributions of actual spatial properties and consequently decreasing the proportion of 

scenes on the “wrong” side of a neutral spatial property criteria between categories 

(Figure 1.6.B). We expect that the resulting harmonization of category hypotheses 

derived from encoded spatial properties with those derived from objects would improve 

the speed and accuracy of categorization. 

Based on this theory, we expect that the degree of centripetal bias produced by an 

object should bear some relationship to the strength of its association with a specific 

scene category; that is, that the identities of the masked objects in both our behavioral and 

fMRI experiments mattered. Although our study did not directly test this relationship, the 

alternative that all objects are equipotent in inducing centripetal bias is virtually 

impossible to reconcile with the bidirectional bias we observed. Consider a completely 

empty room with a floor area intermediate between the average floor areas of two room 

categories generally differing reliably in size. The addition of an object with no 
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association to any particular scene category will, by definition, add no information about 

the identity of the scene, leaving the direction of any potential induced bias unspecified: 

should the bias be towards the smaller or the larger scene category? With the target of 

bias undefined, such an object cannot produce any bias, negating the original assertion 

that objects are equipotent in producing the bias. We therefore consider it extremely 

likely that the centripetal bias we observed depended on the identities of those objects 

which varied in masking state. 

We acknowledge, however, that our results do not tell us whether the ability of 

objects to bias scenes’ encoded spatial properties derives from objects’ statistical 

associations with specific base-level scene categories, such as “bathroom” versus 

“kitchen”, or with scenes grouped at some higher taxonomic level, such as “indoor 

scenes” versus “outdoor scenes”. In other words, while our results are consistent with our 

hypothesis that objects bias encoded spatial properties towards the average values of 

bathrooms or kitchens, they leave open the possibility that objects biased encoded 

properties towards those of the average indoor room. This ambiguity exists because the 

high- and low-spaciousness adapting scenes we used from each scene category were 

possibly extreme enough that they bracketed the average spatial properties of all indoor 

rooms, not just the average of their own category. That is, high- and low-spaciousness 

bathrooms exemplars in our study were likely so extreme that they were likely larger and 

smaller, respectively, than not only the average bathroom, but also the average kitchen, as 

well as the averages of several other common room categories. However, while we 

cannot identify with certainty the level of scene specificity at which the centripetal bias 

operated, it seems that a bias which targeted the spatial properties of specific categories 
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would be more adaptive than one which targeted the average properties of a higher 

taxonomic cluster, such as indoor scenes. This is because while a bias targeting the 

average indoor room would benefit indoor/outdoor scene distinctions, it would 

simultaneously harm distinctions among base-level categories of indoor or outdoor 

scenes by compressing the range of encoded spatial properties of all categories within 

each group towards a single point. In contrast, a bias that targeted base-level scene 

categories, and therefore aided distinctions among them, would be at worst neutral with 

respect to the high taxonomic distinctions such as indoor versus outdoor. Ultimately, 

additional experiments are necessary to clarify this issue. We emphasize, however, that 

the uncertainty we highlight does not challenge our crosstalk interpretation of the 

centripetal bias; it merely raises questions about the taxonomic level of scene distinctions 

that might benefit from crosstalk: base-level or superordinate. 

Although we favor the idea that centripetal bias targets base-level scene 

categories, our crosstalk theory does not predict that all scenes will be equally 

susceptible. Instead, assuming equally strong object associations, centripetal bias should 

vary in strength with the strength of scene categories’ associations with any particular set 

of spatial properties. Specifically, we predict that centripetal bias should be stronger for 

indoor scenes (such as the bathrooms and kitchens used here), which tend to occupy a 

relatively narrow range of real-world sizes, than for outdoor scenes. Given this, we do not 

interpret the fact that objects “controlled” spatial properties in this experiment to indicate 

that objects enjoy a general position of superiority over spatial properties during 

processing of all scenes. Thus, an important future test of our crosstalk hypothesis will be 

to show not only that centripetal bias exists beyond the narrow range of scene types used 
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in the present study, but also that it fails predictably for scene categories not strongly 

associated with any particular spatial scale.  

We wish to emphasize that our crosstalk theory is not simply a restatement of the 

idea that objects activate scene schemata or context frames storing information about the 

features, including spatial properties, typically associated with each scene category [99]. 

Instead, we conceive of crosstalk as a direct translation of object information into spatial 

property codes, independent of (although perhaps coincident with) schemata activation. 

Support for this view comes from the fact, already mentioned, that the identities of 

masked adapting scenes were likely to have been quite obvious to participants, whether 

due to remaining identifying features, or, for nearly half of our participant pool, previous 

exposure to adapting scenes in their unmasked forms as well as intervening test scenes. 

This makes it likely that scene schemata were equivalently activated regardless of 

adapting scenes’ masking states. The persistence of centripetal bias in light of this 

suggests that object processing pathways enjoy direct access to spatial property codes that 

is distinct from their capacity to activate scene schemata. Similarly, it suggests that the 

influence of objects on encoded spatial properties arises from the objects’ visual features, 

rather than their identities, since we expect that the latter also remained fairly firmly 

instantiated from context even during masked blocks.  

Our crosstalk theory thus holds that informative objects benefit scene 

categorization in two ways: by directly activating schemata of their associated scenes, 

and by biasing encoded spatial properties to reduce conflicts with properties associated 

with those schemata. This view makes the testable prediction that the presence of 

informative objects should aid performance on a binary scene discrimination task more 
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under conditions that allow objects to produce a centripetal bias, such as when scene 

exemplars possess spatial properties departing from their category averages, versus when 

they do not, such as when exemplars from at least one category already match the spatial 

properties typical of their category. The competing view that the centripetal bias reflects 

feedback from object-activated schemata predicts no such difference. We expect, 

therefore, that future experiments will be able to clarify whether our feedforward 

“crosstalk” explanation of centripetal bias is correct.  

1.4.2 Role of Parahippocampal Cortex 

Matching our behavioral results, activity patterns evoked in right PPA by scenes at each 

spatial extreme were quantitatively more similar to patterns associated with the opposite 

extreme when objects were unmasked versus when they were masked, both in general 

and specifically along a pattern dimension which correctly ordered scenes’ actual spatial 

properties. This correspondence with our behavioral results was not observed in any other 

ROI. Although PPA has been shown to be sensitive to low-level properties of stimuli, 

such as spatial frequency [133,136] and texture [137,138], response differences between 

unmasked and masked scenes are unlikely to have arisen from differences in low-level 

properties: any influence of object masking on these properties should have taken the 

same sign for both high- and low-spaciousness scenes, whereas the influence of objects 

along the PPA space-coding dimension operated in opposite directions depending upon 

scene spaciousness. While PPA activity has been shown previously to relate to spatial 

properties of scenes [104,107,129] and to human judgments of scene category [139,140], 

the present study joins a very small group demonstrating that PPA activity tracks scenes’ 
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encoded spatial properties even when those properties depart from physical reality 

[141,142].  

Viewed in the framework of our crosstalk theory, our results suggest that PPA, at 

least in the right hemisphere, is the brain area in which encoded spatial properties of 

scenes are brought into alignment with expectations derived from scenes’ object contents. 

Our assignment to PPA of this role as junction point between codes for objects and 

spatial properties is consistent with its recent characterization [129] as the midpoint in a 

hierarchy of scene processing regions which ranges from the purely object-sensitive LOC 

to the purely space-sensitive retrosplenial complex (RSC). Moreover, our results offer an 

alternative perspective on the contentious issue of the origin of object-evoked activity in 

PPA [108,129,143,144], which has alternately been explained in terms of either object-

triggered spatial representations [105,106,145] or contextual associations among objects 

[108,146,147]. Our results suggest that the presence of object-evoked activity in PPA 

also reflects the object information necessary for centripetal bias to take place. Indeed, as 

our crosstalk theory is based on associations between spatial properties and non-spatial 

information (i.e., object identity), the role we ascribe to PPA as the effector of centripetal 

bias appears consistent with both the context- and layout-centered views of its function in 

scene processing.  

Neither our ROI-level nor searchlight analyses showed a similar effect of objects 

on encoded spatial properties in left PPA. This laterality can be separated into two 

distinctions between right and left PPA. First, unlike patterns from right PPA, patterns 

from left PPA failed to pass even the basic test of distinguishing significantly among 

unmasked scenes on the basis of spatial properties: pattern distances between high- and 



  69 

low-spaciousness unmasked exemplars were not significantly greater than pattern 

distances between those exemplars and the average-spaciousness exemplars. The reason 

for this failure is not clear, although some research has suggested that left 

parahippocampal cortex may have a relatively reduced capacity for spatial processing 

[130–132,148], which may have been less apparent in previous MVPA studies of PPA 

spatial sensitivity that used scenes spanning a much greater range of spatial properties 

than those we used [104]. Second, we observed no significant effect of object masking on 

relationships among left PPA activity patterns. This potentially reflects the demonstrated 

greater sensitivity of right parahippocampal cortex to the specific visual contents of 

scenes, contrasting with a greater capacity for abstraction in left parahippocampal cortex 

[148–150]. 

While the medial temporal cluster identified by our searchlight analysis fell 

within the boundaries of group-defined PPA, it is positioned markedly anteriorly in 

parahippocampal cortex. Our results thus join a growing set of findings suggesting that 

PPA is differentiable along its rostrocaudal axis in terms of both response properties 

[133,151] and connectivity [152], and dovetails very closely with some. For instance, 

anterior PPA has been recently shown to be much less sensitive to objects than posterior 

PPA [152], and less sensitive to the high spatial frequencies that might convey 

information about objects [133]. While this might appear at first to conflict with our 

searchlight map showing the most prominent effect of objects in anterior PPA, it is 

important to remember that the searchlight analysis identified subregions whose patterns 

were biased by the presence of objects in scenes, not necessarily those which carried 

information about the identities of the objects. Furthermore, inasmuch as the centripetal 
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bias would appear to be a rather high-level refinement of spatial property codes, it makes 

sense that it would be found in anterior PPA, which shares a greater degree of 

connectivity with fronto-parietal networks than posterior PPA [152]. It is noteworthy in 

this regard that the only other area which showed evidence of centripetal bias in our 

searchlight analysis was a cluster in prefrontal cortex (PFC). Whether this indicates some 

functional association with PPA is unclear, but to the extent that it might, we are inclined 

towards the view that it results from prefrontal mirroring of a centripetal bias that arises 

in PPA, potentially reflecting the channel through which PPA spatial codes contribute to 

categorical decisions.  

In summary, although scenes’ spatial properties and object contents are formally 

independent descriptors of scenes, both our behavioral and fMRI results show that this 

theoretical independence is not respected by the visual system. While it has long been 

appreciated that objects can influence judgments of scene category, the biasing influence 

of objects on encoded spatial properties that we observed has not been previously 

described, nor explicitly predicted by scene recognition models. We propose that this bias 

reflects a system of object/spatial property crosstalk supporting generation of unified 

judgments of scene category by reducing potential categorization conflicts. Further 

perceptual and neuroimaging experiments will be necessary to understand the 

neuroanatomical basis of this phenomenon, and to explicitly test the hypothesis that it 

aids the accuracy and speed of scene recognition.   
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2.0  OBJECT PERCEPTION DURING SCENE CATEGORIZATION IS 

INFLUENCED BY SPATIAL PROPERTY ASSOCIATIONS 
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The ability to categorize a scene depends on complementary resources of visual 

information, describing both the objects and spatial properties (e.g. spatial layout) of 

scenes. Although standard theory considers these resources to be processed essentially 

independently during scene categorization, Chapter 1 provides evidence that they are 

combined at a perceptual level, evident in a systematic bias of spatial property perception 

by objects strongly associated with scenes. However, little else is known about this 

perceptual combination of scene information. Among open questions are: how is this 

combination instantiated in the visual system, whether it only biases perceived spatial 

properties or operates bidirectionally between objects and spatial properties, and whether 

it actually impacts scene categorization accuracy, as we have theorized.  

In this chapter we demonstrate that implicitly learned statistics linking co-

occurring object and spatial property information are drawn upon during scene 

categorization to perceptually “fill-in” obscured object information in scenes. The ability 

of scenes’ spatial properties to bias their perceived objects is robust, replicating over 

multiple experiments that control for a variety of potential confounds and evident in 

significantly more accurate scene categorization. This set of experiments validates the 

theory of a perceptual combination of scenes’ object and spatial property information 

during scene categorization and identifies its mechanistic underpinnings.   

2.1 INTRODUCTION 

For healthy humans, everyday behavior depends on navigating effectively through the 

world. But in order to navigate, humans must first effectively recognize their 



  73 

surroundings. While this at times requires identifying a specific scene, such as when 

recognizing our own homes, we are more often faced with the task of determining a 

scene’s category. For instance, when visiting a museum one must distinguish between the 

gift shop and the gallery. Fast and accurate scene classification is a hallmark of the 

human visual system, which depends on complementary visual features [14,116]: 1) 

information about scenes’ objects, such as their identities and spatial configuration [1–

6,153], and 2) scenes’ intrinsic spatial properties, such as size and expanse [8–

10,15,18,19,154–157]. While humans can successfully categorize scenes based on either 

of these resources when experimentally isolated [5,116], real-world scenes are typically 

categorized based on their combination [5,98].  

Theory has long held that scene categorization unfolds in two stages. In the first, 

visual features describing scenes’ objects and spatial properties are independently 

processed in the visual system. This independence is maintained until the second stage of 

processing, taking place downstream in regions of cortex involved in decision-making, 

where scene category is read-out from some weighted combination of these resources 

[75]. However, evidence presented in Chapter 1 for a systematic, “centripetal bias” in the 

perception of indoor scene spatial properties challenges this theory, suggesting instead 

that these resources are entwined during the first stage [35]. We found that the perceived 

spatial properties of indoor scenes are biased towards the spatial properties associated 

with the identities of those scenes’ objects. In other words, the presence of an oven within 

a scene biased its perceived spatial properties towards that of the average kitchen. This 

observation revealed that the visual system has access to information about the spatial 
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scales typically associated with objects, which influences how spatial properties are 

perceived. 

But how exactly are these associations instantiated? The most straightforward 

explanation is that the visual system tracks the statistical co-occurrence of particular 

objects with particular scales of spatial properties – analogous to a perceptual look-up 

table in which values in “object space” are associated with values in “spatial property 

space”. With such a look-up table in place, activation of neural codes for certain objects 

could activate neural codes for specific sets of spatial properties, resulting in centripetally 

biased spatial property perception. Lending plausibility to this model are studies 

demonstrating that humans are implicitly sensitive to regularities in visual information 

[158–160], learning statistics that capture both spatial and temporal features of objects, 

which improve subsequent perception. For instance, synthetic objects are more accurately 

recognized when they are displayed either in an 2-Dimensional array or a temporal 

sequence of other familiar synthetic objects [161–165].  

Nevertheless, little is known about the impact of object and spatial property co-

occurrence statistics on scene categorization. We reasoned that if the visual system does 

have access to these statistics they should not only impact perception of scenes’ spatial 

properties, as demonstrated in Chapter 1, but also permit spatial properties to bias the 

perceived identities of objects in scenes. Evidence for biases in both object and spatial 

property directions would indicate that the visual system leverages co-occurrence 

statistics during scene categorization to reinforce and align these resources before 

decision-making. Through this influence these co-occurrence statistics could improve 

scene categorization accuracy by facilitating downstream read-out of perceptual 
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information during decision-making, particularly when viewing a scene with obscured 

objects or extreme spatial properties.  

Here we explored these questions by asking if implicitly learned statistics 

describing scenes’ co-occurring objects and spatial property features bias perception of 

their objects during categorization. To do this, we compared the performance of two 

groups of participants at categorizing scene exemplars belonging to novel scene 

categories. Importantly, only one group was given the opportunity to learn co-occurrence 

statistics during an initial training phase. During the subsequent categorization phase, 

both groups saw scenes that had perceptual masks obscuring their object contents, 

leaving spatial properties as the only resource available to both groups’ category 

decisions [15]. We hypothesized that the group given the opportunity to learn co-

occurrence statistics would, when viewing scenes with objects masked, preconsciously 

“fill in” the masked objects based on the scenes’ spatial properties. Having information in 

both their object- and spatial property-processing pathways, these participants would be 

significantly more accurate during scene categorization than participants who had never 

learned co-occurrence statistics. This approach to assessing the influence of spatial 

properties on object identity was preferable to a task in which participants were asked to 

name objects because it avoided the possibility that improvements in object naming 

might be due to feedback from mature scene category decisions.  

We also explored how object and spatial property co-occurrence statistics are 

stored. We reasoned that the amount of information needed to form a complete mapping 

between all possible combinations of scenes’ objects and spatial properties is too large to 

tractably store in the human visual system [166]. Instead, we propose that an efficient 
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solution is to maintain “parameters” that establish an intermediate mapping: capturing co-

occurrences between commonly encountered object and spatial property features. In this 

parameterized account, the perceived features from information resource (e.g. spatial 

properties) are matched to their most similar intermediate parameters held in memory 

(e.g. “small room”), which supports an easy read out of the commonly associated values 

from the other perceived resource (e.g. sink). For instance, this means that any kitchen-

sized scene will be influenced by a spatial property parameter encouraging the observer 

to perceive it as containing an oven. This account predicts that co-occurrence statistics 

learned for some scenes can generalize their influence and improve categorization 

accuracy of novel scenes, for which co-occurrence statistics had not been learned.  

We found evidence that scenes’ spatial properties influence the perception of their 

object features (Experiment 1). This influence operates off of implicitly learned statistics 

describing scenes’ co-occurring object and spatial property features, and leads to 

significant gains in scene categorization accuracy. In two replications, we found that this 

influence does not depend on participant attention (Experiment 2) or temporal regularities 

(Experiment 3) during co-occurrence statistic learning. We also found that learning these 

statistics for some scenes facilitated recognition of other, similarly sized scenes for which 

they were not learned, indicating an efficient and parameterized storage (Experiment 4). 
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2.2 EXPERIMENT 1 

2.2.1 Materials and Methods 

2.2.1.1 Participants 

A total of 112 participants (63 males) between 19-65 years old were recruited for the 

experiment from Amazon Mechanical Turk (AMT; https://www.mturk.com/), an online 

service for web-based experiments. All participants were based in the United States, 

provided written informed consent in accordance with the procedures of the Boston 

College Institutional Review Board, and were paid $1.50 for participation, lasting 

approximately 15 minutes. 

2.2.1.2 Stimuli 

Visual stimuli were computer-generated exemplars of two “novel” scene categories. 

Novel categories were generated by combining objects and scene spatial properties that 

are not reliably observed together in the real world [167]. Novel rather than familiar 

scene categories were used to directly manipulate how participants learned object and 

spatial property co-occurrence statistics.  
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The two novel scene categories (“Scene A” and “Scene B”, Figure 1) were 

constructed by assigning distinct ensembles of objects to indoor rooms drawn from two 

adjacent and non-overlapping ranges of floor area in order to establish different spatial 

properties for the two categories. Object ensembles occupied similar spatial extents 

within exemplars for each category. Each Scene A exemplar contained a chair, cart, and 

dresser, whereas each Scene B exemplar contained a bench, radiator, and barrel. Object 

models in each scene image were randomly drawn from a pool of 10 for each type of 

object, and positioned in one of 24 randomly selected configurations.  
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Figure 2.1. Experiment stimuli.  Scene A contained a chair, cart, and dresser and was 

smaller than Scene B, which contained a bench, radiator, and barrel. During training, 

the Learning group viewed object-intact versions of these scenes, whereas the control 

group viewed versions that were object-ambiguous. During testing, scenes were 

object-ambiguous for both groups. 
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Each scene category contained 150 unique exemplars. Floor areas ranged in 0.035 

square meter increments from 4.5 square meters to 9.73 square meters for Scene A and 

9.77 square meters to 15 square meters for Scene B. Rooms were rendered using Trimble 

Sketchup (www.sketchup.com), IRender nXt 4.0 (www.renderplus.com), and custom 

Ruby scripts. Separate versions of each image were produced in blue and gray scale and 

cropped to 400 x 400 pixels. 

Two versions of each exemplar were used for the experiment: an “object-intact” 

version, as described above, and an “object-ambiguous” version in which the objects 

were replaced by ineffable wavelet-scrambled [113] versions of a couch, lamp, and 

cabinet (i.e., objects not associated with either new category; “Object-ambiguous A” and 

“Object-ambiguous B”, Figure 2.1). The use of perceptually masked objects was 

preferable to excluding objects from these rooms to maximize their spatial similarity to 

object-intact exemplars in Scene A and Scene B. 

2.2.1.3 Procedure 

This experiment used a between-subjects design to investigate how learning the statistical 

co-occurrence of scene features impacts later categorization of object-ambiguous scenes. 

One group of participants was given the opportunity to learn object and spatial property 

co-occurrence statistics of Scene A and Scene B (Figure 2.1, “Learning group”), while 

the other was not (Figure 2.1, “Control group”). This manipulation was implemented 

during an initial training phase: the Learning group viewed object-intact exemplars from 

Scene A and Scene B while the Control group viewed object-ambiguous exemplars. 

Since the objects in object-ambiguous exemplars carried no signal for scene category, the 

Control group was unable to learn co-occurrence statistics in these scenes.  



  80 

The expectation of this experiment was that Learning group participants would 

learn co-occurrence statistics of the respective object contents and spatial properties of 

the two scene categories during the training phase through exposure to object-intact 

scenes. This was accomplished by ordering scene exemplars in the training phase as 

random walks through the graph depicted in Figure 2.2.A. Each node in this graph 

corresponds to a bin of 30 spatially similar exemplars belonging to one of the scene 

categories (figure 2.2.A legend), and the configuration of the nodes enforced imbalanced 

transition probabilities between categories. When the random walk for a stimulus 

sequence landed on the node denoted by the black square (Figure 2.2.A, “5 ”), a 

participant would see a spatially large exemplar belonging to Scene A that had a 75% 

chance of being followed by an exemplar from the same category (in comparison to an 

exemplar drawn from a gray node, which was always followed by one from the same 

category). These imbalanced transition probabilities during scene viewing provided 

implicit category boundaries for novel scenes, which we expected would maximize 

participants’ ability to learn co-occurrence statistics. Similar designs have previously 

been used to promote category boundaries among visually unrelated stimuli [168]. 

Control group participants saw stimulus sequences arranged according to the same 

random walk procedure, except these sequences contained scenes with all objects masked 

so as to be unidentifiable.   

The training phase consisted of 154 images displayed for 1500ms each (Figure 

2B). In order to maintain attention during the experiments, participants judged each scene 

exemplar with the + or – key on their keyboard as being blue- or gray-scale while it was 

on screen (the shading procedure is detailed in the Stimuli section). Participants were 
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provided feedback for their color judgments during the training phase to encourage 

engagement: the currently viewed image was outlined green for a correct response or red 

for an incorrect response.  

Following this, participants completed a testing phase that measured the impact of 

co-occurrence statistic learning on scene categorization (Figure 2.1, Testing). Learning 

and Control group participants completed the same Testing procedure. Participants were 

told that there were two scene categories at the start of the testing phase and were asked 

to categorize object-ambiguous scene exemplars as belonging to Scene A or Scene B 

(instructions can be found in Appendix B; Figure 2.2.C, Testing). Since the objects in 

these scenes carried no signal, the task relied on judging scenes’ spatial properties.  

Color images of testing phase scene exemplars were displayed for 150ms, 

followed by 83.3ms of a white noise mask, and an indefinite prompt to judge if the scene 

belonged to Scene A or Scene B with the + or the – key on their keyboard. Participants 

were encouraged to answer as quickly as possible, but each stimulus event lasted at least 

1500ms so that each participant had an equal number of judgments. When judgments 

were entered before 1500ms, a dot was shown at the center of the screen until the 

remaining time had lapsed. The order of testing phase sequences was uniformly random 

to reduce the likelihood of temporal regularities learned during the training phase 

carrying over and influencing decisions. Participants categorized 154 exemplars during 

the testing phase, however a response to the first image was not recorded due to software 

error. For each experiment, participant performance was taken as the mean accuracy 

across these 153 judgments. 
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2.2.1.4 Experimental Setup 

Amazon Mechanical Turk directed participants to the experiments, which were hosted on 

Psychophysik (http://psk.bc.edu), a web-based application for creating online 

psychophysics experiments. Psychophysik provided several features that controlled the 

quality of the data received from participants. These features were high-resolution 

javascript timers for recording participant reaction times, stimulus display times, and the 

time of day of participation; extracting information about each participant’s operating 

system and screen resolution; and enforcing full-screen mode during participation. 

Additionally, the application was restricted to Google Chrome for optimal consistency 

between participants. Data analyses detailed below calculated the extent to which any of 

these variables contributed to testing phase classification accuracy. The entire 

Experiment 1 can be accessed at http://bit.ly/co_psk. 

 

Figure 2.2. Experimental procedure. (A) Training phases in Experiments 1, 2, and 4 were 

sequenced with a random walk through this graph structure, which biased transition 

probabilities between scene categories. This promoted statistical learning by making it 

more likely for the large exemplar from Scene A (“5”) to be followed by an exemplar 

from Scene A than by an exemplar from Scene B. The shape of each node indicates its 

scene category, and the shade of gray its relative size. (B) During training, exemplars 

were displayed for 1500ms. Depending on the experiment, participants either judged the 

color shading of each exemplar (Experiments 1 and 3), or its “spaciousness” relative to 

the one preceding it (Experiments 2 and 4). (C) During testing, object-ambiguous 

exemplars were displayed for 150ms, followed by a 83.3ms of a white-noise mask, and 
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finally a prompt to judge the exemplar’s category, which remained on screen for at least 

1500ms. Scenes were shown in a completely random sequence during the testing phase. 
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2.2.1.5 Data Analyses 

Our approach for web-based experimentation supported rapid collection of data from a 

large set of participants. However, we speculated that this approach would be vulnerable 

to two sources of measurement error: 1) Participant disengagement and distraction, 2) 

time-of-day effects. To control for these factors in participant data, we employed a set of 

preplanned and data-driven filters. The filters and their effects on data collection are 

detailed below. Results are based on data from participants passing the entire ensemble of 

filters.  

2.2.1.6 Participant Disengagement 

Given the online nature of these experiments, which does not allow any supervision of 

participants, we expected that some participants were less engaged than others and 

entered judgments unrelated to the task at hand in order to simply progress through the 

experiment. Data from these participants would add noise to our analyses and reduce the 

ability to detect differences between Learning and Control groups. We therefore adopted 

an unbiased, data-driven strategy to identify and exclude disengaged participants from 

analyses. 

To measure participant engagement, we took advantage of data collected during 

each participant’s training phase. During training, participants discriminated each 

exemplar as being blue- or gray-scale, in a task that was designed to increase participant 

engagement while requiring perceptual processes orthogonal to the main experimental 

manipulation measured during the testing phase. This task also provided us with data that 

we used to distinguish between engaged and disengaged participants. Each participant’s 

sequence of training phase responses, evaluated as correct or incorrect, was passed as a 
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high-dimensional vector to a hierarchical agglomerative clustering algorithm (ward link; 

however, clusters were relatively robust to the choice of linkage) [35]. This approach 

grouped together participants with similar response patterns across the training phase, 

separating those with heterogenous (and high-accuracy) patterns from those with 

homogenous (and low-accuracy) patterns. We considered the group of 4 (1 Control) 

participants in the homogenous group to be disengaged from the experiment and 

excluded them from analysis. 

2.2.1.7 Time-of-day Effects 

Performance in perceptual experiments has been tied to the time-of-day of participation 

[169]. We employed a filter to control for these effects, excluding participants who 

completed the experiment 2 standard deviations above or below the average time-of-day 

of their experimental group. This filter identified 2 Participants (1 Control) for exclusion 

from the analyses. In total, of the original 112 participants (54 Control) 105 participants 

(52 Control) remained in Experiment 1 following both the engagement and time-of-day 

filters. 

2.2.1.8 Statistical Analyses 

To support statistical testing, we equalized the number of participants between Learning 

and Control groups. We did this with a bootstrapping procedure, which estimated the 

larger group’s average performance after randomly resampling a sample equivalent to the 

size of the smaller group over 10,000 iterations.  

Permutation tests measured the statistical significance of differences in 

classification accuracy between Learning and Control groups in each experiment. For 
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each experiment, we randomized the group membership label (i.e. Learning or Control) 

of each participant’s average classification accuracy then calculated the mean difference 

in accuracy between the groups. Repeating this permutation procedure 10,000 times 

allowed us to construct a distribution of group-level rating differences to be expected 

under the null hypothesis of no difference in classification accuracy between these 

groups. The proportion of elements in this distribution exceeding the actual mean 

difference score was taken as the p value of the difference between Learning and Control 

groups for a given experiment. Permutation testing was used to avoid distributional 

assumptions of parametric tests. Because we had a clear hypothesis about the sign of the 

mean difference score in each experiment (i.e. Learning > Control), p values were 

determined from the positive tail of null permutation distributions. 

We also used linear models to explore the impact of reported age, reported 

gender, reaction time, and screen resolution on classification accuracy. These models did 

not reveal a significant impact of any of these factors on testing phase accuracy, and were 

consistent with the permutation tests in measuring performance differences between 

Learning and Control groups. Experiment data and analysis code are available at 

https://github.com/drewlinsley/co_scene.  

2.2.2 Results 

The human visual system automatically discovers regularities in visual information 

independent of task demands or conscious intent [162]. We suspected that this form of 

statistical learning is responsible for our earlier finding that the identities of scenes’ 
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objects centripetally bias perception of their spatial properties [35], and would further 

support a bias in the opposite direction, with scenes’ spatial properties biasing perception 

of their object features. The proposed bias reinforces the perceived identities of scenes’ 

objects by bringing them into alignment with scenes’ spatial properties. This process 

resolves perceptual inconsistencies in the resources and improves scene categorization 

accuracy by making it easier for downstream regions involved in decision-making to 

infer a scene category.  

In Experiment 1 we investigated if observers automatically learn statistics about 

co-occurring objects and spatial properties in scenes, and measured how these statistics 

impact scene recognition accuracy. To test this, two groups of participants (Learning and 

Control) completed an online behavioral experiment in which both viewed sequences of 

novel scene exemplars in a training phase and then categorized object-ambiguous 

versions of those scenes in a testing phase. In the critical experimental manipulation, only 

the Learning group was given the opportunity to learn statistics of co-occurring objects 

and spatial properties during the training phase. We expected that participants’ 

representations of these statistics would act as a perceptual look-up table, supporting 

rapid inference of the kinds of object features associated with these scenes’ spatial 

properties. 
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Figure 2.3. Behavioral results. (A) Scene categorization accuracy of object-ambiguous 

testing phase scenes was significantly better for the Learning group, trained on object-

intact exemplars of Scene A and Scene B, versus the Control group, trained on object-

ambiguous versions of these scenes. (B) The benefit of learning co-occurrence 

statistics persisted when controlling for attention between Learning and Control 

groups during training. (C) Additionally, co-occurrence statistic learning did not 

depend on sequencing exemplars with imbalanced transition probabilities. (D) 

Learning co-occurrence statistics for some scene exemplars generalized to others for 

which they were not learned, signaling parameterized storage of these statistics. Error 

bars are s.e.m. † : p = 0.072; * : p < 0.05; ** : p < 0.01.  
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2.2.2.1 Co-occurrence Statistic Learning Improves Scene Recognition 

In order to understand if the Learning group successfully learned co-occurrence statistics 

and to measure their impact on scene recognition, we compared performance of the two 

groups in a subsequent testing phase. During this testing phase, both groups categorized 

object-ambiguous versions of the two novel scene categories. We hypothesized that if the 

Learning group outperformed the Control group on this testing phase task it would mean 

that they leveraged learned co-occurrence statistics to activate object codes consistent 

with scenes’ spatial properties, reinforcing their categorization decisions and improving 

accuracy. Consistent with our expectations, the Learning group was significantly better at 

categorizing testing phase scenes than the Control group (55.680% versus 50.024%, d = 

0.492, p = 0.007; Figure 2.3.A). 

2.3 EXPERIMENT 2 

It was possible that the difference between Learning and Control group performance in 

Experiment 1 did not reflect the influence of co-occurrence statistics but instead resulted 

from differences in the amount of attention paid by each group during the training phase. 

Since the Control group viewed object-ambiguous scenes in their training phase, it may 

have simply been more difficult for them to engage with the experiment during either the 

learning or testing phases than the Learning group. Experiment 2 attempted to replicate 

Experiment 1 with procedures that should have mitigated any attentional differences 

between the Learning and Control groups.  
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2.3.1 Materials and Methods 

2.3.1.1 Participants 

A total of 103 participants (54 males) between 19-65 years old were recruited for the 

experiment. Recruitment, consenting procedures, payment, and experiment duration were 

consistent with Experiment 1. 

2.3.1.2 Stimuli 

This experiment used the same stimuli as Experiment 1.  

2.3.1.3 Procedure 

This experiment’s procedure was nearly identical to Experiment 1. The only difference 

was in the task performed by participants during the training phase. In contrast to the 

color discrimination task of Experiment 1, here participants in both Learning and Control 

groups performed a spatial discrimination task by judging if the currently viewed scene 

exemplar was more or less “spacious” than the preceding one (Figure 2.2.B). This task 

controlled for attention allocation during the training phase, since it required participants 

from both Learning and Control groups to pay attention to the spatial properties of each 

scene. As in Experiment 1, participants were provided feedback to encourage 

engagement: the currently viewed image was outlined green for a correct response or red 

for an incorrect response. The testing phase was identical to Experiment 1. 

2.3.1.4 Experimental Setup 

The experimental setup of this experiment was the same as in Experiment 1. 
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2.3.1.5 Data Analyses 

Consistent with Experiment 1, preplanned filters were applied to this data to control for 

measurement error from 1) Participant disengagement, and 2) Time-of-day effects.  

1) The Participant disengagement filtering procedure, which separated engaged from 

disengaged participants based on their performance during the training phase, excluded 

35 participants from this experiment (19 Control). Note that the large number of 

participants filtered here relative to Experiment 1 likely reflects the difficulty of the size-

discrimination task versus the color discrimination task. 2) The Time-of-day filtering 

procedure excluded 5 participants (2 Control) for completing the experiment at a time of 

day 2 standard deviations beyond each experimental group’s mean. In total, 63 (29 

control) of the original 103 (50 control) participants in this experiment passed these 

filters. 

2.3.1.6 Statistical Analyses 

As in Experiment 1, the number of participants in Learning and Control groups in this 

experiment were equalized to support statistical testing. This was done using the same 

bootstrapping procedure detailed for that experiment. All other statistical testing 

procedures were identical to Experiment 1. 

2.3.2 Results 

We created a new experiment to control for the possibility that the results in Experiment 

1 were driven by the level engagement of Learning and Control groups throughout the 

experiment. This experiment controlled for engagement by having both groups perform a 
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spatial discrimination task during the training phase, in which participants indicated if the 

currently viewed exemplar was more or less “spacious” than the one preceding it. 

Training phase performance was similar for both groups, suggesting that it successfully 

controlled for attention during the training phase (Learning: 66.349% versus Control: 

63.546%, p = 0.147).  

The training phase manipulation ended up benefiting scene classification of both 

groups during the testing phase (Figure 2.3.B, deviation of both bars from chance). This 

basic result is consistent with the general impact of attention on perception: it can yield 

gains in discriminating visual information and drive perceptual learning [170]. Here, we 

suspect that attention similarly enabled both groups to more effectively encode the visual 

features of these scenes. For both groups, this meant becoming more sensitive to the 

spatial properties of the novel scene categories. The increased spatial sensitivity of this 

task improved performance in categorizing subsequent object-ambiguous testing scenes, 

which could only be discriminated on the basis of their spatial properties. However, as in 

Experiment 1, the Learning group was significantly better than the Control group at scene 

classification (63.063% versus 55.939%, d = 0.491, p = 0.034; Figure 2.3.B), indicating 

that co-occurrence statistic learning and not differences in attention improved scene 

categorization accuracy in these experiments.    

2.4 EXPERIMENT 3 

We were also interested in understanding whether the impact of statistical co-occurrence 

learning on perception of scenes’ object features depended upon the design of the training 
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phase stimulus sequences. These sequences were structured with imbalanced transition 

probabilities between scene categories that promoted implicit learning of category 

boundaries [168,171], which we initially believed would improve the likelihood of co-

occurrence statistic learning taking place. However, this design raised the possibility that 

scene feature co-occurrence statistic learning depended on this very structure. 

2.4.1 Materials and Methods 

2.4.1.1 Participants 

A total of 102 participants (48 males) between 19-65 years old were recruited for the 

experiment. Recruitment, consenting procedures, payment, and experiment duration were 

consistent with Experiment 1. 

2.4.1.2 Stimuli 

This experiment used the same stimuli as Experiment 1.  

2.4.1.3 Procedure 

This experiment was created to investigate the impact of temporal regularities on learning 

scenes’ co-occurring object and spatial property statistics. For this reason, the experiment 

was identical to Experiment 1 except for the order in which stimuli were sequenced 

during the training phase. Here, participants viewed uniformly randomized training phase 

sequences. The testing phase was identical to Experiment 1. 
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2.4.1.4 Experimental Setup 

The experimental setup of this experiment was the same as in Experiment 1. 

2.4.1.5 Data Analyses 

Measurement error in this experiment was filtered exactly as in Experiment 1. 1) The 

Participant disengagement filtering procedure excluded 2 participants from this 

experiment (1 Control); 2) The Time-of-day filtering procedure excluded 1 participant (1 

control) with for completing the experiment at a time of day 2 standard deviations outside 

the mean. In total, 99 (52 control) of the original 102 (54 control) participants in this 

experiment passed these filters. 

2.4.1.6 Statistical Analyses 

The same bootstrap procedure described for Experiment 1 was used here to 

equalize the number of participants in Learning and Control groups. This procedure 

supported subsequent statistical testing. All other statistical testing procedures were 

identical to Experiment 1. 

2.4.2 Results 

We tested the impact of temporal regularities on learning scenes’ co-occurring object and 

spatial property statistics with a new set of participants who were trained on “non-

informative” (i.e. uniformly random) sequences of exemplars. Although the Learning 

group outperformed the Control group during the testing phase (52.705% versus 

49.090%, d = 0.307, p = 0.072; Figure 2.3.C), the effect size of the difference was 
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approximately 40% less than Experiment 1, and was only marginally significant. 

However, a two-way ANOVA with experiment and group membership as factors did not 

find a significant interaction for the role of temporal regularities in learning scene co-

occurrence statistics (F(1,194) = 0.379, p = 0.539). Thus, the current data do not support 

the conclusion that temporal regularities play a significant role in learning scenes’ co-

occurring object and spatial property features.  

2.5 EXPERIMENT 4 

Learning scenes’ co-occurring object and spatial properties presents an enormous 

challenge. The most obvious explanation for the object perception bias inferred from 

Experiments 1, 2, and 3, is that observers store associations between the object and 

spatial property features of every scene exemplar viewed during the training phase. 

Extending this information storage regime into the real world, representations of these 

statistics for every scene viewed throughout an observer’s life would be inefficient, 

requiring an enormous amount of memory for storage and extensive processing to access.  

An alternative approach that would ameliorate both storage and access issues is to 

summarize co-occurrence statistics with a set of intermediate parameters, which capture 

associations between commonly encountered spatial property and object features. The 

spatial properties of real-world scenes are not uniformly distributed across the range of 

physically possible spatial properties, but fall into clusters that correspond to individual 

categories: for example, one cluster may correspond to museum gift shops while another 

corresponds to galleries. Similarly, the objects observed in real-world scenes are found in 
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some scene categories more often than others (e.g. an oven is almost always found in a 

kitchen). The visual system might be able to leverage this natural clustering of scene 

features into an efficient storage of co-occurrence statistics by encoding links between the 

central tendencies of these spatial property clusters (e.g. mean spatial properties of a 

scene category) and object clusters (e.g. the typical single object or ensemble of objects 

in a scene category). In this model, co-occurrence statistics are accessed through a similar 

mechanism during scene categorization: scenes’ spatial properties influence their 

perceived objects based on associations with the cluster of spatial properties most similar 

to its own (rather than its own exact values as in the aforementioned, inefficient model).  

The efficient, parameter model makes the prediction that if co-occurrence 

statistics are “looked-up” on the basis of the cluster of spatial properties a particular scene 

falls within, they should generalize to scene exemplars with spatial properties that have 

not previously been seen. This means that Learning group participants in Experiment 1 

should perceive objects in a novel scene exemplar as biased towards the values associated 

with its spatial properties even if they never had the chance to learn the co-occurrence 

statistics for that particular exemplar. We tested this theory by creating a new version of 

Experiment 1, in which a Learning group viewed scene exemplars that were sometimes 

object-visible, and other times object-ambiguous. These participants were able to 

generalize co-occurrence statistics learned from object-visible exemplars to object-

ambiguous ones during the testing phase, resulting in significantly more accurate 

classification of these exemplars than the Control group. 
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2.5.1 Materials and Methods 

2.5.1.1 Participants 

A total of 81 participants (28 males) between 19-65 years old were recruited for the 

experiment. Recruitment, consenting procedures, payment, and experiment duration were 

consistent with Experiment 1. 

2.5.1.2 Stimuli 

This experiment used the same stimuli as Experiment 1. However, the Learning group 

viewed both object-visible and object-ambiguous versions of Scene A and Scene B 

during the training phase. 

2.5.1.3 Procedure 

This experiment employed a similar design as Experiment 2 to investigate if co-

occurrence statistics learned for some exemplars would generalize to other similar 

exemplars. The training phase in this experiment consisted of Scene A and Scene B 

exemplars sequenced according to the graph structure in Figure 2.2A, some of which 

were object-intact while others were object-ambiguous. An object-intact exemplar was 

displayed whenever the sequence drew from a white or black node in the graph (1, 5, 6, 

or 10), whereas an object-ambiguous exemplar was displayed whenever the sequence 

drew from any other node (those in grayscale). Both groups completed the one-back 

spatial discrimination task to control for differences in engagement.  
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The testing phase was identical to Experiment 1. Since the control condition in 

this experiment is identical to Experiment 1, Control group data for this Experiment were 

those collected for Experiment 1. 

2.5.1.4 Experimental Setup 

The experimental setup of this experiment was the same as in Experiment 1. 

2.5.1.5 Data Analyses 

Measurement error in this experiment was filtered using the approach previously 

described for Experiment 1.  1) The Participant disengagement filtering procedure 

excluded 31 participants from this experiment (19 Control); 2) The Time-of-day filter 

excluded 4 participants (2 control) for completing the experiment at a time of day 2 

standard deviations beyond the mean. In total, 46 (29 control) of the original 81 

participants (50 control) in this experiment passed these filters. 

2.5.1.6 Statistical Analyses 

To support statistical testing, the number of participants in Learning and Control 

groups in this experiment was equalized using the bootstrapping procedure detailed for 

Experiment 1. All other statistical testing procedures were identical to Experiment 1. 

2.5.2 Results 

We tested the plausibility of efficient, parameterized co-occurrence statistic storage by 

investigating if associations learned for some scenes can generalize to others and bias 
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perception of their objects. We tested for this effect with a modified version of 

Experiment 2. During the training phase, the Learning group viewed sequences of Scene 

A and Scene B exemplars that systematically varied between object-visible and object-

ambiguous. This paradigm allowed us to measure if participants generalized co-

occurrence statistics learned for object-intact exemplars to object-ambiguous exemplars. 

As in Experiment 2, attention and engagement were controlled with a spatial 

discrimination task during the training phase (no significant difference between groups: 

Learning: 60.475%; Control: 63.546%, p = 0.142). 

We compared Learning and Control groups in categorizing testing phase scene 

exemplars drawn from grayscale nodes in Figure 2.2.A (numbered: 2, 3, 4 in Scene A & 

7, 8, 9 in Scene B). We found that the Learning group was significantly better than the 

Control group at categorizing testing phase scene exemplars drawn from these nodes, for 

which they did not have the opportunity to learn co-occurrence statistics (66.751% versus 

56.570%, d = 0.754, p = 0.020; Figure 2.3.D). Note that replicating this experiment with 

the training task from Experiment 1 (color discrimination) instead of the spatial 

discrimination task used here revealed a similar generalizability of co-occurrence 

statistics, albeit with an approximately 50% reduction in effect size (Appendix B Figure 

1).  

2.5.3 Experiment 4 Discussion 

The visual system leverages information about co-occurring object and spatial property 

information during scene categorization to reinforce the perception of each of these 

resources. While statistics could be encoded for every newly encountered scene, a more 
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efficient regime is to maintain a set of parameters that summarize the kinds of objects and 

spatial properties that typically co-occur across many scenes. This would both reduce the 

amount of storage needed to maintain these statistics and, in the process, make it easier to 

access them during perception.  

Here we find evidence for parameterized storage of object and spatial property co-

occurrence statistics. During the training phase, Learning group participants viewed 

object-intact exemplars only when their sequence drew from specific nodes (1, 5, 9, or 

10), and object-ambiguous exemplars the rest of the time. That the Learning group still 

outperformed the Control group at categorizing testing phase exemplars – specifically 

those for which neither group learned co-occurrence statistics – reveals that they 

generalized from co-occurrence statistics for other, similar scenes. Generalization is not 

possible from a storage regime in which co-occurrence statistics are tracked for every 

encountered scene, and therefore favors parameterized storage.  

2.6 GENERAL DISCUSSION 

Our experiments demonstrate that humans automatically learn statistics about the co-

occurring object and spatial property features in computer generated versions of real-

world scenes. When given the opportunity to learn these statistics, participants’ 

performance on a scene categorization task reliably improved in all four experiments. 

Although statistical learning occurs across many perceptual tasks [161,162,172,173], the 

work here is to our knowledge the first indicating that observers capture associations in 
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visual features spanning local (i.e. object) and global (i.e. spatial property) scales of a 

scene. 

2.6.1 Object and Spatial Property Combination Through Statistical Learning 

But exactly how does co-occurrence statistical learning improve scene recognition? That 

observers were more accurate at categorizing scenes based on their spatial properties 

following co-occurrence statistic learning indicates that these statistics filled-in object 

information in these scenes during perception. This provided downstream regions 

responsible for categorization decisions (e.g. prefrontal cortex) with object features in 

addition to the spatial property information that was evident in scenes even if co-

occurrence statistics were not learned. Although previous research has indicated that 

statistical learning can both yield more efficient attention allocation [74,174–177] and 

exploit temporal regularities [166,168], we found similar benefits for scene categorization 

induced by statistical learning when controlling for each of these factors (Experiments 2 

and 3, respectively).  

Our findings of an internal representation of co-occurring object and spatial 

layout features provides a mechanistic explanation for the finding outlined in Chapter 1, 

in which scenes’ encoded spatial properties were biased by category-informative objects 

towards values associated with those objects [35]. This effect mirrors the object feature 

bias found in each of the experiments described here, and suggests that it results from a 

similar process dependent on co-occurrence statistics, which reinforces the perceived 

spatial properties in scenes with information about their objects. When considering both 

studies together, it appears that the visual system’s access to statistics describing co-
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occurring object and spatial property features supports a bias that can impact either 

resource (i.e. from objects to spatial properties and vice versa). 

2.6.2 Statistical Learning in Scene Recognition 

Statistical learning took place during an initial training phase in each experiment, where 

participants viewed sequences of scene images while completing either a color- or 

spaciousness-discrimination task. Although participants may have automatically engaged 

in scene recognition while viewing each scene, these tasks ensured that statistical 

learning was independent of task demands, falling into the category of unsupervised 

learning [178–180]. This learning also did not depend on either paying specific attention 

to the objects in scenes (as demonstrated by the attention task in Experiment 2) or 

temporal regularities in stimulus sequences (as demonstrated by the sequence 

construction in Experiment 3), each of which can benefit performance on later 

recognition tasks [74,174–176]. These findings indicate that the co-occurrence statistical 

learning observed here may be driven by neural systems that are to some extent distinct 

from previous statistical learning accounts [168,181].   

We also found that co-occurrence statistics learned for certain scene exemplars 

were generalized to other, similar exemplars during later scene categorization 

(Experiment 4). This result aligns with prior accounts of efficient statistical learning 

[166,173,182], and motivates a model for how observers store and interact with these co-

occurrence statistics. Observers interface with stored object and spatial property co-

occurrence statistics using either an INSERT or QUERY operation [183]. One possible 

scenario for this interface is if a scene’s objects and spatial properties are easy to 
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perceive, an observer uses the INSERT operation to update the appropriate parameters in 

the table with the new information. Alternatively if the objects in a scene are obscured as 

in this experiment, the observer can use a QUERY operation to look up the identities of 

objects that typically co-occur with the scene’s spatial properties. While the INSERT 

operation would likely recruit memory systems and top-down control to consolidate 

information, the QUERY operation could occur rapidly during bottom-up recognition. 

Additional work is needed to identify the neural foundation for this learning and continue 

to explore its role in dominant feedforward models for scene recognition [67,73,184,185]. 

One question not addressed by these experiments is the time course of learning 

scene feature co-occurrence statistics: would more training yield even better testing phase 

performance than observed in these experiments? Given that participants learned these 

statistics from significantly fewer scene exemplars (training phase consisted of a 

combined 154 exemplars) than is typical in their daily lives, improved performance with 

more training is expected. The web-based nature of our experiments makes it difficult to 

directly address this question, as longer participation time would have likely also 

increased measurement noise. Nevertheless, exploring the observed bias of object 

perception as a function of the amount of statistical learning could provide valuable 

insight into this question.  

2.6.3 Conclusion 

We found evidence for an influence of statistical learning on scene categorization. 

Observers automatically learn the co-occurrence of objects and spatial properties in 

scenes and leverage these statistics to improve recognition, particularly when viewing a 
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scene with features that are difficult to discern. A key question not addressed by the 

current research is exactly what kinds of visual features are captured by these co-

occurrence statistics. It is unlikely that these features correspond to summary statistics of 

scene information [186] (e.g. the average color, line orientation, or object in a scene 

[187,188]), and more work is needed to develop and validate alternatives. 
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3.0  VENTRAL VISUAL CORTEX LEARNS OBJECT AND SPATIAL PROPERTY 

CO-OCCURRENCE STATISTICS DURING SCENE CATEGORIZATION 
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During scene categorization, the visual system draws upon statistics describing co-

occurring object and spatial property features to reinforce the perception of each 

resource. In Chapter 1, this effect resulted in a systematic bias in the perception of 

scenes’ spatial layout, whereas the reverse was found in Chapter 2: scenes’ spatial layout 

was apparently leveraged to “fill-in” in the identities of perceptually masked objects. 

Despite this significant role of object and spatial property co-occurrence statistics in 

scene categorization, the cortical regions responsible for learning them are unknown. 

While intuition would suggest that cortical regions functionally associated with learning 

(e.g. medial temporal lobe) would also capture these statistics, recent research into visual 

statistic learning suggests that the visual system may also have this capacity. Here we 

provide evidence that regions of ventral temporal cortex (VTC) implicated in 

perceptually processing scenes’ objects and spatial properties are also involved in 

learning their co-occurrence. The activity profiles of these regions are driven by the 

amount of object and spatial property co-occurrences in scenes. A functional connectivity 

analysis identified participation of other regions in VTC strongly associated with 

processing of scene information. These results indicate a dual role for VTC in scene 

recognition: in both processing visual features in scenes and learning their statistical 

regularities.  

3.1 INTRODUCTION 

In order to deal with the vast amount of information in a visual scene, humans leverage 

knowledge about commonly repeating elements. For instance, straight lines are a useful 
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cue for navigating through the world as they are more commonly present in man-made 

than natural environments [15,156]; likewise, an object moving through a visual scene 

(such as a car) can be decoded by identifying temporally coherent low-level features such 

as edges [189]. A large body of research indicates that humans capture these regularities 

during passive viewing, automatically learning the statistical structure of visual 

information without behavioral supervision. Indeed, statistical learning plays a core role 

in human development, with evidence of this benefit first appearing in early infancy 

[180,190,191] and imparting a lasting impact throughout life by improving information 

processing across sensory modalities [161,176,192,193].  

However, little is known about the role of statistical learning in many core visual 

processes. Scene categorization is one such function that is crucial for human behavior, 

supporting effective behavior and navigation through the world. It is dependent on fast 

and accurate perception of two complementary resources of information within a scene. 

One of these resources is the identities and spatial relationships of objects in an 

environment, which are often sufficient to recognize a scene [1,2,153,194]. In contrast, 

more recent research has demonstrated that the spatial properties of a scene, such as its 

size, form a rich informational resource during rapid scene categorization [15,116].  

We found evidence that statistical learning extends to scene categorization by 

influencing how scenes’ object and spatial property features are processed. In Chapter 1, 

we demonstrated that scenes’ perceived spatial properties are biased towards the values 

associated with their objects – causing a room with an oven to be perceived as more 

spatially similar to the average-sized kitchen than if it did not have an object associated 

with kitchens [35]. Evidence for the opposite bias was described in Chapter 2, in which 
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implicitly learned object and spatial property co-occurrence statistics were leveraged 

during scene categorization. When presented with scenes containing perceptually masked 

objects, participants who had learned these statistics “filled in” these objects with features 

associated with their spatial properties. These complementary perceptual biases reveal the 

significant impact of scene object and spatial property co-occurrence statistics on scene 

categorization: the associations reinforce perception of each resource, which reduces 

perceptual conflicts between scene categories and improves accuracy.  

How are these statistics stored in the brain? Although there is extensive work 

describing the neural foundations for learning statistics describing the temporal or spatial 

context of objects [168,171,195,196] in support of object recognition, it’s unclear if those 

same mechanisms also capture the co-occurrence statistics of object and spatial property 

features in a way that supports scene categorization. Here we took the first step in this 

exploration by asking what regions of the brain have activity profiles that indicate 

participation in this form of statistical learning. 

We used functional magnetic resonance imaging (fMRI) to record brain activity 

while participants viewed exemplars from novel computer-generated scene categories. As 

the main experimental manipulation, each scene category varied in their number of 

potential object and spatial property associations. This manipulation was instantiated by 

altering the visibility of objects (i.e. intact versus ambiguous) and range of spatial 

properties occupied by each scene category (i.e. spanning a wide versus narrow range of 

sizes). Exemplars from each category were sequenced in a block design to control for 

perceptual effects driven solely by either scene spatial properties or objects. We expected 

that this design would identify regions of cortex with activity profiles modulated by the 
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amount of co-occurring object and spatial property features within each scene category, 

which we considered evidence of involvement in this form of statistical learning.  

Although prior work has investigated neural systems recruited when drawing 

upon object and spatial context associations [reviewed in 197], the current study is 

distinct in several ways. Those studies explored neural activity elicited when explicitly 

recalling or otherwise leveraging previously learned, semantic level associations between 

a single object and the spatial context in which it is typically found [167,198,199]. In 

contrast, the current experiment measures neural activity elicited while learning 

associations in novel scene categories. Since participants were not told the names of these 

categories, and the experimental task did not require semantic-level processing, we 

reasoned that this learning activity must be related to forming perceptual level 

associations between scenes’ object and spatial property features. 

Given evidence of the involvement of ventral temporal cortex (VTC) in 

processing visual features for scene recognition [7,12,19,24,35,116,200] as well as visual 

statistic learning [171,195], we hypothesized that it would similarly participate in the co-

occurrence statistical learning tested here. We also expected to find through an analysis 

of functional connectivity that participating regions would systematically engage with 

other cortex throughout the experiment, potentially for processing scene features or 

ultimately storing co-occurrence statistics. 
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Figure 3.1. Experiment stimuli and procedure. Computer generated versions of novel 

scenes were created, which were defined by object and spatial property 

combinations that are unlikely in the real world. Scenes were either object-visible or 

object-ambiguous and occupied a wide or narrow size range (representing spatial 

properties). Object-visible categories were Scene A (chair, cart, and dresser) and 

Scene B (bench, radiator, and barrel); object-masked categories were Scene C and 

Scene D. In contrast, Scene A and Scene C were generated with a Wide size range, 

while Scene B and Scene D were generated with a narrow size range. The precise 

spatial scale of each scene category was counterbalanced across participants 

(“Counterbalanced size”; gray bars corresponds to the Narrow range and black to the 

Wide range). This meant that for half of the participants (e.g.) Scene B was larger 

than Scene A despite its exemplars occupying a narrower range of sizes. All scene 

exemplars were randomly presented in either blue or gray scale.   
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3.2 MATERIALS AND METHODS 

3.2.1 Participants 

Fourteen participants (9 female, aged 18 – 29 years) gave written informed consent in 

compliance with Boston College Institutional Review Board procedures approved 

procedures. These participants satisfied typical selection criteria and were right handed, 

of normal or corrected-to-normal visual acuity, and had no history of neurological 

disease. Two participants with excessive motion artifacts were excluded from analysis. 

Participants were paid $60.   

3.2.2 Stimuli 

Visual stimuli were computer-generated exemplars of two “novel” scene categories 

(“Scene A” and “Scene B”, Figure 3.1), which contained a combination of objects and 

scene spatial properties that are not reliably observed together in the real world. Novel 

rather than familiar scene categories were used to directly manipulate how participants 

learned object and spatial property co-occurrence statistics.  

These categories were created by placing distinct ensembles of objects in indoor 

rooms drawn from two adjacent and non-overlapping ranges of floor area (which 

established different spatial properties for the two categories). The object ensembles 

assigned to both scene categories occupied similar spatial extents within the rooms. 

Scene A contained a chair, cart, and dresser, whereas Scene B contained a bench, 

radiator, and barrel. Object models in each scene image were randomly drawn from a 
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pool of 10 for each type of object, and positioned in one of 24 randomly selected 

configurations.  

Both scene categories contained 150 unique exemplars, with floor areas ranging 

in 0.035 square meter increments from 4.5 square meters – 15 square meters. Scene A 

always occupied a wider range of floor areas (“Wide range”) than Scene B (“Narrow 

range”; Figure 3.1), and therefore had more potential object and spatial property 

associations because its object ensemble linked to more values of floor area. As detailed 

below in Procedure, the precise spatial range of the scene categories (i.e. if Scene A was 

larger than Scene B or vice versa) was counterbalanced across participants to control for 

veridical perceptual effects, which were not of interest in this study. Rooms were 

rendered using Trimble Sketchup (www.sketchup.com), IRender nXt 4.0 

(www.renderplus.com), and custom Ruby scripts. Separate versions of each image were 

produced in blue and gray scale and cropped to 400 x 400 pixels. 

In addition to the “object-intact” categories Scene A and Scene B, we produced 

“object-masked” versions of each: Scene C and Scene D. These categories were spatially 

identical to either Scene A (Scene C; “Wide range”) or Scene B (Scene D; “Narrow 

range”), but contained ineffable wavelet-scrambled [113] versions of a couch, lamp, and 

cabinet (i.e., objects not associated with either new category; “Object-ambiguous”, Figure 

3.1). The use of perceptually masked objects was preferable to excluding objects from 

these rooms to maximize their spatial similarity to object-intact exemplars in Scene A 

and Scene B. 
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3.2.3 Procedure 

Human observers automatically learn statistics describing scenes’ co-occurring object 

and spatial property features, which can bias perception of these resources and ultimately 

improve scene recognition. The general strategy of this experiment was to record 

functional brain volumes while participants were given the opportunity to engage in this 

automatic learning process in order to understand where it takes place in the brain. 

Although some forms of visual statistical learning can take place rapidly, needing only a 

few trials [201], we wanted to measure neural processes related to learning scene feature 

statistics that spanned entire scene categories. This required participants to view a large 

amount of exemplars, particularly for Scene A and Scene B. To ensure that we could 

easily identify the statistical learning activity elicited by each scene category we adopted 

a block-design to measure this activity.  

Participants completed a block-design fMRI experiment consisting of 8 scan runs, 

in which each scan run contained images of scene exemplars from one of the four novel 

scene categories described above (8 total stimulus blocks total per participant; this design 

is inspired by others devoting extensive scanning time to measure activity during 

stimulus encoding [202,203]). We planned to randomize the order of the 4 stimulus 

blocks (each with a different scene category) within each half of the experiment 

(consisting of 4 scan runs), but a technical issue meant that all but one of the participants 

viewed the same block order: run one contained images from Scene C, run two scene B, 

run three Scene A, run four scene D, run five scene C, run six scene A, run seven scene 

D, run eight scene B. We do not believe that this affected our findings because it is 

unlikely that this specific block order could cause the pattern of activity discussed in the 
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Results. In other words, our choice for block order randomization was not correctly 

implemented, but was also an overly conservative design choice that did not impact the 

outcome of the experiment. 

To control for perceptual effects related to scenes’ veridical spatial properties (i.e. 

if Scene A was always larger than Scene B), the spatial properties occupied by each scene 

category was counterbalanced across participants (Figure 3.1, “Counterbalanced size”). 

For half of the participants, exemplars from Scene A and Scene C were larger than Scene 

B and Scene D, while the opposite was true for the other half. While we could have tried 

to control for these perceptual effects of non-interest by regressing them out of estimates 

of neural activity, controlling them through experimental design is more reliable [204]. 

Scene exemplars were shown for 1500ms, during which time participants were 

instructed to use a button box to judge whether the preceding scene was more or less 

“spacious” than the current scene. This task was chosen because it ensured similar levels 

of participant engagement when viewing object-intact versus object-ambiguous scenes 

(see Chapter 2.3). Scenes were also outlined in green following correct responses and 

outlined in red following incorrect responses to further engage participants in the task. 

Each scan run contained 252 exemplars drawn uniformly random from a single 

scene category and lasted 6 minutes 48 seconds, including 30 seconds of fixation at the 

end. In other words, each scan run contained a stimulus block of exemplars from a single 

category, which we expected would maximize our ability to capture the complete time 

course of statistical learning evoked by the category. Experimental stimuli occupied the 

central ~ 4.4˚ of visual space. Both stimulus presentation and behavioral data collection 
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were executed with custom MATLAB code using the Psychophysics toolbox[114], which 

can be found at https://github.com/drewlinsley/co_scene. 

Scan sessions also included two functional localizer scans, each of which lasted 7 

minutes 33 seconds. During these scans participants viewed blocks of color images of 

scenes, faces, objects, and scrambled objects, presented at a rate of 1.33 images per 

second and occupying the central ~ 10.25˚ of visual space [119]. 

3.2.4 MRI Acquisition 

All scan sessions were conducted at the Brown University MRI Research facility using a 

3T Siemens PrismaFit scanner with a 64-channel head coil. Structural T1* weighted 

images for anatomical localization were acquired with 3D MPRAGE pulse sequences 

(TR = 1900 ms, TE = 3.02 ms, TI = 950 ms, voxel size = 1 x 1 x 1mm, matrix size = 256 

x 256 x 160). T2* weighted scans sensitive to blood oxygenation level-dependent 

(BOLD) contrasts were acquired with a gradient-echo echo-planar pulse sequence (TR = 

3000ms, TE = 25ms, voxel size = 3 x 3 x 3 mm, matrix size = 64 x 64 x 45). Images were 

rear projected onto a screen at the head end of the scanner bore and viewed with a mirror 

attached to the head coil. The projected field subtended 21˚ x 13˚ at 1920 x 1200 pixel 

resolution.   

3.2.5 fMRI Data Analysis 

Standard preprocessing routines were applied to functional volumes, including 

resampling volume slices in time to match the first slice of each volume, spatially 
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realigning scan volumes to the first volume of each scan, and spatial normalization to the 

Montreal Neurological Institute (MNI) template. Preprocessed scan volumes were also 

spatially smoothed with an 8 mm FWHM Gaussian filter.  

Activity in each voxel was analyzed with a general linear model (GLM) 

implemented in SPM12. These models produced beta volumes for each scan run, 

capturing hemodynamic response function (HRF) convolved activity elicited by each 

scene category (convolution supported identification of activity related to scene stimuli, 

excluding undesired contributions such as from the fixation-cross or the behavioral task). 

Each GLM included an autoregressive AR(1) model to account for serial noise, filters 

that removed low frequency signal drifts, and nuisance regressors to account for global 

signal variations, participant motion, and reaction times for the orthogonal spatial 

discrimination task. 

We analyzed involvement in scene feature co-occurrence statistic learning with 

first level (i.e. for each participant) linear contrasts that identified voxels with greater 

differences in activity between [Scene A and Scene B] than [Scene C and Scene D]. We 

expected differences in activity between the scene categories since each was generated 

with a different combination of object information (object-intact versus object-

ambiguous) and range of sizes (wide versus narrow). However, we were specifically 

interested in identifying activity related to learning the object and spatial property co-

occurrence statistics within each category. Statistical learning activity was captured with 

a contrast measuring an activity interaction across these categories: [Scene A * (1), Scene 

B * (-1), Scene C * (-1), Scene D * (1)]. We considered voxels to be involved in scene 

feature co-occurrence statistic learning if their mean contrast value at a second level (i.e. 
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across participants) was significantly greater than 0. We did not test for main effects of 

objects (i.e. visible or masked) or spatial properties (i.e. wide or narrow), as these were 

not relevant for identifying voxels participating in statistical learning.   

3.2.6 gPPI Analysis 

We were also interested in identifying regions with trial-wise contributions to co-

occurrence statistic learning that may not have been evident through our main GLM 

analysis. To do this, we estimated task-dependent functional connectivity between 

suprathreshold voxel clusters from the second level of the main GLM analysis (seed 

regions) and every other cortical voxel in each participant’s brain.  

Functional connectivity was estimated with the generalized psychophysiological 

interaction toolbox (gPPI) [205] implemented in SPM8. Linear models were fit at each 

voxel that simultaneously estimated the main effects of task activity (i.e. related to the 

onset of each scene category) and both task-dependent and -independent correlations 

between that voxel’s HRF convolved time course and the average convolved time course 

in each seed region.  

We established functional connectivity by calculating first level activity 

interactions across scene categories (as defined above) with task-dependent connectivity 

beta volumes. In other words, this identified voxels with functional connectivity to a seed 

region that was modulated by the amount of co-occurrence statistics in a scene category. 

Voxels with mean second level contrast values significantly greater than 0 were 

considered as being functionally connected to the appropriate seed region. 
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3.2.7 Statistical Analysis 

Participant contrast volumes from each GLM and gPPI analysis were statistically 

thresholded at a second level with exact permutation tests. In each case, the deviation of 

contrasts from 0 across subjects was converted to t values. These t values were calculated 

with linear regressions that contained nuisance regressors controlling for participant age, 

gender, and the scene categories’ veridical spatial property ranges (i.e. if Scene A was 

larger than Scene B or vice versa). Voxels were thresholded at p < 0.001 based on the 

positive tail of null distributions calculated across the full set of 212 possible sign 

permutations in these volumes [123]. Suprathreshold voxel clusters in the volume of 

observed t values were considered significant if their size was exceeded by fewer than 

5% of elements in the distribution of maximum cluster sizes gathered from null volumes 

thresholded at p < 0.001. Cluster extent sizes were 64 voxels for the GLM analysis, 60 

voxels for the left visual seed gPPI, 59 voxels for the right visual seed gPPI, and 79 

voxels for the right frontal visual seed gPPI.  

3.2.8 Regions of Interest 

Regions of interest (ROI) were defined through a two-step procedure applied to data from 

localizer scans that made ROI definition more reliable across participants. First, in a 

cross-validation procedure, each contrast of interest (e.g. scenes > objects) was 

thresholded at t = 2 for all but one subject. Volumes of the thresholded subjects were 

summed together and further thresholded to produce a group volume only containing 

voxels active for more than 50% of subjects. The left out subject’s contrast of interest 
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was then thresholded at t = 2 and masked with this group-level volume. The procedure 

was repeated for every participant so that ROI definitions for each were based on 

activation maps from all other participants.  

The procedure was performed for the contrast of scenes > objects (to identify 

parahippocampal place area (PPA), retrosplenial complex (RSC), and transverse occipital 

sulcus (TOS)), objects > scrambled objects (lateral occipital (LO) and posterior fusiform 

sulcus (pFs) subdivisions of lateral occipital complex (LOC), and scrambled objects > 

objects (early visual cortex (EVC)). ROIs were labeled by hand in contrasts that defined 

multiple ROIs. 

In order to label suprathreshold voxel clusters from the GLM and gPPI analyses, 

we calculated the percent voxel overlap with each ROI. A voxel cluster was assigned the 

label of an ROI if these percentages were significantly greater than 0 across subjects 

following Bonferroni correction. Clusters falling outside the bounds of any functionally 

defined ROI were anatomically labeled with the Neuromorphometrics atlas in SPM12. 

3.3 RESULTS 

As demonstrated in Chapter 2, scene categorization is improved when observers are first 

given the opportunity to learn regularities of co-occurring object and spatial property 

features in scene categories. This improvement is evidence that these statistics enforce 

systematic biases in the perception of each other: scenes’ objects can bias perception of 

their spatial properties (Chapter 1 [35]) and vice versa (Chapter 2). Here we used fMRI to 

locate regions of cortex involved in learning the statistics that support these biases. 
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Participants viewed images from novel scene categories sequenced in a block design 

while their brain activity was measured. Each block displayed exemplars from one of 

four computer generated and novel scene categories. These scene categories had different 

amounts of object information visible to participants and occupied distinct ranges of 

spatial properties, making each unique in its total amount of potential co-occurrence 

statistics to be learned. After controlling for effects driven solely by differences in the 

perceptual properties of the scene categories, we isolated activity related to learning these 

co-occurrence statistics.  

 

Figure 3.2. GLM results. First level GLM analyses identified voxels with significant 

Object X Size interactions. Voxels with mean responses significantly greater than 0 at the 

second level were considered involved in learning scenes' object and spatial property co-

occurrence statistics. Permutation tests thresholded voxels at p < 0.001 and clusters at p < 

0.05. Suprathreshold voxels are plotted in bright green; all other colors correspond to 

ROI definitions. 
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3.3.1 GLM Analysis 

Participants viewed images of scene exemplars belonging to scene categories that were 

crossed in the amount of object and spatial property information they contained. 

Exemplars in Scene A and Scene C spanned wide spatial ranges whereas Scene B and 

Scene D spanned narrow spatial ranges. In contrast, Scene A and Scene B were object-

intact while Scene C and Scene D were object-ambiguous. We expected that voxels 

involved in object and spatial property co-occurrence statistic learning would have 

activity profiles driven by the number of unique co-occurrences in a scene category. In 

other words, a region involved in co-occurrence learning would respond more strongly to 

Scene A blocks (object-intact and wide spatial range) than Scene B blocks (object-intact 

and narrow spatial range). However, it’s possible that this same response profile could 

have been identified regions that were sensitive to the range of spatial properties in 

categories, rather than the number of object/spatial property co-occurrences to be stored. 

We controlled for this factor by identifying voxels for which the difference in activity 

elicited by Scene A versus Scene B was significantly larger than the difference between 

object-ambiguous versions of these categories (Scene C versus Scene D). Since co-

occurrence statistics could not be learned for these object-ambiguous scene categories, 

this contrast constrained our analysis to identify voxels driven by co-occurrence statistics 

of the scene categories.  

Consistent with our predictions, two clusters of suprathreshold voxels were 

located in VTC (Figure 3.2). One cluster overlapped with participants’ left PPA and left 
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LO (99 voxels centered at [-30, -76, -16]) while the other cluster overlapped with right 

PPA (142 voxels centered at [42, -61, -17]). An additional cluster of voxels was revealed 

in right frontal cortex. Because it fell outside the bounds of any functionally localized 

ROI, it was assigned its anatomical label of right Precentral Gyrus (PrG; 65 voxels 

centered at [45, 11, 26]). 

 

Figure 3.3. gPPI results. gPPI analyses measured task-dependent functional connectivity 

between regions involved in learning scene feature co-occurrence statistics and every 

other voxel in the brain. Red voxels displayed suprathreshold connectivity with right 

ventral temporal cortex; blue voxels with right precentral gyrus; all other colors 

correspond to ROI defintions. Permutation tests thresholded voxels at p < 0.001 and 

clusters at p < 0.05. 
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3.3.2 gPPI Analysis 

Given evidence of VTC and PrG participation in object and spatial property co-

occurrence statistic learning, we were next interested in expanding our search to identify 

other cortical regions contributing to this learning that may not have been evident in the 

initial GLM search. We expected that contributions to co-occurrence learning, such as 

encoding scenes’ features or storing the statistics, might be evident through changes in 

functional connectivity with VTC or PrG that was modulated by the amount of co-

occurrence statistics in scene categories. Voxels functionally connected to VTC and PrG 

were identified with gPPI, which estimated task-dependent functional connectivity 

between these regions and every other voxel in the brain (Figure 3.3). Right VTC was 

connected with a cluster overlapping right PPA and right RSC (106 voxels centered at 

[24, -52, -4]) and an additional cluster overlapping left RSC (138 voxels centered at [12, -

61, 2]). Note that the cluster of voxels overlapping with participants’ right PPA was 

anterior to the right VTC cluster from the main GLM analysis and did not overlap. Right 

PrG was connected with a cluster overlapping right RSC (109 voxels centered at [18, -67, 

14]). Right VTC and right PrG functional connections with RSC were mostly 

independent, with an overlap of 4 voxels.  

3.4 DISCUSSION 

Human observers automatically learn the statistical structure of the visual environment, 

capturing regularities across both space and time [161,162,166,171,195]. We recently 
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found that this statistical learning extends to the domain of scene recognition. In Chapter 

2, we found that participants were significantly better at categorizing scene exemplars 

with perceptually masked objects when given the opportunity to learn statistics about the 

scenes’ co-occurring object and spatial property features beforehand. This indicated that 

object features associated with the scenes’ spatial spatial properties “filled-in” their 

perceptually masked objects, joining the similar and complementary study detailed in 

Chapter 1 [35] in suggesting that the visual system utilizes co-occurrence statistics to 

reinforce perception of scene features. Here, we used fMRI to identify regions of cortex 

involved in the process of learning these co-occurrence statistics 

3.4.1 Statistical Learning of Co-occurrence statistics 

Our main finding is that overall activity in right PrG and bilateral VTC corresponded to 

the quantity of co-occurrence statistics in a set of novel scene categories. The sensitivity 

of PrG to these co-occurrence statistics aligns with prior evidence for its involvement in 

statistical learning, in which it was shown to have a response profile linked to stimulus 

familiarity and temporal prediction [195,196,206]. It is therefore possible that our finding 

of PrG involvement indicates that learning co-occurrence statistics of scenes’ object and 

spatial property features utilizes similar neural circuits involved in capturing regularities 

in temporal structure and spatial context. 

On the other hand, the involvement of VTC suggests that overlapping populations 

of neurons may participate in both encoding scenes’ object and spatial property features 

and also learning their co-occurrences. Within VTC, voxels sensitive to co-occurrence 

statistics overlapped with bilateral PPA and LO, each of which has previously been 
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implicated in scene recognition [12]. PPA is associated with processing multiple 

dimensions of scene features: it activates more strongly to images of scenes than objects 

or other types of visual stimuli [24], encodes scene information correlating with both 

spatial properties [19,35,207] and scene categorization decisions [12], and is sensitive to 

the identities and locations of objects in scenes [35,39,208]. In contrast, LO has an 

activity profile linked with scenes’ objects, and it encodes information about the 

identities and configurations of objects in scenes [7,30]. However, a growing body of 

research has also associated both of these regions with visual statistic learning. Each 

encodes information about the temporal context of stimuli and responds more strongly to 

stimuli with a familiar temporal structure or spatial context [171,195,209].  

The current results therefore serve two key purposes. First, they extend the role of 

PPA and LO in statistical learning to indicate an additional involvement in capturing the 

statistical co-occurrence of object and spatial property features. This is the first 

demonstration of visual statistic learning in which associations combine features that 

describe different scales of visual space (i.e. linking a scenes’ local object features with 

its global spatial property features). Second, these results make the prediction that 

structures involved in processing visual features may be either proximal to or 

interdigitated with those involved in statistical learning. Future research is needed to 

explore these structures in a higher resolution than the current experiment in order to 

disambiguate their computational contributions to perception and statistical learning.  

The current results do not define the actual role of VTC and PrC in statistical 

learning, for which two routes for participation can be inferred from previous research. 

One possibility is that these regions may contribute to the process of storing co-
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occurrence statistics. This account is based on behavioral evidence showing that these 

statistics are stored using a limited set of “parameters”, which summarize co-occurrence 

statistics across multiple scene exemplars and are updated – rather than added to – with 

experience (Chapter 2). For instance, one such parameter capturing the association of 

televisions with “den-sized” rooms might be updated to reflect visual features of 

contemporary televisions. Within this framework the current results may reflect VTC and 

PrC involvement in updating these parameters. Another possibility is that VTC and PrC 

activity profiles reflect their utilization of co-occurrence statistics during scene 

recognition: these regions are using co-occurrence statistics to reinforce perception of a 

scene feature. This alternate account is far more plausible for VTC than PrC, given its 

involvement in perception of scenes’ objects and spatial properties.  

3.4.2 Functional Connectivity 

We were also interested in understanding what cortical areas VTC and PrC recruited 

during co-occurrence statistic learning. gPPI identified clusters in left PPA and bilateral 

RSC as having functional connections to VTC and PrC that were modulated by the 

amount of co-occurrence statistics in each scene category. In parallel with past research 

on the PPA response profile, RSC preferentially responds to scenes over other stimuli, 

and both captures and retrieves information about the environment that is crucial for 

navigation [42,210,211]. Together, these regions have been considered as crucial nodes 

in a scene-processing network that has access to regions of medial temporal and 

prefrontal cortex involved in memory-based processing [212].  
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Nevertheless, the current research cannot clarify the role of these regions in 

statistical learning of object and spatial property co-occurrence statistics. One possibility 

is that their functional connectivity reflects processing of visual features that are later 

utilized by VTC and PrC for co-occurrence statistic formation. Another possibility is that 

they are actually involved in long-term storage of parameters describing these statistics, 

either carrying this process out themselves or through interactions with other connected 

regions involved in memory formation.  

3.4.3 Conclusion 

Here we have described an initial exploration of the neural foundations of co-occurrence 

statistical learning during scene recognition. Bilateral VTC and right PrG participated in 

this process, with each possessing activity profiles related to the amount of co-occurrence 

statistics in a set of novel scene categories. These regions further demonstrated functional 

connectivity with regions of VTC involved in processing scene features. Our results 

reveal a network of regions located in both visual and frontal cortex that is active while 

statistics describing co-occurring object and spatial property features in scenes are 

learned. As these results only serve to identify regions involved in this process, future 

research must investigate the computational contributions of each of these areas during 

statistical learning. A greater understanding of these neural computations will prompt 

revisions of dominant feedforward models for scene recognition to account for the 

unsupervised statistical learning reported here [67,185]. 
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4.0  OBJECT AND SPATIAL PROPERTY CROSSTALK IMPROVES SCENE 

RECOGNITION 
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Contrasting with the dominant feedforward model for scene categorization, the 

framework presented in the General Introduction holds that humans categorize scenes 

based on information about scenes’ object contents and spatial properties that becomes 

entwined during the encoding stage. This leads to systematic biases in perception of both 

resources of information, as discussed in Chapters 1 and 2.  This Chapter outlines a 

modeling approach to answering the question of whether encoding-stage biasing of 

scenes’ local or global properties aids scene categorization.    

4.1 INTRODUCTION 

Scene categorization is a core function of the visual system, in which the observer infers 

a label for the local environment. Healthy humans depend on this ability in their daily 

lives, using it to navigate from one place to the next and choose appropriate behaviors 

along the way. While scene categorization strongly depends on effectively perceiving the 

objects in scenes, it also utilizes information about their intrinsic global properties, such 

as spatial layout or size. The standard, dominant theory for scene categorization holds 

that these information resources are independently processed through the visual system, 

and only combined once they reach downstream regions responsible for decision-making 

(i.e. in prefrontal cortex), at which point a unified judgment of scene category is 

produced [74,98].  

 Throughout this thesis, I have described evidence for a revision to this standard 

scene categorization framework. In Chapters 1 and 2, we demonstrated that information 

about scenes’ objects and spatial properties is initially combined (at least in part) as these 
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resources are encoded in the visual system, leading to systematic biases in both. We 

observed that scenes’ encoded spatial properties were biased towards the values typically 

associated with its objects [35]. We also found that when categorizing scenes containing 

perceptually masked objects, participants “filled-in” those objects with features 

associated with the scenes’ spatial properties.  

 Our theory is that these complementary biases aid scene categorization. This was 

initially speculated upon in Chapter 1, where we proposed that the object-influenced bias 

of scenes’ spatial properties enhances their discriminability for scene classification. For 

instance, a “bathroom-sized” room containing an oven is perceived as more spatially 

similar to a kitchen than it actually is. This process supports the categorization process by 

driving scenes’ encoded spatial properties values more typically observed to occur with 

their object contents. 

  More direct evidence for the impact of object/spatial property encoding-stage 

crosstalk on scene categorization was described in Chapter 2. The ability of participants 

to fill-in missing object information in scenes depended on first learning associations 

between these resources. Participants who were given the opportunity to learn these 

statistics were significantly more accurate at categorizing scenes with perceptually 

masked objects than those who did not. This means that biased object information from 

encoding-stage crosstalk improved scene categorization accuracy. 

The studies discussed in Chapters 1 and 2 took similar approaches to infer the 

effect of object and spatial property crosstalk on scene categorization: scenes’ object 

information was manipulated to control a spatial property bias or an object bias (by 

influencing co-occurrence statistic learning). Although these studies established 
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preliminary theoretical and empirical evidence that crosstalk improves scene 

categorization accuracy, they only addressed its impact on categorizing scenes in extreme 

conditions, such as when object information is obscured with perceptual masks. This 

leaves open the possibility that crosstalk is only evident, or perhaps brought on-line, 

when information about scenes’ objects or spatial properties is extremely degraded. It is 

possible that encoding-stage crosstalk has no appreciable effect on scene categorization 

under typical viewing conditions. 

Here we adopted a modeling approach to understand how categorization of intact 

(i.e. without perceptually masked content) real-world scenes is affected by crosstalk. We 

explored this question by creating artificial neural network (ANN) models of the visual 

system, and training them to categorize scenes based on information about their objects 

and spatial layouts. During training, one model simulated the standard framework for 

scene recognition and kept information about scenes’ objects and spatial properties 

separate until it formed a category decision (“independent model”). The other model built 

on this basic framework with an unsupervised learning algorithm that allowed it to 

identify and combine co-occurring sets of object and spatial layout features before 

categorization (“crosstalk model”).  

We first validated this modeling approach by comparing scene encodings 

produced by each model to neural representations of those same scenes in functional 

magnetic resonance imaging (fMRI) recordings of human parahippocampal place area 

(PPA), where an encoding-stage crosstalk bias was first identified (Chapter 1). We found 

that both independent and crosstalk models encoded intact scenes in a way that aligned 

with their objective spatial properties. However, only the crosstalk model encoded scenes 
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as more spatially similar to the category average-size when their objects were visible 

versus when obscured with perceptual masks (Experiment 1). This bias emerged without 

being enforced and mirrored the spatial property bias previously observed in PPA and 

behaviorally. 

These models allowed us to explore the impact of crosstalk on scene 

categorization under typical viewing conditions. In order to understand if crosstalk is 

always on-line and impacting object and spatial property encoding, we compared scene 

categorization decisions between human observers and both models. We found that the 

crosstalk model was in significantly better alignment with human decisions than the 

independent model was, in both typical viewing conditions, when scenes’ objects were 

intact, and when objects in scenes were perceptually masked (Experiment 2). We also 

observed that the crosstalk model was more accurate than the independent model at 

categorizing scenes with intact objects (Experiment 3). Aligning with the findings in 

Chapter 2, this difference persisted when scenes’ objects were obscured with perceptual 

masks. These results corroborate the theory that encoding-stage crosstalk of information 

about scenes’ objects and spatial layout improves categorization, and indicate that this 

impact is significant even when viewing scenes as they are typically encountered in the 

real world.  

4.2 EXPERIMENT 1 

We used a modeling approach to understand how encoding-stage crosstalk between 

scenes’ object and spatial property features affects scene recognition. One model 
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(“independent model”) resembled the standard framework for scene categorization. It 

processed information about the identities of objects within scenes and scenes’ spatial 

properties into high-level features, before entering them into a classifier to produce a 

weighted combination of these features for scene categorization. The other model 

(“crosstalk model”) represents a refinement of this independent model, using a similar 

structure while allowing for a combination of scenes’ high-level object and spatial 

property information before the ultimate scene categorization decision is produced. Our 

first goal was to validate these models against neural representations of these scenes in 

PPA, a region of the visual system implicated in processing scenes and where evidence of 

crosstalk had previously been found.  

We found that both models represented images of scenes with visible objects in a 

manner that was consistent with Humans: scene representations were ordered according 

to their perceived “spaciousness”, a measure of its 3-Dimensional size. However, the 

systematic bias of scenes’ spatial properties observed in PPA was only found in the 

crosstalk model.  

4.2.1 Materials and Methods 

Both models were implemented in a three-layer multilayer perceptron (MLP) algorithm, 

which is a basic neural network algorithm that learns a mapping from an input data 

source, through an intermediate hidden layer (1000 parameters) with a sigmoid activation 

function), to an output label. In this case, the input data source was information about 

scenes’ objects and spatial properties, the hidden layer was configured to enable the MLP 

to learn a low-dimensional representation of its input (which supports categorization), 
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and the output was a scene category label of “bathroom”, “kitchen”, “office”, or 

“bedroom”. Each of these components is discussed in greater detail below. 

4.2.1.1 Feature Input 

We used convolutional neural nets (CNN) to extract representations of objects and spatial 

properties from scenes. CNNs are a class of powerful and expressive algorithms for 

computer vision, which learn a layered mapping from an input data source to an output 

label (similarly to an MLP). Importantly, representations of the input become more 

abstract within each successive layer of a CNN, with early layers possibly capturing 

edges and later layers entire objects. Indeed, these representations align with those in the 

visual system during passive viewing of real-world scene images [72,73,213].  

 While recent work has demonstrated that representations of objects in scenes 

naturally emerge in CNNs [214], it is unclear if spatial properties are similarly captured. 

We therefore trained separate CNNs to represent an operationalized version of each: one 

that captured local (object) features in scenes and another that captured global (spatial 

property) features in scenes. We enforced separate learning of these features by varying 

the receptive field input to each CNN. Local feature CNNs received 32x32 pixel patches 

from a 128x128 pixel image of a scene, whereas global feature CNNs received the entire 

image at once (following high-pass filtering, to promote representations aligning with 

spatial properties; Appendix C). This meant that in order to effectively categorize the 

scenes, the local CNN had to learn representations of more granular, and likely more 

object-centric features than the global CNN. Throughout this chapter, we refer to these 

local and global features as object and spatial property features, respectively. 
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The CNNs were implemented in MATLAB with the MatConvNet library, and 

were structured similarly to “AlexNet” [215]. Object and spatial property encodings of 

scene features were extracted from the final fully connected layer of each CNN. The 

values of these encodings represent normalized “activations” for each feature learned by 

the CNN. This means that higher-valued features have a greater likelihood of being 

present in an image than lower-valued ones do. More details on the CNN architecture and 

how they were trained can be found in Appendix C. 

4.2.1.2 Model Training 

The independent model and crosstalk model were trained on images of real world scenes 

gathered from the SUN database [216]. This dataset consisted of object and spatial 

property feature encodings extracted from 800 scenes in each of the following categories: 

bathrooms, kitchens, offices, and bedrooms (3200 total). These images were different 

than those used to train the CNNs (Appendix C).  

Both independent and crosstalk models were trained for 1000 iterations. Over the 

course of a single iteration, the models received information about every scene in batches 

of 50. This procedure both facilitates MLP training and allowed us to implement our 

mechanism for object and spatial property crosstalk in the crosstalk model.   

4.2.1.3 Model Structure 

We developed our independent and crosstalk models of the visual system by 

differentiating how each received information about scenes’ objects and global 

properties. The independent model kept these resources separate until they were pooled 

in a scene category classifier that represented downstream decision-making regions (i.e. 
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prefrontal cortex). This represents an “as-is” implementation of the MLP: it received a 

concatenation of scenes’ object and spatial property feature encodings, pooled them in its 

hidden layer, and finally inferred a scene category.  

In contrast, the crosstalk model allowed these resources to combine before 

entering the classifier. We based our instantiation of crosstalk on the experiments 

described in Chapter 2, where we observed that implicitly learned statistics describing co-

occurring objects and spatial properties drove encoding-stage biases. During each 

iteration of training, the crosstalk model received information about batches of 50 scenes 

at a time. Every image in a batch was represented with a vector of normalized activation 

values that described CNN representations of its object and spatial property features. 

Higher values meant a higher likelihood of a given feature appearing in a scene. For 

instance, if the CNNs learned an object feature “shower” and a spatial property feature 

“small”, an image of a bathroom would likely have high activations for both of these 

features whereas an image of a kitchen would not.  

In order to estimate the co-occurrence of object and spatial property features in 

scenes, the model calculated Euclidean distances between the features of every batch of 

scenes. This yielded a distance matrix in which small distances between features meant 

that they likely co-occurred in that batch of images and large distances meant that they 

likely did not. In other words, if the batch only consisted of bathrooms, this procedure 

would reveal a small distance – and high similarity – between the set of object features 

(e.g.) corresponding to “shower” and the set of spatial property features corresponding to 

“small”. Co-occurring feature groups were revealed with a clustering algorithm that 

identified ½ as many groupings as the input dimensionality. This number of groups was 
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not guaranteed, as only those containing both object and spatial property features were 

kept. 

The crosstalk model performed operations on each of these co-occurring feature 

groups at the input layer, which gave it the opportunity to express crosstalk. It did this by 

combining feature values within each co-occurring object and spatial property feature 

group. For every scene that the crosstalk model saw, it preserved the maximum value in 

these co-occurring feature groups and set all others to 0, which transformed how each 

scene was represented. Since these features corresponded to activation values that 

indicated their likelihood of appearing in a given scene, high-likelihood features within 

every feature group dominated scene representations, while all others were shrunk to 

their mean. In other words, while inputs to the crosstalk model were the same 

dimensionality as the independent model, they exploited co-occurring features to 

introduce regularization, and reduce the impact of extreme feature values (i.e. noise) on 

their representations. This also meant that during training, the parameters of the crosstalk 

model learned to represent scenes in a way that emphasized these co-occurring features, 

giving it the opportunity express the same crosstalk biases that we observed in humans in 

Chapters 1 and 2.   

For an example of why this mechanism works, consider an image of a bathroom, 

in which a large box obstructs the view of its shower. Having previously learned to 

associate a shower with spatial properties corresponding to the typical, average-sized 

bathroom, an observer’s uninformative object information is reinforced with spatial 

property information that activates object codes consistent with the correct scene 

category. The crosstalk model uses a similar principle: for groups of co-occurring object 
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and spatial property features, it bases its decisions on scene representations that have the 

most informative features emphasized while regularizing all others. If the model were to 

learn the same association, its representation of the bathroom would have greater 

emphasis placed on its spatial properties than its occluded shower, yielding a 

representation that can be easily categorized as a bathroom. This could also lead to a 

systematic bias in how the model represents spatial properties. If the model viewed a 

different bathroom that was spatially small and had a visible shower, the association 

between these resources would cause the model’s representation of the scene to 

emphasize both the scene’s actual spatial properties and those associated with its shower 

(while regularizing unrelated features).  When passed through a classifier, this 

representation would translate into a combination of these spatial properties, and appear 

biased towards the average bathroom. Both of the models are discussed in further detail 

in Appendix C.  

4.2.1.4 Participants 

Model representations were compared to neural data from the 12 human participants 

discussed in Chapter 1 (1 female, aged 18-23 years data [35]).  

4.2.1.5 Stimuli 

We used the set of bathroom images discussed in Chapter 1. These were 500 images of 

bathrooms gathered from the Internet that were ranked (by a set of independent raters) 

according to their spaciousness (Appendix A). Additional versions of the 100 most and 

least spacious images were produced with wavelet masks obscuring their objects that 

were most strongly associated with the scene category (up to three objects). In total, there 
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were five different types of scenes: object masked low spaciousness, object intact low 

spaciousness, object intact average spaciousness, object intact high spaciousness, and 

object masked high spaciousness. All images were also produced in a blue shade and 

gray shade. Human participants viewed 400 x 400 pixel images of these scenes, whereas 

the models received object and spatial property feature encodings from 128 x 128 pixel 

versions (the size was reduced to make it easier for the CNNs to extract feature 

encodings).  

4.2.1.6 Procedure 

Participants in the fMRI experiment viewed sequences of these bathroom images while 

having their brain activity recorded by the scanner (Chapter 1.2.2.3). Within each of 8 

separate scanning runs, 252 images of the five scene types discusses above were 

randomly presented in blue or gray for 150ms, followed by a white fixation cross for 

1350ms. For each participant, we extracted activity patterns elicited by each type of scene 

in right PPA, calculated their dissimilarity with Euclidean distance, and used 

Multidimensional Scaling (MDS) to visualize their relationships.  

 We used a similar procedure to visualize how the independent and crosstalk 

models represented these scenes, producing “synthetic participants” for each model by 

extracting their representations for a random sampling of bathroom images. We made 12 

synthetic participants for each model, with each viewing the same number of images as 

human participants. We extracted encodings for every scene from each synthetic 

participant’s hidden layer. As with the human neural data, we calculated the dissimilarity 

of these patterns with Euclidean distance, and visualized their relationships with MDS. 

To facilitate model and human comparisons, model representations were rotated with 
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procrustes transformations into the latent space occupied by the representations extracted 

from Humans.   

 For both Human and model representations of the five scene types, we generated 

bootstrapped 95% confidence intervals by resampling the averaged distance matrix across 

(either Human or synthetic) participants for 10,000 iterations. 

4.2.2 Results 

Here we validated our modeling approach to understanding how encoding-stage crosstalk 

between object and spatial property information impacts scene categorization. We wanted 

to determine if our models represented scenes similarly to humans, including the 

systematic bias of scenes’ spatial properties observed in Chapter 1 [35]. 

To do this, we compared representations between the independent model, 

crosstalk model, and PPA for the five types of bathroom images used in the experiments 

discussed in Chapter 1. These images depicted bathrooms of low, average, or high 

spaciousness, with their objects either visible or masked. Representations of these scenes 

were visualized with MDS, which revealed that both of our models ordered object intact 

scenes according to their objective spaciousness, similar to PPA (Figure 4.1; object intact 

scenes are depicted with black shapes filled with a 2, 3, or 4). However, only the 

crosstalk model exhibited the same spatial property bias as PPA, in which extreme-sized 

scenes with visible objects were represented as more similar to average than when the 

objects in those same scenes were obscured with perceptual masks (Figure 4.1; object 

masked scenes are depicted with outlined shapes filled with a 1 or 5).  
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4.2.3 Experiment 1 Discussion 

Comparing representations of scenes by the independent and crosstalk models and those 

observed in Human PPA serves two purposes. First, it validates that both models 

represent object intact scenes in a way that is consistent with the objective spaciousness 

of these scenes, as well as their representations in PPA. In other words, both models are 

processing information about scenes in a manner that aligns with humans. 

Second, this analysis validates our crosstalk model, which we based on principles 

inferred from the findings of Chapter 2. The model identified and combined together 

groups of co-occurring object and spatial property features. It did this by emphasizing the 

most informative object or spatial property feature within each co-occurrence group for 

every scene. Since these features were normalized activation values that corresponded to 

their likelihood of appearing in a scene, this process simply involved preserving the 

maximum feature within every co-occurrence group and regularizing all others by setting 

them to 0. Through these principles, the model recreated the systematic bias in spatial 

properties observed in PPA, in which scenes were represented as more spatially similar to 

average when their objects were visible versus when they were perceptually masked. It 

must be emphasized that this bias emerged without supervision, and without any 

constraints specifically enforcing it. For this reason, we believe that our implementation 

of crosstalk is a neurally plausible one.  

 

Figure 4.1. Spatial representations in humans and models. PPA patterns of activation 



  144 

elicited by scene stimuli were visualized with MDS. Scene encodings extracted from 

independent and crosstalk models were similarly visualized. Although the Independent 

model correctly orders object visible scenes according to their relative “spaciousness”, it 

is not consistent with the biased configuration found in both PPA and the crosstalk 

model: scenes with visible objects are represented as significantly more spatially similar 

to average than those with masked objects. Dashed lines indicate 95% confidence 

intervals for each MDS plot.  
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4.3 EXPERIMENT 2 

Having validated the independent and crosstalk models, we were next interested in using 

them to understand how encoding-stage crosstalk between scenes’ object and spatial 

property information impacts scene categorization. Although our prior work has 

demonstrated that crosstalk can improve categorization of scenes with perceptually 

masked objects, the generalizability of this effect to unmasked scenes is unclear. Is it 

always on-line and impacting scene categorization or is it only evident in extreme cases?  

We explored this question by assessing the similarity between decisions produced 

by human participants and our models on a four-way scene classification task of intact 

(object visible) scenes. We expected if crosstalk is only leveraged when scene 

information is extremely impoverished, then participants’ decisions would correlate 

equally with both models. This would indicate that participants’ categorization decisions 

are based on independently processed object and spatial property features, consistent with 

the standard framework for scene categorization. However, if encoding-stage crosstalk 

impacts scene categorization of intact scenes, we expected that humans would correlate 

significantly more strongly with the crosstalk model than the independent model. Our 

findings aligned with expectations: humans were significantly more similar to the 

crosstalk model than the independent model, both when objects in scenes were covered 

with perceptual masks, and when scenes were presented normally.  
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4.3.1 Materials and Methods 

This experiment used the same independent and crosstalk models as discussed in 

Experiment 1. We compared scene categorization between Human participants and the 

models in three separate conditions: first, when scenes were intact (0 masked); second, 

when the most informative object in a scene was perceptually masked (1 masked); and 

third, when the two most informative objects were masked (2 masked). This allowed us 

to assess encoding-stage crosstalk in humans across multiple levels of information noise 

in scenes. 

4.3.1.1 Participants 

We recruited 60 participants from Amazon Mechanical Turk (20 for each of the three 

comparisons between models and Humans). Participants were paid $1.00 for completing 

the experiment, which took approximately 10 minutes.   

4.3.1.2 Stimuli 

This experiment used two sets of images gathered from the SUN database. The first is the 

set of 3200 bathroom, kitchen, office, and bedroom images described in Experiment 1. 

These images were used as “template images”, detailed in the Procedure. We also 

gathered a separate set of 200 “probe images” for each of the four scene categories. This 

set of images did not overlap with the template images. 

 Human participants who completed an experiment containing intact versions of 

these images also provided the names of the top three objects that they most associate 

with each scene category. We determined the top-two most commonly named objects for 
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each scene category, and using the LabelMe toolbox [112], segmented their locations in 

every probe image. Additional versions of the probe images were created with wavelet 

masks covering these objects. This provided versions of every probe image with all 

objects intact (0 masked), one object perceptually masked (1 masked), and two objects 

perceptually masked (2 masked). 

Both probe and template images were resized to 100 x 100 pixels for the 

experiments with human participants. For the models, these images were resized to 128 x 

128 pixels. 

4.3.1.3 Procedure 

Human participants completed a web-based, four-way scene categorization task. This 

task was performed by using the mouse to drag-and-drop the probe image of a scene 

presented at the center of the screen to the template image of the same category 

positioned in one of the four corners of the screen. To increase task difficulty, the probe 

image remained visible for two seconds before it was transformed into white noise. 

Participants were encouraged to make their decisions as quickly as possible. 

Participants were also instructed to express their confidence in their decisions 

through this drag-and-drop interface: the closer they placed the probe image to the 

template, the more confident they felt. However, we did not incorporate this information 

in the current analyses. Separate versions of this experiment were completed for each 

object masking condition (0, 1, and 2). A version of the experiment can be found at 

http://bit.ly/sr_model.  
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The independent and crosstalk models were trained to categorize the template 

images and then tested on the probe images. Separate tests were performed for each of 

the object-versions of the probe images. 

4.3.1.4 Data Filtering 

In light of recent evidence that time-of-completion can bias performance in behavioral 

experiments [169], we excluded participants who completed the experiment two standard 

deviations outside of average. This excluded 2 participants who completed the 0 masked 

object condition (18 total), 5 in the 1 masked object condition (5 total), and 4 in the 2 

masked object condition (16 total). 
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4.3.2 Results 

We compared scene categorization decisions between Human participants and both 

models on a four-way scene categorization task. As an initial test, we used Pearson 

correlations to measure the consistency between each model’s decisions and every 
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Figure 4.2. Model performance. (A) Correlations between human and model 

decisions on a four-way scene categorization task. Separate analyses were 

performed for tasks in which the image to be categorized had 0, 1, or 2 of its 

category-informative objects obscured with perceptual masks. Outlined bars depict 

Pearson correlations, while filled in bars are partial correlations (controlling for 

scene category label). (B) Scene categorization performance of the Independent 

versus Crosstalk models, calculated with percent error in classification (lower 

values are better). Gray bars indicate significant differences between pearson 

correlations or classification error; blacks bars indicate significant differences 

between partial correlations. All statistical comparisons were performed with 2-

tailed paired samples t-tests. Error bars are s.e.m. * : p < 0.05, ** : p < 0.01, *** : 

p < 0.001.  
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participant’s decisions when categorizing images of intact scenes (0 masked objects). We 

found that while both models were similar to the participants in this task, the average 

correlation was significantly stronger for the crosstalk model than the independent model 

(independent r = 0.576; crosstalk r = 0.595; p < 0.001).  

Though this result suggests that participants leveraged encoding-stage crosstalk of 

scenes’ object and spatial properties when categorizing intact scenes, there is an 

alternative explanation. It is possible this correlation simply reflects the fact that 

participants and the crosstalk model are both exceptionally good at categorizing scenes, 

and does not capture any shared underlying variability in their decision-making. To 

control for this possibility we used partial correlations to reassess the similarity between 

participants and the models after correcting for classification accuracy. Once again, we 

found that the crosstalk model was significantly more similar to participants than the 

independent model (independent r* = 0.104; crosstalk r* = 0.113; p = 0.032; Figure 4.2A 

0 masked objects).  

The crosstalk model was also more similar to humans than the independent model 

when objects in scenes were masked. Both Pearson (independent r = 0.460; crosstalk r = 

0.481; p < 0.001) and partial correlations (independent r* = 0.106; crosstalk r* = 0.135; p 

= 0.005; Figure 4.2A 0 masked objects) were significantly stronger between humans and 

the crosstalk model when one object was masked. The pattern persisted when two objects 

were masked for Pearson (independent r = 0.378; crosstalk r = 0.408; p = 0.001) and 

partial correlations (independent r* = 0.057; crosstalk r* = 0.093; p = 0.007; Figure 4.2A 

0 masked objects). 
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4.3.3 Experiment 2 Discussion 

In this experiment we investigated if humans leverage encoding-stage crosstalk under 

typical viewing conditions. Although previous chapters in this thesis have provided 

theoretical and empirical evidence that crosstalk improves scene categorization, it was 

not clear if the effect was engaged under typical viewing conditions, such as we 

experience in our daily lives. Our findings indicate that it does: participants’ 

categorization decisions for intact real world scenes were significantly more similar to the 

crosstalk model than the independent model, even after controlling for the classification 

accuracy of each.  

Corroborating the findings in Chapters 1 and 2, the similarity between participants 

and the crosstalk model persisted as category-informative objects in the scenes were 

perceptually masked. Together, these results indicate that encoding-stage crosstalk is on-

line and impacting scene categorization under both typical and impoverished viewing 

conditions.   

4.4 EXPERIMENT 3 

In Chapters 1 and 2, we observed systematic mutual influences of scenes’ encoded object 

and spatial property information. We theorized that these influence worked to bring 

values encoded in object- and spatial property-processing pathways into alignment, 

thereby improving scene categorization accuracy. However, as discussed in Experiment 



  153 

2, these findings were made in studies in which perceptual masks were introduced into 

scenes. This leaves open the possibility that object/spatial property crosstalk only works 

to improve scene categorization accuracy when scenes are viewed under impoverished 

conditions, and does not generalize to the typical viewing conditions in which we 

normally encounter real world scenes. Our modeling approach gave us an opportunity to 

answer this question by comparing scene categorization accuracy between the 

independent model and the crosstalk model. 

4.4.1 Materials and Methods 

This experiment used the same independent model and crosstalk model as Experiment 1. 

4.4.1.1 Stimuli 

This experiment used the same stimuli as Experiment 2.  

4.4.1.2 Procedure 

The independent and crosstalk models were trained (on template images) and tested (on 

probe images) exactly as in Experiment 2.  

We tested for differences in classification accuracy between the independent 

model and crosstalk model using McNemar’s test. This test compares the confusion 

matrix of each classifier and assesses the difference on a χ2  distribution.  
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4.4.2 Results 

We found that the crosstalk model was significantly better at categorizing object-intact 

scenes than the independent model (Independent error: 22.50%, Crosstalk error: 18.50%, 

p = 0.027; Figure 4.2.B). A similar result was found when one (Independent error: 

33.50%, Crosstalk error: 29.50%, p = 0.027; Figure 4.2.B) or two (Independent error: 

35.50%, Crosstalk error: 30.50%, p = 0.009; Figure 4.2.B) category-informative objects 

in the scenes were perceptually masked.  

Human participants performed similarly to the crosstalk model on this task when 

objects in scenes were intact (Mean human error: 19.81%), when one object was masked 

(Mean human error: 27.60%), and when two objects were masked (Mean human error: 

31.56%). 

4.5 GENERAL DISCUSSION 

Previous evidence for encoding-stage crosstalk between information about scenes’ 

objects and global properties during scene categorization demonstrated that it 

systematically biases the encoded values of each resource. In Chapter 1, scenes’ encoded 

spatial properties were biased towards the values associated with their category-

informative objects. In Chapter 2, a mirrored version of this effect was observed: scenes’ 

encoded objects appeared to be biased towards the values associated with their spatial 

properties, although this was inferred indirectly. These studies provided theoretical and 
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empirical evidence that these biases were not epiphenomenal, but in fact aligned and 

reinforced these resources in a way that improved scene categorization accuracy. 

However, these studies investigated encoding-stage crosstalk under viewing conditions 

that are not representative of the real world. The impact of object/spatial property 

crosstalk was measured while obscuring category-informative objects in scenes with 

perceptual masks. This left open the possibility that encoding-stage crosstalk only comes 

“on-line” when viewing extremely impoverished scenes.  

 In the current study we addressed this with a modeling approach. We developed 

an “independent” model, which was consistent with the standard framework for scene 

recognition, and another “crosstalk” model that allowed information about scenes’ 

objects and spatial properties to combine before decision-making. Using these models, 

we found evidence that encoding-stage crosstalk impacts scene categorization under all 

viewing conditions: Humans categorized scenes more similarly to the crosstalk model 

than the independent model when their objects were intact and when they were masked. 

Importantly, these models also allowed us to measure how much crosstalk improves 

scene categorization accuracy across intact and impoverished conditions. We found that 

crosstalk significantly reduced categorization errors in either case. 

 Our crosstalk model is a simple and plausible instantiation that adds mechanisms 

for identifying and combining across co-occurring scene features to the standard, 

independent model. Intriguingly, through these simple mechanisms, it is able to recreate 

the spatial property bias previously found in human perceptual ratings of scene 

spaciousness and in patterns of activation elicited by those scenes in PPA. More research 

is needed to establish if this model is indeed biologically accurate, or if it is mimicking 
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the behavior of some other mechanism, such as recurrent computations in networks of 

neurons.  

 In summary, these experiments provide evidence that encoding-stage crosstalk 

between scenes’ objects and spatial properties enforces biases in these resources 

regardless of the viewing conditions, which results in a significant and consistent boost to 

scene categorization accuracy.  
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5.0  GENERAL DISCUSSION AND CONCLUSION 

The ability to identify our location in the world is essential for everyday behavior, 

allowing us to choose the optimal behavior for the current situation and form a plan for 

where to go next. Despite the ease with which we can recognize scenes, its difficulty 

from a technical standpoint is astonishing: a simple 32 square pixel binary image can 

represent approximately 4 billion unique “scenes”. And yet, humans can decode the 

exponentially more complex retinal input into behaviorally relevant concepts like 

“kitchen” and “bathroom”. Researchers spanning multiple fields have struggled with 

understanding how humans do this for decades. 

The dominant model for scene recognition suggests that this ability emerges from 

independently processing complementary resources of information in scenes: their 

objects and their spatial properties. These resources are ultimately combined downstream 

of the visual system by cortical regions (such as prefrontal cortex) involved in cognition 

and decision-making into a scene label. In this thesis, I have presented evidence that 

suggests important adjustments be made to this standard model. In Chapter 1, I described 

evidence that scenes’ perceived spatial properties are systematically biased by the 

identities of their objects, indicating that the visual system does not independently 

process these resources. 
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This finding motivated a revised framework for scene recognition, presented in 

the General Introduction. Within this framework, information about scenes’ objects and 

spatial properties are no longer independently processed, but instead make each more 

consistent with their typically associated values. For instance, seeing a small rectilinear 

room may bias the observer to perceive it as containing a desk and computer; likewise, 

seeing these items in a room may bias the observer to perceive it as being spatially 

compact and rectilinear. Chapters 1, 2, and 3 describe how the visual system reinforces 

perception of each resource by leveraging knowledge of their co-occurrences. As 

demonstrated in Chapter 4, the enforced biases facilitate scene categorization: a simple 

model of the revised framework significantly improved accuracy over a model that kept 

these resources independent.   

Theory and experimental work has described the ability of the visual system to 

incorporate co-occurrence statistics into perception as a canonical neural computation 

[163,165,217,218]. Although previous reports have described the impact of this canonical 

computation on low-level visual features, such as edges, the revised framework for scene 

recognition proposed here can be thought of as an instantiation at a higher and more 

abstract visual level. If it is the case that this canonical computation is applied at all levels 

of visual processing, it may also have a pronounced impact in other domains of 

information processing. For instance, it is possible that tasks such as action recognition 

utilize co-occurrence statistics to reinforce perception of objects and actors with the kinds 

of movements that they are typically associated with. More research is needed to develop 

and validate the general role of co-occurrence statistic learning in domains outside of 

scene categorization. 
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This thesis presents a new direction in scene recognition research, in which the 

effectiveness of classic, feedforward mechanisms for perception are improved with a 

simple and complementary form of learning. While the finding of perceptual combination 

represents a significant step forward in understanding scene recognition in humans, it is 

nonetheless incomplete along several dimensions. Future research must address its 

dynamics, its relationship with other forms of information processing, such as top-down 

feedback, and seek to understand its instantiation at a cellular level.  



  160 

APPENDIX A: Encoding-stage crosstalk between object- and spatial property-

based scene processing pathways 

Stimulus collection and generation. Real-world scene images were 500 photographs each 

of bathrooms and kitchens, collected from the internet. To identify exemplars within each 

category that possessed spatial properties that were extreme for their category, judgments 

of spatial properties were obtained from 165 paid raters recruited through Amazon 

Mechanical Turk. Using a drag-and-drop graphical interface, each rater arranged 100 

randomly selected exemplars from a single scene category along a horizontal scale 

according to exemplars’ relative perceived “spaciousness”. Each rater only worked with 

scenes from one of the two categories. To avoid introducing any bias into ratings, no 

definition of spaciousness was provided at any point.  An example of the rating interface 

can be found at http://bit.ly/12bydKs. Raters were instructed to place the least spacious 

exemplars at the left end of the scale, the most spacious exemplars at the right end of the 

scale, and exemplars that were “about average” near the middle of the scale. Each rater 

judged a different set of 100 exemplars; each exemplar was judged by an average of 17 

raters. Each rater’s raw spaciousness judgments (i.e., left/right screen positions of scenes 

along the rating scale) were standardized to zero mean and unit standard deviation. 

Exemplars’ median standardized ratings were used to arrange exemplars from each 

category into spaciousness quintiles.   
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An additional group of 61 raters judged the spaciousness of mixed sets of 50 

bathrooms and 50 kitchens drawn from the middle quintiles of each category, as defined 

by the procedure described in the previous paragraph. Real world exemplars of both 

scene categories were randomly assigned to 10 equal-sized sets. Each rater’s judgments 

of the spaciousness of all 100 rooms (50 bathrooms and 50 kitchens) within a single set 

were standardized as described above. Each exemplar was judged by an average of 6 

raters; however, ratings from this group were only used to assess differences between the 

average sizes of bathrooms and kitchens, and played no role in the creation of the main 

experiment to follow. To allow exact specification of scenes’ spatial properties and object 

contents, we also assembled a stimulus set composed of 500 computer-generated kitchens 

rendered using Trimble Sketchup (www.sketchup.com), IRender nXt 4.0 

(www.renderplus.com), and custom Ruby scripts. Scenes were defined as kitchens by 

populating empty rooms with a refrigerator and combination stove/sink/cabinet unit. 

Object models were randomly selected from a pool of 10 exemplars of each object and 

arranged in one of six multi-object layouts. Rooms varied randomly in floor and wall 

covering. Variability in global spatial properties was introduced by randomly drawing the 

floor area of each room from a uniform distribution between 4.5 m2 and 21.75 m2. 

Rendered exemplars were divided into quintiles on the basis of floor area. As with real-

world scenes images, object boundaries in scenes from high- and low-area quintiles were 

identified with a custom segmentation algorithm implemented in MATLAB, and an 

alternate set of these scenes was generated with wavelet masks obscuring the objects. 

Reaction time analysis. To identify excessively long or short reactions times (RTs), data 

for each participant were scanned for reaction times (RTs) and trials were excluded from 
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analysis when RTs fell more than 4 standard deviations above or below the mean of trials 

accumulated across all members of his or her participant group. All operations were 

performed on the natural log of each RT; log transformation was conservative since it 

restrained strong positive skews in RT distributions, thereby making positive outliers 

more likely to fall within 4 standard deviations of the mean. Next, we computed the 

average number of trials thus excluded from each of the four adaptation runs in each 

experiment, and removed from further analysis all data from any run containing a number 

of excluded trials exceeding 4 standard deviations from the experiment average. This step 

was implemented to exclude runs during which participants’ patterns of RT errors 

showed signs of relative inattentiveness. In the end, exclusions were sparing, with the 

percentage of trials removed by these criteria amounting to only 2.26% for the real 

bathroom group, 1.81% for the real kitchen group, 2.25% for the rendered group, 2.22% 

for the unmasked cross-category group, and 3.07% for the masked cross-category group.  

Clustering algorithm to identify inattentive participants. We noted that even though test 

scenes were drawn from pools encompassing the middle three quintiles of room 

spaciousness for each category, some participants produced long strings of identical 

responses that were clearly inconsistent with the spatial variability of the set of test 

scenes. For example, a participant in one group made identical responses to every test 

scene in one run, even though the average number of response transitions (i.e., number of 

trials in each block of 30 with a different response than the trial preceding it) across 

participants in that group was more than 17. Clearly, the responses of such participants 

were at best only weakly linked to the stimuli (likely indicative of participant inattention 
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to the task), and inclusion of such responses in our analyses was thus likely to cloud any 

adaptation effects.   

To provide an unbiased means of identifying uncooperative/inattentive 

participants, the responsiveness of each participant was measured by averaging the 

number of transitions, as defined in the preceding paragraph, across all four adaptation 

runs. The resulting transition scores were provided as input to an agglomerative 

hierarchical clustering algorithm implemented in MATLAB. Participants were divided 

into “high responsiveness” and “low responsiveness” clusters by cutting the resulting 

dendrogram for each experiment at the minimum height at which only two clusters 

remained. Summary statistics of judgment transitions can be found in Supplementary 

Table 1 and hierarchical dendrograms can be found in Supplementary Figure 2.  The high 

responsiveness cluster in each experiment was defined as the one with the higher average 

number of transitions, and encompassed 34 of 35 participants in the real bathroom group, 

16 of 17 participants in the real kitchen group, 25 of 30 participants in the rendered 

kitchen group, 17 of 18 participants in the unmasked cross-category group, and 24 of 29 

of participants in the masked cross-category group. Only data from participants in high 

responsiveness clusters were included in further analysis.      
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Appendix A Table 1.  
Judgment transition means and standard deviations for high- and 
low-responsiveness groups. 
Experiment Title High-responsiveness Low-responsiveness 
Real bathroom 20.51 (2.81)           4.00 (0.00) 
   
Real kitchen 21.05 (1.78)           6.75 (0.00) 
   
Rendered kitchen 19.92 (2.67)           10.80 (3.62) 
   
Unmasked cross-
category 

19.32 (3.21)           6.50 (0.00) 

   
Masked cross-
category 

20.22 (11.10)           11.10 (3.03) 
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Appendix A Figure 1.  Additional scene exemplars.  Low and high spaciousness 

exemplars are shown with objects unmasked and masked. 
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Appendix A Figure 2.  High- and low-responsiveness groups extracted from behavioral 

experiments.  For each subject, the average number of response transitions across runs 

was passed through agglomerative hierarchical clustering, which used a weighted average 

of Euclidean distance to group subjects with similar responsiveness.  Each tree was cut at 

the shortest distance, from leaves to root, at which only two branches remained.  These 

branches were labeled as high- and low-responsiveness groups, respectively. (a) The real 

bathroom high-responsiveness group consisted of 34/35 subjects; (b) Real kitchen, 16/17 

subjects; (c) Rendered kitchen, 25/30 subjects; (d) Unmasked cross-category, 17/18 

subjects; (e) Masked cross-category, 24/29 subjects. 
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Appendix A Figure 3.  Recolored scene exemplars used in the fMRI experiment.   
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Appendix A Figure 4.  Visualization of higher dimensional relationships among scene-

evoked patterns in right PPA.  (A) Matrix of Euclidean distances among bathroom-

evoked patterns, averaged across participants (same data as Figure 4A).  (B) 

Corresponding positions of patterns along third (horizontal) and fourth (vertical) 

dimensions returned by MDS.  Dimensions 1 and 2 are shown in Figure 4B; dimensions 3 

and 4, shown here, capture 17.5% and 15.8%, respectively, of total between-pattern 

distance.  
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Appendix A Figure 5. Analysis of pattern distances in left PPA. (A-D) Euclidean 

distances between patterns of activation elicited by stimuli were not significantly 

different in any of the contrasts reported in the main text. Distance data in each panel 

correspond to comparisons between patterns denoted by same-shaded arrows in the left 

half of each panel. Error bars are s.e.m. 
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Appendix A Figure 6. Analysis of pattern distances in right RSC.  (A=D) Euclidean 

distances between patterns of activation elicited by stimuli were not significantly 

different in any of the contrasts reported in the main text. Distance data in each panel 

correspond to comparisons between patterns denoted by same-shaded arrows in the left 

half of each panel. Error bars are s.e.m. 



  171 

  

1!

2!

3!

Left RSC!

1!

2!

3!

1!

2!

3!

1!

2!

3!

*!

Object unmasked!
high!

spaciousness!

Object unmasked!
low!

spaciousness!

Object unmasked!
high!

spaciousness!

Object unmasked!
average!

spaciousness!

Object unmasked!
low!

spaciousness!

Object masked!
low!

spaciousness!

Object unmasked!
average!

spaciousness!

Object unmasked!
low!

spaciousness!

Object unmasked!
average!

spaciousness!

Object masked!
high!

spaciousness!

Object unmasked!
average!

spaciousness!

Object unmasked!
high!

spaciousness!

Object unmasked!
average!

spaciousness!

Object masked!
high!

spaciousness!

Object masked!
low!

spaciousness!

Object unmasked!
high!

spaciousness!

Object unmasked!
low!

spaciousness!

>! >!

>!>!

Eu
cli

de
an

 p
at

te
rn

 d
ist

an
ce
!

Eu
cli

de
an

 p
at

te
rn

 d
ist

an
ce
!

Eu
cli

de
an

 p
at

te
rn

 d
ist

an
ce
!

Eu
cli

de
an

 p
at

te
rn

 d
ist

an
ce
!

A! C!

B! D!

Appendix A Figure 7. Analysis of pattern distances in left RSC. (A) Average Euclidean 

distance between object intact high and low spaciousness exemplars was significantly 

different than the average of distances between each of those extremes and the pattern 

evoked by average-spaciousness bathrooms. (B-D) No other predicted difference in 

pattern distance was satisfied. Distance data in each panel correspond to comparisons 

between patterns denoted by same-shaded arrows in the left half of each panel. Error bars 

are s.e.m. *, p < 0.05. 
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Appendix A Figure 8. Analysis of pattern distances in right TOS.  (A-D) Euclidean 

distances between patterns of activation elicited by stimuli were not significantly 

different for any of the contrasts reported in the main text. Distance data in each panel 

correspond to comparisons between patterns denoted by same-shaded arrows in the left 

half of each panel. Error bars are s.e.m. 
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Appendix A Figure 9. Analysis of pattern distances in left TOS. (A) Average Euclidean 

distance between object intact high and low spaciousness exemplars was not different than 

the average of distances between each of those extremes and the pattern evoked by 

average-spaciousness bathrooms. (B-D) The remaining predicted differences in pattern 

distance were satisfied. Distance data in each panel correspond to comparisons between 

patterns denoted by same-shaded arrows in the left half of each panel. Error bars are s.e.m. 

*, p < 0.05; **, p < 0.01. 
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Appendix A Figure 10. Analysis of pattern distances in right LO.  (A) Average Euclidean 

distance between object intact high and low spaciousness exemplars was not different 

than the average of distances between each of those extremes and the pattern evoked by 

average-spaciousness bathrooms. (B) Average Euclidean distance between low 

spaciousness and average spaciousness exemplars was not different when objects were 

masked versus when they were intact. (C-D) The remaining predicted differences in 

pattern distance were satisfied. Distance data in each panel correspond to comparisons 

between patterns denoted by same-shaded arrows in the left half of each panel. Error bars 

are s.e.m. *, p < 0.05; **, p < 0.01. 
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Appendix A Figure 11. Analysis of pattern distances in left LO. (A-D) Euclidean 

distances between patterns of activation elicited by stimuli were not significantly 

different in any of the contrasts reported in the main text. Distance data in each panel 

correspond to comparisons between patterns denoted by same-shaded arrows in the left 

half of each panel. Error bars are s.e.m. 
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Appendix A Figure 12. Analysis of pattern distances in right pFs. (A-D) Of the contrasts, 

only the average Euclidean distance between high spaciousness and average spaciousness 

exemplars was significantly different when objects were masked versus when they were 

intact. No other predicted difference in pattern distance was satisfied. Distance data in 

each panel correspond to comparisons between patterns denoted by same-shaded arrows 

in the left half of each panel. Error bars are s.e.m. r**, p < 0.01. 
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Appendix A Figure 13. Analysis of pattern distances in left pFs. (A-D) Of the contrasts, 

only the average Euclidean distance between high spaciousness and average spaciousness 

exemplars was significantly different when objects were masked versus when they were 

intact. No other predicted difference in pattern distance was satisfied. Distance data in 

each panel correspond to comparisons between patterns denoted by same-shaded arrows 

in the left half of each panel. Error bars are s.e.m. **, p < 0.01. 
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Appendix A Figure 14.  Analysis of pattern distances in right EVC. (A-D) Euclidean 

distances between patterns of activation elicited by stimuli were not significantly 

different in any of the contrasts reported in the main text. Distance data in each panel 

correspond to comparisons between patterns denoted by same-shaded arrows in the left 

half of each panel. Error bars are s.e.m. 
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Appendix A Figure 15. Analysis of pattern distances in right EVC. (A-D) Euclidean 

distances between patterns of activation elicited by stimuli were not significantly 

different in any of the contrasts reported in the main text. Distance data in each panel 

correspond to comparisons between patterns denoted by same-shaded arrows in the left 

half of each panel. Error bars are s.e.m. 
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APPENDIX B: Ventral visual cortex learns object and spatial property co-occurrence 

statistics during scene categorization 
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Instructions presented during testing: “PART 1 is complete! PART 2 instructions follow:  
 
In PART 2 you will view another slideshow of scenes. These scenes are similar to the 
two scene categories you saw in PART 1, where one was smaller than the other. Some of 
the scenes you will see are more similar to the smaller PART 1 scene category, Scene A, 
while others are more similar to the larger PART 1 scene category, Scene B.  
 
After viewing each scene, you will press - (minus) if the image is like Scene A, or + 
(plus) if the image is like Scene B. 
 
Please answer as quickly as possible. Press plus (+) twice or click the button in the top 
left twice to begin.” 
  

�

�����	� � �

�	��
 

Testing phase scene discrimination

†

0.4

0.5

0.6

0.7

1	 2	

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Chance

Experiment 4
No Attention

Appendix B Figure 1. Experiment 4 results without controlling for attention. A 

separate group of 110 (61 Control) participants completed a version of Experiment 4 

where they performed the color discrimination task from Experiment 1 during 

training. Of these participants, 89 (52 Control) passed the same data filters applied to 

the other experiments. Classification accuracy of testing phase exemplars for which 

neither group had the opportunity to learn co-occurrence statistics (i.e. those drawn 

from the grayscale nodes in Figure 2.2) was 52.097% for the Learning group and 

47.213% for the Control group (d = 0.361). Error bars are s.e.m. † : p = 0.064.  
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APPENDIX C: Object and spatial property crosstalk improves scene recognition 
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CNN stimuli. We trained convolutional neural networks (CNNs) to discriminate between 

images of real-world scenes gathered from the SUN database [216]. This dataset 

consisted of 1151 bathrooms, 1946 kitchens, 502 offices, and 2284 bedrooms (5883 total 

images). We doubled the size of this dataset by including left-right flips of every image. 

This technique for dataset augmentation can improve the ability of a CNN to learn 

representations that are invariant to similar transformations.  

 

CNN structure. CNNs were implemented in MATLAB with the MatConvNet library, and 

loosely followed the structure of Alexnet [215]. CNNs had 8 convolutional layers 

followed by a softmax classifier. The first convolutional layer filtered the 32 x 32 x 3 

input image with 96 kernels of size 11 x 11 x 3 with a stride of 4 (the distance between 

receptive field centers of adjacent convolutional filters). The second layer applied 256 

filters of size 5 x 5 x 48 (stride of 1) to the output of the first following rectification 

(Rectified Linear Units; ReLU), maximum response pooling (3 x 3 kernel), and 

normalization. This output was processed similarly to the first, before being passed 

through 384 filters of size 3 x 3 x 256 in layer 3. The third layer output was rectified and 

passed through 384 filters of size 3 x 3 x 192 in layer four. Again, these responses were 

rectified and passed to layer five, which contained 256 filters of the same size as layer 

four. This output was rectified and pooled (2 x 2 kernel), before passing through 4096 

filters of size 1 x 1 x 256 in layer 6. Following rectification, 50% of the layer 6 output 

was set to 0 for model regularization (“dropout” to control overfitting model parameters). 

Layer 7 was similar, with rectification and dropout applied to the responses of its 4096 

filters of size 1 x 1 x 4096. Finally, layer 8 consisted of 1000 filters of size 1 x 1 x 4096. 
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Local and global features of scenes were extracted from this layer, as we expected it to 

have the most abstract and invariant representations of these features. This layer was 

connected to a softmax classifier, which supported training of the network by 

backpropagating errors between predicted scene category labels and the true label to tune 

the filters in each layer. 

 

CNN training. In order to separately capture the object and spatial property information 

in scene images – as was necessary to understand how crosstalk between these resources 

impacts categorization – we varied the receptive field input size to the models. We 

expected that learning about scenes with a small receptive field input would yield local 

features that were equivalent to object information; and learning about scenes with a 

large receptive field input would yield global features that were equivalent to spatial 

property information.  

Images were initially sized to 128x128 pixels. The local feature model was 

trained on four (non-overlapping) 32x32 pixel patches from each image (small receptive 

fields). In contrast, the global feature model was trained on entire images (large receptive 

field).  

To ensure that inputs to the global feature model were of the same size as the 

local feature model (so that we could use the same parameter structure for each CNN), it 

was trained on a wavelet-decomposed approximation of each image. This reduced the 

size of its input to 32x32 pixels, the same as the local feature model. We expected that 

applying the wavelet decomposition to images (in effect, blurring them) also encouraged 
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the global model to learn features that were consistent with accounts of spatial properties 

in humans [19,35,156,219].  

Because of its receptive field size, the local feature CNN representations of scenes 

had four times as many dimensions than the global feature CNN. For each image, we 

equalized the number of local and global feature dimensions for two reasons. First, to 

support scene classification by reducing the dimensionality of the input to the 

independent and crosstalk models. Second, so that these models would not learn scene 

representations that were dominated local features. We did this by pooling across local 

features for every scene, keeping only the maximum value. This meant that every scene 

was represented by its most informative object features in its entire image. In the end, 

both local and global feature CNNs had 1000 dimensions. The correlation between local 

and global features, averaged across every image used to train the CNN was 0.109, 

indicating that each captured distinct information from scenes. 

 
Independent and Crosstalk Models. We created two models in this experiment to 

investigate the impact of object and spatial property crosstalk on scene categorization: the 

independent model and the crosstalk model. Both models shared the same basic 

multilayer perceptron (MLP) structure, in which CNN features describing the objects and 

spatial properties in a scene image were fed into its input, then passed through a hidden 

layer, and finally categorized. Each of these steps, as well as the key differences between 

their implementation in the models is outlined below. 

 

MLP Structure. Both models were MLPs consisting of three layers: an input layer that 

received concatenated object and spatial layout features, a 1000 parameter hidden layer 
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with a sigmoid activation function, and a softmax output layer. Models were trained by 

minimizing its negative log-likelihood and then backpropagating errors to optimize the 

values of its parameters.  

 

MLP Input Layer. We normalized the features in every image to 0 mean and unit standard 

deviation before they were passed to the models. This ensured that each feature was 

represented by an activation, in which higher values meant a higher likelihood of its 

appearance in a scene image. We next normalized the values of features across all scene 

images to 0 mean and unit standard deviation, to standardize the distribution of 

activations across images for each kind of feature. This facilitated the models’ ability to 

classify scenes. For every scene image, both models received a concatenation of its object 

and spatial property features from a CNN. These concatenated feature vectors were 2000 

dimensions.  

The key difference between the independent and crosstalk model was in their 

input layer. During training, both models received a batch of 50 random scene images at 

a time. A single iteration of training continued until the model had viewed all images in 

the training set. Both models had a linear transfer function from this input layer to the 

hidden layer.  

While the independent model’s input layer was an “as-is” implementation, the 

crosstalk model estimated co-occurring object and spatial property features within each 

batch. It did this by calculating the Euclidean distance between all of the feature 

activations across its currently viewed batch of scenes. Limiting each batch to 50 images 

made it easier for the model to calculate these distances and faster to train. Co-occurring 
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features were defined by applying a distance-based clustering algorithm (hierarchical 

agglomerative clustering with ward linkage) to this distance matrix. This process 

identified 1000 clusters, equivalent to half of the input dimensionality. However, we 

placed a constraint on cluster formation: each cluster had to contain at least one object 

and one spatial property feature. In practice this lead to the clustering algorithm 

identifying around 750 clusters for each batch. We made our initial choice of 1000 total 

clusters because it is equivalent to the original dimensionality of the object and spatial 

property features. Further exploration of this topic will likely yield a more optimal 

solution. 

After identifying these clusters, the model “combined” the object and spatial 

property features within each. For every scene, the model iterated through these clusters 

and preserved the maximum activation while setting all others to 0. Since feature values 

were normalized activations, setting them to 0 was consistent with making the model 

think there was average signal for that feature. While we could have had the model set 

the activations to (e.g.) -3 (equivalent to 3 standard deviations below the mean), we chose 

to be more conservative and essentially shrink non-max features to their mean instead of 

introducing “negative signal”. 

Importantly, the ability of the crosstalk model to outperform the independent 

model was not solely due to the introduction of sparsity into its input. We compared the 

crosstalk model to an independent model that incorporated “dropout”, a technique for 

adding sparsity at random. We set this dropout model’s fraction of sparsity equivalent to 

the crosstalk model’s, and found that it was still outperformed by the crosstalk model 

during the four-way scene classification test discussed in Chapter 4 (crosstalk model had 
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18.5% error versus the dropout model with 21% error – this pattern was similar when 

scenes had masked objects).  

 

MLP Hidden Layer. Hidden layers in both models consisted of 100 parameters that 

captured a reduced representation of the input. Both models applied a sigmoidal function 

to the outputs of these neurons, which allowed it to learn non-linear representations of the 

input. We sampled from the hidden layer in each model for Experiment 1 in Chapter 4, in 

which we wanted to compare representations of scenes between human parahippocampal 

place area (PPA) and the models. We sampled scene information from this layer because 

we expected it to contain representations from each model that were high-level and could 

reflect the differences in each model’s input layer.  

 

MLP Output Layer. Both models had a softmax transfer function at the output layer, 

which converted its representations of scene images into a probability of belonging to any 

of the four scene categories. For every batch within each iteration, a negative log-

likelihood cost was calculated between these probabilities and the true category of every 

scene. Errors were then backpropagated through the models to adjust its parameters to 

improve their ability to categorize the scenes.  
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