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Abstract

Nine empirical equations that estimate saturated hydraulic conductivity as a func-
tion of grain size in well-graded sands with gravels having large uniformity coefficients
(U > 50) are evaluated by comparing their accuracy when predicting observed conduc-
tivities in constant head permeability tests. According to the findings of this thesis,
in decreasing order of accuracy these equations are: USBR (Vukovic and Soro, 1992;
USBR, 1978), Hazen (Hazen, 1892), Slichter (Slichter, 1898), Kozeny-Carman (Carrier,
2003), Fair and Hatch (Fair and Hatch, 1933), Terzaghi (Vukovic and Soro, 1992), Beyer
(Beyer, 1966), Kruger (Vukovic and Soro, 1992), and Zunker (Zunker, 1932). These re-
sults are based on multiple constant head permeability tests on two samples of granular
material corresponding to well-graded sands with gravels. Using the USBR equation sat-
urated hydraulic conductivities for a statistical population of 874 samples of well-graded
sands with gravels forming 29 loads from a heap leaching mine in northern Chile are
calculated. Results indicate that, using the USBR equation, on average the hydraulic
conductivity of the leaching heaps has a two standard deviation range between 0.18 and
0.15 cm/s. Permeability tests on the actual material used in the heaps provided by the
mine shows that the results presented in this thesis are consistent with actual observa-
tions and represent saturated conductivities in heaps up to 3 m high under a pressures
of up to 62 Kpa. In future work hydraulic conductivities can be combined with water
retention curves, discharge rates, irrigation rates, porosities, and consolidation so as to
evaluate the relationship between copper yields and the hydraulic conductivities of the

heap.
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Chapter 1

Introduction

Hydraulic conductivity (K) is defined as the ease by which a fluid flows through
a granular medium and is a function of both the material and the permeating fluid
(Strobel, 2005). This parameter plays an important role in many disciplines within the
earth sciences as it serves to help quantify the amount of fluid that can flow through
rocks and soils. As an example, estimations of K serve to characterize the amount of fluid
injection possible in oil reservoirs, the movement of lixiviants in heap leaching mines,
and the ease of groundwater flow in underground aquifers. Direct estimations of K are
often laborious and expensive because they require personnel for collecting samples and
conducting laboratory experiments and equipment for small or large-scale in situ tests
(Salarashayeri and Siosemarde, 2012; Petalas and Pilakas, 2011), which is why empirical
methodologies that indirectly estimate conductivities through the maeterial parameters,
such as grain-size, are attractive to project managers (Vukovic and Soro, 1992). In
this thesis project, nine methods that estimate hydraulic conductivities as a function
of grain-size are studied and evaluated in laboratory experiments and then applied to
874 samples of well-graded sands with gravels from a heap leaching mine. Afterwards,
a statistical analysis of the resulting hydraulic conductivity was conducted to estimate
the average range of conductivities in the leaching heaps composed of sediments within

a certain grain-size distribution range.

This introduction contains four sections that aid the reader to understand the in-
vestigation presented in this thesis. First, the section entitled Parameters Affecting
Hydraulic Conductivities explains a list of factors that affect estimations of K with
emphasis on grain-size while also explaining the difference between hydraulic conduc-
tivity and permeability and its implication for this research. The second section, Heap
Leaching: Research and Objective, offers a summarized explanation of heap leaching,

introduces key concepts, and defines the scope and reach of this investigation. The third
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section, Empirical Equations, introduces the nine empirical equations that were used
in this research. The fourth and last section of this introduction, Previous Research,

presents the most relevant work of others who have also investigated this subject.

1.1 Parameters Affecting Hydraulic Conductivity

Since hydraulic conductivity is defined as the ease by which a fluid flows within
a granular medium, one can separate the factors that affect its estimation into those
pertaining to the fluid and those pertaining to the granular medium. Properties of
the fluid such as its density (p), dynamic viscosity (v), temperature (T), and chemical
composition define the velocity and level of turbulence of the fluid as it reacts to certain
conditions of pressure and temperature (Lambe and Whitman, 1969; Dullien, 1979;
Binkhorst and Robbins, 1994). For this research, the fluid is assumed to be water at
10°C for the lab experiments and at 20°C' for the mine’s GSDs. In both cases the water’s
density is invariant at 1,000 Kg/m3 and values for dynamic viscosity are assumed to
be 0.0013 Pa - s at 10°C' for lab experiments and 0.0010 Pa - s at 20°C' for the mine
(Vukovic and Soro, 1992). These fluid parameters, of course, can be changed so as to

represent different conditions.

Some other properties of the granular medium (such as suffusion, compaction,
consolidation, and crystallization) also play a significant role when calculating hydraulic
conductivities in hard rocks and unconsolidated sediments (Dullien, 1979). Suffusion is
the reduction in permeability that occurs when finer material resulting from the internal
erosion of bigger grains clogs the pores in unconsolidated sediments (Ahlinhan, 2012).
Compaction results from the rearrangement of soil particles from the expulsion of air
within pores (McCarthy, 2001). Consolidation differs from compaction in that pores
are saturated with liquids, and hence under the presence of loads liquids and gasses
are expelled, leading to a rearrangement of particles (McCarthy, 2001). Crystallization
reduces porosity and permeability in rocks because minerals precipitate within pores.
However, such factors are not considered in this research due to budget, material, and
instrumentation constraints. A summary of factors that affect the calculations of K is

illustrated in Figure 1.1.

Hydraulic conductivity and permeability are two different concepts that are closely
related. Permeability is an intrinsic parameter of any material that quantifies the poten-
tial ability of a fluid to enter that material’s voids (Zimmerman and Gudmundur, 1996),
whereas hydraulic conductivity, as previously discussed, relates more to the ease of flow
of a certain fluid within that porous medium (Strobel, 2005). The main distinction be-

tween these two parameters is that permeability describes only the permeating potential
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FIGURE 1.1: Some of the factors that affect estimations of K. In this research we
focused solely on grain-size and other factors such as those pertaining to geological
processes and the permeating fluid were omitted.

of a material and is measured in units of length squared or Darcy. In contrast, hydraulic
conductivity is both a function of the material and the permeating fluid and is measured
in units of velocity. However, since typically there are large uncertainties in the estima-
tions of either of these parameters (Vukovic and Soro, 1992; Carrier, 2003; Petalas and
Pilakas, 2011) and they both aim to represent the movement of liquids through soils,
sediments, or hard rocks, in this thesis research the words hydraulic conductivity and
permeability are often used as synonyms and both parameters are referred to using the
letter K. Furthermore, by knowing properties of the permeating fluid such as its density
and viscosity one can calculate hydraulic conductivity from permeability and vice-versa

through the following relation:

k=Kt (1.1)

where k is permeability (m?), K is hydraulic conductivity (m/s), u is dynamic viscosity
(Pa - 5), p is density (Kg/m?), and g is the acceleration due to gravity (m/s?). This
special consideration allows the use of the extensive literature on both topics and makes

it applicable to the case of study defined in the next section of this introduction.
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1.2 Heap Leaching: Research and Objective

The objective of this investigation is to suggest a way to optimize the recovery of
metals in open-pit heap-leaching mines by demonstrating the accuracy of certain equa-
tions in the prediction of permeabilities solely as a function of grain-size. An accurate
prediction of permeabilities can potentially allow mine operators and geoscientists to
identify the optimum configuration of grains to form the leaching heap while making
efficient decisions regarding rate of irrigation, comminution, agglomeration, and satura-
tion. Heap leaching is a common mining practice consisting of five stages of ore pro-
cessing (Cassiday, 2012; Breitenbach, 2000). First, ores are crushed into small particles
in a process called comminution. Second, these particles are sieved, wetted, gradated,
pelletized, and transported on conveyor belts from the grinding mill to the leaching
heaps in a process called agglomeration. Third, the heaps are irrigated through pipes
or sprinklers with an acidic solution called liziviant that permeates the unconsolidated
sediments and dissolves the metals from the ores. Fourth, the heaps are left inclined at
some angle called the angle of repose and, after some time (30-120 days), a pregnant so-
lution or leachate containing the metals drains and accumulates at the base of the heap
via gravity drainage (Bleiwas, 1994). Lastly, in the fifth step, the pregnant solution is
recovered through a pipe system and is later chemically processed to obtain the metals
from the liquid solution (Figure 1.2). In general, heap leaching is part of a discipline
called hydrometallurgy, and although the metals that are recovered through this tech-
nique are copper, silver, and gold, this thesis focuses on copper hydrometallurgy. Silver
and gold leaching differs from copper leaching in the lixiviants that are used (cyanide
for silver and gold and sulfuric acid for copper) and the amount of time that the heap

is left in repose (longer periods for silver and gold).

The amount of recoverable metals in leaching heaps directly depends on the amount
of lixiviants that percolate through the grains and the extent to which these acids satu-
rate the porous medium (Mishra and Grayson, 1987). Furthermore, in copper leaching,
approximately 30% of the estimated quantity is lost during leaching, mostly due to prob-
lems related to inaccuracies in the estimations of hydraulic conductivity of the unconsol-
idated sediments that form the leaching heaps (Mishra and Grayson, 1987). Therefore,
there is a direct economical incentive to optimize the estimation of conductivities in cop-
per hydrometallurgy, since a better representation of the movement of lixiviants within
heaps will enable mine operators to better predict the amount of copper that can be
recovered after leaching. The scheme of this investigation is summarized in Figure 1.3
and to better illustrate the motivation for this thesis here is an example: A mine working
with an ore that for every 1,000 Kg (1 ton) of rock has on average 2.5 Kg of copper is

said to mine an ore with a Cu concentration of 2,500 ppm (parts per millionth gram)
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corresponding to a grade of 0.25% (USA Congress, 1988). The average grade for copper
ores in economically productive mines around the world is about 0.6% and, assuming a
price of $2.5/1b ($5.5/kg), the ore in this hypothetical example with a grade of 0.25%
results in 250 tons ($1,375,000) of copper for every 100,000 tons (about one heap) of
ore. However, 30% of this Cu will be lost after leaching (Mishra and Grayson, 1987),
mostly due to problems related to the irrigation of the heaps and uncertainties in the
estimation of permeabilities. This means that from the 250 tons of copper, 175 tons
(or $962,500) will, at most, be recovered during leaching. By identifying an empirical
relation or a methodology that makes reliable estimations of hydraulic conductivities,
those losses could be reduced by building the heaps with sediments of a certain grain-size
distribution, agglomerating these grains with the right amount of solution, and irrigat-
ing at an optimum rate. With these simple changes, the surface area of grains exposed

to the leachate increases and consequently more copper is recovered.

In a mathematical sense, this thesis research is an optimization problem because
the goal is to enhance the amount of copper recovered (maximize profits) by detecting
the right configuration of grains. A leaching heap formed by very fine sands, silts, and
clays encompasses more surface area and hence more copper is exposed to leachates.
Unfortunately, such grain-size distribution will also be less permeable than a sample
with larger clasts (Dullien, 1979) and thus the leachate will not flow through the entire
heap or it will take longer times to move through the heap. In the previously discussed
example, improving the predictability of K just so that one can recover 1% more of
the estimated reserves will increase profits by $12,425 per 100,000 tons of ore. Hence,
improving the estimation of conductivities as a function of grain-size is an attractive

line of research.

1.2.1 Saturated Hydraulic Conductivities and
Heap Leaching

Full saturation of lixiviants in the heap is difficult, uneconomical, and not recom-
mendable as oxygen is necessary for the chemical reaction to dissolve the Cu from the
ore. The degree of saturation in a heap can significantly impact the amount of Cu
it yields because of decrepitation (loss of material and change in structural fabric as
a result of the dissolution of metals from a lixiviant) and suffusion (internal erosion)
(Williams, 2013). In the case of sulfide ores, which is the case in copper leaching, solu-
tion air needs to move freely through the heap for adequate agent-ore contact and hence
to obtain optimum recovery (Milczarek, 2013). While heaps are commonly leached un-
der unsaturated conditions, the saturated conductivities provide useful measures such

as the maximum solution application rate (Lupo and Dolezal, 2010). According to the
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findings of Lupo and Dolezal (2010), the saturated hydraulic conductivity represents the
maximum irrigation rate during leaching. If the heaps are irrigated at rates higher than
the estimated saturated hydraulic conductivity, then the heap may become unstable due
to high phreatic surface and large pore pressure within the heap. It is important to note
that full saturation of the medium is a common assumption shared for all the empirical
equations used in this research and described in detail later in Chapter 2. Even though
this assumption does not hold in practice, these equations are studied in this research
due to their simplicity because in unsaturated conditions unconsolidated materials sig-
nificantly decrease their ability to conduct fluids (Lambe and Whitman, 1969). This
is so due to the decrease in cross-sectional area of water flow, increment in tortuosity
(or the difficulty in flow), increase of drag forces, and other factors that make up for a
non-linear relationship between conductivity, hydraulic head, and degree of saturation
(Hopmans, 2002). In summary, trying to represent heap leaching under non-saturated
conditions will significantly increase the complexity of the problem. Whether this com-
plexity enhances the accuracy in estimations of conductivity is still an open matter for
discussion not addressed in this investigation, and thus for this thesis it will be assumed
that the heap is fully saturated in order to make the empirical formulae applicable. For
a more detailed discussion on the impact of saturated versus unsaturated flow conditions
on hydraulic conductivity please refer to Hopmans (2002), Lambe and Whitman (1969),
and Dullien (1979).

1.2.2 TIrrigation Rates

Irrigation rates refer to the rate at which the lixiviants enters the heap during
leaching. The industry standards according to several manufacturers of sprinklers ranges
anywhere from 3 to 20 Lt/m?/h ( permeabilitities 8x10-5 and 6x10-4 cm/s). For this
research, it is important to clarify that in the data supplied by the mine there were no
available metrics so as to make an educated guess on the irrigation rate or discharge rates
in the heaps. This is a major barrier since without these metrics one cannot estimate
the saturation of the heaps or correct the estimates of saturated hydraulic conductivity
so as to represent the actual non saturated conditions. Without this understanding, one
cannot explore the relationship between copper recovered, hydraulic conductivity, and

grain size distributions with certainty.

1.3 Empirical Equations

In this thesis the accuracy of nine popularly used empirical equations that estimate

K as a function of grain size was evaluated in the prediction of conductivities through
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constant head permeability tests in well-graded sands with gravels. These equations are:

e Hazen (Hazen, 1892).

e Kozeny-Carman (Carrier, 2003).
e Beyer (Beyer, 1966)

e Slichter (Slichter, 1898)

e Terzaghi (Vukovic and Soro, 1992; Salarashayeri and Siosemarde, 2012; Odong,
2007).

e USBR (Vukovic and Soro, 1992; USBR, 1978; Odong, 2007; Ishaku and Kaigama,
2011).

e Fair and Hatch (Fair and Hatch, 1933)
e Kruger (Vukovic and Soro, 1992)

e Zunker (Vukovic and Soro, 1992)

The mathematical equations, regions of applicability, general assumptions, and
other important details concerning each of these relations can be found in Appendix A

and will be further discussed in Chapter 2.

1.4 Previous Research

Many authors have conducted research closely related to this thesis where empir-
ical equations that estimate K as a function of grain-size are compared to estimations
from laboratory experiments or in-situ measurements. The main difference between this
research and the earlier work of other scientists is the large number of samples that
are being considered (Table 1.1). In this work I estimate permeabilities for almost 900
grain-size distribution (GSD) curves through nine empirical equations, and I validate
these results with twenty two constant head permeability tests, which is approximately
three times more than the number of samples used in Petalas and Pilakas (2011), the

largest comparable research work investigated as background material for this thesis.
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TABLE 1.1: Comparison Among Selected Publications

Paper GSD | Lab/M."[ Methods Notes
This Thesis 874 26 9
(Salarashayeri and 25 25 - Statistical correlation of percentiles in the
Siosemarde, 2012) GSD
(Petalas and 212 1060 13 Five constant head permeability tests for
Pilakas, 2011) every sample
(Ishaku and 15 1 6 Laboratory experiments referenced in
Kaigama, 2011) previous work
(Odong, 2007) 4 - 7 The study does not reference lab tests or
field observations
(Detner, 1995) 100 100 5 In situ measurements using an air
permeameter
(Alyamani and 22 - - Multiple regression analysis against different
Mahmoud, 1993) percentiles of the GSD
(Shepherd, 1989) 397 - - Samples taken from published literature and

correlated against median grain size

! Laboratory tests or in situ measurements.




Chapter 1. Introduction

pue op-uapsaIp-odrmmm woxy payrpout 2181,y “ssedold uoryerawo[SSe o1y Jo uorjejussardey (g) -Surgoesy dear] ur sdogs jo owarpdg (V) g T AUNDIS

“TIOD QUTIOJUT MMM

_2IN1onas Auaqy>erg.

pu

28puq p1os

28pLq pinbi

s191doup Japulg

UORNUILULLIOY)




10

Chapter 1. Introduction

"SISO} SIY} 10J $oAIpoalqo pue 9dods oy} SUIMOYS dWYDS ¢ EHNDI]

‘Buiyoea) Bulunp
suonIpuo? |eniae ay) Juasaudal o} se os suodwnsse SulAjzapun
Ay BuiAjipow Ag s1Say1 S1Y3 Ul S3NSaJ 3Y3 91epI|RA j40M aining

‘patanodal yaddod Jo Junowe ayl aseasdul 0] se os sa|id Suiyoes)

ul @1e. uonesiun syl aziwndo 0} pasn aq p|nod salojopoylaw

1NoJ 3say1 WoJ) paulene S3IANINPUOI au) ‘azis-uleld 1dadxe
sa|geLieA 13430 [|e o) Buljjoiluod Jae ey 1edlpul sIsayl siyl ul
s1jnsau ay] juonsanb jesauad ayl Jamsue JuaWINIOp SIY) SBOP MOH

"S]UBWIPAS PAJEPI|OSUOIUN Ul SALIALINPUOD JINEJPAY

10 sajewnsa a|gel|aJ apinoad salSojopoylaw aulu ayy Jo Jnoj 1eyl
WJYuod s21S0ElS pue ‘sucnendwod [edlaWNU ‘syuawiiadxa qe
fuonsanb oypualas oyiaads Y3 JAMSUE JUBINDOP SIY} SAOP MOH

s)nsay

suonejnaje)

sjuawiiadxy

sisays s1y3 ui A3ojopoyiaiy
S31pN3s SholAaid

‘azis-uie.d 1daoxa sajgeliea Jaylo |[e o} Suljjosuod

Jaye Suiyoea| deay ul SUOLBWINSD B|GEI[2 SBW SBUO YDIYM ‘9IS
uies$ jo uonouny e se A}IALINPUOD J1NeIpAY 3]1€|Nd|ED Jey) suoljenba
BUIU Wol4 §SISay3 sy} ul uonsanb aynuaids aydads ayy si 1ey\

‘JUBIAIXI| 941

Jo auniesadwal pue ‘Alisuap ‘AJS0OISIA 8yl SB YINS SI|GeLIBA 310
Joy4 Bunjjosiuod Jaye payljdwis s| uole|N2|ed S} PUE JZIS uless wo.y
paindwod aq ued ey Ja1aweded e s| AJIALINPUOD Al nelpAH ¢AYm

"ANALONpPUOD ol NeJpAY Jo suopewnsy
:SSaUppe s|say} siy3} saop uonsanb jesauad siya jo 1ed 1eym

¢sa1d Buiyaea| wouy 1addod a1ow 39e41X9 01 MOH :U0LSaNY |elUaD




Chapter 2

Background and Literature

Review

This chapter starts by explaining sieve analysis, grain-size distribution (GSD)
curves, and d, percentiles. Then in the second section the general form of all the equa-
tions used in this research as described by Vukovic and Soro (1992) is explained with
a discussion of the parameters directly related to grain size that affect the estimations
of K (porosity, effective porosity, and specific yield, void ratio, grain-size, surface area,
uniformity coefficient, and shape factor). In the third section of this chapter there is a
thorough discussion of all the empirical equations summarized in Appendix A. Lastly,
in the fourth section of this chapter the reader will find a summary of key statistics

concepts necessary to understand the analysis presented in this thesis research.

2.1 Sieve Analysis and Grain-Size Distributions (GSDs)

A sieve analysis is a set of procedures done so as to detect the proportion of grains
corresponding to different grain sizes that form a soil or any granular material. Sieve
analyses in this thesis were done according to the American Society for Testing and
Materials (ASTM) D6913 and summarized as follows: First, a small amount (approx-
imately 40 gr) of air-dried sample from a granular material is taken from the source.
Then, sieves of different sizes are vertically stacked in decreasing order (Figure 3A) and
the sample is poured into the top, largest, sieve. The stack is then moved in a circular
motion with a vertical tapping impulse for a given time. Afterwards, the stack of sieves
is set apart and the amount of material trapped in each sieve is weighed. These weights
are divided by the total weight of the sample so as to calculate the percentage of grains

corresponding to different sizes. This procedure is referred to as a sieve analysis, and the

11
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percentages of grains forming the sample and corresponding to different sizes (Figure
2.9B) form a grain-size distribution (GSD) of the initial sample. Adding the cumulative
percentages of grains finer than a certain size and plotting these percentages against a
range of grain-sizes form a GSD curve (Lambe and Whitman, 1969; McCarthy, 2001).
These curves are a simple way to graphically determine the size of the GSD percentiles
(d, percentiles). For example, in Figure 2.9 to estimate the size of the grains corre-
sponding to the finer 10% of the GSD (dyp), one finds the X-axis intercept of the 10%
line on the granulometric curve, which corresponds to approximately 700 ym in Figure
2.9C. In industrial mining, instead of a stack of sieves a wide array of tools can be used

such as vibrating conveyor belts! built with ASTM meshes.

2.2 General Form of Empirical Formulae

The general form of the equations that estimate hydraulic conductivities as a func-
tion of grain size used in this thesis is generalized in the following expression (Vukovic

and Soro, 1992):

K=Cxpx60(n)xd, (2.1)

where d, is defined in the previous section and the other parameters are defined in the

following subsections.

2.2.1 Constants (C)

Most of the equations studied in this thesis have embedded assumptions regarding
unit conversions and properties of the permeating fluid that are simplified by the use
of a constant factor C. Some equations (Hazen, Kozeny-Carman, Beyer) include unit
conversion factors in their constants so that grain-sizes are entered in millimeters and
the resulting conductivities have units of meters per day, whereas the constant C in
other equations (such as the USBR method) yields conductivities in centimeters per
second with the same inputs. Furthermore, there are important considerations regarding
properties of the permeating fluid intrinsic in each one of these equations that were not
clearly stated by the authors of these empirical equations (Vukovic and Soro, 1992) (e.g.
temperature, density, viscosity, etc.). Even so, some of these formulas (e.g., Hazen) are

widely used in the earth sciences without revision (Carrier, 2003). For this research,

! As referenced by FAM manufacturer of mining equipment.
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FIGURE 2.1: A) Sketch showing the stack of sieves (decreasing size) used in mechanical

sieving. B) Standard sieve notation by ASTM standards. C) An example of a GSD

(blue histogram, left axis) and a GSD curve or granulometric curve (red, right Y axis)
attained by plotting cumulative percentages against grain size (X axis).
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I adopt the constants proposed by Vukovic and Soro (1992), Cheng and Chen (2007),
Odong (2007), Carrier (2003) and summarized in Appendix A.

2.2.2 Effective Radius ()

The effective radius represents the seepage of fluids through the entire porous
medium as if it were a single conduit, and is a function that is mathematically de-
fined differently across equations. Hazen, USBR, Beyer, Terzaghi, and Slichter’s equa-
tions simply make use of the GSD percentiles following the commonly shared assumption
that seepage is controlled by the size of the smaller particles forming the porous medium
(Hazen, 1892). However, other equations define an effective radius through more elabo-
rate mathematical formulas. For example, Kruger’s equation uses weighted geometrical
averages in logarithmic scales so as to weight the effects of big and small particles on fluid
seepage. In contrast with the Hazen, Beyer, Slichter, Terzaghi, and USBR equations
where the lower percentiles of the GSD are directly taken as the effective radius, the
Kozeny-Carman (Carrier, 2003), Kruger, and Zunker’s equations represent the effective
radius using the fraction of particles Ag; trapped in the larger and smaller sieves of sizes
d; and ds, respectively (Table 2.1). Some authors (Carrier, 2003) hypothesized that by
including the entire GSD curve in the estimations of the effective radius theoretically-

derived values of K could be more accurate for estimating conductivities in empirical

observations.
TaBLE 2.1: Effective Radius and Porosity Functions
Methodology | Effective Radius | Porosity Function
Hazen d3, , -
Kozeny-Carman % 123 5
>~ 70740, j0595 (1=n)
1 s
Beyer diy -
Slichter diy n3.287
. —0.13
Terzaghi d3, (”m )
p)
Fair and Hatch (Z g—;i) (lfi)Q
Kruger [Z Agi (dlfzsﬂ (1,nn)2
)
. dl_ds n
Zunker {Z Ag; s logjé] =0
USBR ds3 -
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2.2.3 Porosity Function ((n)) and GSD percentiles (d;)

Similar to the effective radius, the porosity function is also a mathematical ex-
pression that helps quantify the void space within the granular medium. The effective
radius quantifies the mechanical composition of the sample (grain diameter) whereas the
porosity function defines the voids within (Lambe and Whitman, 1969). Conceptually,
the porosity function depends on the shape, size, structure, composition, and surface
area of the grains that make up the sample along with other properties of the overall
material such as its uniformity, compactness, consolidation, etc. Porosity functions were
empirically estimated by the authors of the equations studied in this thesis presented in
Table 2.1 and Appendix A.

The smaller d, percentiles and the porosity function are the most important vari-
ables across methodologies affecting the estimations of K. A sensitivity analysis for
porosities (n) from 25% to 45% corresponding to sands and gravels (McCarthy, 2001)
shows the net effect that different values of n has on porosity functions (Figure 2.2).
As seen in Figure 2.2, differences of up to three orders of magnitude in estimations of
K among different equations can be attributed to the mathematical representations of
porosity. Kruger’s method provides the largest values of porosity functions while Terza-
ghi’s yields the lowest values, together spanning about two orders of magnitude. The
Hazen and USBR equations do not include porosity in their methodologies as they sim-
plify their calculations by approximating the conduits in the porous medium to a pipe of
a certain diameter (Vukovic and Soro, 1992). The expression for Kozeny-Carman mod-
ified by Carrier (2003) produces the same porosity function as that of Fair and Hatch,

which recreates the case of interconnected granular beds (Fair and Hatch, 1933).

In general, the nine equations studied in this research have different formulas for
effective radius and porosity function. Both of these factors are the most significant
source of variation for conductivities among the equations. Quantification of the net
impact that different grain-sizes have on fluid seepage through effective radius calcula-
tions is much more complex than with porosity functions. In effective radius calculations
one has x number of variables in the formula (d, percentiles) compared to just porosity
(n) in porosity functions (Table 2.1). By looking at the mathematical representation of
these two concepts across the different equations it is clear that the equations follow the
widely accepted fact that smaller particles (those trapped on smaller sieves) cause the
largest variations in K (Vukovic and Soro, 1992; Hazen, 1892; Carrier, 2003; Lambe and
Whitman, 1969; Dullien, 1979; Odong, 2007; Alyamani and Mahmoud, 1993).

It is important to mention that since neither void space calculations nor perme-

ability experiments were provided with the mine GSDs, porosities (n) for those samples
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Sensitivity Analysis on Porosity Functions

Porosity
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FIGURE 2.2: Sensitivity analysis of different porosity functions at different values of
porosity starting from 0.10 to 0.40. The Kruger and Zunker equations can yield values
up to two orders of magnitude higher than the others.

were estimated using the uniformity coefficient U (defined in the next subsection) as

proposed by Istomina (1957):

n = 0.255(1 4 0.83Y) (2.2)

this equation resulted from an empirical trend (Figure 2.3) found after extensive analy-
sis on sandy sediments and has proven to be accurate for well-graded sands and gravels
with little clay content (Istomina, 1957). Other researchers have also studied this rela-
tionship (Dimkic, 2008), revealing that it works well when estimating porosities in sandy
sediments where low uniformity coefficients yield high porosities. However, it is evident
that this empirical relation converges to a value of 0.255 as the uniformity coefficient U
becomes large. In the mine GSDs the average U for the 874 samples is 50, so using this

equation provides porosities very close to 0.255.

2.2.4 Uniformity Coefficient (U) and Shape Factor (SF)

Two other factors that are included in most of the equations for K are the uni-
formity coefficient and the shape factor. The uniformity coefficient (defined as Cy in
soil mechanics (Lambe and Whitman, 1969)) assesses the gradation of grain sizes in the

samples and is mathematically calculated through the following expression:
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Sandy and sandy-gravelly matenial
(Istomina)
Gravelly matenal (Istomuina)

Hazen's sand test

Matanal including gravel fractions

Unform-gran matenal 1deal sphacal shape

of particles (min.and maxconsolidation) - %

F1GURE 2.3: Estimates of porosity plotted as a function of the uniformity coefficient
for different granular materials. Summary of results of Istomina (1957).

deo
U=— 2.3
1o (2.3)
The shape factor (SF) takes into consideration the angularity and sphericity of the
grains through surface area concepts and is calculated as the surface area of a grain
divided by its volume (Carrier, 2003). All calculations of conductivities in my research

assume grains with shapes resembling worn angular sand grains for a value of SF = 6.4
as stated by Fair and Hatch (1933).

2.3 Background Statistics

In this section definitions of key statistics concepts used throughout this thesis are
presented. The first part titled Statistical Distributions provides a short summary on

random variables, lognormal distributions, point estimators, z-distributions, confidence
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intervals, and least squares errors. The second part titled Absolute Error Propagation

explains the calculations by which the uncertainty in the lab experiments is quantified.

2.3.1 Statistical Distributions

A wariable is defined as a characteristic that changes over time for different in-
dividuals or objects. Similarly, a random wvariable is the numerical value of a variable
obtained after the random outcome of an experiment or observation (Mendenhall, 2009).
The total number of possible experiments or observations define what is referred to as
the statistical population or simply population. The probability for each of the potential
realizations of the random variables over the whole statistical population forms the prob-
ability distribution or simply the distribution of a random variable. This distribution
could have many different shapes, but for this thesis research only lognormal distribu-
tions are discussed. When the number of observations is large enough, the distribution
for the population becomes a smooth bell-shaped curve centered at a certain value 1
and with a standard deviation of . This is what is referred to as a normal distribution.
When the random variable is normally distributed across orders of magnitude then the
population presents a lognormal distribution (Figure 2.4). In this thesis research the
random variable that is being studied is hydraulic conductivity (K), which is known to
be lognormally distributed (Kieber, 1966).

200 -
Z 150 200 +
s
g -
g i Apply Logarithm  4pp -
Tu— >

0- 0-

Ll e A

Random Variable

FI1GURE 2.4: Illustration of lognormal distributions. A random variable normally dis-

tributed across orders of magnitude looks like the skewed curve on the left, but after

applying logarithms this skewed curve becomes normally distributed across a mean &
and standard deviation o.

The mean (fz) and standard deviation (o) that characterize lognormal distributions
are rarely known, yet these parameters are estimated via point estimators. For example,
suppose a statistician is interested in knowing the average income for families across
the US. & represents the actual average income for all the families residing in the US,
and hence one will never truly know @ as this would mean going door by door to every
household in the US asking for their income. However, one can estimate this mean by

using a point estimator. There are many types of point estimators used to assess the
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mean of statistical distributions given a set of samples or observations. For example,
the naive estimator approximates 1 as the simple average of the observed values and the
maximum likelihood estimator uses likelihood functions and probabilities to estimate
7 (Mendenhall, 2009). For simplicity and consistency, in this thesis research the true
mean @ for the distributions of conductivities is approximated via the naive estimator

calculated as the simple average of the observations.

When a normal distribution is standardized by centering values across zero and
normalizing by the standard deviation, then a z-distribution results (Mendenhall, 2009).
z distributions are important because they represent populations in terms of standard
deviations and probabilities (i.e., a z-distribution shows the probability that a certain
value for a variable is x standard deviations away from its mean). However, when the
statistical population is small and standard deviation is large, z-distributions tend to
overestimate probabilities and hence t-distributions are used in this scenario. Depending
on the situation, either z or t distributions are used to derive z, /9 or ¢,/ critical values
(Mendenhall, 2009) through which confidence intervals are estimated. « is referred to
as the significance level and represents the proportion of values within the tails of the
normal distribution, and the critical values z, /5 or ¢, /o represent the probability that the
random variable obtains a value in the lower or upper tail of a normal distribution (Figure
2.6). Critical values for t and z distributions are well-studied for many significance levels
and appear in tables in the vast majority of statistics books. Mathematically, confidence

intervals (Cls) are estimated via the following formula:

CI = parameter + 249 (2.4)

o
NG
where /5 can replace 2,/7 and n represents the number of observations or experiments.
The subtraction in (2.4) represents the lower confidence interval (LCL) for the parameter
and the addition represents the upper confidence interval (UCL). To better illustrate
these concepts here is an example. To estimate the 95% confidence interval for a mean
point estimator p = 2 with ¢ = 1 derived after n = 25 observations one would use
(2.4) and find a LCL=1.608 (2 — 1.96/1/25) and a UCL =2.392 (2 + 1.96/1/25). This
means that the point estimator pu = 2 for the 25 observations having a ¢ = 1 could
approximately be between 1.6 and 2.4 95% of the time. The number 1.96 is the critical
value for the z-distribution found after looking up the z, /2 = 20.025 critical value in a

z-table in a statistics book.
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1-a = 0.95

& = 0,025

-201025 0 20.52.5
LCL UCL

FIGURE 2.5: Confidence intervals are estimated after the critical values z, /2.
2.3.2 Normal Probability Plots

Normal probability plots (NPP) are used to assess if a sample of n observations
comes from a much larger population that follows a normal distribution. Mendenhall
(2009) defines NPPs as graphs that plot the values for each of the n observations against
the expected value of those observations had they come from a normal distribution. In
NPPs the cumulative probability of observe a certain value is plotted on the y axis and
the value for each of the n observations on the x axis (Figure 2.6). A straight line in these
plots marks a perfectly normal distribution and the points around this line represent the
observed data. Normal probability plots test the normality assumption for a certain set

of observations.

2.3.3 Absolute Error Propagation

Using the equations cited on Appendix A, the observed values for the lab samples’
permeabilities (K,ps) were compared to permeabilities derived from the nine equations
using the parameters that describe the GSD as called for by each empirical equation.
For each of the nine values of conductivities, confidence intervals (CIs) were estimated
through the absolute error propagation approach. In standard lab experiments, an ab-
solute error propagation approach consists of taking the total derivative of the equation
estimating the metric the experimenter is interested in with respect to the control vari-
ables (Harvard Instructional Physics Lab, 2008). For example, in a physics lab if one is
measuring the kinetic energy of a certain object one will measure the object’s mass (m)
and its velocity (v) to use the formula Ej = $m x v?. The error associated with this
point estimator will be AE), = %[Am x v2 4+ 2m x vAv] where the quantities Am and

Aw correspond to the instrument precision of the balance used to measure the object’s
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FIGURE 2.6: An example of a normal probability plot taken from Matlab 2015 help

browser for the "normplot” function. The plus blue signs mark the observations and

the red line represents the expected value of these observations had they come from

a normal distribution. Observed values close to the straight line permits assuming a
normal distribution for the population of interest.

mass and whatever artifact is used to measured its velocity. Since hydraulic conduc-
tivities are lognormally distributed (Kieber, 1966), the equations in Appendix A were
first log transformed prior to taking the derivative with respect to the d, percentiles.
These derivatives used to quantify uncertainties in the estimations of conductivities in
lab samples can be found in Appendix B. As an example of how this procedure was car-
ried out, using the log transformed USBR equation (log AKyspr = log(0.36 x d33)) we
will estimate the error corresponding to this estimate by calculating the total derivative
of this expression in terms of the factors we control for, which is dyp in this example
(log AKyspr = 1/(0.36d35%) x 0.36(2.3d323 Adao) = 0.36(2.3d%i73Adsg)/Kuspr). Hav-
ing a confidence interval for each of the nine conductivities permits evaluating how well
do each of these equations represent observed values in a controlled setup. However,
many assumptions were made in the quantification of the error in the measured quan-
tities during lab experiments to acknowledge experimental and time limitations. The

following assumptions are based on the judgment of the author of this thesis:
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1. Ad,: The error associated with the d, percentiles in the GSD. This value is taken
as a fixed constant of 0.01 mm corresponding to coarse silt (Chester, 1922). An
example illustrates this parameter. When mechanical sieve analysis takes place at
large scales in a mine, it is possible that not all particles trapped on, for example,
sieve #100 are exactly 0.149 mm. It is possible that these particles will be a little
larger or smaller than this value. I am representing this variability in the sizes of
the d, percentiles that make up the GSD curve as a fixed value of 0.01 mm that
represents small particles (fine silt) adhered to larger grains. The logic behind this
assumption is that if the air-dried samples were to contain some moisture, then
very small particles (such as coarse silt) could have been adhered to larger grains
and thus affect the GSD of the sample and introduce a bias in the discharge rate

observations at large scales.

2. AP; and Af;: The error associated with the cumulative percent of material trapped
at the i'" sieve (AP;) and the net fraction of material in the i'* sieve (Af;) were
arbitrarily estimated as 5% of P; and f;. To make these estimates robust, several
sieve analyses would have to be made on the same, well-known, amount of gran-
ular material and after several iterations it will be possible to estimate the error

associated with AP, and A f; for the instrument.

3. An: The error associated with porosity calculations. This parameter was esti-
mated considering that 50 ml of water, corresponding to the instrument precision,
could affect the discharge observations. If so, this error of 50 ml in specific yield
calculations represents a constant value of 0.011 or 1.1% error in porosity esti-

mates.2

4. Ah and AL: The error associated with hydraulic head (Ah) and length (AL) was
0.1 cm, corresponding to the instrument precision of the ruler used to measure

these parameters.

all other parameters that may be present in the equations and not mentioned before

were regarded as constants for error calculations.

2.4 Description of the Mine Samples

The samples from the mine used in this thesis research consists of 874 grain-size
distribution (GSD) samples collected over a period of six years in a copper mine in north-

ern Chile. These samples were taken from porphyritic rocks that provide chalcopyrite

2From the specific yield equation we have that n = % = % =0.011
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ores with an average Cu grade of 0.62% and sieved with 1”7 [25.4 mm]|, 3/4” [19 mm],
1/2” [12.7 mm], 1/4” [6.35 mm]|, #10 [2 mm], #50 [0.297 mm)], #100 [0.149 mm]|, #200
[0.07 mm] sieves. These 874 samples came from 16 loads (LOAD 2 through LOAD 17)
and these loads were further segregated into two modules (A and B) with the exception
of LOAD 2 and LOAD 15 (only B module) and LOAD 17 (only A module). A load is
simply the movement of the conveyor belt from point to point across the mine (Figure
2.7) and a module is a way to identify the side where the conveyor belt is depositing
the heap (e.g. east/west, left/right, or in this case A/B, Figure 2.7). A sample is re-
ferred to as a portion of the material that makes up the overall heap (Figure 2.8). Such
segregation of material into loads, modules, and samples is done so as to track min-
ing operations through time. In Table 2.2 the loads, modules, and number of samples
within each leaching heap researched in this thesis are summarized. The same table
also contains information about the average weight and the average percentage (net of
weight) of Cu estimated in each sample as well as the percentages of Cu recovered and
lost after leaching. On average, the heaps encompassed an area of 8,225 m? and were 7.5
m high. It is advantageous to construct heaps that are shorter than they are wide, as
this geometry diminishes compaction, increases aeration, and thus makes the granular
medium more permeable for leachates (Yao et al., 2013). It took approximately one day

of sieving via conveyor belts to transport and deposit each sample into its leaching heap.

The GSDs for all 874 samples plotted together can be seen in Figure 2.9. The
average U for the 874 GSDs is 50 and the average dip is 0.2 mm corresponding to
well-graded fine sands with gravels (Lambe and Whitman, 1969). Summary statistics
depicting averages, minimums, maximums, medians, and standard deviations of the d,
percentiles of the 874 GSDs along with the weights of each of these mine samples in
Figure 2.10.
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FIGURE 2.7: (A) This figure illustrates a conveyor belt depositing LOAD 3A. (B) After

enough samples have been deposited into LOAD 3A, the conveyor moves to location 4

and starts depositing samples to its right (LOAD 4B). NOTE: The leaching heaps in our

case are discreet mounds of material. (images from superior industries, manufacturer
of mining equipment www.youtube.com/user/superiorind1972/about).

FIGURE 2.8: (A) A loader truck takes a certain amount of material X from the mineral

deposit and (B) places it into the grinder. (C) The grinder crushes the material and

the sands, gravels, and silts, constituting a sample, are transported to form the heaps.
(images from FAM, manufacturer of mining equipment www.FAM.de).


www.youtube.com/user/superiorind1972/about
www.FAM.de
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TABLE 2.2: Data Segregation
heap Name N Avg Avg %Cu | Avg %Cu | Avg %Cu
Weight [T] | Estimated Lost Recovered
1 LOAD2B | 8 102,780 0.74 0.19 0.55
2 LOAD3A | 9 107,310 0.63 0.18 0.45
3 LOAD3B | 9 103,510 0.71 0.15 0.56
4 LOADA4A | 7 87,540 0.81 0.14 0.67
5 LOAD 4B | 27 100,362 0.88 0.15 0.73
6 LOADSA | 25 110,640 0.71 0.15 0.56
7 LOADJGB | 31 105,110 0.71 0.1 0.61
8 LOAD_GA | 25 109,410 0.89 0.09 0.8
9 LOADG6B | 14 97,807 0.73 0.4 0.33
10 LOAD_TA | 14 107,580 0.98 0.27 0.71
11 LOAD_TB | 11 95,140 0.89 0.27 0.62
12 LOADS8A | 18 103,340 0.92 0.22 0.7
13 LOADS8B | 12 96,181 0.71 0.19 0.52
14 LOAD9A | 32 91,138 0.69 0.18 0.51
15 LOAD9B | 45 77,321 0.71 0.19 0.52
16 LOAD_10A | 37 74,240 0.61 0.18 0.43
17 LOAD_10B | 52 81,180 0.57 0.14 0.43
18 LOAD_11A | 41 82,783 0.54 0.13 0.41
19 LOAD_11B | 32 79,332 0.53 0.15 0.38
20 LOAD_12A | 41 96,219 0.55 0.13 0.42
21 LOAD_12B | 40 80,593 0.65 0.22 0.43
22 LOAD_13A | 51 98,669 0.62 0.18 0.44
23 LOAD_13B | 48 96,843 0.58 0.15 0.43
24 LOAD_14A | 48 91,379 0.58 0.14 0.44
25 LOAD_14B | 55 96,150 0.53 0.16 0.37
26 LOAD_15B | 26 93,739 0.52 0.16 0.36
27 LOAD_16A | 44 105,540 0.58 0.11 0.47
28 LOAD_16B | 49 97,955 0.62 0.13 0.49
29 LOAD_17A | 22 106,780 0.57 0.14 0.43
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2.5 Description of the Nine Equations

Before discussing the details of each of the nine equations being analyzed in this
thesis, it is important to know that these equations were either empirically calculated
from lab experiments or mathematically derived under various assumptions. The authors
of these equations showed that each of these formulas provide accurate estimates under
what is referred to in this thesis as a region of validity, which is a series of restrictions
placed on certain parameters of the granular medium such as grain size or uniformity
coefficient. The region of validity for each equation is described in the section below
summarized in Table 2.3 and Appendix A. As previously discussed, all these equations

describe saturated hydraulic conductivities.

Hazen (1892) identifies hydraulic conductivity as the velocity of water in his ex-
periments and concluded that hydraulic conductivity is a function of temperature (T),
effective grain-size (dj¢), head loss (H), and sediment thickness (L). Hazen (1892) made
the observation that ” [hydraulic conductivity| probably varies also somewhat with the
uniformity coefficient, but no satisfactory data are at hand upon that point,” and he
limited the scope of his experiments to sands with a uniformity coefficient U < 5 and
an effective radius djp within the range of 0.1 - 3.0mm. According to Hazen (1892), this
simplification of his formula offers the " maximum rate” of fluid flow since his equation is
based on the most ideal circumstances of a fully saturated medium with water at 10°C
undergoing a gradient of one (loss of head equal to the sediment thickness). However,
Carrier (2003) shows that correcting Hazen’s equation for water at 16°C' yields perme-
abilities at least 18% larger than at 10°C. Carrier (2003) also showed that Hazen’s
method relies heavily on its empirical assumptions and yields values of K that can differ
up to several orders of magnitude from lab experiments. Yet, Hazen’s equation continues

to be the standard in the geosciences due to its simplicity.

The formula for hydraulic conductivity of Kozeny-Carman as explained in Carrier
(2003) was originally developed by Kozeny for a series of capillary tubes in sands with
dio < 3mm and later modified by Carman so as to include the notion of hydraulic radius
and the pore diameter of an equivalent capillary (Chapuis and Aubertin, 2003). There-
fore, Kozeny-Carman equation makes use of sediments’ GSDs to estimate an effective
radius. According to Carrier (2003) many authors often interpret this effective radius
in different ways; some say it corresponds to djg while others express it as an arithmetic

expression including the entire GSD (Carrier, 2003). In this work I adopt the latter.

Beyer’s method (Beyer, 1966) was empirically derived so as to assess the movement
of pollutants through geological beds. This method also approximates the movement of

liquids as if passing through a pipe and thus porosity takes on the value of one. Beyer’s
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TABLE 2.3: Region of validity for empirical equations

Equation Uniformity Coefficient Grain Size Notes
Hazen U<b 0.1mm< dyp <3mm No porosity
Kozeny-Carman - dip <3mm Not applicable in clayey sediments
Beyer U<20 0.06mm< djp <0.6mm | Porosity of one
Slichter - 0.0lmm< djp <5mm | No uniformity coefficient

Shape and gradation of grains included

ool _ . <dyp <
Terzaghi 0-25mms dio <2mm in the empirical coefficient Cy
. Derived for unstratified sand beds
- . < <
Fair & Hatch 0-Imms dip <2mm Includes a shape factor between 7.7 and 6.0
Shape factor included in empirical
Kruger U>5 0.25mm< dyp <2mm .
coefficient Sy
Zunker ) ) Sllape and .g?adatloll lO.f grains included
in the empirical coefficient 3,
USBR U<b .06mm< dyp <2mm Suitable for sands

method is believed to be mostly useful for heterogeneous, poorly sorted, samples with
effective grain sizes between 0.06 and 5 mm and U < 20 (Odong, 2007). Slichter’s formula
(Slichter, 1898) uses potential theory in groundwater flow to quantitatively describe the
steady-state flow field in response to a discharging well, and according to the USGS, it
could be the first quantitative analysis of groundwater. The equation is derived after
Slichter’s multiple laboratory experiments of water moving through porous soils or rock
under different pressures. As originally published in Slichter (1898), the formula makes
use of an average grain-size, does not takes into consideration the shape of the grains, and
is simplified for water at 10°C. Several researchers (Vukovic and Soro, 1992; Odong,
2007; Cheng and Chen, 2007) tested this formula with different materials, and their
findings indicate that it is most reliable in sand samples with grain sizes between 0.01

and 5mm with no restrictions on the uniformity coefficient of the granular media.

The Fair and Hatch method (Fair and Hatch, 1933) calculates the head lost for
expanding, unstratified, and stratified filter beds. In this thesis I will only consider their
model for unstratified filter sand beds with dig between 0.1 and 2mm describing grain
sizes in the interval of very fine to coarse sands (Chester, 1922) as it most resembles the
physical configuration of grains in heap leaching heaps. Fair and Hatch (1933) reworked
the results of Poiseuille in the 1840s (Sutera, 1993) and Darcy in the 1850s (Darcy, 1856)
so as to factor in the length of the path followed by the water and the diameter and
shape of the particles constituting the granular medium. Fair and Hatch’s equation is
based on experimental data and takes into consideration the viscosity (u) and density
(p) of the permeating fluid. This equation also makes use of a pipe constant (k) which
represents the porous medium conduits as a pipe of constant diameter. Fair and Hatch
(1933) assume this value to be 32 and hence this thesis makes this same assumption. A
noticeable distinction of this method is that it directly includes the entire GSD curve in
its calculations and defines a shape factor (SF) for the grains calculated as the ratio of

surface area to volume between 7.7 for angular grains and 6.0 for well-rounded grains.
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As summarized in Vukovic and Soro (1992), the United States Bureau of Recla-
mation (USBR) in collaboration with several scientists developed a formula for the
hydraulic conductivity of soils comprising medium-grain sands with average grain sizes
between 0.06 and 2mm and uniformity coefficients less than five (USBR, 1978). Some
studies indicate that the USBR tends to underestimate conductivities (Salarashayeri
and Siosemarde, 2012; Odong, 2007; Ishaku and Kaigama, 2011). The USBR developed
this formula specifically to aid irrigation in agriculture as ”excess water and salt must
be removed from soils for irrigation to be permanently successful” (USBR, 1978). When
simplified for water at 10°C, converting inches per hour to centimeters per second, and
using grain-sizes corresponding to uniform sand grains, the expression can be simplified

to the one appearing in Appendix A (Vukovic and Soro, 1992).

Terzaghi’s equation is based on a one-dimensional consolidation equation represent-
ing the visco-elastic behavior of soils as they react to applied loads in civil engineering
(Di Francesco, 2013). Even though Terzaghi’s equation is intended for civil-engineering
consolidation problems, several authors have applied it to groundwater flow situations
and obtained hydraulic conductivities close to observed values (Vukovic and Soro, 1992;
Odong, 2007; Cheng and Chen, 2007). In this work, I adopt the Vukovic and Soro (1992)
simplification of Terzaghi’s equation as Vukovic and Soro (1992) stated that Terzaghi’s
equation yields results matching empirical observations for coarse sands with average
grain sizes between 0.25 and 5mm. Terzaghi’s equation includes the shape of the grains
and gradation of the sediments through an empirical constant Cy, which takes a value

of 0.0061 for coarser sands and 0.107 for smooth grains (Vukovic and Soro, 1992).

The last two methods for calculating hydraulic conductivities based on grain-size
distributions that are used in this thesis research are Kruger’s (Vukovic and Soro, 1992)
and Zunker’s (Zunker, 1932) formulas. Vukovic and Soro (1992) analyzed Kruger’s
formula and determined that it yields best results when applied to medium-grain sands
with average grain size between 0.25 and 2mm and uniformity coefficients larger than
five. Zunker’s equation also makes use of an empirical coefficient 5, that describes the
gradation and angularity of the grains. (5, has a value of 0.0024 for uniform sand with
smooth rounded grains, a value of 0.0014 for a uniform composition of coarse grains,
0.0012 for non-uniform grains, and 0.007 for clayey grains of irregular shape. Kruger’s
method includes a large portion of the grain-size distribution curve and represents water
moving through sand at 0°C. Therefore, after eliminating some simplifications appearing
in Vukovic and Soro (1992) and using values of viscosity corresponding to water at ten
degrees Celsius, the modified version of Kruger’s method appearing in Appendix A is
obtained. Zunker’s formula (Zunker, 1932) is derived for agriculture and fertilization and
contains an empirical coefficient (f;) that is a function of grain-size and the uniformity

coefficient. For this thesis, 8r = 0.00435 representing homogeneous well rounded sands
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is used (Vukovic and Soro, 1992). Zunker’s formula has been found to yield values of
conductivities that, on average, are two orders of magnitude higher than observed values
(Vukovic and Soro, 1992; Petalas and Pilakas, 2011) and hence is ignored for practical

applications in science and engineering.

In application to this research, the average grain size dig for the sediments in the
leaching heaps is 0.2mm and the average uniformity coefficient U is 50. This means
that the well-graded fine sands with gravels used in leaching are different from the
homogeneous sands under which these nine equations have proved to estimate observed
conductivities (Vukovic and Soro, 1992). In the next chapter of this thesis these nine
equations will be used to test how well they predict the observed conductivities in

sediments with a GSD similar to the ones used in leaching in controlled lab experiments.



Chapter 3

Determinations of Hydraulic

Conductivity in Lab Experiments

As discussed at the end of the previous chapter, the well-graded fine sands with
gravels used in leaching differ from the homogeneous sands where the nine equations
have proven to represent observed conductivities. In this Chapter we will use the nine
empirical equations to compute values of conductivities in sediments resembling those

used in leaching and compare these empirical values to actual observations.

This Chapter is divided into three main sections. The first section titled Constant
Head Permeability Tests describes the procedure followed, equipment used, constructed
samples, assumptions made, and calculations done so as to compute the observed conduc-
tivities that constitute the best estimates of conductivities for each sample. The second
section, Results, shows and explains the results of the constant head permeability tests
that indicate that the USBR equation provides the most accurate estimate of hydraulic
conductivity for leaching heaps. The third section, Discussion of Results, provides some
detail about the equations and the impact of changing some of the assumptions made

for the lab experiments.

32
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3.1 Constant Head Permeability Tests

3.1.1 Equipment and Lab Samples

Constant head permeability tests were conducted in accordance with the ASTM
D-2434 standards for granular sediments, as summarized in this section. A Humboldt
HM-3894 permeameter (Figure 3.1) with a cylindrical chamber measuring 15.2 cm di-
ameter by 24 cm height was used for testing. Four different lab samples (OTT, HBB,
MOTG, and MBBG) were constructed using Ottawa sands donated by GEI consultants,
unconsolidated granular material collected from the St. Mary’s renovation site on the
Boston College campus, and Quickrete gravels and sands bought in a local hardware
store. It is important to make the distinction that lab samples refer to the samples
of sands and gravels formed at Boston College, which is different from the samples of

granular material of metal ore that the leaching heaps were formed with.

In theory, every granular medium has a certain hydraulic conductivity X that can
be observed in constant head permeability tests, and the equations that I am researching
approximate that X through a mathematical relationship based on different parameters
derived from GSDs. Samples HBB and OTT have uniformity coefficients of 4.7 and 3.0
respectively and a djg of 0.17 and 0.30 mm, respectively. Therefore, these samples are
within the region of validity of all nine equations researched in this thesis. Comparing
the observed conductivities from the constant head permeability tests in these samples
to the conductivities obtained through the nine equations highlights the equations that

best predict the observed conductivities.

The OTT and HBB samples were constituted solely from the Ottawa and Quickrete
uniform sands, respectively, and their purpose was two fold. First, the Ottawa sands have
been extensively studied and their hydraulic conductivity estimated as K= 0.05 ¢m/s
(Lambe and Whitman, 1969), which is the same result I obtained from my constant head
experiments, indicating no bias in my hydraulic conductivity measurements. Second,
experimenting solely with the Quickrete sediments formed by medium to fine sands
allows the evaluation of the underlying assumptions and region of validity implied by
each of the nine equations. GSDs for the OTT and HBB samples appear in Tables
3.1 and 3.2, respectively. In these tables the last sieve, called base, refers to the solid
receptacle at the bottom of the stack. Particles on this sieve were assumed to have a

size of 0.02 mm, corresponding to medium to fine silt.

The other two samples (MOTG and MBBG) were formed by carefully mixing pro-
portions of sediments so as to recreate, as closely as possible, the well-graded sands with

gravels falling in the range of GSDs of the mine samples (Figure 2.9 and 2.10). To form
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Ficure 3.1: Assembled Humboldt permeameter, important parts referenced in the
text are identified in black boxes.
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FIGURE 3.2: Sample setup.
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the MOTG and MBBG samples approximately 8 Kg of sieved unconsolidated sediments
of different sizes (Figure 3.2A) were weighed out (3.2B). These sediments were then
thoroughly mixed by hand in a circular fashion with water at 20°C so as to simulate
the agglomeration process and to have finer particles adhere to larger ones (forming
pellet-like structures, Figure 1.2). Once the sediments were agglomerated and mixed in
the desired proportions the sample was ready for permeability tests. The GSD for the
MOTG sample appears in Table 3.3 and for MBBG in Table 3.4.

Once the samples were crafted they were placed in the chamber of the permeameter
with the lower valve (or discharge in Figure 3.1) closed and were manually compacted
with a closed fist after each additional four to six centimeters of additional material was
added to the chamber. After the chamber was filled (Figure 3.2C), the top was leveled
and a porous stone was held on top along with a net to prevent material escaping the
chamber while allowing water to drip through. A spring (Figure 3.2D) that applied a
pressure of 1.2-2.4 KPa was placed between the porous stone and the upper cap so as to
prevent density changes and to preserve the mechanical stability of the sample during
testing. After the spring was placed and the top cap closed, the chamber was finally
secured with four knobs, and a vacuum of 15 mmHg (1.8 KPa) was placed through
the upper valve for approximately five minutes so as to get most of the air out of the
chamber. While the vacuum was being held in the chamber, the reservoir was connected
to the bottom valve which was gradually opened until small drops of water started
infiltrating the chamber. This part of the process is called saturation under vacuum and

it was done so as to ensure full saturation (Figure 3.2 E-F).

TABLE 3.1: OTT GSD

OTT GSD
. Weights (241.2 gr Total
Sieve - ghts | g - )
Retained Finer

# mm log10 [gr] % [er] %
10 2 0.30 0 0% 241.2 100%
40 0.425 -0.37 185 77% 56.2 23%
60 0.25 -0.60 42 17% 14.2 6%
100 0.149 -0.83 114 5% 2.8 1%
Base 0.02 -1.70 2.8 1% 0 0%

Ottawa monocrystaline fracking sands.

After the chamber was fully saturated, the vacuum was disconnected and the reser-
voir was placed at the upper valve. The next step was to open the bottom valve so that
a continuous flow of water was allowed to pass through the sample via the upper valve
at a certain, constant, hydraulic head (which in this case equals the elevation of the

reservoir above the bottom of the chamber). After the rate of discharge was observed
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TABLE 3.2: HBB GSD

HBB GSD
. Weight (646.4 gr Total
Sieve - ght ( g ,)
Retained Finer
# mm log10 [er] % [er] %
10 2 0.30 434 7% 603 93%
40 0.425 -0.37 368.7 57% 234.3 36%
60 0.25 -0.60 100.8 16% 133.5 21%
100 0.149 -0.83 83.6 13% 499 8%
200 0.074 -1.13 22.2 3% 27.7 4%
230 0.063 -1.20 19.2 3% 8.5 1%
Base 0.02 -1.70 8.5 1% 0 0%
Homogeneous Quickrete brown bag sands.
TABLE 3.3: MOTG GSD
MOTG GSD
. Weights [8.55 gr Total
Sieve n ghts [ g ]
Retained Finer
# mm log10 [er] % ler] %
1" 25.4 1.40 0.081 1% 8.47 99%
3/4" 19 1.28 3.3615 39% 5.11 60%
1/2" 12.7 1.10 0.6075 7% 4.50 53%
10 2 0.30 0.00 0% 4.50 53%
40 0.425 -0.37 3.45 40% 1.05 12%
60 0.25 -0.60 0.78 9% 0.26 3%
100 0.149 -0.83 0.21 2% 0.05 1%
Base 0.02 -1.70 0.05 1% 0.00 0%
Mixed ottawa and gravels.
TABLE 3.4: MBBG GSD
MBBG GSD
Sieve ?Neughts (6.75 gr Total!
Retained Finer
# mm logl0 [_gr] % [er] %
1" 25.4 1.40 0.063 1% 6.69 99%
3/4" 19 1.28 2.6145 39% 4.07 60%
1/2" 12.7 1.10 0.4725 7% 3.60 53%
10 2 0.30 0.24 4% 3.36 50%
40 0.425 -0.37 2.05 30% 1.30 19%
60 0.25 -0.60 0.56 8% 0.74 11%
100 0.149 -0.83 0.47 7% 0.28 4%
200 0.074 113 0.12 2% 0.15 2%
230 0.063 -1.20 0.11 2% 0.05 1%
Base 0.02 -1.70 0.05 1% 0.00 0%

Mixed Quickrete sands with gravels.
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to remain constant for at least 30 seconds, the sample was interpreted to have reached
steady state and a graduated cylinder with an instrument precision of 10 ml was placed
at the discharge and 10 volumes of water were recorded for 5, 10, 15,..., 50 seconds.
These ten measurements are referred to here as observations of discharge rate. With
these ten observations, ten hydraulic conductivities were calculated through the follow-
ing equation based on Darcy’s law. This equation assumes full saturation of a Newtonian

fluid in mechanically stable samples with constant density:

(3.1)

where Q is the discharge [cc/s], L is the length of the sample [24 c¢m], A is the cross-
sectional area of the cylindrical chamber (181 c¢m?), and H is the elevation head [cm].
In reality, the aforementioned assumptions about a fully saturated medium and a me-
chanically stable sample are rarely met in heap leaching. Leaching heaps are not ex-
actly mechanically stable as decrepitation and suffusion are intrinsic consequences of
the leaching process itself (Williams, 2013). Furthermore, oxygen is required for the
chemical reaction to dissolve the metals. Thus, as stated in Chapter 1, full saturation
of lixiviants, besides being difficult and uneconomical, is not recommendable even when

the equations that I am using assume full saturation.

3.1.2 Porosity

After the measurements for discharge rate were completed, the specific yield was
calculated by closing the lower valve, disconnecting the reservoir, placing a graduated
cylinder with a 50 ml precision directly below the lower valve, and opening this lower
valve so as to let the water flow out of the chamber and into the cylinder. The volume of
water drained divided by the total volume of the chamber is the specific yield, which is
used to give an estimate of the sample porosity in the lab experiments of this thesis. This
same procedure was repeated for each sample in a total of 22 experiments (6 experiments
for the OTT sample, 4 HBB, 5 MBBG, and 7 MOTG). Mathematically, this calculation

was done as follows:

VOlwater,drained . VOlwater,drained

"= Vol hamber N 4,355cc
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3.1.3 Shape Factor

Some of the equations studied in this research make use of a shape factor (SF),
which was estimated by inspection of the sediments forming the samples through a mi-
croscope (Figure 3.3). According to the findings of Fair and Hatch (1933) summarized
in Figure 3.3, a SF of 6.4 corresponding to worn sand grains was chosen for the calcula-
tions of hydraulic conductivity as this value bests describes the grains that constitute the
samples. Fair and Hatch (1933) derived the values that appear in Figure 3.3C by looking
through the microscope at several soil samples with different angularity and sphericity
and estimating a ratio of surface area over volume. Photographs of the grains constitut-
ing the samples from the mine (shown in the next Chapter) show rounded and angular

grains that can also be represented with the SF of 6.4 used in the lab experiments.

Fa. 2. Buarg or Fivree Saxns
L Angular sand-—shspe factor 7.7. 2. Sharp'sand—shape factor 7.4,

B. Worn sand—shape factor 8.4. 4. Rounded sand—shape factor 6.1. Shapg
actor of spherical sand 8.0,

FIGURE 3.3: A SF of 6.4 as studied in Fair and Hatch (1933) and summarized in Panel
C was chosen for the lab samples and assumed for samples coming from the mine.

3.1.4 Observed Permeabilities

The best estimate of observed permeability was calculated for each sample by car-
rying out the following five steps. First, a number of experiments were conducted on
each sample (6 for the OTT sample, 4 for HBB, 5 for MBBG, and 7 for MOTG), and
during each experiment a total of ten discharge observations were made (Figure 3.4A-
B). Second, for each of these discharge observations a permeability was calculated using
(3.1). Third, the logarithm of each of these permeabilities was taken (Figure 3.4C).

Fourth, the average and standard deviation of the 10 log transformed permeabilities
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were calculated. This average is regarded as the observed permeability of a certain
sample in the following chapters. Fifth, a 95% confidence interval was then calculated
for the observed conductivities as shown in Figure 3.4D using the mean and standard
deviation among all observations. The logarithmic transformation is a necessary step
because hydraulic conductivities are lognormally distributed (Kieber, 1966). After the
UCL and LCL were estimated for the observed permeabilities in log scale for each sam-
ple, these values were transformed back to permeabilities using base ten exponentials.
As an example, 7 experiments were conducted on the MOTG sample (Figure 3.4) where
a total of 70 values of permeability (10 for each experiment) result from the discharge
observations. These 70 permeabilities were then log transformed and their average and
standard deviation calculated and used to construct a 95% confidence interval for the

observed permeability of the MOTG sample.

3.1.5 Confidence Intervals for Empirical Equations

The main goal of these lab experiments is to compare the conductivities from the
empirical equations to the ones observed in the experiments and detect which of the
nine equation offers the best estimate of conductivity. To calculate confidence intervals
(CI;) that take into account the range of uncertainties for the calculated permeabilities

the following approach was implemented:

1. Nine permeabilities (K;) were calculated for each lab sample using the equations

in Appendix A and log transformed afterwards (log K;).

2. Uncertainties (Alog K;) were calculated for each log K; using the equations in

Appendix B.

3. Confidence intervals (C1s) for each of the nine log K; were calculated using the
following modified version of the naive estimator for means in log normal distri-
butions proposed by Olsson (2007) and McCarthy (2001), treating log AK; as an

estimator for o:

CIZ — 10(logKi:t1.96><AlogKi) (32)

To better illustrate this procedure here is an example. The observed conductivity
estimated from all 70 observations on the MOTG sample was 0.033cm/s with a stan-
dard deviation of 0.004cm/s. The USBR equation provided a value of log K = —1.36
for this same sample, and through the absolute error propagation approach an un-

certainty of Alog K = 0.31 was found. The confidence interval of the conductivity
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Workflow to Calculate Observed K

Experiment 1 Experiment 2 Experiment 7

ﬁ

vn

FicUre 3.4: Workflow diagram illustrating the procedure to calculate a sample’s ob-

served hydraulic conductivity. (A) A number of experiments conducted on the same

granular material. (B) 10 permeabilities were calculated from 10 discharge observations

in each experiment. (C) All observations from all experiments on the same sample (n)

were log transformed and the mean log K; and standard deviation o calculated. (D)
95% confidence intervals for the observed permeabilities were calculated.

log Kps = log K = 1.96
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estimated using the USBR equation for the MOTG sample was then calculated as
C1I = 10(=1:36%1.96x0.31) for 5 UCL of 0.18 and a LCL of 0.01lcm/s.

3.1.6 Ranking and Least Squares Errors

In statistics least squares errors refer to squared differences between actual obser-
vations and the predicted values resulting from a model (Mendenhall, 2009). In this
thesis research, least squares errors are the parameters used to rank the nine equations.
The observed values were the conductivities observed during lab experiments and the
predicted values the conductivities resulting from the nine equations. The squared dif-
ference between these two conductivities in logarithmic space was used to rank the nine

equations in terms of best fit using the following equation:
E; = (log K; — log Kops)* (3.3)

where K; are conductivities from empirical equations and K, the observed conductivity

in lab experiments.

3.2 Results

The results of the lab experiments are summarized in Figures 3.5, 3.6, 3.7, and
3.8. Table 3.5 shows the accuracy and ranking of the nine equations using the least
squares errors calculated using 3.3. According to these results, the USBR equation
provides values of conductivities that most closely represent lab observations for these

two samples.

Figure 3.9 shows the GSDs of all lab samples compared to the range of GSDs from
the mine. Specifically, this figure shows the GSDs from samples MBBG and MOTG
falling within the range of the GSD of the mine. Using (3.1) the observed conductivities
were K = 0.033+0.003 cm/s for sample MBBG (Figure 3.7) and K = 0.033+0.001 cm/s
for sample MOTG (Figure 3.8), and for both samples the equation that best estimated
the observed conductivity was the USBR.
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TaBLE 3.5: Ranking of Equations By Least Squares Errors (E)

MOTG MBBG Avg. E Ranking
USBR 0.015 0.015 0.015 1
Hazen 0.064 0.063 0.064 2
Slitcher 0.042 0.342 0.192 3
KC 0.000 0.623 0.311 4
F&H 1.527 0.184 0.856 5
Terzaghi 0.600 0.830 0.715 6
Beyer 2.220 1.075 1.648 7
Kruger 3.465 0.608 2.036 8
Zunker 4.825 2.778 3.801 9

Ranking was done in increasing order of the average error for samples MOTG and
MBBG.

3.3 Discussion of Results

3.3.1 Least Squares Errors

When focusing on samples MOTG and MBBG (samples that were most representa-
tive of the GSDs from the mine) the USBR equation offered the most reliable estimates
of saturated conductivities as shown by the lowest average least square errors (Table
3.5). For samples OTT and MBBG the Hazen equation yielded the second best esti-
mates after USBR. For sample MOTG, Kozeny-Carman equation had a least squares
error very close to zero and the USBR equation offered the second best estimate (Figure
3.8B). Lastly, for sample HBB, the Slichter equation had the lowest least squares error,
and once again the USBR equation offered the second best estimate (Figure 3.6B). These
results point out that from the nine equations studied in this thesis, the USBR, Hazen,
Slichter, and Kozen-Carman offered the most reliable estimations of saturated hydraulic
conductivity. However, among these four equations the USBR is the most reliable when

estimating saturated conductivities in sediments similar to the ones used in leaching.

3.3.2 Evaluation of Uncertainties Estimated by The Absolute Error
Propagation Approach

The estimated uncertainty for the Hazen equation as calculated through the abso-
lute error propagation approach is, on average, lower than the uncertainty estimated for

other equations as seen on the short error bars on Figures 3.5C, 3.6C, 3.8C, and 3.7C.
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This is so because the Hazen’s equation only makes use of the dig percentile in K cal-
culations, and hence the uncertainty estimated through the absolute error propagation
approach only depends on the error associated with the size of the lowest 10th percentile
of the samples GSD (Adjp). As presented in Chapter 2 section 2.4.3, in this thesis it
was assumed a fixed value for all Ad, of 0.01 mm corresponding to coarse silt particles

due to the inability to measure Ad, accurately.

3.3.3 Grain Sizes and Uniformity Coefficients

In this subsection the impact that different grain-sizes (d, percentiles) and unifor-
mity coefficients (U) have on the most accurate equations (USBR, Hazen, Slichter and
Kozeny-Carman) is discussed. The djp percentiles and U for the lab samples were (in
increasing djg order): dijp = 0.18 mm and U = 4 for HBB, djg = 0.25 mm and U = 80
for MBBG, dig = 0.3 mm and U = 3 for OTT, and dig = 0.4 mm and U = 48 for
MOTG. All dyiy are within the same order of magnitude of medium to fine sand in the
Wentworth grain size scale (Chester, 1922) and, as seen on Figure 3.9, samples MOTG
and MBBG have large uniformity coefficients simulating the well-graded materials used

in leaching.

According to Vukovic and Soro (1992), the USBR and Hazen’s equations closely
describe observed values of conductivities in sediments with U < 5 and a dig between
0.1 to 3 mm, which is the case for samples OTT (dig = 0.3 mm, U = 3) and HBB
(dip = 0.18 mm, U = 4) but not for MOTG (dip = 0.4 mm, U = 48) and MBBG
(dio = 0.25 mm, U = 80). However, the fact that Hazen and USBR equations closely
predicted the observed conductivities in all samples having small variations in djg but
very distinct U supports the Vukovic and Soro (1992) hypothesis that the size of the

smaller grains is the primary factor affecting K calculations more so than U.

Slichter’s equation had a low least square error for OTT, HBB, and MOTG. As
previously stated in Chapter 2, Slichter’s equation has been demonstrated to describe lab
observations for samples with effective grain sizes (dio) between 0.01 and 5 mm, which
makes the Slichter equation applicable to all samples. However, the USBR equation

provides more accurate estimates with fewer inputs.

Comparing samples MBBG and MOTG the biggest difference between them is
the rounding of the grains. Sample MOTG was crafted with a mixture of smooth,
well rounded, Ottawa sands and angular gravels (Table 3.3). Looking at Figure 3.8, it
is clear that Kozeny-Carman was the most accurate equation predicting the observed
conductivity in MOTG as shown by a least squares error of almost zero. As explained

by Carrier (2003) and Chapuis and Aubertin (2003), Kozeny-Carman represents a pore
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diameter of an equivalent capillarity through an effective radius, and in the presence of
well-rounded grains it is difficult for isolated pores to exist (Lambe and Whitman, 1969).
Therefore, the results of this thesis point out that Kozeny-Carman’s representation of
effective radius confirms observed permeabilities in well-rounded sediments. However,
since there are no data characterizing the grains used to construct the leaching heaps,
then the Kozeny-Carman equation is considered a poor choice when estimating the

conductivities of the mine samples in the following chapter of this thesis.

Summarizing the findings of this chapter, under the limited diversity in grain size
of granular material available for testing, the accuracy of the nine equations was tested
in only two samples representative of the range of GSDs from the mine. Based on
the least square error between the observed and calculated conductivities on these two
samples, the USBR equation was shown to provide accurate estimates of conductivity
in well-graded sands with gravels. Looking at Table 3.5, even when the USBR had the
lowest least square error other equations such as Hazen, Slichter, and Kozeny-Carman
also provided estimates of conductivities close to the observed values. Therefore, to
make the conclusion that the USBR is the best method for predicting the conductivity
in well-graded sands with gravels more robust, more samples of granular material with

a GSD mimicking those used in the heap should be included in this analysis.



46

Chapter 3. Calculations of Conductivity in Lab Experiments

*9[qRUSINSUISIPUL JSOWR dIe (SOUI] POI) SOIIIAIONPUOD POAISSO oY) 10J THT PUR TH() oY) 1eys 930N "(}°g) Sulsn pajemoren
SOIJIATIONPUOD PAAISSCO OT[} I0J S[RAIDIUI 90UPYU0d () *(I0110 oY) Iomo[ oY) ydeld o) JO Iojued dY) 0} dUl] aY) Ieso[d oY) (g'¢) Suisn pojemored
suoryenbo JULISYIP Ul SI0LID SoTenbs 9sea] (g °S/UId Ul SOTIIATIONPUOD PAJR[NOTRD PuR (MO[[oA) paatesqo (y -ordures T,T,0 9Y) WOIJ sHNSOY G ¢ HUNDI

unz o 50-3'T 3
Jagniy o -
YNEH R JE] @
Hasn [s) £0-3T
ydena| o o
. 720-31
BIPIS o m
hag @ _. 10-31
veuued-Auazoy o Av =
UaZeH o * o L 00T
N— : I0+3'1 m
110 19N oy
70431
Bezso) = ugsn €100 | 918'SL | S¥¥0 | G120 | 2S€°0 1junz
) ¥0S°0 ¥8€°C 960°) 6910 0¥0'0 Jabnuy|
000°0 6¥C 0 €000 1160 86G°¢C- HE4d
YIS 4l 1100 0810 700 20€°0 6S¢"L- Jgsn
ZLLo 1GG'8 1.6°0 LLY0 0L00 iybezial
€000 008’} 7200 €690 0El’L- 19Yd31|S
Y€C0 LY6'8 oL 96£°0 0910 Jakag
2000 €120 €200 GES'0 yE9°L- M
iahag . L 128Ny 200 1S0°0 1200 Gal'0 GlG |- uazey
1071 19N M [MBojv | M Bo
#¥0°0 8#0°0 | L9¥0°0 | 9900 | 9€€’L- _um>._mmn0_
o Sou “1avjunz 101 190N M o Bo| | ) 6o
= 09 =u v
uazeH ._.._-o




47

Chapter 3. Calculations of Conductivity in Lab Experiments

*9[qRUSINSUISIPUL JSOWR dIe (SOUI] POI) SOIIIAIONPUOD POAISSO oY) 10J THT PUR TH() oY) 1eys 930N "(}°g) Sulsn pajemoren
SOIJIATIONPUOD PAAISSCO OT[} I0J S[RAIDIUI 90UPYU0d () *(I0110 oY) Iomo[ oY) ydeld o) JO Iojued dY) 0} dUl] aY) Ieso[d oY) (g'¢) Suisn pojemored
suoryenbo JULISYTP Ul SIOLIS soTenbs sed] (g 'S/ Ul SOIJTATIONPUOD PaJRINO[ed pue (MmO[[oA) paslasqo (y -o[dures g oY) WOIJ sHNSOY Q' HUNDI]

Jaunz o ot D)
Jagnny P -
YIIEH R JIE] @ T
HasN e W 03T
ydeua) o T ' |
YIS @ m _. w 0-3'1
Jakag @ Av |
uewued)-Auazoy o ] oot
UIEH o 10+31 .m.
11— - m.
g9H 10N — 43T =
ySezia) 3= ¥asn 8100 | 620z | 6L90 | €920 |980Z0- Jajunz
A £ clo'} 1811 960°L 2100 86€0°0 Jabnayj
Z€00 1210 G100 /8L°0 | 29ZL’L- H%®4d
1yS A  HB4 1000 €510 GLO0 2050 ¥8¢8 - d9sn
¢00°0 8€8°0 9€0°0 1890 G6EY |- _:mwﬁw.r
¢v00 LEL'O .00 ¥2L°0 | ¥0EL |- 13YNR|S
#¥0°0 182G 18%°0 1250 | €8LE0- 19hag
0000 2900 +00°0 1090 | 82¢v'e- M
1oheg S ae8nay| G000 9200 LLO0 28L0 | 6L¥6°L- uazeH
191 19N M M Bojy | ) boj
\ 4 LE0°0 L#0°'0 | 98€0°0 | 22600 | €l¥'L- panasq |
> | Y soqunz 1901 19N A o Bo| | ) bBo
= oy =u
L0D00T <

g8H




48

Chapter 3. Calculations of Conductivity in Lab Experiments

*9[qRUSINSUIYSIPUL JSOU[R dIR (SOUI[ POI) SOIHIAIONPUOD POAISSCO 9] I0] THT Pue TH) Yl 1ey) 030N “(F'g) Sursn poje[no[ed soIIA1)onpuod
POAISSqO 9} I0J S[RAIDJUI 90ULPYUOD () (1010 oY) Iomo[ oy} ydeld oyj JO Iojued oY) 0} Ul oY} Ioso[d ayl) (g'¢) Sulsn pejemoed suoryenbs
JUSISJIP UI SIOLID sorenbs jses] (g 'S/WD UI SAIIAIONPUOD PAje[NO[ed pue (MmO[[eA) poealesqo (Y -odures HEIN oY) WOIJ SHNSAY :)°¢ HINDI]

r - S0

JaNUNZ o |
SEELT) I L 903
YIeH R JIE] ¢
o | £0-31
Hasn o
VELTIE ] P m L Z0-371
T i ° ¥
. L 10-31
lakag @
UBLIED-AURTOY @ 1 b00HT
uaze "
He 041 3
— w
wmmE N— = L Z0+3T1
P 3— ——— 800 | 26909 | 151 | 1080 | LL8LO la)unz
1900 | 6290 | 2610 | €520 [990/0- Jabnay
0000 000 1000 9660 | 2890°¢- H3d
e I 0200 2600 00 ¢l1l0 6GE - dasn
(1 €00 arL0 0400 6510 | evSl L lybezia)
0000 2020 6000 1690 | §G90°2- 13Yd}lIS
900 ccoe 09€°0 G.€0 Saad's Jakag
0000 6500 S00°0 L2Ss0 Lolc'e- M
sokag UL ) asniy|6000 | 8£00 | 8100 | 9510 | €€/}~ uazeH
101 192N MM Bov | ) 6ol
0€0°0 9¢0'0 | €00 | #¥S¥L'O | L8¥'L- paniesqo |
I\ S A 101 | 19N A o Bo| | ) 6oy
oS =u v
uozeH oggan




49

Chapter 3. Calculations of Conductivity in Lab Experiments

*9[qRUSINSUIYSIPUL JSOU[R dIR (SOUI[ POI) SOIHIAIONPUOD POAISSCO 9] I0] THT Pue TH) Yl 1ey) 030N “(F'g) Sursn poje[no[ed soIIA1)onpuod
POAISSqO 9} I0J S[RAIDJUI 90ULPYUOD () (1010 oY) Iomo[ oy} ydeld oyj JO Iojued oY) 0} Ul oY} Ioso[d ayl) (g'¢) Sulsn pejemoed suoryenbs
JUSISJIP UI SIOLI® sorenbs 9sed] (g 's/WD Ul SOIYIATIONPUOD POJR[NOTRd pue (MO[[oh) paslesqo (y -opdures HTOIN U} WOI S}NSAY Q'€ HINDI

Nz o 90-3'1
iadny o T 031 I8,
NEH ] JIE
UNEHRJE] @ -
48sn o
Iydeza) ¢ £0-3T
RIS ¢ f ._. 031
Jakag 6
’ I Q 1031
uewJe)-Auazoy o
UITEH @ @ m ] . . * - . 00431 ~
01— - IER Y
910N 3
N— 031 &
1ySezsa) 3— wasn ev6’L ¥06'€l 961G vLZ0 9L2°0 Jayjunz
Y _..q_ 198°0 8699 cov'e €220 L8E0 Jabnuy
0000 LLLV'S 9000 08¥'L Sve ¢ H'8d
YIS ; : 100 0810 vv0°0 20€°0 6GE |- d49sn
) - G000 | SLZ'L 96L'0 | 2820 | 202°0- 1lybezia)
9000 08%'0 €500 6.¥'0 112 43Y2J|S
8ze'0 | o8LE 120'L | /¥z0 | 6000 Jakeg
0100 LLL'O $€0°0 1520 69%°L- M
sakeg L& 200 €800 6500 v.20°0 82T |- uazeH
101 10N A M Boiv | 3 Boj
200 €00 £e00 | ¥£€L00 | L8F L- um?_mmno_
5 L osoar — 101 190N 3| o Bo| | )y Boj
| coo0ot 0L=U
, 9.LOW v




50

Chapter 3. Calculations of Conductivity in Lab FExperiments

urm Apjewrrxordde are HgIN pue HIOIN sordweg -sejdures aurur oy} WOIJ S(ISY) JO o3url o) 03 paredwod sodures qe[ oy} Jo (IS :6°¢ TUNDI]

"S(ISD) UMW dY} WOIJ SA[IUadIod TP UedUI oT[) JO SUOTIRIAGD PIRPURIS 9T

00T

DN e OIONemGme HHHewmGmes |10 empues 727 3UIA 10N [UlA XP DAV SUIN g

(ww) 9215 ulesn
o1 T T'0 100

[0

0z

0t

o¥

0s

09

0L

08

06

I 4

00T

saso so|dwes geq pue aduey sqso SUlN

18ul4 %




Chapter 4

Estimating The Hydraulic

Conductivities in Leaching heaps

In this Chapter hydraulic conductivities for the mine samples are estimated using
the nine empirical equations but emphasizing conductivities obtained through the USBR
equation. This is so because, as shown in the previous chapter, the USBR equation
provided accurate estimations of conductivities in controlled constant head permeability
tests for the MOTG and MBBG samples both having a similar GSD to that of the
leaching heaps. In the first section of this Chapter the empirical relationship proposed by
Istomina (1957) to estimate porosity from uniformity coefficient is analyzed considering
the results from lab experiments. In the second section, the reader is presented the
assumptions under which the 95% confidence interval for the hydraulic conductivity
of the heaps is calculated. In the third section, the steps followed in the calculations
of hydraulic conductivity are explained. And in the last section the average hydraulic
conductivities with their standard deviations for the GSDs as calculated by the nine
empirical equations are shown. Focusing on the conductivities estimated by the USBR
equation, the average hydraulic conductivity of the heaps constructed by this mine

operator is between 0.14 and 0.18 cm/s at two standard deviation precision.

4.1 Evaluating Istomina (1957) Porosity Calculations

In the absence of porosity or specific yield estimates for the mine samples, Istomina
(1957) relation was used to estimate hydraulic conductivities. However, these porosity
values are likely to introduce a positive bias in the conductivity estimates. This is so
because in the previous chapter the specific yield (S,) experiments provided porosities
of 0.17 and 0.13 for samples MOTG and MBBG, respectively. Sample MOTG had a

51
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uniformity coefficient U= 46 and sample MBBG U=80 which using equation 2.2, means
that these uniformity coefficients yield to porosity values of approximately 0.25 for both
samples. As shown by Dimkic (2008), the Istomina (1957) relationship works well when
estimating porosities in homogeneous sandy sediments where low uniformity coefficients
yield high porosities, but for well-graded sands with gravels with high uniformity co-
efficients this relationship seems to overestimate conductivities. As discussed in Chap-
ter 2.2.3 where a sensitivity analysis is presented on the porosity functions for Slichter,
Terzaghi, Fair & Hatch, Kruger, Zunker, and Kozeny-Carman, changes in porosity could
bring changes of up to half an order of magnitude in porosity functions ultimately biasing
the estimations of hydraulic conductivity.

TABLE 4.1: Quantification of the Bias in Conductivities From Istomina (1957)
Porosity Calculations

MOTG MBBG
n=0.17 n=0.25 n=0.13 n=0.25

USBR 0.040 0.040 0.040 0.040
Hazen 0.060 0.060 0.020 0.020
Slichter 0.050 0.170 0.008 0.050
KC 0.034 0.120 0.010 0.049
F&H 0.010 0.020 0.001 0.008
Terzaghi 0.200 1.500 0.070 0.650
Beyer 1.020 1.020 0.360 0.360
Kruger 2.400 4.160 0.197 0.500
Zunker 5.200 8.170 1.520 3.390
Observed 0.033 0.033

In gray are the calculated conductivities using the observed porosities, and in yellow
are the observed conductivities. As shown, some of the most accurate equations (USBR
and Hazen) do not depend on porosity and hence are not affected by a potential porosity
bias. Beyer also does not depend on porosity but provides less accurate estimates. For
the other six equations conductivities are overestimated by up to an order of magnitude.

4.2 Assumptions

Due to incomplete information, the following are key assumptions made about the

leaching heaps:
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1. It is assumed that a porosity close to 0.25 is representative of the granular materials
that make up the mine GSDs. As previously discussed, samples in the mine GSDs
have large uniformity coefficients (U ~ 50), and therefore according to the findings
of Istomina (1957) summarized in Figure 2.3 and in equation 2.2 the porosity for

granular material with large uniformity coefficients converge to a value of 0.25.

2. A shape factor of SF = 6.4 is assumed for the mine samples and used in lab
experiments as provided by Fair and Hatch (1933). This is consistent with the
photographs of the granular material that form the mine samples provided by the

mine (Figure 4.1).

3. The permeating fluid for the mine calculations is assumed to be water at 20°C'

with a kinematic viscosity of 0.001 Pa - s.

With these assumptions the unknowns in the equations in Appendix A are reduced
to three variables that permit testing the ceteris paribus effect of grain size on hydraulic
conductivity: the d, percentiles, the percentage of grains trapped in between sieves (f1),

and the cumulative percentage of finer grains to a certain sieve (P7).

4.3 Steps in the Calculations of Hydraulic Conductivities

A workflow diagram that illustrates the methodology to estimate the conductivities
in the mine samples is described in this section and is summarized in Figure 4.2. MAT-
LAB scripts for each of the nine equations in Appendix A and attached in Appendix
C were designed so as to compute nine permeabilities for each of the 874 samples, but
only the distribution of conductivities for the USBR equation is presented here as a
main result of this thesis. The permeabilities estimated with the USBR method were
log transformed and plotted in a histogram, which shows a lognormal distribution of
conductivities for the leaching heaps formed by the mine operator through time. His-
tograms and probability density functions for the other eight equations can be found in

Appendix D.

A 95% confidence interval for the hydraulic conductivity of the heaps is calculated
using the following formula after McCarthy (2001) and Olsson (2007) for a lognormal

distribution of values.

o1 = 10195 7) (4.1)
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where & is the simple average of log transformed conductivities estimated in the same
manner as in lab experiments and ¢ is the standard deviation of the log transformed
distribution of conductivities. Mathematically, these parameters were calculated with

the following formulas according to Olsson (2007) and Brown (2006):

M=

> (log(K3))
=" (4.2)

o ==t (4.3)

were K is the ith hydraulic conductivity calculated by each method over n observations
or GSD samples. Olsson (2007) evaluated how well several point estimators represent the
mean and standard deviation in lognormal populations. According to his findings, defin-
ing point estimators [z and o in this way leads to accurate estimations of the confidence

interval of any variable that follows a lognormal distribution.

4.4 Results

In this section the average conductivities for the mine samples according to the nine
equations appears in Table 4.2 and the range of conductivities as estimated through the
USBR equation is emphasized in the following figures. Statistically, the hydraulic con-
ductivities for the leaching heaps constructed by the mine operator are lognormally
distributed (Figure 4.3) and have average values between 0.18 and 0.15 cm/s with 95%
confidence (Figure 4.4). This result does not indicate that conductivities for any given
heap should be between 0.18 and 0.15 cm/s, but it indicates that for the period studied
and with the current data the average conductivity of the heaps lays within this range
(Mendenhall, 2009). In the population of estimated hydraulic conductivities, the maxi-
mum hydraulic conductivity is 22.185 cm/s and the minimum 0.012 cm/s with a mean
of 0.49 cm/s and a standard deviation of 1.44 cm/s. Figure 4.5 illustrates a range of
conductivities calculated by the USBR equation for some representative GSDs of the

granular materials used in the leaching heaps.



Chapter 4. Conductivities in Leaching heaps

95

TABLE 4.2: Average hydraulic conductivities for the mine samples through

the nine equations

Equation Avg K [cm/s] Std Dev [cm/s]
USBR 0.165 3.852
Hazen 0.004 2.085
Slichter 0.044 2.104
KC 0.110 1.617
F&H 0.021 1.632
Terzaghi 0.390 2.108
Beyer 0.222 2.348
Kruger 3.435 1.743
Zunker 4.433 1.610
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"
® 874 GSD samples
DATASET )
"
* MATLAB script to compute conductivities
K vy
"
e Apply logarithms
Log (K) y
"\‘
nomal | ® Evaluate the log normality assumption
Probability
Plot /
<
¢ Define the point estimators for pLand o
Estimators )
<
* Calculate the probability of conductivities
PDE given GSDs
vy
"
* Calculate a 95% confidence interval for the
Cl mine operator
vy

FIGURE 4.2: Workflow diagram illustrating the steps implemented to estimate confi-
dence intervals among the distributions of permeabilities obtained through each of the
nine equations.
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Chapter 5

Conclusion

Nine different equations that calculate hydraulic conductivity from GSDs were
analyzed in this thesis research. Results from lab experiments confirm the claims from
some researchers that Fair and Hatch, Kozeny-Carman, Hazen, Slichter, and Terzaghi
are methodologies that work well estimating observed hydraulic conductivities even when
applied to granular materials with uniformity coefficients and effective grain sizes outside
their region of validity (Carrier, 2003; Salarashayeri and Siosemarde, 2012; Petalas and
Pilakas, 2011; Odong, 2007; Ishaku and Kaigama, 2011). However, in this thesis the
USBR equation proved to be the most precise equation as shown by its low mean squared
error when estimating conductivities in controlled constant head permeability tests.
However, these results are based on a limited amount of samples and thus more data
is needed to draw robust conclusions about the accuracy of this equation in predicting
conductivities of well graded sands with gravels. Even though some studies have pointed
out that the USBR tends to underestimate conductivities when applied to sediments
within its region of validity of U < 5 (Salarashayeri and Siosemarde, 2012; Odong, 2007;
Ishaku and Kaigama, 2011), such significant underestimations were not observed in my
lab experiments. Furthermore, since observed hydraulic conductivities for the leaching
heaps were not included in the mine GSDs it is not possible to determine if the USBR
or any other equation offer estimations that underestimate or overestimate observed
conductivities. Therefore, when applied to the mine GSDs the USBR equation estimates
average hydraulic conductivities for the heaps constructed by the mine operator in the

past five years with an average value between 0.18 and 0.15 cm/s.

Another conclusion drawn from this thesis is that the relationship proposed by
Istomina (1957) for calculating porosity from uniformity coefficients overestimates ob-

served porosities when applied to samples with large uniformity coefficients. This bias
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could bias estimates of conductivity by up to an order of magnitude, but the USBR

equation is unaffected as this expressions is not a function of porosity.

The relationship between copper yields and hydraulic conductivities as a function
of grain size in leaching heaps can be explored by including observations of discharge
rates, irrigation rates, and porosities for all the heaps. With the discharge and irrigation
rates one could estimate the degree of saturation of the heap and use it to correct the
values of conductivity from the empirical equations since these assume full saturation.
Given actual porosity measurements of the sediments forming the leaching heaps, the
Istomina (1957) relationship is no longer necessary, which resolves the potential bias
associated with using this mathematical approximation to porosity in six equations
including Kozeny-Carman. Given more samples of granular material with GSDs similar
to the range used in the heaps, the conclusions presented regarding the accuracy of the
USBR equation could be made more robust as in this thesis this result relies on only two
samples of well-graded sands with gravels. The relationship between copper yields and
hydraulic conductivity can be then studied using multiple regressions. According to the
data provided by the mine up to 7% of the variations in copper yields can be explained by
changes in hydraulic conductivity, and after verifying that the USBR equation provides
the best estimates of conductivity for the well-graded sands with gravels used in the
heap, one could back solve the problem to detect the optimum GSD to build the heaps
with so as to control conductivity and optimize the amount of copper recovered from

leaching.

Comparing the results of this thesis with the ones in Yao (2011), the saturated
conductivities estimated through the USBR method (solely as a function of grain size)
correspond well to observations of saturated conductivities in heaps of up to 3 m high.
Specifically, the sediments used in Yao (2011) are homogeneous fine sands with a dag
matching the MOTG and MBBG samples, therefore we can conclude that the results
from the USBR equation are representative of hydraulic conductivities of heaps up to
3 m high with sediments under a pressure of up to 62 Kpa, With higher heaps we
have higher pressures, more consolidation, and smaller permeabilities resulting from the
mechanical rearrangement of particles that is not reflected in the USBR equation. In
unsaturated conditions, the permeability from the USBR equation are from one to two
order of magnitude less than the observed values according to the studies presented in
Yao (2011). Future analysis could be conducted in the calibration of the USBR equation
so as to represent saturated conductivities with a dynamic rearrangement of particles
resulting from larger pressures. Under unsaturated conditions, it is more challenging to

validate the estimates of conductivity from the USBR equation.



Appendix A

The Nine Methodologies

63



64

Appendix A: The Nine Methodologies

'S /UID UT §)NSIT ]

un ur padsnyd oq 1snux 01p

Wz S0Tpswwes

1M SuTRL3

JIJ5IB0D I0] PUI MO] PUE SUTEIS [J100wWs
I0J pua STy ‘U302 Teotnduua ue st )
pues ure1d-a8xe] 10] ajqeardde Apsoj

LOT°0 > *2 > 19000

—=a
:_

(LE8°0+T)SSZ0=u

ydezia ],

UGS PS W[ (")
uﬂw.ﬂ}? m”:ﬂmu.n Hmum

(p€80+ T)S5Z0=u

a

01 o1x s
Pugzgth o= IX 5 =N

SERRN N

S /UL UI SHNSaI 3]
wuwg)s0'pswwg)
0e=N>1

TYIIM S[ELI2)EUT ‘SI02UI501219Y
‘patxos Azood ur [nyasn Jsour I pue
Ansorod 1ap1suod 7, US20P POTIaU YT,

ot
4
Aﬂv =1
P

d
—=a
n

n a
0T 0TX, — 8
ﬁﬂ|umgx g x— =8y
2" \oos ¥ 6

I1ohog

P/UI UI §)NSaI 3]
sfros Aade[ wogy awod jouued sajdureg

g 5 0°p

(°p) 2911y JoyrEwS
e pue (ip) 101y 19818 € urgim paddenus uonowsy ay1 st i 219ym

ﬁ mmm,nhuxg*ddnu 7
]
= L,NWLFM?U“
%00T

(££6T "yorBH ¥ J1E.) WO.JJ UdYE] J0308] 2dEeyS 23 SI 4S

.E?Muuﬂ_ AP&.WV Nmz \ Hu wﬂkm_m.ﬂ H ..\d_.vb.
T U

uBULIE)-AUIZOY]

%.mﬁu\E UT S)NSaI B

[urw uyf surel§ 1auy jo ajnuadtad Q[ J1oMof 23 ST 0'p
2
" (95 un) aanjesadway si J,

g 5 01p 5w g paerSI - Tl 100 4+ 7700 L 1
[y8uay] P(LE0O0+ £0)—x0 ="y uszel
pesy Ul aSURyI I SIY » Y
=N ‘0001 03 jenba juaioyys02 [ealdws ue s )
sajou/ApIfeA jo uorday sa[qeLIep uonenby pPoyIdIN




65

The Nine Methodologies

Appendix A

§/UID UT SINSII 3

(£00g woUD
pue Susy)) Wwwgsopswwg()'() pue
$>[] YHM SPUBS 10J I[qEIMS SOy

g2eP x9g0 =5y

q4qsn

‘(Aep /uz) ur symsax ¥y

1

A. vnqﬁmﬁumm@w L

mwu 1

£ x'By
1 1

u.ﬁ - mﬁ

r
T

I~

£7L0
s1 adeys tenfaLiy 1o sureld yim ‘Aodeps ‘uonisodwrod wLIojiun-uou 104
0Pz T ST uonisoduios ULIOJIUN-UOU 10,
£ 01p T ST SUIels 95103 IIM UORISOdUIod ULIOJTUN 10,]
0T 7 S SUIE.LE papUNod ‘(100 UIS 1M PUES ULIOJIUN 10,
Iwnpaw
snozod a1 JO SOMSLIAIORIRYD A1) U0 spauadap 1B JUAIao0 [estidur ue st Zg

2PX _cms_ 2Pxz =2y

Joyunty/

M.0 e Iajem 10} %.Nﬁ\a UT s)[nsad 3]

UMIGSOPSUIMICE () PUe G<) PM
mﬁﬁdm UN..E:EW.N,HM Eﬁ%DE .HO.w mu:ﬂ.—mu,m Hmum

J213WeIp Ulels wnwiuw ay3 st ;p

1839 eIp UTeis wnuixew ayj st mmﬁ

ajdwes a3 jo Jusuodwos yiI 3yl Jo JySram Jeuonoely ayy st '6y
=P - »
—s = _S.QH 17 =2
Q2V5Ey =g

Z(u—-1)

a
Ao & — A
u gxhxm A

2P|

Iagnry]

Wz SopS U ()

:219yM spaq pues ‘0}
a1t J0U INg ‘10] [Njasn APSOJAl ‘pPoyIaul
STy} 10] AJIPITeA JO UOT3I 3] UO UOTSSNOSIP

Pa[reIap & S19[0 (6T ‘YaIef] R Ire])

2zis uleld uiepda2 e 03 Sulpuodsaiiod (‘g) surels jo 94 ay3 03 19ja1 'p hnmmw%
sanfea

§d0J 3]qe] B 5130 (€61 YIIBH ¥ JIBS) 10308] odBysS dWIN[0A-BI.IE 3Y] S| §
uonounj Ayrse1od ayy st u

piny Supeautiad ay3 jo A1jS0as1A aanjosqe ay3 st 11

ping Sunesuriad 213 jo Ayisuap ay1 s1 d

ZE Jojueisuor moy adid e STy

Aaeis ayz 51 8

paq ey jo yidusy oy s1 T

peat jo ssoj a1 s g

*Nﬁ=|5*3f,f,..

= Hiy

.HNE:
ML_ s
z-

yorel] 3§ e




Appendix B

Absolute Derivatives with

Respect to d;

66



67

Absolute Derivatives with Respect to d;

Appendix B

u-gp .
A —

gro-u
o(u-1) :
_m_ (u-1)% x.ﬁ To-u)+u-| e S — yvaol mSezia g,
(et xlero 4 la+oatv
Y 3
Ero-u)tRP T,
B A
Dxe=V ,
..px .
. B} 7= AV | ragoang
._._.nqa.h...fnf.nanx qmwﬂm*.ﬁiqum
] YywEn
alol) A I9Aa
Tﬂw_ﬁsm |- ks _x.._.%m“. px, dexy q
= s *
_ :Ew .
5 ] — = iy - :
[ [ o5 Prgyg ) 7lx I 7= we_ _ 4 = J¥yy Sop UBULIE")
—r__.ﬂ.u}_ms,fmm DCPI T = con Pygyo B AT %001 R T_z.u_ q._h_wm +('p)s Eu_“mmu 5% EE'T -Auazoy]
. : .
- q.#:_u. .
e
e _
— 7 = "y o] uszef]
- pvp{ IE00+ £0) y T
SO[qeLIR A uonenby PO




68

P = sP) PPt PR
(.Pv - V) eV -(ay)vi,p-p) N_x; v N_ 1 oe -

PP .
ﬁ = Wm_uu. -
A
_,._.mzlﬁJma|"._§ ‘pp 'pe| avEol 128y
LA +

u+| | qve Dm_m Um_.m v

(-

u H .

h.,._.

g =V .

{u-1) :qmu"_hm N
H+?IH“_: 0 : : A H:;Md.mg yMel
— [u-1)) .nm_.um_iﬁ wmmiﬂu pe v ) ITE]
- _nu. ae e ge
| I
a _Pe
YxIV-4yvxT ge °
7
y o q .
ﬁax*g
,.a.x..u.,_‘u__.x .

Appendix B: Absolute Derivatives with Respect to d;




69

Appendix B: Absolute Derivatives with Respect to d;

y_..m.w..a.um .
Dy 0T . . ="y 8ol qdasn
(“pvesipxeT)90
NATE '
o |uLPp Pl
,: M..n; . u ﬁd_.ﬁwﬁ: o 'pp
; (A
T - ﬁ h,._LE_ P % +A - uc@ oP |(,P=PYPVEV A - un_ WPiPLP = P ETIV o
(7).
Lo=ir)v e pe] - AV 1oyuny
+
00" go |V
Lu-1 e
wy - ge
(-1
=4
A
M«bquf.‘




Appendix C

MATLAB Scripts

70



Appendix C: MATLAB Scripts 71

%{

Spring 2013

Boston College

Fernando Alvarado Blohm

dX calc. Results in the same units as c.

for thesis, C is in mm

if 10% is not recorded in GSD then assumes 0.06 mm (Line 40)

%}

function [d10] = dx(gracabe,C,dx)

$Vectors d,c must be of the same length
$for these calculations:
3d= %finer. matrix of #samples by %finer
$c= sieve#. VECTOR containing the sieve #s that were used (in mm)
$dx= value for interpolation (i.e dx=0.1 will find d10. dx=0.6 will fi
%$d60 and so forth.

Cc

logl0(C);

a size(gracabe);
last = a(1,1);

1gd1l0(last)=0;
for i=l:last
1gd10(i) = interpl(gracabe(i,:),C,dx);
$if 10% is not recorded in the interpolation
if isnan(lgdlo(i))
1gd10(1)=10gl0(0.02);

end

end
d10 = (10.~1gd10)"';

end

d, percentiles calculations
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%{

Summer 2013

Boston College

Fernando Alvarado Blohm

The following function calculates permeabilities through Beyer’s Method.

%)
function [a] =K Beyer(d10mm,u)
$Variables

g = 9.B0; %gravity [m/s"2]

$mu = 1.002*10~-3; %viscosity of the fluid. For this case, water at 20degC [Pa*s]
(Reff: http://www.engineeringtoolbox.com/water-dynamic-kinematic-viscosity-

d 596.html)

$rho = 1000; %density of the fluid. For this case, water [1,000 Kg/m"3].

gnu = mu*(100%2)/rho; %kinematic viscosity [cm"2/s]

nu=1.004e-6;

def2 = dl10mm."2;

x=10gl0(500./u);

t= g*(6e-4)/nu;

a = ((t*x).*def2)*100/(3600*%24); %Permeability in [cm/s]

end

Beyer equation
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%{

Summer 2013

Boston College

Fernando Alvarado Blohm

FAIR AND HATCH [cm/s]
The following function calculates permeabilities through the fair and hatch
Method.df

+

%}

54
IMPORANT CONSIDERATIONS:

1) The matrix % Finer (gracabe) input should be in hundreths [i.e. 10 instead of
0.1
for 10%, 27 instead of 0.27 for 27% and so on]

2) The sieves used (C)vector should be entered in mm and will be converted
to cm.

3) This script assumes that the total loss of head (h) is equal to the elevation
head (L). Therefore,both parameters cancel each other and are not considered

in this script. Modify accordingly if the loss of head differs from

elevation.

%}

function [a] = K _Fair Hatch(gracabe,C,s,u)

$Calculate Effective Radius:

deff=Fair Hatch Deff(gracabe,C,s);

porosity(u);

= 980; %gravity. cm/s"2;

32;

0.001; %Kg/cc density of the fluid. For this case, water [Kg/m"3].

= 1.002*10~-5; 3%Viscosity of the fluid. For this case, water at 20degC [Pa*s or
Kg/(cm*s)]...

...(Reff: http://www.engineeringtoolbox.com/water-dynamic-kinematic-viscosity-

d 596.html)

g3 H~as=
Il

t = (g/k)*(xr/m);
f = (n.”3)./((1-n).~2);
a= (t.*xf);

a = a.*deff;

end

Fair and Hatch equation
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%{
The following function calculates the effective radius.

UNITS:

DEFF = m"2

gracabe = percentage finer [pecentages]

c = Size of the sieves [mm]

s = shape factor [unitless]

%}

function [a] = Fair Hatch Deff(gracabe,c,s)

sumpd=Fair Hatch Sum(gracabe,c);

a = 1./((s*sumpd)."2);

end

%

The following function calculates the sum(P/Di) required for

calculating the effective radius.

That is, the sum(retained weight/particle size) for a given sieve analysis.

UNITS:

[1/cm]

%}

function [a] = Fair_ Hatch Sum(gracabe,c)
c =c¢/10; %[mm to cm]
gracabe=gracabe/100;

1 = size(gracabe);

row = 1(1,1);
col = 1(1,2);
fr(row,col)=0;
suml (length(c),1)=0;
sumfordeff(row,1)=0;

$Vector of Geometrical Averages for particles in Between sieves:
s(col,1)=0;
s(1,1) = c(1);
for i=l:col-1
s(1+1,1)=sgrt(c(i)*c(i+l));
end
for i=l:row
flag = true;

for j=1:col

if flag

Effective radius for Fair and Hatch
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fr(i,j) 1 - gracabe(i,j);
suml(j) = fr(i,j)/s(3);

flag = false;
else

fr(i,J)
suml (Jj)

gracabe(i,j-1)-gracabe(i,Jj);
fr(i,J)/s(J);

end
end
sumfordeff(i,1l)=sum(suml);
end

a = sumfordeff;

Effective radius for Fair and Hatch
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%{

Spring 2013

Boston College

Fernando Alvarado Blohm

The following function calculates permeabilities through the Hazen Method.

ASSUMPTIONS:

Water at 10 degrees celcius

Change in head (h) equals length of the sample (1)
Hazen Constant=100;

K results in cm/s

%}
function [a] = K Hazen(d1l0mm)

a = 100*d10mm. "2;
a= a*100/(24%3600); %Unit conversion from m/d to cm/s;

end

Hazen Equation
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%{

Summer 2013

Boston College

Fernando Alvarado Blohm

The following function calculates permeabilities through Kozeny-Carman
CARRIER'S VERSION.

%}

function [a] = K _Carrier(gracabe,C,u,s)
deffcarriercm=Carrier Deff(gracabe,C);

n = porosity(u);

e = (n./(1-n));

[a]l] = 1.99e4d.*deffcarriercm.*(1/s"2).*((e.”3)./(1l+e));

end

%{
The following function calculates the sum(P/Di) required for
calculating the effective radius for Kozeny-Carman as for (Carrier 2003)

That is, the sum(retained weight/particle size) for a given sieve analysis.
UNITS:

1/CM

%}

function [a] = Carrier Sum(gracabe,c)

$mat= is the % finer matrix.

%c = vector of meshes used [mm] (must contain the same columns as mat).
gracabe=gracabe/100;

c = c¢/10; %[mm to cm]

1 = size(gracabe);

row = 1(1,1);
col = 1(1,2);
fr(row,col)=0;
suml (length(c),1)=0;
sumfordeff2(row,1)=0;

$Vector of WEIGHTED Geometrical Averages for particles in Between sieves:
s(col,1)=0;

for i=1l:length(c)

if i==

Kozeny-Carman equation
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s(i)=c(1i);
else
s(i) = (c(i-1)"0.404)*c(1i)*0.595;
end
end

for i=l:row

flag = true;

for j=1l:col

if flag

fr(i,j) = 1 - gracabe(i,j);
suml(j) = fr(i,3)/s(3);

flag = false;
else

fr(i,j) = gracabe(i,j-1)-gracabe(i,]j);
suml(j) = fr(i,3)/s(3);

end
end
sumfordeff2(1,1)=sum(suml);
end

a = sumfordeff2;

54
The following function calculates the effective radius
sum(retained weight/particle size) for a given sieve analysis in [m].

%}
function [a] = Carrier Deff(gracabe,c)

sumpd=Carrier Sum(gracabe,c);
%c is in mm, and sum provides cm.

a = (l./sumpd)."2;

end

%{

Kozeny-Carman equation
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Summer 2013
Boston College
Fernando Alvarado Blohm

The following function calculates permeabilities through Kruger's Method

%}
function [k] = K Kruger(gracabe,c,n)
deffkrugermm=Kruger Deff(gracabe,c);

beta = 4.35e-3; %Empirical coefficient for coarse grains. (Vukovic and Soro pg 63)
g = 9.80; %gravity [m/s"2]

nu = 1.004e-6; %kinematic viscosity [m*2/s]

% n = porosity(u);

k = ((g*beta/nu)*(n./((1l-n).*2)).*deffkrugermm."2)*100/(24*%3600); %[cm/s)
end

%{
The following function calculates the effective diameter established by the
Kruger's method.

%)

function [a] = Kruger Deff(gracabe,c)

tmat= is the % finer matrix
$For "Granulometrlas" the first column is the mass of the whole sample and
$the successive columns correspond to the weight of the material entrapped
%in between sieves.

%c = vector of meshes used [mm] (must contain the same columns as mat).

gracabe=gracabe/100; %converting percentages to fractions

1 = size(gracabe);

row = 1(1,1);

col = 1(1,2);

fr(row,col)=0;

suml (length(c),1)=0;

sumfordeff(row,1)=0;

$Vector of Geometrical Averages for particles in Between sieves:

for i=l:row
flag = true;
for j=l:col
if flag

fr(i,j) = 1 - gracabe(i,j);

Kruger equation
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suml(j) = 2*fr(i,j)/c(j);
flag = false;
else

fr(i,j) = gracabe(i,j-1l)-gracabe(i,j);
suml(j) = 2*fr(i,j)/(c(j-1)-c(3));

end
end
sumfordeff(i,1)=sum(suml);
end

a = 1./sumfordeff;

Kruger equation
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%{

Summer 2013

Boston College

Fernando Alvarado Blohm

The following function calculates permeabilities through Slitcher's Method.
+

%}

function [a] = K Slitcher(dl0mm,u)

%Variables

g = 9.80; %gravity [cm/s"2]

gmu = 1.002%10"-3; %viscosity of the fluid. For this case, water at 20degC [Pa*s].
(Reff: http://www.engineeringtoolbox.com/water-dynamic-kinematic-viscosity-
d_596.html)

%rho = 1000; %density of the fluid. For this case, water [1,000 Kg/m"3].
%nu = mu*(100"2)/rho; %kinematic viscosity [cm"2/s]

nu=1.004e-6;

def2 = d10mm."2;

n = (porosity(u)).”3.287;

t= g/nu*(1*¥10"-2);

a = (t*n.*def2)*100/(24*3600); %Permeability in [cm/s]

end

3{

Slichter equation
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Summer 2013
Boston College
Fernando Alvarado Blohm

The following function calculates permeabilities through Terzaghi's Method.

K results in cm/s

+
%}

function [k] = K_Terzaghi(dl0cm,n)

beta = 6.1le-3; %Empirical coefficient for coarse grains. (Vukovic and Soro,1992) pg

63

g = 9.8; %gravity [m/s"2]
%n is porosity

nu = 1.004e-6;

k = (g/nu)*(beta)*(((n-0.13)./((1-n).~(1/3)))."2).*dl0cm."2;

end

Terzaghi equation
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%{

Summer 2013

Boston College

Fernando Alvarado Blohm

The following function calculates permeabilities through USBR's Method.

%}

function [a] = K USBR2(d20mm)

a = 0.36*%*d20mm."2.3; %Permeability in [cm/s]

end

USBR equation



Appendix C: MATLAB Scripts 84

%q{

Summer 2013

Boston College

Fernando Alvarado Blohm

The following function calculates permeabilities through the Zunker's

Method
UNITS:
[cm/s]
+
%)
function [a] = K_Zunker(gracabe,c,n)
deffzunkermm=Zunker Deff (gracabe,c);
beta = 1.4e-3; %Empirical coefficient for coarse grains. (Vukovic and Soro)
g = 9.8; %gravity
nu = 1.004e-6; %kinematic viscosity [m*2/s] from (Vukovic and Soro, pg 51 Table)

% n is porosity

deffzunkermm = (1./deffzunkermm);
deffzunkermm = deffzunkermm."2;

a = (g/nu)*beta*(n./(1l-n)).*deffzunkermm;
a= a*100/(24*%3600); %Conversion from m/day to cm/s
end

5{

The following function calculates the sum(dgi/di) required for
calculating the effective radius wthrough ZUNKER's method

That is, the sum(retained weight/geometrical average) for a given sieve analysis.

%}

function [a] = Zunker Deff(gracabe,c)

$mat= is the % finer matrix. (It was 1,672 x 9 for "Granulometrlas", and
%672 x 8 for "IMH").
%For "Granulometrlas" the first column is the mass of the whole sample and
%the successive columns correspond to the weight of the material entramped
%in between sieves.

%s = vector of meshes used [mm] (must contain the same columns as mat).

gracabe=gracabe/100;

upper = 50; %5cm chosen to be the upper threshold
= size(gracabe);

row = 1(1,1);

col = 1(1,2);

fr(row,col)=0;

Zunker equation
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suml (length(c),1)=0;
sumfordeff(row,1)=0;

%Vector of Geometrical Averages for particles in Between sieves:

for

end

a =

end

i=l:row
flag = true;

for j=1l:col

if flag
fr(i,j)
suml(j)
flag =

else
fr(i,J)
suml(j)

end

end

= 1 - gracabe(i,j);

fr(i,j)*(upper-c(j))/(upper*c(j)*log(upper/c(3)));

false;

gracabe(i, j-1)-gracabe(i,j);
fr(i,j)*(c(j-1)-c(3))/(c(j-1)*c(j)*log(c(j-1)/c(])));

sumfordeff (i, 1)=sum(suml);

sumfordeff;

Zunker equation
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%{

Summer 2013

Boston College

Fernando Alwvarado Blohm

The following function calculates probability density function (PDF)

5}

function a = MakeP (K)
a = pdf('normal’',K,mean(K),std(K));

end

Probability Density Function
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%

Summer 2013

Boston College

Fernando Alvarado Blohm

The following function creates the plots of a histogram with an imposed PDF.
Done once, autogenerated by MATLAB, and edited afterwards.
+

%}

function histonormcurv2(xvectorl, yvectorl, histcolor, X1,
Y1,curvecolor,titlestring)

%CREATEFIGURE1 ( XVECTOR1, YVECTOR1, X1, Y1)

% XVECTOR1l: bar xvector

% YVECTOR1l: bar yvector

% X1: vector of x data

% Yl: vector of y data

% Auto-generated by MATLAB on 20-Jun-2013 16:50:43

% Create figure
figurel = figure;

% Create axes

axesl = axes('Parent',figurel, 'YTick',[0 20 40 60 80], 'YMinorTick','on',...
'YGrid','on', ...
'XMinorTick', 'on');

%% Uncomment the following line to preserve the X-limits of the axes

% xlim(axesl,[-3 -1.2]);

%% Uncomment the following line to preserve the Y-limits of the axes

% ylim(axesl,[0 80]);

box(axesl, 'on');

hold(axesl, 'all");

% Create bar
bar (xvectorl,yvectorl, 'FaceColor' , histcolor, 'Parent’,axesl,...
'DisplayName’', 'datal');

% Create plot
plot(xvectorl,yvectorl, 'Parent’',axesl, 'LineStyle', 'none’',...
'DisplayName’', 'data2');

% Create ylabel
ylabel('# Events', 'FontSize',14);

% Create xlabel
xlabel ('Logl0(K) [cm/s]', 'FontSize',14);

% Create title
title(['Histogram and Probability Distribution',sprintf('\n'),titlestringl,...
'FontSize',16);

% Create axes
axes2 = axes('Parent',figurel,'YTick',[0 0.5 1 1.5 2],...
'YAxisLocation', 'right',...
"ColorOrder',[0 0.5 0;1 0 0;0 0.75 0.75;0.75 0 0.75;0.75 0.75 0;0.25 0.25

Graphs of Histograms with an imposed PDF
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0.25;0 0 1],...
'Color','none');

hold(axes2, 'all');

% Create plot

plotl = plot(X1,Y1l,'Parent’',axes2, ' 'MarkerSize',5, 'Marker','o"', 'LineWidth',2,...

'LineStyle', 'none’',...
'Color',curvecolor, ...
'DisplayName', 'Probability');

% Create ylabel

ylabel('Probability', 'VerticalAlignment', 'cap', 'FontSize',14);

% Get xdata from plot for data statistics

xdatal = get(plotl, 'xdata');

% Get ydata from plot for data statistics

ydatal = get(plotl, 'ydata');

% Make sure data are column vectors

xdatal = xdatal(:);
ydatal = ydatal(:);

% Get axes ylim
ax¥Liml = get(axes2, 'vyvlim');

% Find the min
xminl = min(xdatal);

minValuel = [xminl xminl];
% Create plot

statLinel = plot(minValuel,ax¥Liml, 'DisplayName’,’

'Tag','min x',...
'LineStyle','-=',...
"Color',[0 0.75 0.75]);

% Find the max
xmaxl = max(xdatal);

maxValuel = [xmaxl xmaxl];
% Create plot

statLine2 = plot(maxValuel,axYLiml, 'DisplayName’, "’

'Tag', 'max X',...
'LineStyle','-=',...
'Color',[0 0 11);

% Find the mean
xmeanl = mean(xdatal);

meanValuel = [xmeanl xmeanl];
% Create plot

statLine3 = plot(meanValuel,ax¥Liml, 'DisplayName', "'

'Parent’' ,axes2,...
'Tag', 'mean x',...
'LineStyle','-="',...
'Color',[0 0.5 01]1);

X min', 'Parent’',axes2,...

¥ max', 'Parent',axes2,...

X mean',...

Graphs of Histograms with an imposed PDF
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% Create legend
legend(axesl, 'show');

% Create legend
legendl = legend(axes2, 'show');
set(legendl, 'Color',[1 1 11]);

Graphs of Histograms with an imposed PDF
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Hydraulic Conductivities For

Eight Equations

In this Appendix the reader is presented with the distribution of hydraulic con-
ductivities estimated by the Beyer, Fair and Hatch, Hazen, Kozeny-Carman, Kruger,

Slicther, Terzaghi, and Zunker equations.
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