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Abstract

Nine empirical equations that estimate saturated hydraulic conductivity as a func-

tion of grain size in well-graded sands with gravels having large uniformity coefficients

(U > 50) are evaluated by comparing their accuracy when predicting observed conduc-

tivities in constant head permeability tests. According to the findings of this thesis,

in decreasing order of accuracy these equations are: USBR (Vukovic and Soro, 1992;

USBR, 1978), Hazen (Hazen, 1892), Slichter (Slichter, 1898), Kozeny-Carman (Carrier,

2003), Fair and Hatch (Fair and Hatch, 1933), Terzaghi (Vukovic and Soro, 1992), Beyer

(Beyer, 1966), Kruger (Vukovic and Soro, 1992), and Zunker (Zunker, 1932). These re-

sults are based on multiple constant head permeability tests on two samples of granular

material corresponding to well-graded sands with gravels. Using the USBR equation sat-

urated hydraulic conductivities for a statistical population of 874 samples of well-graded

sands with gravels forming 29 loads from a heap leaching mine in northern Chile are

calculated. Results indicate that, using the USBR equation, on average the hydraulic

conductivity of the leaching heaps has a two standard deviation range between 0.18 and

0.15 cm/s. Permeability tests on the actual material used in the heaps provided by the

mine shows that the results presented in this thesis are consistent with actual observa-

tions and represent saturated conductivities in heaps up to 3 m high under a pressures

of up to 62 Kpa. In future work hydraulic conductivities can be combined with water

retention curves, discharge rates, irrigation rates, porosities, and consolidation so as to

evaluate the relationship between copper yields and the hydraulic conductivities of the

heap.
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Chapter 1

Introduction

Hydraulic conductivity (K) is defined as the ease by which a fluid flows through

a granular medium and is a function of both the material and the permeating fluid

(Strobel, 2005). This parameter plays an important role in many disciplines within the

earth sciences as it serves to help quantify the amount of fluid that can flow through

rocks and soils. As an example, estimations of K serve to characterize the amount of fluid

injection possible in oil reservoirs, the movement of lixiviants in heap leaching mines,

and the ease of groundwater flow in underground aquifers. Direct estimations of K are

often laborious and expensive because they require personnel for collecting samples and

conducting laboratory experiments and equipment for small or large-scale in situ tests

(Salarashayeri and Siosemarde, 2012; Petalas and Pilakas, 2011), which is why empirical

methodologies that indirectly estimate conductivities through the maeterial parameters,

such as grain-size, are attractive to project managers (Vukovic and Soro, 1992). In

this thesis project, nine methods that estimate hydraulic conductivities as a function

of grain-size are studied and evaluated in laboratory experiments and then applied to

874 samples of well-graded sands with gravels from a heap leaching mine. Afterwards,

a statistical analysis of the resulting hydraulic conductivity was conducted to estimate

the average range of conductivities in the leaching heaps composed of sediments within

a certain grain-size distribution range.

This introduction contains four sections that aid the reader to understand the in-

vestigation presented in this thesis. First, the section entitled Parameters Affecting

Hydraulic Conductivities explains a list of factors that affect estimations of K with

emphasis on grain-size while also explaining the difference between hydraulic conduc-

tivity and permeability and its implication for this research. The second section, Heap

Leaching: Research and Objective, offers a summarized explanation of heap leaching,

introduces key concepts, and defines the scope and reach of this investigation. The third

1



Chapter 1. Introduction 2

section, Empirical Equations, introduces the nine empirical equations that were used

in this research. The fourth and last section of this introduction, Previous Research,

presents the most relevant work of others who have also investigated this subject.

1.1 Parameters Affecting Hydraulic Conductivity

Since hydraulic conductivity is defined as the ease by which a fluid flows within

a granular medium, one can separate the factors that affect its estimation into those

pertaining to the fluid and those pertaining to the granular medium. Properties of

the fluid such as its density (ρ), dynamic viscosity (ν), temperature (T), and chemical

composition define the velocity and level of turbulence of the fluid as it reacts to certain

conditions of pressure and temperature (Lambe and Whitman, 1969; Dullien, 1979;

Binkhorst and Robbins, 1994). For this research, the fluid is assumed to be water at

10◦C for the lab experiments and at 20◦C for the mine’s GSDs. In both cases the water’s

density is invariant at 1,000 Kg/m3 and values for dynamic viscosity are assumed to

be 0.0013 Pa · s at 10◦C for lab experiments and 0.0010 Pa · s at 20◦C for the mine

(Vukovic and Soro, 1992). These fluid parameters, of course, can be changed so as to

represent different conditions.

Some other properties of the granular medium (such as suffusion, compaction,

consolidation, and crystallization) also play a significant role when calculating hydraulic

conductivities in hard rocks and unconsolidated sediments (Dullien, 1979). Suffusion is

the reduction in permeability that occurs when finer material resulting from the internal

erosion of bigger grains clogs the pores in unconsolidated sediments (Ahlinhan, 2012).

Compaction results from the rearrangement of soil particles from the expulsion of air

within pores (McCarthy, 2001). Consolidation differs from compaction in that pores

are saturated with liquids, and hence under the presence of loads liquids and gasses

are expelled, leading to a rearrangement of particles (McCarthy, 2001). Crystallization

reduces porosity and permeability in rocks because minerals precipitate within pores.

However, such factors are not considered in this research due to budget, material, and

instrumentation constraints. A summary of factors that affect the calculations of K is

illustrated in Figure 1.1.

Hydraulic conductivity and permeability are two different concepts that are closely

related. Permeability is an intrinsic parameter of any material that quantifies the poten-

tial ability of a fluid to enter that material’s voids (Zimmerman and Gudmundur, 1996),

whereas hydraulic conductivity, as previously discussed, relates more to the ease of flow

of a certain fluid within that porous medium (Strobel, 2005). The main distinction be-

tween these two parameters is that permeability describes only the permeating potential
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Figure 1.1: Some of the factors that affect estimations of K. In this research we
focused solely on grain-size and other factors such as those pertaining to geological

processes and the permeating fluid were omitted.

of a material and is measured in units of length squared or Darcy. In contrast, hydraulic

conductivity is both a function of the material and the permeating fluid and is measured

in units of velocity. However, since typically there are large uncertainties in the estima-

tions of either of these parameters (Vukovic and Soro, 1992; Carrier, 2003; Petalas and

Pilakas, 2011) and they both aim to represent the movement of liquids through soils,

sediments, or hard rocks, in this thesis research the words hydraulic conductivity and

permeability are often used as synonyms and both parameters are referred to using the

letter K. Furthermore, by knowing properties of the permeating fluid such as its density

and viscosity one can calculate hydraulic conductivity from permeability and vice-versa

through the following relation:

k = K
µ

ρ · g
(1.1)

where k is permeability (m2), K is hydraulic conductivity (m/s), µ is dynamic viscosity

(Pa · s), ρ is density (Kg/m3), and g is the acceleration due to gravity (m/s2). This

special consideration allows the use of the extensive literature on both topics and makes

it applicable to the case of study defined in the next section of this introduction.
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1.2 Heap Leaching: Research and Objective

The objective of this investigation is to suggest a way to optimize the recovery of

metals in open-pit heap-leaching mines by demonstrating the accuracy of certain equa-

tions in the prediction of permeabilities solely as a function of grain-size. An accurate

prediction of permeabilities can potentially allow mine operators and geoscientists to

identify the optimum configuration of grains to form the leaching heap while making

efficient decisions regarding rate of irrigation, comminution, agglomeration, and satura-

tion. Heap leaching is a common mining practice consisting of five stages of ore pro-

cessing (Cassiday, 2012; Breitenbach, 2000). First, ores are crushed into small particles

in a process called comminution. Second, these particles are sieved, wetted, gradated,

pelletized, and transported on conveyor belts from the grinding mill to the leaching

heaps in a process called agglomeration. Third, the heaps are irrigated through pipes

or sprinklers with an acidic solution called lixiviant that permeates the unconsolidated

sediments and dissolves the metals from the ores. Fourth, the heaps are left inclined at

some angle called the angle of repose and, after some time (30-120 days), a pregnant so-

lution or leachate containing the metals drains and accumulates at the base of the heap

via gravity drainage (Bleiwas, 1994). Lastly, in the fifth step, the pregnant solution is

recovered through a pipe system and is later chemically processed to obtain the metals

from the liquid solution (Figure 1.2). In general, heap leaching is part of a discipline

called hydrometallurgy, and although the metals that are recovered through this tech-

nique are copper, silver, and gold, this thesis focuses on copper hydrometallurgy. Silver

and gold leaching differs from copper leaching in the lixiviants that are used (cyanide

for silver and gold and sulfuric acid for copper) and the amount of time that the heap

is left in repose (longer periods for silver and gold).

The amount of recoverable metals in leaching heaps directly depends on the amount

of lixiviants that percolate through the grains and the extent to which these acids satu-

rate the porous medium (Mishra and Grayson, 1987). Furthermore, in copper leaching,

approximately 30% of the estimated quantity is lost during leaching, mostly due to prob-

lems related to inaccuracies in the estimations of hydraulic conductivity of the unconsol-

idated sediments that form the leaching heaps (Mishra and Grayson, 1987). Therefore,

there is a direct economical incentive to optimize the estimation of conductivities in cop-

per hydrometallurgy, since a better representation of the movement of lixiviants within

heaps will enable mine operators to better predict the amount of copper that can be

recovered after leaching. The scheme of this investigation is summarized in Figure 1.3

and to better illustrate the motivation for this thesis here is an example: A mine working

with an ore that for every 1,000 Kg (1 ton) of rock has on average 2.5 Kg of copper is

said to mine an ore with a Cu concentration of 2,500 ppm (parts per millionth gram)
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corresponding to a grade of 0.25% (USA Congress, 1988). The average grade for copper

ores in economically productive mines around the world is about 0.6% and, assuming a

price of $2.5/lb ($5.5/kg), the ore in this hypothetical example with a grade of 0.25%

results in 250 tons ($1,375,000) of copper for every 100,000 tons (about one heap) of

ore. However, 30% of this Cu will be lost after leaching (Mishra and Grayson, 1987),

mostly due to problems related to the irrigation of the heaps and uncertainties in the

estimation of permeabilities. This means that from the 250 tons of copper, 175 tons

(or $962,500) will, at most, be recovered during leaching. By identifying an empirical

relation or a methodology that makes reliable estimations of hydraulic conductivities,

those losses could be reduced by building the heaps with sediments of a certain grain-size

distribution, agglomerating these grains with the right amount of solution, and irrigat-

ing at an optimum rate. With these simple changes, the surface area of grains exposed

to the leachate increases and consequently more copper is recovered.

In a mathematical sense, this thesis research is an optimization problem because

the goal is to enhance the amount of copper recovered (maximize profits) by detecting

the right configuration of grains. A leaching heap formed by very fine sands, silts, and

clays encompasses more surface area and hence more copper is exposed to leachates.

Unfortunately, such grain-size distribution will also be less permeable than a sample

with larger clasts (Dullien, 1979) and thus the leachate will not flow through the entire

heap or it will take longer times to move through the heap. In the previously discussed

example, improving the predictability of K just so that one can recover 1% more of

the estimated reserves will increase profits by $12,425 per 100,000 tons of ore. Hence,

improving the estimation of conductivities as a function of grain-size is an attractive

line of research.

1.2.1 Saturated Hydraulic Conductivities and

Heap Leaching

Full saturation of lixiviants in the heap is difficult, uneconomical, and not recom-

mendable as oxygen is necessary for the chemical reaction to dissolve the Cu from the

ore. The degree of saturation in a heap can significantly impact the amount of Cu

it yields because of decrepitation (loss of material and change in structural fabric as

a result of the dissolution of metals from a lixiviant) and suffusion (internal erosion)

(Williams, 2013). In the case of sulfide ores, which is the case in copper leaching, solu-

tion air needs to move freely through the heap for adequate agent-ore contact and hence

to obtain optimum recovery (Milczarek, 2013). While heaps are commonly leached un-

der unsaturated conditions, the saturated conductivities provide useful measures such

as the maximum solution application rate (Lupo and Dolezal, 2010). According to the
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findings of Lupo and Dolezal (2010), the saturated hydraulic conductivity represents the

maximum irrigation rate during leaching. If the heaps are irrigated at rates higher than

the estimated saturated hydraulic conductivity, then the heap may become unstable due

to high phreatic surface and large pore pressure within the heap. It is important to note

that full saturation of the medium is a common assumption shared for all the empirical

equations used in this research and described in detail later in Chapter 2. Even though

this assumption does not hold in practice, these equations are studied in this research

due to their simplicity because in unsaturated conditions unconsolidated materials sig-

nificantly decrease their ability to conduct fluids (Lambe and Whitman, 1969). This

is so due to the decrease in cross-sectional area of water flow, increment in tortuosity

(or the difficulty in flow), increase of drag forces, and other factors that make up for a

non-linear relationship between conductivity, hydraulic head, and degree of saturation

(Hopmans, 2002). In summary, trying to represent heap leaching under non-saturated

conditions will significantly increase the complexity of the problem. Whether this com-

plexity enhances the accuracy in estimations of conductivity is still an open matter for

discussion not addressed in this investigation, and thus for this thesis it will be assumed

that the heap is fully saturated in order to make the empirical formulae applicable. For

a more detailed discussion on the impact of saturated versus unsaturated flow conditions

on hydraulic conductivity please refer to Hopmans (2002), Lambe and Whitman (1969),

and Dullien (1979).

1.2.2 Irrigation Rates

Irrigation rates refer to the rate at which the lixiviants enters the heap during

leaching. The industry standards according to several manufacturers of sprinklers ranges

anywhere from 3 to 20 Lt/m2/h ( permeabilitities 8x10-5 and 6x10-4 cm/s). For this

research, it is important to clarify that in the data supplied by the mine there were no

available metrics so as to make an educated guess on the irrigation rate or discharge rates

in the heaps. This is a major barrier since without these metrics one cannot estimate

the saturation of the heaps or correct the estimates of saturated hydraulic conductivity

so as to represent the actual non saturated conditions. Without this understanding, one

cannot explore the relationship between copper recovered, hydraulic conductivity, and

grain size distributions with certainty.

1.3 Empirical Equations

In this thesis the accuracy of nine popularly used empirical equations that estimate

K as a function of grain size was evaluated in the prediction of conductivities through
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constant head permeability tests in well-graded sands with gravels. These equations are:

• Hazen (Hazen, 1892).

• Kozeny-Carman (Carrier, 2003).

• Beyer (Beyer, 1966)

• Slichter (Slichter, 1898)

• Terzaghi (Vukovic and Soro, 1992; Salarashayeri and Siosemarde, 2012; Odong,

2007).

• USBR (Vukovic and Soro, 1992; USBR, 1978; Odong, 2007; Ishaku and Kaigama,

2011).

• Fair and Hatch (Fair and Hatch, 1933)

• Kruger (Vukovic and Soro, 1992)

• Zunker (Vukovic and Soro, 1992)

The mathematical equations, regions of applicability, general assumptions, and

other important details concerning each of these relations can be found in Appendix A

and will be further discussed in Chapter 2.

1.4 Previous Research

Many authors have conducted research closely related to this thesis where empir-

ical equations that estimate K as a function of grain-size are compared to estimations

from laboratory experiments or in-situ measurements. The main difference between this

research and the earlier work of other scientists is the large number of samples that

are being considered (Table 1.1). In this work I estimate permeabilities for almost 900

grain-size distribution (GSD) curves through nine empirical equations, and I validate

these results with twenty two constant head permeability tests, which is approximately

three times more than the number of samples used in Petalas and Pilakas (2011), the

largest comparable research work investigated as background material for this thesis.
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Table 1.1: Comparison Among Selected Publications

Paper GSD Lab/M.1 Methods Notes

This Thesis 874 26 9

(Salarashayeri and
Siosemarde, 2012)

25 25 - Statistical correlation of percentiles in the
GSD

(Petalas and
Pilakas, 2011)

212 1060 13 Five constant head permeability tests for
every sample

(Ishaku and
Kaigama, 2011)

15 1 6 Laboratory experiments referenced in
previous work

(Odong, 2007) 4 - 7 The study does not reference lab tests or
field observations

(Detner, 1995) 100 100 5 In situ measurements using an air
permeameter

(Alyamani and
Mahmoud, 1993)

22 - - Multiple regression analysis against different
percentiles of the GSD

(Shepherd, 1989) 397 - - Samples taken from published literature and
correlated against median grain size

1 Laboratory tests or in situ measurements.
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Chapter 2

Background and Literature

Review

This chapter starts by explaining sieve analysis, grain-size distribution (GSD)

curves, and dx percentiles. Then in the second section the general form of all the equa-

tions used in this research as described by Vukovic and Soro (1992) is explained with

a discussion of the parameters directly related to grain size that affect the estimations

of K (porosity, effective porosity, and specific yield, void ratio, grain-size, surface area,

uniformity coefficient, and shape factor). In the third section of this chapter there is a

thorough discussion of all the empirical equations summarized in Appendix A. Lastly,

in the fourth section of this chapter the reader will find a summary of key statistics

concepts necessary to understand the analysis presented in this thesis research.

2.1 Sieve Analysis and Grain-Size Distributions (GSDs)

A sieve analysis is a set of procedures done so as to detect the proportion of grains

corresponding to different grain sizes that form a soil or any granular material. Sieve

analyses in this thesis were done according to the American Society for Testing and

Materials (ASTM) D6913 and summarized as follows: First, a small amount (approx-

imately 40 gr) of air-dried sample from a granular material is taken from the source.

Then, sieves of different sizes are vertically stacked in decreasing order (Figure 3A) and

the sample is poured into the top, largest, sieve. The stack is then moved in a circular

motion with a vertical tapping impulse for a given time. Afterwards, the stack of sieves

is set apart and the amount of material trapped in each sieve is weighed. These weights

are divided by the total weight of the sample so as to calculate the percentage of grains

corresponding to different sizes. This procedure is referred to as a sieve analysis, and the

11
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percentages of grains forming the sample and corresponding to different sizes (Figure

2.9B) form a grain-size distribution (GSD) of the initial sample. Adding the cumulative

percentages of grains finer than a certain size and plotting these percentages against a

range of grain-sizes form a GSD curve (Lambe and Whitman, 1969; McCarthy, 2001).

These curves are a simple way to graphically determine the size of the GSD percentiles

(dx percentiles). For example, in Figure 2.9 to estimate the size of the grains corre-

sponding to the finer 10% of the GSD (d10), one finds the X-axis intercept of the 10%

line on the granulometric curve, which corresponds to approximately 700 µm in Figure

2.9C. In industrial mining, instead of a stack of sieves a wide array of tools can be used

such as vibrating conveyor belts1 built with ASTM meshes.

2.2 General Form of Empirical Formulae

The general form of the equations that estimate hydraulic conductivities as a func-

tion of grain size used in this thesis is generalized in the following expression (Vukovic

and Soro, 1992):

K = C × β × θ(n)× dx (2.1)

where dx is defined in the previous section and the other parameters are defined in the

following subsections.

2.2.1 Constants (C)

Most of the equations studied in this thesis have embedded assumptions regarding

unit conversions and properties of the permeating fluid that are simplified by the use

of a constant factor C. Some equations (Hazen, Kozeny-Carman, Beyer) include unit

conversion factors in their constants so that grain-sizes are entered in millimeters and

the resulting conductivities have units of meters per day, whereas the constant C in

other equations (such as the USBR method) yields conductivities in centimeters per

second with the same inputs. Furthermore, there are important considerations regarding

properties of the permeating fluid intrinsic in each one of these equations that were not

clearly stated by the authors of these empirical equations (Vukovic and Soro, 1992) (e.g.

temperature, density, viscosity, etc.). Even so, some of these formulas (e.g., Hazen) are

widely used in the earth sciences without revision (Carrier, 2003). For this research,

1As referenced by FAM manufacturer of mining equipment.
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Figure 2.1: A) Sketch showing the stack of sieves (decreasing size) used in mechanical
sieving. B) Standard sieve notation by ASTM standards. C) An example of a GSD
(blue histogram, left axis) and a GSD curve or granulometric curve (red, right Y axis)

attained by plotting cumulative percentages against grain size (X axis).
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I adopt the constants proposed by Vukovic and Soro (1992), Cheng and Chen (2007),

Odong (2007), Carrier (2003) and summarized in Appendix A.

2.2.2 Effective Radius (β)

The effective radius represents the seepage of fluids through the entire porous

medium as if it were a single conduit, and is a function that is mathematically de-

fined differently across equations. Hazen, USBR, Beyer, Terzaghi, and Slichter’s equa-

tions simply make use of the GSD percentiles following the commonly shared assumption

that seepage is controlled by the size of the smaller particles forming the porous medium

(Hazen, 1892). However, other equations define an effective radius through more elabo-

rate mathematical formulas. For example, Kruger’s equation uses weighted geometrical

averages in logarithmic scales so as to weight the effects of big and small particles on fluid

seepage. In contrast with the Hazen, Beyer, Slichter, Terzaghi, and USBR equations

where the lower percentiles of the GSD are directly taken as the effective radius, the

Kozeny-Carman (Carrier, 2003), Kruger, and Zunker’s equations represent the effective

radius using the fraction of particles ∆gi trapped in the larger and smaller sieves of sizes

dl and ds, respectively (Table 2.1). Some authors (Carrier, 2003) hypothesized that by

including the entire GSD curve in the estimations of the effective radius theoretically-

derived values of K could be more accurate for estimating conductivities in empirical

observations.

Table 2.1: Effective Radius and Porosity Functions

Methodology Effective Radius Porosity Function

Hazen d2
10 -

Kozeny-Carman

[
100%∑ ∆gi

d0.404
l

×d0.595
s

]2

n3

(1−n)2

Beyer d2
10 -

Slichter d2
10 n3.287

Terzaghi d2
10

(
n−0.13
3√1−n

)2

Fair and Hatch
(∑ di

∆gi

)2
n3

(1−n)2

Kruger
[∑

∆gi

(
2

dl−ds

)]−1
n

(1−n)2

Zunker

[∑
∆gi

dl−ds
dlds log

di
ds

]−2
n

(1−n)

USBR d2.3
20 -
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2.2.3 Porosity Function (θ(n)) and GSD percentiles (di)

Similar to the effective radius, the porosity function is also a mathematical ex-

pression that helps quantify the void space within the granular medium. The effective

radius quantifies the mechanical composition of the sample (grain diameter) whereas the

porosity function defines the voids within (Lambe and Whitman, 1969). Conceptually,

the porosity function depends on the shape, size, structure, composition, and surface

area of the grains that make up the sample along with other properties of the overall

material such as its uniformity, compactness, consolidation, etc. Porosity functions were

empirically estimated by the authors of the equations studied in this thesis presented in

Table 2.1 and Appendix A.

The smaller dx percentiles and the porosity function are the most important vari-

ables across methodologies affecting the estimations of K. A sensitivity analysis for

porosities (n) from 25% to 45% corresponding to sands and gravels (McCarthy, 2001)

shows the net effect that different values of n has on porosity functions (Figure 2.2).

As seen in Figure 2.2, differences of up to three orders of magnitude in estimations of

K among different equations can be attributed to the mathematical representations of

porosity. Kruger’s method provides the largest values of porosity functions while Terza-

ghi’s yields the lowest values, together spanning about two orders of magnitude. The

Hazen and USBR equations do not include porosity in their methodologies as they sim-

plify their calculations by approximating the conduits in the porous medium to a pipe of

a certain diameter (Vukovic and Soro, 1992). The expression for Kozeny-Carman mod-

ified by Carrier (2003) produces the same porosity function as that of Fair and Hatch,

which recreates the case of interconnected granular beds (Fair and Hatch, 1933).

In general, the nine equations studied in this research have different formulas for

effective radius and porosity function. Both of these factors are the most significant

source of variation for conductivities among the equations. Quantification of the net

impact that different grain-sizes have on fluid seepage through effective radius calcula-

tions is much more complex than with porosity functions. In effective radius calculations

one has x number of variables in the formula (dx percentiles) compared to just porosity

(n) in porosity functions (Table 2.1). By looking at the mathematical representation of

these two concepts across the different equations it is clear that the equations follow the

widely accepted fact that smaller particles (those trapped on smaller sieves) cause the

largest variations in K (Vukovic and Soro, 1992; Hazen, 1892; Carrier, 2003; Lambe and

Whitman, 1969; Dullien, 1979; Odong, 2007; Alyamani and Mahmoud, 1993).

It is important to mention that since neither void space calculations nor perme-

ability experiments were provided with the mine GSDs, porosities (n) for those samples



Chapter 2. Background and Literature Review 16

Figure 2.2: Sensitivity analysis of different porosity functions at different values of
porosity starting from 0.10 to 0.40. The Kruger and Zunker equations can yield values

up to two orders of magnitude higher than the others.

were estimated using the uniformity coefficient U (defined in the next subsection) as

proposed by Istomina (1957):

n = 0.255(1 + 0.83U ) (2.2)

this equation resulted from an empirical trend (Figure 2.3) found after extensive analy-

sis on sandy sediments and has proven to be accurate for well-graded sands and gravels

with little clay content (Istomina, 1957). Other researchers have also studied this rela-

tionship (Dimkic, 2008), revealing that it works well when estimating porosities in sandy

sediments where low uniformity coefficients yield high porosities. However, it is evident

that this empirical relation converges to a value of 0.255 as the uniformity coefficient U

becomes large. In the mine GSDs the average U for the 874 samples is 50, so using this

equation provides porosities very close to 0.255.

2.2.4 Uniformity Coefficient (U) and Shape Factor (SF)

Two other factors that are included in most of the equations for K are the uni-

formity coefficient and the shape factor. The uniformity coefficient (defined as CU in

soil mechanics (Lambe and Whitman, 1969)) assesses the gradation of grain sizes in the

samples and is mathematically calculated through the following expression:



Chapter 2. Background and Literature Review 17

Figure 2.3: Estimates of porosity plotted as a function of the uniformity coefficient
for different granular materials. Summary of results of Istomina (1957).

U =
d60

d10
(2.3)

The shape factor (SF) takes into consideration the angularity and sphericity of the

grains through surface area concepts and is calculated as the surface area of a grain

divided by its volume (Carrier, 2003). All calculations of conductivities in my research

assume grains with shapes resembling worn angular sand grains for a value of SF = 6.4

as stated by Fair and Hatch (1933).

2.3 Background Statistics

In this section definitions of key statistics concepts used throughout this thesis are

presented. The first part titled Statistical Distributions provides a short summary on

random variables, lognormal distributions, point estimators, z-distributions, confidence
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intervals, and least squares errors. The second part titled Absolute Error Propagation

explains the calculations by which the uncertainty in the lab experiments is quantified.

2.3.1 Statistical Distributions

A variable is defined as a characteristic that changes over time for different in-

dividuals or objects. Similarly, a random variable is the numerical value of a variable

obtained after the random outcome of an experiment or observation (Mendenhall, 2009).

The total number of possible experiments or observations define what is referred to as

the statistical population or simply population. The probability for each of the potential

realizations of the random variables over the whole statistical population forms the prob-

ability distribution or simply the distribution of a random variable. This distribution

could have many different shapes, but for this thesis research only lognormal distribu-

tions are discussed. When the number of observations is large enough, the distribution

for the population becomes a smooth bell-shaped curve centered at a certain value µ

and with a standard deviation of σ. This is what is referred to as a normal distribution.

When the random variable is normally distributed across orders of magnitude then the

population presents a lognormal distribution (Figure 2.4). In this thesis research the

random variable that is being studied is hydraulic conductivity (K), which is known to

be lognormally distributed (Kieber, 1966).

Figure 2.4: Illustration of lognormal distributions. A random variable normally dis-
tributed across orders of magnitude looks like the skewed curve on the left, but after
applying logarithms this skewed curve becomes normally distributed across a mean µ

and standard deviation σ.

The mean (µ) and standard deviation (σ) that characterize lognormal distributions

are rarely known, yet these parameters are estimated via point estimators. For example,

suppose a statistician is interested in knowing the average income for families across

the US. µ represents the actual average income for all the families residing in the US,

and hence one will never truly know µ as this would mean going door by door to every

household in the US asking for their income. However, one can estimate this mean by

using a point estimator. There are many types of point estimators used to assess the
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mean of statistical distributions given a set of samples or observations. For example,

the naive estimator approximates µ as the simple average of the observed values and the

maximum likelihood estimator uses likelihood functions and probabilities to estimate

µ (Mendenhall, 2009). For simplicity and consistency, in this thesis research the true

mean µ for the distributions of conductivities is approximated via the naive estimator

calculated as the simple average of the observations.

When a normal distribution is standardized by centering values across zero and

normalizing by the standard deviation, then a z-distribution results (Mendenhall, 2009).

z distributions are important because they represent populations in terms of standard

deviations and probabilities (i.e., a z-distribution shows the probability that a certain

value for a variable is x standard deviations away from its mean). However, when the

statistical population is small and standard deviation is large, z-distributions tend to

overestimate probabilities and hence t-distributions are used in this scenario. Depending

on the situation, either z or t distributions are used to derive zα/2 or tα/2 critical values

(Mendenhall, 2009) through which confidence intervals are estimated. α is referred to

as the significance level and represents the proportion of values within the tails of the

normal distribution, and the critical values zα/2 or tα/2 represent the probability that the

random variable obtains a value in the lower or upper tail of a normal distribution (Figure

2.6). Critical values for t and z distributions are well-studied for many significance levels

and appear in tables in the vast majority of statistics books. Mathematically, confidence

intervals (CIs) are estimated via the following formula:

CI = parameter ± zα/2
σ√
n

(2.4)

where tα/2 can replace zα/2 and n represents the number of observations or experiments.

The subtraction in (2.4) represents the lower confidence interval (LCL) for the parameter

and the addition represents the upper confidence interval (UCL). To better illustrate

these concepts here is an example. To estimate the 95% confidence interval for a mean

point estimator µ = 2 with σ = 1 derived after n = 25 observations one would use

(2.4) and find a LCL=1.608 (2 − 1.96/
√

25) and a UCL =2.392 (2 + 1.96/
√

25). This

means that the point estimator µ = 2 for the 25 observations having a σ = 1 could

approximately be between 1.6 and 2.4 95% of the time. The number 1.96 is the critical

value for the z-distribution found after looking up the zα/2 = z0.025 critical value in a

z-table in a statistics book.
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Figure 2.5: Confidence intervals are estimated after the critical values zα/2.

2.3.2 Normal Probability Plots

Normal probability plots (NPP) are used to assess if a sample of n observations

comes from a much larger population that follows a normal distribution. Mendenhall

(2009) defines NPPs as graphs that plot the values for each of the n observations against

the expected value of those observations had they come from a normal distribution. In

NPPs the cumulative probability of observe a certain value is plotted on the y axis and

the value for each of the n observations on the x axis (Figure 2.6). A straight line in these

plots marks a perfectly normal distribution and the points around this line represent the

observed data. Normal probability plots test the normality assumption for a certain set

of observations.

2.3.3 Absolute Error Propagation

Using the equations cited on Appendix A, the observed values for the lab samples’

permeabilities (Kobs) were compared to permeabilities derived from the nine equations

using the parameters that describe the GSD as called for by each empirical equation.

For each of the nine values of conductivities, confidence intervals (CIs) were estimated

through the absolute error propagation approach. In standard lab experiments, an ab-

solute error propagation approach consists of taking the total derivative of the equation

estimating the metric the experimenter is interested in with respect to the control vari-

ables (Harvard Instructional Physics Lab, 2008). For example, in a physics lab if one is

measuring the kinetic energy of a certain object one will measure the object’s mass (m)

and its velocity (v) to use the formula Ek = 1
2m × v

2. The error associated with this

point estimator will be ∆Ek = 1
2 [∆m × v2 + 2m × v∆v] where the quantities ∆m and

∆v correspond to the instrument precision of the balance used to measure the object’s
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Figure 2.6: An example of a normal probability plot taken from Matlab 2015 help
browser for the ”normplot” function. The plus blue signs mark the observations and
the red line represents the expected value of these observations had they come from
a normal distribution. Observed values close to the straight line permits assuming a

normal distribution for the population of interest.

mass and whatever artifact is used to measured its velocity. Since hydraulic conduc-

tivities are lognormally distributed (Kieber, 1966), the equations in Appendix A were

first log transformed prior to taking the derivative with respect to the dx percentiles.

These derivatives used to quantify uncertainties in the estimations of conductivities in

lab samples can be found in Appendix B. As an example of how this procedure was car-

ried out, using the log transformed USBR equation (log ∆KUSBR = log(0.36× d2.3
20 )) we

will estimate the error corresponding to this estimate by calculating the total derivative

of this expression in terms of the factors we control for, which is d20 in this example

(log ∆KUSBR = 1/(0.36d2.3
20 ) × 0.36(2.3d1.23

20 ∆d20) = 0.36(2.3d1.23
20 ∆d20)/KUSBR). Hav-

ing a confidence interval for each of the nine conductivities permits evaluating how well

do each of these equations represent observed values in a controlled setup. However,

many assumptions were made in the quantification of the error in the measured quan-

tities during lab experiments to acknowledge experimental and time limitations. The

following assumptions are based on the judgment of the author of this thesis:
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1. ∆dx: The error associated with the dx percentiles in the GSD. This value is taken

as a fixed constant of 0.01 mm corresponding to coarse silt (Chester, 1922). An

example illustrates this parameter. When mechanical sieve analysis takes place at

large scales in a mine, it is possible that not all particles trapped on, for example,

sieve #100 are exactly 0.149 mm. It is possible that these particles will be a little

larger or smaller than this value. I am representing this variability in the sizes of

the dx percentiles that make up the GSD curve as a fixed value of 0.01 mm that

represents small particles (fine silt) adhered to larger grains. The logic behind this

assumption is that if the air-dried samples were to contain some moisture, then

very small particles (such as coarse silt) could have been adhered to larger grains

and thus affect the GSD of the sample and introduce a bias in the discharge rate

observations at large scales.

2. ∆Pi and ∆fi: The error associated with the cumulative percent of material trapped

at the ith sieve (∆Pi) and the net fraction of material in the ith sieve (∆fi) were

arbitrarily estimated as 5% of Pi and fi. To make these estimates robust, several

sieve analyses would have to be made on the same, well-known, amount of gran-

ular material and after several iterations it will be possible to estimate the error

associated with ∆Pi and ∆fi for the instrument.

3. ∆n: The error associated with porosity calculations. This parameter was esti-

mated considering that 50 ml of water, corresponding to the instrument precision,

could affect the discharge observations. If so, this error of 50 ml in specific yield

calculations represents a constant value of 0.011 or 1.1% error in porosity esti-

mates.2

4. ∆h and ∆L: The error associated with hydraulic head (∆h) and length (∆L) was

0.1 cm, corresponding to the instrument precision of the ruler used to measure

these parameters.

all other parameters that may be present in the equations and not mentioned before

were regarded as constants for error calculations.

2.4 Description of the Mine Samples

The samples from the mine used in this thesis research consists of 874 grain-size

distribution (GSD) samples collected over a period of six years in a copper mine in north-

ern Chile. These samples were taken from porphyritic rocks that provide chalcopyrite

2From the specific yield equation we have that n = V olwater
4,355cc

= 50
4,355

= 0.011
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ores with an average Cu grade of 0.62% and sieved with 1” [25.4 mm], 3/4” [19 mm],

1/2” [12.7 mm], 1/4” [6.35 mm], #10 [2 mm], #50 [0.297 mm], #100 [0.149 mm], #200

[0.07 mm] sieves. These 874 samples came from 16 loads (LOAD 2 through LOAD 17)

and these loads were further segregated into two modules (A and B) with the exception

of LOAD 2 and LOAD 15 (only B module) and LOAD 17 (only A module). A load is

simply the movement of the conveyor belt from point to point across the mine (Figure

2.7) and a module is a way to identify the side where the conveyor belt is depositing

the heap (e.g. east/west, left/right, or in this case A/B, Figure 2.7). A sample is re-

ferred to as a portion of the material that makes up the overall heap (Figure 2.8). Such

segregation of material into loads, modules, and samples is done so as to track min-

ing operations through time. In Table 2.2 the loads, modules, and number of samples

within each leaching heap researched in this thesis are summarized. The same table

also contains information about the average weight and the average percentage (net of

weight) of Cu estimated in each sample as well as the percentages of Cu recovered and

lost after leaching. On average, the heaps encompassed an area of 8,225 m2 and were 7.5

m high. It is advantageous to construct heaps that are shorter than they are wide, as

this geometry diminishes compaction, increases aeration, and thus makes the granular

medium more permeable for leachates (Yao et al., 2013). It took approximately one day

of sieving via conveyor belts to transport and deposit each sample into its leaching heap.

The GSDs for all 874 samples plotted together can be seen in Figure 2.9. The

average U for the 874 GSDs is 50 and the average d10 is 0.2 mm corresponding to

well-graded fine sands with gravels (Lambe and Whitman, 1969). Summary statistics

depicting averages, minimums, maximums, medians, and standard deviations of the dx

percentiles of the 874 GSDs along with the weights of each of these mine samples in

Figure 2.10.
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Figure 2.7: (A) This figure illustrates a conveyor belt depositing LOAD 3A. (B) After
enough samples have been deposited into LOAD 3A, the conveyor moves to location 4
and starts depositing samples to its right (LOAD 4B). NOTE: The leaching heaps in our
case are discreet mounds of material. (images from superior industries, manufacturer

of mining equipment www.youtube.com/user/superiorind1972/about).

Figure 2.8: (A) A loader truck takes a certain amount of material X from the mineral
deposit and (B) places it into the grinder. (C) The grinder crushes the material and
the sands, gravels, and silts, constituting a sample, are transported to form the heaps.

(images from FAM, manufacturer of mining equipment www.FAM.de).

www.youtube.com/user/superiorind1972/about
www.FAM.de
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Table 2.2: Data Segregation

heap Name N Avg
Weight [T]

Avg %Cu
Estimated

Avg %Cu
Lost

Avg %Cu
Recovered

1 LOAD 2B 8 102,780 0.74 0.19 0.55

2 LOAD 3A 9 107,310 0.63 0.18 0.45

3 LOAD 3B 9 103,510 0.71 0.15 0.56

4 LOAD 4A 7 87,540 0.81 0.14 0.67

5 LOAD 4B 27 100,362 0.88 0.15 0.73

6 LOAD 5A 25 110,640 0.71 0.15 0.56

7 LOAD 5B 31 105,110 0.71 0.1 0.61

8 LOAD 6A 25 109,410 0.89 0.09 0.8

9 LOAD 6B 14 97,807 0.73 0.4 0.33

10 LOAD 7A 14 107,580 0.98 0.27 0.71

11 LOAD 7B 11 95,140 0.89 0.27 0.62

12 LOAD 8A 18 103,340 0.92 0.22 0.7

13 LOAD 8B 12 96,181 0.71 0.19 0.52

14 LOAD 9A 32 91,138 0.69 0.18 0.51

15 LOAD 9B 45 77,321 0.71 0.19 0.52

16 LOAD 10A 37 74,240 0.61 0.18 0.43

17 LOAD 10B 52 81,180 0.57 0.14 0.43

18 LOAD 11A 41 82,783 0.54 0.13 0.41

19 LOAD 11B 32 79,332 0.53 0.15 0.38

20 LOAD 12A 41 96,219 0.55 0.13 0.42

21 LOAD 12B 40 80,593 0.65 0.22 0.43

22 LOAD 13A 51 98,669 0.62 0.18 0.44

23 LOAD 13B 48 96,843 0.58 0.15 0.43

24 LOAD 14A 48 91,379 0.58 0.14 0.44

25 LOAD 14B 55 96,150 0.53 0.16 0.37

26 LOAD 15B 26 93,739 0.52 0.16 0.36

27 LOAD 16A 44 105,540 0.58 0.11 0.47

28 LOAD 16B 49 97,955 0.62 0.13 0.49

29 LOAD 17A 22 106,780 0.57 0.14 0.43
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2.5 Description of the Nine Equations

Before discussing the details of each of the nine equations being analyzed in this

thesis, it is important to know that these equations were either empirically calculated

from lab experiments or mathematically derived under various assumptions. The authors

of these equations showed that each of these formulas provide accurate estimates under

what is referred to in this thesis as a region of validity, which is a series of restrictions

placed on certain parameters of the granular medium such as grain size or uniformity

coefficient. The region of validity for each equation is described in the section below

summarized in Table 2.3 and Appendix A. As previously discussed, all these equations

describe saturated hydraulic conductivities.

Hazen (1892) identifies hydraulic conductivity as the velocity of water in his ex-

periments and concluded that hydraulic conductivity is a function of temperature (T),

effective grain-size (d10), head loss (H), and sediment thickness (L). Hazen (1892) made

the observation that ”[hydraulic conductivity] probably varies also somewhat with the

uniformity coefficient, but no satisfactory data are at hand upon that point,” and he

limited the scope of his experiments to sands with a uniformity coefficient U < 5 and

an effective radius d10 within the range of 0.1 - 3.0mm. According to Hazen (1892), this

simplification of his formula offers the ”maximum rate” of fluid flow since his equation is

based on the most ideal circumstances of a fully saturated medium with water at 10◦C

undergoing a gradient of one (loss of head equal to the sediment thickness). However,

Carrier (2003) shows that correcting Hazen’s equation for water at 16◦C yields perme-

abilities at least 18% larger than at 10◦C. Carrier (2003) also showed that Hazen’s

method relies heavily on its empirical assumptions and yields values of K that can differ

up to several orders of magnitude from lab experiments. Yet, Hazen’s equation continues

to be the standard in the geosciences due to its simplicity.

The formula for hydraulic conductivity of Kozeny-Carman as explained in Carrier

(2003) was originally developed by Kozeny for a series of capillary tubes in sands with

d10 ≤ 3mm and later modified by Carman so as to include the notion of hydraulic radius

and the pore diameter of an equivalent capillary (Chapuis and Aubertin, 2003). There-

fore, Kozeny-Carman equation makes use of sediments’ GSDs to estimate an effective

radius. According to Carrier (2003) many authors often interpret this effective radius

in different ways; some say it corresponds to d10 while others express it as an arithmetic

expression including the entire GSD (Carrier, 2003). In this work I adopt the latter.

Beyer’s method (Beyer, 1966) was empirically derived so as to assess the movement

of pollutants through geological beds. This method also approximates the movement of

liquids as if passing through a pipe and thus porosity takes on the value of one. Beyer’s
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Table 2.3: Region of validity for empirical equations

Equation Uniformity Coefficient Grain Size Notes

Hazen U<5 0.1mm≤ d10 ≤3mm No porosity

Kozeny-Carman - d10 ≤3mm Not applicable in clayey sediments

Beyer U<20 0.06mm≤ d10 ≤0.6mm Porosity of one

Slichter - 0.01mm≤ d10 ≤5mm No uniformity coefficient

Terzaghi - 0.25mm≤ d10 ≤2mm
Shape and gradation of grains included
in the empirical coefficient Ct

Fair & Hatch - 0.1mm≤ d10 ≤2mm
Derived for unstratified sand beds
Includes a shape factor between 7.7 and 6.0

Kruger U>5 0.25mm≤ d10 ≤2mm
Shape factor included in empirical
coefficient βk

Zunker - -
Shape and gradation of grains included
in the empirical coefficient βz

USBR U<5 .06mm≤ d10 ≤2mm Suitable for sands

method is believed to be mostly useful for heterogeneous, poorly sorted, samples with

effective grain sizes between 0.06 and 5 mm and U < 20 (Odong, 2007). Slichter’s formula

(Slichter, 1898) uses potential theory in groundwater flow to quantitatively describe the

steady-state flow field in response to a discharging well, and according to the USGS, it

could be the first quantitative analysis of groundwater. The equation is derived after

Slichter’s multiple laboratory experiments of water moving through porous soils or rock

under different pressures. As originally published in Slichter (1898), the formula makes

use of an average grain-size, does not takes into consideration the shape of the grains, and

is simplified for water at 10◦C. Several researchers (Vukovic and Soro, 1992; Odong,

2007; Cheng and Chen, 2007) tested this formula with different materials, and their

findings indicate that it is most reliable in sand samples with grain sizes between 0.01

and 5mm with no restrictions on the uniformity coefficient of the granular media.

The Fair and Hatch method (Fair and Hatch, 1933) calculates the head lost for

expanding, unstratified, and stratified filter beds. In this thesis I will only consider their

model for unstratified filter sand beds with d10 between 0.1 and 2mm describing grain

sizes in the interval of very fine to coarse sands (Chester, 1922) as it most resembles the

physical configuration of grains in heap leaching heaps. Fair and Hatch (1933) reworked

the results of Poiseuille in the 1840s (Sutera, 1993) and Darcy in the 1850s (Darcy, 1856)

so as to factor in the length of the path followed by the water and the diameter and

shape of the particles constituting the granular medium. Fair and Hatch’s equation is

based on experimental data and takes into consideration the viscosity (µ) and density

(ρ) of the permeating fluid. This equation also makes use of a pipe constant (κ) which

represents the porous medium conduits as a pipe of constant diameter. Fair and Hatch

(1933) assume this value to be 32 and hence this thesis makes this same assumption. A

noticeable distinction of this method is that it directly includes the entire GSD curve in

its calculations and defines a shape factor (SF) for the grains calculated as the ratio of

surface area to volume between 7.7 for angular grains and 6.0 for well-rounded grains.
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As summarized in Vukovic and Soro (1992), the United States Bureau of Recla-

mation (USBR) in collaboration with several scientists developed a formula for the

hydraulic conductivity of soils comprising medium-grain sands with average grain sizes

between 0.06 and 2mm and uniformity coefficients less than five (USBR, 1978). Some

studies indicate that the USBR tends to underestimate conductivities (Salarashayeri

and Siosemarde, 2012; Odong, 2007; Ishaku and Kaigama, 2011). The USBR developed

this formula specifically to aid irrigation in agriculture as ”excess water and salt must

be removed from soils for irrigation to be permanently successful” (USBR, 1978). When

simplified for water at 10◦C, converting inches per hour to centimeters per second, and

using grain-sizes corresponding to uniform sand grains, the expression can be simplified

to the one appearing in Appendix A (Vukovic and Soro, 1992).

Terzaghi’s equation is based on a one-dimensional consolidation equation represent-

ing the visco-elastic behavior of soils as they react to applied loads in civil engineering

(Di Francesco, 2013). Even though Terzaghi’s equation is intended for civil-engineering

consolidation problems, several authors have applied it to groundwater flow situations

and obtained hydraulic conductivities close to observed values (Vukovic and Soro, 1992;

Odong, 2007; Cheng and Chen, 2007). In this work, I adopt the Vukovic and Soro (1992)

simplification of Terzaghi’s equation as Vukovic and Soro (1992) stated that Terzaghi’s

equation yields results matching empirical observations for coarse sands with average

grain sizes between 0.25 and 5mm. Terzaghi’s equation includes the shape of the grains

and gradation of the sediments through an empirical constant Ct, which takes a value

of 0.0061 for coarser sands and 0.107 for smooth grains (Vukovic and Soro, 1992).

The last two methods for calculating hydraulic conductivities based on grain-size

distributions that are used in this thesis research are Kruger’s (Vukovic and Soro, 1992)

and Zunker’s (Zunker, 1932) formulas. Vukovic and Soro (1992) analyzed Kruger’s

formula and determined that it yields best results when applied to medium-grain sands

with average grain size between 0.25 and 2mm and uniformity coefficients larger than

five. Zunker’s equation also makes use of an empirical coefficient βz that describes the

gradation and angularity of the grains. βz has a value of 0.0024 for uniform sand with

smooth rounded grains, a value of 0.0014 for a uniform composition of coarse grains,

0.0012 for non-uniform grains, and 0.007 for clayey grains of irregular shape. Kruger’s

method includes a large portion of the grain-size distribution curve and represents water

moving through sand at 0◦C. Therefore, after eliminating some simplifications appearing

in Vukovic and Soro (1992) and using values of viscosity corresponding to water at ten

degrees Celsius, the modified version of Kruger’s method appearing in Appendix A is

obtained. Zunker’s formula (Zunker, 1932) is derived for agriculture and fertilization and

contains an empirical coefficient (βk) that is a function of grain-size and the uniformity

coefficient. For this thesis, βk = 0.00435 representing homogeneous well rounded sands
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is used (Vukovic and Soro, 1992). Zunker’s formula has been found to yield values of

conductivities that, on average, are two orders of magnitude higher than observed values

(Vukovic and Soro, 1992; Petalas and Pilakas, 2011) and hence is ignored for practical

applications in science and engineering.

In application to this research, the average grain size d10 for the sediments in the

leaching heaps is 0.2mm and the average uniformity coefficient U is 50. This means

that the well-graded fine sands with gravels used in leaching are different from the

homogeneous sands under which these nine equations have proved to estimate observed

conductivities (Vukovic and Soro, 1992). In the next chapter of this thesis these nine

equations will be used to test how well they predict the observed conductivities in

sediments with a GSD similar to the ones used in leaching in controlled lab experiments.



Chapter 3

Determinations of Hydraulic

Conductivity in Lab Experiments

As discussed at the end of the previous chapter, the well-graded fine sands with

gravels used in leaching differ from the homogeneous sands where the nine equations

have proven to represent observed conductivities. In this Chapter we will use the nine

empirical equations to compute values of conductivities in sediments resembling those

used in leaching and compare these empirical values to actual observations.

This Chapter is divided into three main sections. The first section titled Constant

Head Permeability Tests describes the procedure followed, equipment used, constructed

samples, assumptions made, and calculations done so as to compute the observed conduc-

tivities that constitute the best estimates of conductivities for each sample. The second

section, Results, shows and explains the results of the constant head permeability tests

that indicate that the USBR equation provides the most accurate estimate of hydraulic

conductivity for leaching heaps. The third section, Discussion of Results, provides some

detail about the equations and the impact of changing some of the assumptions made

for the lab experiments.

32
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3.1 Constant Head Permeability Tests

3.1.1 Equipment and Lab Samples

Constant head permeability tests were conducted in accordance with the ASTM

D-2434 standards for granular sediments, as summarized in this section. A Humboldt

HM-3894 permeameter (Figure 3.1) with a cylindrical chamber measuring 15.2 cm di-

ameter by 24 cm height was used for testing. Four different lab samples (OTT, HBB,

MOTG, and MBBG) were constructed using Ottawa sands donated by GEI consultants,

unconsolidated granular material collected from the St. Mary’s renovation site on the

Boston College campus, and Quickrete gravels and sands bought in a local hardware

store. It is important to make the distinction that lab samples refer to the samples

of sands and gravels formed at Boston College, which is different from the samples of

granular material of metal ore that the leaching heaps were formed with.

In theory, every granular medium has a certain hydraulic conductivity X that can

be observed in constant head permeability tests, and the equations that I am researching

approximate that X through a mathematical relationship based on different parameters

derived from GSDs. Samples HBB and OTT have uniformity coefficients of 4.7 and 3.0

respectively and a d10 of 0.17 and 0.30 mm, respectively. Therefore, these samples are

within the region of validity of all nine equations researched in this thesis. Comparing

the observed conductivities from the constant head permeability tests in these samples

to the conductivities obtained through the nine equations highlights the equations that

best predict the observed conductivities.

The OTT and HBB samples were constituted solely from the Ottawa and Quickrete

uniform sands, respectively, and their purpose was two fold. First, the Ottawa sands have

been extensively studied and their hydraulic conductivity estimated as K= 0.05 cm/s

(Lambe and Whitman, 1969), which is the same result I obtained from my constant head

experiments, indicating no bias in my hydraulic conductivity measurements. Second,

experimenting solely with the Quickrete sediments formed by medium to fine sands

allows the evaluation of the underlying assumptions and region of validity implied by

each of the nine equations. GSDs for the OTT and HBB samples appear in Tables

3.1 and 3.2, respectively. In these tables the last sieve, called base, refers to the solid

receptacle at the bottom of the stack. Particles on this sieve were assumed to have a

size of 0.02 mm, corresponding to medium to fine silt.

The other two samples (MOTG and MBBG) were formed by carefully mixing pro-

portions of sediments so as to recreate, as closely as possible, the well-graded sands with

gravels falling in the range of GSDs of the mine samples (Figure 2.9 and 2.10). To form
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Figure 3.1: Assembled Humboldt permeameter, important parts referenced in the
text are identified in black boxes.
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Figure 3.2: Sample setup.
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the MOTG and MBBG samples approximately 8 Kg of sieved unconsolidated sediments

of different sizes (Figure 3.2A) were weighed out (3.2B). These sediments were then

thoroughly mixed by hand in a circular fashion with water at 20◦C so as to simulate

the agglomeration process and to have finer particles adhere to larger ones (forming

pellet-like structures, Figure 1.2). Once the sediments were agglomerated and mixed in

the desired proportions the sample was ready for permeability tests. The GSD for the

MOTG sample appears in Table 3.3 and for MBBG in Table 3.4.

Once the samples were crafted they were placed in the chamber of the permeameter

with the lower valve (or discharge in Figure 3.1) closed and were manually compacted

with a closed fist after each additional four to six centimeters of additional material was

added to the chamber. After the chamber was filled (Figure 3.2C), the top was leveled

and a porous stone was held on top along with a net to prevent material escaping the

chamber while allowing water to drip through. A spring (Figure 3.2D) that applied a

pressure of 1.2-2.4 KPa was placed between the porous stone and the upper cap so as to

prevent density changes and to preserve the mechanical stability of the sample during

testing. After the spring was placed and the top cap closed, the chamber was finally

secured with four knobs, and a vacuum of 15 mmHg (1.8 KPa) was placed through

the upper valve for approximately five minutes so as to get most of the air out of the

chamber. While the vacuum was being held in the chamber, the reservoir was connected

to the bottom valve which was gradually opened until small drops of water started

infiltrating the chamber. This part of the process is called saturation under vacuum and

it was done so as to ensure full saturation (Figure 3.2 E-F).

Table 3.1: OTT GSD

Ottawa monocrystaline fracking sands.

After the chamber was fully saturated, the vacuum was disconnected and the reser-

voir was placed at the upper valve. The next step was to open the bottom valve so that

a continuous flow of water was allowed to pass through the sample via the upper valve

at a certain, constant, hydraulic head (which in this case equals the elevation of the

reservoir above the bottom of the chamber). After the rate of discharge was observed
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Table 3.2: HBB GSD

Homogeneous Quickrete brown bag sands.

Table 3.3: MOTG GSD

Mixed ottawa and gravels.

Table 3.4: MBBG GSD

Mixed Quickrete sands with gravels.
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to remain constant for at least 30 seconds, the sample was interpreted to have reached

steady state and a graduated cylinder with an instrument precision of 10 ml was placed

at the discharge and 10 volumes of water were recorded for 5, 10, 15,..., 50 seconds.

These ten measurements are referred to here as observations of discharge rate. With

these ten observations, ten hydraulic conductivities were calculated through the follow-

ing equation based on Darcy’s law. This equation assumes full saturation of a Newtonian

fluid in mechanically stable samples with constant density:

K =
Q× L
A×H

(3.1)

where Q is the discharge [cc/s], L is the length of the sample [24 cm], A is the cross-

sectional area of the cylindrical chamber (181 cm2), and H is the elevation head [cm].

In reality, the aforementioned assumptions about a fully saturated medium and a me-

chanically stable sample are rarely met in heap leaching. Leaching heaps are not ex-

actly mechanically stable as decrepitation and suffusion are intrinsic consequences of

the leaching process itself (Williams, 2013). Furthermore, oxygen is required for the

chemical reaction to dissolve the metals. Thus, as stated in Chapter 1, full saturation

of lixiviants, besides being difficult and uneconomical, is not recommendable even when

the equations that I am using assume full saturation.

3.1.2 Porosity

After the measurements for discharge rate were completed, the specific yield was

calculated by closing the lower valve, disconnecting the reservoir, placing a graduated

cylinder with a 50 ml precision directly below the lower valve, and opening this lower

valve so as to let the water flow out of the chamber and into the cylinder. The volume of

water drained divided by the total volume of the chamber is the specific yield, which is

used to give an estimate of the sample porosity in the lab experiments of this thesis. This

same procedure was repeated for each sample in a total of 22 experiments (6 experiments

for the OTT sample, 4 HBB, 5 MBBG, and 7 MOTG). Mathematically, this calculation

was done as follows:

n =
V olwater drained
V olchamber

=
V olwater drained

4, 355cc
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3.1.3 Shape Factor

Some of the equations studied in this research make use of a shape factor (SF),

which was estimated by inspection of the sediments forming the samples through a mi-

croscope (Figure 3.3). According to the findings of Fair and Hatch (1933) summarized

in Figure 3.3, a SF of 6.4 corresponding to worn sand grains was chosen for the calcula-

tions of hydraulic conductivity as this value bests describes the grains that constitute the

samples. Fair and Hatch (1933) derived the values that appear in Figure 3.3C by looking

through the microscope at several soil samples with different angularity and sphericity

and estimating a ratio of surface area over volume. Photographs of the grains constitut-

ing the samples from the mine (shown in the next Chapter) show rounded and angular

grains that can also be represented with the SF of 6.4 used in the lab experiments.

Figure 3.3: A SF of 6.4 as studied in Fair and Hatch (1933) and summarized in Panel
C was chosen for the lab samples and assumed for samples coming from the mine.

3.1.4 Observed Permeabilities

The best estimate of observed permeability was calculated for each sample by car-

rying out the following five steps. First, a number of experiments were conducted on

each sample (6 for the OTT sample, 4 for HBB, 5 for MBBG, and 7 for MOTG), and

during each experiment a total of ten discharge observations were made (Figure 3.4A-

B). Second, for each of these discharge observations a permeability was calculated using

(3.1). Third, the logarithm of each of these permeabilities was taken (Figure 3.4C).

Fourth, the average and standard deviation of the 10 log transformed permeabilities
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were calculated. This average is regarded as the observed permeability of a certain

sample in the following chapters. Fifth, a 95% confidence interval was then calculated

for the observed conductivities as shown in Figure 3.4D using the mean and standard

deviation among all observations. The logarithmic transformation is a necessary step

because hydraulic conductivities are lognormally distributed (Kieber, 1966). After the

UCL and LCL were estimated for the observed permeabilities in log scale for each sam-

ple, these values were transformed back to permeabilities using base ten exponentials.

As an example, 7 experiments were conducted on the MOTG sample (Figure 3.4) where

a total of 70 values of permeability (10 for each experiment) result from the discharge

observations. These 70 permeabilities were then log transformed and their average and

standard deviation calculated and used to construct a 95% confidence interval for the

observed permeability of the MOTG sample.

3.1.5 Confidence Intervals for Empirical Equations

The main goal of these lab experiments is to compare the conductivities from the

empirical equations to the ones observed in the experiments and detect which of the

nine equation offers the best estimate of conductivity. To calculate confidence intervals

(CIi) that take into account the range of uncertainties for the calculated permeabilities

the following approach was implemented:

1. Nine permeabilities (Ki) were calculated for each lab sample using the equations

in Appendix A and log transformed afterwards (logKi).

2. Uncertainties (∆ logKi) were calculated for each logKi using the equations in

Appendix B.

3. Confidence intervals (CIs) for each of the nine logKi were calculated using the

following modified version of the naive estimator for means in log normal distri-

butions proposed by Olsson (2007) and McCarthy (2001), treating log ∆Ki as an

estimator for σ:

CIi = 10(logKi±1.96×∆ logKi) (3.2)

To better illustrate this procedure here is an example. The observed conductivity

estimated from all 70 observations on the MOTG sample was 0.033cm/s with a stan-

dard deviation of 0.004cm/s. The USBR equation provided a value of logK = −1.36

for this same sample, and through the absolute error propagation approach an un-

certainty of ∆ logK = 0.31 was found. The confidence interval of the conductivity
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Figure 3.4: Workflow diagram illustrating the procedure to calculate a sample’s ob-
served hydraulic conductivity. (A) A number of experiments conducted on the same
granular material. (B) 10 permeabilities were calculated from 10 discharge observations
in each experiment. (C) All observations from all experiments on the same sample (n)
were log transformed and the mean logKi and standard deviation σ calculated. (D)

95% confidence intervals for the observed permeabilities were calculated.
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estimated using the USBR equation for the MOTG sample was then calculated as

CI = 10(−1.36±1.96×0.31) for a UCL of 0.18 and a LCL of 0.01cm/s.

3.1.6 Ranking and Least Squares Errors

In statistics least squares errors refer to squared differences between actual obser-

vations and the predicted values resulting from a model (Mendenhall, 2009). In this

thesis research, least squares errors are the parameters used to rank the nine equations.

The observed values were the conductivities observed during lab experiments and the

predicted values the conductivities resulting from the nine equations. The squared dif-

ference between these two conductivities in logarithmic space was used to rank the nine

equations in terms of best fit using the following equation:

Ei = (logKi − logKobs)
2 (3.3)

where Ki are conductivities from empirical equations and Kobs the observed conductivity

in lab experiments.

3.2 Results

The results of the lab experiments are summarized in Figures 3.5, 3.6, 3.7, and

3.8. Table 3.5 shows the accuracy and ranking of the nine equations using the least

squares errors calculated using 3.3. According to these results, the USBR equation

provides values of conductivities that most closely represent lab observations for these

two samples.

Figure 3.9 shows the GSDs of all lab samples compared to the range of GSDs from

the mine. Specifically, this figure shows the GSDs from samples MBBG and MOTG

falling within the range of the GSD of the mine. Using (3.1) the observed conductivities

were K = 0.033±0.003 cm/s for sample MBBG (Figure 3.7) and K = 0.033±0.001 cm/s

for sample MOTG (Figure 3.8), and for both samples the equation that best estimated

the observed conductivity was the USBR.
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Table 3.5: Ranking of Equations By Least Squares Errors (E)

Ranking was done in increasing order of the average error for samples MOTG and
MBBG.

3.3 Discussion of Results

3.3.1 Least Squares Errors

When focusing on samples MOTG and MBBG (samples that were most representa-

tive of the GSDs from the mine) the USBR equation offered the most reliable estimates

of saturated conductivities as shown by the lowest average least square errors (Table

3.5). For samples OTT and MBBG the Hazen equation yielded the second best esti-

mates after USBR. For sample MOTG, Kozeny-Carman equation had a least squares

error very close to zero and the USBR equation offered the second best estimate (Figure

3.8B). Lastly, for sample HBB, the Slichter equation had the lowest least squares error,

and once again the USBR equation offered the second best estimate (Figure 3.6B). These

results point out that from the nine equations studied in this thesis, the USBR, Hazen,

Slichter, and Kozen-Carman offered the most reliable estimations of saturated hydraulic

conductivity. However, among these four equations the USBR is the most reliable when

estimating saturated conductivities in sediments similar to the ones used in leaching.

3.3.2 Evaluation of Uncertainties Estimated by The Absolute Error

Propagation Approach

The estimated uncertainty for the Hazen equation as calculated through the abso-

lute error propagation approach is, on average, lower than the uncertainty estimated for

other equations as seen on the short error bars on Figures 3.5C, 3.6C, 3.8C, and 3.7C.
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This is so because the Hazen’s equation only makes use of the d10 percentile in K cal-

culations, and hence the uncertainty estimated through the absolute error propagation

approach only depends on the error associated with the size of the lowest 10th percentile

of the samples GSD (∆d10). As presented in Chapter 2 section 2.4.3, in this thesis it

was assumed a fixed value for all ∆dx of 0.01 mm corresponding to coarse silt particles

due to the inability to measure ∆dx accurately.

3.3.3 Grain Sizes and Uniformity Coefficients

In this subsection the impact that different grain-sizes (dx percentiles) and unifor-

mity coefficients (U) have on the most accurate equations (USBR, Hazen, Slichter and

Kozeny-Carman) is discussed. The d10 percentiles and U for the lab samples were (in

increasing d10 order): d10 = 0.18 mm and U = 4 for HBB, d10 = 0.25 mm and U = 80

for MBBG, d10 = 0.3 mm and U = 3 for OTT, and d10 = 0.4 mm and U = 48 for

MOTG. All d10 are within the same order of magnitude of medium to fine sand in the

Wentworth grain size scale (Chester, 1922) and, as seen on Figure 3.9, samples MOTG

and MBBG have large uniformity coefficients simulating the well-graded materials used

in leaching.

According to Vukovic and Soro (1992), the USBR and Hazen’s equations closely

describe observed values of conductivities in sediments with U < 5 and a d10 between

0.1 to 3 mm, which is the case for samples OTT (d10 = 0.3 mm, U = 3) and HBB

(d10 = 0.18 mm, U = 4) but not for MOTG (d10 = 0.4 mm, U = 48) and MBBG

(d10 = 0.25 mm, U = 80). However, the fact that Hazen and USBR equations closely

predicted the observed conductivities in all samples having small variations in d10 but

very distinct U supports the Vukovic and Soro (1992) hypothesis that the size of the

smaller grains is the primary factor affecting K calculations more so than U .

Slichter’s equation had a low least square error for OTT, HBB, and MOTG. As

previously stated in Chapter 2, Slichter’s equation has been demonstrated to describe lab

observations for samples with effective grain sizes (d10) between 0.01 and 5 mm, which

makes the Slichter equation applicable to all samples. However, the USBR equation

provides more accurate estimates with fewer inputs.

Comparing samples MBBG and MOTG the biggest difference between them is

the rounding of the grains. Sample MOTG was crafted with a mixture of smooth,

well rounded, Ottawa sands and angular gravels (Table 3.3). Looking at Figure 3.8, it

is clear that Kozeny-Carman was the most accurate equation predicting the observed

conductivity in MOTG as shown by a least squares error of almost zero. As explained

by Carrier (2003) and Chapuis and Aubertin (2003), Kozeny-Carman represents a pore
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diameter of an equivalent capillarity through an effective radius, and in the presence of

well-rounded grains it is difficult for isolated pores to exist (Lambe and Whitman, 1969).

Therefore, the results of this thesis point out that Kozeny-Carman’s representation of

effective radius confirms observed permeabilities in well-rounded sediments. However,

since there are no data characterizing the grains used to construct the leaching heaps,

then the Kozeny-Carman equation is considered a poor choice when estimating the

conductivities of the mine samples in the following chapter of this thesis.

Summarizing the findings of this chapter, under the limited diversity in grain size

of granular material available for testing, the accuracy of the nine equations was tested

in only two samples representative of the range of GSDs from the mine. Based on

the least square error between the observed and calculated conductivities on these two

samples, the USBR equation was shown to provide accurate estimates of conductivity

in well-graded sands with gravels. Looking at Table 3.5, even when the USBR had the

lowest least square error other equations such as Hazen, Slichter, and Kozeny-Carman

also provided estimates of conductivities close to the observed values. Therefore, to

make the conclusion that the USBR is the best method for predicting the conductivity

in well-graded sands with gravels more robust, more samples of granular material with

a GSD mimicking those used in the heap should be included in this analysis.
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Chapter 4

Estimating The Hydraulic

Conductivities in Leaching heaps

In this Chapter hydraulic conductivities for the mine samples are estimated using

the nine empirical equations but emphasizing conductivities obtained through the USBR

equation. This is so because, as shown in the previous chapter, the USBR equation

provided accurate estimations of conductivities in controlled constant head permeability

tests for the MOTG and MBBG samples both having a similar GSD to that of the

leaching heaps. In the first section of this Chapter the empirical relationship proposed by

Istomina (1957) to estimate porosity from uniformity coefficient is analyzed considering

the results from lab experiments. In the second section, the reader is presented the

assumptions under which the 95% confidence interval for the hydraulic conductivity

of the heaps is calculated. In the third section, the steps followed in the calculations

of hydraulic conductivity are explained. And in the last section the average hydraulic

conductivities with their standard deviations for the GSDs as calculated by the nine

empirical equations are shown. Focusing on the conductivities estimated by the USBR

equation, the average hydraulic conductivity of the heaps constructed by this mine

operator is between 0.14 and 0.18 cm/s at two standard deviation precision.

4.1 Evaluating Istomina (1957) Porosity Calculations

In the absence of porosity or specific yield estimates for the mine samples, Istomina

(1957) relation was used to estimate hydraulic conductivities. However, these porosity

values are likely to introduce a positive bias in the conductivity estimates. This is so

because in the previous chapter the specific yield (Sp) experiments provided porosities

of 0.17 and 0.13 for samples MOTG and MBBG, respectively. Sample MOTG had a

51
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uniformity coefficient U= 46 and sample MBBG U=80 which using equation 2.2, means

that these uniformity coefficients yield to porosity values of approximately 0.25 for both

samples. As shown by Dimkic (2008), the Istomina (1957) relationship works well when

estimating porosities in homogeneous sandy sediments where low uniformity coefficients

yield high porosities, but for well-graded sands with gravels with high uniformity co-

efficients this relationship seems to overestimate conductivities. As discussed in Chap-

ter 2.2.3 where a sensitivity analysis is presented on the porosity functions for Slichter,

Terzaghi, Fair & Hatch, Kruger, Zunker, and Kozeny-Carman, changes in porosity could

bring changes of up to half an order of magnitude in porosity functions ultimately biasing

the estimations of hydraulic conductivity.

Table 4.1: Quantification of the Bias in Conductivities From Istomina (1957)
Porosity Calculations

In gray are the calculated conductivities using the observed porosities, and in yellow
are the observed conductivities. As shown, some of the most accurate equations (USBR
and Hazen) do not depend on porosity and hence are not affected by a potential porosity
bias. Beyer also does not depend on porosity but provides less accurate estimates. For
the other six equations conductivities are overestimated by up to an order of magnitude.

4.2 Assumptions

Due to incomplete information, the following are key assumptions made about the

leaching heaps:
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1. It is assumed that a porosity close to 0.25 is representative of the granular materials

that make up the mine GSDs. As previously discussed, samples in the mine GSDs

have large uniformity coefficients (U ≈ 50), and therefore according to the findings

of Istomina (1957) summarized in Figure 2.3 and in equation 2.2 the porosity for

granular material with large uniformity coefficients converge to a value of 0.25.

2. A shape factor of SF = 6.4 is assumed for the mine samples and used in lab

experiments as provided by Fair and Hatch (1933). This is consistent with the

photographs of the granular material that form the mine samples provided by the

mine (Figure 4.1).

3. The permeating fluid for the mine calculations is assumed to be water at 20◦C

with a kinematic viscosity of 0.001 Pa · s.

With these assumptions the unknowns in the equations in Appendix A are reduced

to three variables that permit testing the ceteris paribus effect of grain size on hydraulic

conductivity: the dx percentiles, the percentage of grains trapped in between sieves (fi),

and the cumulative percentage of finer grains to a certain sieve (Pi).

4.3 Steps in the Calculations of Hydraulic Conductivities

A workflow diagram that illustrates the methodology to estimate the conductivities

in the mine samples is described in this section and is summarized in Figure 4.2. MAT-

LAB scripts for each of the nine equations in Appendix A and attached in Appendix

C were designed so as to compute nine permeabilities for each of the 874 samples, but

only the distribution of conductivities for the USBR equation is presented here as a

main result of this thesis. The permeabilities estimated with the USBR method were

log transformed and plotted in a histogram, which shows a lognormal distribution of

conductivities for the leaching heaps formed by the mine operator through time. His-

tograms and probability density functions for the other eight equations can be found in

Appendix D.

A 95% confidence interval for the hydraulic conductivity of the heaps is calculated

using the following formula after McCarthy (2001) and Olsson (2007) for a lognormal

distribution of values.

CI = 10

(
µ±1.96 σ√

874

)
(4.1)
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where µ is the simple average of log transformed conductivities estimated in the same

manner as in lab experiments and σ is the standard deviation of the log transformed

distribution of conductivities. Mathematically, these parameters were calculated with

the following formulas according to Olsson (2007) and Brown (2006):

µ =

n∑
i=1

(log(Ki))

n
(4.2)

σ2 =

n∑
i=1

(log(Ki)− µ)2

n
(4.3)

were Ki is the ith hydraulic conductivity calculated by each method over n observations

or GSD samples. Olsson (2007) evaluated how well several point estimators represent the

mean and standard deviation in lognormal populations. According to his findings, defin-

ing point estimators µ and σ in this way leads to accurate estimations of the confidence

interval of any variable that follows a lognormal distribution.

4.4 Results

In this section the average conductivities for the mine samples according to the nine

equations appears in Table 4.2 and the range of conductivities as estimated through the

USBR equation is emphasized in the following figures. Statistically, the hydraulic con-

ductivities for the leaching heaps constructed by the mine operator are lognormally

distributed (Figure 4.3) and have average values between 0.18 and 0.15 cm/s with 95%

confidence (Figure 4.4). This result does not indicate that conductivities for any given

heap should be between 0.18 and 0.15 cm/s, but it indicates that for the period studied

and with the current data the average conductivity of the heaps lays within this range

(Mendenhall, 2009). In the population of estimated hydraulic conductivities, the maxi-

mum hydraulic conductivity is 22.185 cm/s and the minimum 0.012 cm/s with a mean

of 0.49 cm/s and a standard deviation of 1.44 cm/s. Figure 4.5 illustrates a range of

conductivities calculated by the USBR equation for some representative GSDs of the

granular materials used in the leaching heaps.
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Table 4.2: Average hydraulic conductivities for the mine samples through
the nine equations
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Figure 4.2: Workflow diagram illustrating the steps implemented to estimate confi-
dence intervals among the distributions of permeabilities obtained through each of the

nine equations.
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Chapter 5

Conclusion

Nine different equations that calculate hydraulic conductivity from GSDs were

analyzed in this thesis research. Results from lab experiments confirm the claims from

some researchers that Fair and Hatch, Kozeny-Carman, Hazen, Slichter, and Terzaghi

are methodologies that work well estimating observed hydraulic conductivities even when

applied to granular materials with uniformity coefficients and effective grain sizes outside

their region of validity (Carrier, 2003; Salarashayeri and Siosemarde, 2012; Petalas and

Pilakas, 2011; Odong, 2007; Ishaku and Kaigama, 2011). However, in this thesis the

USBR equation proved to be the most precise equation as shown by its low mean squared

error when estimating conductivities in controlled constant head permeability tests.

However, these results are based on a limited amount of samples and thus more data

is needed to draw robust conclusions about the accuracy of this equation in predicting

conductivities of well graded sands with gravels. Even though some studies have pointed

out that the USBR tends to underestimate conductivities when applied to sediments

within its region of validity of U < 5 (Salarashayeri and Siosemarde, 2012; Odong, 2007;

Ishaku and Kaigama, 2011), such significant underestimations were not observed in my

lab experiments. Furthermore, since observed hydraulic conductivities for the leaching

heaps were not included in the mine GSDs it is not possible to determine if the USBR

or any other equation offer estimations that underestimate or overestimate observed

conductivities. Therefore, when applied to the mine GSDs the USBR equation estimates

average hydraulic conductivities for the heaps constructed by the mine operator in the

past five years with an average value between 0.18 and 0.15 cm/s.

Another conclusion drawn from this thesis is that the relationship proposed by

Istomina (1957) for calculating porosity from uniformity coefficients overestimates ob-

served porosities when applied to samples with large uniformity coefficients. This bias

61
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could bias estimates of conductivity by up to an order of magnitude, but the USBR

equation is unaffected as this expressions is not a function of porosity.

The relationship between copper yields and hydraulic conductivities as a function

of grain size in leaching heaps can be explored by including observations of discharge

rates, irrigation rates, and porosities for all the heaps. With the discharge and irrigation

rates one could estimate the degree of saturation of the heap and use it to correct the

values of conductivity from the empirical equations since these assume full saturation.

Given actual porosity measurements of the sediments forming the leaching heaps, the

Istomina (1957) relationship is no longer necessary, which resolves the potential bias

associated with using this mathematical approximation to porosity in six equations

including Kozeny-Carman. Given more samples of granular material with GSDs similar

to the range used in the heaps, the conclusions presented regarding the accuracy of the

USBR equation could be made more robust as in this thesis this result relies on only two

samples of well-graded sands with gravels. The relationship between copper yields and

hydraulic conductivity can be then studied using multiple regressions. According to the

data provided by the mine up to 7% of the variations in copper yields can be explained by

changes in hydraulic conductivity, and after verifying that the USBR equation provides

the best estimates of conductivity for the well-graded sands with gravels used in the

heap, one could back solve the problem to detect the optimum GSD to build the heaps

with so as to control conductivity and optimize the amount of copper recovered from

leaching.

Comparing the results of this thesis with the ones in Yao (2011), the saturated

conductivities estimated through the USBR method (solely as a function of grain size)

correspond well to observations of saturated conductivities in heaps of up to 3 m high.

Specifically, the sediments used in Yao (2011) are homogeneous fine sands with a d20

matching the MOTG and MBBG samples, therefore we can conclude that the results

from the USBR equation are representative of hydraulic conductivities of heaps up to

3 m high with sediments under a pressure of up to 62 Kpa, With higher heaps we

have higher pressures, more consolidation, and smaller permeabilities resulting from the

mechanical rearrangement of particles that is not reflected in the USBR equation. In

unsaturated conditions, the permeability from the USBR equation are from one to two

order of magnitude less than the observed values according to the studies presented in

Yao (2011). Future analysis could be conducted in the calibration of the USBR equation

so as to represent saturated conductivities with a dynamic rearrangement of particles

resulting from larger pressures. Under unsaturated conditions, it is more challenging to

validate the estimates of conductivity from the USBR equation.
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Appendix D

Hydraulic Conductivities For

Eight Equations

In this Appendix the reader is presented with the distribution of hydraulic con-

ductivities estimated by the Beyer, Fair and Hatch, Hazen, Kozeny-Carman, Kruger,

Slicther, Terzaghi, and Zunker equations.
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