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Abstract 

In order to enhance the selectivity of metal nanoparticle heterogeneous catalysts, a 

method for the encapsulation of metal nanoparticles by crystalline nanoporous materials 

was designed and implemented through a wet-chemical, capping-agent-mediated 

encapsulation strategy. Two thermally and chemically stable metal organic frameworks 

(MOFs) with different aperture sizes were chosen as the crystalline nanoporous layers for 

metal nanoparticle (NP) encapsulation. Successful encapsulation and good catalytic 

performance depended on understanding and engineering the interface between the metal 

catalyst core and the nanoporous shell. After the synthesis of the NPs-MOF composite, 

their catalytic activity and selectivity were studied. Two kinds of capping agents 

(polymer and surfactant) were used to demonstrate different mechanisms for NP 

encapsulation. The polymer (polyvinylpyrrolidone, PVP) induced interaction between the 

NP surface and MOF precursors while the surfactant (cetyltrimethylammonium bromide, 

CTAB) controlled the alignment between the metal nanoparticles and MOFs. 

Furthermore, the capping-agent-directed overgrowth could be a general method of not 

only loading various inorganic nanoparticles into MOF single crystals but also bridging 

two porous materials with totally different structures.  

MOF shells were further functionalized by postsynthetic linker exchange. By applying 

the process, a new concept was introduced for the formation of enlarged pore apertures 

by linker dissociation during MOF linker exchange, as demonstrated by the postsynthetic 



 
 

encapsulation of species much larger than the pore aperture of the MOF structure. Kinetic 

studies of linker exchange rely on the competition between associative and dissociative 

linker exchange mechanisms. It was found that guest encapsulation was enhanced under 

conditions that favored the dissociative pathway. Through kinetics studies, linker 

exchange rate was also found to vary in different solvents. The different exchange rates 

were then used to create hierarchical porosity in MOF structure, and a double-solvent-

mediated overgrowth strategy was designed to form hollow and mesoporous MOF. The 

results help to provide new ideas for nanopores related heterogeneous catalysis. The 

discussion of active metal NP cores with a nanoporous shell, as a frontier core-shell 

material, may benefit further study in developing highly selective catalysts. 
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Chapter 1: Introduction 

Catalysts change the pathways of a chemical reaction, lowering the activation 

energy and accelerating the reaction rate. Among them, the heterogeneous catalysts are at 

the center of many industrial processes such as oil refining, chemical manufacturing, 

pollution treatment, and energy conversion1. The importance of studying heterogeneous 

catalysis as a fundamental topic of research has quickly gained momentum in recent 

years as scientists investigated its significant impact on the surface electronic structure 

and catalytic properties of nanomaterials.  

 

A new approach to enhance the performance of a catalyst is to fabricate the 

nanoparticle catalysts into a core-shell architecture. This type of core-shell nanostructure 

consists of inner core nanoparticles encapsulated by porous materials. Various types of 

metal-porous material core-shell nanostructures have been synthesized with shell 

materials. My research focus on metal-organic frameworks (MOFs), also known as 

porous coordination polymers (PCPs), which are emerging as a class of very promising 

crystalline microporous materials. MOF have received great interest due to the use of a 

set of well-established principles of coordination chemistry. Other important types of 

porous materials, such as zeolite and mesoporous silica, however, this is beyond the 

scope of the thesis and they will not be discussed here. 

 
 
1.1 Metal–organic Frameworks as Shell for Nanoparticle Encapsulation 

The global impact of heterogeneous catalysis is estimated to be $10 trillion per 

year2. At the center of heterogeneous catalysis, the majority of industrial catalysts contain 
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active components, typically a metal, often in the nano-realm; usually smaller than 20nm 

dispersed on high surface area supports. The high performance of nano-structure catalysts 

has attracted wide efforts to develop methods for their synthesis and characterization, 

making this area of study an integral part of nanoscience3. Such catalysts were 

traditionally prepared by impregnation of cheaper high-surface-area support, commonly a 

porous metal oxide, with a metal salt followed by oxidation–reduction treatments4. 

Unfortunately, this approach leads to the formation of nanoparticles with wide size 

dispersity and shapes displaying a distribution of surface sites capable of promoting 

several different catalytic reactions. No molecular control on the nature of the active sites 

of the catalysts therefore only limited control on the selectivity of reactions can be 

achieved. 

 

In recent years, metal nanoparticles (MNPs), which provide a large number of 

active catalytic centers, have been broadly explored in the search of selective and 

enhanced catalytic performances. Due to high surface energies and large surface areas, 

these MNPs are thermodynamically unstable, and therefore, protecting capping agents are 

often used to stabilize them during synthesis5. While the use of capping agents to 

decrease the surface energy and prevent particle from aggregation and deactivation, it is 

still a challenge to maintain pure active sites on metal surfaces. As we look to the future, 

heterogeneous catalysis increasingly holds the key to “green chemistry” which is promise 

of curbing pollution from chemical and refining processes6. The way to the goal is 

through tailoring the structure of active and selective reaction sites of MNPs catalysts. 
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The specific catalysts can convert reactants directly to products without generating by-

products that typically end up as harmful emissions7 or as wastes8. 

 

The concepts of process efficiency in traditional chemical industry focus largely 

on chemical yield in 20th century. Nowadays the interest shift to the trend toward “green 

chemistry.” The modern concept of process efficiency is widely accepted to require 

alternative and environmentally friendly catalytic processes. The alternative catalysis 

focus on that assigns economic value to eliminating waste at the source and avoids the 

use of toxic and/or hazardous substances9. A primary cause of waste generation is the use 

of stoichiometric inorganic reagents in the fine chemical manufacturing industry; for 

example, metals (Na, Mg, Fe, Zn) and metal hydrides (LiAlH4, NaBH4) are used for 

stoichiometric reductions, and permanganate or chromium (VI) reagents are used for 

oxidations. The development processes of catalytic hydrogenation and oxidation based on 

H2, O2, H2O2, CO and CO2 as the green sources are good examples of highly efficient 

and greener processes. In addition, milder reaction conditions, e.g. low reaction 

temperature and pressure, of these green processes is also advantageous9. Fortunately, the 

rapid growth and improved understanding of nanoscience and nanotechnology has 

facilitated the precise control of NPs synthesis with variable sizes, shapes, and chemical 

compositions. The ability to control nano-architecture affects the activity (higher activity 

afford lower reaction temperature and pressure) and selectivity (higher selectivity afford 

higher atom efficiency) in the nanocatalyst. Combining nanotechnology with green 

chemistry will be a key contributor to an environmentally sustainable future. 
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Figure 1.1 Core-shell architecture of nanoparticle catalyst. Metal nanoparticle core and 

crystalline nanoporous shell are used to demonstrate the core-shell architecture. The 

porous shell materials ensure reactant accessibility to the active metal surface and may 

increase the durability of the catalysts. The crystalline shell materials with homogeneous 

pore structure could potentially provide selectivity for reactants and products. 

 

Core-shell architecture of nanoparticle catalyst could be a new approach to 

enhance catalytic performance as well as preventing the aggregation of the active centers 

(Figure 1.1). This type of core-shell nanostructure consists of inner core nanoparticles 

encapsulated by porous materials. The porous shell materials ensure reactant accessibility 

to the active metal surface and can increase the durability of the catalysts. Several 

possible catalytic enhancements could be tuned by the shell including introducing size 

selectivity toward different molecules, controlling the diffusion rate of the molecules, 

manipulating the orientation and configuration of the surface molecules, or enriching the 

reactants on the catalyst surfaces10. Among porous materials, crystalline nanoporous 

materials are good candidates for these approaches. Metal-organic frameworks (MOFs), 

in particular, have been proved to be able to regulate molecular diffusion, sorption, 



5 
 

orientation and conformation11. MOFs synthesized through metal secondary building 

units (SBU) and organic linking species, have become new and promising crystalline 

porous materials12-16 (Figure 1.2). The organic linkers are ditopic or polytopic organic 

ligands that can bind to metal-containing SBUs to generate crystalline framework 

structures with open porosity. The compositions and topologies of MOFs can be vastly 

varied with over 20,000 different MOFs being reported in the past decades17. Based on 

the geometries of the organic linkers and coordination modes of the inorganic metal ions 

or clusters of metal ions, MOF structures can be designed according to targeted 

properties18-20. A key structural feature of MOFs is the ultrahigh porosity (up to 90% free 

volume) and incredibly high internal surface areas, extending beyond a Langmuir surface 

area of 10 000 m2 g-1,17 which play a crucial role in functional applications. These 

features endow MOFs with a wide range of functions such as, gas storage21, chemical 

separation21-22, drug delivery23-24, and heterogeneous catalysis11,25.  

 

Generally, porous MOFs show microporous characters (<2 nm) whereas the pore 

sizes could be tuned from several angstroms to several nanometers. MOF Pore size 

control is typically achieved by controlling the length of organic linkers. In addition, 

versatile framework functionalities beyond their accessible porosity can arise from the 

metal components (e.g. magnetism, and catalysis), organic linkers (e.g. luminescence, 

nonlinear optics, and chirality) or a combination of both21,26-30. The tailorable chemistry 

of the pores and cavities has made MOFs suitable for the encapsulation of various 

functional species. The uniform and tunable nature of the pore sizes of MOFs provide an 

ideal platform for catalytic applications of functionalized guests within MOF 
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composites31-32. Compared with other porous materials, MOFs as a shell material offer 

unique advantages for catalysis33: (i) crystalline nanopores provide a confinement effect 

and shape selectivity; (ii) proper organic linkers can offer interaction with nanoparticles 

or substrates; (iii) the great diversity and abundance of MOF structures enhances the 

selection of an appropriate MOF as the host matrix; (iv) milder synthetic conditions.  

 

 

Figure 1.2 General components and structure of MOFs. The infinite crystalline lattices of 

MOFs generally involve two main components of inorganic centers (metal ions or 

clusters) and organic linkers. Various MOF structures could be formed including one 

dimensional (Chain coordination), two dimensional (Layered coordination), and three 

dimensional structure (3D framework)12. 

 

1.2 Synthetic strategies of Core-Shell NPs-MOF Composites 

Two approaches to form core-shell NPs-MOF Composites have been reported: 

post-synthetic impregnation34-37 and encapsulation method38-43 (Figure 1.3). The 

traditional and widely used approach for NPs-MOF Core-shell composites is post-

synthetic impregnation. This method involves MOFs serving as a template to provide 



7 
 

confined spaces for the reduction of metal salts to form NPs from the diffusion of metal 

precursors into the pores, ultimately encapsulating NPs. Nevertheless, the effective 

control over the dispersity, size and composition of metal NPs within MOFs, as well as 

the morphology and size of the crystalline MOFs can still present a challenge. Moreover, 

the formation of metal NPs on the exterior of the MOF, along with damages44 to the 

MOF nanostructures during the metal ion diffusion and NP formation process can lead to 

a loss in the intrinsic selectivity of MOF-based catalysts by causing the formation of 

defects. 

 

 

Figure 1.3 Two synthetic techniques of NPs-MOF composites. The “post-synthetic 

impregnation” approach involves the introduction of metal precursors into the pre-

synthesized MOF matrix and the subsequent reduction or decomposition of the 

precursors to yield metal particles deposited in the cavities. The second approach is the 

“NP encapsulation method” which involves the assembly of MOF precursors around pre-

synthesized metal nanoparticles.  
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Following standards developed for the synthesis of metal-zeolite composites45, 

gas-phase infiltration, solid-state grinding, and liquid-phase impregnation methods were 

adopted by researchers to deposit metal nanocrystals into the cavities of MOFs. Fischer 

and co-workers used chemical vapor deposition (CVD) to introduce gas-phase 

organometallics as the metal precursors46-48. In a typical synthesis, the chosen MOF is 

exposed to the vapor of gas-phase organometallic precursors under static vacuum. The 

volatile precursors diffuse into the pores of the MOFs, and then either hydrogen is 

introduced to reduce the organometallics or high temperature is applied to thermally 

decompose the precursors to form metal nanoparticles in the nanopores. Although some 

of the particles are of sizes larger than the pore size, most of the particle sizes are 

regulated by the pore confinement. Based on the same concept, Haruta group and Xu 

group developed a solid grinding approach to load metal particles into MOFs34,49. 

Volatile organometallic dimethyl Au(III) acetylacetonate has been used as a metal 

precursor to deposit Au clusters into different MOFs including MIL-53 (Matérial Institut 

Lavoisier, is comprised of aluminum nitrate and 1,4-benzenedicarboxylates), MOF-5 

(sometimes called IRMOF-1, is a MOF formed from Zn4O nodes with 1,4-

benzodicarboxylic acid struts between the nodes), and HKUST-1 (Hong Kong University 

of Science and Technology, formed from copper and  1,3,5-benzenetricarboxylic acid). 

Surprisingly, this facile and effective method yielded nanoparticles with smaller sizes 

(∼2.2 nm) than the CVD method, and these nanoparticles exhibited high catalytic 

activities in oxidation reactions34,49. 

 

javascript:Jmol.controls._click(null,29);
javascript:Jmol.controls._click(null,30);
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Although the CVD and solid grinding methods have achieved great success, the 

precursors are limited to volatile species, and some volatile organometallic precursors are 

often sensitive to air and water. This can be tackled by utilizing the liquid-phase 

impregnation method first used by Xu and coworkers35-37,50. In a typical synthesis, a 

porous support is immersed in the solution containing the transition metal precursors, 

usually in the form of chloride or nitrate salts. The metal ions infiltrate into the pores by 

capillary force and are subsequently reduced to yield the deposited metal nanocrystals by 

a reducing agent, typically hydrogen or sodium borohydride. A general drawback of this 

approach is metal particle formation on the external surface of the MOF crystals. To 

avoid this problem, Xu’s group developed a double solvent method, in which a small 

amount of aqueous precursor solution is absorbed into the more hydrophilic pores of the 

employed MOFs, while an excess of organic solvent was introduced to limit the amount 

of precursors absorbed on the external surface of the MOF crystals, thus minimizing the 

outside deposition of metal (Figure 1.4)36. Pt@MIL-101 was synthesized by this method 

and used as catalyst for hydrogen generation from ammonia borane36. The morphology 

and composition control of the nanocrystals is another relatively challenging task in these 

post-synthetic impregnation approaches. Alloy metal nanoparticles can sometimes be 

obtained by the co-reduction of two different metal precursors, but morphology is not 

controlled37. One of the very few preliminary methods to control these critical parameters 

was also developed by Xu and co-workers. The formation of shaped bimetallic metal 

nanocrystals embedded in MIL-101 was achieved by using two organometallic precursors 

and CO-directed reduction51. The preferential binding of CO on 111 facets led to the 
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formation of Pt and Pd polyhedral. The nanocrystals showed metal segregation, with a 

Pd-rich core and a Pt-rich shell.  

 

 

Figure 1.4 Schematic representation of impregnation of Pt nanoparticles into MIL-101 

matrix by the double solvent method.  The method used in this work for avoiding MNPs 

aggregation on external surfaces of MIL-101 framework. It is based on a hydrophilic 

solvent (water) and a hydrophobic solvent (hexane), the former containing the metal 

precursor with a volume set equal to or less than the pore volume of the adsorbent (MIL-

101), which can be absorbed within the hydrophilic adsorbent pores36. 

 

Regardless of the general lack of shape and composition control, the post-

synthetic impregnation strategy is an efficient way to generate ultra-small metal 

nanocrystals in MOFs. Some of the metal nanoparticles might be bigger than the pores 

but are generally restrained from growing very big due to confinement by the frameworks. 

This approach is facile and scalable. Nevertheless, for certain catalytic applications, 

composition and shape control is more important than ultra-small nanocrystal sizes. In 

these reactions, the MOF plays a more important role in interacting with the reactants, 
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products, and intermediates. Therefore, different approaches need to be developed for 

these applications. Furthermore, the locations of metal particles within the MOF crystal 

are often random and unpredictable in the post-synthetic impregnation method. The 

loading amount of metal is also limited, because too much metal will cause the 

degradation of the MOF matrix. 

 

Currently, a new method was developed to completely confine the NPs within the 

MOF crystal, without forming NP aggregates on the MOF exterior. The encapsulation 

method applies pre-formed colloidal nanoparticles which are then encapsulated38-43; the 

synthesis of monodispersed metal NPs prior to their incorporation into the MOF synthesis 

conditions. The pre-formed NPs are then introduced into the MOF precursor solution to 

form a MOF coating. Complete encapsulation of NPs therefore becomes possible. The 

encapsulation method could be a good platform for developing new heterogeneous 

catalyst toward novel selectivity and functionality by tuning the molecular environment 

“on” the active metal surface.  

 

Compared with the post-synthetic impregnations which deposit metal precursors 

into MOF crystals, the encapsulation methods assemble MOFs around preformed metal 

nanocrystals has significant advantages. The nanoparticles are not inside the cavities, and 

thus the particle size will not be restricted and it will not cause damage to the MOF 

matrix during the formation of the nanocomposite. During the nucleation and growth of 

MOF crystals, the metal nanoparticles are incorporated into the MOF matrix. The size, 

shape, chemical composition, and active properties of the metal nanoparticles are 
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preserved after the encapsulation. This approach provides more control in catalytic and 

optical applications because of the better control of shape and composition of the 

embedded nanoparticles. Also, control over the spatial distribution of the encapsulated 

nanoparticles such as the configuration of one nanoparticle in one MOF shell can be only 

achieved in the encapsulation approach.  

 

The strategy is straightforward, however, in this approach, the controllable 

overgrowth of MOFs on nanoparticles rather than self-nucleation is challenging, due to 

the large interfacial energy barrier between the two materials. Many synthetic parameters 

need to be considered and optimized, including the interactions between the MOF and 

nanoparticle surfaces, the capping agents on the surface of metal nanoparticles, the 

interface between the MOF and nanoparticle surface, and the compatibility of the 

nanoparticles and the MOF synthesis conditions. Within the synthetic parameters, 

providing a proper interaction between the MOF and nanoparticle surface is the critical 

parameter of this approach because MOFs tend to self-nucleate and form individual 

particles rather than overgrow on the metal particles. An additional challenge is that the 

structure control of MOF shell is not optimized. NPs may be surrounded by a 

polycrystalline MOF shell during encapsulation. The polycrystalline MOF shell may 

have defects or cracks which can cause loss of selectivity for heterogeneous catalysis.  

 

1.3 Capping Agent Mediated Nanoparticle Encapsulation 

NPs-MOF composites formed by encapsulation require certain interactions to 

compensate for interfacial energy differences between MOF precursors and the metal 
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surface of NPs. Organic capping agents like surfactants and polymers on the surface of 

NPs were found to be the bridge for the necessary interaction. The organic capping 

agents act as a protective barrier maintaining the separation of the NPs and initiating and 

attracting MOF growth on their surface. In 2011, Professor Akamatsu’s group first 

developed the encapsulation method by loading Au nanoparticles prepared by 11-

mercaptoundecanoic acid (MUA) into MOF [Cu3(btc)2]n
39 (formed from copper ions and  

1,3,5-benzenetricarboxylic acid). They found the encapsulation mechanism starts from 

the copper ions binding on MUA. The high concentration of copper ions then triggers the 

self-assembly of MOF framework around NPs. In 2011, PVP coated NPs were used as an 

encapsulation agent in the formation of ZIF-8 (Zeolitic Imidazolate Framework, a MOF 

made by zinc ions coordinated by four imidazolate rings) crystals containing metal NPs42. 

PVP and MUA may provide certain interactions between NPs and the surfaces of the 

growing MOF crystal. Due to the successful encapsulation of NPs-MOF composites, 

interfacial control might be feasible by using the correct capping agents. The 

understanding and engineering of the interface between the metal catalyst core and the 

nanoporous material shell will be critical to the catalytic performance52. The structure of 

the interface may change the sorption behaviors of reactant molecules to the catalyst 

surface which significantly affects the yield and selectivity of the desired products.  
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Figure 1.5 Illustration of a MOF anchor onto a self-assembled monolayers (SAM). The 

major interaction is the coordination of the exposed functional groups of the SAM to the 

metal centers of the MOF53. 

 

An understanding of interfacial surface chemistry in MOF synthesis is the first 

step toward interfacial control. For the coordinative attachment of MOFs, the same or 

similar binding groups as within the respective materials should be on the surface. 

Several methods exist for the functionalization of surfaces, such as the hydroxylation of 

metal oxide surfaces. A more flexible and efficient method is the use of self-assembled 

monolayers (SAM), which are ordered molecular assemblies spontaneously formed by 

the chemisorption of suitably functionalized molecules onto the surface of substrates54-55. 

If the respective molecules carry coordinating groups at the other end, the respective 

monolayers can act as seed layers for MOF growth (Figure 1.5)53. Huo and co-workers 

studied the oriented growth of ZIF-8 on a patterned SAM on Au (111) surface56. The Au 

(111) substrate was covered by a SAM of 1-octadecanethiol (ODT), and the rest of the 
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area was passivated by 16-mercaptohexadecanoic acid (MHA). It was found that ZIF-8 

preferentially grew on the low-energy ODT-patterned area rather than the high-energy 

MHA region. The crystal orientation was affected by the odd-even effect for SAMs. The 

oriented growth of ZIF-8 only occurred on the alkane thiol-functionalized Au surface 

with C12, C16, and C18 carbon chain lengths. The oriented growth of the ZIF-8 crystals 

was found to result from the fast crystallization of the nuclei triggered by the specific 

SAM surfaces. The studies of liquid-solid interface, MOF nucleation, and MOF growth 

provide knowledge of the formation mechanism at molecular level. The knowledge can 

be used to guide the future development of MOF composite materials.  

Recently, our group reported a new proof-of-concept colloidal synthetic method 

for core-shell composites with controlled alignment between metal NPs and MOFs43 

(Figure 1.6). The surfactant cetyltrimethylammonium bromide (CTAB) was chosen to 

control the interface and facilitate the overgrowth of ZIF-8 on well-defined Pd and Au 

nanocrystals. The lattice constants of the precious metal core and the ZIF-8 shell differ by 

almost an order of magnitude. The metal nanocrystals were individually encased in single 

crystalline ZIF-8 to generate the core-shell structure in a one-to-one fashion. An 

alignment between the (100) planes of the metal and the (110) planes of ZIF-8 was 

observed, demonstrating the first example of lattice alignment between a metal 

nanoparticle core and a MOF shell. This surfactant-directed overgrowth could be a 

general method to fabricate various inorganic nanoparticles in MOF core-shell structures 

with controlled alignments. 
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Figure 1.6 SEM, scheme and TEM images of controlled alignment between Pd NPs and 

ZIF-8. SEM image of Pd nanocubes individually incased in single crystalline ZIF-8 

particles. The scheme shows the alignment between the Pd core {100} and ZIF-8 shell 

{110}. TEM image of Pd-ZIF-8 shows the accordance with the illustration43.  

 

1.4 Functionalization of NPs-MOF Composites 

 

 

Figure 1.7 General scheme for the postsynthetic modification (PSM) of MOFs. PSM is 

the chemical modification of a framework after it has been synthesized57. 

 

NPs-MOF Composites could be further functionalized by modifying MOF shell 

after MOF formation. Postsynthetic modification (PSM) (Figure 1.7) and linker/node 

exchange (Figure 1.8) have become powerful tools to engineer MOFs57-58. PSM is 
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defined as the chemical modification of a framework after it has been synthesized while 

linker/node exchange is a framework transformation in which the linkers or nodes of a 

parent framework are exchanged with a desired linker or metal node. Such postsynthetic 

processes could be used to form a basis to extend the applications of NPs-MOF core-shell 

composites. The extended applications rely on tailored chemical functionality and 

structure in the pores.  

 

 

Figure 1.8 General scheme for the linker and node exchange of MOF. Linker/node 

exchange is a framework transformation in which the linkers or nodes of a parent 

framework are exchanged with a desired linker or metal node58. 

 

PSM strategies for MOFs were developed from mesoporous silica, which have 

long been functionalized after synthesis59. The process exploits the abundant silanol 

groups present on the mesoporous silica surface. MOFs offer even more versatility for 

postsynthetic transformations due to their functionalizable organic linkers and more 

diverse coordination chemistry60. The most common chemical handle for covalent PSM 

of MOFs is amines, particularly 2-aminoterephthalate for MOF-5 and UiO-66 (University 

of Oslo, formed from Zirconium and 1,4-benzodicarboxylic acid). For example, 
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Rosseinsky and coworkers executed the first dual covalent and coordinate covalent 

modification using IRMOF-3 by converting the free amine groups into Schiff base 

ligands with salicylaldehyde. The resulting chelator was metallated with VO(acac)3 and 

the material was examined as a heterogeneous oxidation catalyst (Figure 1.9)61. 

Coordinative PSM uses the unoccupied sites found in many MOFs such as HKUST-1 and 

MIL-101 (Matérial Institut Lavoisier, is comprised of trimeric chromium (III) and 1,4-

benzenedicarboxylates) to datively bind functional molecules. Postsynthetic linker 

exchange has been demonstrated in a variety of MOFs and can be a route to frameworks 

that cannot be synthesized de novo62.   

 

 

Figure 1.9 A specific example of PSM on IRMOF-3 by converting the free amine groups 

into Schiff base ligands with salicylaldehyde and sequentially metallated with VO(acac)3. 

The material was examined as a heterogeneous oxidation catalyst61. 

 

While PSM is often effective for circumventing problems associated with direct 

MOF preparation57,60, replacement of linkers is another viable strategy. It has variously 

been termed “stepwise synthesis63”, “bridging linker replacement63”, “post-synthetic 

exchange64”, isomorphous ligand replacement65, and stepwise ligand exchange63. 
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Solvent-assisted linker exchange (SALE)58 as it highlights the importance of the solvent 

during linker exchange. Conceptually SALE occurs at the solid-solution interface; a 

parent MOF is placed in a solution containing a second linker and a daughter MOF 

retaining the parent MOF topology is obtained. The pore environment can also be readily 

controlled and modified via SALE. Karagiaridi et al. demonstrated that pore functionality 

could be readily controlled in zeolitic imidazolate frameworks (ZIFs)66. The 2-

ethylimidazole (eim) linkers in Cd(eim)2 (CdIF-4), a ZIF possessing RHO topology and 

Cd2+ nodes, could be exchanged for nitroimidazole (nim) and 2-methylimidazole (mim) 

linkers to form Cd(nim)2 (CdIF-9), and Cd(mim)2 (SALEM-1) respectively. The SALE 

reactions that occur between CdIF-4, CdIF-9 and SALEM-1 are summarized in Figure 

1.10. The importance of the study demonstrates that some of the most robust MOF 

structures known are indeed amenable to SALE. 
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Figure 1.10 A specific example of pore environment modification through SALE in ZIFs. 

The study demonstrates that SALE could modify functionality of MOF pore even on 

some of the most robust MOF structures. 

 

PSM and SALE have the potential to enhance the performance of metal-MOF 

structures for catalysis by adding functionality that could (1) dock substrates by 

molecular recognition67, (2) act as acid/base catalytic sites, or (3) bind transition metals 

for tandem catalysis with the metal core. Since many functional groups of interest for 

these purposes bind transition metals, they may be considered a nuisance during metal 

nanocrystal encapsulation, during which they could interfere with proper placement in the 

MOF crystals and/or be metalated and hence not available for further chemistry. Linker 

exchange allows MOF synthesis and linker functionalization to be decoupled and 

therefore is an attractive route for adding functionality to the linkers of NPs-MOF 

composites.  

 

In addition, solvent effects observed in coordination chemistry suggest that the 

solvents could have a strong directing effect on the pathways of formation or 

decomposition of MOFs. Varying the solvent could alter the formation energy of MOFs, 

stabilize intermediates and transition states, and even provide new pathways from its 

direct participation in elementary reactions. The solvent has been observed to affect many 

properties of MOFs, such as their stability, crystal sizes and shapes, as well as the rates of 

crystal growth and post-synthetic ligand and ion exchange.64,68-71 The solvent effect could 
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also be utilized as a part of the synthetic toolbox for adding more functionalities to NPs-

MOF composites. 

 

My research goal is to demonstrate the concept of new NPs-MOF catalysts by (1) 

studying the selectivity and activity of NPs-MOF core-shell architecture (2) study the 

formation mechanism of NPs-MOF composite (3) further improve and create more useful 

core-shell architecture by applying the formation mechanism we learned. This study 

could potentially benefit the design of heterogeneous catalyst in the future by providing 

more precise control over the NPs, nanoporous materials, and interface between them. 
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Chapter 2: Core-shell NPs-MOF composites 

The proof of concept of my research is to study selectivity and activity of NPs-

MOF core-shell architecture. In order to fulfill it, my strategy is to choose two thermally 

and chemically stable MOFs which have different aperture sizes. Then I should figure out 

the method for NP Encapsulation. Finally, I can test selectivity and activity over the new 

NPs-MOF catalysts I synthesized. 

 

2.1 The criteria of MOFs for catalysis 

Core-shell NPs-MOF composites formed by encapsulation could potentially have 

benefits for catalytic performance especially for size selectivity due to the inherent 

selective sieving of the MOF cages. Three areas of control are available to increase 

selectivity performed on the surface of NPs (Figure 2.1). First, the pore and aperture size 

could be controlled by changing the linkers imparting stricter molecular size constraints. 

Second, the chemical properties of the MOF pore could be controlled by functionalizing 

the linkers. Third, the properties of the metal surface could be controlled by changing the 

shape and composition of the metal core. Here, we choose the first type of control to 

demonstrate the concept of reactant selectivity provided by the MOF for catalytic 

purposes. The idea is to test the size selectivity of reactants by controlling the pore size 

and structure of MOF shell allowing only those of the correct size to pass through. The 

option of the correct MOF with the appropriate pore size and stability will be necessary. 
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Figure 2.1 Illustration of interface of core-shell NP-MOF composites. Three types of 

controls for catalytic selectivity could be performed on the surface of NPs. Green dashed 

triangle illustrates the control of pore size and structure of MOF shell. Red dashed circle 

illustrates the control of chemical property of MOF shell. Blue dashed line illustrates the 

control on metal surface.  

 

Zeolitic imidazolate frameworks (ZIFs) and Zr-based MOFs (UiOs, University of 

Oslo) are two chemically stable subclasses of MOF materials. ZIF-8, a subclass of ZIFs, 

is one of the few commercially available MOFs due to its great potential in gas 

separation72-73 and gas storage74-75. The high thermal and chemical stability of ZIFs 

comes from their zeolite-like structures. Imidazolate bonds of ZIFs formed by metal 
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centers (Zn(II) or Co(II)) and linkers (imidazole derivatives). The bond angle of metal-

linker-metal is close to 145°, which is similar to that of the Si-O-Si angle in many 

common zeolites76. On the other hand, highly oxophilic metals, such as group four 

elements with high oxidation state have been presented as a route to form stable MOFs. 

Zirconium, one of good examples of common transition metal atoms on earth, is highly 

resistant to corrosion and has a high affinity for hard oxygen donor ligands77. UiO-66, a 

Zr(IV)-based MOF, is therefore one of the most stable MOF thus far78.  

 

Monodisperse ZIF-8 and UiO-66 crystals with sub-micron sizes have both been 

reported. ZIF-8 consists of extended three-dimensional structures, characterized by their 

sodalite zeolite-like structure, constructed from tetrahedral zinc ions bridged by 

imidazolate linkers. The pore structure of ZIF-8 features large cavities (11.6 Å) and small 

apertures (3.4 Å)76. UiO-66 is constructed by Zr6O4(OH)4 secondary building unit (SBU) 

and 1,4-benzenedicarboxylate (BDC) as the organic linkers78. The structure of UiO-66 

shows that it is composed of octahedral and tetrahedral cages in a 1:2 ratio. The cavities 

of octahedral cage is 11Å and tetrahedral cage is 8 Å found from structural modeling78. 5 

Å triangular windows connecting the cages was determined by N2 adsorption79. A variety 

of ZIF and UiO family materials with different pore structures and linker functional 

groups have been found. The variety of pore sizes and high stability of ZIFs and UiOs 

family make them ideal for our purpose.  
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2.2 Material and Methods 

Chemicals and Materials:  

Zirconium(IV) chloride (ZrCl4, Aldrich, 99.5%), terephthalic acid (Aldrich, 98%), 2-

aminoterephthalic acid (Aldrich, 99%), acetic acid (Sigma-Aldrich, 99.7%), zinc nitrate 

hexahydrate (Zn(NO3)2•6H2O, Sigma-Aldrich, 99%), 2-methylimidazole (Sigma-

Aldrich, 99%), polyvinylpyrrolidone (PVP, Mw~40,000, Sigma-Aldrich), N,N-

Dimethylformamide (Sigma-Aldrich, 99.8%), ammonium tetrachloroplatinate (II) 

((NH4)2PtCl4, Sigma-Aldrich, 99%), cyclohexene (Sigma-Aldrich, 99%), cis-

cyclooctene (Sigma-Aldrich, 95%), tetramethylammonium bromide (N+(CH3)4Br-, 

Sigma-Aldrich, 99%), ethylene glycol (Sigma-Aldrich, >99%) were purchased from the 

indicated sources and used without further purification. Hydrogen (Airgas, 99.999%), 

ethylene (Airgas, 99.995%) and helium (Airgas, 99.999%) were used for heterogeneous 

gas phase catalysis. 

 

Characterization:  

Transmission electron microscope (TEM) images were obtained on JEOL JEM2010F 

operated at 200 kV.  

 

Synthesis of PVP Capped 5 nm Pt Nanocrystals:  

The synthesis was carried out following the previous report with modifications80. A total 

of 0.025 mmol of Pt ions (NH4)2PtCl4, 0.75 mmol of tetramethylammonium bromide, 

and 0.5 mmol of polyvinylpyrrolidone (in terms of the repeating unit; Mw 40000) were 

dissolved into 5 mL of ethylene glycol in a 25 mL round-bottom flask at room 



26 
 

temperature. The mixed solution was stirring and heated to 200°C in an oil bath for 20 

minutes.  

 

Synthesis of ZIF-8:  

5 mL 30 mM 2-methylimidazole and 5 mL 30 mM Zn(NO3)2 ‧ 6H2O and kept 

undisturbed at room temperature for 24 hours. The isolated samples were washed three 

times in methanol and dried in a vacuum oven at 100 °C overnight. 

 

Synthesis of PVP coated 5nm Pt NPs-ZIF-8 composite:  

100 L of 1 mg/mL of the methanol solution of PVP capped Pt particles was mixed with 5 

mL 30 mM 2-methylimidazole and 5 mL 30 mM Zn(NO3)2‧6H2O and kept undisturbed 

at room temperature for 24 hours. The isolated samples were washed three times in 

methanol and dried in a vacuum oven at 100 °C overnight. 

 

Synthesis of UiO-66:  

In a typical synthesis reaction for UiO-66, 18.6 mg (0.08 mmol) ZrCl4 and 13.3 mg (0.08 

mmol) terephthalic acid were dissolved in 8.622 mL DMF, then 1.378 mL acetic acid 

was added into the solution to make the final volume to 10 mL. The solution was 

transferred into a 20mL scintillation vial and heated for 24 hours in a 120 oC oil bath. 

After cooling down, the formed UiO-66 was collected by centrifugation. The isolated 

samples were washed three times in methanol and dried in a vacuum oven at 100 °C 

overnight. 
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Synthesis of PVP coated 5nm Pt NPs-UiO-66 composite:  

Following a similar procedure as the synthesis of UiO-66, another 1 mL of 0.25 mg/mL 

of the DMF solution of PVP capped Pt particles was added the UiO-66 synthetic solution 

to make the final volume to 10 mL. The solution was transferred into a 20mL scintillation 

vial and heated for 24 hours in a 120 oC oil bath. The isolated samples were washed three 

times in methanol and dried in a vacuum oven at 100 °C overnight. 

 

Catalysts Preparation:  

All nanostructures were homogeneously diluted with mesoporous silica (MCF-17) by 

mixing them together as a solution in ethanol, with stirring and then drying the mixture in 

the vacuum oven overnight for heterogeneous catalysis. To prepare the samples of Pt 

nanocrystals deposited directly on the surface of MOFs (ZIF-8 and UiO-66), the desired 

amount of solution containing Pt nanocrystals was mixed with MOFs in methanol with 

stirring. After the mixture gradually settled down, the precipitate was collected by 

centrifugation. The mixture was dried in the vacuum oven overnight. 

 

Catalytic study:  

0.5 wt% Pt NPs/MOF samples were diluted with low surface area quartz and loaded into 

glass reactors for size selective alkene hydrogenations. Temperature was controlled by a 

furnace (Carbolite) and PID controller (Diqi-Sense) with a type-K thermocouple. Gas 

flows, including helium, hydrogen gas and ethylene were regulated using calibrated mass 

flow controllers. The desired partial pressure of cyclohexene and cis-cyclooctene were 

achieved by bubbling helium through the liquid and assuming saturation81. For all 
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reactions, gas composition was analyzed with a mass spectroscope (MKS special 

V2000P). The turnover frequency of ethylene hydrogenation is normalized by using the 

percentage of surface atoms following the palladium cluster diameter82. 

 

2.3 PVP Mediated Nanoparticle Encapsulation 

The encapsulation strategy was applied for core-shell NPs-MOF composite 

formation (Figure 2.2a, b). The encapsulation strategy allows for the nanoparticles to be 

incorporated fully within MOF crystals. This strategy involves using pre-formed colloidal 

nanoparticles (5nm Pt particles) encapsulated within MOF crystals (ZIF-6 or UiO-66). 

The method for Pt-ZIF-8 encapsulation is modified from previous works42. Pt NPs with 

uniform sizes were synthesized with polyvinylpyrrolidone (PVP) as a capping agent. PVP 

is an amphiphilic, non-ionic polymer used extensively, as a capping agent to stabilize 

various nanoparticles in polar solvents83-84 (such as water, methanol, ethylene glycol and 

N,N-dimethylformamide) and  to assist in controlling the size and shape of certain 

nanoparticles during their syntheses84-85. 
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Figure 2.2 TEM images (a-b) and pore structures (c-d) of different kinds of NPs-MOF 

composites. (a) and (c), Pt-ZIF-8 composites show that 5nm Pt NPs fully encapsulation in 

ZIF-8 single crystal with 3.4 Å shell aperture sizes. (b) and (d), Pt-UiO-66 composites 

show that 5nm Pt NPs also fully encapsulation in UiO-66 single crystal with 5 Å shell 

aperture sizes. 

 

 PVP provides specific interaction between NPs and the surfaces of the growing 

MOF crystals. Pyrrolidone groups of PVP on NPs could provide weak coordination 

interactions with metal atoms of MOF nodes. Apolar groups of PVP may also contribute 

hydrophobic interactions to organic linkers. Thus, NPs can adhere to the growing MOF 

crystal without altering the crystal structure. By applying a similar strategy, core-shell Pt-

UiO-66 composites are successfully synthesized (Figure 2.2b). The successful 

encapsulation of Pt-UiO-66 composites shows that the encapsulation strategy can not 
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only extend to various MOF sub-families with very different metal centers and linkers 

but also distinct synthetic conditions (solvent and temperature). The results were 

confirmed by similar observations reported currently86. TEM images of Pt-ZIF-8 (Figure 

2.2a) and Pt-UiO-66 (Figure 2.2b) exhibit intact crystal morphology in both NPs-MOF 

composites.. In addition, all Pt NPs are completely encapsulated and no Pt NP aggregates 

are observed inside both MOF crystals. The encapsulation fails if capping agents are not 

used (Figure 2.3). The result confirms PVP provides specific interaction for NP 

encapsulation. 

 

 

Figure 2.3 TEM images of failing encapsulation of Pt NPs into UiO-66 single crystal. 

UiO-66 crystals grow without assembling around Pt NPs.   
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2.4 Activity and Selectivity of NPs-MOF Composites 

NPs-MOF composites with different aperture sizes could be used to demonstrate 

the molecular-size-selective property of ZIF-8 (3.4 Å) (Figure 2.2c) UiO-66 (5 Å) (Figure 

2.2d) shells. The gas-phase hydrogenation of ethylene, cyclohexene and cyclooctene 

were carried out to study the molecular-size-selective catalytic behavior of the NPs-MOF 

composites. The composite catalysts consisting of Pt nanocrystals directly deposited on 

the ZIF-8 crystal surfaces (Pt on ZIF-8), Pt nanocrystals directly deposited on the UiO-66 

crystal surfaces (Pt on UiO-66), Pt nanocrystals coated by a ZIF-8 shell (Pt-ZIF-8) and Pt 

nanocrystals coated by a UiO-66 shell (Pt-UiO-66) were prepared for comparison. Table 

2.1 shows the activities of the reactions. For ethylene hydrogenation, all of the catalysts 

show high activity. It indicates that ethylene and hydrogen can move freely through the 

pores of both MOFs and is able to access the surface of NPs. The slightly lower activity 

for Pt-ZIF-8 shows there might be some diffusional influence caused by the ZIF-8 shells. 

On the other hand, there is no diffusional influence caused by the UiO-66 shells due to 

the relatively larger aperture size of UiO-66 than that of ZIF-8. For cyclooctene 

hydrogenation, both of the core-shell catalysts show no detectable activity. In 

comparison, the Pt on ZIF-8 and Pt on UiO-66 catalyst show higher activity. This result 

clearly exhibits the molecular-size-selective property of the ZIF-8 and UiO-66 shells. 

Ethylene molecules are small (2.5 Å) enough to diffuse through the pore apertures of the 

ZIF-8 shells (3.4 Å) and UiO-66 shells (5 Å) without serious hindrance; however, the size 

of the cyclooctene molecules (5.5 Å) is much larger than the size of the pore aperture and 

cannot diffuse through the ZIF-8 shell. This result clearly suggests that the ZIF-8 and 

UiO-66 shells are devoid of cracks or fractures. Cyclohexene hydrogenation can be used 
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to further confirm the molecular-size-selective property of the MOF shells. The size of 

cyclohexene molecules (4.2 Å) is between the pore apertures of the ZIF-8 shells (3.4 Å) 

and UiO-66 shells (5 Å). For cyclohexene hydrogenation, only Pt-ZIF-8 shows no 

detectable activity but all of the other catalysts show comparably good activity. This 

result demonstrates that pore apertures of the UiO-66 shells (5 Å) can allow cyclohexene 

molecules (4.2 Å) to diffuse through but the pore apertures of the ZIF-8 shells (3.4 Å) 

cannot. This series of hydrogenation reactions clearly illustrate molecular size selectivity 

by using various aperture sizes of MOF shells. 

 

Table 2.1 Catalytic behavior of different Pt NPs-MOF nanostructures. Size-selective 

alkene hydrogenation of core-shell Pt-ZIF-8, Pt on ZIF-8, core-shell Pt-UiO-66, and Pt 

on UiO-66. All alkene hydrogenations are running at 50 °C. 

Hydrogenation Activity (mmol g-1 s-1) 

 Ethylene Cyclohexene Cyclooctene 

Pt-ZIF-8 7.68 − − 

Pt on ZIF-8 11.8 1.01 5.23×10-3 

Pt-UiO-66 11.0 0.74 − 

Pt on UiO-66 11.7 1.13 5.01×10-3 
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2.5 Thermal Stability of NPs-MOF Composites 

The high thermal stability of ZIF-8 (470 °C)76 and UiO-66 (540 °C)78 has been 

reported by using thermogravimetric analysis (TGA) and powder X-ray diffraction 

(PXRD). The thermal stability of the NP-MOF catalysts, however, will be hard to be 

determined by using TGA or PXRD. The decomposition temperature provided from TGA 

or PXRD may not necessarily be equal to the deactivation temperature. Deactivation 

temperature of catalyst can be detected by measuring catalyst deactivation after heat 

treatment in catalysis condition. Here, we used ethylene hydrogenation activity to show 

the deactivation temperature of the Pt-ZIF-8 and Pt-UiO-66 core-shell catalysts. Ethylene 

hydrogenation is structure insensitive reaction so the activity of the reaction could reflect 

active sites of Pt NPs.  It was shown in previous results the ethylene molecules are small 

enough to diffuse through the pore apertures of both MOF shells. The NPs-MOF catalyst 

was prepared for ethylene hydrogenation at 40 °C. The ethylene hydrogenation activity 

was actively measured after heat treatments at different temperature points in pure helium 

for 30 minutes. The heat treatment temperature is consistently increased until the 

ethylene hydrogenation activity dramatically decreases. The deactivation temperature of 

Pt-ZIF-8 is up to 150 °C (Figure 2.4c). TEM images of Pt-ZIF-8 after 150 °C (Figure 

2.4a) and after 200 °C (Figure 2.4b) treatments clearly point out the deactivation is from 

the crash of catalyst morphology. The isolated Pt NPs outside the remains of ZIF-8 shell 

imply the activity loss is not from NPs sintering (Figure 2.4b). The activity loss may 

result from the destruct pore structure of ZIF-8 which makes surfaces of NPs inaccessible 

to guest molecules. Following the same procedure, the deactivation temperature of Pt-

UiO-66 is up to 230 °C (Figure 2.4d). These temperatures are lower than the 
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decomposition temperature of the pure MOF crystals as measured by TGA (470 °C and 

540 °C) which may be due to the interface of metal NPs in the frameworks destroyed.  

 

 

Figure 2.4 Thermal stability of Pt-ZIF8 was performed with heat treatment in He for 30 

minutes then monitored catalytic activity by ethylene hydrogenation at 40 °C. TEM 
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images of Pt-ZIF8 composites (a) after 150 oC and (b) after 200 oC heat treatment. The 

morphology change after 200 oC heat treatment implies the thermal stability of Pt-ZIF8 is 

up to 200 oC. The deactivation temperatures of (c) Pt-ZIF-8 and (d) Pt-UiO-66 from 40 

oC ethylene hydrogenation activities are consistence with the observation of TEM 

images. 

 

In summary, we have successfully utilized PVP to mediate nanoparticle 

encapsulation in ZIF-8 and UiO-66. Size selective alkene hydrogenations were carried 

out in NPs-MOF Composites. The data demonstrated molecular size selectivity by using 

various aperture sizes of MOF shells. Heat treatment over the NPs-MOF composites 

showed that deactivation temperatures of NPs-MOF composites are lower than 

decomposition temperatures of pure MOF shells. The results imply deactivation 

temperature of NPs-MOF composites is necessary scale for thermal stability of NPs-

MOF composites. 
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Chapter 3 Surfactant oriented lattice alignment 

The understanding and engineering of the interface between the metal catalyst 

core and the nanoporous shell is critical to the catalytic performance52. The structure of 

the interface changes the sorption behaviors of reactant molecules to the catalyst surface 

which significantly affects the yield and selectivity of the product molecules. However, 

interfacial control of NPs-MOF core-shell composites is challenging due to the large 

interfacial energies of crystal lattice mismatches between the different materials. 

Recently, our group reported a colloidal synthetic method for core-shell composites with 

controlled alignment between metal nanoparticles and MOFs43. This surfactant-directed 

overgrowth could be a general method for the fabrication of not only various inorganic 

nanoparticles within MOF structures with controlled alignments but also the alignment of 

two porous materials with totally different structures.  

 

3.1 Formation mechanism of controlled alignment 

Portions of the following section have been reproduced in part with permission 

from Pan, H.; Zhuang, J.; Chou, L. -Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y. -C.; Tsung, 

C. K.,“Surfactant-Directed Atomic to Mesoscale Alignment: Metal Nanocrystals Encased 

Individually in Single-Crystalline Porous Nanostructures,” Journal of the American 

Chemical Society 2014, 136,10561-10564., Copyright 2014 American Chemical Society.  

 

Our lab demonstrates first example of nanocrystals encased individually in MOF 

with specific lattice alignment between the metal core and porous shell43. The self-

assembled CTAB layer and the time of metal NP introducing are critical. The proposed 
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mechanism is illustrated in Scheme 3.1. 50 nm Pd or Au nanocubes are synthesized first 

and then delivered to the ZIF-8 synthesis solution ∼10 s after the ZIF-8 precursors are 

mixed. Small ZIF-8 nuclei are first formed and enclosed by low surface energy {110} 

facets in the solution. Then the ZIF-8 nuclei attach via the bridging CTAB layer to a 

single metal NP and generate a ZIF-8 {110} to metal {100} interface. The rest of the 

ZIF-8 shell grows exclusively on this orientated crystal nucleus to capture the metal 

nanocrystal, instead of through a layer-by-layer conformal overgrowth mechanism. 

Ostwald ripening process would be involved if more than one ZIF-8 nucleus grows on 

metal surface of NP. This process finally leads the one-in-one single-crystalline structure. 

Due to the small energy difference between {110} and {100} of ZIF-8, a small portion of 

{100} to {100} alignment is also formed. The key step of this mechanism, ZIF-8 nucleus 

selective attachment to the metal {100} facet, is reasonable in the metal cube case 

because of the dominant {100} facets of the metal cubes. 

 

 

Scheme 3.1 Formation of nanocrystals encased individually and aligned in single-

crystalline porous materials. (A) Introduction of well-defined nanocrystals after the 

nucleation of ZIF-8. (B) Single-crystalline ZIF-8 nucleus attachment to the metal surface 

with selective orientation. (C) ZIF-8 crystal growth on the nucleus. (D) Single 

nanocrystal captured in single crystalline ZIF-8 with lattice alignment.  



38 
 

 

In order to test the mechanism we proposed, 50 nm Au octahedra are used for the 

same encapsulation procedure. The {100} metal planes still align with the ZIF-8 {110} 

planes although the octahedra are mainly enclosed by eight {111} surfaces. The 

octahedral geometry allows for a few, small {100}-terminated surfaces. These {100}-

terminated surfaces are exclusively located at the vertices and arise from truncation due 

to the increase in under-coordinated (higher surface energy) atoms at the apex87. The 

{100} metal facets may still serve as the attachment site for the ZIF-8 nucleus, despite 

their limited abundance. The highly selective attachment can be explained by the result of 

extensive studies in SAM system56. Huo et al. has shown that the ZIF-8 nucleus on the 

SAM is sensitive to the metal surface because the orientation of nuclei is determined by 

the distance between the self-assembled molecules and the distance of the molecules is 

determined by the surface metal lattices. In our case, CTAB self-assembled layers on the 

metal {100} facets might have a more ideal structure compared to other facets for the 

nucleus attachment. 

 

3.2 Controlled lattice alignment of two different MOFs 

The following work was done in collaboration with my previous lab members Jia 

Zhuang. Half of sample preparation and most of the diffraction analysis was done by Jia 

Zhuang, while my own contributions were in the materials synthesis, and catalysis, and 

portions of this section have been reproduced in part with permission from Zhuang, J.; 

Chou, L. -Y.; Sneed, B. T.; Cao, Y.; Hu, P.; Feng, L.; Tsung, C. K., “Surfactant-Mediated 
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Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with 

Mismatched Topologies,” Small 2015, 11, No. 41, 5551–5555. Copyright 2015 Wiley. 

 

To expand upon the functionality of MOF materials, several other materials have 

been incorporated into MOF crystals to create hybrid MOF materials31,88-89. Incorporating 

one type of MOF into another MOF to form core–shell microcrystals, denoted as MOF-

MOF, is an effective way to create multifunctional hybrid MOF materials90-92. The core–

shell MOF-MOF materials combine the functionalities of each individual MOF. For 

example, a MOF core with high gas storage capability, was recently enveloped by an 

MOF shell with molecular sieving behavior in order to fabricate size-selective gas storage 

materials91. It has been demonstrated that MOF-MOF structures offer new characteristics 

as a result of the MOF–MOF interface. For instance, secondary building unit scrambling 

and missing linker defects are more prevalent at the MOF-MOF interface and are of 

interest for catalysis applications89.  

 

Having a uniform and fracture-free shell of MOF-MOF structures is critical for 

these applications. Pioneering work has been conducted on the conformal overgrowth of 

fracture-free shells. In most of these works, the two integrated MOFs have similar crystal 

topologies; for example, the two MOFs are of the same crystal structure but with 

differing functional groups on the linkers (e.g., terephthalic acid vs. 2-aminoterephthalic 

acid)90,92, or the two MOFs are composed of different metal nodes with the same linker 

ligands93-94. Although it could greatly expand the functionality of MOF-MOF materials, 

currently, no work has been reported on the conformal overgrowth of two MOFs with 
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entirely different nodes, linkers, and topologies. The challenges lie mainly with the 

topological mismatch of the two MOFs leading to high interfacial energy. Our group has 

demonstrated that the use of cationic capping agents, e.g., Cetyltrimethylammonium 

bromide (CTAB) could promote a conformal and orientated overgrowth of MOF on 

metal particles, despite little structural similarity. Here, we extend this idea by using 

CTAB to direct and bridge two MOF interfaces with different crystal structures and 

chemical properties. 

 

3.3 Material and Methods 

Chemicals and Materials:  

Cetyltrimethylammonium bromide (CTAB, Calbiochem, 98%), zirconium(IV) chloride 

(ZrCl4, Aldrich, 99.5%), terephthalic acid (Aldrich, 98%), 2-aminoterephthalic acid 

(Aldrich, 99%), acetic acid (Sigma-Aldrich, 99.7%), zinc nitrate hexahydrate 

(Zn(NO3)2•6H2O, Sigma-Aldrich, 99%), 2-methylimidazole (Sigma-Aldrich, 99%), 

tetradecyl trimethyl ammonium bromide (TTAB, Sigma, 99%), cetyltrimethylammonium 

chroride (CTAC, TCI, 95%), sodium dodecyl sulfate (SDS, Sigma-Aldrich, 99%), 

polyvinylpyrrolidone (PVP, Mw~40,000, Sigma-Aldrich), palladium(II) 2,4-

pentanedionate (Pd(acac)2, Alfa Aesar, Pd 34.7%), ethylene (Airgas, 99.995%), 

cyclohexene (Sigma-Aldrich, 99%), sodium hydroxide (NaOH, Sigma-Aldrich, 98%), 

tetraethyl orthosilicate (TEOS, Sigma-Aldrich, 98%) were used without further 

purification. Ultrapure deionized water (d. i. H2O, 18.2 Μ) was used for all solution 

preparations. Hydrogen (Airgas, 99.999%) and helium (Airgas, 99.999%) were used for 

heterogeneous catalysis. 
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Characterization:  

Transmission electron microscopy (TEM), including high-resolution transmission 

electron microscopy (HRTEM) was performed on a JEOL JEM2010F electron 

microscope operated at 200 kV. Samples for TEM were prepared by diluting 50 μL 

sample solution to 500 μL and placing 2.0 μL droplets onto carbon-coated copper grids, 

then allowed to dry under a heat lamp. Normal scanning electron microscopy (SEM) was 

performed on a JEOL JSM6340F scanning electron microscope. Samples were prepared 

for SEM by diluting 50 μL sample solution to 500 μL and placing a 1.0 μL droplet onto 

silicon wafer and drying under a heat lamp. The samples were then placed on silver glue 

atop double-sided copper tape on sample holder. Powder X-ray diffraction (PXRD) 

patterns were collected on a Bruker D2 diffractometer. Samples for XRD were prepared 

by drying the sample solution in an oven and scraping the sample powder onto a sample 

holder. BET measurement was performed on a Micromeritics ASAP 2020 Physisorption 

Analyzer. 

 

Synthesis of UiO-66:  

18.6 mg (0.08 mmol) ZrCl4 and 13.3 mg (0.08 mmol) terephthalic acid were dissolved in 

8.622 mL DMF, then 1.378 mL acetic acid was added into the solution as the modulator 

to make the final volume to 10 mL. The solution was transferred into a vial, Teflon 

sealed, and heated for 24 hours in a 120 oC oven. After cooling down, the formed UiO-66 

was collected. The sample was washed by methanol, and stored in 10 mL methanol.  
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Aqueous synthesis of UiO-66-ZIF-8 and Pd-UiO-NH2-ZIF-8:  

200 µL UiO-66 was first collected and re-dispersed in 1 mL water. 150 µL 0.01 M CTAB 

aqueous solution was added to the UiO-66 solution. 1 mL 1.32 M 2-methylimidazole 

aqueous solution was mixed with 150 µL 0.01 M CTAB solution in a separate vial and 

put in sonicator and sonicated for 5 minutes. With sonication, 1 mL 24 mM Zn(NO3)2‧

6H2O aqueous solution was injected into the mixture, subsequently all UiO-66 solution 

was also injected into the mixture. The whole solution was sonicated for another 5 

minutes. The solution was then stirred for 3 hours at 500 rpm. The formed core-shell 

particles were collected, washed once by methanol, and finally re-dispersed in methanol. 

For the sonication time study, the only change was the sonication time, all the other 

synthetic variables were kept the same. For synthesis with other surfactants, CTAB was 

replaced by the chosen surfactant with the same concentration (0.01 M aqueous solution).  

 

The synthesis of Pd-UiO-NH2-ZIF-8 was similar to the synthesis of UiO-66-ZIF-8. Pd-

UiO-NH2 was synthesized first and the synthesis was similar to UiO-66, the only change 

was the use of 2-aminoterephthalic acid, instead of terephthalic acid, and the introduction 

of 2.44 mg Pd(acac)2 in the synthetic solution. As-synthesized Pd-UiO-NH2-ZIF-8 was 

separated from synthetic solution and re-dispersed in 1 mL water. With stirring, this Pd-

UiO-NH2-ZIF-8 suspension solution, together with 1 mL 24 mM Zn(NO3)2‧6H2O 

aqueous solution, was injected into a vial which had 1 mL 1.32 M 2-methylimidazole 

aqueous solution and 150 µL 0.01 M CTAB solution. The reaction was stirred for 1 hour, 

collected, washed by methanol, and re-dispersed in methanol. 
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PVP-methanol synthesis of UiO-66-ZIF-8 and Pd-UiO-NH2-ZIF-8: 

10 mL UiO-66 was mixed with 2 mL 0.5M PVP methanol solution at room temperature 

for 10 hours.  The PVP coated UiO-66 was collected by centrifugation, washed twice 

with methanol, and stored in 10 mL methanol. 100 µL PVP coated UiO-66 was mixed 

with 5 mL 30 mM 2-methylimidazole and 5 mL 30 mM Zn(NO3)2‧6H2O and kept 

undisturbed at room temperature for 24 hours. The PVP-methanol UiO-66-ZIF-8 was 

collected by centrifugation, and washed twice with methanol. 

 

The synthesis of Pd-UiO-NH2-ZIF-8 was similar to the synthesis of UiO-66-ZIF-8. Pd-

UiO-NH2 synthesis was mentioned above. 25 µL PVP coated Pd-UiO-NH2 was mixed 

with 5 mL 60 mM 2-methylimidazole and 5 mL 60 mM Zn(NO3)2‧6H2O and kept 

undisturbed at room temperature for 24 hours. The sample was collected by 

centrifugation, and washed twice with methanol. 

 

Catalytic study: 

0.5 wt% sample was diluted with low surface area quartz and loaded into glass reactors. 

Temperature was controlled by a furnace (Carbolite) and PID controller (Diqi-Sense) 

with a type-K thermocouple. Gas flows, including helium, hydrogen gas and ethylene 

were regulated using calibrated mass flow controllers. The desired partial pressure of 

cyclohexene was achieved by bubbling helium through the liquid and assuming 

saturation81. For all reactions, gas composition was analyzed with a mass spectroscope 

(MKS special V2000P). 
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3.4 Fracture-free shell of MOF-MOF structures 

In this work, uniform and fracture-free MOF-MOF particles are synthesized. The 

overgrowth of uniform ZIF-8 shells on monodisperse UiO-66 microcrystal cores to form 

UiO-66-ZIF-8 composite particles with the assistance of CTAB (Figure 3.1) were 

synthesized. ZIF-8 and UiO-66 were chosen to demonstrate the concept because of their 

high thermal and chemical stability as well as their completely different chemical 

compositions and topologies. In addition, we have already shown both MOFs can be used 

to encapsulate metal NPs and provide size selectivity for gas phase catalysis. To 

demonstrate the benefit of combining two distinct MOFs, a Pd-UiO-66-NH2-ZIF-8 

catalyst was furtherly synthesized. We take advantage of UiO-66-NH2 as a MOF core 

with affinity to metals for Pd nanoparticle encapsulation. ZIF-8 known as excellent 

molecular sieving behaviors was overgrown as MOF shell. Size-selective heterogeneous 

catalysis over this Pd-UiO-66-NH2-ZIF-8 was demonstrated. We believe this method can 

be extended to other MOF systems to form a series of core–shell MOF-MOF with 

mismatched topologies. 
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Figure 3.1 SEM image (a) and TEM images (b-d) of UiO-66-ZIF-8. Highly monodisperse 

UiO-66-ZIF-8 octahedral particles keep the shape of the pre-formed UiO-66 cores with 

uniform and fracture-free ZIF-8 shells overgrowth. 

 

In a typical synthesis of UiO-66-ZIF-8 core-shell particles, UiO-66 microcrystals 

are synthesized first. The UiO-66 microcrystals, ZIF-8 precursors, and CTAB are then 

mixed together in water. Our previous study has shown that controlled nucleation is 

important for the surfactant-mediated overgrowth; therefore, in order to promote the 

formation of uniform and small ZIF-8 nuclei, 5 minutes of sonication is performed95-96. 

The mixed solution is then stirred for 3 hours before the products are collected via 
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centrifugation. Scanning electron microscopy (SEM) images show the highly 

monodisperse UiO-66-ZIF-8 octahedral particles (Figure 3.1a), which is consistent with 

the shape of the pre-formed UiO-66 cores. No particle aggregation was observed and all 

the particles are found to be around 500 nm in size. Under transmission electron 

microscopy (TEM), the clear core-shell structure was observed. The UiO-66 core appears 

darker compared to the brighter ZIF-8 shell due to the higher Z-contrast of zirconia 

clusters. (Figure 3.1b, c). Very few small pure ZIF-8 cubes were observed, suggesting 

most of the UiO-66 octahedra serve as templating substrates for the ZIF-8 overgrowth97. 

Higher magnification TEM images show a smooth interface between the two MOFs 

(Figure 3.1d).  

 

3.5 Characterization of Fracture-free UiO-66-ZIF-8 

The ZIF-8 shell is uniform, smooth, fracture-free, and approximately 40 nm in 

thickness, which indicates a conformal overgrowth. The thickness of the ZIF-8 shells 

could be controlled by the amount of precursor to affect the overgrowth. Powder X-ray 

diffraction (PXRD) was performed on the dry core–shell particles and patterns of both 

ZIF-8 shell and UiO-66 core closely match the simulated patterns (Figure 3.2a). Each 

XRD peak can be assigned to either ZIF-8 or UiO-66, while some are a result of peak 

overlap. Well-defined peaks indicate the crystallinities of both UiO-66 core and ZIF-8 

shell. N2 adsorption data were collected at 77 K. The BET isotherm shows the porosity of 

the material, as a type I sorption isotherm. The steep initial region ( P/Po < 0.15) was 

expected based on the presence of micropores in the structure98 (Figure 3.2b). The BET 
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surface area of the core–shell particles was calculated to be 1240 m2 g-1, which is between 

the surface area of ZIF-897 and UiO-699.  

 

 

Figure 3.2 (a) PXRD of fractured UiO-66-ZIF-8 (black), conformal UiO-66-ZIF-8 

(orange), simulated ZIF-8 (red), and simulated UiO-66 (blue), black arrows indicate 

narrowed ZIF-8 peaks in conformal ZIF-8 coating; (b) BET isotherm plot of UiO-66-ZIF-

8, inset: steep increase at low pressure region. 
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Surfactants have known effects on the surface of MOF crystals97,100-101. 

Optimizing the surfactant to MOF precursor ratio is critical for the conformal overgrowth. 

In the absence of CTAB, individual microcrystals of ZIF-8 formed, leaving UiO-66 

octahedra uncoated (Figure 3.3 a-c). On the other hand, if the CTAB amount goes beyond 

the optimal amount (150 µL 0.01 M CTAB), it inhibits ZIF-8 growth and no complete 

coating can be observed (Figure 3.3 d-f). When the appropriate amount of CTAB is 

introduced during the overgrowth, the CTAB layers mediate the conformal nucleation 

and overgrowth of ZIF-8 on the UiO-66 surface (Figure 3.1).  

 

 

Figure 3.3 TEM images of UiO-66-ZIF-8 with addition of a) 0 µL; b) 40 µL; c) 75 µL ; 

d) 200 µL ; e) 300 µL ; f) 500 µL 0.01 M CTAB in UiO-66 solution and synthetic 

solution, respectively. Without appropriate amount of CTAB (150 µL 0.01 M) introduced 
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during the overgrowth, the CTAB cannot mediate the conformal overgrowth of ZIF-8 on 

the UiO-66 surface imply the importance of optimal CTAB layers. 

 

The ability to control the overgrowth is highly related to the type of the surfactant 

used. We attempted UiO-66-ZIF-8 synthesis with other micelle forming surfactants, such 

as tetradecyltrimethylammonium bromide (TTAB), cetyltrimethylammonium chroride 

(CTAC), and sodium dodecyl sulfate (SDS), as well as a neutral polymer stabilizer PVP 

(polyvinylpyrrolidone). Each representing common surfactants which have been widely 

employed in nanoparticle synthesis102. Ionic surfactants (i.e. CTAC, TTAB, and SDS) 

give polycrystalline and fractured ZIF-8 shell. The fractured ZIF-8 layers are composed 

of small random-shaped ZIF-8 nanocrystals with boundaries between crystallites and 

have an average thickness of 60 nm (Figure 3.4). When compared the PXRD patterns of 

conformal and fractured ZIF-8 shell, the peak widths of fractured ZIF-8 shells are much 

broader than those of the conformal shells (Figure 3.2a, indicated by arrows), which 

suggests smaller crystal domains of the fractured ZIF-8 shells103. We hypothesize that 

these non-CTAB surfactants indeed promote the interaction of ZIF-8 and UiO-66, but 

they lack the precise control of ZIF-8 nucleation and subsequent overgrowth. CTAB 

reportedly affects the ZIF-8 growth by adsorption to nuclei; this type of assembly via tail 

and head group effects is analogous to those of metal nanoparticle synthesis104-105. 

Moreover, the PVP system shows no overgrowth (Figure 3.5a). This is believed to be 

because PVP does not have the proper interaction with the two MOFs in water solvent. 

We also performed the same PVP-mediated overgrowth in methanol solvent since PVP 

have been shown affinity to both MOFs42,86. PVP shows a more favorable interaction 
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between the two MOFs in methanol. However, without controlled overgrowth, multiple 

UiO-66 crystals were encapsulated in a larger ZIF-8 microcrystal (Figure 3.5b). 

 

 

Figure 3.4 TEM images of UiO-66-ZIF-8 when a) CTAC; b) TTAB; c) SDS was used as 

surfactant. Scale bar is 200 nm in each image. The non-CTAB surfactants lack the precise 

control of ZIF-8 nucleation and subsequent overgrowth 

 

 

Figure 3.5 TEM images of UiO-66-ZIF-8 when a) PVP was used as surfactant, and b) 

PVP was used as surfactant and methanol used as solvent. Scale bar is 200 nm in each 

image. PVP shows no proper interaction with the two MOFs in water solvent but a 

favorable interaction between the two MOFs in methanol without controlled overgrowth. 
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3.6 Formation mechanism of Fracture-free UiO-66-ZIF-8 

Our previous study has shown that the formation of small MOF nuclei is 

important to have a conformal MOF overgrowth on metal surfaces43. Thus, the sonication 

step is critical because it promotes the formation of small and uniform ZIF-8 nuclei95-96. 

We found that 5 minutes of sonication makes the solution become opaque at a quicker 

rate (Figure 3.6) and leads to a conformal ZIF-8 shell. If sonication is not applied during 

the synthesis, a fractured ZIF-8 shell is observed (Figure 3.7b). In addition to this 

information, the sonication time is also critical. If the interval of sonication is extended 

beyond 15 minutes, an incomplete shell is observed (Figure 3.7c). If the sonication is 

prolonged for 1 hour, a yolk-shell nanostructure is formed. The ZIF-8 layer encases the 

UiO-66 core in it, with a void space between the two components (Figure 3.7d). The 

formation of the void space may be a result of etching of ZIF-8 at the interface under 

longer sonication times. 
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Figure 3.6 Images of ZIF-8 water-phase synthesis with (left) and without (right) 

sonication at (a) 0 min (right after Zn2+ and mim mixing); (b) 5 min; (c) 10 min; (d) 15 

min.  Turbidity of solution appears faster under sonication treatment, which indicates that 

ZIF-8 nucleation is faster under sonication. 

 

 

Figure 3.7 TEM images of ZIF-8 overgrowth on UiO-66 when sonicated for (a) 5 

minutes; (b) 0 minute; (c) 30 minutes; (d) 1 hour. Scale bar is 200 nm in each image. The 

results imply ZIF-8 nuclei formation under sonication. Only proper amount of ZIF-8 

nuclei can grow into conformal shells on UiO-66. 
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Based on our observations, we propose a possible mechanism for the formation of 

the MOF-MOF particles. In the first step, Zn2+ ions and 2-methyl imidazole are mixed 

together and form the initial ZIF-8 nuclei106; if sonication is applied during the nuclei 

formation, small and uniform nuclei form. Subsequently, the formed ZIF-8 nuclei attach 

to the surface of UiO-66 crystals with a specific orientation via CTAB micelle layers43. 

The small, uniform, and oriented nuclei then grow into conformal shells; in contrast, 

larger nuclei formed under no sonication, grow into a fractured shell. On the other hand, 

if the sonication is applied for too long, the attachment of ZIF-8 nuclei on the UiO-66 

surface is affected and this results in some uncovered UiO-66 surface. 

 

3.7 Advantage of combining two distinct MOFs 

To demonstrate the advantage of combining two distinct MOFs and the 

importance of conformal overgrowth, proof-of-concept core–shell catalysts, Pd-UiO-

NH2-ZIF-8, were synthesized, where each different component is employed for a distinct 

purpose. The great affinity to metal nanoparticles and larger aperture size of UiO-66-NH2 

(Figure 3.8a) make it an excellent core material for loading Pd nanoparticles without 

interfering with diffusion107-108. The outstanding molecular sieving behavior of ZIF-8 

makes it ideal for realizing size-selective catalysis12.  
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Figure 3.8 TEM images of (a) UiO-66-NH2; (b) Pd-UiO-NH2; (c) conformal Pd-UiO-

NH2-ZIF-8; (d) fractured Pd-UiO-NH2-ZIF-8. (e) Size-selective hydrogenation of 

conformal Pd-UiO-NH2-ZIF-8, PVP-methanol Pd-UiO-NH2-ZIF-8, fractured Pd-UiO-
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NH2-ZIF-8, and Pd-UiO-NH2 (from left to right); back columns for ethylene 

hydrogenation running at 20 °C, front columns for cyclohexene hydrogenation running at 

70 °C. Catalytic behavior of cyclohexene hydrogenations show that fractured Pd-UiO-

NH2-ZIF-8 with the presence of boundaries between adjacent ZIF-8 crystallites could 

allow cyclohexene diffusion through the ZIF-8 shell. 

 

Pd-loaded UiO-66-NH2, was synthesized first, denoted as Pd-UiO-NH2 (Figure 

3.8b). Sub-10 nm Pd nanoparticles were embedded in UiO-66-NH2 and dispersed 

uniformly. We then performed overgrowth twice to obtain conformal and fractured ZIF-8 

shells with an average thickness of around 150 nm on Pd-UiO-NH2 (Figure 3.8c, and d). 

Pd nanoparticles were still observed under TEM after ZIF-8 overgrowth. Alkene 

hydrogenations were carried out in a gas phase flow microreactor to exam catalytic 

activity of Pd nanoparticles and the impact of the ZIF-8 layer integrity on catalytic 

performance. Four samples, Pd-UiO-NH2 (before ZIF-8 overgrowth), Pd-UiO-NH2-ZIF-

8 (conformal shell), Pd-UiO-NH2-ZIF-8 (fractured shell), and Pd-UiO-NH2-ZIF-8 

(synthesized in methanol with the presence of PVP) were compared. 0.14 mg of Pd was 

used in all samples confirmed by ICP-AES analysis. All samples show similar activities 

for ethylene hydrogenation due to the relatively small kinetic diameter of ethylene 

molecule (2.5 Å) (Figure 3.8e) which is smaller than both the ZIF-8 and UiO-66 aperture 

sizes, so it can easily diffuse through, and reach the Pd catalysts. When cyclohexene 

hydrogenation was performed, high catalytic activity was only observed for the sample of 

Pd-UiO-NH2, while Pd-UiO-NH2-ZIF-8 (conformal shell) and Pd-UiO-NH2-ZIF-8 

(methanol-PVP) have almost no activities because the kinetic diameter of cyclohexene 
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(4.2 Å) is larger than ZIF-8 aperture size so it cannot penetrate the conformal crystalline 

ZIF-8 shell or large ZIF-8 microcrystals. However, for the Pd-UiO-NH2-ZIF-8 (fractured 

shell) sample, a notable cyclohexene hydrogenation activity was observed. It is likely due 

to the presence of boundaries between adjacent ZIF-8 crystallites. The cyclohexene 

molecules have a possible diffusion pathway through the ZIF-8 shell. This clearly 

demonstrates the importance of the crystallinity and conformity of the shell. Catalysts 

showed no significant changes of selectivity and activity for prolonged (17 hour) 

reactions. Catalysts were collected after reaction for TEM study. No significant structural 

changes were observed, showing the high stability of our material (Figure 3.9). Our Pd-

UiO-NH2-ZIF-8 is the first MOF-MOF example and shows great applications in 

heterogeneous catalysis. Each component has a distinct role, which proves the concept of 

our design. It is worth mentioning that although UiO-66-NH2-ZIF-8 (conformal shell) 

and Pd-UiO-NH2-ZIF-8 (methanol-PVP) samples show similar selectivity here, the 

conformal shell will benefit more the applications due to the better controlled shell. 

 

 

Figure 3.9 TEM images of Pd-UiO-NH2-ZIF-8 (conformal shell) (a) before and (b) after 

catalytic reaction. No significant morphology changes were observed, showing the high 

stability of our Pd-UiO-NH2-ZIF-8. 
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In summary, we successfully created a core–shell MOF material with mismatched 

topologies, i.e., UiO-66-ZIF-8, via a surfactant-mediated overgrowth method. The 

importance of sonication and surfactant is discussed in the generation of the conformal 

and fracture-free shell. The selective catalysis result highlights the importance of 

conformity, crystallinity, and integrity of the shell component. Our method could be used 

to guide the future synthesis of novel MOF-MOF materials with MOFs of mismatched 

topologies and chemical properties for a number of potential applications. 
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Chapter 4 SALE Functionalization 

Postsynthetic processes, PSM and linker exchange, have been reported as 

powerful tools to engineer MOFs57-58. The process could be used to extend the 

applications of NPs-MOF composites. The extended applications rely on tailored 

chemical functionality and structure in the pores.  We intended to functionalize our NPs-

MOF core-shell composites by exchanging functional linkers. However, we found linker 

exchange process required specific condition to be able to succeed. The high exchanging 

rate might not be easy to reach as well. We decided to study linker exchange process 

before using it since it was more complicated than we thought. Here we used kinetic 

experiments to study the mechanism and the loading of dye to prove our mechanism. 

 

4.1 Linker Exchange for Functionalization  

The following work was done in collaboration with Joseph Morabito. Most of the 

kinetic study was done by Joseph Morabito, while my own contributions were in the 

materials synthesis, sample preparation and diffraction analysis, and portions of this 

section have been reproduced in part with permission from Morabito, J. V.; Chou, L. -Y.; 

Li, Z.; Manna, C. M.; Petroff, C. A.; Kyada, R.; Palomba, J, M.; Byers, J. A.; Tsung, C. 

K., “Molecular Encapsulation beyond the Aperture Size Limit through Dissociative 

Linker Exchange in Metal-Organic Framework Crystals,” Journal of the American 

Chemical Society 2014, 136, 12540-12543. Copyright 2014 American Chemical Society. 

  

It has been reported that the bridging organic linkers in MOF crystals can be 

exchanged with compatible but chemically distinct ligands without disrupting the 
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underlying MOF crystal structure and morphology. This phenomenon was first reported 

by Choe for pillared porphyrin paddlewheel frameworks63 and has been optimized by 

several groups64,66. The ligand exchange process has become extremely popular for the 

diversification of MOFs and is most commonly called solvent-assisted linker exchange 

(SALE)66 or postsynthetic exchange (PSE)64. SALE is a versatile technique for the 

synthesis and modification of MOF materials. After the synthesis of the NP-MOF 

catalysts via encapsulation method, SALE could be performed to exchange the linkers in 

order to change the pore structure and linker functional groups. By doing so, the 

structural and chemical environment of the active cavities at the interface will be fine-

tuned without damaging the overall NP-MOF structures. The chemical properties and 

pore structure of both ZIFs and UiOs can be tuned62,109. A selective SALE on ZIFs has 

been demonstrated recently, which will provide even more tunable interface110. Besides, 

many MOFs that are not accessible by de novo synthesis have been synthesized indirectly 

via SALE58. Therefore, SALE would be a very useful tool for NP-MOF catalyst 

development. It is worth a systematical study in order to have a fundamental 

understanding of SALE. 

 

Herein we introduce a new concept for the formation of enlarged pore apertures 

by linker dissociation during MOF linker exchange, as demonstrated by the postsynthetic 

encapsulation of species much larger than the pore aperture of ZIF-8 (Scheme 4.1). In 

this approach, we take advantage of ligand exchange reactions to “open” part of the 

framework of the pre-synthesized MOFs. Expanded apertures created by the ligand 

exchange process allow large guest molecules to diffuse into the MOF pore. After guest 
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incorporation, the large aperture is closed by association of the ligand which traps the 

guest molecule in the MOF pore. This new approach to guest incorporation is expected to 

be general because framework linker exchange has been carried out under various 

conditions and exists in a large number of MOFs with diverse secondary building 

units.64,66,111-118 An additional practical advantage of kinetic studies of linker exchange 

proceeds the understanding the mechanism of linker exchange process to functionalize 

the NPs-MOF core-shell composites for catalytic purpose. 
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Scheme 4.1 Postsynthetic guest encapsulation through liker exchange. Large guest 

molecule (Rhodamine 6G, 11.3-13.7 Å) could be loaded to small pore aperture (ZIF-8, 

3.4 Å) by linker dissociation during MOF linker exchange process. 

 

4.2 Material and Methods 

General considerations:  

Unless otherwise stated, all the reactions were carried out in the air without taking any 

precaution to protect reactions from oxygen or moisture. Zinc nitrate hexahydrate 

(Aldrich, 99%), 2-methylimidazole (Aldrich, 99%), imidazole (Alfa Aesar, 99%), 

Basolite Z1200 (ZIF-8, Aldrich, produced by BASF), n-butanol (Alfa Aesar, ≥99.4%), 

acetonitrile (Aldrich, 99.8%), Rhodamine 6G (Acros, dye content ~95%), sodium 

hydroxide (VWR), polyvinylpyrrolidone (PVP, Mw~29,000, Aldrich), deuterium oxide 

(Aldrich, 99.9 atom % D), and sulfuric acid-d2 solution (96-98 wt. % in D2O, 99.5 atom 

% D) were purchased from the indicated sources and used without further purification.  

 

Characterization:  

Transmission electron microscope (TEM) images were obtained on JEOL JEM2010F 

operated at 200 kV. The powder x-ray diffraction patterns (PXRD) were collected on a 

Bruker AXS diffractometer with Cu Kα radiation (λ= 1.5418 Å). 1H NMR spectra 

obtained for the kinetic experiments were recorded on a Varian (Agilent) (600 MHz) 

spectrometer. The line listing for the NMR spectra are reported as chemical shift in ppm. 

The nitrogen gas adsorption-desorption was carried out on Micromeritics ASAP 2020 
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provided by the University of Massachusetts Boston. Visible light absorption spectra 

were measured on a Thermo Scientific NanoDrop 2000c. 

 

Kinetic study 

 

Figure 4.1 The illustration of linker exchange of ZIF-8 with exogenous imidazole (Him). 

After linker exchange process, original Zn(mim)2 (ZIF-8) becomes Zn(mim)2-x(im)x 

(SALEM-2). 

 

The kinetics of exchange of Zn(mim)2 (ZIF-8) with exogenous imidazole (Him) to yield 

Zn(mim)2-x(im)x (SALEM-2) were followed using a modified procedure based on 

literature precedence62. (Figure 4.1) Due to the heterogeneous nature of the exchange 

reaction, accurate sampling could not be guaranteed, and thus, for the kinetics 

experiment, each point shown in Figure 4.2 is the result of independent measurements 

carried out at different reaction times.  Generally, each reaction was repeated three times, 

the average of which is used for the kinetic fits. 
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Figure 4.2 Representative 1H-NMR spectra of acid-digested Zn(mim)2-x(im)x over the 

course of the exchange reaction time for the series with im/mim = 30. Peak A and B stand 

for two different types of H atoms from imidazole while peak C and E stand for two 

different types of H atoms from 2-methyl imidazole. 

 

Dried ZIF-8 (5.0 mg, 0.022 mmol Zn(mim)2) was placed in a 3 mL glass serum vial. 

Solids were suspended by sonication in an appropriate volume of n-butanol (tabulated 

below) before the reaction was initiated with exogenous linker.  A 588 mM solution of 

imidazole in n-butanol was added in an appropriate volume (Table 4.1), and vials were 

immediately sealed with PTFE-lined aluminum crimp caps, shaken manually for 5 s, and 

placed into the aluminum heating blocks of a Labmate synthesizer thermostated at 70 °C.  
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The reactions were incubated at 70 ºC with 450 rpm shaking for a predetermined amount 

of time.  

 

Table 4.1 The linker exchange conditions with different mole ratios of exogenous 

imidazole (Him) and Zn(mim)2 (ZIF-8) for kinetic study. 

im/mim (mol/mol) 5 10 20 30 

Vol. n-butanol (mL) 2.625 2.250 1.500 0.750 

Vol. 588 mM Him (mL) 0.375 0.750 1.500 2.250 

 

The spin-lattice relaxation times (T1) of each proton in solution were determined by the 

inversion recovery method and are detailed in the table 4.2 In light of the measured 

relaxation times, 1H-NMR spectra were acquired using an acquisition time (at) of 18 s 

and an interpulse delay (d1) of 54 s, in order to make (at + d1) ~ 5 × the longest T1. A 

pulse angle of 90 ° was used and 16 transients were taken per acquisition. 

 

Table 4.2 The spin-lattice relaxation times (T1) determined for each proton in the acid-

digested solutions of the Zn(mim)2-x(im)x products, which were used to choose the 

acquisition parameters given in the kinetics section. The longest T1 in the solutions is 

13.74 s. 

proton 
(in red) 

   

H2O 
  

δ (ppm) 7.85 6.66 6.45 4.94 2.35 1.79 

T1 (s) 13.74 ± 0.28 12.06 ± 0.21 9.72 ± 0.26 3.01± 0.11 5.65 ± 0.12 4.44 ± 0.32 
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At the end of the allocated time, the vials were removed and immediately immersed in a 

water bath held at 0 ºC. Suspended solids were transferred quickly into 3 mL of methanol 

chilled at 0 °C in a 15 mL centrifuge tube and centrifuged at 3300 rpm for 5 min.  The 

solid precipitate was triturated by decanting the supernatant, and the product was re-

suspended in fresh methanol (6 mL).  The centrifugation and trituration was repeated 3 

times with 6 mL of methanol each time. The isolated solids were transferred to pre-

weighed glass vials and the residual solvent was removed in a vacuum oven at 100 °C 

overnight. Dried samples were weighed and then digested in a solution of 0.900 mL 

deuterium oxide and 0.100 mL 98% d2-sulfuric acid in D2O along with 

tetramethylammonium bromide (0.7 mg) that was used as an internal standard for 

analysis by 1H-NMR spectroscopy. 

 

Dye loading via linker exchange:  

Variable amounts (9.3 mg/0.02 mmol, 29.2 mg/0.06 mmol, 73.9 mg/0.15 mmol, and 

292.4 mg/0.61 mmol) of Rhodamine 6G (R6G) were placed in a 20 mL glass scintillation 

vial. 2-methylimidazole (Hmim) (181 mg, 2.2 mmol) and activated ZIF-8 crystals (75 mg, 

0.33 mmol Zn(mim)2) were added to the vial with the guest molecules. Next, n-butanol 

or acetonitrile (15 mL) was added to the vial, and the solids were suspended by 

sonication for 10 minutes. The vial was capped and placed in an isothermal oven at 100 

°C for 7 days. The guest-loaded ZIF-8 was collected by centrifugation at 5000 rpm for 10 

minutes. The solid precipitate was triturated by decanting the methanol supernatant then 

re-suspended into fresh methanol (10 mL). The centrifugation and trituration steps were 
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repeated at least 5 times until the supernatant was completely transparent. The residual 

solvent was removed from the isolated solids in a vacuum oven at 100 °C overnight. The 

mass recovery of the product was 92%. 

 

Leaching experiment:  

(Table 4.4) The dried R6G-ZIF-8 (15 mg) and 2-methylimidazole (36.2 mg, 0.44 mmol) 

were placed in a 5 mL scintillation vial. n-butanol (3 mL) was added to the vial and the 

solids were suspended by sonication for 10 minutes. The vial was capped and placed in 

an isothermal oven at 100 °C for 7 days. The product was collected by centrifugation at 

5000 rpm for 10 minutes. The residual solvent was removed from the isolated solids in a 

vacuum oven at 100 °C overnight. The guest leaching experiment in methanol was 

carried out at the same condition in n-butanol except 20 °C for 1 month. 

 

Photophysical measurement:  

(Table 4.5) To measure the fluorescence lifetimes (τ) of the dye loaded ZIF-8 samples, 

we used picosecond time-resolved fluorescence spectroscopy performed on a home-built 

system centered around a Coherent Libra HE Ti: Sapphire Amplifier System119. Samples 

were pumped with 450 nm monochromatic light and recorded by a streak camera at 550 

nm with a long-pass filter cutting off wavelengths below 480 nm to eliminate the strong 

scattering peak caused by the solid particles. The amount of solid was held constant at 15 

mg, which was dispersed into 3 mL of methanol. In the fluorescence intensity 

measurement, we used the ratio of the fluorescence emission intensity to the UV-Vis 

absorbance (I/A) to establish normalized intensity. Steady state emission spectra were 
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recorded using an Agilent Cary Eclipse spectrophotometer with a Xe flash lamp. 

Acquisition parameters were held constant for all samples, which necessitated diluting 

the free R6G in methanol solution used for UV-Vis by a factor of 26 for the fluorescence 

measurement, due to its vastly higher I/A values. 

 

PPh3 loading via linker exchange:  

Variable amounts of PPh3 (866 mg/3.3 mmol and 649 mg/2.5 mmol) were placed in a 20 

mL scintillation vial. 2-methylimidazole (181 mg, 2.2 mmol) and activated ZIF-8 crystals 

(75 mg, 0.33 mmol Zn(mim)2) were added to the vial with the guest molecules. Next, n-

butanol (15 mL) that had been sparged with Ar gas for 30 min to remove dissolved O2 

was added to the vial. The vial was capped and the solids were suspended by sonication 

for 10 minutes. The vial was placed in an isothermal oven at 100 °C for 7 days. The 

guest-loaded ZIF-8 was collected by centrifugation at 5000 rpm for 10 minutes. The solid 

precipitate was triturated by decanting the methanol supernatant then re-suspended into 

fresh methanol (10 mL). The centrifugation and trituration steps were repeated at least 5 

times. The residual solvent was removed from the isolated solids in a vacuum oven at 100 

°C overnight. The mass recovery of the product was 92%. 

 

The effect of exogenous linker concentration:  

(Figure 4.5b) R6G (73.9 mg, 0.15 mmol) and activated ZIF-8 crystals (75 mg, 0.33 mmol 

Zn(mim)2) were placed in a 20 mL scintillation vial. Variable amounts (0 mg, 60.3 

mg/0.73 mmol, 120.6 mg/1.47 mmol, 181.0 mg/2.21 mmol, and 482.4 mg/5.88 mmol) of 

2-methylimidazole were added to the vial with the guest and ZIF-8 mixture. Next, n-
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butanol (15 mL) was added to the vial, and the solids were suspended by sonication for 

10 minutes. The vial was capped and placed in an isothermal oven at 100 °C for 7 days. 

The guest-loaded ZIF-8 was collected by centrifugation at 5000 rpm for 10 minutes. The 

solid precipitate was triturated by decanting the methanol supernatant then re-suspended 

into fresh methanol (10 mL). The centrifugation and trituration steps were repeated at 

least 5 times until the supernatant was completely transparent. The residual solvent was 

removed from the isolated solids in a vacuum oven at 100 °C overnight. 

 

Synthesis of micron-sized ZIF-8:   

A 25 mM solution of Zn(NO3)2·6H2O in methanol (0.125 mmol, 5 mL) was combined 

with a 25 mM solution of 2-methylimidazole (0.125 mmol, 5 mL) in a 20 mL scintillation 

vial.  The reaction was carried out at room temperature for 24 hours without stirring. The 

product was collected by centrifugation at 5000 rpm for 10 minutes.  The solid precipitate 

was triturated by decanting the methanol supernatant then re-suspended with fresh 

methanol (10 mL). The centrifuging and trituration steps were repeated 3 times. The 

residual solvent was removed from the isolated solids in a vacuum oven at 100 °C 

overnight. The yield of ZIF-8 was 8.4%. 

 

Synthesis of nano-sized ZIF-8:  

The synthesis of nano-sized ZIF-8 is based on a previous procedure with some 

modifications120. Zn(NO3)2·6H2O (150 mg, 0.504 mmol) and 2-methylimidazole (330 

mg, 4.02 mmol) were weighed and transferred to a 30 mL glass jar and 20 mL 

scintillation vial, respectively. The solids were dissolved in methanol (7.15 mL each). 



69 
 

The glass jar was then equipped with a magnetic stir bar, and placed on a stir plate. Next, 

under vigorous stirring, the 2-methylimidazole solution was poured into the jar and the 

mixture was stirred at room temperature for 6 hours. The product was collected by 

centrifugation at 7000 rpm for 10 minutes. The solid precipitate was triturated by 

decanting the methanol supernatant then re-suspended with fresh methanol (10 mL). The 

centrifuging and trituration steps were repeated 3 times. The residual solvent was 

removed from the isolated solids in a vacuum oven at 100 °C overnight. The yield of 

ZIF-8 was 83%. 

 

Visible light absorption spectroscopy:  

Dried R6G-ZIF-8 (10 mg) was digested in a 1 wt% hydrochloric acid/methanol solution 

(2 mL). After stirring for 1 minute, the resulting solution was transferred to a glass 

cuvette to measure the visible light absorption spectrum at 530 nm on a Thermo 

Scientific NanoDrop 2000c. The amount of R6G loading was determined by calibration 

curve between absorbance of light at 530 nm and R6G concentration (ε = 0.0934 μM-1cm-

1 at 530 nm). 

 

PVP washing:  

Dried R6G-ZIF-8 (15 mg) was suspended in a 14 wt. % PVP/methanol solution (10 mL) 

by sonication for 10 minutes. The solid precipitate was collected by trituration after 

centrifugation at 5000 rpm for 10 minutes. The isolated solid was then re-suspended with 

fresh 14 wt. % PVP/methanol (10 mL), and the centrifugation and trituration steps were 

repeated at least 5 times until R6G content was constant as determined by UV-Vis 
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absorption spectroscopy. The PVP-washed product was then re-suspended with 10 mL 

methanol to remove any excess PVP, and the final product was collected by 

centrifugation at 5000 rpm for 10 minutes and decanting of the supernatant. The solid 

was then dried overnight in vacuum oven at 100 °C to remove any residual solvent. The 

mass recovery was 66%. 

 

Molecular size calculations:  

The molecular size of R6G was estimated by using the Spartan 10 software package to 

minimize structures using the Hartree-Fock method with the basis set 3-21G. The greatest 

interatomic distances for each molecule are given as the effective molecular sizes in 

Figure 4.5a. 

 

4.3 Kinetic Study of Linker Exchange 

The ability of linkers to be exchanged between metal centers is ubiquitous in 

coordination chemistry, where the two limiting pathways for ligand substitution reactions 

are associative or dissociative mechanisms. In a MOF, the metal centers are typically 

coordinatively saturated; a property that we reasoned would make a dissociative 

mechanism more likely. To test the hypothesis that linker substitution is dissociative, we 

examined the kinetics of the linker exchange reaction under pseudo-first-order conditions 

by varying the initial concentration of exogenous im linker.  

 

The quantity of imidazole and 2-methylimidazole in solution were determined 

using the formulae: 
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AP = area determined by integration of peak (P), as defined in Figure 4.2 

�𝐴𝐴 ×
[TMA+]
𝐴𝐷

×
12 protons
1 protons

� + �𝐴𝐵 ×
[TMA+]
𝐴𝐷

×
12 protons
2 protons

� = 2[𝑖𝑖] 

�𝐴𝐶 ×
[TMA+]
𝐴𝐷

×
12 protons
2 protons

� + �𝐴𝐸 ×
[TMA+]
𝐴𝐷

×
12 protons
3 protons

� = 2[𝑖𝑖𝑖] 

 
[𝑖𝑖𝑖]

[𝑖𝑖] + [𝑖𝑖𝑖]
= conversion 

 

From the 1H-NMR data, a plot of conversion versus time could be made at each 

concentration, using the average deviation to estimate error (Figure 4.3). To obtain the 

observed rate constants (kobs), linear regression analysis of the data collected at time 

points from 10 minutes to 60 minutes was carried out, with the slope m being kobs. Values 

of kobs and the accompanying R2 values for the linear fits are outlined in the table 4.3.  

 

Table 4.3 The observed rate constants (kobs) determined by the method of initial rates 

(kobs = slope m) from the conversion vs. time plots in Figure 4.3, with the coefficients of 

determination (R2) for each linear fit. 

im/mim (mol/mol) [im] (M) kobs (s -1) R2 

5 0.0735 7.2 (±1.3) × 10 -6 0.98622 

10 0.147 8.1 (±1.2) × 10 -6 0.98121 

20 0.249 14.0 (±1.3) × 10 -6 0.99413 

30 0.441 21.0 (±1.8) × 10 -6 0.99036 
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Figure 4.3 Plot of conversion vs. time of the Zn(mim)2 to Zn(mim)2-x(im)x exchange 

reaction at varying concentrations of imidazole with conversion expressed as the 

disappearance of 2-methylimidazole from the framework. The molar fraction of the total 

imidazolate linker content of the solid. Least squares linear regressions are shown. 

  



73 
 

Observed rate constants (kobs) for the linker exchange reaction were obtained 

using the method of initial rates (<10% conversion). By plotting kobs versus [im], we 

observed a linear correlation with a nonzero slope and intercept (Figure 4.4). These data 

suggest that there is a competition between associative and dissociative linker 

substitution reactions, with the slope of this line (m = 38.6 × 10-6 M-1 s-1) being the 

second-order rate constant for associative exchange and the intercept (b = 3.37 × 10-6 s-1) 

being the first-order rate constant for dissociative exchange. Under the empirically 

determined conditions employed for linker exchange ([im] = 147 mM), the apparent rate 

constant for associative linker substitution (kapp = ka[im]) is 5.67 × 10-6 s-1, which is on 

par with the first-order rate constant for dissociative linker exchange.  

 

 

Figure 4.4 Observed rate constants (kobs) for exchange of ZIF-8 with imidazole are 

measured at different concentrations of imidazole. The dissociative linker substitution 

reactions with the slope of this line (m = 38.6 × 10-6 M-1 s-1) is the second-order rate 

constant for associative exchange. The intercept (b = 3.37 × 10-6 s-1) is the first-order rate 

constant for dissociative exchange. 
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4.4 Dissociative Linker Exchange for dye encapsulation 

If dissociative linker substitution occurs in MOFs, we hypothesized the existence 

of short-lived linker vacancies that would momentarily expand the pore aperture size to 

allow the passage of larger guests into the framework. Subsequent reincorporation of the 

dissociated linker reassembles the MOF with an aperture size that is smaller than the 

incorporated guest. As a proof of principle, we used the commercially available zeolitic 

imidazolate framework ZIF-8 as a model MOF. We also identified two criteria that would 

be most appropriate for a suitable guest molecule. First, to maximize guest retention, the 

guest molecule should be larger than the MOF aperture size. For encapsulation in ZIF-8, 

this requirement makes the ideal guest size between 3.4 and 11.6 Å, the aperture and pore 

sizes of ZIF-8, respectively. Second, in order to better quantify the loading, we initially 

targeted guest molecules that could be easily detectable by UV-vis spectroscopy. 

Rhodamine 6G (R6G) was selected as an ideal candidate that meets both criteria outlined 

above: it is a fluorescent dye (λmax = 530 nm) with a molecular diameter of 11.3-13.7 Å 

(Figure 4.5a). The amounts of encapsulated R6G were determined by UV-vis 

spectroscopy after acid digestion of the ZIF-8 crystals.  
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Figure 4.5 (a)  Rhodamine 6G model of molecular size and (b) encapsulation through 

ZIF-8 linker exchange relative to the concentration of 2-mim exogenous linker. More 

exogenous linkers result in less R6G loading. 

 

To test whether linker exchange can facilitate guest incorporation, R6G was 

incubated with ZIF-8 in the presence of 2-methylimidazole (2-mim) as an exogenous 

linker in butanol at 100 °C for 7 days (Figure 4.5b). After the reaction, the material, 

henceforth denoted as R6G-ZIF-8, took on a cloudy light-pink hue. The structure of the 

guest encapsulation products was characterized by transmission electron microscopy 

(TEM) and powder X-ray diffraction (PXRD). Both techniques showed no apparent 

differences after guest encapsulation, suggesting that the guest loading method was not 

destructive (Figures 4.6 and 4.7). Importantly, under the conditions that worked best to 

maximize guest incorporation ([im] = 0), the associative exchange mechanism was 
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completely shut down. Indeed, the lower guest incorporation seen at higher linker 

concentrations may be due to a competing associative exchange process that precludes 

the formation of an “open” state for guest incorporation. 

 

 

Figure 4.6 Transmission electron microscope (TEM) images and particle size 

distributions (PSDs) of ZIF-8 crystals (a) as synthesized (micron-sized), (b) as 

synthesized (nano-sized), (c) PSD of as synthesized (nano-sized), d) after R6G loading 

(micron-sized), (e) after R6G loading (nano-sized), and (f) PSD of after R6G loading 

(nano-sized). The loading was carried out with 10.3 mM R6G at 100 °C for 7 days in n-

butanol. 
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Figure 4.7 Powder X-ray diffraction patterns of R6G-ZIF-8 (red) and pure ZIF-8 (blue). 

The results show that ZIF-8 crystal structure is not affected by R6G loading and linker 

exchange process. 

 

To confirm that the R6G was indeed incorporated into ZIF-8 instead of attached 

to its surface; a method to remove the surface-bound R6G in all samples prior to UV-vis 

analysis was sought. The affinity of R6G for ZIF-8 likely arises from its ester and amine 

functional groups, which can interact with the hydrophilic external surfaces of ZIF-8. We 

discovered that briefly exposing ZIF-8 to R6G at room temperature led to coloration of 

the MOF even though linker exchange had not occurred to an appreciable extent (Figure 

4.8).  
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Figure 4.8 ZIF-8 surface interaction experiments. Loading of R6G for 7 days and 30 

minutes. All other R6G loading parameters were the same (10.3 mM R6G, n-butanol, 25 

°C). 

 

To remove surface bound R6G from ZIF-8, the samples were washed with 

methanolic solutions of polyvinylpyrrolidone (PVP), a polar polymer with polyketone 

functional groups that interact strongly with MOF crystals through the polyvalency 

effect.121  Because of its large size, PVP cannot penetrate the interior of ZIF-8. Therefore, 

any R6G that remains associated with ZIF-8 after PVP washing is likely trapped in the 

pores of ZIF-8 rather than on its surface. As expected, repeated washings of R6G-ZIF-8 

with PVP led to liberation of some R6G, but after several PVP washings, the pink color 

of R6G-ZIF-8 remained unchanged (Figure. 4.9). UV-vis analysis of the PVP-washed 

R6G-ZIF-8 allowed the encapsulation efficiency of R6G in R6G-ZIF-8 to be 

quantitatively determined. A similar PVP washing procedure carried out under conditions 

where linker exchange does not occur led to full removal of R6G from the ZIF-8 crystals 

(Figure 4.9). 
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Figure 4.9 PVP washing experiments. (a) Digital photograph of R6G-ZIF-8 precipitates 

and supernatants after centrifugation: (left) as synthesized R6G-ZIF-8 after 5 times 

methanol washing and (right) methanol-washed R6G-ZIF-8 re-suspended in 14 wt. % 

PVP/methanol solution. Surface bound R6G was washed by PVP solution. In b) and c), 

R6G content tracking by absorbance after PVP washing cycles. The R6G loading was 

carried out with 1.29 mM R6G in n-butanol at (b) 100 °C for 7 days, and (c) 25 °C for 10 

min. 
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After R6G was removed from the surface, the effects of temperature, solvent, and 

initial concentration of R6G on R6G encapsulation in ZIF-8 were studied (Figure 4.5b 

and 4.10). This study indicated that the guest loading was temperature- and solvent 

dependent. Higher encapsulation was observed at higher temperatures as a result of an 

increased linker exchange rate. Likewise, the guest loading in acetonitrile was lower 

because linker exchange is slower in acetonitrile than in n-butanol (Figure 4.11). As 

expected for diffusion-controlled guest incorporation, the R6G loading was found to be 

directly proportional to the initial concentration of R6G (Figure 4.10). As expected for 

guests that are kinetically trapped, re-subjection of R6G-ZIF-8 to the linker exchange 

reaction conditions led to diffusion of the dye into solution (Table 4.4). Importantly, 

leaching can be prevented by subjecting R6G-ZIF-8 to conditions where linker exchange 

is slow (Table 4.4). 

 

 

Figure 4.10 R6G encapsulation through ZIF-8 linker exchange. (A) R6G loading vs 

[R6G] at 100 °C (red) and 25 °C (blue) in n-butanol and at 100 °C in acetonitrile (green). 
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The inset image shows ZIF-8 after R6G loading at various [R6G] during linker exchange 

at 100 °C in n-butanol. 

 

 

Figure 4.11 The dependence between the imidazole linker exchange rate and R6G 

loading amount in different solvents. (a) PXRD patterns of the R6G-ZIF-8 samples after 

the exchange process in various solvents at 100 °C for 7 days. The samples were prepared 

and MeOH/PVP washed as described in the experimental section for n-butanol. (b-c) The 

dependence of the R6G loading (wt. %) on the imidazole exchange rate for (b) without 

exogenous linker and (c) with 147 mM exogenous 2-methylimidazole during the dye 

encapsulation process. *The imidazole exchange rate was approximated by measuring the 

fraction of linkers exchanged to imidazole from 2-methylimidazole after 18 hours at 100 

°C in the various solvents. 
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Table 4.4 Leaching experiments. 

Sample Preparation Loading 

Original R6G@ZIF-8 10.29 mM R6G, 2.2 mmol 2-methylimidazol, 
BuOH at 100 oC for 7days 0.370 mol (%) 

Under linker-exchange condition 2.2 mmol 2-methylimidazol, BuOH at 100 oC 
for 7days 0.027 mol (%) 

Under non-linger-exchange condition 2.2 mmol 2-methylimidazol, MeOH at 20 oC 
for 1 month  0.340 mol (%) 

 

4.5 Confirmation of guest encapsulation via linker exchange 

To further confirm that the R6G was encapsulated in ZIF-8 during linker 

exchange, photophysical measurements were made (Table 4.5). Comparison of the 

normalized fluorescence intensities of R6G-ZIF-8 (prepared by linker exchange in n-

butanol with R6G), surface-bound R6G (prepared by brief exposure of ZIF-8 to R6G), 

and free R6G in solution provided some insight. A dramatic decrease in fluorescence 

intensity was observed for R6G-ZIF-8 and surface-bound R6G compared with free R6G 

in solution. Moreover, the normalized intensity for surface-bound R6G (0.096) was more 

than double that of R6G-ZIF-8 (0.042). The lower intensity observed for R6G-ZIF-8 

compared with surface-bound R6G is likely due to dye encapsulation in R6G-ZIF-8, 

which is expected to alter light absorption and/or emission as a result of differing 

interactions between the guest molecule and the framework. Regardless of the specific 

rationale, the difference in fluorescence intensity observed for R6G-ZIF-8 compared with 

surface-bound R6G provides further support that R6G is encapsulated in ZIF-8 during 

linker exchange instead of bound to the external ZIF-8 surface. 

 

Table 4.5 Fluorescence lifetime and fluorescence intensity measurement. R6G-ZIF-8 

samples prepared with 147 mM 2-methylimidazole exogenous linker (+ Hmim) and 
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without any exogenous linker (no exog.) in n-butanol. Both R6G@ZIF-8 samples 

were PVP washed to remove surface bound dye as described in the manuscript. The 

“surface only control” was prepared by exposing ZIF-8 particles to R6G in a 

methanolic solution for 10 min, followed by extensive (5x) washing with methanol. 

In previous control experiments we found that PVP washing of a sample prepared 

this way led to complete removal of the dye (see Figure 4.9), demonstrating that dye 

loading is solely on the surface. The fluorescence intensities were normalized by the 

amount of the R6G loading measured by absorption after the ZIF-8 particles were 

digested by acid. The R6G standard consisted of R6G dissolved in methanol with a 

UV-vis absorbance of 0.3. 

Sample WT. % R6G τ(ns) I /A (a.u.) I / A normalized 

R6G - 2.84 ± 0.14 18800 ± 100 1.0 

Surface only control 0.023 3.63 ± 0.10 1800 ± 40 0.096 

R6G@ZIF-8 + Hmim 0.024 3.50 ± 0.03 790 ± 6 0.042 

R6G@ZIF-8 no exog. 0.064 3.79 ± 0.02 195 ± 3 0.010 

 

To gain a better understanding of the guest encapsulation process, the effect of the 

exogenous 2-mim linker concentration on the guest loading was explored next. 

Somewhat surprisingly, the R6G loading was inversely proportional to the concentration 

of exogenous linker (Figure 4.5b). In fact, the highest loading of R6G was observed when 

the reaction was carried out without any exogenous 2-mim linker. Although unexpected, 

this result could be rationalized by a dissociative linker substitution mechanism where 

dissociation of 2-mim from ZIF-8 led to the formation of a linker-deficient “open” state 

(Scheme 4.1). At low concentrations of free im, the “open” state is not as readily arrested 

by free linker, which allows more time for the guest to diffuse into the pores of the MOF. 
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Consequently, higher guest loadings are observed at lower concentrations of exchanging 

linker. 

 

To further examine the mechanism of guest encapsulation, the relationship 

between the im linker exchange rate and the R6G loading was evaluated in different 

solvents (Figure 4.11). PXRD suggested that the guest loading method was not 

destructive in these solvents (Figure 4.11a).  As expected, higher R6G loading was 

observed in solvents where the linker exchange rate is higher. Moreover, every solvent 

that promoted facile linker exchange also demonstrated higher guest encapsulation in the 

absence of exogenous 2-mim compared with reactions carried out in the presence of 2-

mim. 

 

4.6 Linker Exchange for PPh3 encapsulation 

 

 

Figure 4.12 Molecular sizes of triphenylphosphine model  

 

Finally, to probe the generality of the methodology, encapsulation of a ligand 

suitable for incorporating transition metal complexes in ZIF-8 was targeted. Because it is 

ubiquitous in organometallic catalysis and has the appropriate molecular size (Figure 
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4.12), triphenylphosphine (PPh3) (molecular diameter = 9.56 Å) was chosen as the initial 

guest ligand. The same method used for dye encapsulation was adopted to encapsulate 

PPh3 in ZIF-8 (henceforth denoted as PPh3-ZIF-8) using initial [PPh3] = 165 and 220 

mM. Elemental analysis of the product obtained with initial [PPh3] = 220 mM indicated a 

PPh3 loading of 2 wt % (Figure 4.13). 

 

 

Figure 4.13 A representative energy dispersive X-ray spectrum of PPh3-ZIF-8 loaded 

with initial [PPh3] of 220 mM. Inset shows the TEM image of the area used for analysis, 

with the focused particle indicated by an arrow. The 10 % pore loading of PPh3 was 

estimated by multiplying the P/Zn atomic ratio of 0.016 by 6 (the number of unique Zn 

atoms per sodalite cage of ZIF-8). 
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To demonstrate that the PPh3 was mainly encapsulated within the pores of ZIF-8 

and not on its surface, N2 adsorption data were collected at 77 K on PPh3-ZIF-8 at both 

loadings and commercial ZIF-8, with a high resolution of points in the micropore 

adsorption region (Figure 4.14). Saturation of the micropore volume with N2 occurred for 

the reference ZIF-8 material at 485 cm3/g, and the BET surface area was calculated to be 

1554 m2/g using a P/P0 range of 5 × 10-4 to 5 × 10-3 (before gating) or 1885 m2/g with a 

range of 5 × 10-4 to 10-2 (after gating). These surface areas are in agreement with ZIF-8 

values from the literature76. For the PPh3-ZIF-8 samples, micropore saturation occurred 

at 459 cm3/g for the sample exchanged with 165 mM PPh3 and at 405 cm3/g for that with 

220 mM PPh3; these values are 5% and 16% lower than for ZIF-8. This decrease in the 

micropore adsorption capacity was in excess of the decrease anticipated from the weight 

gain upon loading (only 2%) and is consistent with guests occupying some pores of the 

MOF. From these data, we estimated that ∼1 in every 10 pores in ZIF-8 was occupied by 

a PPh3 ligand. Such loadings are possible only by the linker exchange process that 

facilitates incorporation of the large ligand guest. 
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Figure 4.14 (A) N2 absorption (○) and desorption (●) isotherms of ZIF-8 (red), 165 mM 

PPh3-ZIF-8 (blue), and 220 mM PPh3-ZIF-8 (green). (B) Plot vs log10(P/P0) to show the 

detailed N2 sorption at low pressure. 

 

In summary, we have developed a method for postsynthetic encapsulation of large 

guests (R6G and PPh3) with molecular diameters that exceed the framework aperture size 

in ZIF-8 nanocrystals beyond what could be explained by framework flexibility. The 

approach capitalizes on the existence of linker exchange reactions, which were shown by 

our kinetic studies to proceed by a competition between associative and dissociative 
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exchange mechanisms. Maximum guest encapsulation was observed under conditions 

where the dissociative mechanism predominates because the dissociation of at least one 

aperture-defining 2-mim linker facilitates the formation of a short-lived “open” state in 

the pore with an expanded pore aperture size. In contrast to other encapsulation 

strategies, this approach does not require any specific electrostatic interaction between 

the guest and the MOF host, which may significantly expand the scope of molecular 

guests and MOF hosts suitable for forming host−guest composites. 

 

In addition to the impact of these findings on the ability to incorporate large 

guests in MOFs, important insight into the mechanism for linker exchange processes in 

MOFs has been garnered. Such processes have already been exploited for the synthesis of 

novel MOF architectures63, useful catalyst species122, and sophisticated nanocomposite 

materials117. Future investigations will look at the application of these findings to the new 

encapsulation methodology for the development of catalysts that take advantage of the 

size-selective capabilities of MOFs as well as the use of the mechanism for new MOF 

morphology synthesis, hollow MOF formation for example. 
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Chapter 5: Single Crystalline Hollow MOF Formation 

We have learned, through kinetics studies, that linker exchange rate can 

vary in different solvents. The different exchanging rate could be used to create 

hierarchical porosity in MOF structure. With this in mind, we developed a double-

solvent mediated overgrowth strategy to form hollow and mesoporous MOF. 

 

5.1 Double-solvent mediated overgrowth of ZIF-8 

Portions of the following section have been reproduced in part with permission 

from Chou, L. -Y.; Hu, P.; Zhuang, J.; Morabito, J. V.; Ng K. -C.; Kao Y. -C.; Wang, S. -

C.; Shieh, F. -K.; Kuo, C. -H.; Tsung, C. -K., “Formation of hollow and mesoporous 

structures in single-crystalline microcrystals of metal–organic frameworks via double-

solvent mediated overgrowth,” Nanoscale, 2015, 7, 19408-19412., Copyright 2015 The 

Royal Society of Chemistry. 

 

Creating MOF crystals with hierarchical porosity, such as hollow cavities or 

mesopores, has gained attention recently due to their greater storage capacity and 

diffusion promotion.123-130 One synthesis method, the use of surfactant ligands to 

create mesopores and macropores in MOF crystals, has been reported.131 Though 

this method has a simple one-step synthesis and high degree of crystallinity, the 

selection of surfactant ligands can be quite MOF-specific. Overgrowth of MOFs 

on sacrificial templates, and subsequent template removal, is a more 

straightforward and general method to generate hierarchical porosity in MOF 

crystals.132-134 The template selection and removal conditions must be carefully 
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designed to avoid defect formation and preserve crystallinity, critical concerns for 

applications that require molecular selectivity135. These works demonstrate a 

rational combination of template and removal, highlighting the advantages of 

hierarchical porosity the need for more general methods to create hierarchical 

porosity in single-crystalline MOF microcrystals.  

 

 

Scheme 5.1 Double-solvent mediated overgrowth of ZIF-8. MOF microcrystals 

with the first solvent (H2O) trapped in their pores are used as cores to seed the 

overgrowth of a MOF shell in the second solvent (methanol). 

 

Solvent effects observed generally in coordination chemistry suggest that 

the solvent could have a strong directing effect on the pathways of formation or 

decomposition of MOFs. Varying the solvent could alter the formation energy of 

MOFs, stabilize intermediates and transition states, and even provide new 
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pathways from its direct participation in elementary reactions. The solvent has 

been observed to affect many properties of MOFs, such as their stability, crystal 

sizes and shapes, as well as the rates of crystal growth and post-synthetic ligand 

and ion exchange.64,68-71 We believe that the solvent effect could be utilized as a 

part of the synthetic toolbox. 

 

Toward this design principle, we developed a double-solvent mediated 

overgrowth strategy. In this method, uniform MOF microcrystals with the first 

solvent trapped in their pores are used as cores to seed the overgrowth of a MOF 

shell in the second solvent (Scheme 5.1). During the overgrowth, the solvent 

molecules trapped in the MOF crystal cores sluggishly exchange with the solvent 

molecules in the overgrowth solution due to the slow diffusion rate in the 

microporous materials.136-137 This lethargy creates a local double-solvent 

environment of internal core solvent and external overgrowth solvent. We found 

that, with the appropriate combination of solvents, the core MOF could serve as a 

sacrificial template to form uniform MOF microcrystals with hollow or 

mesoporous structures (Figure 5.1). Because the template core and overgrowth 

shell are exactly the same MOF and the core is single-crystalline, single-crystalline 

overgrowth is promoted.132 
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Figure 5.1 TEM images of (a-b) hollow ZIF-8, (c-f) mesoporous ZIF-8, and (g-h) 

solid ZIF-8. Narrow size dispersed single crystal MOF shells are created by the 
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double solvent method. Same area of hollow and mesoporous region can be seen 

from the synthesis. 

 

5.2 Materials and Methods 

General considerations:  

Unless otherwise stated, all reactions were carried out in air without taking any 

precaution to protect against oxygen and moisture. Cetyltrimethylammonium bromide 

(CTAB, Calbiochem, 98%), hydrogen tetrachloroaurate trihydrate (HAuCl4 ‧3H2O, 

Sigma-Aldrich, ~50% Au basis), sodium citrate tribasic dehydrate (Sigma-Aldrich, 

>99%), zinc nitrate hexahydrate (Zn(NO3)2‧6H2O, Sigma-Aldrich, 99%), cobalt(II) 

nitrate hexahydrate (Co(NO3)2‧6H2O, Sigma-Aldrich, 99.999%), 2-methylimidazole 

(Sigma-Aldrich, 99%), and ultrapure deionized water (d.i. H2O, 18.2 Μ) were used for 

aqueous solution preparations. 

 

Characterization:  

Transmission electron microscope (TEM) images were obtained on a JEOL JEM2010F 

operated at 200 kV. Scanning transmission electron microscope (STEM) and energy-

dispersive X-ray spectroscopy (EDS) mapping experiments were performed on an FEI 

Probe Cs corrected Titan operating at 200 kV. Scanning electron microscope (SEM) 

images were obtained on a JEOL JSM6340F. The powder x-ray diffraction patterns 

(PXRD) were collected on a Bruker AXS diffractometer with Cu Kα radiation (λ= 1.5418 

Å). The nitrogen gas adsorption-desorption was carried out on Micromeritics ASAP 

2020.  
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Synthesis of 200 nm ZIF-8 and ZIF-67 nanocubes:  

The synthesis was carried out following the previous procedure in our lab with some 

modifications43. 1.75 mL of aqueous solution of 0.55 mM CTAB and 790 mM of 2-

methylimidazole mixture was stirred at 500 rpm for 5 minutes. Then 0.25 mL of 97.5 

mM Zn(NO3)2‧6H2O aqueous solution was injected. The whole solution was stirred for 

another 5 minutes at 500 rpm. The reaction solution was then left undisturbed at room 

temperature for 3 hours. The formed ZIF-8 nanocubes were spun down at 5000 rpm for 

10 minutes. To form the ZIF-67, the same reaction parameters were followed, but 97.5 

mM Co(NO3)2‧6H2O aqueous solution replaced Zn(NO3)2‧6H2O. For the synthesis 

of 150 nm ZIF-8 nanocubes, similar reaction parameters were followed, but 0.83 mM 

CTAB was used instead of 0.55 mM CTAB. 

 

Synthesis of 150 nm ZIF-8 nano-crystals in methanol:  

The synthesis was carried out following the previous procedure in our lab with some 

modifications24. 7.15 mL of a methanol solution of 562 mM 2-methyl imidazole was 

stirred at 500 rpm. Then, 7.15 mL of a methanol solution of 70.5 mM Zn(NO3)2‧6H2O 

was injected. The whole solution was stirred for another 12 hours at 500 rpm. The formed 

ZIF-8 nano-crystals were spun down at 5000 rpm for 10 minutes. 

 

Synthesis of solid, hollow and mesoporous ZIF-8:  

As-synthesized ZIF-8 cubes were collected by centrifugation and re-suspended in 1 mL 

methanol.  0.20 mL of ZIF-8 cubes were mixed with 2.5 mL of 30 mM 2-
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methylimidazole methanol solution. 2.5 mL of 30 mM Zn(NO3)2‧6H2O methanol 

solution were then added. The reaction solution was left undisturbed at room temperature 

for 1 hour (hollow ZIF-8) or 6 hours (mesoporous ZIF-8). The formed ZIF-8 

nanoparticles were spun down at 5000 rpm for 10 minutes. To form solid ZIF-8, the same 

reaction parameters were followed, but the ZIF-8 cubes used in preparing seeds solution 

were dried in a vacuum oven. 

 

Synthesis of ZIF-67-ZIF-8:  

Following a procedure similar to the synthesis of hollow ZIF-8, as-synthesized ZIF-67 

cubes were suspended in 1 mL of methanol prior to the overgrowth step. The reaction 

solution was left undisturbed at room temperature for 1 hour (hollow ZIF-67-ZIF-8) or 6 

hours (mesoporous ZIF-67-ZIF-8). The formed ZIF-67-ZIF-8 nanoparticles were spun 

down at 5000 rpm for 10 minutes. 

 

Synthesis of Au octahedra:  

The synthesis was carried out following our previous procedure with some 

modifications43. 550 mg of CTAB was dissolved in 97 mL of d.i. H2O, followed by the 

addition of 2.50 mL 0.01 M HAuCl4 and 0.50 mL 0.1 M trisodium citrate. The mixture 

solution was transferred into a 200 mL pressure vessel and heated at 110 oC for 24 hours. 

The formed Au octahedra were spun down at 6000 rpm for 20 minutes and redispersed in 

d. i. H2O. 
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Synthesis of Au-ZIF-8 nanocubes:  

The synthesis was carried out following the previous procedure in our lab with some 

modifications43. Following a similar procedure to the synthesis of ZIF-8 nanocubes, 10 

seconds after the addition of Zn(NO3)2‧6H2O, 500 μL of a Au octahedra solution was 

injected into the mixture, while the Au octahedra solution concentration had already been 

adjusted to 9.6 µmol metal in a 1 mL solution. The whole solution was stirred for another 

5 minutes at 500 rpm. The reaction solution was then left undisturbed at room 

temperature for 3 hours. The formed Au-ZIF-8 nanocubes were spun down at 5000 rpm 

for 10 minutes. 

 

Synthesis of mesoporous and solid Au-ZIF-8:  

Synthesis of mesoporous Au-ZIF-8 followed a procedure similar to the synthesis 

of mesoporous ZIF-8: as-synthesized Au-ZIF-8 cubes were suspended in 1 mL of 

methanol prior to the overgrowth step. The reaction solution was then left 

undisturbed at room temperature for 6 hours. The formed mesoporous Au-ZIF-8 

nanoparticles were spun down at 5000 rpm for 10 minutes. To form solid Au-ZIF-

8, the same reaction parameters were followed, but with vacuum-oven-dried Au-

ZIF-8 cubes used to prepare the seed solution. 

 

5.3 Hollow, Mesoporous, and Solid MOF Formation 

Our first indication that solvent effects could be useful for generating MOF 

crystals with hierarchical porosity came during attempts to carry out overgrowth of 

ZIF-8 microcrystals under a water-methanol double-solvent condition. ZIF-8 forms 
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in both water and methanol, but the formation conditions are very different. Stable 

ZIF-8 microcrystals form in water only with a large excess of linker molecules 

relative to the methanol condition.138-139 For the aqueous synthesis and overgrowth 

condition, we used a growth solution with the precursors 2-methylimidazole (2-

mim) and Zn(NO3)2 in a ratio of 55:1 (2-mim/Zn); for the methanol condition the 

ratio is 1:1. Cetyltrimethylammonium bromide (CTAB) is used in the aqueous 

condition in order to control the size and shape of ZIF-8.140 The crystal shape of 

ZIF-8 synthesized or overgrown is cubic in water and truncated rhombic 

dodecahedral or rhombic dodecahedral in methanol. This CTAB-induced shape 

difference has been reported before and provides a great tool to track the 

overgrowth in different solvents.141 

 

 

Figure 5.2 SEM images of characteristic water-synthesized MOF cores. (a) 150 nm ZIF-8 

nanocubes, and (b) 200 nm ZIF-67 nanocubes. Size can be tuned between 100 nm and 

500 nm. Both water-synthesized MOFs show narrow size dispersed single crystal.  
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We synthesized uniform cubic size-tunable ZIF-8 microcrystal cores 

(Figure 5.2a) under aqueous condition and then collected the solid products via 

centrifugation without removal of the water molecules adsorbed in the ZIF-8 

pores. These ZIF-8 microcrystal cores (200 nm) and trapped water molecules were 

then transferred to the methanol solution of Zn(NO3)2 and 2-mim to carry out the 

overgrowth. After 1 hour, instead of the anticipated larger solid ZIF-8 

microcrystals, we observed large microcrystals (450 nm) with hollow central 

cavities (Figures 5.1a, b). The imprint left by the cubic ZIF-8 cores could be 

clearly seen. The sharp truncated rhombic dodecahedral shape was observed in all 

the samples, indicating that the hollow ZIF-8 microcrystals were single-crystalline. 

Powder X-ray diffraction (PXRD) patterns demonstrate that ZIF-8 is the only 

crystalline phase (Figure 5.3) and N2 adsorption-desorption isotherms collected at 

77 K are type I, indicating the microporosity of the hollow ZIF-8 (Figure 5.4). The 

BET surface area of the hollow ZIF-8 was calculated to be 1276 m2/g.  
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Figure 5.3 Powder X-Ray diffraction patterns of hollow ZIF-8 and mesoporous 

ZIF-8. The results show that crystal structure of the ZIF-8 crystals synthesized by 

double solvent method is exactly the same to conventional ZIF-8 synthesis 

method. 
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Figure 5.4 Nitrogen adsorption (○) and desorption (●) isotherms of hollow (blue) and 

mesoporous (red) ZIF-8. Mesoporous ZIF-8 shows higher surface area than hollow ZIF-

8. 

 

To verify whether the hollow structure was generated due to the water-

methanol double-solvent environment, three control experiments were carried out. 

First, we carried out the overgrowth under aqueous condition instead of methanol 

on the same ZIF-8 cores with water trapped in the pores. In this case, both internal 

and external solvent environments were water. Solid larger ZIF-8 crystals with 

cubic shape formed under this water-water overgrowth condition and no hollow 

structure was observed under TEM (Figure 5.5a, b). Second, we removed water 

from the ZIF-8 cores (150 nm) by heating at 150 °C under vacuum and then filled 

the pores with methanol before the overgrowth under methanol condition. This 

methanol-methanol overgrowth also led to solid ZIF-8 crystals, here with rhombic 
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dodecahedral crystallinity (Figures 5.1g, h). Finally, we carried out the overgrowth 

under aqueous conditions on the ZIF-8 cores with methanol trapped in the pores. 

Again, solid, larger ZIF-8 crystals formed under this methanol-water condition 

(Figure 5.5c, d). These three control experiments clearly indicate that only the 

double-solvent conditions of internal water and external methanol lead to the 

formation of the hollow structure. Notably, these control experiments confirm that 

the cavities do not come from the surfactant micelles due to CTAB surfactant.142  

 

 

Figure 5.5 (a) SEM and (b) TEM images of overgrown ZIF-8 nanocubes in water 

from water-synthesized ZIF-8 cores. (c-d) TEM images of overgrown ZIF-8 
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nanocubes in water from methanol-synthesized ZIF-8 cores. As-synthesized ZIF-8 

cores can be seen in both cases. Larger ZIF-8 crystals confirm the overgrowth. 150 

nm of ZIF-8 nanocubes would be formed under the overgrowth condition if no 

additional ZIF-8 cores. 

 

We propose that, during the formation of shell ZIF-8 under the water-

methanol double-solvent overgrowth, the pH of the internal water environment 

drops due to the deprotonation of the 2-mim in the external methanol 

environment.143 ZIF-8 is not stable at this condition in water, so it dissociates and 

forms a hollow cavity.24 It is worth mentioning that the water-water or methanol-

water condition generates the solid product because of the large excess of linker 

molecules during the aqueous overgrowth. Without the excess of linkers, the ZIF-8 

cores are etched away in water. When an excess of linkers (2-mim:Zn = 55:1) was 

used under the water-methanol condition, however, we observed the formation of 

free ZIF-8 nanocrystals rather than overgrowth, and it is clear that no hollow 

structure formed (Figure 5.6). These results show that an excess of linkers is 

needed to stabilize ZIF-8 cores with the presence of water. 
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Figure 5.6 TEM images of (a-b) overgrown ZIF-8 nanocubes in methanol with the 

precursors 2-methylimidazole (2-mim) and Zn(NO3)2 in a ratio of 55:1 (2-

mim:Zn) from water-synthesized ZIF-8 cores.  About 20 nm of ZIF-8 nanocrystals 

were formed under the overgrowth condition because of the excess of 2-mim. 

 

5.4 Investigation of the Cavity Formation Mechanism 

To monitor the cavity formation, we used ZIF-67 microcrystals as the cores 

to carry out the same overgrowth and energy-dispersive X-ray (EDX) spectroscopy 

associated with TEM to trace the metal ions. ZIF-8 and ZIF-67 can be synthesized 

under similar aqueous and methanol conditions. They are of the same crystal 

topology but have different metal ion nodes. ZIF-8 contains Zn ions as the metal 

nodes, but ZIF-67 contains Co ions.75,144 Uniform ZIF-67 microcrystals were 

synthesized under aqueous conditions (Figure 5.2b), and subjected to the same 

overgrowth of ZIF-8 under methanol condition. Under this water-methanol double-

solvent condition, similar hollow microcrystals were obtained after 1 hour of 

overgrowth (Figure 5.7a). EDX mapping and line-scan showed that the hollow 
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microcrystals were mainly composed of Zn ions (ZIF-8). ZIF-67 cores were 

dissociated and the Co ions were located at the inner surface of the central cavity 

(Figure 5.7b, c). We also observed higher contrast at the interface of the hollow 

central cavity under TEM. This could indicate that dissociated species of ZIF-67 

were trapped and deposited on the inner surface of the hollow core when the 

sample was dried. The observation suggested that the linker molecules 

decomposed from ZIF-67 were also trapped in the hollow cavities. A control 

experiment of overgrowth of ZIF-8 on ZIF-67 cores under water-water condition 

was performed. As expected, a solid ZIF-67-ZIF-8 core-shell microcrystal 

structure was obtained. (Figure 5.8). 
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Figure 5.7 STEM/EDX line scan and elemental mapping of Co-ZIF-8 overgrowth 

in methanol. (a-c) 1 hour of overgrowth and (d-f) 6 hours of overgrowth. Green 

color represents Co and red color represents Zn. Scale bar is 100 nm in each 

image. 
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Figure 5.8 (a-b) TEM images of ZIF-67-ZIF-8 overgrowth in water. (c) STEM/EDS line 

scan and (d) elemental mapping of ZIF-67-ZIF-8 overgrowth in water. Green color 

represents Co and red color represents Zn 

 

After 1 hour of reaction in the water-methanol condition, the Co ions and 

linkers trapped in the hollow central cavities could be removed by thorough 

washing to yield hollow ZIF-8. If instead we kept the product under the methanol 
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condition for 6 hours, a mesoporous ZIF-67 core formed (Figure 5.7d). Elemental 

mapping and line-scan showed a Co-rich core, which indicates that ZIF-67 reforms 

(Figure 5.7e, f). Compared to water, methanol promotes the reforming of ZIF-67 

under low linker concentrations,138 which may help explain why the core reforms 

after solvent equilibration. We observed the evolution of the products through a 

time-dependent TEM study (Figure 5.9). Completely hollow ZIF-8 formed after 1 

hour of overgrowth. ZIF-67 started to reform after 3 hours and a clear mesoporous 

core-shell structure was observed after 6 hours. Solid cores are never observed in 

these prolonged reactions, which could be due to some of the trapped linkers and 

metal ions diffusing out to solution during the overgrowth or serving as nutrients 

for the growing ZIF-8 shell. The same process occurred on pure ZIF-8. Hollow 

(Figure 5.1a, b) and mesoporous (Figure 5.1c, d) ZIF-8 were formed. The 

observation of core metal ion deposition on the inner surface of hollow ZIF-8 may 

also explain the lower surface area (1276 m2/g) of hollow ZIF-8 as compared to 

pure ZIF-8. After the reformation of mesoporous core ZIF-8, the BET surface area 

of the mesoporous ZIF-8 increased to 1441 m2/g (Figure 5.4). 
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Figure 5.9 Time study of hollow MOF overgrowth in methanol. TEM images of (a 

and d) 1 hour of overgrowth, (b and e) 3 hours of overgrowth and (c and f) 6 hours 

of overgrowth. 

 

5.5 Nanoparticle Encapsulation through Double-solvent method 

  The detailed mechanism of this double-solvent-mediated method is under 

investigation; however, it is already clear that it is an efficient way to generate 

ZIF-8 with hierarchical porosity. To demonstrate the versatility of this method, we 

have tuned the size of mesoporous ZIF-8 and formed structures with metal 

nanoparticles embedded in mesoporous ZIF-8. Mesoporous ZIF-8 microcrystals 

with sizes of 250 nm (Figure 5.1e, f) and 450 nm (Figure 5.1c, d) were synthesized 

by using different cores with sizes of 150 nm and 200 nm, respectively. 
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Microcrystals of ZIF-8 with a single Au nanoparticle embedded per crystal were 

synthesized by the method previously reported by our group,140 and then either 

water-methanol or methanol-methanol overgrowth of ZIF-8 was carried out. The 

formation of mesoporous Au-ZIF-8 (Figure 5.10a, b) or solid Au-ZIF-8 (Figure 

5.10c, d) was directed by using either double-solvent or single-solvent conditions. 

We believe that by varying the guests (e.g. metal oxide, quantum dot, small 

molecule), the structures will have great applications in electrochemistry,145 

luminescence,146 delivery,147 and catalysis.50  
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Figure 5.10 TEM images of (a-b) mesoporous Au-ZIF-8, and (c-d) solid Au-ZIF-8. 

Both NP-MOF composites show narrow size dispersed single crystal shell. 

 

  In summary, we have developed a double-solvent mediated overgrowth 

method to form cavities in single-crystalline MOF microcrystals. ZIF-8 cores with 

water adsorbed in the pores are used as templates to carry out overgrowth of ZIF-8 

shells in methanol. Due to the different solvent effects, hollow and mesoporous 

structures are created. We believe that this solvent-mediated overgrowth method 

will have great applications in forming other MOFs with hierarchical porosity. 
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Chapter 6: Conclusions 

Over the past few decades, significant progress has been made in the combination 

of metal nanocatalysts and nanoporous materials. From the stiff, solid zeolite to the 

flexible, modifiable MOF, scientists have developed advanced materials that can be 

integrated with metal catalysts for a variety of applications. Various synthetic strategies 

for incorporating metal nanoparticles within nanoporous materials (e.g., MOFs) have also 

been developed, with several demonstrated applications of the composite materials in 

heterogeneous catalysis. The NPs-MOF composite is becoming one of the most 

promising materials for heterogeneous catalysis in terms of the selectivity that the MOF 

shell may provide. We have successfully utilized a capping agent (PVP) to mediate 

nanoparticle encapsulation in two thermally stable MOFs (ZIF-8 and UiO-66) with 

different aperture sizes. Size-selective alkene hydrogenations were then carried out in the 

NPs-MOF composites. The results demonstrated molecular size selectivity through 

various aperture sizes of MOF shells. Heat treatment over the NPs-MOF composites 

showed that deactivation temperatures could be a quick and general method to determine 

thermal stability of NPs-MOF composites. Due to the successful encapsulation of NPs by 

MOFs, interfacial control was deemed feasible through the choice of the correct capping 

agent. We found that a surfactant (CTAB) could orient lattice alignment between NPs 

and MOF structure. We extended the alignment mechanism to two porous materials with 

mismatched topologies (UiO-66 and ZIF-8). The importance of sonication and surfactant 

is discussed in the generation of the conformal and fracture-free shell. The selective 

catalysis result highlights the importance of the conformity, crystallinity, and integrity of 

the shell component. Our method could be used to guide the future synthesis of novel 
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MOF-MOF materials with MOFs of mismatched topologies and chemical properties for a 

number of potential applications. These findings could be used to develop catalysts that 

take advantage of the size-selective capabilities of MOFs. We then turned to study linker 

exchange, intending to functionalize our NPs-MOF composites. Through the dissociated 

linker exchange mechanism, we developed a new concept for the formation of enlarged 

pore apertures by linker dissociation during MOF linker exchange, as demonstrated by 

the postsynthetic encapsulation of species much larger than the pore aperture of ZIF-8. 

This finding could be applied to the new encapsulation methodology for the development 

of catalysts that take advantage of the size-selective capabilities of MOFs. By applying 

knowledge of the linker exchange process, we finally developed a double-solvent-

mediated overgrowth method to form single-crystalline, hollow MOF microcrystals. Due 

to the different solvent effects, hollow and mesoporous structures were created. We 

believe that this solvent-mediated overgrowth method will have applications in forming 

other MOFs with hierarchical porosity. Different types of catalytic reaction applications 

were shown here to demonstrate the potential of NPs-MOF composite materials. The 

promising properties of this class for heterogeneous catalysis will be further promoted by 

mechanistic studies of their action and development of applications. 
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