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Abstract 

 Activity-based protein profiling (ABPP) is a chemical proteomic technique that 

allows for selective labeling, visualization, and enrichment of the subset of active 

enzymes in a complex proteome. Given the dominant role of posttranslational 

modifications in regulating protein function in vivo, ABPP provides a direct readout of 

activity that is not attained through traditional proteomic methods. The first application of 

chemical proteomics in C. elegans was used to identify dysregulated serine hydrolase and 

cysteine-mediated protein activities in the long-lived daf-2 mutant, revealing LBP-3, 

K02D7.1, and C23H4.2 as novel regulators of lifespan and dauer formation. The tools of 

ABPP were also utilized in studying protein interactions at the host-pathogen interface of 

V. cholerae infection, discovering four pathogen-secreted proteases that alter the 

biochemical composition of the host, decrease the activity of host serine hydrolases, and 

inhibit bacterial binding by a host-secreted lectin. Lastly, ABPP was used to study the 

targets of protein arginine deiminases (PADs) using a citrulline-specific activity-based 

probe (ABP), highlighting its utility in detecting biologically relevant PAD substrates as 

well as identifying mRNA processing factors as previously unknown targets of PAD. 

Taken together, these studies demonstrate the ability of ABPP to discover novel protein 

regulators of physiological and pathological processes. 
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Introduction 

The advancements in genome sequencing have allowed a better understanding of 

the molecular fundamentals of life. The first complete genome sequencing of a living 

organism was achieved in 1995 on the bacterium Haemophilus influenza1. In 1996 

Saccharomyces cerevisiae became the first fully sequenced eukaryotic genome, and 1998 

delivered the first sequenced multicellular eukaryotic genome, Caenorhabditis elegans2. 

Information gained from the genome itself is limited as it does not reveal the details of 

physiological or pathological processes, which are mostly controlled by the expression of 

these genes as RNA molecules and proteins. Preventing specific gene expression by gene 

knockout/knockdown experiments can provide insight into the roles its protein plays. 

Since gene expression is so dynamic in varying cellular conditions, global profiling of 

gene expression products at a given time, cell type, or organism paints a much clearer 

picture of the processes these molecules control. Global transcriptomic analysis, such as 

microarrays, can reveal the amounts of different mRNA expressed in a certain cell. 

However, mRNA levels are not directly correlated to the amount of the protein they code 

for, which are the key players in physiological pathways3. Global proteomic analysis 

confirms the presence of these proteins and provides information on protein abundance 

and changes in their abundance at a given time or cell type. Gel electrophoresis and 

western blotting are common techniques used to visualize and quantify the amount of 

protein while mass spectrometry can not only quantify but identify proteins within a 

specific proteome.  

Similar to the problems associated with measuring mRNA levels to evaluate 

protein abundance, simply looking at protein abundance does not reflect on the activity 
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state of those proteins, which are regulated by a number of post-translational events4. 

Examples of post-translational modifications (PTMs) that can regulate the function of 

proteins include: the addition of functional groups such as oxidation and phosphorylation; 

chemical modification of amino acids like arginine citrullination and 

glutamine/asparagine deamidation; and structural changes involving the proteolysis of an 

inactive precursor or disulfide linkages between cysteine resides. The activity of proteins 

can also be governed by interactions with other proteins as well as endogenous inhibitors 

or activators5. To complement abundance-based global profiling methods such as 

transcriptomics and proteomics, the field of activity-based protein profiling (ABPP) has 

evolved to directly measure protein activity in complex proteomes6.                                                                                                                                                                                                                                                                                                                                                                                                                     

ABPP relies on the use of chemical probes that selectively react with the active 

subset of a particular protein population7. These activity-based probes (ABPs) are 

typically composed of a reactive group to bind and covalently modify a specific protein 

residue, and a reporter group, such as a fluorophore for visualization by in-gel 

fluorescence, or a biotin for both western blot analysis and avidin enrichment prior to 

mass-spectrometry (MS)-based identification (Figure 1-1)8. ABPs are generally designed 

to profile protein activity using either a directed or non-directed approach9. ABPs 

designed using the directed approach utilize reactive groups that covalently bind to 

functional proteins based on their specificity to an enzyme or enzyme family active site, a 

particular protein residue, or residue modification. A non-directed approach involves the 

use of probes or screening libraries of probes containing non-covalent small molecules 

that direct the probe to target proteins, and a photo-crosslinking or non-specific 

electrophilic group to irreversibly bind the ABP to the protein of interest10.   
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Figure 1-1. (a) Active enzymes are labeled within a complex proteome by activity-based 

probes containing a reactive group for covalent modification and a reporter group for 

protein visualization, enrichment, and identification. (b) Rhodamine reporter groups can 

be used to visualize proteins in SDS-PAGE. (c) Biotin reporter groups can be used to 

visualize proteins in western blots using anti-biotin antibodies, or enriched with avidin 

for identification using mass spectrometry.  

 

Electrophilic enzyme family-directed ABPs 

The most extensively utilized ABPs are those designed to bind to a specific 

enzyme or enzyme family active site. The advantage of using ABPP over traditional 

proteomic methods is the ability to study which forms of a transiently active enzyme are 

SDS-PAGERhodamine

O

HO

O

N N
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functional. Covalent modification of the ABP depends on the catalytic capability of the 

enzyme and not solely its substrate-binding ability11. The first class of enzymes targeted 

for ABPP studies were the serine hydrolases (SH). SHs are one of the largest families of 

enzymes, making up about 1% of the human proteome. SHs include proteases, 

peptidases, lipases, esterases, and amidases that perform numerous roles in physiological 

processes including blood coagulation, inflammation, and angiogenesis, as well as 

pathological processes such as inflammation, angiogenesis, cancer, and diabetes12. This 

family of enzymes is characterized by an active site serine residue that is rendered 

nucleophilic by the presence of a catalytic dyad or triad involving proximal lysine, 

aspartate, and histidine residues. The activated serine attacks a substrate 

ester/thioester/amide bond to form an acyl-enzyme intermediate, followed by a water-

catalyzed hydrolysis of this intermediate to release the product13.  

ABPs for this family of enzymes were derived from electrophilic 

fluorophosphonates (FP), which were known to be mechanism-based inhibitors that 

mimic the enzyme-substrate tetrahedral intermediate and covalently trap the active site 

serine14, 15 (Figure 1-2a). FP-based probes react only with the active SH, and not the 

inactive serine mutant, zymogen, or inhibitor-bound forms, allowing modification of only 

functioning SH within the proteome.  Electrophilic groups other than the 

fluorophosphonate have also be used to study the activity of SHs within a complex 

proteome, including diphenyl phosphonates16, 4-chloroisocoumarin17, and carbamates7 

(Figure 1-2b). 
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Figure 1-2. (a) Mechanism of serine modification via the fluorophosphonate ABP. (b) 

Other serine-specific electrophiles used in ABP.  

 

Similar to serine hydrolases, cysteine proteases (CP) are another large enzyme 

with physiological and pathological roles in apoptosis, bone remodeling, cancer invasion, 

and bacterial virulence factors, among many others11, 18.  This enzyme class shares a 

common catalytic mechanism which starts with deprotonation of the active site cysteine, 

usually by an adjacent histidine. This activated thiolate performs a nucleophilic attack on 

the substrate carbonyl carbon to form a tetrahedral intermediate. The histidine residue is 

deprotonated, forming a thioester intermediate and releasing a fragment of the substrate 

with an amine terminus. The thioester bond is hydrolyzed to generate a carboxylic acid 

on the remaining substrate and restoring the active enzyme7. Since the catalytic 
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mechanisms of CPs are distinct from SHs, the use of different electrophiles to target their 

active site are required.  

Many cysteine-reactive electrophiles have been used in ABPs for CPs including 

diazo- and fluoromethyl ketones, vinyl sulfones, epoxides, and acyloxymethyl ketones 

(AOMKs)7. ABPs with an AOMK reactive group have been shown to be especially 

selective for cysteine proteases over enzymes with weaker active site nucleophiles. A 

library of ABPs containing this reactive group was shown to target several members CPs 

including caspase-3, legumain, Arg-gingipain, Lys-gingipain, cathepsin B cathepsin L19 

(Figure 1-3a). E-64 is an epoxide-containing natural product inhibitor with potent 

specificity for the active site cysteine in the papain family and limited cross-reactivity 

with other CPs. These characteristics have caused it to be the central structural element of 

several papain-specific ABPs, including DCG-04 that includes a biotin for avidin 

enrichment and an ionizable tyrosine for mass spectrometry analysis. DCG-04 has been 

used to determine functional roles of papain-like proteases in tumor progression, cataract 

formation, prohormone processing, parasitic invasion, and cell cycle regulation9 (Figure 

1-3b). 
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Figure 1-3. (a) Mechanism of inactivation of cysteine proteases by AOMKs. (b) 

Structure of the ABP DCG-04 and the papain inhibitor E-64 which it is based on.  

 

Cytochrome P450 enzymes are central to the metabolism of numerous drugs, 

xenobiotics, and endogenous metabolites20. The activity of P450 enzymes is regulated by 

multiple factors including protein-binding, post-translational modifications, and 

regulatory enzymes4. The ability to identify the subset of active P450 enzymes is 

essential to the drug development process. A set of ABPs based on three different 

mechanism-based inhibitors, containing aryl alkynes, propynyl groups, or 

furanocoumarin, was synthesized and demonstrated complementarity in profiling the 

entire family of human P450s. Enzyme-catalyzed oxidation of the aryl alkyne generates a 

highly reactive ketene intermediate that can then acylate nucleophilic residues within the 

P450 active site (Figure 1-4a). ABPs bearing a propynyl group are oxidized to a Michael 

acceptor and subsequently reacts with an active site nucleophile (Figure 1-4b). 

Furanocoumarin-containing ABPs are oxidized to electrophilic furan epoxides and 

covalently modify nucleophilic residues in the active site21(Figure 1-4c).  
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Figure 1-4. Modes of mechanism-based inactivation of cytochrome P450 enzymes by (a) 

Aryl alkynes (b) Propynyl groups (c) Furanocoumarins. Figure adapted from Wright et 

al21. 

 

Directed ABPs to target functional amino acids 

The reactivity of an amino acid side-chain can change markedly depending on its 

local microenvironment22. This change in reactivity can lead to the gain or loss of 

covalent modifiers that have dramatic effects on its protein’s function, whether by 

affecting an active site or the overall structure of the protein23. Using ABPP to globally 

identify specific amino acids with increased susceptibility to function-affecting 

modifications allows a more comprehensive biochemical characterization of proteomes. 

An excellent example of an amino acid with significant functional impact is cysteine. 

Depending on the microenvironment, cysteine thiols are readily deprotonated at 

physiological pH, making them one of the most reactive nucleophilic functional groups 

found in proteins24. This reactivity is utilized in proteins for catalysis, protein structure, 

regulation, and metal binding (Figure 1-5a); it also makes cysteines subject to oxidative 
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modifications such as sulfenation, sulfintion, nitrosation, disulfide formation, and 

glutathionylation (Figure 1-5b)25-27.            

                

           

 

Figure 1-5. (a) Functional roles performed by cysteine residues.  (b) Oxidative post-

translational modifications of cysteine residues. Figures adapted from Pace et al27 and 

Green et al26. 
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serine or threonine, so the ABP utilized a softer electrophile, iodoacetamide, as the 

reactive group (Figure 1-6a). This ABP was used to profile cysteine reactivity in the 

MCF7 breast cancer cell line. The use of this residue-specific ABP allowed for the first 

proteome-wide survey of cysteine reactivity and demonstrated a correlation between 

elevated cysteine reactivity and functionality22. Electrophilic reactive groups such as 

other haloacetamides (chloro-fluoro-), α,β-unsaturated ketones, and epoxides have also 

been shown to be highly selective for the thiol group of reactive cysteine residues22, 28, 29 

(Figure 1-6b). In addition to cysteine, directed ABPs using electrophilic reactive groups 

that target other amino acids have been developed including dichlorotriazines and acyl 

phosphates to target lysine residues and sulfonyl fluorides to modify active tyrosine and 

serine residues30-32 (Figure 1-6c).  

 

            

Figure 1-6. (a) Cysteine-reactive iodoacetamide. (b) Other electrophiles reactive toward 

cysteine. (c) Electrophiles to target lysine (dichlorotriazine and acyl phosphate) and 

tyrosine/serine (sulfonyl fluoride) residues.  
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Non-electrophilic ABPs for enzyme family active sites. 

 Matrix metalloproteinases (MMPs) are a class of metallohydrolases which, unlike 

serine or cysteine hydrolases, use a zinc-activated water molecule (rather than a protein-

bound nucleophile) for catalysis33. These enzymes mediate the breakdown of connective 

tissue and are targets for therapeutic inhibitors of inflammatory, malignant, and 

degenerative diseases. MMPs are also subject to a variety of posttranslational regulation 

including production as inactive zymogens and endogenous protein inhibition34. The 

development of selective and tight-binding, yet reversible, MMP inhibitors were based on 

known substrates and included a hydroxamate group to coordinate the conserved active 

site zinc atom (Figure 1-7a). To convert these reversible inhibitors into active site-

directed ABPs, such as HxBP-Rh, the hydrophobic moiety within the molecule was 

replaced with a photo-crosslinking benzophenone group and a biotin or rhodamine 

reporter group was added (Figure 1-7b) . Upon UV radiation, MMP-bound probes 

become irreversibly conjugated to the active site. These ABPs were found to selectively 

label active MMPs, but not the zymogen or inhibitor-bound forms33.   

                 

Figure 1-7. (a) MMP inhibitor GM6001 shown chelating to an active site zinc. (b) MMP 

ABP HxBP-Rh with the zinc-chelating hydroxamate group highlighted in red and the 

photo-crosslinking benzophenone group highlighted in blue.  
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Non-directed ABP libraries 

 Designing ABPs for enzymes classes without known covalent inhibitors or well 

understood catalytic mechanism are much more challenging. To expand the breadth of 

ABPP, a non-directed approach has been developed in which libraries of probes are 

screened against a complex proteome to identify specific protein labeling events10. In 

addition to a reactive group for covalent modification and a reporter group for 

visualization, probes designed using a non-directed strategy also contain a non-covalent 

binding group to direct the molecule to an enzyme’s active site. Unlike enzyme-directed 

approaches, these libraries typically use promoscuous electrophiles that react with diverse 

amino acids as to not be strongly biased toward a specific residue or enzyme class35. In 

one example of the development and screening of a library of candidate ABPs, probes 

bearing an α-chloroacetamide (α-CA) reactive group, a rhodamine reporter group, and a 

variable dipeptide binding group were synthesized and screened against mouse tissue 

proteomes (Figure 1-8). The library’s reactive group was chosen to be an α-CA because it 

is sterically small with no enzyme class specificity, making it unlikely to influence non-

covalent protein labeling. It was found that each member of this library reacted with a 

very different set of proteins, highlighting the ability of the variable binding group to 

dictate specific protein interactions. Enzymes from a variety of classes were labeled by 

this α-CA library, some previously identified to react with only α-CA ABPs, others that 

have been labeled using a different electrophile. The Asp-Asp-α-CA was a very strong 

enzyme-directed ABP candidate as it labeled only creatine kinase with little background 

reactivity with other proteins. Additionally, this specific interaction was shown to be 
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heat-sensitive and outcompeted by ATP, suggesting the probe-protein interaction was 

structure- and activity-based35.      

                   

Figure 1-8. Design of the α-chloroacetamide dipeptide probe library, with the R1-R2 

binding groups specified (pTyr = phosphotyrosine). 

 

Directed ABPs for modified amino acids 
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residue is functional or inactivated by PTMs, the methods of ABPP can be adapted to 
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is specific for a certain amino acid modification instead of an active site residue. Two 
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challenging to monitor and identify proteins with redox-regulated cysteines. SOH 
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formation gives the typically nucleophilic sulfur atom electrophilic characteristics, 

allowing unique reactivity toward nucleophiles such as 5,5-dimethyl-1,3-cyclohexadione 

(dimedone)36 (Figure 1-9a). Dimedone is able to trap SOH, forming a covalent thioether 

linkage that is not reversible by reductants like DTT or TCEP37. It is also unreactive 

toward S-nitrosothiol, methionine sulfoxide, aldehydes, and amines38. Incorporating 

either a rhodamine or biotin reporter group attached through a linker to dimedone enabled 

the identification of sets of previously unknown oxidation-sensitive proteins39-41. 

 Protein arginine deiminases (PADs) catalyze the conversation of arginine to 

citrulline in the presence of calcium, commonly called deimination or citrullination 

(Figure 1-9b)42. Increased PAD activity has been observed in a variety of diseased 

including rheumatoid arthritis (RA)43, Alzheimer’s disease44, and ulcerative colitis 

(UC)45, however the roles and targets of these enzymes are still poorly understood. A 

citrulline-specific probe was designed based on the selective reaction between 

phenylglyoxal (PG) and citrulline under acidic conditions (Figure 1-9a). While also able 

to form a thiohemiacetal with cysteine residues in acidic conditions, the PG-citrulline 

condensation product is stable at neutral pH while the thiohemiacetal is not. A rhodamine 

was attached to the PG group (Rh-PG) and used to visualize citrullinated proteins within 

the proteome of a disease mouse model of UC. A correlation between disease severity 

and citrulline level was observed, demonstrating the utility of this probe in identifying 

citrullination in the context of a disease46. 
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Figure 1-9. (a) Dimedone selectively labels cysteine sulfenic acids. (b) Citrullination of 

arginine via PAD. The PG-probe labels citrulline over arginine at acidic pH.  

 

CuAAC-mediated ABPP 

The advent of click chemistry, in particular, the copper (I)-catalyzed azide-alkyne 
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routes47 (Figure 1-10). CuAAC is the most widely used click chemistry reaction 

involving an azide and a terminal alkyne to generate a 1,4-disubstituted 1,2,3-triazole48 
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Furthermore, PS-N3 was shown to facilitate in vivo ABPP, as cells and animals treated 

with PS-N3 showed robust protein labeling upon administration of the CuAAC reagents 

ex vivo47. Further optimization of this platform revealed that the use of rhodamine-azide 

(Rh-N3) greatly reduced the high background labeling of proteins that was observed with 

Rh-alkyne, although with lower kinetics of labeling49.      

 

Figure 1-10. ABP with bulky reporter groups are replaced with an alkyne handle to allow 

conjugation to an azide-containing reporter group via copper catalyzed click chemistry.  

 

Most ABPP studies for SHs are performed using biotin or rhodamine tagged FP, 

but CuAAC has shown utility in the profiling of these enzymes with the generation of  

the FP-alkyne50-52. This probe was shown to label serine proteases with greater affinity 

than the reporter-tag functionalized FP probes. More importantly, the vastly improved 

cell permeability of FP-alkyne facilitates profiling of SH activity directly in living cells. 

This improved cell permeability enabled the development of a competitive ABPP 

platform to screen inhibitor selectivity in native cellular environments instead of in 

lysates where information pertaining to subcellular localization is disrupted51. FP-based 

probes for specific SHs have also been developed with inclusion of an alkyne handle for 

CuAAC. For example, the hepatitis C virus (HCV) induces alterations of host cells to 

N
N

N

N3

Reactive
Group Alkyne

Reporter
GroupAzide

Click
Chemistry



	

  18 

facilitate its life cycle. Fatty acid synthase (FASN) is a multidomain enzyme that plays a 

key role in the biosynthesis of fatty acids and is upregulated during HCV infection. 

Orlistat, a β-lactone-based covalent inhibitor of FASN was converted to an ABP by 

functionalizing its alkyl chain with a terminal alkyne. This did not alter the enzyme 

selectivity of Orlistat and allowed the post-labeling conjugation of Rh-N3 by CuAAC to 

image the localization of FASN during HCV infection53. 

Another family of enzymes whose studies were facilitated by the use of CuAAC-

mediated ABPP were those in the ubiquitin and ubiquitin-like protein (UBL) signaling 

pathways54. A series of ubiquitin-conjugating enzymes tag proteins with ubiquitin for 

targeted degradation by the proteasome, including UBL activating enzymes (UBE1), 

UBL conjugating enzymes (UBE2), and UBL ligases (UBE3)55. Since UBE1 enzymes 

dictate the activity of the entire ubiquitin-signaling pathway, they have been recognized 

as emerging drug targets to treat human diseases. The lack of methods to discover UBL 

proteins and monitor the intracellular activity of UBE1 enzymes inspired the 

development of a CuAAC-compatible ABP for UBE1 enzymes was developed to 

measure UBE1 activity inside cells. The UBE1 ABP was designed to mimic and bind the 

AMP binding site of the UBE1-UBL thioester complex, positioning a nucleophilic 

sulfamate group for attack of the UBE1-UBL thioester to form a covalent adduct. This 

cell permeable ABP1 efficiently labels active UBE1 enzymes in numerous cancer cell 

lines, allowing for profiling the selectivity of UBE1 inhibitors within cells, and 

facilitating the discovery of previously unknown UBL proteins54. 

Lastly, CuAAC-mediated ABPP has been extended to directly profile the activity 

of the PAD protein family. PAD probes were constructed around mechanism-based 
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inactivators that contain a haloacetamidine (Cl or F) to covalently modify the active site 

cysteine56. Alkyne-functionalized PAD ABPs were shown to be more selective and 

efficient at labeling PAD4 in cells compared to the biotin and fluorescein-tagged 

counterparts57. This increased efficiency of labeling is attributed to the rapid degradation 

of PAD4 in cell lysates, which is circumvented by in-cell labeling with CuAAC-

compatible probes. A similar alkyne-functionalized chloroacetamidine probe was shown 

to label the related enzyme dimethylarginine dimethylaminohydrolase (DDAH). Similar 

to the PADs, DDAH activity is diminished in lysates due to inactivation by a variety of 

effector molecules, therefore in vivo labeling using CuAAC-compatible probes serves to 

preserve enzyme activity58. 

 

Applications of CuAAC in Mass Spectrometry-Based ABPP 

 SDS-PAGE and in-gel fluorescence only reveal a fraction of proteins targeted by 

APBs, and therefore, many mass spectrometry (MS)-based methods have emerged as gel-

free alternatives that provide higher resolution and greater sensitivity59. One of the 

advantages of CuAAC-based ABPP methods is the ability to conjugate probe-labeled 

proteins to a variety of linkers that enable a diverse array of mass-spectrometry analyses. 

Typical MS-ABPP strategies utilize CuAAC to couple a biotin-azide for subsequent 

enrichment and identification of labeled proteins by mass spectrometry60. Discussed in 

Chapter 2, more advanced MS experiments involve the installment of a chemically or 

proteolytically cleavable linker that further allows for identification of the site of probe 

labeling, as well as the relative quantification of labeled proteins from two or more 

biological samples61, 62. These platforms have expanded the scope and utility of ABPP 
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through applications evaluating the amino-acid specificity of electrophiles used for 

ABPP28, ranking cysteine residues in the proteome by their nucleophilicity so as to 

globally identify functional cysteines22, and identifying residues subject to post-

translational modification through reactive lipid species63 and metal binding64. 

 Another application of CuAAC in ABPP involves using imaging mass 

spectrometry to study the distribution of active serine hydrolases in tissue. In this study, 

tissue sections were treated with FP-alkyne, followed by incorporation of a mass-tagged 

dendrimer using CuAAC. The mass tags are connected to the dendrimer via laser-

cleavable linkers, thereby releasing the mass tags upon laser irradiation for direct analysis 

by MALDI-MS65. CuAAC has also been used in the absolute quantification of serine 

protease activity using ICP/MS66. Alkyne functionalized AEBSF (serine protease 

inhibitor) analogs were modified with a europium-loaded azido-monoamide-DOTA using 

CuAAC. Serine proteases that reacted with this probe were analyzed by ICP/MS allowing 

for the absolute quantification of active serine proteases in a mixture66. 

 

Conclusion 

 Activity-based protein profiling is a chemical proteomic technique that allows for 

selective labeling, visualization, and enrichment of active enzymes in a complex 

proteome. Given the dominant role of posttranslational modifications in regulating 

protein function in vivo, ABPP provides a direct readout of activity that is not attained 

through traditional proteomic methods. Directed and non-directed ABP designs bearing 

various reactive and reporter groups have been used to profile the functional activity of 

specific protein residues such as cysteines and lysines as well as diverse enzymes and 
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enzyme classes including serine hydrolases, cysteine proteases, cytochrome P450 

enzymes, and matrix metalloproteinases. ABP-like compounds have also been developed 

to profile distinct post-translational modifications like cysteine oxidation and arginine 

citrullination. The application of CuAAC has significantly modularized ABPP 

approaches, whereby a single ABP can now be conjugated to a variety of reporter 

elements depending on the application of interest. Furthermore, CuAAC compatible 

probes are much smaller than reporter-tagged probes, causing minimal steric interaction 

with enzyme active sites, thereby improving binding affinity and enhancing probe 

labeling in lysates as well as within the unperturbed environment of a live cell or animal. 

Finally, the advent of CuAAC has facilitated the expansion of ABPP by coupling to 

advanced analytical platforms such as MALDI-imaging of active enzyme in tissue slices, 

absolute quantitation of active enzyme by ICP-MS, and direct identification and 

quantitation of the exact sites of probe labeling. 
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Chapter 2 

An Isotopically Tagged Azobenzene-Based Cleavable Linker for Quantitative ABPP 
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Introduction 

The utility of mass spectrometry (MS) in ABPP studies is hindered by the low 

abundance of probe-modified peptides, especially within the background of a whole 

proteome1. The biotin–avidin interaction is commonly exploited to selectively enrich 

biotin-tagged proteins from a complex proteomic mixture prior to analysis by MS. Direct 

elution of these biotinylated proteins from avidin beads requires harsh denaturing 

conditions and does not differentiate between biotin-tagged, endogenously biotinylated, 

and non-specifically bound proteins2. Additionally, fragmentation of the bulky biotin tag 

during collision-induced dissociation (CID) complicates interpretation of the ion mass 

spectra for peptide identification3. One strategy to circumvent these obstacles is to use a 

cleavable linker, which will elute only probe-modified proteins or peptides under mild 

conditions that are amenable to MS analysis. Furthermore, the unique mass of the residue 

appended to the cleaved linker can be exploited to identify exact sites of probe labeling1. 

Numerous linkers incorporating a protease-recognition site1, 4, 5, a photo-cleavable group6-

8, or a chemically-cleavable group9, 10 have been generated for this purpose.  

The tandem orthogonal proteolysis-ABPP (TOP-ABPP) strategy utilizes a 

tobacco-etch virus protease (TEV) cleavage site, which is placed between an azide group 

for click chemistry conjugation to alkynyl ABPs and a biotin group for avidin enrichment 

(TEV-tag) (Figure 2-1a)1. Following enrichment, the probe-labeled proteins are digested 

with trypsin and the resulting peptides are released by TEV proteolysis. This generates 

peptides bearing an additional mass on the modified residue corresponding to the ABP 

and cleaved TEV-tag1. In one application, TOP-ABPP was used in investigating the 

mechanisms that drive Toxoplasma gondii infection. Screening a library of covalent 
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inhibitors revealed a cysteine-reactive enone-containing compound, WRR-086, capable 

of blocking T. gondii attachment and invasion of host cells. This small molecule was 

converted to an ABP by incorporating an alkyne handle to use in TOP-ABPP (Alkyne-

086, Figure 2-1b). MS analysis identified a single probe-labeled cysteine residue (C127) 

on the T. gondii DJ-1 protein (TgDJ-1). C127S mutants of TgDJ-1 prevented WRR-086 

inhibition of host cell attachment and invasion as well as obstruct microneme secretion 

and parasite motility, identifying TgDJ-1 as a previously unknown regulator of T. gondii 

infection.  

 

 

 

Figure 2-1. (a) Structure of the TEV-tag. (b) Structures of WRR-086 and its ABP 

version, Alkyne-086. 
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To reduce cleavage time and avoid variability in protease activity, a large number 

of chemically cleavable linkers have also been developed. These include functional 

groups that cleave under acidic conditions (dialkoxydiphenylsilane11, acylhydrazone12, 

and “Wang”-type9), nucleophilic conditions (levulinoylester13, 

nitrobenzenesulfonamide8) and dithionite treatment (azobenzene10, 11, 14).  Azobenzene-

containing linkers have the advantage of mild cleavage conditions by using sodium 

dithionite as the reducing agent10. Additionally, the azobenzene moiety is unaffected by 

other reducing agents commonly used in click chemistry and MS preparation protocols 

(e.g. TCEP, DTT)15. The first azobenzene-based linker was developed by insertion of an 

azobenzene group between the biotin tag and reactive group of the previously mentioned 

papain-specific ABP, DCG-04 (Figure 2-2). This new ABP, termed SV1, was used to 

label active cathepsin proteases in rat liver lysates. After enrichment with streptavidin 

beads, the probe-labeled proteins were cleaved using sodium dithionite. The eluted 

proteins were digested with trypsin and analyzed by LC-MS/MS, identifying multiple 

peptides from each of the expected cathepsin proteases, without any contamination by 

background proteins10.   

	

 

Figure 2-2. Structure of SV1 ABP containing an azobenzene cleavable linker. 
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The use of a photo-cleavable linker is beneficial as it circumvents the use of 

additional reagents to release enriched proteins6. O-Nitrobenzyl derivatives are useful as 

photo-cleavable groups because of their rapid photolysis, which yields a nitroso from the 

nitro group and an aldehyde or ketone from the oxidation of the benzyl alcohol group16. 

The O-nitrobenzyl group was recently incorporated into a glycoprobe for affinity labeling 

of carbohydrate-binding lectin proteins. Since lectins specifically but noncovalently bind 

cell-surface carbohydrates, this ligand-based probe contains three β-D-galactose (Gal) 

units for affinity binding to the target lectin as well as a (trifluoromethyl)-phenyldiazirine 

photo-crosslinking group to covalently bind the probe upon UV radiation (Figure 2-3a). 

This probe also contains a cyclooctyne group for attachment of an azide-containing, 

photo-cleavable biotin tag via click chemistry (Figure 2-3b). This two-step strategy 

allows for the covalent modification and enrichment of carbohydrate-binding lectins and 

subsequent UV light-dependent release of the target proteins6.         
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Figure 2-3. (a) Structure of the photo-affinity glycoprobe. (b) Structure of the photo-

cleavable biotin affinity tag. 
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(light) or isotopically labeled (heavy) valine (Figure 2-4). Despite the versatility and 

efficiency of cleavage of the TEV-cleavable linker, we envisioned that a chemically 

cleavable analogue could have several advantages, including lower cost of reagents, 

reduced time of cleavage and increased robustness to variations in cleavage conditions. 

Here, we explored the use of the sodium dithionite (Na2S2O4)-cleavable azobenzene in 

place of the TEV-protease recognition domain, as a chemically cleavable linker for 

quantitative chemical proteomics. 

 

Figure 2-4. Structure of the TEV-cleavable linker. 
 

 

Isotopically Tagged Azobenzene-Based Cleavable Linker 

The azobenzene was first developed as a mildly cleaved linker for protease-

directed activity-based probes10, 23. Since then, click-chemistry-compatible azobenzene 

tags have been utilized to identify acetylated24 and S-palmitoylated25 proteins, 

lipoproteins26 and newly synthesized proteins27 that have been tagged with alkyne 

reporter elements. This linker has been shown to be efficiently cleaved by sodium 

dithionite at room temperature within a few hours14, and was deemed a good candidate 
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for replacing the TEV-protease recognition domain of our biotin tags for quantitative 

proteomics. We adapted the previously described azobenzene linker (Azo)14, by 

incorporating a “light” (12C and 14N) or “heavy” (13C and 15N) valine between the 

azide and the azobenzene to generate Azo-Light tag (Azo-L) and Azo-Heavy tag (Azo-H) 

with a mass difference of 6 Da. The resulting Azo-L/Azo-H linkers contain an azide for 

click chemistry conjugation to alkyne-functionalized proteins, an isotopically tagged 

valine for quantitation, a cleavable azobenzene unit, and a biotin group for avidin 

enrichment of proteins of interest (Figure 2-5).  

 

Figure 2-5. Structure of the Azo-H cleavable linker.  

 
 

We envisioned a workflow similar to that utilized in the isoTOP-ABPP 

platform22, whereby two probe-labeled proteomes (Samples 1 and 2, Figure 2-6) are 

subjected to click chemistry with either the Azo-L or Azo-H tags. The samples are 

combined and tagged proteins are enriched on streptavidin beads and subjected to on-

bead trypsin digestion to remove all unlabeled peptides. The remaining isotopically 

tagged, probe-labeled peptides are selectively eluted with sodium dithionite treatment and 

analyzed using LC/LC-MS/MS. Peptides are identified from the generated MS2 data and 

quantified using the corresponding high-resolution MS1 spectra. A light/heavy ratio (R) 
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is generated for each peptide that reflects the relative abundance of that peptide in each of 

the two samples. 

 

Figure 2-6. Workflow of the Azo-tag quantitative proteomics platform. 
 
 
 
Evaluation of the efficiency of cleavage of the Azo-L and Azo-H tags 

To evaluate cleavage efficiency of the isotopic tags, we labeled mouse-liver 

proteomes with the cysteine-reactive iodoacetamide-alkyne (IA-alkyne) probe (Figure 2-

7a). To ensure that the addition of the valine did not disrupt the cleavage of the 

azobenzene, we compared our Azo-L and Azo-H tags, including a combined 1:1 ratio of 

Azo-L and Azo-H tagged proteomes, to the previously reported Azo tag. The isotopically 

tagged linkers allowed identification of a similar number of peptides as the Azo tag 

(Figure 2-7a), and furthermore, these numbers are comparable to the peptide 

identifications obtained using the TEV-cleavable linker22. The optimized cleavage 

conditions are 2 hours at room temperature, compared to the overnight cleavage at 30 °C 
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required for TEV cleavage. The decreased number of peptides in the combined Azo-

L/Azo-H sample is typical of isotopic dilution experiments, and is a result of reduced 

fragmentation of independent peptide species due to the presence of two isotopic species 

for each peptide 

 

                                                     

Figure 2-7. (a) Structure of the iodoacetamide-alkyne (IA-alkyne) probe. (b) Number of 

peptides identified from IA-alkyne-labeled proteomes using the valine-free Azo, Azo-L, 

Azo-H, and Azo-L + Azo-H (a 1:1 ratio of Azo-L and Azo-H tagged proteomes) tags.  

 
 
Evaluation of the quantitative accuracy of the isotopic Azo-tag platform 

To evaluate the quantitative accuracy of our Azo-L/Azo-H system, we mixed 

Azo-L and Azo-H-tagged proteomes in predetermined light/heavy ratios of 2:1, 1:1, 1:2 

and 1:5. These samples were analyzed using mass spectrometry and a value of R was 

obtained for each peptide in each of the four runs (Figure 2-8A). As demonstrated, across 

the >300 peptides identified, the experimental ratios were closely scattered around the 

expected ratios. For two of the peptides identified (parent proteins: UBE1Y1 and 

SHMT2), a representative mass spectra and isotope envelopes are shown to demonstrate 
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the coelution of the light and heavy species, the high signal-to-noise, and the 

characteristic isotopic peak pattern generated by the labeled peptides (Figure 2-8B).  

 

       

 

Figure 2-8. (a) The light/heavy ratios of 2:1, 1:1, 1:2, and 1:5 Azo-L/Azo-H tagged 

proteomes. (b) Chromatography traces for two labeled peptides from UBE1Y1 and 

SHMT2 from samples mixed in light/heavy ratios of 1:5, 1:2, 1:1, 2:1, and 5:1. 
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Application of the isotopic Azo-tag platform to compare two biologically 

independent samples 

To further illustrate the quantitative accuracy of this new isotopically tagged 

cleavable linker, we wanted to compare the relative quantitation of labeled peptides from 

two biologically independent samples. To achieve this, we compared mock-transfected 

HEK293T cells to cells overexpressing glutathione-S-transferase omega (GSTO1; Figure 

2-9a). GSTO1 was chosen due to the presence of a highly reactive cysteine that is known 

to react with the IA-alkyne probe22. Overexpression of GSTO1 was confirmed using 

immunoblotting with a GSTO1 antibody (Figure 2-9a). Lysates from both samples were 

labeled with IA-alkyne and click chemistry was performed to incorporate Azo-L into the 

GSTO1 sample and Azo-H into the mock sample. The samples were analyzed according 

to the workflow in Figure 2-6.  

We identified approximately 250 IA-alkyne-labeled peptides from these samples, 

and all but two of the peptides were identified to have light/heavy ratios of R~1 (Figure 

2-9b). These two peptides are both cysteine-containing peptides derived from GSTO1 

and were identified with R values of 31 for the known active-site cysteine of GSTO1, and 

9 for a second reactive cysteine on this protein (Figure 2-9b). This illustrates the highly 

quantitative nature of this new cleavable-linker system, and illustrates the proficiency of 

this platform to accurately compare the relative abundance of labeled peptides from two 

biologically distinct samples. 
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Figure 2-9. (a) mock and GSTO1 transfected HEK293T cells labeled with IA-alkyne are 

tagged with Azo-H (mock) or Azo-L (GSTO1). GSTO1 overexpression confirmed by 

immunoblotting with anti-GSTO antibody.  (b) Light/heavy ratios for all IA-alkyne-

labeled peptides from the two transfected HEK293T cells. 

 
 
Release of intact proteins from streptavidin beads 

One final application we were interested in exploring was the use of this cleavable 

linker to release intact proteins from the streptavidin beads. The ability to release intact 

proteins would reduce the contamination of mass spectrometry samples by proteins that 

nonspecifically interact with the bead matrix. The workflow we envisioned was to mix 

proteomes from two samples as outlined in Figure 2-6, but after streptavidin enrichment, 

(a) 

(b) 
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and prior to trypsin digestion, intact proteins are cleaved from the beads using sodium 

dithionite. These eluted proteins could either be subjected to an in-solution tryptic digest, 

or a further round of fractionation by SDS-PAGE to select for a protein of interest for in-

gel tryptic digestion. To optimize conditions for intact protein release, we utilized 

commercially available rabbit glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

which contains a reactive cysteine that is known to be labeled by our IA-alkyne probe22. 

A 1:1 mixture of the Azo-L/H tags were appended to IA-alkyne-labeled GAPDH using 

click chemistry, and the tagged proteins were enriched on streptavidin beads, and 

subjected to sodium dithionite cleavage. Comparing the protein in the eluent (lane 2) to 

the protein left on the bead after cleavage (lane 3), we achieve greater than 60% recovery 

of the bound GAPDH (Figure 2-10a).  

 

 

Figure 2-10. (a) Cleavage of whole GAPDH protein from streptavidin beads. (b) Elution 

of GAPDH from streptavidin beads in the background of a complex mouse proteome.  

(a) (b) 
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We further evaluated release of intact proteins in the context of an entire 

proteome. To achieve this, pre-labeled and Azo-L/H-tagged GAPDH was added to an 

unlabeled mouse liver proteome and enriched on streptavidin beads. After boiling of the 

beads and subsequent SDS-PAGE analysis, we visualized the presence of higher 

molecular weight protein bands that are indicative of nonspecific interactions with the 

bead matrix (Figure 2-10b, lane 1). When treated with sodium dithionite, a significant 

amount of GAPDH is released, albeit with lower efficiency than was observed for the 

pure protein (Figure 2-10b, lane 2). More importantly, none of the higher molecular 

weight, non-specifically bound proteins were eluted, demonstrating that this approach can 

serve to decrease background noise associated with selective protein enrichment.  

To demonstrate that these intact proteins can still be quantitatively analyzed using 

mass spectrometry, we used a premixed Azo-L/Azo-H ratio of 1:1 to tag GAPDH. After 

streptavidin enrichment, the Azo-tagged intact protein was eluted with sodium dithionite. 

Eluted proteins were subjected to trypsin digestion and mass spectrometry analysis. We 

achieved >75% sequence coverage of GAPDH with two Azo-tagged peptide 

identifications (Figure 2-11a). Both these peptides contain known reactive cysteines, and 

an R value of 1 was calculated for both peptides, reflecting the initial ratio of tags used in 

this experiment (Figure 2-11b). This application highlights the versatility of the Azo-L 

and Azo-H system, which can be applied to cleave either peptides or intact proteins from 

streptavidin beads for quantitative mass spectrometry analysis. 
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Figure 2-11. (a) Sequence coverage for GAPDH after sodium dithionite cleavage of 

intact proteins followed by in-solution tryptic digestion. Peptide regions shaded in gray 

signify peptides that were identified in the analysis. The two cysteine-containing peptides 

that were tagged by Azo-L/Azo-H are underlined. (b) Two IA-alkyne labeled cysteine-

containing peptides identified with light/heavy ratios of 1. The extracted ion 

chromatograms and isotopic envelopes for the light species are shown in red, and the 

heavy species in blue. 

 

 
Conclusion 

We have evaluated an isotopic, chemically cleavable linker for quantitative 

proteomics applications. This tag contains an azide for click chemistry conjugation to 

MVKVGVNGFGRIGRLVTRAAFNSGKVDVVAINDPFIDLHYMVYM
FQYDSTHGKFHGTVKAENGKLVINGKAITIFQERDPANIKWGDAG
AEYVVESTGVFTTMEKAGAHLKGGAKRVIISAPSADAPMFVMGVN
HEKYDNSLKIVSNASCTTNCLAPLAKVIHDHFGIVEGLMTTVHAIT
ATQKTVDGPSGKLWRDGRGAAQNIIPASTGAAKAVGKVIPELNGK
LTGMAFRVPTPNVSVVDLTCRLEKAAKYDDIKKVVKQASEGPLK
GILGYTEDQVVSCDFNSATHSSTFDAGAGIALNDHFVKLISWYDNE
FGYSNRVVDLMVHMASKE 
	

(a) 

(b) 
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alkyne-functionalized proteins, an isotopically light or heavy valine for quantitation by 

mass spectrometry, a dithionite-cleavable azobenzene linker and a biotin for enrichment 

on streptavidin beads. We demonstrate the efficiency of cleavage, the highly accurate 

quantitation of labeled peptides from two biologically distinct proteomes, and the release 

of intact proteins from streptavidin beads to reduce nonspecific protein contamination. 

This chemically cleavable linker demonstrates several advantages over the previously 

reported TEV-cleavable linker, including lower cost, shorter cleavage time, increased 

robustness to variations in buffer and temperature, and the ability to cleave intact proteins 

from streptavidin beads.  

 

 
Experimental Procedures 

 
All chemicals were purchased from Sigma Aldrich unless otherwise noted. PBS 

buffer, DMEM high glucose media and penicillin streptomycin (pen/strep) were 

purchased from Thermal-Scientific (Armarillo, TX). Trypsin-EDTA was purchased from 

Invitrogen (Carlsbad, CA). The GSTO1 HRP-linked antibody was purchased from Cell 

Signaling (Danvers, MA). X-tremeGENE 9 DNA transfection reagent was purchased 

from Roche (Indianapolis, IN). 

 

Preparation of mouse liver proteome 

Frozen mouse liver tissues were thawed, homogenized in PBS, pH 7.4 and 

sonicated for 30 sec at 80 % amplitude. Tissue mixture was centrifuged at 200,000 × g 

for 45 min. The supernatant was obtained and used as soluble mouse liver proteome. 
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Protein concentration of the proteome was determined using the Bio-Rad DC protein 

assay kit and the proteomes were stored at -80 °C until use.  

 

Probe labeling and click chemistry 

Mouse liver samples were diluted to a 2 mg protein/mL solution in PBS and 

aliquoted into 0.5 mL volumes. Each sample (2 x 0.5 mL aliquots) was treated with 100 

µM of IA-alkyne using 5 µL of a 10 mM stock in DMSO. The labeling reactions were 

incubated at room temperature for 1 hour. Click chemistry was performed by the addition 

of 100 µM of either the Azo, Azo-L or Azo-H (10 µL of a 5 mM stock), 1 mM TCEP 

(fresh 50X stock in water), 100 µM ligand (17X stock in DMSO:t-Butanol 1:4) and 1 

mM CuSO4 (50X stock in water). Samples were allowed to react at room temperature for 

1 hour. For the combined Azo-L/Azo-H sample, the Azo-L and Azo-H samples were 

mixed together immediately following click chemistry. The samples were centrifuged 

(5900 x g, 4 min, 4 ºC) to pellet the precipitated proteins. The pellets were washed twice 

in cold MeOH, after which the pellet was solubilized in PBS containing 1.2% SDS via 

sonication and heating (5 min, 80 ºC).  

For the quantitative analysis, mouse proteomes were labeled with IA-alkyne as 

before. Click chemistry was performed in 0.5 mL aliquots with either the Azo-L or the 

Azo-H tag. After the one hour of incubation, the Azo-L and AzoH labeled samples were 

mixed together in different ratios (5:1, 2:1, 1:1, 1:2 and 1:5), centrifuged and processed as 

described above.  
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Streptavidin enrichment of Azo-tagged proteins 

The SDS-solubilized, AzoL/Azo-H tagged proteome samples were diluted with 5 

mL of PBS for a final SDS concentration of 0.2%. The solutions were then incubated 

with 100 µL of streptavidin-agarose beads (Pierce) overnight at 4 ºC. The beads were 

washed with 5 mL 0.2% SDS/PBS, 3 x 5 mL PBS and 3 x 5 mL H2O and the beads were 

pelleted by centrifugation (1300 x g, 2 min) between washes.  

 

On-bead trypsin and sodium dithionite treatment 

The washed beads from above were suspended in 500 µL of 6 M urea/PBS and 10 

mM DTT (from 20X stock in H2O) and placed in a 65 ºC heat block for 15 minutes. 20 

mM iodoacetamide (from 50X stock in H2O) was then added and allowed to react at 37 

ºC for 30 minutes. Following reduction and alkylation, the beads were pelleted by 

centrifugation (1300 x g, 2 min) and resuspended in 200 µL of 2 M urea/PBS, 1 mM 

CaCl2 (100X stock in H2O), and trypsin (2 µg). The digestion was allowed to proceed 

overnight at 37 ºC. The digest was separated from the beads using a Micro Bio-Spin 

column and the beads were then washed with 3 x 500 µL PBS, 3 x 500 µL H2O. The 

azobenzene cleavage was carried out by incubating the beads with 50 µL of fresh 25 mM 

sodium dithionite for 30 min at room temperature on a rotator. After centrifugation, the 

supernatant was then transferred to a new eppendorf tube. The peptide cleavage process 

was then repeated twice to reach maximal cleavage and all the supernatants were 

combined (150 µL total). In addition, the beads were then washed twice with 75 µL water 

and the wash was combined with the supernatant collected from the cleavage step to 
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reach 300 µL final. Formic acid (15 µL) was added to the sample, which was stored at -

20 ºC until mass spectrometry analysis. 

 
Liquid chromatography-mass spectrometry (LC/LC-MS/MS) analysis 

 LC/LC-MS/MS analysis was performed on an LTQ-Orbitrap mass spectrometer 

(ThermoFisher) coupled to an Agilent 1200 series HPLC. Peptide digests were pressure 

loaded onto a 250 µm fused silica desalting column packed with 4 cm of Aqua C18 

reverse phase resin (Phenomenex). The peptides were then eluted onto a biphasic column 

(100 µm fused silica with a 5 µm tip, packed with 10 cm C18 and 3 cm Partisphere 

strong cation exchange resin (SCX, Whatman) using a gradient 5-100% Buffer B in 

Buffer A (Buffer A: 95% water, 5% acetonitrile, 0.1% formic acid; Buffer B: 20% water, 

80% acetonitrile, 0.1% formic acid). The peptides were then eluted from the SCX onto 

the C18 resin and into the mass spectrometer using four salt steps as previously 

described1, 28. The flow rate through the column was set to ~0.25 µL/min and the spray 

voltage was set to 2.75 kV. One full MS scan (FTMS) (400-1800 MW) was followed by 

18 data dependent scans (ITMS) of the nth most intense ions with dynamic exclusion 

disabled.  

 

MS data analysis – peptide identification 

The tandem MS data were searched using the SEQUEST algorithm29 using a 

concatenated target/decoy variant of the human and mouse IPI databases. A static 

modification of +57.02146 on cysteine was specified to account for iodoacetamide 

alkylation and differential modifications of + 258.1480 (Azo modification), + 456.2849 

(Azo-L modification) and + 462.2987 (Azo-H modification) were specified on cysteine to 
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account for probe modifications. SEQUEST output files were filtered using DTASelect 

2.030, 31. Reported peptides were required to be fully tryptic and contain the desired probe 

modification and discriminant analyses were performed to achieve a peptide false-

positive rate below 5%. The actual false positive rate was assessed at this stage according 

to established guidelines32 and found to be ~3.5%. Additional assessments of the false-

positive rate were performed following the application of additional filters (described 

below) resulting in a final false-positive rate below 0.05%.  

 

MS data analysis – quantification 

Quantification of light/heavy ratios (R) was performed using the CIMAGE 

quantification package as previously described22.  

 

Overexpression of GSTO1-wt in HEK293T cells 

HEK293T cells were grown at 37 °C under 5% CO2 in DMEM media 

supplemented with 1% penicillin/streptomycin and 10% fetal bovine serum. 

Transfections were performed on 10 cm cell plates of ~60% confluency. Serum free 

DMEM media (600 µL) and X-tremeGENE DNA transfection reagent (20 µL) were 

combined in an eppendorf tube and vortexed. Either empty plasmid (pcDNA-3.1-myc/his 

(Invitrogen)) or WT-GSTO1-pcDNA-3.1-myc/his33 (6 µg) were added and the sample 

was shaken and remained at room temperature for 15 mins. This plasmid solution was 

added dropwise to the HEK 293T cells. The cells were incubated for 48 hours. After 

transfection, cells were washed (3 times) with PBS, harvested by scraping and 

resuspended in an appropriate amount of PBS. Cells were then sonicated (using a COLE-
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PARMER 130W ultrasonic processor) to lyse. These lysates were separated by 

centrifugation (using a MX-120 Thermo micro-ultra centrifuge) at 45,000 rpm at 4°C for 

45 min. to yield soluble and membrane protein lysates. The supernatant was collected and 

the soluble protein concentration was determined using a Bio-RAD DC Protein Assay  

 

Western blot analysis 

SDS-PAGE loading buffer 2x (reducing, 50 µL) was added to the soluble protein 

samples and 25 µL of this solution was separated by SDS-PAGE for 217 volt hours on a 

10% polyacrylamide gel. The SDS-PAGE gels were transferred by electroblotting onto 

nitrocellulose membranes at 150 volt hours. The membranes were blocked in tris-

buffered saline with 1% Tween 20 (TBS-T) and 5% (w/v) non-fat dry milk at room 

temperature for 2 hrs. Each blot was washed with TBS-T three times (5 min/wash), then 

treated with antiGSTO1 tag rabbit antibody (Cell Signaling, 1:1000) overnight at 4°C. 

The blots were washed with TBS-T three times (5 min/wash). The blots were treated with 

the anti-rabbit-HRP conjugated secondary antibody (Cell Signaling, 1:10,000) for 2 hrs at 

room temperature. The blots were washed three times with TBS-T (5 min/wash), treated 

with HRP super signal chemiluminescence reagents and exposed to film for 1 min before 

development. Development took place using a Kodak X-OMAT 2000A processor.  

 

Mass spectrometry sample preparation 

Mock and GSTO1-overexpressing soluble cell lysates were diluted to a 2 mg/mL 

solution in PBS. Each sample (2 x 0.5 mL aliquots) was treated with 100 µM of IA-

alkyne using 5 µL of a 10 mM stock in DMSO. The labeling reactions were incubated at 
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room temperature for 1 hour. Click chemistry was performed by the addition of 100 µM 

of Azo-L (GSTO1) or Azo-H (mock). The samples were combined after the one-hour 

incubation and analyzed as described above. 

 

Elution of purified GAPDH from streptavidin beads and gel analysis 

10 µg of purified GAPDH were dissolved in 150 µL of PBS and each sample was 

treated with 100 µM of IA-alkyne (1.5 µL of 10 mM). The labeling reactions were 

incubated at room temperature for 1 hour. Click chemistry was performed by the addition 

of 100 µM of the Azo-L (3 µL of a 5 mM stock), 1 mM TCEP (3 µL of a fresh 50X stock 

in water), 100 µM ligand (9 µL of a 17X stock in DMSO:t-Butanol 1:4) and 1 mM 

CuSO4 (3 µL of a 50X stock in water). Samples were allowed to react at room 

temperature for 1 hr. Following click chemistry, precipitated GAPDH was pelleted by 

centrifugation at 10,000 rpm for 5 min at room temperature. The supernatant was 

removed and the pellet was washed twice with 200 µL of cold methanol and then 

solubilized in 300 µL of 1.2% SDS in PBS by sonication and heating. The solubilized 

GAPDH was diluted with 1.5mL of PBS to a 0.2% SDS concentration and this solution 

was incubated with 30 µL of streptavidin-agarose beads at room temperature for 3 hrs on 

a rotator. The beads were transferred to a Micro Bio-Spin column and washed 1 x 500 µL 

0.2% SDS in PBS, 3 x 500 µL PBS, and 3 x 500 µL water. The release of intact proteins 

from the beads was achieved by incubating the beads in 50 µL of fresh 50 mM sodium 

dithionite for 60 min at room temperature on a rotator. After centrifugation, the 

supernatant was transferred to a new eppendorf tube and the cleavage process was 

repeated twice. All three supernatants were combined giving a final volume of 150 µL. 
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After cleavage, the remaining beads were washed 3 x 500 µL of water and suspended in 

150 µL of PBS. 50 µL of 4x SDSPAGE sample loading buffer was added to both the 

cleavage product and suspended beads. Proteins that remained bound to the beads were 

removed by boiling in sample loading buffer for 10 mins. All samples were loaded onto a 

10% SDS-PAGE gel and run for 200 volt hours. Proteins were visualized using silver 

staining. 

 

Elution of GAPDH from streptavidin beads in the background of a complex 

proteome 

Mouse liver was diluted to 5 mg/mL and click chemistry was performed on a 500 

µL sample. The precipitated proteins were washed twice with cold methanol, solubilized 

in 1.2% SDS in PBS, and combined with Azo-L labeled GAPDH from above. The 

solution was diluted to 0.2% SDS in PBS and incubated with 100 µL of streptavidin-

agarose beads at room temperature for 3 hrs on a rotator. The beads were processed for 

gel analysis as described above. 

 

GAPDH mass spectrometry analysis 

IA labeling, click chemistry, and cleavage were performed on 220 µg of GAPDH 

as described above except the Azo-linker used was a 1:1 combination of Azo-L and Azo-

H. Following cleavage of GAPDH, the beads were washed twice with 75 µL of water and 

combined with the previous eluent giving a final volume of 300 µL. The eluted protein 

was precipitated using 30 µL of a 100% trichloroacetic acid solution (100mg in 100 µL 

PBS) and frozen at -80 °C overnight. The samples were thawed and centrifuged at 10,000 
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rpm for 10 minutes. The GAPDH pellet was washed once in 500 µL of cold acetone. 

After centrifugation, acetone was removed and the pellet allowed to air dry. The GAPDH 

pellet was resuspended in 30 µL of 8M urea in PBS followed by 70 µL of 100 mM 

ammonium bicarbonate. This was heated at 65 °C for 15 minutes with 15 mM 

dithiothreitol (1.5 µL of 1 M). 2.5 µL of 500 mM Iodoacetamide was then added and 

allowed to incubate at room temperature for 30 minutes. The reaction was quenched with 

120 µL of PBS and trypsin digestion was performed by adding 4 µL of trypsin (0.5 

µg/µL) and 2.5 µL of 100 mM calcium chloride. The sample was agitated overnight at 37 

°C. After digestion, trypsin was quenched with 10 µL of formic acid and centrifuged at 

10,000 rpm for 10 minutes to pellet undigested and precipitated protein. 10 µL of the 

supernatant was removed and pressure loaded onto a 100 µm fused silica column packed 

with 10 cm of Aqua C18 reverse phase resin. LC-MS analysis was performed on an LTQ-

Orbitrap mass spectrometer (ThermoFisher) coupled to an Agilent 1200 series HPLC. 

The peptides were eluted from the C18 resin using a two-hour gradient of 5-100% Buffer 

B in Buffer A (Buffer A: 95% water, 5% acetonitrile, 0.1% formic acid; Buffer B: 20% 

water, 80% acetonitrile, 0.1% formic acid). The flow rate through the column was set to 

~0.25 µL/min and the spray voltage was set to 2.75 kV. One full MS scan (FTMS) (400-

1800 MW) was followed by 8 data dependent scans (ITMS) of the nth most intense ions 

with dynamic exclusion enabled. 
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Chapter 3 

Identifying Dysregulated Cysteine-Mediated Protein Activities During Impaired 
Insulin/IGF-1 Signaling in C. elegans 
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Introduction 

The elucidation of protein activities dysregulated during the aging process is a 

vital step toward the discovery of signaling networks and metabolic pathways directly 

implicated in aging. Caenorhabditis elegans provides an ideal model organism for 

investigating the mechanistic basis of aging and physiological decline: C. elegans are 

transparent and can be observed under the microscope; they are able to grow in large 

populations on solid or in liquid media; mutant strains can be frozen, stored, and 

recovered; they are hermaphroditic and mostly reproduce via self-fertilization, although 

males can be created and used for crossbreeding; they eat easily sustainable E. coli; they 

can also be age-synchronized by treating young adults with floxuridine (FUDR), an 

inhibitor of thymidylate synthase and DNA replication. Compared to other commonly 

studied organisms, C. elegans have a short and relatively invariant lifespan of 14-21 days, 

a brief reproductive cycle of 2.5-4 days, and distinct developmental stages. Their 

development and lifespan are temperature dependent (more rapid development, shorter 

lifespan with increased temperature) and are typically grown between 15-25 °C. All of 

these features enable the use of C. elegans in simple screens to examine genetic and 

environmental effects on aging1. 

The C. elegans life cycle is comprised of the embryonic stage, four larval stages 

(L1-L4) and the adult stage (Figure 3-1). After hatching, larval development is suspended 

at the L1 stage and can survive up to 6-10 days until food becomes available2. If food and 

environmental conditions are favorable, the C. elegans larva will mature through each 

larval stage in about 10 hours. The end of each stage is marked with a molt in which a 

new cuticle is created and the old one is shed3. Under conditions of stress such as 
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increased temperature, high population density, and lack of food, C. elegans may enter an 

alternative third larval stage called dauer larva (Figure 3-1). During this dauer state, 

development is suppressed, feeding stops, and movement is significantly reduced. Dauer 

larva are very thin, have a thick cuticle, and exhibit increased stress resistance, altered 

metabolism, and the ability to survive for months without food. When conditions 

improve, dauer larva molt to the L4 stage and enter adulthood with no affect on the 

adult’s lifespan, regardless of the time spent in the dauer state4. 

 

 

Figure 3-1. The C. elegans lifecycle at 25°C. Figure adapted from Jorgensen and 

Mango5. 
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Insulin signaling and its role in lifespan regulation 

 Dauer development is control by 4 distinct signaling pathways: the guanylyl 

cyclase, TGFβ-like, steroid hormone, and insulin-like pathway6, 7. The insulin-like 

pathway is homologous to mammalian insulin/insulin-like growth factor (IGF) signaling 

(IIS) and regulates numerous cellular processes including growth, differentiation, and 

metabolism8. In C. elegans, and other invertebrates, insulin-like peptides are secreted in 

response to food and bind to a single insulin/IGF-1-like tyrosine kinase receptor (DAF-

2). This binding leads to DAF-2 self-phosphorylation and dimerization, and the activated 

receptor then phosphorylates phosphoinositide 3-kinase (AGE-1), stimulating the 

production of phosphatidylinositol (3,4,5)-triphosphate (PIP3) products. Elevated levels 

of PIP3 turn on 3-phosphoinositide dependent protein kinase-1 (PDK-1) and its activation 

of the protein kinase AKT/protein kinases B (AKT/PKB).  AKT/PKB phosphorylates the 

FOXO transcription factor DAF-16 causing its inactivation and translocation out of the 

nucleus and into the cytosol9 (Figure 3-2).  
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Figure 3-2. The C. elegans DAF-2/insulin-like pathway. Figure adapted from Nemoto 

and Finkel9 

 

 
The core of this signaling pathway is evolutionarily conserved and has been 

demonstrated to play a significant role in stress resistance and controlling lifespan8.  

Inactivation of DAF-2, or several other kinases in this pathway, allows DAF-16 to enter 

the nucleus and regulate the transcription of genes that enhance longevity10-13. The 

activity of DAF-16 is required for longevity as double mutants of DAF-16 and DAF-2 

lack this long-lived phenotype14-16. The life-extending properties of altering this pathway 
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that mutations in the insulin receptor substrate CHICO could increase lifespan by 48% 

and mutations in InR, the insulin-like receptor equivalent to DAF-2, could increase 

lifespan up to 85%17, 18. Saccharomyces cerevisiae lacks the insulin receptor but does 

have similar kinases to those downstream of this receptor, such as the AKT homologue 

Sch9, which enhanced yeast longevity upon deletion19.  

While the core of this pathway is highly conserved, mammalian IIS is far more 

complex than its invertebrate equivalent. Three different ligands are present in mammals 

(insulin, IGF-1 and IGF-2) as well as three distinct receptors (insulin receptor, IGF-1 

receptor, and IR related receptor), and ligand biding activates two major signaling 

pathways, the PI-3K-PKB/AKT pathway and the Ras-MAPK pathway. Mammalian IIS is 

also linked to growth hormone (GH) that regulates the release of IGF-120.  While difficult 

to decipher their specific roles in longevity, mouse mutants with reduced GH, IGF-1, or 

insulin have been shown to live longer than wild type mice. For example, the mean 

lifespan of fat-specific insulin receptor knockout (FIRKO) mice were increased by 18% 

and mice with mutated GH and reduced IGF-1 production also displayed extended 

lifespans21. 

With the relationship between IIS and longevity seen in a variety of organisms, 

and many age-related developmental processes in humans are also controlled hormonally, 

it’s likely that IIS contributes to human lifespan regulation as well. Studies on groups of 

long-lived humans reveal common polymorphisms in several of the IIS genes already 

implicated in invertebrate longevity. A SNP in AKT1 was significantly associated with 

lifespan in an analysis across three Caucasian study groups22. In the Leiden 85-plus 

Study, a correlation was seen between longevity and SNPs in GH1, IGF1, and IRS1 that 



	

	

67 

reduces IIS activation23. Mutations in insulin receptor of a Japanese population were 

observed more frequently in semi-supercentenarians (older than 105) than the younger 

control group24. Additionally, variants of FOXO3A have been most consistently related 

to long-lived human populations22, 25-28. 

Much of the evidence that supports aging as a hormonally regulated process 

originates from studies on C. elegans. Mutations in genes that induce the formation of 

long-lived dauer larva were studied for their effect on adult C. elegans lifespan. Three 

different mutations in the daf-2 gene were found to dramatically increase dauer formation 

in a temperature-dependent manner29. Daf-2 mutants grown at a permissive temperature 

(15 °C) develop normally like wild type, while 100% of mutants grown at the non-

permissive temperature (25 °C) become constitutive dauers. The percentage of dauer 

formation can be manipulated by culturing the mutants at slightly lower temperatures, for 

example 93% of daf-2 mutants grown at 22.5 °C develop into dauers (Figure 3-3a)30. 

When daf-2 mutants were allowed to develop through the larva stages at the permissive 

temperature and then moved to a non-permissive temperature once they reach early 

adulthood, these mutants were found to live 2.3 times longer than wild type. 

Additionally, this lifespan expansion requires the activity of the DAF-16 transcription 

factor, as mutations in both daf-2 and daf-16 returned the lifespan to that of wild type29 

(Figure 3-3b).  
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Figure 3-3. (a) Percent dauer formation in WT and daf-2 mutant C. elegans, grown at 

22.5 °C. Figure adapted from Hanover et al.30. (b) Lifespan of WT (N2), daf-2 and daf-

16;daf-2 C. elegans (data from this study). 

 

 
Global profiling of DAF-16 transcriptional targets 

The identification of C. elegans genes that act downstream of daf-16 could 

contribute to a better understanding of how lifespan can be extended. Gene targets of the 

DAF-16 transcription factor have been investigated in several genomic and proteomic 

studies by comparing the changes in mRNA levels and protein abundance between daf-2 

and daf-2;daf-16 mutants. Daf-2 mutants are not only long-lived but also resistant to 
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expression of genes involved in such resistance showed that proteins such as superoxide 

dismutase (SOD-3), metallothionein (MTL-1), and heat-shock proteins (HSP-16) were in 

fact upregulated in daf-2 mutants31-33. Global transcriptomic analyses using microarrays 

identified additional upregulated genes that function in bacterial resistance, metabolism, 

steroid and lipid synthesis, and dauer formation. Downregulated genes were involved in 

0

20

40

60

80

100

120

wild type daf-2

%
 D

au
er

100

0 7

93

non-dauer dauer
Survival of N2, daf-2, daf-16;daf-2

0 10 20 30 40 50
0

25

50

75

100

N2
daf-2
daf-16;daf-2

Days

Pe
rc

en
t s

ur
vi

va
l

(a) (b) 



	

	

69 

translation elongation, protein degradation, apolipoproteins, and peptide and lipid 

transport34-39. Global proteomic analyses profiling the daf-2 proteome using quantitative 

15N stable isotope labeling and quantitative mass spectrometry identified similar genes 

differentially expressed in daf-2 mutants as well as many changes in protein abundance 

that were not detected in the microarray analysis40, 41.  

We wanted to complement these studies by using the tools of ABPP to profile 

protein-activity changes associated with impaired IIS in C. elegans. In particular, we are 

interested in the activity changes of cysteine residues because of the critical roles they 

play in catalysis and regulation42. Diverse proteins families, including proteases, kinases, 

and oxidoreductases, contain cysteine residues that are essential for protein function. 

These functional cysteines demonstrate elevated reactivity43 and are often susceptible to a 

variety of oxidative modifications that serve to modulate protein activity44. In C. elegans, 

proteins involved in stress resistance, such as heat-shock proteins45, oxidoreductases (e.g. 

peroxiredoxins)46, and detoxifying enzymes (e.g. glutathione S-transferase)47, are 

regulated by the IIS and rely on critical cysteine residues for function. Additionally, 

dysregulated reactive oxygen species (ROS) is a characteristic feature of impaired IIS, 

resulting in changes to the oxidation state and subsequent function of cysteine-mediated 

proteins32, 46.  

The relationship between ROS and lifespan extension through IIS is complex and 

multifaceted. Acute inhibition of DAF-2 results in a transient increase in ROS levels due 

to an increase in metabolic rate to compensate for decreased glucose uptake; this spike in 

ROS then triggers the activation of a variety of antioxidant systems and the subsequent 

lowering of ROS levels46. Therefore, chronic inactivation of DAF-2 results in creased 
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expression of antioxidant enzymes such as SOD-3 and catalase that render lower ROS 

levels in daf-2 mutants32. Due to the sensitivity of cysteine-mediated protein activities to 

changes in ROS, the abundance of these proteins is not a true representation of activity 

state. The use of ABPP can therefore serve to identify posttranslational regulatory 

mechanisms active during IIS, while also enriching for low-abundant members of this 

protein class that are undetected by traditional abundance-based proteomic 

measurements. Previous studies have applied redox proteomic methods to identify C. 

elegans proteins that are oxidized upon exposure to peroxide48, but similar studies have 

not been utilized to explore endogenous oxidative events associated with impaired IIS.  

Comparing changes in cysteine reactivity across daf-2 and daf-16;daf-2 mutants 

allows identification of changes in protein abundance and/or oxidation driven by 

impaired IIS. We applied a promiscuous cysteine-reactive chemical probe, coupled with 

quantitative MS, to globally quantify cysteine-reactivity changes between daf-2 and daf-

16;daf-2 mutants43, 49. Our studies identified 40 cysteine-containing proteins that show a 

greater than two-fold change in cysteine reactivity upon impaired IIS. Subsequent RNAi-

mediated knockdown of 17 genes identified lbp-3 and K02D7.1 as novel modulators of 

C. elegans lifespan and dauer formation. Importantly, our studies represent the first 

application of the tools of ABPP in C. elegans and highlight the ability of chemical 

proteomics to complement traditional transcriptomic and proteomic methods used to 

study IIS.  
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Reactive-cysteine profiling reveals functional cysteines in C. elegans 

Cysteine is one of the most intrinsically nucleophilic amino acid, and this 

nucleophilicity can be modulated by the protein microenvironment to enable diverse 

biochemical functions42, 50. A global proteomic evaluation of cysteine reactivity 

demonstrated that functional cysteines involved in catalysis and regulation display 

elevated reactivity relative to non-functional cysteines in the proteome43. In this previous 

study, the intrinsic reactivity of hundreds of cysteines in human proteomes was 

monitored using a promiscuous cysteine-reactive iodoacetamide-alkyne (IA) probe. 

Comparison of the extent of cysteine labeling as a function of time or IA concentration, 

revealed a subset of hyperreactive cysteines that saturated labeling at low time points, or  

low IA concentrations. This subset of hyperreactive cysteines was enriched in functional 

cysteines. To determine if a similar strategy would allow identification of functional 

cysteines in C. elegans lysates, we performed a concentration-dependent analysis of 

cysteine labeling by the IA probe.  

Lysates from daf-2 mutants were used for these studies. These lysates were 

treated with either 10 µM or 100 µM IA probe prior to conjugation to isotopically 

labeled, chemically cleavable biotin tags (Azo-tags)49 using copper(I)-catalyzed azide-

alkyne cycloaddition (CuAAC)51. The Azo-tags are comprised of an azide, a biotin, a 

chemically cleavable azobenzene linker, and an isotopically light or heavy valine, as 

described in chapter 2. C. elegans lysates, treated with 10 µM or 100 µM IA, were 

conjugated to heavy and light Azo-tags, respectively. These samples were then combined 

and subjected to streptavidin enrichment, on-bead trypsin digestion and treatment with 

sodium dithionite to release the probe-labeled peptides for analysis by high-resolution 
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LC/LC-MS/MS (Figure 3-4a). MS analysis identified 578 unique cysteine-containing 

peptides in the daf-2 lysates, and for each of these peptides, a light:heavy ratio (R) was 

calculated that reflects the degree of cysteine labeling between the 10 µM or 100 µM IA-

treated samples (Table 3-1, Table 3A-1). A cysteine that is hyperreactive and saturates 

labeling at the low IA concentration will display R values of ~1, whereas less reactive 

cysteines will display R values >>1. The 578 cysteine-containing peptides identified 

displayed a side range of R values (Figure 3-4b), with 21 cysteine demonstrating R 

values <3 (Figure 3-4b; inset).  

 

Figure 3-4. (a) Workflow to identify hyperreactive cysteines in the daf-2 mutant 

proteome.  
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(b) Cysteine-containing peptides in order from high to low reactivity. Inset displays 21 

most reactive cysteines in the daf-2 mutant proteome.  
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(c) Cysteines with annotated biological functions in either C. elegans or the 

corresponding human homolog are highlighted in white along the ratio plot. (d) Cysteine-

containing peptides sorted into 3 groups: R < 3 (hyperreactive), R = 3-6 (medium 

reactivity), R >6 (low reactivity). The percentage of cysteines in each grouping that are 

conserved in humans (black) or have annotated biological function (gray) are shown. 

 

 
To determine if those cysteines with low ratio values (R < 3) were enriched in 

known functional residues, we mined the C. elegans UniProt database for functional 

annotation of the identified cysteines as catalytic or regulatory residues. However, the C. 

elegans UniProt entries have poor annotation of residue and protein functions. Therefore, 

we also performed a BLAST search of each identified C. elegans protein against the 

human UniProt database and identified those cysteine residues that were conserved in the 

corresponding human homolog and were functionally annotated to be involved in 

catalysis and regulation (Table 3A-1). Comparing functional annotation with the 

observed R values for each cysteine demonstrated that cysteine with low R values (i.e. 

hyperreactive cysteines) were enriched in known functional residues (Figure 3-4c), 

similar to what was observed in human proteomes43. Approximately 50% of all cysteines 

identified with ratios < 3 are known to be functional in either C. elegans or the 

corresponding human homolog (Figure 3-4d), whereas only 6% of cysteines with R > 6 

were annotated to be functional. A similar trend in cysteine conservation was also 

observed (Figure 3-4d), albeit with less of a dramatic enrichment amongst the 

hyperreactive subset of cysteines, suggesting that cysteine reactivity rather than 

conservation, predicts cysteine functionality more effectively. Functionally annotated 
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hyperreactive cysteines in C. elegans include active-site cysteines in glutathione S-

transferases, aldehyde dehydrogenase and glutaredoxins (Table 3-1). These studies 

constitute the first evaluation of cysteine reactivity in C. elegans and provide a list of 

hyperreactive cysteines, including unannotated cysteines for future functional 

characterization. These data also demonstrate that the IA probe labels functional 

cysteines within C. elegans proteomes, and comparing IA labeling between daf-2 and 

daf-16;daf-2 mutants will reveal reactivity changes across functionally relevant cysteine 

residues implicated in IIS. 

 

Table 3-1. Hyperreactive cysteines identified in the daf-2 mutant proteome with 

annotated biological function in either C. elegans or human UniProt databases. (#Human 

homologue of unannotated C. elegans proteins.) 

 

	

Gene Symbol Protein Name Sequence Ratio Function 

F53A2.7 3-ketoacyl-CoA thiolase # R.LC*GSGFQAVVNAAQAIK.L 1.13 Acyl-thioester 
intermediate 

T02G5.7 Acetyl-CoA acetyltransferase# K.VC*SSSMK.A 1.3 Acyl-thioester 
intermediate 

gst-44 Glutathione S-transferase R.FC*PAAQR.A 1.55 Active Site 
Nucleophile 

gsto-3 Glutathione S-transferase omega R.FC*PYAQR.V 1.555 Active Site 
Nucleophile 

kat-1 Acetyl-CoA acetyltransferase# K.VC*SSGLK.A 1.575 Acyl-thioester 
intermediate 

glrx-22 Glutaredoxin-2 K.DGC*GYCVK.A 2.25 Redox-Active 
Disulfide 

alh-3 Aldehyde Dehydrogenase K.GENC*IAAGR.V 2.37 Active Site 
Nucleophile 

Y110A7A.6 6-phosphofructo-2-kinase/fructose-
2, 6-bisphosphatase# R.VFFVESVC*DDPDIINSNITEVK.I 2.545 Active Site 

C02D5.4 Glutathione S-transferase omega# R.FC*PWAQR.A 2.59 Active Site 
Nucleophile 

F10D7.3 Glutaredoxin-1# K.TYC*PWSK.R 2.86 Iron-Sulfur/Redox-
Active Disulfide 

cyp-34a8 Cytochrome P450# R.AC*PGESLAR.A 2.93 Iron Binding 
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Chemical-proteomic analysis identifies changes in cysteine reactivity between daf-2 

and daf-16;daf-2 mutants 

Given that the IA probe labels a large number of functionally relevant cysteine 

residues in C. elegans, we set out to compare cysteine labeling across daf-2 and daf- 

16;daf-2 mutants. These studies will reveal variations in protein abundance and cysteine 

posttranslational-modification state in the long-lived daf-2 mutants relative to the daf-

16;daf-2 mutants. Initially, to confirm the longevity phenotype of the daf-2 mutants, a 

lifespan assay was performed on WT (N2), daf-2 and daf-16;daf-2 mutants cultured 

under identical conditions. As expected, daf-2 mutants demonstrated an almost 100% 

lifespan extension (Figure 3-3)29. To quantify cysteine-reactivity changes between daf-2 

and daf-16;daf-2 mutants, lysates from daf-2 and daf-16;daf-2 animals were treated with 

100 µM IA, appended to Azo-L and Azo-H, respectively, and subjected to the MS 

workflow utilized previously (Figure 3-5a). MS analysis provided R-values for 338 

cysteine-containing peptides (Figure 3-5b) from two biological replicates, whereby a high 

R-value is indicative of a cysteine with increased reactivity in daf-2 mutants, whereas low 

R-values represent cysteines with decreased reactivity in daf-2 mutants. The majority of 

identified cysteines (84.9%) demonstrated R-values in the range 0.5 < R < 2, 

demonstrating less than 2-fold change across the daf-2 and daf-16;daf-2 proteomes 

(Table 3A-2). In total, 48 cysteine residues on 40 proteins displayed a ≥ 2-fold change 

(Table 3-2), with 36 showing increases in daf-2 and 14 showing decreases in daf-2 

mutants. Our proteomic data was compared to transcriptomic data available for daf-2 and 

daf-16;daf-2 mutants52, 53, to determine if the changes we observed were also present at 

the transcript level. Of the 40 proteins that showed significant changes in daf-2 mutants, 
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transcriptomic data was available for 25. In terms of the general trend (increase vs. 

decrease in daf-2 animals) all but one hit (protein Y39E4A.3) agreed with the previously 

reported transcriptomic data (Table 3-2). 
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Figure 3-5. (a) Workflow to quantify cysteine reactivity changes between daf-2 and daf-

16;daf-2 mutants. (b) Identified cysteine-containing peptides plotted against the log10 

value of each light:heavy ratio. Log10 values < 0 indicate cysteines with decreased 

reactivity in daf-2 mutants, log10 values > 0 indicate cysteines with increased reactivity in 

daf-2 mutants. Proteins with a  previously observed role in lifespan regulation (DJR-1.2, 

Vit-2,5,6) and those that we demonstrate to affect lifespan and dauer formation upon 

RNAi-mediated knockdown (LBP-3, K02D7.1) are indicated. 
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Table 3-2. Cysteine residues with a ≥ 2-fold change between daf-2 and daf-16;daf-2 

mutants. Transcriptomic changes (LogFC) of the corresponding genes previously 

identified in microarray analysis of daf-2 and daf-16;daf- 2 are shown. Highlighted in 

yellow are the two identified proteins (K02D7.1 and LBP-3) that when knocked down in 

daf-2 mutants show the most dramatic effect on lifespan and dauer formation. 
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Several of the protein targets we identified have been characterized using RNAi 

knockdown and phenotypic analysis, including the vitellogenins (VIT-2/5/6) and the 

DJR-1.2 glyoxalase36, 54-56. Vitellogenesis is the process of egg yolk, or vitellogenin, 

production that provides the major nutrient source for developing embryos. 

Vitellogenesis is suppressed in the daf-2 mutant, possibly extending lifespan by using 

those resources to maintain somatic cells57. Vitellogenins are among the most 

downregulated proteins in daf-2 mutants and RNAi-mediated knockdown lengthened the 

lifespan of daf-2 (+) animals36. DJR-1.2 has been similarly functionally characterized. 

DJR-1.2 is homologous to the human DJ-1 protein and defects in the dj-1 gene are a 

cause of autosomal recessive early-onset Parkinson’s disease58. DJ-1 is a multifunctional 

redox-sensitive protein that plays roles in dampening mitochondrial oxidative stress and 

regulation of anti-apoptotic and anti-oxidant gene expression. DJ-1 also regulates toll-like 

receptor signaling, suggesting a role in innate immunity59. DJR-1.2 showed the most 

marked increase in cysteine labeling in daf-2, and has been found to be upregulated in 

both daf-2 and dauer larva, showing a DAF-16-dependent decrease in stress resistance 

and viability upon knockdown55. These previous RNAi-mediated knockdown and 

subsequent evaluation of lifespan and stress-resistance for vitellogenins and DJR-1.2 

glyoxalase serves to validate the proteins identified in our chemical-proteomic studies as 

IIS-regulated mediators of lifespan. 
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RNAi-mediated knockdown of lbp-3 and K02D7.1 results in modulation of lifespan 

and dauer formation  

To determine if other proteins identified in our cysteine-reactivity profiling 

studies were implicated in IIS-mediated lifespan regulation, we performed RNAi-

mediated knockdown studies followed by subsequent lifespan analysis. For these RNAi 

studies, we focused on a set of 20 genes, corresponding to the 10 proteins that showed the 

largest decrease (vit-6, vit-2, vit-5, ZK228.3, C17H12.13, K02D7.1, pes-9, lbp-3, 

F32D1.5, eef-2) and the 10 proteins with the largest increase (djr-1.2, F20G2.2, sodh-1, 

pck-1, moc-2, rab-14, ZK829.7, gspd-1, inf-1, F20D6.11) in daf-2 mutants consistent 

across the two biological replicates from our proteomic data (Table 3-2). Of these, in 

addition to the vitellogenin genes (vit-6/2/5) and djr-1.2 discussed previously, four other 

genes had already been subjected to RNAi and phenotypic analysis (sodh-136, eef-260, inf-

161, and pck-156). The remaining 12 genes with no previous RNAi and phenotypic data 

related to lifespan could be targeted using bacterial strains available in the Ahringer 

RNAi library62 (Table 3-3). We performed RNAi on these 12 genes and subsequently 

monitored lifespan with respect to vector-treated controls (Figure 3A-1). We observed a 

greater than 15% increase in lifespan for four of the genes tested (K02D7.1, pes-9, lbp-3 

and gspd-1) (Figure 3-6a and b, Figure 3A-1 and Table 3-3). Of these four genes, 

K02D7.1, pes-9 and lbp-3, corresponded to proteins that decreased in daf-2 mutants 

according to our proteomic data, supporting the idea that further decreases in the levels of 

these proteins using RNAi would result in augmentation of the longevity phenotype.  
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 Gene Median Lifespan Dauer Formation 
RNAi Vector Change RNAi Vector Change 

D
ec

re
as

e 
in

 
da

f-2
 

ZK228.3 37.4 35.2 6.34% - - - 
C17H12.13 30.3 26.5 14.2% - - - 
K02D7.1 45.7 30.0 52.6% 48.0% 16.4% 31.6% 
pes-9 45.0 38.1 18.3% 24.8% 31.6% -6.80% 
lbp-3 41.4 35.6 16.3% 29.7% 16.4% 13.3% 
F32D1.5 33.2 35.2 -5.67% - - - 

In
cr

ea
se

 
in

 
da

f-2
 

F20D6.11 40.4 38.1 6.2% - - - 
gspd-1 41.2 26.5 55.4% - - - 
ZK829.7 35.1 35.2 -0.40% - - - 
Rab-14 32.9 35.2 -6.43% - - - 
Moc-2 32.1 35.2 -8.77% - - - 
F20G2.2 31.6 35.2 -10.3% - - - 

 
Table 3-3. Lifespan changes upon RNAi-mediated knockdown of the 12 selected genes 

against a vector-treated control. Dauer formation changes with RNAi-mediated 

knockdown of the 3 genes decreased in the daf-2 mutant with the greatest increases in 

lifespan. 

 

 
To determine if inactivation of K02D7.1, pes-9 and lbp-3, would further augment 

dauer formation in daf-2 mutants, dauer-arrest assays were performed upon RNAi- 

mediated knockdown. At 22.5 °C, 16.4% of daf-2 mutants developed into dauer larva. 

Reduction of levels of both LBP-3 and K02D7.1 increased dauer formation to 29.7% and 

48.0%, respectively (Figure 3-6c and (Table 3-3). In contrast, inactivation of pes-9, 

showed no significant change in dauer formation (Table 3-3). Therefore C. elegans LBP-

3 and K02D7.1 proteins are implicated in both lifespan regulation and entry into the 

dauer state. RT-PCR was used to confirm knockdown of lbp-3 and K02D7.1, and 

compared against the control gene pmp-3, which demonstrates unusually stable 
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expression levels with little variation between adults, dauers, and L3 larvae, or between 

wild-type and daf-2 or daf-16 mutant adults (Figure 3-6d)63.  

 

Figure 3-6. Survival plots of daf-2 mutants treated with (a) lbp-3 siRNA or (b) K02D7.1 

siRNA and compared to a vector- treated control. (c) Dauer-arrest assay comparing the 

percent dauer formation of daf-2 mutants with RNAi-mediated knockdown of lbp-3 and 

K02D7.1 compared to a vector-treated control. (d) RT-PCR of daf-2 mutants treated with 

lbp-3 or K02D7.1 siRNA using primers for lbp-3, K02D7.1, or pmp-3 as a control. 

 

 
From our RNAi knockdown and phenotypic analyses, we conclude that the most 

dramatic effects on extending lifespan and dauer formation were observed for 
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knockdown of lbp-3 and K02D7.1 (Figure 3-6). To determine if the observed effects on 

lifespan were dependent on the presence of functional DAF-2 and DAF-16, lifespan 

assays were repeated in the background of daf-16 mutants, daf-16;daf-2 double mutants, 

and WT (N2) animals (Figure 3-7a), and gene knockdown was confirmed with RT-PCR 

(Figure 3-7b). Knockdown of lbp-3 only affected the lifespan of daf-2 mutants, whereas 

K02D7.1 knockdown extended lifespan in all 4 mutant backgrounds.  
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Figure 3-7. (a) Lifespan assays of RNAi-mediated knockdown of lbp-3 and K02D7.1 in 

the background of daf-16 mutants, daf-16;daf-2 double mutants, and wild type (N2) 

worms. (b) RT-PCR of the three strains treated with lbp-3 or K02D7.1 siRNA using 

primers for lbp-3, K02D7.1, or pmp-3 as a control. 

 

 
C. elegans lipid binding protein-3 

LBP-3 is an intracellular lipid chaperone in the fatty-acid-binding protein (FABP) 

family. FABPs are conserved from C. elegans to humans and are involved in fatty-acid 

uptake, transport and oxidation64. The C. elegans genome contains nine LBP genes and 

the exact functions of these individual LBPs remains unclear65. Of the C. elegans LBPs, 

LBP-5 appears to be the most extensively studied, whereby RNAi-mediated knockdown 

of lbp-5 results in fat accumulation in the intestine66. The putative role of the C. elegans 

LBPs in fat accumulation and transport is notable because a characteristic feature of the 

daf-2  mutants and long-lived dauers is increased fat content67. Previous studies have also 

shown that mutational inactivation of other lipid transport proteins, such as the 

intramembrane transporters, NDG-4 and NRF-5/6, increase stress resistance and lifespan 

through the IIS pathway68. These previous studies into the lipid-binding protein family 

and related proteins supports a potential role for LBP-3 in C. elegans lipid metabolism 

and IIS.  

Given the lack of functional characterization of the C. elegans LBPs, we probed 

the mammalian FABPs for insight into the function and regulation of this class of  

proteins. There are at least nine human FABPs and these have distinct tissue localization 

patterns. All FABPs are small intracellular proteins that can localize to the nucleus69, 70, 
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and bind long-chain fatty acids, albeit with different binding affinities. In our cysteine-

profiling studies, we identified Cys154 as labeled by the IA probe; this cysteine is not 

annotated as functional in the C. elegans UniProt database, but is conserved in several of 

the human FABPs (Figure 3-8). C. elegans LBP-3 shares the most homology with human 

FABP-5 (27% sequence identity), which contains a disulfide bond between Cys120 and 

Cys127 that regulates protein structure and function under reducing/oxidizing 

conditions71. In fact, several FABPs have been shown to be oxidized, glutathionylated 

and/or modified by oxidized lipid species such as 4-hydroxynonenal (HNE) at cysteine 

with effects on the lipid-binding ability and proteolytic stability72-74. It is therefore likely 

that Cys154 in C. elegans LBP-3 is similarly regulated through redox modifications. 

Interestingly, the 2.2-fold decrease in IA-labeled LBP-3 that we observed in the daf-2 

animals is significantly less than the change reported for lbp-3 using transcriptomic 

analyses (~5-fold decrease). This suggests that either there is poor correlation between 

lbp-3 mRNA and protein levels, or there is reduced enrichment due to partial oxidation of 

Cys154 in daf-16;daf-2 mutants. The higher levels of ROS observed in daf-16;daf-2 

double mutants supports the possibility of increased protein oxidation in this strain 

compared to the single daf-2 mutants32, 46. 
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Figure 3-8. Alignment of C. elegans LBP-3 with the human FABP family. Cys154 is the 

reactive cysteine identified in our proteomic studies (red) C and is conserved in several 

FABP family members (bold).  

 
 

C. elegans protein K02D7.1 

K02D7.1 is an uncharacterized protein in C. elegans but homologous to human 

purine nucleoside phosphorylase (PNP) with 47%  sequence identity. The IA-modified 

cysteines have no known functional annotation, but one of these cysteines are located in a 

highly conserved region (IIC*GSGLG), with conservation seen throughout humans, 

mice, flies, and yeast (Figure 3-9). PNP catalyzes cleavage of the glycosidic bond of 

(deoxy)ribonucleosides, forming the corresponding free purine base and pentose-1- 

phosphate in the purine salvage pathway75. Although PNP has not been directly 

implicated in IIS and lifespan regulation, the purine nucleotide synthesis pathway has 

been shown to be regulated by PI3K/AKT signaling, suggesting that enzymes within this 

pathway are under IIS control76. Furthermore, a downstream enzyme involved in purine 

metabolism, xanthine dehydrogenase (XDH), was identified in a systematic screen for 

longevity genes in C. elegans. RNAi knockdown of XDH in C. elegans caused a ~12% 

increase in median lifespan77, suggesting that purine metabolism can modulate longevity. 

These previous studies indicate that K02D7.1, similar to XDH, is a regulator of C. 

elegans lifespan and is a promising target for further characterization to determine the 

exact biochemical function and role of this protein in IIS. 
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Figure 3-9. Alignment of C. elegans K02D7.1 with purine nucleoside phosphorylases 

from other species. The reactive cysteines identified in proteomic studies are highlighted 

in red.  

 

 
Conclusion 

Collectively, these studies constitute the first reported application of chemical 

proteomics in C. elegans. Specifically, a cysteine-reactive chemical probe was applied to 

identify hyperreactive cysteines in C. elegans, revealing that these hyperreactive 

cysteines are enriched in functional residues critical to catalysis and regulation. Amongst 
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the subset of hyperreactive cysteines were several unannotated cysteines for future 

functional characterization in C. elegans and other organisms in which these cysteines are 

conserved. Given the wide utility of C. elegans as a model organism for aging, and the 

well-characterized role of impaired IIS in regulating longevity in this organism, we 

applied chemical proteomics to identify dysregulated protein activities with potential 

implications in IIS-mediated longevity regulation. Importantly, chemical-proteomic 

approaches such as ABPP have the advantage of identifying posttranslational 

modifications as well as low-abundance proteins, that are intractable to abundance based 

transcriptomic and proteomic approaches. Comparison of cysteine reactivity across daf-2 

and daf-16;daf-2 mutants, identified 40 proteins with >2-fold change across these 

proteomes. The majority of these changes were previously identified in transcriptomic 

studies and validated to regulate lifespan, serving to substantiate our chemical-proteomic 

data. Previously uncharacterized proteins were also identified, underscoring the 

complementarity of chemical-proteomic techniques to existing global transcriptomic and 

proteomic studies. Coupling chemical-proteomic tools with RNAi- mediated knockdown 

and phenotypic assays resulted in the identification of two proteins, LBP-3 and K02D7.1, 

as novel mediators of C. elegans lifespan and dauer formation. 
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Experimental procedures 

 

C. elegans culture for MS and RNAi experiments 

 

Strain maintenance 

Worm strains were grown at 15 °C on OP50 E. coli-seeded nematode growth medium 

(NGM) stock plates using standard C. elegans techniques78. The following strains were 

used:  

daf16;daf-2: DR1309 daf-16(m26) I; daf-2(e1370) III 

daf-2: CB1370 daf-2(e1370) III 

daf-16: GR1307 daf-16(mgDf50) I 

Wild-type: N2  

Strains were provided by the CGC, which is funded by NIH Office of Research 

Infrastructure Programs  (P40 OD010440) 

 

Preparation of 4 day old daf-2 and daf-16;daf-2 worms for MS analysis 

Age-synchronization of worms was done by shaking ~3000 gravid adult worms in a 

solution of sterile water (5.0 mL), KOH (1.0 mL, 5 M), and bleach (4.0 mL) for 5 

minutes until only the eggs remained. The eggs were centrifuged for 30 seconds (4 °C, 

2500 rpm), the supernatant was removed and the eggs were washed with S Medium (5 x 

10 mL). The eggs were resuspended in S Medium (8 mL) and allowed to hatch overnight 

in a 15 °C incubator. The next day, the hatched L1 worms (~100,000) were aliquoted 

onto 10 NGM plates and synchronized growth began with the addition of OP50 E. coli 
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(100 µL, 100 mg/mL). The worms were grown at 15 °C until the L4 larval stage where 

they were transferred to 25 floxuridine-containing plates (FUDR, 0.05 mg/mL) to prevent 

reproduction. The worms were fed OP50 (150 µL), and moved to a 25 °C incubator. The 

following day was counted as day 1 of adulthood and the worms were grown until they 

were 4 days old. Additional OP50 was added daily as needed to prevent starvation. After 

4 days, the worms were washed off the plates with PBS and any remaining bacteria, eggs, 

larva, deceased worms, or debris was removed via sucrose gradient separation:  worms 

were washed with 3 x 5 mL cold 0.1 M NaCl and then suspended in 2.5 mL cold 0.1 M 

NaCl and 2.5 mL cold 60% sucrose in water. This was spun in a 4 °C centrifuge at 3500 

rpm for 5 minutes, allowing the age-synchronized worms to float on the sucrose and 

pelleting the unwanted debris. The worms were carefully removed, washed with 5 x 5 mL 

PBS, and stored at -80 °C until lysis. The worms were resuspended in 4 mL PBS, 

sonicated to lyse, and spun at 5000 rpm for 10 minutes to isolate the protein extracts 

 

Quantitative mass spectrometry analysis using isotopic azobenzene tags: reactive 

cysteines in daf-2 

 

Click chemistry and streptavidin enrichment of probe-labeled proteins 

For each MS sample, daf-2 worms lysates (4 x 500 µL, 2 mg/mL) in PBS were aliquoted 

into 1.5 mL eppendorf tubes. Two tubes were treated with the high concentration of IA-

alkyne (100 µM from 100x stock) and the other two tubes treated with the low 

concentration of IA-alkyne (10 µM from 100x stock) for 1 hour at room temperature. The 

heavy azobenzene tag (Azo-H; 100 µM) and light azobenzene tag (Azo-L; 100 µM) were 
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added to the samples treated with 10 µM IA-alkyne and 100 µM IA-alkyne, respectively, 

and conjugated through click chemistry by the addition TCEP (1.0 mM from fresh 50X 

stock in water), ligand (100 µM from 17X stock in DMSO:t-Butanol 1:4) and CuSO4 

(1.0 mM from 50X stock in water). Samples were allowed to react at room temperature 

for 1 hour. The tubes were combined pairwise, centrifuged for 10 minutes (5,900 g at 4 

°C) to pellet the precipitated proteins, and resuspended in cold MeOH (500 µL) by 

sonication. The tubes were again combined pairwise, centrifuged, and washed in MeOH, 

after which the pellet was solubilized in PBS containing 1.2% SDS via sonication and 

heating (5 min, 80°C). The SDS-solubilized, probe-labeled proteome samples were 

diluted with PBS (5 mL) for a final SDS concentration of 0.2%. The solutions were 

incubated with 100 µL streptavidin-agarose beads (Thermo Scientific) at 4 °C for 16 hrs. 

The solutions were then incubated at room temperature for 3 hrs. The beads were washed 

with 0.2% SDS/PBS (5 mL) for 10 mins, PBS (3 x 5 mL), and water (3 x 5 mL). The 

beads were pelleted by centrifugation (1400 g, 3 mins) between washes. 

On-bead trypsin digestion and azobenzene cleavage  

The washed beads were suspended in 6 M urea/PBS (500 µL) and 10 mM dithiothreitol 

(DTT) (from 20X stock in water) and placed in a 65 °C heat block for 15 mins. 

Iodoacetamide (20 mM, from 50X stock in water) was then added and the samples were 

placed in a 37 °C incubator and agitated for 30 mins. Following reduction and alkylation, 

the beads were pelleted by centrifugation (1400 g, 3 min) and resuspended in 200 µL of 2 

M urea/PBS, 1 mM CaCl2 (from 100X stock in water), and trypsin (2 µg). The digestion 

was allowed to proceed overnight at 37 °C. The digested peptides were separated from 

the beads using a Micro Bio-Spin column (BioRad). The beads were washed with PBS (3 
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x 500 µL) and water (3 x 500 µL) and subsequently transferred to screw-cap eppendorf 

tubes. The azobenzene cleavage was carried out by incubating the beads with 50 µL of 

fresh sodium dithionite in PBS (25 mM) for 1 hour at room temperature on a rotator. 

After centrifugation, the supernatant was transferred to a new eppendorf tube. The 

cleavage process was repeated twice more with 75 µL of 25 mM dithionite solution and 

75 µL of 50 mM dithionite solution to ensure completion, each time combining the 

supernatants in the eppendorf. The beads were additionally washed twice with water (75 

µL). Formic acid (17.5 µL) was added to the samples and stored at -20 °C until mass 

spectrometry analysis. 

Liquid chromatography-mass spectrometry (LC-MS/MS) 

LC-MS/MS analysis was performed on an LTQ-Orbitrap Discovery mass spectrometer 

(ThermoFisher) coupled to an Agilent 1200 series HPLC. Peptide digests were pressure 

loaded onto a 250 µm fused silica desalting column packed with 4 cm of Aqua C18 

reverse phase resin (Phenomenex). The peptides were then eluted onto a biphasic column 

(100 µm fused silica with a 5 µm tip, packed with 10 cm C18 and 3 cm Partisphere 

strong cation exchange resin (SCX, Whatman)) using a gradient 5-100% Buffer B in 

Buffer A (Buffer A: 95% water, 5% acetonitrile, 0.1% formic acid; Buffer B: 20% water, 

80% acetonitrile, 0.1% formic acid). The peptides were then eluted from the SCX onto 

the C18 resin and into the mass spectrometer using four salt steps as previously 

described79. The flow rate through the column was set to ~0.25 µL/min and the spray 

voltage was set to 2.75 kV. One full MS scan (FTMS) (400-1800 MW) was followed by 

18 data dependent scans (ITMS) of the nth most intense ions with dynamic exclusion 

disabled 
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MS data analysis - peptide identification 

The generated tandem MS data were searched using the SEQUEST algorithm80 against 

the Uniprot C. elegans database (UP000001940). A static modification of +57.02146 on 

cysteine was specified to account for alkylation by iodoacetamide and differential 

modifications of +443.2897 (AZO-L tag) and +449.3035 (AZO-H tag) were specified on 

cysteine to account for probe modifications. SEQUEST output files were filtered using 

DTASelect2.0.5 and quantification of light:heavy ratios was performed using the 

CIMAGE quantification package as previously described43. 

 

Quantitative mass spectrometry analysis using isotopic azobenzene tags: daf-2 vs. 

daf-16;daf-2  

For each MS sample, daf-2 and daf-16;daf-2 worms lysates (2 x 500 µL, 2 mg/mL each) 

were aliquoted into 1.5 mL eppendorf tubes. The tubes were treated with IA-alkyne (100 

µM from 100x stock) for 1 hour at room temperature. The Azo-H (100 µM) was added to 

the daf-16;daf-2 lysates, and the Azo-L (100 µM) was added to the daf-2 lysates and 

conjugated through click chemistry for 1 hour at room temperature. The rest of the 

procedure is the same as described above. 

 

RNAi-mediated knockdown experiments  

 

RNAi bacterial culture and RNAi feeding plate preparation  

RNAi bacterial clones came from the Ahringer Lab RNAi feeding library (provided by 

the Tissenbaum Lab), which uses the L4440 vector containing T7 promoters and the TetR 
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gene transformed into HT115 (DE3), an RNase III-deficient E. coli strain with IPTG-

inducible T7 polymerase activity and ampicillin resistance81, 82. Frozen stocks from the 

library were streaked on LB agar plates containing ampicillin (100 µg/mL) and 

tetracycline (12.5 µg/mL) and grown overnight at 37 °C. Single colonies were inoculated 

and used to make frozen glycerol stocks from which all RNAi plates were made. Frozen 

stocks were grown overnight at 37 °C in LB media (3.0 mL) with ampicillin and 

tetracycline. The overnight cultures (200 µL) were added to LB media (20 mL) with 

ampicillin only and grown for 6 hours at 37 °C. RNAi plates containing ampicillin and 

IPTG (1.0 mM) were seeded with this RNAi bacterial culture (~800 µL) and allowed to 

dry overnight in the dark. RNAi plates used for lifespan assays also contained floxuridine 

(FUDR, 0.1 mg/mL 

Lifespan assays   

Worms were cultured for two generations on RNAi plates at 15 °C. For each lifespan 

assay, 120 second generation L4 worms were transferred to 4 new RNAi plates (with 

FUDR) and moved to 20 °C. After 7 days, the worms were censored for “sick” 

phenotypes (e.g. vulva bursting) and then scored by gently tapping with a platinum wire 

every 2-3 days. Worms that crawled off the plate or into mold that was excised out of the 

agar were censored from the analysis.  

Dauer formation assays  

daf-2 worms were cultured for two generations on RNAi plates at 15 °C. For each dauer 

formation assay, 9 second generation L4 worms from each RNAi plate were transferred 

to 3 new RNAi plates and allowed to lay eggs overnight. The next day, adult worms were 

removed from the plates and the remaining eggs were moved to a 22.5 °C incubator. 
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After 4 days, the worms were scored for dauer larva and the percentage of dauer larva 

was compared to L4440 vector-treated daf-2 control worms. Several temperatures 

between 20-25 °C  were tested to determine which was most appropriate to cause 10-20% 

dauer arrest in the control worms (not shown). 

 

Evaluation of mRNA levels in L4440 vector- and RNAi-treated C. elegans 

 

RNA Extraction  

Worms grown on RNAi plates were removed via washing with DEPC-water into an 

RNAse-free 1.5 mL eppendorf tube. After the worms were allowed to settle, the 

supernatant was removed and the worms were washed with 1 mL of DEPC-water and 

rotated at room temperature for 20 minutes to remove excess RNAi bacteria. This 

washing step was repeated 4 more times. Excess DEPC-water was removed and TRIzol 

reagent (1.0 mL) was added, briefly agitated, and allowed to incubate at room 

temperature for 5 minutes. Chloroform (200 µL) was added to the tube, inverted to mix, 

let sit at room temperature for 3 minutes, and centrifuged for 15 minutes at 4 °C. The top 

layer was carefully transferred to another eppendorf tube and isopropanol (400 µL) 

added, vortexed well, and allowed to sit at room temperature for 10 minutes. The tube 

was centrifuged for 10 minutes at 4 °C and the supernatant was removed, leaving a white 

pellet which was then washed with a 75% EtOH in DEPC-water solution (200 µL). The 

tube was centrifuged for 5 minutes at 4 °C, the supernatant was removed, and the RNA 

pellet was allowed to air dry for ~10 minutes. The pellet was resuspended in DEPC-water 

(20-30 µL) and RNA concentrations were determined using the Nanodrop. 
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cDNA formation 

RNA stocks were diluted to 500 ng/µL. DEPC-water (9.5 µL), RNA (1.0 µL, 500 ng/µL 

= 500 ng), and Oligo-dT’s (2.0 µL, 100 µM) were combined in an RNAse-free PCR tube. 

The tube was incubated at 65 °C for 2 minutes and then chilled on ice for 1 minute. M 

MuLV Reverse Transcriptase 10x Reaction Buffer (2.0 µL), dNTP mix (2.0 µL, 10 mM), 

DTT (2.0 µL, 100 mM), RNAse Inhibitor (0.5 µL), and M MuLV Reverse Transcriptase 

(1.0 µL) were added to the sample giving a total volume of 20.0 µL. The tubes were 

briefly mixed and then incubated at 37 °C for 60 minutes, then 85 °C for 5 minutes to 

terminate the reaction. The tubes were allowed to sit on ice for 1 minute, and stored at -

80 °C.  

RT-PCR  

The following primers were designed to evaluate LBP-3, K02D7.1, and PMP-3 mRNA 

levels. PMP-3 was used a control because of its unusually stable expression levels, with 

little variation between adults, dauer, and L3 larvae, or between wild-type and daf-2 or 

daf-16 mutants. For each gene, the primers were prepared as a mixture of both the 

forward and reverse primer (10uM each) in DEPC- water. 

lbp-3 forward: 5’-GCTGCTAAAGGAGTGAGCT-3’  

lbp-3 reverse: 5’-CCATTGTTGACCATTTTCATGAC-3’  

 

pmp-3 forward: 5’-GGCTAACTTATGAAAGTTCCG-3’  

pmp-3 reverse: 5’-GATGAGTGACTCCAGCAAGT-3’  

 

K02D7.1 forward: 5’-CAATTCACCAACCAACGCTG-3’ 
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K02D7.1 reverse: 5’-TGAACCGATACAAATCGGGC-3’  

For each sample, DEPC-water (16.8 µL), 5x HF Buffer (5.0 µL), primer mix (1.50 µL), 

cDNA (1.0 µL), dNTPs (0.5 µL, 10 mM), and Phusion polymerase (0.25 µL). The 

following PCR conditions were used: 

 

 

 

Xylene cyanol (5.0 µL) was added to the samples and each sample (5.0 µL) and the Tri-

Dye 100 bp DNA ladder were loaded onto a 2% agarose gel. The gel was run at 155 volts 

for 15 mins and then visualized under UV light. 
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Chapter 4 

Fluorophosphonate ABPs to Investigate the Roles of Serine Hydrolases in Impaired 
Insulin Signaling/Lifespan Regulation in C. elegans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. elegans RNAi knockdown, lifespan assays, and dauer assays were done with the help 
of Dr. YongHak Seo at UMass Medical School in Worcester, MA. 
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Introduction 

As mentioned in chapter 1, serine hydrolases (SHs) make up one of the largest 

and most diverse enzyme families in nature. SH regulate an assortment of physiological 

(e.g. blood coagulation, inflammation, angiogenesis) and pathological (emphysema, 

cancer) processes, however the endogenous functions of many members of this family 

remain unknown1. To identify and characterize their functions, SH activity can be 

globally profiled with fluorophosphonate (FP) ABPs2. Since many SHs are regulated by 

PTMs such as zymogen cleavage for catalytic activation or inhibitor binding for catalytic 

inactivation3, the use of FP probes are favorable as they specifically and irreversibly react 

with only catalytically active SHs2 (the mechanism of serine modification by FP ABPs 

are detailed in chapter 1, Figure 1-2a).   

 

 

Figure 4-1. Structure of the FP-biotin probe. 

 

A biotinylated FP probe (FP-biotin, Figure 4-1) has been used to study novel roles 

of SH activity in cancer invasiveness4, obesity-diabetes5, inflammation6, and for 

determining SH inhibitor targets and selectivity7-9. In one example, the FP-biotin probe 

was used to profile the activities of SHs in a panel of human cancer cell lines. These 

experiments identified a set of enzyme activities, such as KIAA1363, that are consistently 

up-regulated in more aggressive cancer lines from several different tumor types, 
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including breast cancer, ovarian cancer, and melanoma4. Measuring KIAA1363 mRNA 

levels across breast tumor samples with varying KIAA1363 activity revealed that its 

increased activity did not correlate to elevated expression levels10, suggesting its activity 

is regulated by PTM in breast cancer and highlighting the ability of ABPP to distinguish 

PTM-mediated activity changes that would otherwise go unnoticed by traditional global 

profiling methods.   

 

 
Investigating serine hydrolase activity changes in impaired insulin/IGF-1 

signaling/lifespan regulation in C. elegans 

Increased fat and altered metabolism are hallmarks of dauer larva as well as the 

long-lived, dauer-constitutive daf-2 mutants11, 12. The daf-2 mutant accumulates 

significantly more triacylglycerol (TAG)  in their intestines, the main site of fat storage in 

c. elegans, than the daf-16;daf-2 in early adulthood13. As they age, daf-2 mutants are able 

to maintain a high fat content while daf-16;daf-2 fat levels decrease steadily with age13. 

Decreased fatty acid oxidation is not the cause of increased TAG storage in daf-2 

mutants; multiple studies have demonstrated an increased expression of β-oxidation 

genes and higher rates of fatty acid oxidation compared to WT worms14. β-oxidation is 

also elevated in non-feeding dauer larva, where their survival depends on the controlled 

hydrolysis of stored lipids. Dauer larva with reduced AMPK signaling rapidly hydrolyze 

their lipid stores resulting in a reduction of their lifespan. RNAi-mediated knockdown of 

the adipose triglyceride lipase (ATGL) homologue blocks the abnormally fast lipid 

hydrolysis and restores dauer lifespan15. Using stable isotope labeling, it was also 

discovered that adult daf-2 mutants contain higher levels of de novo fatty acids compared 
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to WT16, but do not upregulate fatty acid synthase. Additionally, daf-2 mutants exhibit a 

noticeable Eat phenotype (reduced food uptake) that begins in early adulthood17.  

Taken together, the increased lifespan and fat content in daf-2 mutants might be a 

result of the misexpression of genes that ensure dauer larva longevity. It is likely that daf-

2 mutants switch from fat synthesis during development and early adulthood to storage 

and controlled lipid breakdown for the remainder of life. Metabolic SHs make up nearly 

half of the SH family, catalyzing the cleavage of ester, amide, or thioester bonds in 

peptides, proteins, and small molecules (such as lipids)1. Lipid synthesis and oxidation 

are regulated by various nutrient and energy sensing pathways, one of which includes the 

IIS pathway14. While the majority of c. elegans SHs are poorly characterized, it is likely 

that metabolic SHs that play a role in fat storage and metabolism have altered activities 

when IIS is impaired in daf-2 mutants. We used the serine hydrolase-targeting FP-biotin 

ABP to profile changes in SH activity in daf-2 mutants and investigate the roles of those 

SHs in lifespan regulation and dauer formation. 

  

 
Chemical-proteomic analysis reveals previously unidentified changes in SH activity 

between daf-2 and daf-16;daf-2 mutants 

Lysates of 4 day old daf-2 and daf-16;daf-2 mutants were labeled with 5uM of the 

FP-biotin probe, excess FP-biotin was removed using a NAP-5 column. Probe-labeled 

proteins were enriched with streptavidin beads, digested with trypsin, and analyzed by 

LC/LC-MS/MS.  82 proteins were identified having > 5 spectral counts in at least one 

sample of either the daf-2 or daf-16;daf-2 proteome (Table 4A-1). 12 of those proteins 

decreased more than 2-fold in the daf-2 proteome and 36 proteins increased greater than 
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2-fold. Comparing our data to expression profiles previously observed in the daf-2 

mutant (Dong et. al., Murphy et al., and McElee et al.), only 6 proteins in our data were 

identified as having similar changes in daf-2 mutants: F09C8.1, K12H4.7, Y16B4A.2, 

and F23B2.12 decreased expression, Y43F8A.3 and R12A1.4 increased expression in 

daf-2 mutants, with R12A1.4 (ges-1) being identified in all three profiles18-20. The 

remaining 87.5% of the FP-labeled proteins showing a greater than 2-fold change have 

not been observed previously. 

 

Table 4-1. Top 10 decreased and top 10 increased FP-biotin-labeled proteins in the daf-2 

proteome. Those available in the Ahringer RNAi library are highlighted in green.  

 

 
Identified in our data but not available in the RNAi library, protein F09C8.1 was 

among the most decreased in daf-2 mutants and is paralogous to R07B7.8, also identified 

to be downregulated in our data (Table 4-1). These proteins are expressed in the intestine 

and are homologs of human phospholipase B1 (PLB1). PLB1 is also expressed in human 
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intestines and is involved in hydrolyzing di- and triacylglycerol molecules (Uniprot and 

Wormbase). LIPS-15 is another protein significantly decreased in daf-2 mutants. LIPS-15 

is largely uncharacterized but predicted to have lipase activity and is a paralog to FIL-1; 

FIL-1 is involved in lipid catabolism and RNAi knockdown results in persistent high 

levels of TAG despite extended periods of food depletion. It is very likely that the 

reduction of these proteins in daf-2 mutants contributes to their increased TAG levels.  

 

RNAi-mediated knockdown of ZK370.4 and C23H4.2 affects lifespan and dauer 

formation 

 We chose 12 proteins to investigate how their RNAi-mediated knock down 

would affect lifespan and dauer formation in the daf-2 mutants against a vector-treated 

control (Figure 4A-1). Proteins were chosen if they had the greatest changes in the daf-2 

proteome, were identified in both replicate runs, had conserved active site serines in their 

human homologues, and were available in the Ahringer RNAi library (Table 4-1).  

Protein ZK370.4 is decreased in daf-2 and homologous to patatin-like 

phospholipase domain containing (PNPLA) proteins in humans. The previously 

mentioned ATGL-1 is another c. elegans protein related to the PNPLA family and is 

involved in TAG hydrolysis as well as regulating the activity of other lipases21. RNAi 

knockdown of ZK370.4 in daf-2 mutants appears to further extend the median lifespan of 

26.5 days in the vector control to 29.0 days, possibly via additional reduction of lipid 

hydrolysis (Figure 4-2). No dauer assay experiments were performed on ZK370.4 

knockdowns, but would be interesting to see if this additional reduction of lipid 

hydrolysis would also enhance dauer formation. 
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Figure 4-2. Lifespan of daf-2 mutants upon RNAi-mediated knockdown of ZK370.4 

 

 
Protein M05B5.4, an ortholog of the human gene lecithin-cholesterol 

acyltransferase (LCAT), tripeptidyl peptidase II (tpp-2), and protein C23H4.2, an 

ortholog of human carboxylesterase 4A (CES4A) have been previously subjected to 

RNAi and revealed a noticeable decrease in fat content upon knockdown22. Our results 

show that all 3 proteins are upregulated in daf-2 mutants and appear to play a role in 

maintaining their elevated fat stores. In humans, CES enzymes play a role in the 

hydrolysis of various xenobiotics, such as cocaine and heroine, as well as fatty acyl and 

cholesterol ester metabolism. Compared to the other two proteins involved in TAG 

storage, RNAi-mediated knockdown of C23H4.2 in daf-2 mutants moderately reduced 

lifespan in addition to significantly decreasing dauer formation from 31.6% in the vector 

control to 6.0% (Figure 4-3). As genes involved in IIS affect both lifespan and dauer 

formation, C23H4.2 is possibly upregulated by DAF-16 to promote lifespan extension 

and dauer formation by maintaining TAG storage.  
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Figure 4-3. RNAi-mediated knockdown of C23H4.2 in daf-2 mutants shows a decrease 

in (a) lifespan and (b) dauer formation.  
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Conclusion 

 These experiments demonstrate the ability of activity-based protein profiling to 

study enzyme changes in the context of dysregulated IIS. Over 85% of SHs showing a 

greater than 2-fold change between daf-2 and daf-16-daf-2 mutants had not been 

identified in previous expression change profiles. We identified 4 lipases (or lipase-

related proteins) that were decreased in the daf-2 mutant, and 3 three proteins with a 

known role in maintaining TAG stores increased in daf-2 mutants. Further decreasing the 

putative lipase ZK370.4 caused an extension in daf-2 lifespan and knockdown of the 

upregulated, TAG storage-related protein C23H4.2 shortened lifespan and reduced dauer 

formation. Overall, our data support previous studies implicating increased fat storage 

and decreased lipid hydrolysis in daf-2 longevity, while also potentially identifying novel 

regulators of these processes. 

 

 

Experimental Procedures 

 

Probe labeling and affinity purification of labeled proteins for ABPP-MudPIT. 

daf-2 and daf-16;daf-2 proteomes were prepared as described in chapter 3 and 

lysates were normalized to 3.5 mg/mL. Samples were labeled with FP-biotin (5 µM) for 1 

h at RT and a NAP-5 column (GE Healthcare) was used to remove the unreacted probe 

from each sample. The resulting probe-labeled protein was added to a solution of 

SDS/PBS (1.2% (w/v) final SDS concentration), heated for 5 min at 90 °C, and diluted to 

a final SDS concentration of 0.2% with PBS. The solutions were incubated with 100 µL 
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streptavidin-agarose beads (Thermo Scientific) at 4 °C for 16 h and at RT for 3 h. The 

beads were washed with 0.2% SDS in PBS (5 ml), PBS (3 × 5 ml), and water (3 × 5 ml). 

The beads were pelleted by centrifugation (1,400 × g, 4 °C, 3 min) between washes. 

On-bead trypsin digestion. 

The washed beads were suspended in 6 M urea in PBS (500 µL) and DTT (10 

mM final concentration, diluted from a 20× stock in water) and incubated at 65 °C for 15 

min. Iodoacetamide (20 mM final concentration, diluted from a 20× stock in water) was 

then reacted with the samples at 37 °C for 30 min. After reduction and alkylation, the 

beads were pelleted by centrifugation (1,400 × g, 4 °C, 3 min) and suspended in 200 µL 

of 2 M urea, 1 mM CaCl2 (diluted from a 100× stock in water), and sequencing-grade 

modified trypsin (2 µg; Promega) in PBS. The digestion was allowed to proceed 

overnight at 37 °C. The digested peptides were separated from the beads using a Micro 

Bio-Spin column (BioRad). The beads were washed twice with 50 µL ultrapure water, 

and formic acid (15 µL) was added to the eluted peptides, which were stored at −20 °C 

until MS analysis. 

Liquid chromatography-MS (LC-MS) analysis. 

LC-MS analysis was performed on an LTQ Orbitrap Discovery mass 

spectrometer (ThermoFisher) coupled to an Agilent 1200 series HPLC. Digests were 

pressure-loaded onto a 250-µm fused silica desalting column packed with 4 cm of Aqua 

C18 reverse phase resin (Phenomenex). Digests of affinity-purified samples were loaded 

in their entirety, whereas unfractionated sample digests were centrifuged (16,873 × g, 4 

°C, 2 min) before loading half of each sample onto the column. The peptides were eluted 
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onto a biphasic column (100-µm fused silica with a 5-µm tip, packed with 10-cm C18 

and 3-cm Partisphere strong cation exchange resin (SCX, Whatman)). The peptides were 

eluted from the SCX onto the C18 resin and into the mass spectrometer as previously 

described20. 

MS data analysis. 

The daf-2 and daf-16;daf-2 data was searched against the C. elegans Uniprot 

database (UP000001940). A static modification of +57.0215m/z on cysteine was 

specified to account for iodoacetamide alkylation. The SEQUEST output files generated 

from the digests were filtered using DTASelect (v2.0.39). MS data files have been 

deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the 

data set identifier PXD003000. MS data are presented in the form of spectral counts, 

which is standard for ABPP-MudPIT analyses with FP-biotin. 

RNAi-mediated knockdown experiments were performed as described in chapter 3. 
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Chapter 5 

Chemoproteomic Profiling of Host and Pathogen Enzymes Active in Cholera 
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Introduction 

 
During the course of infection, both pathogen and host express, and often secrete, 

enzymes that actively shape the biochemical landscape of a disease. Enzymes that are 

active at the host-pathogen interface can be critical for bacterial virulence or the host's 

response to infection and constitute potential therapeutic targets1-3. V. cholerae, the 

Gram-negative bacterium that causes the severe and potentially fatal diarrheal disease 

cholera, is an extracellular pathogen that proliferates in the small intestine of infected 

hosts4. To identify host and pathogen enzymes active during V. cholerae infection, FP-

ABPs were used to globally profile secreted serine hydrolase activity in the cecal fluid 

of V. cholerae–infected infant rabbits and human choleric stool.  

 
Figure 5-1. Workflow of FP-biotin labeling human choleric stool and rabbit cecal fluid 

with the structure of FP-biotin also shown. 
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ABPP identifies serine hydrolases active in cholera 

Inoculation of rabbits with V. cholerae leads to a disease that closely resembles 

human cholera5. Infected rabbits routinely accumulate 0.5–1 ml of cecal fluid, which has 

a chemical composition similar to that of choleric stool and contains pathogen- and host-

secreted products5. Cecal fluid and choleric stool isolates were reacted with FP-biotin, 

enabling affinity purification of active serine hydrolases6, 7 (Figure 5-1). Proteins were 

purified in parallel from sample supernatants incubated with either FP-biotin or DMSO 

(to account for nonspecific protein enrichment) and analyzed by LC/LC-MS/MS. A total 

of 233 and 71 proteins from the cecal fluid of V. cholerae–infected rabbits and human 

choleric stool, respectively, were identified. The majority of human stool-extracted 

proteins were host enzymes with defined serine hydrolase activity, and many (for 

example, chymotrypsin-like elastases, trypsins, and pancreatic triacylglycerol lipase) are 

involved in digestive processes (Table 5-1). Only a few of the rabbit proteins identified 

have functional annotations in the UniProt database8, including the digestive enzyme 

aminopeptidase N and the bacterial lipopolysaccharide-inactivating enzyme acyloxyacyl 

hydrolase (Table 5-2). Of the 25 most abundant proteins, ~75% contain predicted serine 

hydrolase domains, and there was considerable (~45%) overlap between the active 

enzymes identified in human stool and rabbit cecal fluid. 
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Table 5-1. Human and V. cholerae proteins enriched with FP-biotin from choleric stool.  

Only 14 affinity-purified proteins were detected from V. cholerae in cecal fluid 

and one in human choleric stool (Table 5-3, Table 5-1); of these, 10 contain predicted 

serine hydrolase domains. Four of these enzymes (VC0157, VCA0812, VCA0803 and 

VC1200) were detected in nearly all of the cecal fluid samples tested. Additional ABPP 

analyses indicated that all four of these enzymes were also active in the cell-free 

supernatants of V. cholerae biofilms. VC0157, renamed IvaP, was the most abundant V. 

cholerae protein identified in infected rabbits and biofilms and, notably, was the only 

active V. cholerae enzyme detected in human choleric stool. IvaP, VCA0812, VCA0803 

and VC1200 are putative secreted serine proteases: VCA0803 (VesA) and VC1200 

(VesB) have trypsin-like activity and VCA0812 contains a trypsin-like domain. These 

three enzymes are putative substrates of the type II secretion system of V. cholerae and 

play a role in the cleavage of the cholera toxin virulence factor. Relatively little is known 

about IvaP except that is it a putative alkaline serine protease that contains a subtilisin-
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like S8 peptidase domain and several predicted protein domains that are typically sites of 

post-translational processing that could regulate its activity. Upon investigation of the 

expression, proteolytic processing, and activity of IvaP in supernatants from various 

growth conditions, it was discovered that IvaP was indeed processed into several active 

forms, including autoproteolysis via its catalytic serine (Ser361).  

 
 
Table 5-2. Rabbit proteins enriched with FP-biotin from V. cholerae infected rabbit cecal 

fluid. 

 
 
Table 5-3. V. cholerae proteins enriched with FP-biotin from V. cholerae infected rabbit 

cecal fluid. 
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IvaP influences the activity of other serine hydrolases 

To determine if IvaP proteolytic activity regulates the activity of other SHs, we 

compared the FP-Biotin enrichment of SHs in cecal fluid of rabbits infected with either 

wild-type V. cholerae or V. cholerae expressing IvaPS361A. We identified four V. 

cholerae serine hydrolases, in addition to IvaP, whose activity was higher (>5-fold 

change in spectral counts, P ≤0.05) in the cecal fluid of rabbits infected with wild-type 

than in those infected with mutant V. cholerae (Table 5-4). These were VCA0812 and 

VesB; VCA0218, which has phospholipase activity in vitro9; and VolA (VCA0863) an 

outer membrane-associated phospholipase that may facilitate bacterial uptake of host-

derived fatty acids9. Additionally, we identified two rabbit serine hydrolases that were 

less active in rabbits infected with wild-type V. cholerae: kallikrein 1 (KLK1), a trypsin-

like peptidase that regulates vascular tone10, and cholesterin esterase, a digestive enzyme 

that hydrolyzes triglycerides and other lipid esters in the intestine11 (Table 5-4). 

Collectively, these findings suggest IvaP influences the activity of other pathogen-

secreted and host serine hydrolases that may shape the intestinal niche of V. cholerae.  

 

 
 
Table 5-4. Comparison of V. cholerae and rabbit proteins enriched from cecal fluid 

infected with WT and IvaPS361A mutant V. cholerae. 
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V. cholerae proteases alter host protein abundance 
 

To identify additional secreted and cell-associated bacterial and host proteins 

present in the context of an infection, we conducted proteomic analyses of unfractionated 

cecal fluid from rabbits infected with wild-type V. cholerae and unfractionated human 

choleric stool. In the cecal fluid of wild-type–infected rabbits, we detected 1,330 proteins 

(405 V. cholerae, 925 rabbit) with ≥2 spectral counts. The V. cholerae proteins included 

key contributors to virulence such as both subunits of cholera toxin and TcpA, the major 

subunit of a pilus that is V. cholerae's principal intestinal colonization factor4 (Table 5-5). 

Notably, we did not detect IvaP or the other three V. cholerae proteases identified by 

ABPP in these analyses, which underscores the ability of ABPP to enhance detection of 

low-abundance enzymes. Host proteins included several rabbit immunoglobulins and 

hemoglobin subunits; however, the majority of rabbit proteins detected in cecal fluid are 

uncharacterized. We identified 493 proteins (29 V. cholerae, 464 human) in a parallel 

whole-proteome analysis of human choleric stool, of which 27 V. cholerae proteins were 

also present in cecal fluid (Table 5-6). We also detected immunoglobulins and several 

digestive proteases (for example, chymotrypsin-like elastases) in the human choleric 

stool. 

 
 

Table 5-5. V. cholerae virulence factors identified from unfractioned rabbit cecal fluid. 
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Table 5-6. V. cholerae proteins identified from unfractioned human choleric stool. All 

proteins but the two highlighted in gray were also detected in rabbit cecal fluid. 

 

 
A Δquad V. cholerae mutant was created, which lacks all four secreted proteases 

active in vivo (ivaP, vesA, vesB and VCA0812), to maximize potential protease-

dependent phenotypes. Comparative whole-proteome analyses of cecal fluid revealed 

nine host proteins that were significantly more abundant in rabbits infected with the 

Δquad mutant than in those infected with wild-type V. cholerae, suggesting that these 

proteins are degraded by one or more of the deleted enzymes; we did not detect any 

bacterial proteins that were significantly enriched in these mutant samples (Table 5-7). 
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The host proteins we identified included a putative cathepsin Z protease; the 

phospholipid-binding protein annexin A1; a putative chymotrypsin-like elastase (serine-

type protease) and a galactoside-binding galectin. In addition, we identified an 

uncharacterized rabbit protein (UniProt G1U048) with 88% amino acid sequence identity 

to human intelectin, an intestinally secreted D-galactofuranosyl–binding protein12. 

Because galactofuranose is found in a variety of microbial, but not mammalian, 

glycoconjugates13, intelectin has been proposed to facilitate mucosal adhesion and/or 

phagocytic uptake of bacterial pathogens in the host and may therefore be a rational 

target for secreted bacterial proteases. Our proteomic data suggest that secreted V. 

cholerae serine proteases regulate host factors that may modulate pathogen metabolism 

and interactions with the infected host. 

 
 

Table 5-7. The nine rabbit proteins identified from unfractioned cecal that were more 

abundant in the Δquad mutant V. cholerae. 

 

 
Intelectin binds V. cholerae and other enteric bacteria 

Human intelectin consists of two isoforms (intelectin-1 and intelectin-2) with 91% 

amino acid sequence identity14. Previous studies have shown that intelectin-1 is 

constitutively expressed at high levels in the mouse small intestine, whereas expression 

of intelectin-2 is strongly induced by intestinal nematodes, suggesting its role in the 
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intestinal innate immune response15, 16. Human intelectin-1 has been shown to 

bind Mycobacterium bovis bacillus Calmette–Guérin (BCG)17 and Streptococcus 

pneumoniae18 in a Ca2+-dependent manner in vitro17; however, intelectin binding to V. 

cholerae or other enteric bacteria has not been demonstrated. An in vitro assay was 

developed using V. cholerae treated with purified human intelectin-1 to assess whether 

this protein binds V. cholerae or other enteric pathogens. It was demonstrated that 

intelectin binds V. cholerae in a Ca2+-dependent manner, as well as all other bacteria 

assayed, including Gram-negative (Escherichia coli, Vibrio parahaemolyticus and 

Salmonella enterica) and Gram-positive (Listeria monocytogenes and Staphylococcus 

aureus) species.  

 

 
V. cholerae proteases decrease intelectin binding in vivo 

Immunoblot analyses of proteins associated with V. cholerae cells isolated from 

the ceca of infected rabbits suggested that intelectin also binds to V. cholerae during 

infection. Evidence suggested that most intelectin in the ceca of V. cholerae–infected 

rabbits is cell-associated. Bacteria-associated intelectin was analyzed using Δquad V. 

cholerae isolated from infected rabbits. As in our proteomic analyses, which detected 

greater amounts of cecal intelectin in rabbits infected with Δquad than in those infected 

with wild-type V. cholerae, a consistent and substantial (~4- to 9-fold) higher amount of 

EDTA-eluted intelectin from Δquad V. cholerae than from wild-type bacterial cells was 

observed. Notably, wild-type and Δquad V. cholerae grown in vitro showed 

approximately equal intelectin binding, suggesting that these strains have similar cell 

surfaces. Collectively, these observations suggest that less intelectin degradation occurs 
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when the secreted V. cholerae serine proteases are absent, and this may, in turn, enable 

increased intelectin binding to V. cholerae cells.  

Monitoring the proteolysis of recombinant human intelectin-1 in the presence of 

cell-free cecal fluid supernatants from rabbits infected with wild-type or Δquad V. 

cholerae was done to determine whether intelectin degradation is enhanced by the V. 

cholerae proteases. Immunoblot analysis revealed that intelectin was degraded more 

rapidly in cecal fluid from rabbits infected with wild-type V. cholerae; however, 

incubation with either extract induced a nominal decrease in the molecular weight of the 

protein, and cecal fluid lacking the V. cholerae proteases was still capable of degrading 

intelectin, albeit more slowly. Taken together, these data suggest that the V. 

cholerae proteases accelerate intelectin degradation in vitro. 

 

 
Conclusion 

This work demonstrates the use of activity-based proteomics to investigate 

enzyme-mediated interactions between a pathogen and its host in an animal model of 

infection. By capturing enzymes active in V. cholerae–infected rabbits, we identified four 

pathogen-secreted proteases that alter the biochemical composition of cecal fluid, 

decrease the activity of host serine hydrolases, and inhibit bacterial binding by a host-

secreted lectin. Our findings highlight the ability of ABPP to dissect complex enzymatic 

crosstalk at the host-pathogen interface and suggest that application of this approach to 

other animal models of microbial infection could yield important insights into the 

underlying enzymology of diverse infectious diseases. 
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Experimental Procedures 

 

Probe labeling and affinity purification of labeled proteins for ABPP-MudPIT. 

Cell-free supernatants from biofilm cultures (300 µL, 1 mg/ml), human choleric 

stool (650 µL, 0.25 mg/ml), and cell lysates from exponential- and stationary-phase V. 

cholerae cultures (500 µL, 1 mg/ml) were labeled with FP-biotin (5 µM) or DMSO for 1 

h at RT. Pooled cecal fluid isolates from wild-type V. cholerae–infected rabbits (Sample 

A: 245 µL, 0.5 mg/ml; Sample B: 1.9 ml, 0.3 mg/ml; Sample C: 210 µL, 0.4 mg/ml) and 

individual isolates for comparative analyses of wild-type and S361A V. cholerae–

infected rabbits (450 µL, 0.3 mg/ml) were similarly labeled with probe. A NAP-5 column 

(GE Healthcare) was used to remove the unreacted probe from each sample. The 

resulting probe-labeled protein was added to a solution of SDS/PBS (1.2% (w/v) final 

SDS concentration), heated for 5 min at 90 °C, and diluted to a final SDS concentration 

of 0.2% with PBS. The solutions were incubated with 100 µL streptavidin-agarose beads 

(Thermo Scientific) at 4 °C for 16 h and at RT for 3 h. The beads were washed with 0.2% 

SDS in PBS (5 ml), PBS (3 × 5 ml), and water (3 × 5 ml). The beads were pelleted by 

centrifugation (1,400 × g, 4 °C, 3 min) between washes. 

On-bead trypsin digestion. 

The washed beads were suspended in 6 M urea in PBS (500 µL) and DTT (10 

mM final concentration, diluted from a 20× stock in water) and incubated at 65 °C for 15 

min. Iodoacetamide (20 mM final concentration, diluted from a 20× stock in water) was 

then reacted with the samples at 37 °C for 30 min. After reduction and alkylation, the 

beads were pelleted by centrifugation (1,400 × g, 4 °C, 3 min) and suspended in 200 µL 
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of 2 M urea, 1 mM CaCl2 (diluted from a 100× stock in water), and sequencing-grade 

modified trypsin (2 µg; Promega) in PBS. The digestion was allowed to proceed 

overnight at 37 °C. The digested peptides were separated from the beads using a Micro 

Bio-Spin column (BioRad). The beads were washed twice with 50 µL ultrapure water, 

and formic acid (15 µL) was added to the eluted peptides, which were stored at −20 °C 

until MS analysis. 

 

In-solution trypsin digestion. 

Unfractionated cecal fluid and human choleric stool samples were vortexed with 

1/10 volume of 100% (w/v) trichloroacetic acid in PBS and frozen overnight at −80 °C. 

Samples were thawed on ice, centrifuged (20,817 × g, 4 °C, 10 min), and washed three 

times with cold acetone (500 µL). Samples were sonicated and centrifuged (2,655 × g, 4 

°C, 10 min) between washes. Acetone-washed pellets were air dried and resuspended by 

sonication in 100 µL PBS containing 2.4 M urea and 70 mM ammonium bicarbonate, 

treated with 15 mM DTT, and incubated at 65 °C for 15 min. Iodoacetamide (12.5 mM 

final concentration) was then reacted with the samples for 30 min at RT. PBS (120 µL) 

was added to each sample, and protein concentrations were measured using the Pierce 

Coomassie Plus (Bradford) Assay Kit (Life Technologies). Samples were adjusted to 0.5 

mg/ml in PBS and divided into two technical replicates of equal volume (90 µL). 

Samples were incubated with sequencing-grade modified trypsin (2 µg; Promega) and 1 

mM CaCl2 and digested overnight at 37 °C. Digested peptides were treated with formic 

acid (5 µL) and centrifuged (100,000 × g, 4 °C, 1 h) to remove any remaining 
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particulates. Supernatants were transferred to new tubes and stored at −20 °C until MS 

analysis. 

Liquid chromatography-MS (LC-MS) analysis. 

LC-MS analysis was performed on an LTQ Orbitrap Discovery mass 

spectrometer (ThermoFisher) coupled to an Agilent 1200 series HPLC. Digests were 

pressure-loaded onto a 250-µm fused silica desalting column packed with 4 cm of Aqua 

C18 reverse phase resin (Phenomenex). Digests of affinity-purified samples were loaded 

in their entirety, whereas unfractionated sample digests were centrifuged (16,873 × g, 4 

°C, 2 min) before loading half of each sample onto the column. The peptides were eluted 

onto a biphasic column (100-µm fused silica with a 5-µm tip, packed with 10-cm C18 

and 3-cm Partisphere strong cation exchange resin (SCX, Whatman)). The peptides were 

eluted from the SCX onto the C18 resin and into the mass spectrometer as previously 

described. 

MS data analysis. 

For the V. cholerae data, MS/MS data were searched using the SEQUEST 

algorithm against a combined rabbit (or human) and V. cholerae UniProt database using 

the V. cholerae serotype O1 (strain ATCC 39315/El Tor Inaba N16961) proteome 

(UniProt proteome ID UP000000584). A static modification of +57.0215m/z on cysteine 

was specified to account for iodoacetamide alkylation. The SEQUEST output files 

generated from the digests were filtered using DTASelect (v2.0.39). MS data files have 

been deposited to the ProteomeXchange Consortium via the PRIDE partner repository 
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with the data set identifier PXD003000. MS data are presented in the form of spectral 

counts, which is standard for ABPP-MudPIT analyses with FP-biotin.  
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Chapter 6 

Chemical Proteomic Platform to Identify Citrullinated Proteins 
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Introduction 

 The importance of protein citrullination to human pathology was first recognized 

in rheumatoid arthritis1 (RA, which will be discussed further later in this chapter), and 

more recent studies indicate that dysregulated citrullination is a general feature of 

autoimmunity and cancer2-5. This post-translational modification is catalyzed by the 

protein arginine deiminases (PADs), a small family of calcium-dependent enzymes that 

hydrolyze the positively-charged side chain guanidinium of arginine residues to form the 

noncoded, neutral amino acid citrulline6. This change in net charge can induce 

conformational changes that can affect the structure and activity of the modified protein7.  

Citrullination has an important role in the normal function of the immune system, skin 

keratinization, the insulation of neurons, and its essential role in gene regulation8. How 

PADs contribute to such a diverse set of pathologies is unclear, but one common feature 

of this enzyme family is their ability to citrullinate histones. Histone citrullination is 

known to modulate the chromatin architecture with consequent down- stream effects on 

gene transcription, differentiation, and pluripotency9-11. For example, PAD4 citrullinates 

histones H3 and H4, and this activity is generally associated with increased expression of 

growth-promoting genes and decreased expression of growth-inhibiting genes10, 12. 

In addition to modulating gene expression, the histone modifying activity of 

PADs is required for the formation of neutrophil and macrophage extracellular traps 

(NETs and METs)5, 13, 14.For example, in response to stimuli of bacterial or 

immunological origin, neutrophils decondense and externalize their chromatin to form 

web-like structures to capture pathogens. PAD4 activity appears to be critical for this 

process, as PAD4−/− knockout mice do not form NETs and PAD inhibitors, e.g., Cl-
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amidine and BB-Cl-amidine15, 16, block this pro-inflammatory form of programmed cell 

death. Although NET formation is a normal and essential component of the innate 

immune response17, aberrantly increased NET formation is a hallmark of RA18, lupus19, 

colitis20, atherosclerosis21, and a variety of cancers22. As such, aberrant NET formation is 

thought to be a key driver of these diseases. The specific protein substrates targeted by 

PADs in these diseases remain mostly unknown. Identifying these proteins will not only 

further our understanding of how PADs contribute to disease pathology but also lay the 

foundation for identifying novel biomarkers to expedite disease diagnosis and treatment. 

Although a number of citrulline-specific antibodies and proteomic methods have been 

described23-26, these methods suffer from a number of limitations, most especially the 

need to chemically derivatize citrullinated proteins after transfer to a membrane in 

western blotting applications or post-tryptic digestion for proteomic detection, which 

necessitates protein identifications based on a single peptide.  

Building on the recent development of a fluorescent citrulline-specific probe (i.e., 

rhodamine-conjugated phenyl- glyoxal, Rh-PG) that is used to visualize protein 

citrullination27, a biotin-conjugated phenylglyoxal (biotin-PG, Figure 6-1a) was designed 

and synthesized. Here we describe the use of biotin-PG as a chemical handle to enrich 

and isolate PAD substrates from complex mixtures for mass spectrometry identification 

(Figure 6-1b). Biotin-PG was used to identify more than 50 proteins that are citrullinated 

in cells. Enriched among these proteins are several mRNA splicing and processing 

proteins, suggesting, for the first time, that PAD activity modulates RNA biology and 

highlighting the use of biotin-PG in furthering the understanding of PAD biology. 
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Figure 6-1. (a) Structure of Biotin-PG. (b) Biotin-PG labeling of citrulline residues. 

Figure adapted from Bicker et al.27  

 

 

Characterization of the PAD2 citrullinome 

To showcase the utility of the biotin-PG probe in a physiologically relevant 

system and identify novel PAD substrates, PAD activity was stimulated by the addition 

of ionomycin to a stable PAD2 overexpressing HEK293T cells (HEK293T·PAD2) as 

well as the parent HEK293T cells, which express very low levels of PADs, as a control. 

After lysis, the soluble protein fraction was incubated with TCA and labeled with biotin-

PG for 30 minutes at 37 °C. Samples were cooled on ice for 30 minutes to TCA 

precipitate the proteins and then washed with cold acetone. The samples were re-

solubilized in SDS/PBS and citrullinated proteins were then isolated on streptavidin-

agarose. After thorough washing, bound proteins were subjected to on-bead tryptic 
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digestion and subsequently analyzed by LC-MS/MS. Using this streamlined workflow, 

we identified more than 50 citrullinated proteins that were significantly enriched by at 

least 2-fold in the PAD2 overexpressing cell line versus the controls (Table 6-1). A 2-fold 

cutoff was chosen because this is an acceptable fold-change that can be quantified 

through spectral counting28. Notably, we isolated PAD2, which is known to 

autocitrullinate, from the overexpressing cell line but not control HEK293T cells, thereby 

confirming the selectivity of this methodology.  

 

Table 6-1. Proteins identified with a greater than 2-fold change in PAD2 overexpressing 

cells versus parental cells. 

 

 
Among the various other citrullinated proteins enriched were several chromatin 

binding proteins, ribosomal proteins, and lamin B1. Additionally, almost half of the 

isolated proteins are components of the mRNA splicing and processing machinery. These 

proteins include several heterogeneous nuclear ribonucleoproteins (e.g., hnRNPs C, A3, 
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and AB), RNA helicases (e.g., DDX5 and DDX21), the nucleolar protein nucleophosmin 

(NPM1), and SNRNP200, an essential component of the U5 spliceosome complex. To 

validate these findings, HEK293T·PAD2 cells were treated in the absence and presence 

of ionomycin, and the cell lysates were labeled with biotin-PG. Subsequently, the biotin-

PG tagged proteins were isolated on streptavidin-agarose, and then the bound proteins 

were eluted and the inputs and eluents were probed for PAD2, HNRNPA1, and 

HNRNPC (Figure 6-2). The results of these studies confirmed that all three proteins were 

enriched in the ionomycin treated cells, thereby confirming the mass spectrometry data 

showing that these proteins are citrullinated in vivo. While further work is needed to 

determine how citrullination affects RNA splicing, it is noteworthy that arginine 

methylation of a similar set of mRNA processing factors can modulate spliceosome 

activity29. Since citrullination antagonizes arginine methyl- ation30, these results suggest 

that the effects of citrullination, particularly when dysregulated, may act beyond the level 

of regulating the chromatin architecture and also impact mRNA splicing. 
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Figure 6-2. HEK294T·PAD2 cells treated with or without ionomycin and calcium, 

labeled with biotin-PG, and enriched on streptavidin beads. Bound proteins were eluted 

from the beads and the inputs and eluents were probed by western blotting using 

antibodies against PAD2, HNRNPA1, and HNRNPC. Figure from Lewallen et al.31  

 

 
The use of biotin-PG to identify dysregulated citrullination in RA 

 RA is a common auto-immune disease that is characterized by chronic 

inflammation of the synovial joints leading to joint damage and disability, but the cause 

of RA remains unknown32. Several factors have been proposed to play a role in the 

pathogenesis of RA, including environmental (e.g., smoking), genetic (e.g., HLA–DRB1 

shared-epitope alleles), and hormonal (female sex) factors33. Many studies have indicated 

that the citrullinated proteins produced by enzymatic deimination are particularly 

important for RA pathogenesis. For example, the PAD4 gene has a genetic variant that 

increases susceptibility to RA by increasing PAD4 activity34. A specific feature of the 

immune response in RA is the presence of anti–citrullinated protein antibodies (ACPAs) 

in patient sera33. Proteins known to be targeted by ACPAs such as antithrombin, α-

enolase, filaggrin, fibronectin, fibrin, collagen, and vimentin, change their structural 

properties following this post-translational modification and can consequently promote 

autoimmunity as well as tissue destruction of the diseased joint35.  

Several MS-based experiments have been done to identify differentially expressed 

proteins in RA36, as well as citrullinated proteins residues in synovial fluid from RA 

patients24, 33, 37. Since these studies aimed at identifying citrulline-modified arginine 

residues from whole RA proteomes, we were interested in comparing that data with 
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proteins enriched from RA sera using the biotin-PG probe. Sera from healthy and RA 

patients were treated with PG-biotin to enrich citrullinated proteins, or DMSO as a 

control. Samples were enriched with streptavidin beads, tryptically digested on the beads, 

and analyzed by LC/LC-MS/MS. Highly abundant serum albumn and IgG are known to 

be heavily citrullinated in normal physiology37 (as observed in our data, Table 6A-1) and 

were therefore removed from further analysis. Keratin is another highly abundant protein 

whose citrullination plays a role in normal physiology by helping to create a keratin 

matrix involved in strengthening the skin, hair, and nails7. One study investigated the 

amount of citrullinated keratin in synovial tissues from RA patients compared with 

osteoarthritis patients and found that while the amount of keratin in RA patients was 

lower, the amount of keratin citrullination was roughly three times higher (detected by 

western blot using an anti-keratin and anti-citrulline antibody)38.  

Unfortunately, keratin is a common contaminate in MS-based proteomic 

experiments as it is highly abundant on the outer layer of skin, hair, nails, and wool 

clothing39. In our data, the majority of keratin with high spectral counts in PG-biotin-

treated samples also had high spectral counts in untreated samples (Table 6A-1), 

preventing substantial interpretation of the data in regards to citrullination of keratin in 

RA. There were, however, 5 keratin proteins that did show a greater than 2-fold increase 

in one of the RA samples over the healthy samples and no spectral counts in the untreated 

samples (Table 6A-1). KRT85 and KRT86 is a type II hair keratin that heterodimerizes 

with type I keratins to form hair and nails. KRT71 is a type II cytoskeletal keratin that 

plays a central role in hair formation that is expressed in the inner root sheath of hair 

follicles. Their function in hair structure suggests they are more likely contaminants than 
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relevant increases of citrullination in RA. KRT17 and KRT13 are type I cytoskeletal 

keratins and interestingly, an increase of autoantigens for both proteins have been seen in 

psoriasis patients40, 41. While maintaining keratin-free environments are challenging, it 

would be interesting to try and investigate the role these highly citrullinated proteins have 

in RA pathology.  

Due to multiple factors such as an increase in proteolytic activity in RA, 

heterogeneity of the composition of RA sera among patients is common33. Another 

problem associated with identifying citrullinated peptides via MS is the inability of 

trypsin to cleave after a citrulline residue, resulting in large peptides that are difficult to 

characterize by MS26.  It is not surprising that citrullination patterns differ between the 

two RA samples, therefore increases in the citrullination of a protein in one RA sample 

over the other was still considered. We identified 363 biotin-PG-labeled proteins, with 

150 proteins having at least 5 spectral counts in at least one run and an at least 2-fold 

greater average spectral count than the control samples (Table 6A-1). Of those, 17 

proteins showed a significant increase in citrullination in at least one RA sample over the 

healthy samples, having at least 10 spectra counts in one RA sample and an at least 2-fold 

increase in average spectral counts over the healthy sample (Table 6-2). Only two of 

these proteins, filaggrin42 and fibronectin43, are well known PAD targets associated with 

RA. While two other RA-related citrullinated proteins, α -enolase and antithrombin, were 

identified in our data but did not pass the criteria, we were not able to identify any other 

known RA-related proteins (vimentin and fibrin) or even any PAD enzymes. Albumin, 

IgG, antitrypsin, IgA, transferrin, and haptoglobin make up roughly 85-90% of the total 
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protein mass37, therefore removal of these proteins prior to biotin-PG enrichment may 

help enrich lower abundant and more relevant proteins.  

 

 

Table 6-2. Citrullinated proteins showing the most significant changes in RA versus 

healthy sera. Proteins that are not known targets of ACPAs nor were identified in 

previous MS-based proteomic studies are highlighted in red. 

 

 
Among the proteins showing a significant increase in RA sera, 11 proteins were 

also identified in at least 2 of the previously mentioned MS-based proteomic experiments 

(Table 6-2). The remaining 7 proteins were investigated further for their role in RA 

pathology. Hornerin plays a role in the keratinization process and exists in the outer layer 

of human skin44. It is likely that this, similar to keratin, is a result of dust contamination 

and probably not involved in RA, especially since it was only identified in a single RA 

sample. Desmosomes are cell structures specialized for cell-to-cell adhesion. 
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Desmoplakin is a desmosomal protein that helps the keratin matrix to extend 

transcellularly and attach to cadherins (such as desmoglein) via plakophilin and 

plakoglobin45. As citrullination of keratins help them bind to desmoplakin46, it is possible 

that the desmoglein, desmoplakin, plakophilin, and plakoglobin identified in our data are 

a result of contamination or remain attached to enriched keratin. However, recently, anti-

citrullinated protein antibodies were created from antibody repertoires of RA-patients 

with the goal of treating RA by masking citrullinated epitopes from the immune system. 

One particular antibody showed anti-inflammatory effects in mice models of RA. 

Immunoprecipitation of proteins that bind to this antibody revealed that both citrullinated 

desmoplakin and plakoglobin are targets, suggesting a role of these proteins in inducing 

the damaging immune response in RA. 

While the citrullination of arginase has not been observed, a correlation between 

arginase levels and RA has been previously identified47. The study showed that RA 

synovium fluid had significantly higher arginase activity and protein levels compared to 

healthy patients or patients with other auto-immune diseases (e.g. lupus erythematosus) 

or osteoarthritis. There was also a significant correlation between concentrations of 

arginase protein and rheumatoid factor47. We also identified the transglutaminase TGM3 

as having higher citrullination in RA sera than healthy, despite no evidence indicating 

that it is a PAD substrate. However, studies have shown increased antibodies against 

transglutaminase (TG) in almost half of the RA patients used in the experiment48. 

Additionally, the administration of TG to mice models of RA enhanced the severity of 

the disease compared to control mice treated with PBS49. While not able to identify novel 

regulators of RA, these data help to highlight the utility of biotin-PG in identifying and 
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quantifying relevant targets of PADs while also possibly identifying previously unknown 

targets.  

 

 
Conclusion 

Overall, this single diagnostic platform has the potential to revolutionize our 

understanding of PAD biology by uncovering the full scope of the substrates modified by 

these enzymes in response to a variety of cell signaling paradigms. Additionally, 

extension of this methodology to diseases in which PAD activity is dysregulated 

promises to uncover biomarkers associated with a wide range of human ailments. 

 

 

Experimental Procedures 

 

PG-Biotin labeling and affinity purification of labeled proteins for MS analysis 

Cell lysates or human sera were incubated with 20% trichloroacetic acid (TCA; 5 

µL of 100% TCA) and 0.1 mM biotin-PG (0.5 µL of a 5 mM stock) for 30 min at 37 °C. 

Solutions were quenched by the addition of citrulline to the acidic solution (5 µL of a 500 

mM stock, 100 mM final). The sample was then cooled on ice for 30 min and centrifuged 

at 13, 200 g for 15 min at 4 °C to TCA precipitate the protein. The supernatant was 

removed, and precipitates were washed with cold acetone and dried. Acetone-washed 

pellets were solubilized in PBS containing 1.2% SDS via sonication and heating (5 min, 

80 °C). The SDS-solubilized samples were diluted with PBS (5 mL) for a final SDS 

concentration of 0.2%. The solutions were incubated with 100 µL of streptavidin- agarose 
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beads (Thermo Scientific) at 4 °C for 16 h. The solutions were then incubated at rt for 3 

h. The beads were washed with 0.2% SDS/PBS (5 mL), PBS (3 × 5 mL), and water (3 × 

5 mL). The beads were pelleted by centrifugation (1400g, 3 min) between washes. The 

washed beads were suspended in 6 M urea in PBS (500 µL) and 10 mM dithiothreitol 

(from 20× stock in water) and placed in a 65 °C heat block for 15 min. Iodoacetamide (20 

mM, from 20× stock in water) was then added to the samples and allowed to react at 37 

°C for 30 min. Following reduction and alkylation, the beads were pelleted by 

centrifugation (1400g, 3 min) and resuspended in a premixed solution of 2 M urea in PBS 

(200 µL), 100 mM CaCl2 in water (2 µL), and trypsin (4 µL of 20 mg reconstituted in 40 

µL of trypsin buffer). The digestion was allowed to proceed overnight at 37 °C. The 

digested peptides were separated from the beads using a Micro Bio-Spin column (Bio-

Rad), and the beads were washed twice with 50 µL of H2O. Formic acid (15 µL) was 

added to the samples, and the samples were stored at −20 °C until MS analysis. LC/LC-

MS/MS analysis was performed on an LTQ Orbitrap Discovery mass spectrometer as 

described in previous chapters.  
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C. elegans lifespan data 

 

 

 

 

 

 

 

 

 

 



	

	 164 

 

Figure 3A-1. Lifespan assays on RNAi-mediated knockdown of cysteine-containing 

proteins with the greatest reactivity change between daf-2 and daf-16;daf-2 mutants.  

Vector
K02D7.1

0 10 20 30 40 50 60
0

25

50

75

100

Days

Pe
rc

en
t s

ur
vi

va
l

Survival of daf-2

0 10 20 30 40 50 60
0

25

50

75

100

Vector
C17H12.13

Days

Pe
rc

en
t s

ur
vi

va
l

Survival of daf-2

0 10 20 30 40 50
0

25

50

75

100

Vector
ZK228.3

Days

Pe
rc

en
t s

ur
vi

va
l

Survival of daf-2

0 10 20 30 40 50
0

25

50

75

100

Vector
F32D1.5

Days

Pe
rc

en
t s

ur
vi

va
l

Survival of daf-2

Vector
lbp-3

Pe
rc

en
t s

ur
vi

va
l

0 10 20 30 40 50 60
0

25

50

75

100

Days

Survival of daf-2

0 10 20 30 40 50 60
0

25

50

75

100

Vector
pes-9

Days

Pe
rc

en
t s

ur
vi

va
l

Survival of daf-2

0 10 20 30 40 50
0

25

50

75

100
Vector
ZK829.7

Days
Pe

rc
en

t s
ur

vi
va

l

Survival of daf-2

0 10 20 30 40 50 60
0

25

50

75

100
Vector
gspd-1

Days

Pe
rc

en
t s

ur
vi

va
l

Survival of daf-2

0 10 20 30 40 50 60
0

25

50

75

100 Vector
F20D6.11

Days

Pe
rc

en
t s

ur
vi

va
l

Survival of daf-2

0 10 20 30 40 50
0

25

50

75

100

Vector
F20G2.2

Days

Pe
rc

en
t s

ur
vi

va
l

Survival of daf-2

0 10 20 30 40 50
0

25

50

75

100
Vector
moc-2

Days

Pe
rc

en
t s

ur
vi

va
l

Survival of daf-2

0 10 20 30 40 50
0

25

50

75

100
Vector
rab-14

Days

Pe
rc

en
t s

ur
vi

va
l

Survival of daf-2



	

	 165 

 

Figure 4A-1. Lifespan assays on RNAi-mediated knockdown of serine hydrolases 

labeled by FP-biotin with the greatest activity changes between daf-2 and daf-16;daf-2 

mutants.  
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Appendix II. 

Mass Spectrometry Tables 
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Uniprot ID Description Sequence Function

0 1.13 1.13 O45552 F53A2.7 Protein F53A2.7 R.LC*GSGFQAVVNAAQ
AIK.L Acyl-thioester intermediate

0 1.3 1.3 Q22101 T02G5.7 Protein T02G5.7 K.VC*SSSMK.A Acyl-thioester intermediate

1.33 1.31 1.32 O46009 ZK228.3 Protein ZK228.3 R.DGVVYSVAC*STHQF
V.-

0 1.42 1.42 H2KZ24 C27H5.2 Protein C27H5.2, isoform a R.ELSPLEQQFLDLC*R.I

1.55 0 1.55 O45352 gst-44 Protein GST-44 R.FC*PAAQR.A Active site nucleophile

1.51 1.6 1.555 O17234 gsto-3 Protein GSTO-3, isoform a R.FC*PYAQR.V Active site nucleophile

1.57 1.58 1.575 Q22100 kat-1 Protein KAT-1 K.VC*SSGLK.A Acyl-thioester intermediate

1.58 1.74 1.66 Q21307 mek-1 Protein MEK-1, isoform a R.VCMECMATC*LDR.L

1.64 1.71 1.675 Q22392 dhs-19 Protein DHS-19 K.TGC*VGLVDYCASK.
H

1.95 0 1.95 P46562 alh-9 Putative aldehyde dehydrogenase 
family 7 member A1

K.GSDC*GIVNVNIPTSG
AEIGGAFGGEK.E

2.27 2.23 2.25 Q3Y400 glrx-22 Protein GLRX-22 K.DGC*GYCVK.A S-glutathionyl cysteine/ 
Redox-active disulfide

2.34 2.4 2.37 G5ECV9 alh-3 Protein ALH-3 K.GENC*IAAGR.V Active site

2.67 2.42 2.545 Q95Y85 Y110A7A.6 Protein Y110A7A.6, 
isoform b 

R.VFFVESVC*DDPDIIN
SNITEVK.I Active site

2.7 2.48 2.59 D7SFI3 C02D5.4 Protein C02D5.4 R.FC*PWAQR.A Active site nucleophile

0 2.77 2.77 Q21284 K07E3.4 Protein K07E3.4, isoform a K.LPIC*MAK.T

2.97 2.67 2.82 Q21589 M7.8 Protein M7.8 K.C*LDGALDR.A

4.13 1.59 2.86 Q19297 F10D7.3 Uncharacterized monothiol 
glutaredoxin F10D7.3 K.TYC*PWSK.R Iron-Sulfur (2Fe-2S)

2.93 0 2.93 O44658 cyp-34a8 Protein CYP-34A8 R.AC*PGESLAR.A Iron-binding

2.99 2.95 2.97 O16228 djr-1.2 Protein DJR-1.2 K.LAEC*PVIGELLK.T

0 2.99 2.99 Q18758 klo-1 Protein KLO-1 R.FC*LPASDSPADLDAC
NR.A

2.99 0 2.99 G5EE42 ZK1098.11 Protein ZK1098.11 K.YLVQPTC*WYVAK.Y

0 3.01 3.01 Q09657 ZK1320.9 Protein ZK1320.9 K.IQNNSLFIC*PGNR.K

Table 3A-1. MS results showing the 578 cysteine-containing peptides identified in the
daf-2 lysates. The cysteines are ranked by reactivity based on their average light:heavy
ratios (R) from R~1 (high reactivity) to R>>1(low reactivity). The closest human
homologue for each cysteine-containing protein was determined by performing a
BLAST search against the human UniProt database. Cysteine-containing proteins with
good homology (E-value ≤ 1.0E-05) to human proteins were identified and their
conservation and function in humans were determined. Identified cysteines with an
annotated biological function in C. elegans are shown. Cysteines with unknown function
in C. elegans but are conserved in a human homologue that is annotated as functional are
indicated in bold. To establish if these cysteines are conserved across other species, a
BLAST search of each cysteine-containing protein was performed against the mouse,
fly, yeast, and mustard UniProt databases.

Run 1 Run 2 Average
C. elegans
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Uniprot 
ID E-value Description Human Mouse Fly Yeast Mustard

P42765 2.00E-163 3-ketoacyl-CoA thiolase, mitochondrial Yes Yes Yes Yes Yes

P24752 1.00E-127 Acetyl-CoA acetyltransferase, mitochondrial Yes Yes Yes Yes Yes

Q96M93 0.92 Adenosine deaminase domain-containing protein 1 -- -- -- -- --

H0YNH8 0.093 Uveal autoantigen with coiled-coil domains and 
ankyrin repeats -- -- -- -- --

P78417 2.00E-43 Glutathione S-transferase omega-1 Yes Yes Yes -- --

P78417 1.00E-38 Glutathione S-transferase omega-1 Yes Yes Yes No No

P24752 2.00E-155 Acetyl-CoA acetyltransferase, mitochondrial Yes Yes Yes Yes Yes

O14733 1.00E-111 Dual specificity mitogen-activated protein kinase 
kinase 7 Yes Yes Yes No No

Q8N3Y7 1.00E-98 Epidermal retinol dehydrogenase 2 No No No No No

P49419 0 Alpha-aminoadipic semialdehyde dehydrogenase Yes Yes Yes No Yes

Q9NS18 3.00E-10 Glutaredoxin-2, mitochondrial Yes Yes Yes Yes Yes

Q3SY69 0 Mitochondrial 10-formyltetrahydrofolate 
dehydrogenase Yes Yes Yes Yes Yes

O60825 6.70E-159 6-phosphofructo-2-kinase/fructose-2, 6-
bisphosphatase 2 transcript variant 3 Yes Yes Yes No Yes

P78417 2.00E-40 Glutathione S-transferase omega-1 Yes Yes Yes -- No

P11586 0 C-1-tetrahydrofolate synthase, cytoplasmic Yes Yes Yes Yes Yes

F8W808 1.1 N-alpha-acetyltransferase 10 -- -- No -- --

P35754 1.00E-12 Glutaredoxin-1 Yes Yes Yes Yes Yes

P11509 2.00E-74 Cytochrome P450 2A6 Yes Yes Yes Yes Yes

Q99497 5.00E-42 Protein deglycase DJ-1 No No No -- Yes

Q9H227 2.00E-95 Cytosolic beta-glucosidase No No No -- No

H3BMV2 1.00E-12 N-acetyltransferase domain-containing protein 1 Yes Yes -- -- --

Q8N6N6 5.8 N-acetyltransferase domain-containing protein 1 No -- No -- --

Conserved CysteineHuman
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2.73 3.47 3.1 P91500 T27A3.6 Protein T27A3.6 K.AYVLALAGC*TNSGK
.S

3.75 2.96 3.355 P91502 T27A3.2 Ubiquitin carboxyl-terminal 
hydrolase 

R.YGEQGLETLVNC*PL
DK.L

4.39 3.42 3.905 P49041 rps-5 40S ribosomal protein S5 K.AAC*PIVER.L

0 3.91 3.91 Q27513 cyp-13A4 Putative cytochrome P450 
CYP13A4 R.IC*IGMR.L Iron-binding

3.71 4.18 3.945 Q21962 R12C12.1 Protein R12C12.1, isoform a R.NLVC*TCPPIESYQ.-

4.56 3.39 3.975 H2KZ06 clec-266 Protein CLEC-266, isoform a K.FYSIC*ER.N

4.03 3.92 3.975 Q20655 ftt-2 14-3-3-like protein 2 R.DIC*QDVLNLLDK.F

3.75 4.39 4.07 Q9XW92 vha-13 V-type proton ATPase catalytic 
subunit A 

K.YSNSDAIIYVGC*GER
.G

4.1 0 4.1 Q6IMP3 anc-1 ANC-1 R.LQNFC*DAVK.I

4.52 3.86 4.19 O76258 tsg-101 Protein TSG-101 K.DLTC*DDVIYSLGQS
LK.K

4.3 4.2 4.25 P62784 his-1 Histone H4 R.DAVTYC*EHAK.R

4.45 4.15 4.3 Q9N456 glrx-10 Protein GLRX-10 K.SYC*PYCHK.A Redox-active disulfide

0 4.42 4.42 O17643 idh-2 Isocitrate dehydrogenase 
[NADP] K.SSGGFVWAC*K.N

4.42 0 4.42 P48583 erd-2 ER lumen protein retaining 
receptor R.SC*EGISGR.S

4.57 4.32 4.445 O44650 cyp-35b1 Protein CYP-35B1 R.SC*VGENIAK.S Iron-binding

4.71 4.25 4.48 Q09512 ttll-12 Tubulin--tyrosine ligase-like 
protein 12 K.C*ENFIETIEK.A

4.4 4.67 4.535 Q21193 pfn-3 Profilin-3 K.GLQPEMC*SK.T

4.55 4.56 4.555 Q9BL27 Y71H2AR.1 Protein Y71H2AR.1 K.ILTTGESWC*PDCVV
AEPVVEEVIK.D Active site nucleophile

0 4.58 4.58 Q965W3 Y40B10A.2 Protein Y40B10A.2 K.SSDPVIAYC*SEHTTI
QSPLQAELLK.E

0 4.62 4.62 Q20166 cpin-1 Protein CPIN-1 K.LGANVSIC*PCTEGY
LGDGIPR.I

4.92 4.45 4.685 Q10457 B0286.3 Probable multifunctional 
protein ADE2 

R.MPNGIGC*TTVLDPS
EAALAAAK.I

5.12 4.27 4.695 O18240 rps-18 Protein RPS-18 R.FAFVC*CR.K

5.2 4.21 4.705 Q21746 sgt-1 Protein SGT-1 R.LEQYDLAIQDC*R.T

4.5 4.91 4.705 G5ECA7 T02D1.8 Protein T02D1.8 K.SC*MFGNQAIVDSFK.
G

5.14 4.37 4.755 O61217 K02D7.1 Protein K02D7.1 K.TVGADALGMSTC*H
EVTVAR.Q

4.88 4.68 4.78 A7DTF0 mrg-1 Protein MRG-1, isoform b K.ITNLALIC*TAR.G

5.65 4.04 4.845 O18229 Y57G11C.3 Putative 6-
phosphogluconolactonase K.NVAFIIC*GK.Q

4.53 5.16 4.845 Q23570 ZK669.3 GILT-like protein ZK669.3 R.C*SDTSYWMK.W Redox-active disulfide

4.84 4.96 4.9 Q18075 C18B2.4 Protein C18B2.4 K.GGC*IEFGEALLR.A

6.27 3.58 4.925 O17953 dld-1 Dihydrolipoyl dehydrogenase R.EANLAAYC*GK.A

4.98 0 4.98 Q18758 klo-1 Protein KLO-1 K.FADLC*FQK.F

4.99 0 4.99 Q86DB5 gsr-1 Protein GSR-1, isoform b R.LGGTC*VNVGCVPK.
K

FAD-binding/Redox-active 
disulfide

5.01 0 5.01 P28548 kin-10 Casein kinase II subunit beta R.GNEFFC*EVDEEYIQ
DR.F

5.01 0 5.01 Q27512 nex-2 Annexin K.VISILC*QR.T

5.03 0 5.03 Q21307 mek-1 Protein MEK-1, isoform a K.ELQFVEDIGHGSC*G
TVTK.C ATP-binding
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O96007 6.00E-32 Molybdopterin synthase catalytic subunit No -- -- Yes --

P45974 4.00E-161 Ubiquitin carboxyl-terminal hydrolase 5 No No No No No

P46782 3.00E-125 40S ribosomal protein S5 Yes Yes Yes Yes Yes

P20815 2.00E-71 Cytochrome P450 3A5 Yes Yes Yes Yes Yes

P23378 0 Glycine dehydrogenase (decarboxylating), 
mitochondrial Yes Yes Yes Yes Yes

J3KR22 3.00E-11 C-type lectin domain family 10 member A No -- -- -- --

P63104 2.00E-145 14-3-3 protein zeta/delta Yes Yes Yes No Yes

P38606 0 V-type proton ATPase catalytic subunit A Yes Yes Yes Yes Yes

F5GYQ7 2.00E-54 Nesprin-1 No -- -- -- --

Q99816 2.00E-87 Tumor susceptibility gene 101 protein No No No -- --

P62805 4.00E-66 Histone H4 No No No No No

P35754 2.00E-26 Glutaredoxin-1 Yes Yes Yes Yes Yes

P48735 0 Isocitrate dehydrogenase [NADP], mitochondrial Yes Yes Yes No Yes

P33947 7.00E-104 ER lumen protein-retaining receptor 2 Yes Yes Yes No Yes

P11509 2.00E-54 Cytochrome P450 2A6 Yes Yes Yes Yes Yes

Q14166 2.00E-119 Tubulin--tyrosine ligase-like protein 12 Yes No Yes -- No

P07737 0.81 Profilin-1 No -- No No Yes

Q9BRA2 4.00E-20 Thioredoxin domain-containing protein 17 Yes Yes Yes -- Yes

R4GNF4 4.00E-32 Catechol O-methyltransferase domain-containing 
protein 1 No -- -- -- No

Q9Y2T3 1.00E-09 Guanine deaminase Yes Yes Yes Yes --

P22234 9.00E-148 Multifunctional protein ADE2 Yes Yes Yes No --

P62269 2.00E-86 40S ribosomal protein S18 No No No No No

O43765 5.00E-61 Small glutamine-rich tetratricopeptide repeat-
containing protein alpha Yes Yes Yes No Yes

F8W717 1.4 Echinoderm microtubule-associated protein-like 1 -- -- -- -- --

P00491 2.00E-79 Purine nucleoside phosphorylase No No No No --

B3KTM8 2.00E-25 Mortality factor 4-like protein 1 No No No Yes No

O95336 3.00E-26 6-phosphogluconolactonase No No No No Yes

P13284 1.00E-13 Gamma-interferon-inducible lysosomal thiol reductase Yes Yes Yes -- --

K7ENL2 1.00E-30 WW domain-binding protein 2 No No No -- Yes

P09622 0 Dihydrolipoyl dehydrogenase, mitochondrial No No No No --

Q9H227 2.00E-95 Cytosolic beta-glucosidase Yes No No -- Yes

P00390 0 Glutathione reductase, mitochondrial Yes Yes Yes Yes Yes

Q5SRQ6 3.00E-126 Casein kinase II subunit beta Yes Yes Yes Yes Yes

P20073 1.00E-108 Annexin A7 No No Yes -- No

O14733 1.00E-111 Dual specificity mitogen-activated protein kinase 
kinase 7 Yes Yes No No No
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5.05 0 5.05 G4S185 C17H12.13 Protein C17H12.13, 
isoform b 

R.DLVQDSLQC*SSTCVI
R.D

5.1 5.07 5.085 P52015 cyn-7 Peptidyl-prolyl cis-trans 
isomerase 7 K.SEC*LIADCGQL.-

5.4 4.8 5.1 O01504 rpa-2 60S acidic ribosomal protein P2 K.VLEAGGLDC*DMEN
ANSVVDALK.G

4.99 5.21 5.1 Q22100 kat-1 Protein KAT-1 K.SGQIGVAAIC*NGGG
GSSGMVIQK.L Active site (proton acceptor)

4.93 5.29 5.11 Q22799 dlc-1 Dynein light chain 1, cytoplasmic K.NADMSDDMQQDAID
C*ATQALEK.Y

4.89 5.38 5.135 O44156 pas-6 Proteasome subunit alpha type-1 R.YLQTEC*SSWR.W

4.9 5.39 5.145 Q7Z139 hyl-2 Protein HYL-2 R.MAEC*AMR.A

5.05 5.28 5.165 P06582 hsp-16.2 Heat shock protein Hsp-16.2 R.QFAPVC*R.I

5.25 5.14 5.195 P53588 F47B10.1 Probable succinyl-CoA 
ligase [ADP-forming] subunit K.DC*EQQASEIIEK.L

5.58 4.93 5.255 Q2AAC3 glrx-21 Protein GLRX-21, isoform b K.TSC*TFCNR.A
S-glutathionyl 
cysteine/Redox-active 
disulfide

5.27 0 5.27 Q20627 pam-1 Protein PAM-1, isoform a R.AVEFQDFFC*NCNVL
SDTDR.Q

5.27 0 5.27 Q10663 gei-7 Bifunctional glyoxylate cycle 
protein 

R.GTGC*VPLYNLMEDA
ATAEISR.A

4.52 6.03 5.275 Q20222 lbp-3 Fatty acid-binding protein 
homolog 3 K.MVNNGITC*R.R Disulfide

5.01 5.57 5.29 O44906 W05G11.6 Protein W05G11.6, isoform 
a K.FIAAAFPSAC*GK.T GTP-binding

5.26 5.34 5.3 P48152 rps-3 40S ribosomal protein S3 R.AC*YGVLR.F

5.38 5.25 5.315 Q9U3M0 C46C2.5 Protein C46C2.5 K.ENLESLFMSC*AR.E

4.95 5.76 5.355 P34696 hsp-16.1 Heat shock protein Hsp-
16.1/Hsp-16.11 R.QFTPVC*R.G

5.17 5.62 5.395 P48152 rps-3 40S ribosomal protein S3 R.GLC*AVAQCESLR.Y

5.24 5.57 5.405 H2L0B0 nhr-104 Protein NHR-104, isoform a K.SEGLLC*K.K

0 5.41 5.41 O17071 rpt-4 Probable 26S protease regulatory 
subunit 10B R.AVASQLDC*NFLK.V

4.75 6.08 5.415 P17329 gpd-2 Glyceraldehyde-3-phosphate 
dehydrogenase 2 

K.YDHANDHIISNASC*
TTNCLAPLAK.V Active site nucleophile

5.93 4.94 5.435 Q95Y96 M04F3.4 Protein M04F3.4, isoform a R.YINDWTNC*FR.G

5.23 5.65 5.44 Q9XUY0 F56G4.6 Protein F56G4.6 R.NC*YGVIR.C

6.46 4.49 5.475 Q95QW0 eif-3.L Eukaryotic translation initiation 
factor 3 subunit R.NAFATGC*PK.F

5.38 5.58 5.48 Q21032 idh-1 Isocitrate dehydrogenase 
[NADP] K.SDGGFVWAC*K.N

5.19 5.78 5.485 P53588 F47B10.1 Probable succinyl-CoA 
ligase [ADP-forming] subunit R.ILPC*DNLDEAAK.M

5.87 5.17 5.52 Q23621 gdh-1 Glutamate dehydrogenase K.C*AVVDVPFGGAK.G ADP-ribosylcysteine

5.53 0 5.53 Q17348 snr-1 Small nuclear ribonucleoprotein 
Sm D3 

K.LSEAEDNMNC*QLAE
TVVTFR.D

0 5.57 5.57 Q21746 sgt-1 Protein SGT-1 K.LNRDPVYFC*NR.A

5.57 0 5.57 O44906 W05G11.6 Protein W05G11.6, isoform 
a K.VINHWPC*NPEK.V

5.46 5.71 5.585 Q93576 ndk-1 Nucleoside diphosphate kinase R.GDFC*IQTGR.N

5.59 0 5.59 Q23588 upp-1 Protein UPP-1 K.FVC*TGGSPGR.F

5.46 5.76 5.61 P41932 par-5 14-3-3-like protein 1 K.VEQELNDIC*QDVLK.
L

5.29 5.97 5.63 P91856 F26H9.5 Probable phosphoserine 
aminotransferase R.SIMNVC*FR.I
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E9PD17 0.47 UDP-glucuronosyltransferase 3A1 -- -- -- -- --

P30405 1.00E-78 Peptidyl-prolyl cis-trans isomerase F, mitochondrial No No No No No

P05387 2.00E-17 60S acidic ribosomal protein P2 No No No No No

P24752 2.00E-155 Acetyl-CoA acetyltransferase, mitochondrial Yes Yes Yes Yes Yes

Q96FJ2 2.00E-60 Dynein light chain 2, cytoplasmic Yes Yes Yes No No

P25786 1.00E-97 Proteasome subunit alpha type-1 Yes Yes Yes Yes No

Q96G23 2.00E-39 Ceramide synthase 2 No No No No No

E9PR44 2.00E-11 Heat shock protein beta-2 No No No -- --

Q9P2R7 0 Succinyl-CoA ligase [ADP-forming] subunit beta, 
mitochondrial No No No No No

Q9NS18 1.00E-14 Glutaredoxin-2, mitochondrial Yes Yes Yes -- Yes

E9PLK3 0 Puromycin-sensitive aminopeptidase No No No No No

Q9Y4D2 3.7 Sn1-specific diacylglycerol lipase alpha -- -- -- Yes No

Q01469 4.00E-08 Fatty acid-binding protein, epidermal Yes Yes -- -- --

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial Yes Yes Yes -- --

P23396 1.00E-127 40S ribosomal protein S3 Yes Yes Yes No Yes

Q5T321 6.3 Neurobeachin -- -- -- -- --

E9PR44 9.00E-12 Heat shock protein beta-2 No No No -- No

P23396 1.00E-127 40S ribosomal protein S3 Yes Yes Yes No Yes

B3KY83 2.00E-18 Retinoic acid receptor RXR-alpha Yes Yes Yes -- --

P62333 0 26S protease regulatory subunit 10B Yes Yes No No No

P04406 0 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes Yes Yes Yes

O75340 2.00E-65 Programmed cell death protein 6 No No Yes No No

Q9Y282 3.2 Endoplasmic reticulum-Golgi intermediate 
compartment protein 3 -- -- -- -- --

Q9Y262 1.00E-144 Eukaryotic translation initiation factor 3 subunit L Yes Yes Yes -- Yes

O75874 0 Isocitrate dehydrogenase [NADP] cytoplasmic Yes Yes Yes No Yes

Q9P2R7 0 Succinyl-CoA ligase [ADP-forming] subunit beta, 
mitochondrial Yes Yes No No No

P00367 0 Glutamate dehydrogenase 1, mitochondrial Yes Yes Yes No No

B4DJP7 5.00E-44 Small nuclear ribonucleoprotein Sm D3 Yes Yes Yes No Yes

O43765 5.00E-61 Small glutamine-rich tetratricopeptide repeat-
containing protein alpha Yes Yes Yes No Yes

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial Yes Yes Yes -- --

P22392 8.00E-75 Nucleoside diphosphate kinase B Yes Yes Yes No No

O95045 4.00E-85 Uridine phosphorylase 2 Yes Yes Yes -- --

P63104 3.00E-135 14-3-3 protein zeta/delta Yes Yes Yes No Yes

Q9Y617 4.00E-139 Phosphoserine aminotransferase No No No No No
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0 5.64 5.64 P49041 rps-5 40S ribosomal protein S5 R.VNQAIWLLC*TGAR.
E

5.66 0 5.66 D1MN62 F54C8.7 Protein F54C8.7, isoform c K.TVDPEFEAQC*EVLK.
D

0 5.72 5.72 Q9N4L8 lpd-5 Protein LPD-5 K.EDAIAFC*EK.N

0 5.72 5.72 P90868 pbs-7 Protein PBS-7 K.IIGDWSIAETNC*QYE
.-

5.69 5.78 5.735 Q20627 pam-1 Protein PAM-1, isoform a R.YAFPC*FDEPIYK.A

5.69 5.83 5.76 Q19626 vha-12 Probable V-type proton ATPase 
subunit B 

R.EDHSDVSNQLYAC*Y
AIGK.D

5.17 6.37 5.77 Q9N3C9 rpb-7 Protein RPB-7 K.LFNEVEGTC*TGK.Y

5.41 6.15 5.78 G5ECL1 M05D6.2 Protein M05D6.2 K.FLIENPNGC*YFAR.Q

0 5.81 5.81 H2KYZ9 dhs-2 Protein DHS-2, isoform b R.VVTVASIC*AR.V

5.84 5.82 5.83 P50432 mel-32 Serine 
hydroxymethyltransferase K.AIIAGVSC*YAR.H

5.6 6.06 5.83 Q94272 fah-1 Protein FAH-1 R.IQQLLSEDC*AVLR.D

5.83 5.85 5.84 Q86MI3 Y71H10B.1 Protein Y71H10B.1, 
isoform c 

K.LTNQMDEEYGC*LGS
LFR.T

5.85 0 5.85 B3GWB2 C08H9.2 Protein C08H9.2, isoform b K.ANEC*AAAIEEMISEL
R.S

5.45 6.26 5.855 Q10657 tpi-1 Triosephosphate isomerase K.AGVLVAAQNC*YK.V

3.87 7.85 5.86 O01685 C32F10.8 Protein C32F10.8, isoform a R.DGGIPC*NSEDVCLS
GGASESIR.N

5.86 0 5.86 P41938 B0272.3 Probable 3-hydroxyacyl-CoA 
dehydrogenase B0272.3 

K.TTVAC*KDTPGFIVN
R.L

5.73 6 5.865 Q21824 prdx-3 Probable peroxiredoxin prdx-3 R.HTTC*NDLPVGR.S

5.71 6.05 5.88 G5EE16 C44H4.4 Protein C44H4.4 R.ITC*SETNR.T

7.45 4.39 5.92 P90889 F55H12.4 Protein F55H12.4 R.GSTGHC*YK.K

6.87 5.08 5.975 Q23621 gdh-1 Glutamate dehydrogenase K.VIGIQEYDC*AVYNP
DGIHPK.E

5.97 6 5.985 Q22053 fib-1 rRNA 2-O-methyltransferase 
fibrillarin 

K.ANC*IDSTAEPEAVFA
GEVNK.L

6 0 6 G5EE04 hip-1 Protein HIP-1 K.RPVAAIADC*DK.A

5.84 6.17 6.005 Q9N599 pas-3 Proteasome subunit alpha type-4 R.NSYGEEMPVEQLVQ
NLC*NEK.Q

5.81 6.21 6.01 Q93572 rpa-0 60S acidic ribosomal protein P0 K.C*LLVGVDNVGSK.Q

0 6.02 6.02 O01576 npp-11 Protein NPP-11 K.C*ADFDLDQITK.S

4.52 7.52 6.02 O01685 C32F10.8 Protein C32F10.8, isoform a K.GYMGEC*GMR.G

6.1 5.95 6.025 O02089 msra-1 Protein MSRA-1 K.LNAYC*AGFQDFHDL
ER.L

6.03 0 6.03 G5EGP8 cpz-1 Cathepsin Z-like enzyme K.GPIAC*GIAATK.A Disulfide

6.03 0 6.03 H2L0N0 unc-132 Protein UNC-132, isoform c K.IVLTGGPC*GGK.T

6.04 0 6.04 Q11190 let-721 Electron transfer flavoprotein-
ubiquinone oxidored

R.FC*PAGVYEFVPSEA
DESK.K Iron-Sulfur (4Fe-4S)

5.25 6.85 6.05 Q95Y90 rpl-9 60S ribosomal protein L9 R.TVC*SHIK.N

6.06 0 6.06 Q9U1X8 Y62E10A.2 Protein Y62E10A.2 K.SDIQTSTVQC*TDDIV
SLLDLDQSETR.H

5.65 6.52 6.085 P30627 glb-1 Globin-like protein R.QEISDLC*VK.S

5.86 6.34 6.1 G5EFZ1 F57B10.3 Cofactor-independent 
phosphoglycerate mutase K.AC*EATDIAIGR.I
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P46782 3.00E-125 40S ribosomal protein S5 Yes Yes Yes No No

P53367 2.00E-42 Arfaptin-1 No No No -- --

O43181 4.00E-44 NADH dehydrogenase [ubiquinone] iron-sulfur 
protein 4, mitochondrial No No Yes -- No

P28070 8.00E-42 Proteasome subunit beta type-4 No No -- -- --

E9PLK3 0 Puromycin-sensitive aminopeptidase Yes Yes Yes Yes Yes

P21281 0 V-type proton ATPase subunit B, brain isoform Yes Yes Yes No No

P62487 2.00E-98 DNA-directed RNA polymerase II subunit RPB7 Yes Yes Yes Yes Yes

Q9NUJ3 1.00E-62 T-complex protein 11-like protein 1 No No No No --

O75452 5.00E-28 Retinol dehydrogenase 16 No No Yes No No

P34896 0 Serine hydroxymethyltransferase, cytosolic Yes Yes Yes No No

P16930 0 Fumarylacetoacetase No No No -- No

B7Z382 6.00E-152 Cytosolic purine 5'-nucleotidase No No No -- No

Q00341 6.00E-134 Vigilin No No No -- --

P60174 2.00E-107 Triosephosphate isomerase Yes Yes No No No

P24298 0 Alanine aminotransferase 1 No No No No No

Q16836 5.00E-113 Hydroxyacyl-coenzyme A dehydrogenase, 
mitochondrial Yes Yes No -- No

E9PH29 5.00E-94 Thioredoxin-dependent peroxide reductase, 
mitochondrial No No No No No

H7C1J4 2.00E-81 Chromosome 6 open reading frame 107, isoform 
CRA_b No No No -- --

B2RXH2 7.6 Lysine-specific demethylase 4E -- -- -- -- --

P00367 0 Glutamate dehydrogenase 1, mitochondrial No No No No No

P22087 6.00E-133 rRNA 2'-O-methyltransferase fibrillarin Yes Yes Yes -- Yes

P50502 5.00E-78 Hsc70-interacting protein Yes Yes Yes No No

P25789 1.00E-115 Proteasome subunit alpha type-4 Yes Yes Yes No Yes

P05388 2.00E-133 60S acidic ribosomal protein P0 Yes Yes Yes No No

P98088 1.70E-47 Mucin-5AC No No No -- --

P24298 0 Alanine aminotransferase 1 Yes Yes Yes Yes Yes

Q9UJ68 7.00E-21 Mitochondrial peptide methionine sulfoxide reductase No No No No No

Q9UBR2 1.00E-105 Cathepsin Z Yes Yes No -- No

Q8IZ41 0.99 Ras and EF-hand domain-containing protein -- -- Yes -- --

Q16134 0 Electron transfer flavoprotein-ubiquinone 
oxidoreductase, mitochondrial Yes Yes Yes Yes Yes

P32969 3.00E-84 60S ribosomal protein L9 Yes Yes Yes No No

C9JYM0 2.00E-17 Ribonuclease P protein subunit p20 No No No -- --

Q9ULR3 0.39 Protein phosphatase 1H -- -- -- -- --

Q6UWY0 0.026 Arylsulfatase K -- -- -- -- Yes
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5.78 6.42 6.1 P91998 F53F1.3 Protein F53F1.3 K.LNTGYDC*PLIGLGT
YK.I

6.1 0 6.1 Q20627 pam-1 Protein PAM-1, isoform a R.MLC*YYLSEPVFQK.
G

5.86 6.38 6.12 P46769 rps-0 40S ribosomal protein SA K.LIDIGVPC*NNK.G

6 6.25 6.125 Q22993 pmt-2 Protein PMT-2 R.DC*IQHIPDTEK.L

6.14 0 6.14 Reverse_Q
9XWD4

fbxa-216 Reverse sequence, was 
Protein FBXA-216 K.C*TLNADGNGIK.Y

6.2 6.08 6.14 Q9XW92 vha-13 V-type proton ATPase catalytic 
subunit A K.YDRFC*PFYK.T

6.64 5.67 6.155 O01804 got-2.1 Aspartate aminotransferase R.VGAFSIVC*DSAEEAI
R.V

6.22 6.1 6.16 Q22101 T02G5.7 Protein T02G5.7 K.IEEVIGGC*VLPAGLG
QNVTR.Q

0 6.16 6.16 Q18115 rpn-2 26S proteasome non-ATPase 
regulatory subunit 1 K.VYFC*LEQYER.A

5.62 6.7 6.16 O61742 rpn-10 Protein RPN-10 K.C*NFIAGIK.I

4.79 7.53 6.16 Q9N4A5 Y77E11A.1 Protein Y77E11A.1 K.FELVPADEGSC*QGA
ALIAAVAER.L

6.17 0 6.17 Q22620 pars-1 Protein PARS-1, isoform a K.STTC*IEEFKK.L

6.14 6.21 6.175 O01974 eif-3.H Eukaryotic translation initiation 
factor 3 subunit R.LEITNC*FPTVR.N

5.59 6.79 6.19 O17695 hda-1 Histone deacetylase 1 R.FDPC*AVVLQCGADS
LNGDR.L

6.2 0 6.2 Q93545 F20G2.2 Protein F20G2.2 R.LHILPLDIDC*DESISK
.L

6.08 6.34 6.21 Q09607 gst-36 Probable glutathione S-
transferase gst-36 R.AGTNAVDC*AR.L

6.08 6.34 6.21 P34339 egl-45 Eukaryotic translation initiation 
factor 3 subunit

R.FGSSDATLAGGVDEC
*DNNEGFTGDDTQLGV
EGVR.N

6.28 6.15 6.215 Q22494 vha-15 Probable V-type proton ATPase 
subunit H 2 K.LAC*FGTTR.M

6 6.43 6.215 Q03577 drs-1 Aspartate--tRNA ligase, 
cytoplasmic R.IQAGIC*NQFR.N

6.29 6.16 6.225 Q9N4A5 Y77E11A.1 Protein Y77E11A.1 K.GFDIKDC*LQR.D

6.01 6.49 6.25 P52015 cyn-7 Peptidyl-prolyl cis-trans 
isomerase 7 R.ALC*TGEK.G

6.25 0 6.25 P53588 F47B10.1 Probable succinyl-CoA 
ligase [ADP-forming] subunit

K.GSDATLVEINPMAED
VNGDVYC*MDCK.L

6.26 0 6.26 Q95XJ0 Y69A2AR.18 ATP synthase gamma 
chain R.ELIEIISGAAC*V.-

6.26 0 6.26 Q8I4I9 F43G6.11 Protein F43G6.11, isoform a R.LLSQIC*PGK.I

6.24 6.29 6.265 Q9UAQ6 rab-1 Protein RAB-1 R.YAC*ENVNK.L

6 6.55 6.275 P18948 vit-6 Vitellogenin-6 R.VIC*PIAEVGTK.F

5.49 7.07 6.28 P49196 rps-12 40S ribosomal protein S12 K.IIGEYC*GLCK.Y

6.28 0 6.28 Q23652 ZK863.4 Protein ZK863.4 R.VNEYNFDTLFGDYC*
K.F

6.21 6.37 6.29 O17915 ran-1 GTP-binding nuclear protein ran-
1 R.VC*ENIPIVLCGNK.V

6.31 0 6.31 Q95QQ4 C55F2.1 Protein C55F2.1, isoform b R.VSVIC*DPADYDHIIS
ELK.S

6.33 0 6.33 O02115 pcn-1 Proliferating cell nuclear antigen K.MMDIDSEHLGIPDQD
YAVVC*EMPAGEFQK.T

7.2 5.49 6.345 G5EDD4 tba-4 Protein TBA-4 K.AYHEALSVNDITNSC
*FEPANQMVK.C

6.4 6.29 6.345 P04970 gpd-1 Glyceraldehyde-3-phosphate 
dehydrogenase 1 

K.YDASNDHVVSNASC
*TTNCLAPLAK.V Active site nucleophile
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Q04828 4.00E-49 Aldo-keto reductase family 1 member C1 No No No No No

E9PLK3 0 Puromycin-sensitive aminopeptidase No No No No No

P08865 6.00E-107 40S ribosomal protein SA Yes Yes Yes Yes No

Q9NZJ6 2.00E-05 Ubiquinone biosynthesis O-methyltransferase, 
mitochondrial No No No No No

-- -- -- -- --

P38606 0 V-type proton ATPase catalytic subunit A Yes Yes Yes Yes Yes

P00505 0 Aspartate aminotransferase, mitochondrial Yes Yes Yes No Yes

P24752 1.00E-127 Acetyl-CoA acetyltransferase, mitochondrial No No No No No

Q99460 0 26S proteasome non-ATPase regulatory subunit 1 No No No No No

P55036 3.00E-96 26S proteasome non-ATPase regulatory subunit 4 No No No No No

Q2TB90 1.00E-93 Putative hexokinase HKDC1 No No No No No

P07814 0 Bifunctional glutamate/proline--tRNA ligase No No No No No

O15372 8.00E-63 Eukaryotic translation initiation factor 3 subunit H Yes Yes Yes -- Yes

Q13547 0 Histone deacetylase 1 No No No No No

O14756 2.00E-16 17-beta-hydroxysteroid dehydrogenase type 6 No No No No No

O60760 8.00E-31 Hematopoietic prostaglandin D synthase No No No -- Yes

Q14152 2.00E-173 Eukaryotic translation initiation factor 3 subunit A No No No -- No

Q9UI12 9.00E-167 V-type proton ATPase subunit H No No Yes -- No

P14868 0 Aspartate--tRNA ligase, cytoplasmic Yes Yes Yes Yes No

Q2TB90 1.00E-93 Putative hexokinase HKDC1 Yes Yes No No No

P30405 1.00E-78 Peptidyl-prolyl cis-trans isomerase F, mitochondrial Yes Yes Yes Yes Yes

Q9P2R7 0 Succinyl-CoA ligase [ADP-forming] subunit beta, 
mitochondrial Yes Yes No Yes No

P36542 1.00E-111 ATP synthase subunit gamma, mitochondrial No No No No No

Q969S8 2.00E-55 Histone deacetylase 10 No No No No No

P62820 1.00E-120 Ras-related protein Rab-1A No No Yes No No

Q8N8U9 8.00E-05 BMP-binding endothelial regulator protein -- No -- -- --

P25398 2.00E-47 40S ribosomal protein S12 No No No No No

Q9NVV4 3.00E-06 Poly(A) RNA polymerase, mitochondrial No Yes No -- --

P62826 2.00E-139 GTP-binding nuclear protein Ran Yes Yes Yes Yes Yes

P31939 0 Bifunctional purine biosynthesis protein PURH Yes Yes Yes No No

P12004 2.00E-90 Proliferating cell nuclear antigen No No No No No

Q9BQE3 0 Tubulin alpha-1C chain Yes Yes Yes Yes No

P04406 0 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes Yes Yes Yes
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6.7 6.07 6.385 P52011 cyn-3 Peptidyl-prolyl cis-trans 
isomerase 3 R.ALC*TGENGIGK.S

6.28 6.49 6.385 P54216 aldo-1 Fructose-bisphosphate aldolase 
1 R.ALQASC*LAK.W

5.56 7.21 6.385 Q18066 dim-1 Disorganized muscle protein 1 R.QNDDGSLELEC*FVD
ANPTPQVK.W Disulfide

0 6.39 6.39 B2D6P1 rmd-2 Protein RMD-2, isoform c K.FC*NEIGNRVEK.D

6.39 0 6.39 O45622 erfa-3 Protein ERFA-3, isoform a K.MESGC*VQK.G

6.44 6.34 6.39 P42170 rnr-2 Ribonucleoside-diphosphate 
reductase small chain R.DFAC*LLYSK.L

5.78 7 6.39 Q21215 rack-1 Guanine nucleotide-binding 
protein subunit beta-2- K.VWNLGNC*R.L

5.91 6.88 6.395 P91917 tag-210 Putative GTP-binding protein 
tag-210 

K.SEAQAENFPFC*TIDP
NESR.V

6.26 6.57 6.415 P46769 rps-0 40S ribosomal protein SA R.FSPGC*LTNQIQK.T

6.46 6.38 6.42 Q86B36 fars-1 Protein FARS-1, isoform b K.IDLNVVYNNPIC*R.L

4.88 8 6.44 Q9N5V3 imb-3 Protein IMB-3 R.TASAEIMPC*LLTCVE
K.Q

6.18 6.72 6.45 O44451 C04C3.3 Pyruvate dehydrogenase E1 
component subunit beta, K.VVC*PYSAEDAK.G

6.04 6.87 6.455 O02286 R11A5.4 Protein R11A5.4, isoform a R.GIFIC*DGSQHEADEL
IDK.L

6.14 6.79 6.465 O44906 W05G11.6 Protein W05G11.6, isoform 
a 

K.AELMNPAGIYIC*DG
SQK.E

5.89 7.07 6.48 Q18496 acs-19 Protein ACS-19, isoform a R.VIEGPGEGSLC*FDR.
A

6.49 0 6.49 P18948 vit-6 Vitellogenin-6 R.SYANNESPC*EQTFSS
R.V

6.42 6.58 6.5 A3QMC5 rpl-34 Protein RPL-34 R.AYGGC*LSPNAVK.E

5.51 7.51 6.51 G5EFS5 F45D11.15 Protein F45D11.15 R.AFEHSEYTC*GQYW
K.K

6.51 0 6.51 Q03604 rnr-1 Ribonucleoside-diphosphate 
reductase large subunit

K.TNQQAETPATVAESQ
DEGC*LMCSG.-

Interacts with 
thioredoxin/glutaredoxin

6.35 6.7 6.525 Q22067 T01C8.5 Probable aspartate 
aminotransferase, cytoplasmic R.INIC*GLNTK.N

6.72 6.39 6.555 P50093 phb-2 Mitochondrial prohibitin 
complex protein 2 R.VLPSIC*NEVLK.G

6.48 6.64 6.56 P34286 pbs-6 Proteasome subunit beta type-1 K.GAVFSYDPIGC*IER.L

5.64 7.49 6.565 O17607 ruvb-1 Protein RUVB-1 R.LCAQTC*GR.E

6.58 6.56 6.57 O45924 Y39E4A.3 Protein Y39E4A.3, isoform 
a 

R.GYTMENFMNQC*YG
NADDLGK.G

6.58 0 6.58 P51875 goa-1 Guanine nucleotide-binding 
protein G(o) subunit al K.SPLTIC*FPEYSGR.Q

6.79 6.38 6.585 O45495 uev-1 Protein UEV-1 R.IYNLQIQC*GGNYPR.
E

6.59 0 6.59 G3MU41 ncbp-2 Protein NCBP-2, isoform a R.TSC*TLYVGNLSYYT
K.E

7.19 6 6.595 Q7Z071 tnt-2 Protein TNT-2, isoform b R.AFLNVVC*K.A

6.6 0 6.6 Q17350 Polyadenylate-binding Polyadenylate-
binding protein 

K.GFGFVC*FEKPEEATS
AVTEMNSK.M

6.63 6.59 6.61 Q9N358 cct-8 T-complex protein 1 subunit theta K.AC*VTTCPANSFNFN
VDNIR.I

6.45 6.78 6.615 Q27389 rpl-16 60S ribosomal protein L13a R.C*NINPAR.G

0 6.62 6.62 Q95Y97 rpa-2 Protein RPA-2 K.DISQDGTTYTYDLC*
DPNNTEMEYR.T

6.11 7.13 6.62 O02056 rpl-4 60S ribosomal protein L4 K.LGPVVIYGQDAEC*A
R.A
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P30405 1.00E-77 Peptidyl-prolyl cis-trans isomerase F, mitochondrial Yes Yes Yes Yes Yes

P04075 3.00E-166 Fructose-bisphosphate aldolase A No No No -- No

Q8WZ42 7.00E-20 Titin Yes Yes Yes -- --

Q96DB5 6.00E-27 Regulator of microtubule dynamics protein 1 No No -- -- --

Q8IYD1 0 Eukaryotic peptide chain release factor GTP-binding 
subunit ERF3B No No No No No

P31350 5.00E-169 Ribonucleoside-diphosphate reductase subunit M2 Yes Yes No Yes Yes

P63244 5.00E-168 Guanine nucleotide-binding protein subunit beta-2-
like 1 Yes Yes Yes No Yes

Q9NTK5 0 Obg-like ATPase 1 Yes Yes Yes No Yes

P08865 6.00E-107 40S ribosomal protein SA No No No No No

Q9Y285 0 Phenylalanine--tRNA ligase alpha subunit Yes Yes Yes No Yes

O00410 0 Importin-5 No No No No No

P11177 1.00E-172 Pyruvate dehydrogenase E1 component subunit beta, 
mitochondrial No No No No No

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial Yes Yes Yes -- --

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial Yes Yes Yes -- --

Q9NR19 0 Acetyl-coenzyme A synthetase, cytoplasmic No No No No Yes

Q8N8U9 8.00E-05 BMP-binding endothelial regulator protein -- No Yes -- --

P49207 2.00E-29 60S ribosomal protein L34 No No No No No

E7EUI1 0.44 Zinc finger protein Helios -- -- -- -- --

P23921 0 Ribonucleoside-diphosphate reductase large subunit Yes Yes -- -- No

P17174 1.00E-157 Aspartate aminotransferase, cytoplasmic No Yes No No No

J3KPX7 2.00E-132 Prohibitin-2 No No Yes No No

P20618 7.00E-55 Proteasome subunit beta type-1 No No No No No

Q9Y265 0 RuvB-like 1 No No No No No

P12694 0 2-oxoisovalerate dehydrogenase subunit alpha, 
mitochondrial Yes Yes Yes No Yes

P09471 0 Guanine nucleotide-binding protein G(o) subunit 
alpha Yes Yes Yes No Yes

Q13404 1.00E-64 Ubiquitin-conjugating enzyme E2 variant 1 Yes Yes Yes Yes Yes

P52298 4.00E-66 Nuclear cap-binding protein subunit 2 Yes Yes Yes No No

F8WAF6 0.3 Troponin T cardiac isoform -- -- No -- --

P11940 0 Polyadenylate-binding protein 1 Yes Yes Yes Yes No

P50990 0 T-complex protein 1 subunit theta Yes Yes Yes No Yes

P40429 3.00E-73 60S ribosomal protein L13a No No Yes No No

P15927 4.00E-11 Replication protein A 32 kDa subunit No No -- -- No

P36578 1.00E-133 60S ribosomal protein L4 No No No No No
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6.62 0 6.62 Q9GYJ9 snx-1 Protein SNX-1 K.ALSMLAAC*EESTSL
SR.A

6.47 6.8 6.635 F5GUA3 T14G10.5 Coatomer subunit gamma R.SPYAVC*YLIR.I

6.18 7.09 6.635 G8JYF5 hsp-60 Protein HSP-60, isoform b R.VTDALC*ATR.A

4.69 8.58 6.635 Q95ZQ4 aak-2 5-AMP-activated protein kinase 
catalytic subunit 

R.TSC*GSPNYAAPEVIS
GK.L

0 6.65 6.65 Q94055 T14D7.1 Protein T14D7.1 R.LPC*LTTVK.V

6.44 6.88 6.66 Q22633 hpd-1 4-hydroxyphenylpyruvate 
dioxygenase 

R.GC*EFLSIPSSYYDNL
K.E

5.53 7.8 6.665 G5EE04 hip-1 Protein HIP-1 K.TDLATAC*K.L

6.67 0 6.67 Q21993 pfd-5 Probable prefoldin subunit 5 K.NC*EQELNFFQESFN
ALK.G

6.67 0 6.67 Q9TZ33 ucr-2.3 Protein UCR-2.3 R.TTQVQDIEGC*K.R

6.68 0 6.68 Q18066 dim-1 Disorganized muscle protein 1 K.DSGTYTC*NIK.N

7.5 5.87 6.685 P37165 ubl-1 Ubiquitin-like protein 1-40S 
ribosomal protein S27

K.ECQQPSC*GGGVFM
AQHANR.H

6.18 7.19 6.685 Q21217 gta-1 Probable 4-aminobutyrate 
aminotransferase, mitocho

K.AVQTMLC*GTSANEN
AIK.T Iron-Sulfur (2Fe-2S)

6.36 7.03 6.695 Q27389 rpl-16 60S ribosomal protein L13a K.FC*VVGR.L

0 6.7 6.7 A9UJN4 pptr-2 Protein PPTR-2, isoform c R.FLEC*PDFQSQVAK.R

6.04 7.36 6.7 Q95YF3 cgh-1 ATP-dependent RNA helicase 
cgh-1 K.TGAYC*IPVIEK.I

6.7 0 6.7 Q95XN1 Y71G12B.10 Protein Y71G12B.10 R.SADSSIAGLGGC*PYA
K.G Active site

0 6.72 6.72 Q23069 moc-2 Protein MOC-2 R.VCVITVSDTC*SAGT
R.T

6.43 7.09 6.76 G5EF01 tbb-6 Protein TBB-6 K.EIINVQVGQC*GNQIG
AK.F

5.22 8.33 6.775 G8JYF5 hsp-60 Protein HSP-60, isoform b K.ANEEAGDGTTC*ATV
LAR.A

6.78 0 6.78 Q9NF11 Y105E8B.5 Protein Y105E8B.5 R.SSC*PEPMTVDFIR.V

6.79 0 6.79 Q19289 ifb-1 Intermediate filament protein ifb-
1 K.GNVTISEC*DPNGK.F

0 6.82 6.82 P18948 vit-6 Vitellogenin-6 K.TEEGLIC*R.V

5.47 8.17 6.82 Q9XTQ5 gob-1 Trehalose-phosphatase K.LC*DLPGLLSK.F

6.83 0 6.83 Q22067 T01C8.5 Probable aspartate 
aminotransferase, cytoplasmic 

R.SFGVQC*LSGTGALR.
A

6.84 6.84 6.84 Q8WTM6 arx-4 Probable actin-related protein 2/3 
complex subunit R.NC*FASVFEK.Y

0 6.84 6.84 Q93934 R07H5.8 Protein R07H5.8 K.ANGWETTC*VK.E

7.02 6.67 6.845 P50432 mel-32 Serine 
hydroxymethyltransferase 

R.YYGGNEFIDQMELLC
*QK.R

6.38 7.31 6.845 Q9XW92 vha-13 V-type proton ATPase catalytic 
subunit A K.C*LGSPER.E

0 6.85 6.85 Q22285 ttr-46 Transthyretin-like protein 46 R.LLC*GNGPAANVR.V

6.73 6.97 6.85 Q17763 atp-5 Protein ATP-5 R.IPDPC*NIGLNETPEIE
NR.F

6.67 7.04 6.855 Q93619 tag-173 Protein TAG-173 R.SGNQFDC*GK.L

6.67 7.04 6.855 G3MU53 eef-2 Protein EEF-2, isoform b K.TC*DPNGPLMMYISK
.M

6.69 7.03 6.86 Q95XQ8 mcm-4 Protein MCM-4 R.IC*VADVQR.S

7.41 6.32 6.865 P53588 F47B10.1 Probable succinyl-CoA 
ligase [ADP-forming] subunit R.C*DVIAQGIIQAAR.E

7.08 6.66 6.87 Q10454 F46H5.3 Probable arginine kinase 
F46H5.3 

R.SLQGYPFNPC*LSEA
NYLEMESK.V
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O60749 4.00E-95 Sorting nexin-2 No No Yes No Yes

Q9UBF2 0 Coatomer subunit gamma-2 Yes Yes Yes No Yes

P10809 1.00E-81 60 kDa heat shock protein, mitochondrial No No No No No

P54646 0 5'-AMP-activated protein kinase catalytic subunit 
alpha-2 Yes Yes Yes Yes Yes

P21549 3.00E-117 Serine--pyruvate aminotransferase No No No No No

P32754 2.00E-173 4-hydroxyphenylpyruvate dioxygenase No No No -- No

P50502 5.00E-78 Hsc70-interacting protein Yes Yes Yes No No

Q99471 2.00E-19 Prefoldin subunit 5 No No No No No

P22695 1.00E-34 Cytochrome b-c1 complex subunit 2, mitochondrial No No No No No

Q8WZ42 7.00E-20 Titin Yes Yes Yes -- --

P62979 4.00E-43 Ubiquitin-40S ribosomal protein S27a Yes Yes Yes Yes Yes

P80404 8.00E-168 4-aminobutyrate aminotransferase, mitochondrial Yes Yes Yes No No

P40429 3.00E-73 60S ribosomal protein L13a No No Yes No Yes

E9PFR3 0 Serine/threonine-protein phosphatase 2A 56 kDa 
regulatory subunit delta isoform No No No No No

P26196 0 Probable ATP-dependent RNA helicase DDX6 No No Yes No Yes

P35914 1.00E-113 Hydroxymethylglutaryl-CoA lyase, mitochondrial Yes Yes Yes -- Yes

Q9NQX3 6.00E-37 Gephyrin Yes Yes Yes -- No

P68371 1.00E-175 Tubulin beta-4B chain Yes Yes Yes Yes Yes

P10809 1.00E-81 60 kDa heat shock protein, mitochondrial No No No No No

P00492 5.00E-61 Hypoxanthine-guanine phosphoribosyltransferase No No -- -- No

P02545 2.00E-55 Prelamin-A/C No No No -- --

Q8N8U9 8.00E-05 BMP-binding endothelial regulator protein -- -- -- -- --

H0YCT9 2.3 Sororin -- -- -- -- --

P17174 1.00E-157 Aspartate aminotransferase, cytoplasmic No No No No Yes

O15144 2.00E-156 Actin-related protein 2/3 complex subunit 2 Yes Yes Yes No No

P55263 8.00E-120 Adenosine kinase No No No Yes No

P34896 0 Serine hydroxymethyltransferase, cytosolic Yes Yes No Yes Yes

P38606 0 V-type proton ATPase catalytic subunit A Yes Yes Yes No Yes

J3QT39 2.5 Coiled-coil domain containing 14, isoform CRA_c -- -- -- -- --

E7EVL6 0.17 Replication initiator 1 -- -- -- -- --

P21953 4.00E-176 2-oxoisovalerate dehydrogenase subunit beta, 
mitochondrial Yes Yes Yes Yes Yes

P13639 0 Elongation factor 2 Yes Yes Yes Yes Yes

P33991 0 DNA replication licensing factor MCM4 No No No No No

Q9P2R7 0 Succinyl-CoA ligase [ADP-forming] subunit beta, 
mitochondrial Yes Yes Yes Yes Yes

P06732 4.00E-82 Creatine kinase M-type No No Yes -- --
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6.52 7.23 6.875 Q19246 dhs-25 Protein DHS-25 K.TPMTEAMPPTVLAEI
C*K.G

0 6.89 6.89 P54216 aldo-1 Fructose-bisphosphate aldolase 
1 

R.YASIC*QQNGLVPIVE
PEILPDGEHCLAR.G

6.84 6.94 6.89 O02056 rpl-4 60S ribosomal protein L4 R.SGQGAFGNMC*R.G

6.46 7.33 6.895 Q93573 tct-1 Translationally-controlled tumor 
protein homolog 

K.LVEMNC*YEDASMF
K.A

7.29 6.51 6.9 P48158 rpl-23 60S ribosomal protein L23 R.ISLGLPVGAVMNC*A
DNTGAK.N

6.61 7.19 6.9 Q23027 inx-5 Innexin-5 R.TFNESC*ELK.I

8.59 5.24 6.915 O16259 sti-1 Protein STI-1 K.AAC*LVAMR.E

7.37 6.46 6.915 G5EF87 swsn-1 Protein SWSN-1 K.GVQAAAASC*LAAA
AVK.A

6.92 6.91 6.915 Q17334 sodh-1 Alcohol dehydrogenase 1 K.LMNFNC*LNCEFCK.
K Zinc-binding

6.29 7.54 6.915 G5EES6 ufd-3 Protein UFD-3, isoform b K.ALAVTQGGC*LISGG
R.D

7.14 6.72 6.93 P46562 alh-9 Putative aldehyde dehydrogenase 
family 7 member A1 R.STC*TINYSK.E

7.07 6.81 6.94 Q10663 gei-7 Bifunctional glyoxylate cycle 
protein K.DNIVGLNC*GR.W

0 6.94 6.94 Q19057 acdh-12 Protein ACDH-12, isoform a R.FGIPAAC*TGAMK.H

0 6.94 6.94 Q5CCJ2 H06I04.3 Protein H06I04.3, isoform c R.SNDYSC*LIR.V

6.93 6.96 6.945 G5EGR8 W02A11.1 Protein W02A11.1 R.LVSFSPC*LEQVQR.A

7.56 6.34 6.95 C1P636 uba-1 Protein UBA-1, isoform c K.DALIDARPSSAEDC*I
R.W

6.95 0 6.95 Q9N3X2 rps-4 40S ribosomal protein S4 R.IQAAEADFKLC*K.V

6.95 0 6.95 G5EDZ9 cpi-1 Cystatin R.QGSVQASQVTAANC*
PLK.S Disulfide

6.58 7.34 6.96 P34455 aco-2 Probable aconitate hydratase, 
mitochondrial 

K.VSLIGSC*TNSSYED
MTR.A Iron-Sulfur (4Fe-4S)

6.96 0 6.96 Q9XW17 car-1 Protein CAR-1 K.TSFFDNISC*ESLEK.A

6.86 7.07 6.965 O45812 T23G11.7 Protein T23G11.7, isoform b K.STQIFTC*LR.D

0 6.98 6.98 Q18036 C16A3.5 Protein C16A3.5 K.SQILLADGC*R.Q

0 7 7 O16294 F32D1.5 Probable GMP reductase R.SAC*TYTGAK.H NADP-binding

6.83 7.19 7.01 Q21276 K07C5.4 Uncharacterized NOP5 
family protein K07C5.4 

R.VDC*FSETPVSTYGEF
LR.Q

7.01 0 7.01 P52899 T05H10.6 Probable pyruvate 
dehydrogenase E1 component subun

R.GFCHLYSGQEAC*AV
GMK.A

7.23 6.8 7.015 Q8WQA4 exc-4 Chloride intracellular channel 
exc-4 

R.VC*EQLSNIDQLLSER
.K

7.06 6.98 7.02 P34659 snr-5 Probable small nuclear 
ribonucleoprotein F 

R.C*NNVLYVGGVDGE
NETSA.-

6.8 7.24 7.02 Q9U2X0 prmt-1 Protein PRMT-1 R.LYVC*AIEDR.Q

6.97 7.09 7.03 Q18678 srs-2 Probable serine--tRNA ligase, 
cytoplasmic 

R.ELVSC*SNCLDYQSR.
R

0 7.04 7.04 P54811 cdc-48.1 Transitional endoplasmic 
reticulum ATPase homolog 

K.NTVGFSGADLTEIC*
QR.A

6.89 7.19 7.04 Q9XUV0 pbs-5 Proteasome subunit beta type K.YC*TLYELR.E

6.5 7.6 7.05 Q9XW92 vha-13 V-type proton ATPase catalytic 
subunit A K.LAANNPLLC*GQR.V

7.05 0 7.05 P27798 crt-1 Calreticulin R.ADADLGDFHGETPY
NVMFGPDIC*GPTR.R Disulfide
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Q92506 2.00E-76 Estradiol 17-beta-dehydrogenase 8 No No No No No

P04075 3.00E-166 Fructose-bisphosphate aldolase A Yes Yes Yes -- Yes

P36578 1.00E-133 60S ribosomal protein L4 Yes Yes Yes Yes Yes

P13693 2.00E-24 Translationally-controlled tumor protein No No No No No

P62829 4.00E-85 60S ribosomal protein L23 Yes Yes Yes Yes Yes

Q96RD6 0.014 Pannexin-2 -- -- No -- --

F5H0T1 6.00E-125 Stress-induced-phosphoprotein 1 No No No No No

Q8TAQ2 4.00E-133 SWI/SNF complex subunit SMARCC2 No No -- No No

P08319 7.00E-20 Alcohol dehydrogenase 4 Yes Yes Yes Yes Yes

Q9Y263 5.00E-75 Phospholipase A-2-activating protein No No No No No

P49419 0 Alpha-aminoadipic semialdehyde dehydrogenase Yes Yes No -- Yes

Q9Y4D2 3.7 Sn1-specific diacylglycerol lipase alpha -- -- -- Yes Yes

P49748 0 Very long-chain specific acyl-CoA dehydrogenase, 
mitochondrial No No No No No

J3KS36 9.00E-69 pre-rRNA-processing protein FTSJ3 No No No No --

Q96FX7 5.00E-77 tRNA (adenine(58)-N(1))-methyltransferase catalytic 
subunit TRMT61A Yes Yes Yes Yes Yes

P22314 0 Ubiquitin-like modifier-activating enzyme 1 Yes Yes Yes Yes Yes

P62701 6.00E-123 40S ribosomal protein S4, X isoform Yes Yes Yes No Yes

P28325 5.00E-08 Cystatin-D Yes Yes -- -- No

Q99798 0 Aconitate hydratase, mitochondrial Yes Yes Yes Yes Yes

I3L4Q1 5.00E-39 Protein LSM14 homolog A Yes Yes -- No --

Q9NP79 2.00E-51 Vacuolar protein sorting-associated protein VTA1 
homolog Yes Yes Yes -- No

Q9Y6M9 3.00E-22 NADH dehydrogenase [ubiquinone] 1 beta 
subcomplex subunit 9 No No No -- No

P36959 0 GMP reductase 1 Yes Yes Yes Yes No

O00567 0 Nucleolar protein 56 Yes Yes Yes No Yes

P08559 2.00E-159 Pyruvate dehydrogenase E1 component subunit alpha, 
somatic form, mitochondrial Yes Yes Yes No No

Q9Y696 4.00E-15 Chloride intracellular channel protein 4 No No No -- --

P62306 3.00E-34 Small nuclear ribonucleoprotein F Yes Yes Yes Yes Yes

Q99873 1.00E-170 Protein arginine N-methyltransferase 1 No No No No No

P49591 0 Serine--tRNA ligase, cytoplasmic Yes Yes Yes Yes Yes

P55072 0 Transitional endoplasmic reticulum ATPase Yes Yes Yes No Yes

P28062 4.00E-64 Proteasome subunit beta type-8 Yes Yes Yes Yes Yes

P38606 0 V-type proton ATPase catalytic subunit A No No No -- No

P27797 4.00E-168 Calreticulin Yes Yes Yes Yes Yes
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7.05 0 7.05 Q21831 snfc-5 Protein SNFC-5 R.TYAFSESPLATVDC*P
FR.T

7.06 0 7.06 G5ECW7 F02E9.9 Protein F02E9.9, isoform b R.SLYIIPNETPVC*QLD
AADAFK.T

6.8 7.32 7.06 G5ECU5 F44E5.4 Protein F44E5.4 R.ARFEELC*ADLFR.S

6.78 7.37 7.075 Q23621 gdh-1 Glutamate dehydrogenase K.C*DIFVPAACEK.S

7.55 6.61 7.08 P49596 T23F11.1 Probable protein 
phosphatase 2C T23F11.1 K.RDPQSIC*EELLTR.C

7 7.16 7.08 Q18678 srs-2 Probable serine--tRNA ligase, 
cytoplasmic K.YAGVSTC*FR.Q

7.08 0 7.08 Q93353 C37E2.1 Probable isocitrate 
dehydrogenase [NAD] subunit be

R.EQTEGEYSSLEHELV
PGVIEC*LK.I

7.08 0 7.08 Q9BL43 Y71H2AM.13 Protein Y71H2AM.13 R.PLNAC*R.N

7.08 0 7.08 O61199 T22B11.5 2-oxoglutarate 
dehydrogenase, mitochondrial 

R.VEQLSPFPYDLVQQE
C*R.K

7.09 0 7.09 O61790 R12E2.11 Protein R12E2.11 R.MAAQAMC*EK.I

7.1 0 7.1 Q9N456 glrx-10 Protein GLRX-10 K.DC*NEIQDYLGSLTG
AR.S

9.58 4.63 7.105 P47207 cct-2 T-complex protein 1 subunit beta K.LC*MVSSAAEATEQI
LR.V

0 7.11 7.11 O17626 C31C9.2 Protein C31C9.2 K.VLIADDIEQEC*VDIL
K.Q

7.11 0 7.11 Q17569 C01G5.6 Protein C01G5.6 K.VEDAHFSC*PFEVMA
R.R

7.2 7.03 7.115 O17921 tbb-1 Protein TBB-1 R.EIVHVQAGQC*GNQI
GSK.F

6.58 7.65 7.115 G3MU14 gsp-1 Serine/threonine-protein 
phosphatase R.GNHEC*ASINR.I

6.71 7.53 7.12 Q21032 idh-1 Isocitrate dehydrogenase 
[NADP] K.DLAIC*VK.G

7.2 7.05 7.125 Q17543 C01B10.3 Protein C01B10.3 R.TLC*PAWSDR.I

6.93 7.38 7.155 Q22038 rho-1 Ras-like GTP-binding protein 
rhoA K.KLVIVGDGAC*GK.T GTP-binding

6.77 7.56 7.165 Q27464 gspd-1 Glucose-6-phosphate 1-
dehydrogenase K.SSC*ELSTHLAK.L

7.48 6.85 7.165 Q22054 rps-16 40S ribosomal protein S16 K.TATAVAHC*K.K

7.17 0 7.17 Q9TYY0 M57.2 Protein M57.2 R.LVFC*ETPLVEK.T

7.07 7.28 7.175 G8JY38 vit-2 Protein VIT-2, isoform b R.VAIVC*SK.V

7.43 6.94 7.185 P52819 rpl-22 60S ribosomal protein L22 K.FNVEC*KNPVEDGIL
R.I

5.28 9.09 7.185 P48158 rpl-23 60S ribosomal protein L23 R.LPSAGVGDMFVC*SV
K.K

6.99 7.4 7.195 Q93572 rpa-0 60S acidic ribosomal protein P0 K.AGAIAPC*DVK.L

7.18 7.22 7.2 Q95QH4 F32A5.8 Protein F32A5.8 K.IDFISC*DLNSLQSAK.
A

6.79 7.62 7.205 Q3LFN1 lbp-9 Protein LBP-9, isoform b K.LVIVC*TCNGVK.C

0 7.21 7.21 Q17335 H24K24.3 Alcohol dehydrogenase 
class-3 K.FFGATEC*INPK.S

6.75 7.68 7.215 G5ECR7 elb-1 Protein ELB-1 K.AQC*PAALGLR.L

7.22 0 7.22 Q21742 R05F9.6 Protein R05F9.6 K.DLEC*DFTQVGR.Y

7.27 7.21 7.24 P49196 rps-12 40S ribosomal protein S12 K.GLHETC*K.A

7.17 7.31 7.24 P18948 vit-6 Vitellogenin-6 R.NQFTPC*YSVLAK.D

6.81 7.7 7.255 Q9N5B3 W08E12.7 Protein W08E12.7 K.MGVVEC*EK.Y

8.14 6.38 7.26 Q9N5K2 rpb-5 DNA-directed RNA polymerases 
I, II, and III subuni R.IQQC*DPVAR.Y

7.53 7 7.265 Q9NLD1 hrp-2 Protein HRP-2, isoform a R.GYAFVTYC*NK.E
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Q12824 1.00E-127 SWI/SNF-related matrix-associated actin-dependent 
regulator of chromatin subfamily B member 1 No No No No --

G3V1D3 0 Dipeptidyl peptidase 3 No No No No --

P11142 0 Heat shock cognate 71 kDa protein No Yes Yes Yes No

P00367 0 Glutamate dehydrogenase 1, mitochondrial Yes Yes Yes No Yes

P35813 9.00E-65 Protein phosphatase 1A Yes Yes Yes No Yes

P49591 0 Serine--tRNA ligase, cytoplasmic Yes Yes Yes Yes Yes

O43837 2.00E-142 Isocitrate dehydrogenase [NAD] subunit beta, 
mitochondrial Yes Yes Yes No No

P23141 2.00E-53 Liver carboxylesterase 1 No No No -- No

Q02218 0 2-oxoglutarate dehydrogenase, mitochondrial No No No No No

E9PFD2 8.00E-50 Uridine 5'-monophosphate synthase No No No No No

P35754 2.00E-26 Glutaredoxin-1 No No No No No

P78371 0 T-complex protein 1 subunit beta No No No No No

O43175 3.00E-115 D-3-phosphoglycerate dehydrogenase Yes Yes Yes No No

Q8WTU0 3.00E-40 Protein DDI1 homolog 1 Yes Yes No Yes Yes

P07437 0 Tubulin beta chain Yes Yes Yes Yes Yes

P62140 0 Serine/threonine-protein phosphatase PP1-beta 
catalytic subunit Yes Yes Yes Yes Yes

O75874 0 Isocitrate dehydrogenase [NADP] cytoplasmic Yes Yes Yes No No

Q14642 6.00E-14 Type I inositol 1,4,5-trisphosphate 5-phosphatase Yes Yes Yes -- --

P61586 8.00E-125 Transforming protein RhoA Yes Yes Yes Yes No

P11413 0 Glucose-6-phosphate 1-dehydrogenase No No No No No

P62249 2.00E-76 40S ribosomal protein S16 Yes Yes Yes No Yes

Q92696 5.00E-68 Geranylgeranyl transferase type-2 subunit alpha No -- -- -- --

Q8N8U9 0.003 BMP-binding endothelial regulator protein -- -- No -- --

P35268 2.00E-31 60S ribosomal protein L22 Yes Yes Yes No Yes

P62829 4.00E-85 60S ribosomal protein L23 No No No No No

P05388 2.00E-133 60S acidic ribosomal protein P0 Yes Yes No No No

Q9NZC7 5.00E-40 WW domain-containing oxidoreductase No No No No No

P15090 3.00E-33 Fatty acid-binding protein, adipocyte Yes Yes No -- --

P11766 0 Alcohol dehydrogenase class-3 Yes Yes No No No

Q15370 5.00E-19 Transcription elongation factor B polypeptide 2 No No No -- --

P36871 0 Phosphoglucomutase-1 No No No No No

P25398 2.00E-47 40S ribosomal protein S12 No No Yes No No

Q8N8U9 8.00E-05 BMP-binding endothelial regulator protein -- -- -- -- --

Q9UQ80 1.00E-128 Proliferation-associated protein 2G4 Yes Yes Yes No Yes

P19388 2.00E-122 DNA-directed RNA polymerases I, II, and III subunit 
RPABC1 No No No No No

O60506 8.00E-131 Heterogeneous nuclear ribonucleoprotein Q Yes Yes No No No



186

0 7.27 7.27 P53596 C05G5.4 Probable succinyl-CoA ligase 
[ADP/GDP-forming] sub

R.LVGPNC*PGIISADQC
K.I

6.94 7.62 7.28 Q19626 vha-12 Probable V-type proton ATPase 
subunit B K.NTIC*EFTGDILR.T

7.28 0 7.28 Q9XUV0 pbs-5 Proteasome subunit beta type R.MVATMAGGAADC*Q
FWTR.I

7.11 7.48 7.295 G5EF87 swsn-1 Protein SWSN-1 R.LNPFEYVSATAC*R.R

6.72 7.89 7.305 Q27371 mup-2 Troponin T R.NFLAAVC*R.V

7.31 0 7.31 P52899 T05H10.6 Probable pyruvate 
dehydrogenase E1 component subun

K.EYC*DSGKGPLMME
MATYR.Y

7.3 7.32 7.31 Q09979 dhs-6 Protein DHS-6 K.ALPC*IVDVR.D

6.57 8.05 7.31 Q9U2K8 abce-1 Protein ABCE-1 R.VALALC*LGK.T

7.48 7.15 7.315 O02286 R11A5.4 Protein R11A5.4, isoform a K.LEAYENNYIC*R.T

6.85 7.79 7.32 A3QMC5 rpl-34 Protein RPL-34 K.C*RDTGVK.L

7.54 7.11 7.325 Q17334 sodh-1 Alcohol dehydrogenase 1 K.DTNLAAAAPILC*AG
VTVYK.A Zinc-binding (Catalytic)

0 7.34 7.34 Q9U3N5 C35C5.3 Putative selT-like protein 
C35C5.3 R.IFYCVSC*GYK.Q Redox-active disulfide

7.1 7.58 7.34 Q8WQA8 rps-20 Protein RPS-20 R.KTPC*GEGSK.T

7.43 7.26 7.345 Q09533 rpl-10 60S ribosomal protein L10 K.MLSC*AGADR.L

7 7.71 7.355 O17953 dld-1 Dihydrolipoyl dehydrogenase R.GIDC*TASLNLPK.M

5.25 9.46 7.355 P17331 gpd-4 Glyceraldehyde-3-phosphate 
dehydrogenase 4 

K.YDASNDHVISNASC*
TTNCLAPLAK.V Active site nucleophile

7.38 0 7.38 Q18217 ula-1 NEDD8-activating enzyme E1 
regulatory subunit K.VTDTAIAEIC*R.F

6.98 7.79 7.385 Q966I8 pbs-1 Proteasome subunit beta type K.ITPITDNMVVC*R.S

7.14 7.65 7.395 P47209 cct-5 T-complex protein 1 subunit 
epsilon R.MLSIEQC*PNNK.A

7.21 7.59 7.4 P49197 rps-21 40S ribosomal protein S21 R.YAIC*GAIR.R

7.1 7.7 7.4 O17612 ech-1 Protein ECH-1 K.DC*PGFFVVR.C

6.7 8.11 7.405 G8JY05 nmt-1 Glycylpeptide N-
tetradecanoyltransferase K.C*ADMKPSQIGLVLQ.-

7.04 7.78 7.41 Q21215 rack-1 Guanine nucleotide-binding 
protein subunit beta-2- K.LWNTLAQC*K.Y

7.41 0 7.41 Q9N4E9 ppfr-4 Protein PPFR-4 R.C*YEELQAIDDELPLL
K.M

7.61 7.23 7.42 O01692 rps-17 40S ribosomal protein S17 R.VC*DEVAIIGSK.P

6.93 7.91 7.42 O76449 ZK1055.7 Protein ZK1055.7 K.EDWTSAPLVLSTAQP
C*LAGR.I

9 5.86 7.43 P37165 ubl-1 Ubiquitin-like protein 1-40S 
ribosomal protein S27

R.C*HDTLVVDTATAAA
TSGEK.G

0 7.43 7.43 H2KYJ5 mtch-1 Protein MTCH-1, isoform a K.YTTC*AQALAVIGK.Q

7.93 6.96 7.445 Q17334 sodh-1 Alcohol dehydrogenase 1 K.DMSVC*PLVGGHEG
AGSVVQIGK.N

7.45 0 7.45 G5EDW8 VF13D12L.3 Protein VF13D12L.3 R.FMVEC*MTK.V

7.52 7.4 7.46 Q9TXP0 rps-27 40S ribosomal protein S27 K.LTEGC*SFR.K

6.52 8.41 7.465 O44549 acdh-3 Protein ACDH-3 K.YAIEC*LNAGR.I

6.5 8.44 7.47 Q9XWS4 rpl-30 Protein RPL-30 R.VC*TLAVTDAGDSDII
LSVPSESA.-

7.4 7.54 7.47 Q21217 gta-1 Probable 4-aminobutyrate 
aminotransferase, mitocho R.SLC*MLSVTR.S

7.17 7.78 7.475 G5ECU1 skr-1 Protein SKR-1 K.GLLDVTC*K.T
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P53597 5.00E-132 Succinyl-CoA ligase [ADP/GDP-forming] subunit 
alpha, mitochondrial Yes Yes Yes Yes Yes

P21281 0 V-type proton ATPase subunit B, brain isoform Yes Yes Yes No No

P28062 4.00E-64 Proteasome subunit beta type-8 Yes Yes Yes Yes Yes

Q8TAQ2 4.00E-133 SWI/SNF complex subunit SMARCC2 Yes Yes Yes No Yes

P45379 1.60E-20 Troponin T, cardiac muscle No No No -- --

P08559 2.00E-159 Pyruvate dehydrogenase E1 component subunit alpha, 
somatic form, mitochondrial Yes Yes No Yes No

Q6YN16 1.00E-141 Hydroxysteroid dehydrogenase-like protein 2 Yes Yes Yes No No

P61221 0 ATP-binding cassette sub-family E member 1 Yes Yes Yes No Yes

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial No No No -- --

P49207 2.00E-29 60S ribosomal protein L34 Yes Yes Yes Yes Yes

P08319 7.00E-20 Alcohol dehydrogenase 4 Yes Yes Yes Yes Yes

P62341 8.00E-34 Selenoprotein T No No Yes -- Yes

P60866 8.00E-56 40S ribosomal protein S20 Yes Yes Yes No Yes

P27635 3.00E-111 60S ribosomal protein L10 Yes Yes Yes Yes Yes

P09622 0 Dihydrolipoyl dehydrogenase, mitochondrial No No Yes No No

P04406 0 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes Yes Yes Yes

Q13564 3.00E-109 NEDD8-activating enzyme E1 regulatory subunit Yes Yes Yes -- Yes

P28072 2.00E-66 Proteasome subunit beta type-6 Yes Yes Yes Yes Yes

P48643 0 T-complex protein 1 subunit epsilon Yes Yes Yes No Yes

P63220 1.00E-35 40S ribosomal protein S21 Yes Yes Yes No Yes

P40939 0 Trifunctional enzyme subunit alpha, mitochondrial No No No -- Yes

F5H594 2.00E-170 Bad ID Yes Yes Yes No No

P63244 5.00E-168 Guanine nucleotide-binding protein subunit beta-2-
like 1 Yes Yes Yes Yes Yes

P78318 3.00E-40 Immunoglobulin-binding protein 1 No No No No --

P08708 1.00E-55 40S ribosomal protein S17 Yes Yes Yes Yes No

Q9Y6X9 4.8 MORC family CW-type zinc finger protein 2 No No -- -- --

P62979 4.00E-43 Ubiquitin-40S ribosomal protein S27a Yes Yes Yes Yes Yes

Q9Y6C9 9.00E-36 Mitochondrial carrier homolog 2 No No No -- --

P08319 7.00E-20 Alcohol dehydrogenase 4 No No No No No

P00966 2.6 Argininosuccinate synthase -- -- Yes -- --

P42677 8.00E-38 40S ribosomal protein S27 Yes Yes Yes No Yes

P45954 3.00E-178 Short/branched chain specific acyl-CoA 
dehydrogenase, mitochondrial No No No No No

P62888 1.00E-55 60S ribosomal protein L30 Yes Yes Yes No No

P80404 8.00E-168 4-aminobutyrate aminotransferase, mitochondrial No No No No No

P63208 3.00E-73 S-phase kinase-associated protein 1 Yes Yes Yes Yes Yes
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6.58 8.37 7.475 Q17761 T25B9.9 6-phosphogluconate 
dehydrogenase, decarboxylating 

K.SNGEPC*CDWVGNA
GSGHFVK.M

7.48 0 7.48 Q09545 sdhb-1 Succinate dehydrogenase 
[ubiquinone] iron-sulfur s K.C*HTIMNCTK.T Iron-sulfur 3 (3Fe-4S)

7.11 7.86 7.485 Q9BKU5 Y37E3.8 Protein Y37E3.8, isoform a K.NQHYC*PTVNVER.L

6.59 8.38 7.485 O02141 C46G7.2 Protein C46G7.2 K.SDSVSTLAPSLALPQ
YC*R.E

7.52 0 7.52 Q10663 gei-7 Bifunctional glyoxylate cycle 
protein 

R.ANC*TKEDLTVIPEGT
R.T

7.52 0 7.52 Q17489 unc-44 Protein UNC-44, isoform a K.DGSSPFDNQEEDEPIA
SC*K.Q

7.67 7.38 7.525 O17214 fum-1 Probable fumarate hydratase, 
mitochondrial 

R.C*GLGELSLPENEPGS
SIMPGK.V

0 7.53 7.53 Q09533 rpl-10 60S ribosomal protein L10 R.ANVDTFPAC*VHMM
SNER.E

7.48 7.6 7.54 Q2HQL4 gln-3 Glutamine synthetase R.TVC*LEGAER.K

7.51 7.59 7.55 Q10454 F46H5.3 Probable arginine kinase 
F46H5.3 R.FLQAANAC*R.Y

7.31 7.8 7.555 O44549 acdh-3 Protein ACDH-3 K.GITC*FLVDR.N

7.56 0 7.56 Q19680 F21D5.1 Protein F21D5.1 R.CSGPC*LMNAAR.A

6.62 8.52 7.57 Q9N358 cct-8 T-complex protein 1 subunit theta R.IAVYTC*PFDLTQTET
K.G

7.81 7.35 7.58 O17586 pas-1 Proteasome subunit alpha type-6 K.NGYDMPC*ELLAK.K

6.89 8.29 7.59 P34690 tba-2 Tubulin alpha-2 chain K.AYHEALSVSDITNSC*
FEPANQMVK.C

6.37 8.82 7.595 Q19749 F23B12.5 Dihydrolipoyllysine-residue 
acetyltransferase comp K.ASALAC*QR.V

8.31 6.92 7.615 P41988 cct-1 T-complex protein 1 subunit 
alpha K.IAC*LDFSLMK.A

7.63 7.6 7.615 G5ECS9 cpt-2 Protein CPT-2, isoform a K.EFVPTYESC*STAAFL
K.G

7.58 7.66 7.62 Q27527 enol-1 Enolase K.TGAPC*R.S

8.46 6.81 7.635 Q21154 moma-1 Protein MOMA-1 K.VVDC*AMTQTK.K

7.7 7.57 7.635 Q93874 rab-14 Protein RAB-14 K.AFAEENGLTFLEC*SA
K.T

7.14 8.17 7.655 Q9TZS5 cct-7 Protein CCT-7, isoform a K.GQIISNINAC*QVVAD
SIR.T

7.41 7.9 7.655 O02640 mdh-1 Probable malate dehydrogenase, 
mitochondrial 

K.NVQC*AYVASDAVK.
G

0 7.66 7.66 Q22347 acdh-10 Probable medium-chain 
specific acyl-CoA dehydrogen R.C*LDESAK.Y

0 7.66 7.66 G5EDZ7 cdr-4 Cadmium-inducible lysosomal 
protein CDR-4 K.SC*PNLSPFCMK.L

7.66 0 7.66 O17762 ech-9 Protein ECH-9 K.LSNC*DLIVESVIEDM
K.L

7.45 7.89 7.67 Q9U2M4 Y38F1A.6 Probable hydroxyacid-
oxoacid transhydrogenase, mit

K.STDYAFEMVC*STLR.
F

7.66 7.69 7.675 Q8WQA8 rps-20 Protein RPS-20 K.VC*AQLIDGAK.N

7.68 0 7.68 Q9XUV0 pbs-5 Proteasome subunit beta type R.DSGSGGVC*NLCHIT
PTEK.I

7.69 0 7.69 Q9GRZ9 Y59A8A.3 Protein Y59A8A.3 K.TEAEPGLVIC*ER.K

0 7.7 7.7 Q9N5V3 imb-3 Protein IMB-3 R.GC*PIIFGNR.L

7.38 8.03 7.705 Q17761 T25B9.9 6-phosphogluconate 
dehydrogenase, decarboxylating R.VVVC*AAVR.L

7.85 7.58 7.715 P34552 alx-1 Apoptosis-linked gene 2-
interacting protein X 1 K.NTNC*DIANDFLK.A

7.72 7.71 7.715 H2L0J5 cysl-3 Protein CYSL-3, isoform c K.VEYLNPSC*SVK.D
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P52209 0 6-phosphogluconate dehydrogenase, decarboxylating Yes Yes Yes Yes Yes

P21912 3.00E-128 Succinate dehydrogenase [ubiquinone] iron-sulfur 
subunit, mitochondrial Yes Yes Yes Yes Yes

P46776 8.00E-71 60S ribosomal protein L27a Yes Yes No No Yes

Q9UM73 0.7 ALK tyrosine kinase receptor -- -- -- -- --

Q9Y4D2 3.7 Sn1-specific diacylglycerol lipase alpha -- -- -- No No

Q8N8A2 0 Serine/threonine-protein phosphatase 6 regulatory 
ankyrin repeat subunit B No No -- -- --

P07954 0 Fumarate hydratase, mitochondrial No No Yes Yes Yes

P27635 3.00E-111 60S ribosomal protein L10 Yes Yes Yes Yes Yes

P15104 5.00E-178 Glutamine synthetase No No Yes Yes No

P06732 4.00E-82 Creatine kinase M-type No No Yes -- --

P45954 3.00E-178 Short/branched chain specific acyl-CoA 
dehydrogenase, mitochondrial No Yes No No No

O95394 2.00E-131 Phosphoacetylglucosamine mutase No No No No No

P50990 0 T-complex protein 1 subunit theta Yes Yes Yes Yes No

P60900 2.00E-102 Proteasome subunit alpha type-6 No No No Yes No

Q9BQE3 0 Tubulin alpha-1C chain Yes Yes Yes Yes No

H0YDD4 3.00E-169 Acetyltransferase component of pyruvate 
dehydrogenase complex Yes Yes No No No

P17987 0 T-complex protein 1 subunit alpha Yes Yes Yes Yes Yes

P23786 0 Carnitine O-palmitoyltransferase 2, mitochondrial Yes Yes Yes No --

P06733 0 Alpha-enolase Yes Yes Yes No Yes

Q6UXV4 3.00E-12 MICOS complex subunit MIC27 No No No -- --

P61106 5.00E-130 Ras-related protein Rab-14 No No No No No

Q99832 0 T-complex protein 1 subunit eta Yes Yes Yes Yes Yes

P40926 7.00E-131 Malate dehydrogenase, mitochondrial Yes Yes Yes No Yes

P11310 3.00E-179 Medium-chain specific acyl-CoA dehydrogenase, 
mitochondrial No No Yes No Yes

Q5TGI0 1.00E-19 Failed axon connections homolog No No No -- --

Q08426 4.00E-75 Peroxisomal bifunctional enzyme No No No -- No

Q8IWW8 2.00E-133 Hydroxyacid-oxoacid transhydrogenase, 
mitochondrial No No No -- --

P60866 8.00E-56 40S ribosomal protein S20 Yes Yes Yes No Yes

P28062 4.00E-64 Proteasome subunit beta type-8 No No No No No

Q7Z7B0 3.6 Filamin-A-interacting protein 1 -- -- -- -- --

O00410 0 Importin-5 No No No -- No

P52209 0 6-phosphogluconate dehydrogenase, decarboxylating No No No No Yes

Q8WUM4 0 Programmed cell death 6-interacting protein No No No No No

P35520 2.00E-59 Cystathionine beta-synthase No No No No Yes
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6.85 8.58 7.715 Q7YTR9 C27B7.9 Protein C27B7.9 K.VDC*AMGIIPK.V

7.72 0 7.72 G5EF11 efl-1 EFL-1 R.C*DLNTAAEALNVR.
Q

7.83 7.62 7.725 Q69Z12 K08E3.10 Protein K08E3.10 K.KVEAAC*GR.S

7.73 0 7.73 H2KZV8 mlp-1 Protein MLP-1, isoform b K.LLDSC*TVAPHEAEL
YCK.Q

6.65 8.82 7.735 Q9U2A8 rpl-43 60S ribosomal protein L37a R.YTCSFC*GK.E

7.66 7.82 7.74 O62107 gale-1 Protein GALE-1, isoform a K.DVPFQNVDVC*DEA
ALEK.V

7.74 0 7.74 Q65XX1 vbh-1 Protein VBH-1, isoform c R.TYYPC*ALVLSPTR.E

7.15 8.34 7.745 F5GUA3 T14G10.5 Coatomer subunit gamma K.ISEILGLVPC*ER.S

7.75 0 7.75 P90978 uaf-1 Splicing factor U2AF 65 kDa 
subunit 

R.GSVQSAVPVVGPSVT
C*QSR.R

7.58 7.94 7.76 O44480 rpl-20 60S ribosomal protein L18a R.DTTVAGAVTQC*YR.
D

7.13 8.39 7.76 P50432 mel-32 Serine 
hydroxymethyltransferase 

K.AVMDALGSAMC*NK.
Y

9.91 5.62 7.765 Q22100 kat-1 Protein KAT-1 K.DGLTDAYDKVHMGN
C*GEK.T

6.11 9.42 7.765 O02286 R11A5.4 Protein R11A5.4, isoform a R.C*VGDDIAWMK.F

7.52 8.02 7.77 Q18787 rpt-1 26S protease regulatory subunit 7 R.LC*PNSTGAEIR.S

6.62 8.93 7.775 B1V8J2 Y43F8B.2 Protein Y43F8B.2, isoform 
c R.SDC*MVGDFTR.L

6.92 8.64 7.78 G5EE46 F54D5.12 Protein F54D5.12 K.C*DSGFILEDLDNK.L

7.61 7.96 7.785 O17759 tkt-1 Protein TKT-1 R.ISSIEMTC*ASK.S

6.08 9.49 7.785 Q9N362 Y55F3AM.13 Protein Y55F3AM.13 K.AEQILAGSC*DQSFV
TR.E

7.68 7.92 7.8 Q05036 C30C11.4 Uncharacterized protein 
C30C11.4 

K.VSDC*VLAVPSYFTD
VQR.R

7.28 8.32 7.8 Q19264 F09E5.3 Putative deoxyribose-
phosphate aldolase R.IGASSLLDDC*LK.G

7.89 7.76 7.825 H2L2E8 tba-1 Protein TBA-1, isoform b R.TIQFVDWC*PTGFK.V

7.86 7.83 7.845 P53013 eft-3 Elongation factor 1-alpha K.QLIVAC*NK.M

7.86 0 7.86 Q9N5B3 W08E12.7 Protein W08E12.7 K.EGAIAGDLC*DLGDK
LILEK.T RNA-binding

7.07 8.69 7.88 Q8IA58 F22F7.1 Protein F22F7.1, isoform b R.ILQQYPDQC*SFYMF
K.N

7.65 8.13 7.89 Q95X44 vha-8 Protein VHA-8 R.LVEQLLPEC*LDGLQ
K.E

7.9 0 7.9 Q21484 tag-235 Protein TAG-235 R.C*DTGEGDGSTVANV
AGYATLFK.F

7.15 8.66 7.905 O17921 tbb-1 Protein TBB-1 K.NMMAAC*DPR.H

7.91 0 7.91 Q23487 ZK418.9 Protein ZK418.9, isoform a R.NC*NVVQETTTATGQ
PKPLR.M

7.91 0 7.91 P02566 unc-54 Myosin-4 K.VIC*YFAAVGASQQE
GGAEVDPNK.K

7.7 8.14 7.92 Q95005 pas-4 Proteasome subunit alpha type-7 R.IEC*QSYK.L

7.9 7.96 7.93 O45903 W09H1.5 Probable trans-2-enoyl-CoA 
reductase 1, mitochondr K.LALNC*VGGR.S

7.6 8.27 7.935 Q23621 gdh-1 Glutamate dehydrogenase K.AVGKDC*PVEPNAAF
AAK.I

8.06 7.81 7.935 Q17361 usp-14 Ubiquitin carboxyl-terminal 
hydrolase 14 

K.QQDANEC*LVSIMSN
VTR.I

7.98 7.92 7.95 O02115 pcn-1 Proliferating cell nuclear antigen R.LSLC*NDVPVVVEYPI
EENGYLR.F
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H7BYS8 5 Leukocyte surface antigen CD47 -- -- -- -- --

Q16254 2.00E-40 Transcription factor E2F4 No No No -- No

P14649 2.00E-17 Myosin light chain 6B No No No No No

P50461 9.00E-29 Cysteine and glycine-rich protein 3 No No No -- No

P61513 2.00E-43 60S ribosomal protein L37a Yes Yes Yes Yes Yes

Q14376 9.00E-144 UDP-glucose 4-epimerase No No No Yes No

B4DXX7 0 ATP-dependent RNA helicase DDX3Y No No No No No

Q9UBF2 0 Coatomer subunit gamma-2 Yes Yes No No Yes

P26368 5.00E-148 Splicing factor U2AF 65 kDa subunit No No No No No

Q02543 1.00E-78 60S ribosomal protein L18a Yes Yes Yes No No

P34896 0 Serine hydroxymethyltransferase, cytosolic No No No No No

P24752 2.00E-155 Acetyl-CoA acetyltransferase, mitochondrial Yes Yes Yes No Yes

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial Yes Yes Yes -- --

P35998 0 26S protease regulatory subunit 7 Yes Yes Yes Yes Yes

Q9P0R6 2.00E-17 GSK3-beta interaction protein No No No -- --

Q8N465 3.00E-140 D-2-hydroxyglutarate dehydrogenase, mitochondrial Yes Yes No Yes Yes

P29401 0 Transketolase No Yes No No No

O75037 7.5 Kinesin-like protein KIF21B -- -- -- -- --

O95757 0 Heat shock 70 kDa protein 4L Yes Yes Yes No Yes

Q9Y315 4.00E-87 Deoxyribose-phosphate aldolase No No -- -- --

Q9BQE3 0 Tubulin alpha-1C chain Yes Yes Yes Yes Yes

Q05639 0 Elongation factor 1-alpha 2 No No No No Yes

Q9UQ80 1.00E-128 Proliferation-associated protein 2G4 Yes Yes Yes No Yes

Q8NBX0 4.00E-88 Saccharopine dehydrogenase-like oxidoreductase No No No -- No

P36543 1.00E-87 V-type proton ATPase subunit E 1 No No No No No

O14929 2.00E-72 Histone acetyltransferase type B catalytic subunit No No No No No

P07437 0 Tubulin beta chain Yes Yes Yes No No

Q96AE4 2.00E-56 Far upstream element-binding protein 1 No No No -- --

P13533 0 Myosin-6 No No No No No

O14818 5.00E-108 Proteasome subunit alpha type-7 Yes Yes Yes No Yes

Q9BV79 5.00E-92 Trans-2-enoyl-CoA reductase, mitochondrial Yes Yes Yes No Yes

P00367 0 Glutamate dehydrogenase 1, mitochondrial No No No No --

P54578 2.00E-117 Ubiquitin carboxyl-terminal hydrolase 14 Yes Yes Yes No Yes

P12004 2.00E-90 Proliferating cell nuclear antigen No No Yes No No
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0 7.95 7.95 G3MU69 ant-1.1 Protein ANT-1.1, isoform d K.GLADC*LIK.I

7.74 8.16 7.95 O45418 fkb-6 Protein FKB-6 K.AAAQQIIVC*R.N

7.95 0 7.95 P27639 inf-1 Eukaryotic initiation factor 4A K.MTENQFTVSC*LHGD
MDQAER.D

7.95 0 7.95 Q17695 spdl-1 Protein SPDL-1 R.VC*HLETER.V

8.33 7.59 7.96 Q17350 Polyadenylate-binding Polyadenylate-
binding protein 

K.FGNITSC*EVMTVEG
K.S

0 7.96 7.96 Q93934 R07H5.8 Protein R07H5.8 K.GVEASVTC*GSYAAQ
EIIK.K

7.99 7.96 7.975 P48150 rps-14 40S ribosomal protein S14 R.IEDVTPIPSDC*TR.R

7.91 8.06 7.985 P02566 unc-54 Myosin-4 R.YNC*LNWLEK.N

8.62 7.38 8 Q9TZS5 cct-7 Protein CCT-7, isoform a K.C*AATTLSSK.L

6.73 9.28 8.005 G5EBJ8 Y59E9AR.1 Major sperm protein R.LGVDPPC*GVLDPK.E

7.21 8.8 8.005 Q23624 ZK829.7 Protein ZK829.7 R.AILEVC*DPSSALDAD
QSGGVPIPAATSE.-

7.77 8.25 8.01 Q27535 ZC434.8 Probable arginine kinase 
ZC434.8 

R.SLQGYPFNPC*LSETN
YK.M

8.7 7.36 8.03 Q09359 ZK1307.1 Uncharacterized protein 
ZK1307.1 K.SGGACQC*LVLR.L

7.49 8.58 8.035 Q27274 rop-1 60 kDa SS-A/Ro 
ribonucleoprotein homolog R.LSNVC*AR.L

0 8.04 8.04 Q07085 F13H6.3 Esterase CM06B1 K.YGPAC*VQTGGFEQI
AGPR.T Disulfide

8.41 7.68 8.045 Q22067 T01C8.5 Probable aspartate 
aminotransferase, cytoplasmic 

R.AGAEFLASVC*NMK.
T

7.55 8.55 8.05 G5EFZ1 F57B10.3 Cofactor-independent 
phosphoglycerate mutase K.VSQFHC*AETEK.Y

6.87 9.23 8.05 Q9TZS5 cct-7 Protein CCT-7, isoform a R.QLC*QNAGLDALDV
LNK.L

0 8.06 8.06 O45903 W09H1.5 Probable trans-2-enoyl-CoA 
reductase 1, mitochondr K.QPVDC*PTGPLIFK.D

7.8 8.32 8.06 Q21307 mek-1 Protein MEK-1, isoform a K.LC*DFGIAGR.L

8.06 0 8.06 Q19722 nrs-1 Asparagine--tRNA ligase, 
cytoplasmic R.IEALVC*DTVDR.L

8.06 0 8.06 B3GWB2 C08H9.2 Protein C08H9.2, isoform b K.TGC*VVEVPAEDSGS
DQVTLIGNAQDLAK.A

8.07 0 8.07 P47209 cct-5 T-complex protein 1 subunit 
epsilon K.IADGFDLAC*KK.A

7.99 8.17 8.08 Q9N4J8 cct-3 Protein CCT-3 R.TLIQNC*GGSTIR.K

7.42 8.77 8.095 P48158 rpl-23 60S ribosomal protein L23 K.EC*ADLWPR.I

7.98 8.21 8.095 P53013 eft-3 Elongation factor 1-alpha R.GSVC*SDSKQDPAK.E

8.68 7.52 8.1 P91277 F26B1.2 Protein F26B1.2, isoform a K.GTEQQIHSAQYLLQQ
C*VR.N

8.1 0 8.1 P50432 mel-32 Serine 
hydroxymethyltransferase 

R.QC*LSEDFVQYGEQV
LK.N

7.98 8.23 8.105 P52709 trs-1 Threonine--tRNA ligase, 
cytoplasmic R.C*GPLIDLCR.G

7.72 8.5 8.11 Q10663 gei-7 Bifunctional glyoxylate cycle 
protein K.C*GHMGGK.V

7.7 8.52 8.11 P46561 atp-2 ATP synthase subunit beta, 
mitochondrial R.C*IAMDGTEGLVR.G

8.11 0 8.11 Q09444 ubh-4 Probable ubiquitin carboxyl-
terminal hydrolase ubh R.GHC*LSNSEEIR.T

8.11 0 8.11 Q17761 T25B9.9 6-phosphogluconate 
dehydrogenase, decarboxylating 

K.GIMFVGC*GVSGGEE
GAR.F
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P12236 1.00E-117 ADP/ATP translocase 3 Yes Yes Yes No No

Q02790 8.00E-112 Peptidyl-prolyl cis-trans isomerase FKBP4 Yes Yes Yes -- --

Q14240 0 Eukaryotic initiation factor 4A-II No No No No No

E7EMX7 0.037 Laminin subunit alpha-2 -- -- -- -- --

P11940 0 Polyadenylate-binding protein 1 No No No No No

P55263 8.00E-120 Adenosine kinase No No Yes No No

P62263 9.00E-84 40S ribosomal protein S14 No No No No No

P13533 0 Myosin-6 No No No No No

Q99832 0 T-complex protein 1 subunit eta Yes Yes Yes Yes Yes

Q9P0L0 4.00E-07 Vesicle-associated membrane protein-associated 
protein A No No -- -- --

Q00796 1.00E-11 Sorbitol dehydrogenase Yes -- No -- --

P12277 1.00E-83 Creatine kinase B-type No No Yes -- --

O94760 0.01 N(G),N(G)-dimethylarginine dimethylaminohydrolase 
1 -- -- -- -- --

P10155 5.00E-127 60 kDa SS-A/Ro ribonucleoprotein No No -- -- --

Q6NT32 4.00E-61 Carboxylesterase 5A Yes Yes Yes -- --

P17174 1.00E-157 Aspartate aminotransferase, cytoplasmic No No No No No

Q6UWY0 0.026 Arylsulfatase K -- -- -- -- Yes

Q99832 0 T-complex protein 1 subunit eta Yes Yes Yes Yes Yes

Q9BV79 5.00E-92 Trans-2-enoyl-CoA reductase, mitochondrial No No No No No

O14733 1.00E-111 Dual specificity mitogen-activated protein kinase 
kinase 7 Yes Yes Yes Yes No

O43776 0 Asparagine--tRNA ligase, cytoplasmic Yes Yes Yes No No

Q00341 6.00E-134 Vigilin No No No Yes --

P48643 0 T-complex protein 1 subunit epsilon No No No No No

P49368 0 T-complex protein 1 subunit gamma Yes Yes Yes No Yes

P62829 4.00E-85 60S ribosomal protein L23 Yes Yes Yes Yes Yes

Q05639 0 Elongation factor 1-alpha 2 Yes Yes No Yes No

P61978 1.00E-67 Heterogeneous nuclear ribonucleoprotein K No No -- No No

P34896 0 Serine hydroxymethyltransferase, cytosolic No No No No No

P26639 0 Threonine--tRNA ligase, cytoplasmic Yes Yes Yes Yes Yes

Q9Y4D2 3.7 Sn1-specific diacylglycerol lipase alpha -- -- -- -- --

P06576 0 ATP synthase subunit beta, mitochondrial No No No No No

Q9Y5K5 1.00E-97 Ubiquitin carboxyl-terminal hydrolase isozyme L5 No No No -- No

P52209 0 6-phosphogluconate dehydrogenase, decarboxylating No No No No No
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6.35 9.88 8.115 G8JY45 aldo-2 Fructose-bisphosphate aldolase R.YASIC*QANGLVPIVE
PEVLCDGEHDLAR.A

7.78 8.46 8.12 C1P636 uba-1 Protein UBA-1, isoform c 
K.GNTQVVYPYLTESYS
SSVDPPEKEIPVC*TLK.
N

Glycyl thioester 
intermediate

7.81 8.44 8.125 P61866 rpl-12 60S ribosomal protein L12 R.C*VGGEVGATSALAP
K.V

8.13 8.13 8.13 P46554 B0285.4 Probable leucine carboxyl 
methyltransferase 1 R.TNDDATQC*K.Y

8.15 0 8.15 Q22792 T25G3.3 Protein T25G3.3 K.NC*NVNNATFDAMNI
DNVPDAIIVR.K

8.16 0 8.16 Q22099 krs-1 Lysine--tRNA ligase R.DNNVDC*SAPR.T

7.57 8.76 8.165 O44906 W05G11.6 Protein W05G11.6, isoform 
a K.TNAMAMESC*R.A

7.48 8.85 8.165 H2L023 cas-1 Protein CAS-1, isoform b K.VAQGC*EIVTSK.S

8.96 7.38 8.17 P90900 ifa-4 Intermediate filament protein ifa-
4 R.NC*LEQNYAR.E

5.36 10.98 8.17 H1UBK1 map-2 Protein MAP-2, isoform b K.NFATLAFC*R.C

8.2 8.16 8.18 Q69Z13 K08E3.5 Protein K08E3.5, isoform f K.LNGGLGTSMGC*K.G

8.18 0 8.18 Q9XW17 car-1 Protein CAR-1 K.ASDIKDLIVC*DTPK.
M

9.36 7.01 8.185 Q21926 irs-1 Isoleucine--tRNA ligase, 
cytoplasmic K.LLDC*PNR.Q

7.81 8.56 8.185 Q18212 hel-1 Spliceosome RNA helicase 
DDX39B homolog K.YFVLDEC*DK.M

7.82 8.56 8.19 Q19825 rrt-1 Probable arginine--tRNA ligase, 
cytoplasmic R.LALC*DVTR.K

8.55 7.84 8.195 O17643 idh-2 Isocitrate dehydrogenase 
[NADP] K.C*ATITPDEAR.I

0 8.2 8.2 P46502 rpt-3 Probable 26S protease regulatory 
subunit 6B R.GVLMYGPPGC*GK.T ATP-binding

7.84 8.58 8.21 A7LPE5 gpdh-2 Protein GPDH-2, isoform c K.NVVAC*AAGFTDGL
GYGDNTK.A

8.21 0 8.21 Q10454 F46H5.3 Probable arginine kinase 
F46H5.3 K.TFLIWC*NEEDHLR.I

7.47 8.96 8.215 Q21484 tag-235 Protein TAG-235 R.DYVDCVNC*MTLR.E

8.22 0 8.22 G5EF87 swsn-1 Protein SWSN-1 R.TQHEC*VLK.F

8.16 8.29 8.225 Q2EEM8 ttr-45 Protein TTR-45 K.LLC*GTSPAK.N

7.1 9.35 8.225 Q9N4J8 cct-3 Protein CCT-3 R.ESGHQVQIGNINAC*
K.T

8.23 0 8.23 Q9XWP7 eif-3.j Protein EIF-3.J K.ASC*YGDMIGK.L

7.79 8.68 8.235 Q9N585 ppw-2 Protein PPW-2 K.MGVTVC*DEPLVVK.
G

6.81 9.66 8.235 O01826 C53H9.2 Protein C53H9.2, isoform a R.GFMASSGIPDC*SR.A

0 8.24 8.24 Q17896 C10C5.2 Protein C10C5.2 K.SETPC*QLYPFYYSY
G.-

8.24 0 8.24 Q18905 cgp-1 GTP-binding protein cgp-1 K.IDMC*PANILEETMK.
N

0 8.26 8.26 Q95YB2 acdh-9 Protein ACDH-9 R.INIASC*SLGAAQR.S

8.28 0 8.28 O76630 Y57G7A.10 Protein Y57G7A.10 K.SNPESDGILNC*LEA
MK.V

7.71 8.88 8.295 O16368 rpt-2 Probable 26S protease regulatory 
subunit 4 K.AMC*TEAGLLALR.E

8.21 8.39 8.3 G5EG13 dhs-12 Protein DHS-12 R.AAIVNIGSDC*ASQAL
NLR.G

8.21 8.42 8.315 Q9BKU3 Y37E3.10 Protein Y37E3.10 K.AITEPTILDEC*DISAD
IK.E
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P04075 2.00E-106 Fructose-bisphosphate aldolase A Yes Yes Yes -- Yes

P22314 0 Ubiquitin-like modifier-activating enzyme 1 Yes Yes Yes Yes Yes

P30050 3.00E-89 60S ribosomal protein L12 Yes Yes Yes No No

Q9UIC8 7.00E-75 Leucine carboxyl methyltransferase 1 Yes Yes Yes Yes No

C9JA08 0 60S ribosomal export protein NMD3 Yes Yes No No No

Q15046 0 Lysine--tRNA ligase Yes Yes Yes Yes Yes

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial No No No -- --

Q01518 1.00E-108 Adenylyl cyclase-associated protein 1 Yes Yes No No No

J9JID7 5.00E-56 Lamin B2, isoform CRA_a No No No -- --

G3XA91 0 Methionine aminopeptidase 2 Yes Yes Yes Yes Yes

Q16851 0 UTP--glucose-1-phosphate uridylyltransferase Yes Yes Yes Yes Yes

I3L4Q1 5.00E-39 Protein LSM14 homolog A Yes Yes No No No

P41252 0 Isoleucine--tRNA ligase, cytoplasmic No No No No No

Q13838 0 Spliceosome RNA helicase DDX39B Yes Yes Yes Yes Yes

P54136 0 Arginine--tRNA ligase, cytoplasmic Yes Yes Yes No Yes

P48735 0 Isocitrate dehydrogenase [NADP], mitochondrial Yes Yes Yes Yes Yes

P43686 0 26S protease regulatory subunit 6B Yes Yes Yes No No

P21695 2.00E-120 Glycerol-3-phosphate dehydrogenase [NAD(+)], 
cytoplasmic No No Yes No No

P06732 4.00E-82 Creatine kinase M-type No No Yes -- --

O14929 2.00E-72 Histone acetyltransferase type B catalytic subunit Yes Yes Yes No No

Q8TAQ2 4.00E-133 SWI/SNF complex subunit SMARCC2 Yes Yes Yes Yes Yes

H0YNH0 5 GMP reductase 2 -- -- -- -- --

P49368 0 T-complex protein 1 subunit gamma No No No No No

H0YGJ7 1.1 Eukaryotic translation initiation factor 3 subunit J -- -- -- -- --

Q9UL18 2.00E-43 Protein argonaute-1 No No No -- No

Q9H089 1.00E-61 Large subunit GTPase 1 homolog No -- No No No

Q8NDV7 1.3 Trinucleotide repeat-containing gene 6A protein -- -- -- -- --

O00178 0 GTP-binding protein 1 Yes Yes Yes No Yes

Q9UKU7 8.00E-170 Isobutyryl-CoA dehydrogenase, mitochondrial Yes Yes No -- No

Q15006 6.00E-76 ER membrane protein complex subunit 2 No No -- -- --

P62191 0 26S protease regulatory subunit 4 Yes Yes Yes Yes Yes

Q8NEX9 8.00E-12 Short-chain dehydrogenase/reductase family 9C 
member 7 No No No No No

P05198 3.00E-117 Eukaryotic translation initiation factor 2 subunit 1 No No Yes No No
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10.29 6.39 8.34 G5EDZ2 umps-1 Protein UMPS-1 R.VSAC*SDLLNWTPGV
NLDAK.S

8.34 8.34 8.34 Q22101 T02G5.7 Protein T02G5.7 K.GPMGLC*AEK.T

7.84 8.87 8.355 O45012 nol-5 Protein NOL-5 K.GLC*DQVIELSAYR.A

8.82 7.91 8.365 Q9XVF7 rpl-8 60S ribosomal protein L8 K.AQIQIGNIVPVGTLPE
GTTIC*NVENK.S

8.07 8.69 8.38 P27639 inf-1 Eukaryotic initiation factor 4A R.AIVPC*TTGK.D

8.41 0 8.41 A6PVA5 C05C8.1 Protein C05C8.1, isoform b K.FNQIAETFEDYNC*L
VK.R

8.83 8.01 8.42 Q20938 rpn-6.1 Probable 26S proteasome 
regulatory subunit rpn-6.1 R.DLVDLC*LK.I

0 8.42 8.42 Q9U1Q8 Y80D3A.9 Protein Y80D3A.9 K.LFEIATC*R.T

8.33 8.56 8.445 O01854 F32B5.1 Protein F32B5.1 K.GYPFNPC*LTQDNYL
EMEGK.V

8.46 0 8.46 P91851 F26H9.4 Uncharacterized protein 
F26H9.4 

R.EGSNPLNTIQSMPAIS
EFC*DR.I

8.46 0 8.46 B3GWB2 C08H9.2 Protein C08H9.2, isoform b K.LATEHIVC*PK.N

9.46 7.53 8.495 P91477 pbs-4 Proteasome subunit beta type-2 R.FC*YAIMDR.E

8.28 8.76 8.52 G3MU53 eef-2 Protein EEF-2, isoform b R.LHC*TAQPMPDGLAD
DIEGGTVNAR.D

8.44 8.61 8.525 Q20057 F35G12.11 Protein F35G12.11 R.C*QHPEGGEK.V

8.53 0 8.53 P34346 let-754 Adenylate kinase 2, 
mitochondrial K.LVSDEVVC*K.L

8.53 0 8.53 Q95YF3 cgh-1 ATP-dependent RNA helicase 
cgh-1 R.NLVC*SDLLTR.G

8.54 0 8.54 D0VWN5 W04G3.5 Protein W04G3.5, isoform b K.EIQGFFSC*PVDNLR.
A

7.79 9.3 8.545 Q27888 ldh-1 L-lactate dehydrogenase K.LC*VVTAGAR.Q

7.93 9.2 8.565 P24894 COX2 Cytochrome c oxidase subunit 2 K.SWC*FGTME.-

0 8.57 8.57 Q2HQL4 gln-3 Glutamine synthetase K.NGFPGPQGPYYC*GV
GANK.V

8.57 0 8.57 O62102 pbs-2 Proteasome subunit beta type K.GPIVPEFC*K.R

8.37 8.79 8.58 Q8IA50 mdh-1 Protein MDH-1, isoform c K.ELEEERDDALKAC*D
DANI.-

7.72 9.51 8.615 O16927 F25G6.8 Signal recognition particle 14 
kDa protein K.EGDEISC*IFR.A

0 8.62 8.62 Q967F1 eif-1 Protein EIF-1 K.VGIVNESNC*R.V

8.62 0 8.62 D7SFL2 C34F11.3 Protein C34F11.3, isoform b R.NIC*ALNAFR.R

9.24 8.01 8.625 P24886 ND4L NADH dehydrogenase subunit 
4L (Fragment) K.FFGSDNC*IF.-

9.29 7.97 8.63 Q93576 ndk-1 Nucleoside diphosphate kinase R.NIC*HGSDAVDSANR.
E

0 8.63 8.63 O45012 nol-5 Protein NOL-5 R.QNC*INTDLSSILPEEL
EEK.V

0 8.64 8.64 Q20206 rps-11 Protein RPS-11 K.C*PWAGNVPIR.G S-palmitoyl cysteine

8.48 8.85 8.665 Q20585 rpn-7 26S proteasome non-ATPase 
regulatory subunit 6 R.LIATGQLQC*R.I

8.67 0 8.67 Q19126 asb-2 Protein ASB-2 K.SMFEDC*NKEWSAPE
PLPAIPK.D

8.25 9.12 8.685 Q22494 vha-15 Probable V-type proton ATPase 
subunit H 2 R.EAALQMVQC*K.T

8.31 9.07 8.69 Q9N537 Y32H12A.4 Protein Y32H12A.4 K.IC*LDDPAEFLK.R

7.9 9.49 8.695 O45011 W10C8.5 Protein W10C8.5 K.LGATLYDC*IR.S

0 8.7 8.7 O45552 F53A2.7 Protein F53A2.7 R.VVAYSAVGC*DPTIM
GIGPAPAIR.E
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P11172 1.00E-99 Uridine 5'-monophosphate synthase No No No No Yes

P24752 1.00E-127 Acetyl-CoA acetyltransferase, mitochondrial Yes Yes Yes No Yes

Q9Y2X3 3.00E-171 Nucleolar protein 58 Yes Yes Yes No Yes

P62917 7.00E-134 60S ribosomal protein L8 Yes Yes Yes No Yes

Q14240 0 Eukaryotic initiation factor 4A-II Yes Yes Yes No No

Q99766 9.00E-18 ATP synthase subunit s, mitochondrial No No No -- --

O00231 5.00E-146 26S proteasome non-ATPase regulatory subunit 11 No No No No No

Q6ICL3 9.00E-25 Transport and Golgi organization protein 2 homolog No No No No No

P12277 4.00E-77 Creatine kinase B-type No No Yes -- --

Q96T66 4.00E-46 Nicotinamide/nicotinic acid mononucleotide 
adenylyltransferase 3 No No No No Yes

Q00341 6.00E-134 Vigilin No No No -- --

P49721 1.00E-44 Proteasome subunit beta type-2 No No No No No

P13639 0 Elongation factor 2 No No No No No

P84090 3.00E-24 Enhancer of rudimentary homolog No No -- -- --

P54819 4.00E-102 Adenylate kinase 2, mitochondrial No No No No No

P26196 0 Probable ATP-dependent RNA helicase DDX6 Yes Yes Yes Yes Yes

O60256 6.00E-140 Phosphoribosyl pyrophosphate synthase-associated 
protein 2 No No No No No

P07195 9.00E-148 L-lactate dehydrogenase B chain No No Yes No Yes

P00403 1.00E-49 Cytochrome c oxidase subunit 2 No No No No No

P15104 5.00E-178 Glutamine synthetase Yes Yes Yes Yes Yes

Q99436 2.00E-69 Proteasome subunit beta type-7 No No No No --

B9A041 1.00E-69 Malate dehydrogenase, cytoplasmic No No No -- No

P37108 2.00E-19 Signal recognition particle 14 kDa protein Yes Yes -- -- Yes

O60739 2.00E-29 Eukaryotic translation initiation factor 1b No No No No No

Q01433 0 AMP deaminase 2 No No No No No

Q6UXU4 1.2 Germ cell-specific gene 1-like protein -- -- -- -- --

P22392 8.00E-75 Nucleoside diphosphate kinase B No No No Yes No

Q9Y2X3 3.00E-171 Nucleolar protein 58 No No No No No

P62280 5.00E-72 40S ribosomal protein S11 Yes Yes Yes Yes Yes

Q15008 1.00E-126 26S proteasome non-ATPase regulatory subunit 6 Yes Yes No Yes Yes

P24539 4.00E-08 ATP synthase F(0) complex subunit B1, mitochondrial No No No -- --

Q9UI12 9.00E-167 V-type proton ATPase subunit H Yes Yes Yes No No

P41236 4.00E-21 Protein phosphatase inhibitor 2 No No -- -- --

P12277 1.00E-76 Creatine kinase B-type No No No -- --

P42765 2.00E-163 3-ketoacyl-CoA thiolase, mitochondrial Yes Yes No No No
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8.71 0 8.71 O76618 cars-1 Protein CARS-1, isoform a K.VC*EDVVAALEHFK.
T

0 8.72 8.72 Q19969 ima-3 Importin subunit alpha-3 R.C*KDPAPSPAVVR.T

8.51 8.94 8.725 Q07749 unc-60 Actin-depolymerizing factor 2, 
isoform c 

K.VIFVQYC*PDNAPVR.
R

9.01 8.47 8.74 Q19842 pcca-1 Propionyl-CoA carboxylase 
alpha chain, mitochondri

K.MADEAVC*VGEAPT
AK.S

8.6 8.91 8.755 Q20585 rpn-7 26S proteasome non-ATPase 
regulatory subunit 6 

R.C*NEVQEQLTGGGLN
GTLIPVR.E

8.76 0 8.76 Q9TZL8 Y71H10A.1 6-phosphofructokinase R.LVC*IGGDGSLTGAN
TFR.L

9.28 8.25 8.765 Q9U1Q4 vrs-2 Valine--tRNA ligase R.DYPDGIPEC*GVDAL
R.F

8.78 0 8.78 P91277 F26B1.2 Protein F26B1.2, isoform a R.VC*TVTADEK.T

8.66 8.94 8.8 O45622 erfa-3 Protein ERFA-3, isoform a K.TDITYVPC*SGLTGAF
IK.D

9.04 8.6 8.82 Q9U1R7 arx-3 Protein ARX-3 R.VAFSPSGC*R.L

9.68 8 8.84 Q18688 daf-21 Heat shock protein 90 K.LGLDIGDDEIEDSAVP
SSC*TAEAK.I

8.89 8.84 8.865 O01974 eif-3.H Eukaryotic translation initiation 
factor 3 subunit K.SC*SSDKYSTR.H

9.03 8.72 8.875 Q18677 dhp-2 Dihydropyrimidinase 2 K.IFNC*YPQK.G

7.94 9.82 8.88 Q95YF3 cgh-1 ATP-dependent RNA helicase 
cgh-1 K.GVEFEDFC*LGR.D

8.89 0 8.89 Q21888 R102.2 Protein R102.2 K.DAVFIGPLHDPC*TAD
EAAK.L

8.9 0 8.9 Q20168 F38E11.5 Probable coatomer subunit 
beta K.SELLLAGEC*LGR.A

8.23 9.59 8.91 P47207 cct-2 T-complex protein 1 subunit beta K.LGEAC*SVVLR.G

9.54 8.31 8.925 G5EFJ3 C08E8.4 Protein C08E8.4 R.DIMYLAC*LAK.F

11.4 6.46 8.93 P90889 F55H12.4 Protein F55H12.4 R.QCGCGEIEGC*MGSA
TGGFMK.C

8.87 8.99 8.93 G3MU69 ant-1.1 Protein ANT-1.1, isoform d K.NTLDC*AKK.I

8.64 9.24 8.94 Q18910 D1005.2 Protein D1005.2 K.NVDYIMEC*TPK.T

8.95 0 8.95 A7LPE5 gpdh-2 Protein GPDH-2, isoform c R.INVVEDAHTVELC*G
ALK.N

8.95 0 8.95 Q17941 akt-1 Serine/threonine-protein kinase 
akt-1 R.LGGGPEDALEIC*R.A

9.73 8.21 8.97 O16294 F32D1.5 Probable GMP reductase K.VGIGPGSVC*TTR.K
Thioimidate 
intermediate/Potassium-
binding

9.48 8.48 8.98 Q19825 rrt-1 Probable arginine--tRNA ligase, 
cytoplasmic R.STIIGDSIC*R.L

8.98 0 8.98 Q05036 C30C11.4 Uncharacterized protein 
C30C11.4 R.LLDEC*ER.V

9.58 8.41 8.995 Q94261 cif-1 COP9/Signalosome and eIF3 
complex-shared subunit 1

R.LIGELEC*NLETLQDR
.F

8.45 9.56 9.005 Q9NAQ2 JC8.2 Protein JC8.2 K.GQVNVVDC*R.E

9.8 8.21 9.005 P54811 cdc-48.1 Transitional endoplasmic 
reticulum ATPase homolog K.AIANEC*QANFISIK.G

0 9.01 9.01 P46548 nmt-1 Glycylpeptide N-
tetradecanoyltransferase K.PVSVC*R.Y

7.72 10.31 9.015 Q20772 F54D5.7 Probable glutaryl-CoA 
dehydrogenase, mitochondrial R.AITGLNGFC*.-

0 9.02 9.02 P52709 trs-1 Threonine--tRNA ligase, 
cytoplasmic R.TIC*PDDFPK.I

8.74 9.3 9.02 P54812 cdc-48.2 Transitional endoplasmic 
reticulum ATPase homolog K.AFAEC*EK.N



199

P49589 0 Cysteine--tRNA ligase, cytoplasmic No No No No --

O00629 0 Importin subunit alpha-3 No No No No No

E9PQB7 9.00E-08 Cofilin-1 No No Yes No Yes

P05165 0 Propionyl-CoA carboxylase alpha chain, 
mitochondrial Yes Yes No No No

Q15008 1.00E-126 26S proteasome non-ATPase regulatory subunit 6 No No No No No

P08237 0 ATP-dependent 6-phosphofructokinase, muscle type No No No No No

P26640 0 Valine--tRNA ligase Yes Yes Yes Yes Yes

P61978 1.00E-67 Heterogeneous nuclear ribonucleoprotein K No No No No No

Q8IYD1 0 Eukaryotic peptide chain release factor GTP-binding 
subunit ERF3B Yes Yes Yes No No

Q92747 7.00E-145 Actin-related protein 2/3 complex subunit 1A No No No No No

P07900 0 Heat shock protein HSP 90-alpha No No No No No

O15372 8.00E-63 Eukaryotic translation initiation factor 3 subunit H No No No -- No

Q14117 0 Dihydropyrimidinase No No No No No

P26196 0 Probable ATP-dependent RNA helicase DDX6 Yes Yes Yes No No

H7C4Y4 0.79 WD repeat-containing protein 49 -- -- -- -- --

P35606 0 Coatomer subunit beta' Yes Yes Yes No Yes

P78371 0 T-complex protein 1 subunit beta Yes Yes Yes Yes Yes

A5PLL1 1.9 Ankyrin repeat domain-containing protein 34B -- -- -- -- No

B2RXH2 7.6 Lysine-specific demethylase 4E -- -- -- -- --

P12236 1.00E-117 ADP/ATP translocase 3 Yes Yes Yes Yes Yes

Q16851 2.00E-98 UTP--glucose-1-phosphate uridylyltransferase No No No No No

P21695 2.00E-120 Glycerol-3-phosphate dehydrogenase [NAD(+)], 
cytoplasmic Yes Yes Yes Yes Yes

P31749 0 RAC-alpha serine/threonine-protein kinase No No No No No

P36959 0 GMP reductase 1 Yes Yes Yes Yes Yes

P54136 0 Arginine--tRNA ligase, cytoplasmic No No Yes No No

O95757 0 Heat shock 70 kDa protein 4L Yes Yes No No Yes

Q7L2H7 1.00E-50 Eukaryotic translation initiation factor 3 subunit M No No No -- No

Q13610 1.00E-78 Periodic tryptophan protein 1 homolog Yes Yes Yes No No

P55072 0 Transitional endoplasmic reticulum ATPase Yes Yes Yes No Yes

O60551 9.00E-170 Glycylpeptide N-tetradecanoyltransferase 2 Yes Yes Yes Yes Yes

Q92947 0 Glutaryl-CoA dehydrogenase, mitochondrial -- -- -- -- --

P26639 0 Threonine--tRNA ligase, cytoplasmic No No No No No

P55072 0 Transitional endoplasmic reticulum ATPase No No No No No
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9.16 8.9 9.03 O02286 R11A5.4 Protein R11A5.4, isoform a R.EHFIAAAFPSAC*GK.
T GTP-binding

8.35 9.71 9.03 G5EFX2 pkn-1 Protein PKN-1, isoform a K.IADFGLC*K.E

9.41 8.66 9.035 P91859 F32A7.5 Protein F32A7.5, isoform d K.DISGEQLQAILC*GK.
Q

7.85 10.22 9.035 Q17474 B0334.3 Protein B0334.3, isoform a K.VVQIDIC*PEEFHQNV
K.T

10.31 7.77 9.04 Q18496 acs-19 Protein ACS-19, isoform a K.TNISYNC*LER.N

0 9.05 9.05 O01541 aars-2 Alanine--tRNA ligase, 
cytoplasmic K.HIDC*GLGLER.L

0 9.05 9.05 O17071 rpt-4 Probable 26S protease regulatory 
subunit 10B R.NVC*TEAGMFAIR.A

9.08 9.04 9.06 Q22352 T08H10.1 Protein T08H10.1 K.C*VESQLK.A

8.91 9.24 9.075 Q94261 cif-1 COP9/Signalosome and eIF3 
complex-shared subunit 1 K.C*EPVVDSFIK.N

0 9.09 9.09 D3YT36 pyk-2 Pyruvate kinase K.TGVICTIGPAC*SDVE
TLR.K

9.62 8.58 9.1 Q21265 tag-225 Putative metalloproteinase 
inhibitor tag-225 

R.VEGPNALYTVLC*GQ
VLPDDR.S Disulfide

8.94 9.3 9.12 P27604 ahcy-1 Adenosylhomocysteinase K.ANIIVTTTGC*K.D

10.31 7.94 9.125 Q19341 haao-1 3-hydroxyanthranilate 3,4-
dioxygenase K.GTFAC*NAPYEAR.W

8.73 9.52 9.125 Q9TZS5 cct-7 Protein CCT-7, isoform a R.YNFFEDC*SK.A

8.47 9.8 9.135 Q94261 cif-1 COP9/Signalosome and eIF3 
complex-shared subunit 1 K.ALVDMC*AEAR.L

9.94 8.4 9.17 Q20643 F52B5.2 Protein F52B5.2 K.SMYEPGVILGGC*TL
R.R

8.52 9.86 9.19 P49041 rps-5 40S ribosomal protein S5 K.TIAEC*LADELINAAK
.G

0 9.21 9.21 Q9NEN6 rps-6 40S ribosomal protein S6 K.GQSC*YR.E

6.91 11.54 9.225 O17695 hda-1 Histone deacetylase 1 K.GHGEC*AR.F

7.77 10.73 9.25 P90992 misc-1 Protein MISC-1 R.GC*TPTVLR.A

0 9.28 9.28 Q10454 F46H5.3 Probable arginine kinase 
F46H5.3 K.LQAAPEC*HSLLK.K

0 9.32 9.32 G8JY43 cct-6 Protein CCT-6, isoform b R.DLLVEVC*R.T

9.32 0 9.32 G5ED41 cand-1 Protein CAND-1 K.FVDSLSLC*APDDAA
R.V

8.38 10.32 9.35 P34575 cts-1 Probable citrate synthase, 
mitochondrial R.FRGYSIPEC*QK.L

9.22 9.5 9.36 Q09543 paa-1 Probable serine/threonine-protein 
phosphatase PP2A R.QNIIC*NSLLNVAK.E

9.4 0 9.4 Q20264 acs-11 Protein ACS-11 K.AGTVGPAVQGVGC*R
.I

10.67 8.28 9.475 O44549 acdh-3 Protein ACDH-3 R.ASSTC*SVHFDNVR.V

9.51 0 9.51 Q9NAI5 Y39G8B.1 Protein Y39G8B.1, isoform 
a R.DGDHPHC*PFLEEF.-

9.51 0 9.51 E5QCI8 nhr-49 Protein NHR-49, isoform e R.VC*LFNNTYMTR.D

9.53 0 9.53 B3GWB2 C08H9.2 Protein C08H9.2, isoform b R.NLEAETNC*R.I

9.58 0 9.58 Q86NC9 pnk-1 Protein PNK-1, isoform a R.VC*AADALPTTTPAA
STALR.Q

8.53 10.64 9.585 Q21926 irs-1 Isoleucine--tRNA ligase, 
cytoplasmic 

K.NLIC*NGLVLASDGA
K.M

9.59 0 9.59 G5EF05 W07E11.1 Protein W07E11.1 R.VCPAPCEGAC*TLGIG
SPAVTIK.S Iron-Sulfur 1 (4Fe-4S)

9.5 9.73 9.615 P02566 unc-54 Myosin-4 R.LPIYTDSC*AR.M

9.15 10.08 9.615 Q17761 T25B9.9 6-phosphogluconate 
dehydrogenase, decarboxylating R.C*LSALKDER.V
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Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial Yes Yes Yes -- --

Q16513 0 Serine/threonine-protein kinase N2 Yes Yes Yes Yes No

P46821 1.00E-11 Microtubule-associated protein 1B No No No -- --

Q9UJ83 0 2-hydroxyacyl-CoA lyase 1 Yes Yes No No No

Q9NR19 0 Acetyl-coenzyme A synthetase, cytoplasmic No No No Yes Yes

P49588 0 Alanine--tRNA ligase, cytoplasmic No No Yes No No

P62333 0 26S protease regulatory subunit 10B Yes Yes Yes No Yes

O60218 2.00E-78 Aldo-keto reductase family 1 member B10 No No No No No

Q7L2H7 1.00E-50 Eukaryotic translation initiation factor 3 subunit M No No No -- --

P14618 0 Pyruvate kinase PKM No No No No No

P16035 9.00E-10 Metalloproteinase inhibitor 2 Yes Yes -- -- --

P23526 0 Adenosylhomocysteinase Yes Yes Yes Yes No

P46952 2.00E-70 3-hydroxyanthranilate 3,4-dioxygenase No No -- Yes --

Q99832 0 T-complex protein 1 subunit eta Yes Yes Yes Yes Yes

Q7L2H7 1.00E-50 Eukaryotic translation initiation factor 3 subunit M No No No -- No

Q8IXN4 7.00E-31 MAK protein No Yes Yes No No

P46782 3.00E-125 40S ribosomal protein S5 Yes Yes Yes No Yes

P62753 8.00E-100 40S ribosomal protein S6 Yes Yes Yes Yes Yes

Q13547 0 Histone deacetylase 1 Yes Yes Yes Yes Yes

Q02978 8.00E-149 Mitochondrial 2-oxoglutarate/malate carrier protein Yes Yes No No Yes

P06732 4.00E-82 Creatine kinase M-type No -- No -- --

P40227 0 T-complex protein 1 subunit zeta No No No No No

Q86VP6 0 Cullin-associated NEDD8-dissociated protein 1 No No No -- No

O75390 0 Citrate synthase, mitochondrial Yes Yes Yes No Yes

P30153 0 Serine/threonine-protein phosphatase 2A 65 kDa 
regulatory subunit A alpha isoform No No No No No

Q4G176 3.00E-54 Acyl-CoA synthetase family member 3, mitochondrial No No No No No

P45954 3.00E-178 Short/branched chain specific acyl-CoA 
dehydrogenase, mitochondrial Yes Yes Yes No Yes

P14550 4.00E-97 Alcohol dehydrogenase [NADP(+)] No No No -- --

Q14541 5.00E-33 Hepatocyte nuclear factor 4-gamma No No No -- --

Q00341 6.00E-134 Vigilin No No No -- --

Q9NVE7 7.00E-88 Pantothenate kinase 4 No No -- No No

P41252 0 Isoleucine--tRNA ligase, cytoplasmic No No No No Yes

Q12882 3.00E-14 Dihydropyrimidine dehydrogenase [NADP(+)] Yes Yes -- -- --

P13533 0 Myosin-6 No No Yes No No

P52209 0 6-phosphogluconate dehydrogenase, decarboxylating Yes Yes Yes Yes No
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0 9.64 9.64 P47208 cct-4 T-complex protein 1 subunit delta R.SIHDALC*VIR.C

9.64 0 9.64 O01541 aars-2 Alanine--tRNA ligase, 
cytoplasmic 

K.VNDESNEFNVSNC*Q
VR.G

9.99 9.3 9.645 Q18040 C16A3.10 Probable ornithine 
aminotransferase, mitochondrial

K.VLPMNTGVEAC*ESA
VK.L

11.94 7.38 9.66 Q9BKS1 elc-1 Protein ELC-1 K.VC*QYFAYK.V

8.41 11.04 9.725 O45679 cysl-2 Cysteine synthase K.VEYMNPAC*SVK.D

9.94 9.53 9.735 G5EDY2 wars-1 Protein WARS-1 R.AIFGFTPEDC*LGK.A

9.55 10.05 9.8 O44906 W05G11.6 Protein W05G11.6, isoform 
a R.IAC*NIGR.D

9.9 9.82 9.86 Q19905 sqv-4 UDP-glucose 6-dehydrogenase K.AAESIGC*ILR.E

0 9.94 9.94 Q19246 dhs-25 Protein DHS-25 K.SLGTPSILVNC*AGIT
K.D

8.39 11.55 9.97 Q9XWI6 eif-3.B Eukaryotic translation initiation 
factor 3 subunit R.YFVTC*STLGGR.A

10.24 9.73 9.985 G5EGK8 let-92 Serine/threonine-protein 
phosphatase 

R.NVVTVFSAPNYC*YR
.C
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P50991 0 T-complex protein 1 subunit delta Yes Yes Yes Yes Yes

P49588 0 Alanine--tRNA ligase, cytoplasmic No No No No No

P04181 0 Ornithine aminotransferase, mitochondrial No No No No No

Q15369 9.00E-59 Transcription elongation factor B polypeptide 1 Yes Yes Yes No Yes

P35520 8.00E-62 Cystathionine beta-synthase No No No No Yes

P23381 0 Tryptophan--tRNA ligase, cytoplasmic Yes Yes No Yes No

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial No No No -- --

O60701 0 UDP-glucose 6-dehydrogenase No No No -- No

Q92506 2.00E-76 Estradiol 17-beta-dehydrogenase 8 Yes Yes No No No

P55884 1.00E-130 Eukaryotic translation initiation factor 3 subunit B No No No No No

P62714 0 Serine/threonine-protein phosphatase 2A catalytic 
subunit beta isoform Yes Yes Yes Yes Yes
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Uniprot ID Description Sequence Function

0.19 0.18 0.185 P18948 vit-6 Vitellogenin-6 R.VIC*PIAEVGTK.F

0.16 0.21 0.185 P18948 vit-6 Vitellogenin-6 K.TEEGLIC*R.V

0.19 0.2 0.195 P18948 vit-6 Vitellogenin-6 R.EC*NEEQLEQIYR.H

0.2 0.22 0.21 P18948 vit-6 Vitellogenin-6 R.SYANNESPC*EQTFSS
R.V

0.21 0.22 0.215 P05690 vit-2 Vitellogenin-2 R.VAIVC*SK.V

0.23 0.21 0.22 P06125 vit-5 Vitellogenin-5 R.APLTTC*YSLVAK.D

0.23 0.27 0.25 P18948 vit-6 Vitellogenin-6 R.NQFTPC*YSVLAK.D

0.37 0.34 0.355 O46009 ZK228.3 Protein ZK228.3 K.ARDGVVYSVAC*STH
QFV.-

0.38 0.36 0.37 G4S185 C17H12.13 Protein C17H12.13, 
isoform b 

R.DLVQDSLQC*SSTCVI
R.D

0.4 0.45 0.425 O61217 K02D7.1 Protein K02D7.1 R.ADLGIIC*GSGLGPIG
DTVQDATILPYSK.I

0.41 0.48 0.445 O18000 pes-9 Protein PES-9 R.EGC*SIPITLTFQELTG
K.S

0.45 0.48 0.465 Q20222 lbp-3 Fatty acid-binding protein 
homolog 3 K.MVNNGITC*R.R Redox-active disulfide

0.51 0.47 0.49 O16294 F32D1.5 Probable GMP reductase R.SAC*TYTGAK.H NADP-bindng 

0.44 0.54 0.49 O61217 K02D7.1 Protein K02D7.1 K.TVGADALGMSTC*H
EVTVAR.Q

0.64 0.39 0.515 Q93934 R07H5.8 Protein R07H5.8 K.GVEASVTC*GSYAAQ
EIIKK.H

0.49 0.56 0.525 P29691 eef-2 Elongation factor 2 R.ETVQSESNQIC*LSK.S

0.53 0.54 0.535 P42170 rnr-2 Ribonucleoside-diphosphate 
reductase small chain R.DFAC*LLYSK.L

0.53 0.54 0.535 Q8MNV6 C16A3.10 Protein C16A3.10, isoform 
b K.GVSDLC*KK.Y

0.59 0.53 0.56 Q93576 ndk-1 Nucleoside diphosphate kinase R.NIC*HGSDAVDSANR.
E

0.5 0.65 0.575 O18000 pes-9 Protein PES-9 K.LETIGTIC*ELADLGT
QELEGK.T

0.54 0.62 0.58 Q9TZ33 ucr-2.3 Protein UCR-2.3 R.TTQVQDIEGC*K.R

0.57 0.6 0.585 Q10657 tpi-1 Triosephosphate isomerase K.AGVLVAAQNC*YK.V

0.62 0.57 0.595 Q93576 ndk-1 Nucleoside diphosphate kinase R.GDFC*IQTGR.N

0.6 0.59 0.595 G8JYF5 hsp-60 Protein HSP-60, isoform b R.VTDALC*ATR.A

0.62 0.59 0.605 G8JYF5 hsp-60 Protein HSP-60, isoform b K.ANEEAGDGTTC*ATV
LAR.A

0.58 0.64 0.61 P29691 eef-2 Elongation factor 2 K.TC*DPNGPLMMYISK
.M

0.62 0.61 0.615 Q22799 dlc-1 Dynein light chain 1, cytoplasmic K.NADMSDDMQQDAID
C*ATQALEK.Y

Table 3A-2. MS results showing the 338 cysteine-containing peptides identified in daf-2 
and daf-16;daf-2 lysates, in order from average light:heavy ratios of < 1 (decreased
cysteine labeling in daf-2) to > 1 (increased cysteine labeling in daf-2). Human
homologues and cysteine conservation across various species were determined as
described for Table 3A-1. 

Run 1 Run 2 Average
C. elegans
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Uniprot 
ID

E-value Description Human Mouse Fly Yeast Mustard

Q8N8U9 8.00E-05 BMP-binding endothelial regulator protein -- No -- -- --

Q8N8U9 8.00E-05 BMP-binding endothelial regulator protein -- -- -- -- --

Q8N8U9 8.00E-05 BMP-binding endothelial regulator protein -- -- No -- --

Q8N8U9 8.00E-05 BMP-binding endothelial regulator protein -- No Yes -- --

Q9Y6R7 2.00E-05 IgGFc-binding protein -- -- No -- --

Q8N8U9 1.00E-05 BMP-binding endothelial regulator protein Yes -- -- -- --

Q8N8U9 8.00E-05 BMP-binding endothelial regulator protein -- -- -- -- --

Q96M93 0.92 Adenosine deaminase domain-containing protein 1 -- -- -- -- --

E9PD17 0.47 UDP-glucuronosyltransferase 3A1 -- -- -- -- --

P00491 2.00E-79 Purine nucleoside phosphorylase Yes Yes Yes Yes --

Q96KP4 0 Cytosolic non-specific dipeptidase No No No No --

Q01469 4.00E-08 Fatty acid-binding protein, epidermal Yes Yes -- -- --

P36959 0 GMP reductase 1 Yes Yes Yes Yes No

P00491 2.00E-79 Purine nucleoside phosphorylase No No No No --

P55263 8.00E-120 Adenosine kinase No No Yes No No

P13639 0 Elongation factor 2 Yes Yes Yes No No

P31350 5.00E-169 Ribonucleoside-diphosphate reductase subunit M2 Yes Yes No Yes Yes

P04181 2.00E-129 Ornithine aminotransferase, mitochondrial Yes Yes Yes Yes Yes

P22392 8.00E-75 Nucleoside diphosphate kinase B No No No Yes No

Q96KP4 0 Cytosolic non-specific dipeptidase No No No No --

P22695 1.00E-34 Cytochrome b-c1 complex subunit 2, mitochondrial No No No No No

P60174 2.00E-107 Triosephosphate isomerase Yes Yes No No No

P22392 8.00E-75 Nucleoside diphosphate kinase B Yes Yes Yes No No

P10809 1.00E-81 60 kDa heat shock protein, mitochondrial No No No No No

P10809 1.00E-81 60 kDa heat shock protein, mitochondrial No No No No No

P13639 0 Elongation factor 2 Yes Yes Yes Yes Yes

Q96FJ2 2.00E-60 Dynein light chain 2, cytoplasmic Yes Yes Yes No No

Conserved CysteineHuman
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0.63 0.61 0.62 Q18040 C16A3.10 Probable ornithine 
aminotransferase, mitochondrial

K.VLPMNTGVEAC*ESA
VK.L

0.62 0.62 0.62 Q21217 gta-1 Probable 4-aminobutyrate 
aminotransferase, mitocho R.SLC*MLSVTR.S

0.68 0.56 0.62 Q27481 uba-1 Protein UBA-1, isoform a K.LSETDC*QPR.Q

0.61 0.64 0.625 Q21824 prdx-3 Probable peroxiredoxin prdx-3 R.HTTC*NDLPVGR.S

0.6 0.71 0.655 Q10663 gei-7 Bifunctional glyoxylate cycle 
protein 

R.GTGC*VPLYNLMEDA
ATAEISR.A

0.67 0.65 0.66 Q9N599 pas-3 Proteasome subunit alpha type-4 R.NSYGEEMPVEQLVQ
NLC*NEK.Q

0.66 0.66 0.66 P41932 par-5 14-3-3-like protein 1 K.VEQELNDIC*QDVLK.
L

0.67 0.66 0.665 Q7Z139 hyl-2 Protein HYL-2 R.MAEC*AMR.A

0.79 0.56 0.675 O44727 cpn-4 Protein CPN-4 K.EDFDC*EASR.D

0.66 0.7 0.68 O44549 acdh-3 Protein ACDH-3 K.YAIEC*LNAGR.I

0.64 0.74 0.69 Q9XW92 vha-13 V-type proton ATPase catalytic 
subunit A 

K.YSNSDAIIYVGC*GER
.G

0.73 0.66 0.695 Q23621 gdh-1 Glutamate dehydrogenase K.C*AVVDVPFGGAK.G ADP-ribosylcysteine

0.72 0.67 0.695 Q23621 gdh-1 Glutamate dehydrogenase K.AVGKDC*PVEPNAAF
AAK.I

0.67 0.74 0.705 O45246 hsp-70 Protein HSP-70 R.ARFEELC*ADLFR.S

0.75 0.67 0.71 P91856 F26H9.5 Probable phosphoserine 
aminotransferase R.SIMNVC*FR.I

0.73 0.69 0.71 C1P636 uba-1 Protein UBA-1, isoform c R.ATSC*YER.L

0.72 0.7 0.71 B2D6P1 rmd-2 Protein RMD-2, isoform c K.FC*NEIGNR.V

0.67 0.75 0.71 Q95YF3 cgh-1 ATP-dependent RNA helicase 
cgh-1 R.NLVC*SDLLTR.G

0.65 0.78 0.715 O62102 pbs-2 Proteasome subunit beta type K.LTESIYAC*GAGTAAD
LDQVTK.M

0.77 0.7 0.735 Q21193 pfn-3 Profilin-3 K.GLQPEMC*SK.T

0.69 0.79 0.74 Q95Y04 rps-28 40S ribosomal protein S28 R.TGSQGQC*TQVR.V

0.73 0.76 0.745 Q19341 haao-1 3-hydroxyanthranilate 3,4-
dioxygenase K.GTFAC*NAPYEAR.W

0.76 0.75 0.755 O17643 idh-2 Isocitrate dehydrogenase 
[NADP] K.C*ATITPDEAR.I

0.76 0.76 0.76 G5EC98 W06H3.3 Protein W06H3.3 R.AAGLVPDLLIC*R.S

0.75 0.77 0.76 P05634 msp-10 Major sperm protein 
10/36/56/76 

K.RLGVDPPC*GVLDPK
.E

0.68 0.84 0.76 Q9XUV0 pbs-5 Proteasome subunit beta type K.YC*TLYELR.E

0.78 0.76 0.77 O45865 ant-1.1 Protein ANT-1.1, isoform a K.GLADC*LIK.I

0.78 0.76 0.77 Q9U2X0 prmt-1 Protein PRMT-1 R.LYVC*AIEDR.Q S-nitrosocysteine

0.72 0.83 0.775 P91917 tag-210 Putative GTP-binding protein 
tag-210 

K.SEAQAENFPFC*TIDP
NESR.V

0.67 0.88 0.775 O17680 sams-1 Probable S-adenosylmethionine 
synthase 1 K.VAC*ETVTK.T Disulfide

0.76 0.8 0.78 P40614 F01G4.6 Phosphate carrier protein, 
mitochondrial R.GC*APMIYK.A

0.73 0.83 0.78 Q9U1Q4 vrs-2 Valine--tRNA ligase K.C*IDTGLR.L

0.78 0.8 0.79 O45495 uev-1 Protein UEV-1 R.IYNLQIQC*GGNYPR.
E

0.76 0.82 0.79 Q22370 ucr-2.2 Protein UCR-2.2 R.NGGLGNSIYAPC*SK.I

0.82 0.77 0.795 P24886 nd4l NADH-ubiquinone 
oxidoreductase chain 4L K.FFGSDNC*IF.-
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P04181 0 Ornithine aminotransferase, mitochondrial No No No No No

P80404 8.00E-168 4-aminobutyrate aminotransferase, mitochondrial No No No No No

P22314 0 Ubiquitin-like modifier-activating enzyme 1 Yes Yes No No No

E9PH29 5.00E-94 Thioredoxin-dependent peroxide reductase, 
mitochondrial No No No No No

Q9Y4D2 3.7 Sn1-specific diacylglycerol lipase alpha -- -- -- Yes No

P25789 1.00E-115 Proteasome subunit alpha type-4 Yes Yes Yes No Yes

P63104 3.00E-135 14-3-3 protein zeta/delta Yes Yes Yes No Yes

Q96G23 2.00E-39 Ceramide synthase 2 No No No No No

P51911 5.00E-17 Calponin-1 No No No -- No

P45954 3.00E-178 Short/branched chain specific acyl-CoA 
dehydrogenase, mitochondrial No No No No No

P38606 0 V-type proton ATPase catalytic subunit A Yes Yes Yes Yes Yes

P00367 0 Glutamate dehydrogenase 1, mitochondrial Yes Yes Yes No No

P00367 0 Glutamate dehydrogenase 1, mitochondrial No No No No --

P11142 0 Heat shock cognate 71 kDa protein No Yes Yes Yes No

Q9Y617 4.00E-139 Phosphoserine aminotransferase No No No No No

P22314 0 Ubiquitin-like modifier-activating enzyme 1 No No No No No

Q96DB5 6.00E-27 Regulator of microtubule dynamics protein 1 No No -- -- --

P26196 0 Probable ATP-dependent RNA helicase DDX6 Yes Yes Yes Yes Yes

Q99436 2.00E-69 Proteasome subunit beta type-7 Yes Yes Yes No Yes

P47736 8.30E+00 Rap1 GTPase-activating protein 1 No Yes No No Yes

P62857 1.00E-30 40S ribosomal protein S28 Yes Yes Yes No No

P46952 2.00E-70 3-hydroxyanthranilate 3,4-dioxygenase No No -- Yes --

P48735 0 Isocitrate dehydrogenase [NADP], mitochondrial Yes Yes Yes Yes Yes

Q9NRF8 0 CTP synthase 2 Yes Yes Yes Yes Yes

Q9P0L0 2.00E-06 Vesicle-associated membrane protein-associated 
protein A No No -- -- --

P28062 4.00E-64 Proteasome subunit beta type-8 Yes Yes Yes Yes Yes

P12235 1.00E-143 ADP/ATP translocase 1 Yes Yes Yes No No

Q99873 1.00E-170 Protein arginine N-methyltransferase 1 No No No No No

Q9NTK5 0 Obg-like ATPase 1 Yes Yes Yes No Yes

Q00266 0 S-adenosylmethionine synthase isoform type-1 Yes Yes Yes Yes Yes

Q00325 9.00E-154 Phosphate carrier protein, mitochondrial No No No No No

P26640 0 Valine--tRNA ligase Yes Yes Yes No No

Q13404 1.00E-64 Ubiquitin-conjugating enzyme E2 variant 1 Yes Yes Yes Yes Yes

P22695 1.00E-43 Cytochrome b-c1 complex subunit 2, mitochondrial No No No No No

C9J9N5 0.47 Amino acid transporter -- -- -- -- --
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0.74 0.85 0.795 Q9NF11 Y105E8B.5 Protein Y105E8B.5 R.SSC*PEPMTVDFIR.V

0.76 0.84 0.8 O44549 acdh-3 Protein ACDH-3 R.ASSTC*SVHFDNVR.V

0.74 0.86 0.8 O45418 fkb-6 Protein FKB-6 K.AAAQQIIVC*R.N

0.85 0.76 0.805 Q21032 idh-1 Isocitrate dehydrogenase 
[NADP] K.SDGGFVWAC*K.N

0.83 0.78 0.805 G5EEK8 sca-1 Calcium ATPase K.NC*LFSGTNVASGK.A

0.81 0.82 0.815 Q9N362 Y55F3AM.13 Protein Y55F3AM.13 K.AEQILAGSC*DQSFV
TR.E

0.82 0.82 0.82 Q93573 tct-1 Translationally-controlled tumor 
protein homolog 

K.LVEMNC*YEDASMF
K.A

0.82 0.83 0.825 O16259 sti-1 Protein STI-1 K.AAC*LVAMR.E

0.76 0.9 0.83 Q9N358 cct-8 T-complex protein 1 subunit theta K.ACVTTC*PANSFNFN
VDNIR.I

0.83 0.84 0.835 O01504 rpa-2 60S acidic ribosomal protein P2 K.VLEAGGLDC*DMEN
ANSVVDALK.G

0.84 0.84 0.84 Q10663 gei-7 Bifunctional glyoxylate cycle 
protein K.DNIVGLNC*GR.W

0.84 0.84 0.84 P53013 eft-3 Elongation factor 1-alpha K.QLIVAC*NK.M

0.82 0.86 0.84 Q21217 gta-1 Probable 4-aminobutyrate 
aminotransferase, mitocho

K.AVQTMLC*GTSANEN
AIK.T Iron-Sulfur (2Fe-2S)

0.88 0.8 0.84 O01974 eif-3.H Eukaryotic translation initiation 
factor 3 subunit R.LEITNC*FPTVR.N

0.88 0.81 0.845 Q95YA9 cas-1 Adenylyl cyclase-associated 
protein K.VAQGC*EIVTSK.S

0.85 0.84 0.845 P50093 phb-2 Mitochondrial prohibitin 
complex protein 2 R.VLPSIC*NEVLK.G

0.84 0.86 0.85 Q95QW0 eif-3.L Eukaryotic translation initiation 
factor 3 subunit R.NAFATGC*PK.F

0.72 0.98 0.85 Q07749 unc-60 Actin-depolymerizing factor 2, 
isoform c 

K.VIFVQYC*PDNAPVR.
R

0.9 0.8 0.85 Q21032 idh-1 Isocitrate dehydrogenase 
[NADP] K.DLAIC*VK.G

0.85 0.86 0.855 O17921 tbb-1 Protein TBB-1 K.NMMAAC*DPR.H

0.79 0.92 0.855 Q93619 tag-173 Protein TAG-173 R.SGNQFDC*GK.L

1 0.73 0.865 D3YT81 dld-1 Protein DLD-1, isoform b R.EANLAAYC*GK.A

0.92 0.81 0.865 Q9TYY0 M57.2 Protein M57.2 R.LVFC*ETPLVEK.T

0.85 0.88 0.865 Q95Y85 Y110A7A.6 Protein Y110A7A.6, 
isoform b 

R.VFFVESVC*DDPDIIN
SNITEVK.I

0.84 0.9 0.87 Q20627 pam-1 Protein PAM-1, isoform a R.YAFPC*FDEPIYK.A

0.89 0.86 0.875 Q9XWW2 mrg-1 Protein MRG-1, isoform a K.ITNLALIC*TAR.G

0.85 0.9 0.875 P27604 ahcy-1 Adenosylhomocysteinase K.ANIIVTTTGC*K.D

0.88 0.88 0.88 P52011 cyn-3 Peptidyl-prolyl cis-trans 
isomerase 3 R.ALC*TGENGIGK.S

0.83 0.94 0.885 P34659 snr-5 Probable small nuclear 
ribonucleoprotein F 

R.C*NNVLYVGGVDGE
NETSA.-

0.81 0.96 0.885 P50432 mel-32 Serine 
hydroxymethyltransferase 

R.YYGGNEFIDQMELLC
*QK.R

0.85 0.94 0.895 P53596 C05G5.4 Probable succinyl-CoA ligase 
[ADP/GDP-forming] sub R.GC*IGIVSR.S

0.92 0.88 0.9 Q21746 sgt-1 Protein SGT-1 R.LEQYDLAIQDC*R.T

0.92 0.89 0.905 O17953 dld-1 Dihydrolipoyl dehydrogenase R.GIDC*TASLNLPK.M

0.91 0.9 0.905 Q20655 ftt-2 14-3-3-like protein 2 R.DIC*QDVLNLLDK.F
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P00492 5.00E-61 Hypoxanthine-guanine phosphoribosyltransferase No No -- -- No

P45954 3.00E-178 Short/branched chain specific acyl-CoA 
dehydrogenase, mitochondrial Yes Yes Yes No Yes

Q02790 8.00E-112 Peptidyl-prolyl cis-trans isomerase FKBP4 Yes Yes Yes -- --

O75874 0 Isocitrate dehydrogenase [NADP] cytoplasmic Yes Yes Yes No Yes

P16615 0 Sarcoplasmic/endoplasmic reticulum calcium ATPase 
2 No No No Yes No

O75037 7.5 Kinesin-like protein KIF21B -- -- -- -- --

P13693 2.00E-24 Translationally-controlled tumor protein No No No No No

F5H0T1 6.00E-125 Stress-induced-phosphoprotein 1 No No No No No

P50990 0 T-complex protein 1 subunit theta No No No No Yes

P05387 2.00E-17 60S acidic ribosomal protein P2 No No No No No

Q9Y4D2 3.7 Sn1-specific diacylglycerol lipase alpha -- -- -- Yes Yes

Q05639 0 Elongation factor 1-alpha 2 No No No No Yes

P80404 8.00E-168 4-aminobutyrate aminotransferase, mitochondrial Yes Yes Yes No No

O15372 8.00E-63 Eukaryotic translation initiation factor 3 subunit H Yes Yes Yes -- Yes

Q01518 1.00E-98 Adenylyl cyclase-associated protein 1 Yes Yes No No No

J3KPX7 2.00E-132 Prohibitin-2 No No Yes No No

Q9Y262 1.00E-144 Eukaryotic translation initiation factor 3 subunit L Yes Yes Yes -- Yes

E9PQB7 9.00E-08 Cofilin-1 No No Yes No Yes

O75874 0 Isocitrate dehydrogenase [NADP] cytoplasmic Yes Yes Yes No No

P07437 0 Tubulin beta chain Yes Yes Yes No No

P21953 4.00E-176 2-oxoisovalerate dehydrogenase subunit beta, 
mitochondrial Yes Yes Yes Yes Yes

P09622 0 Dihydrolipoyl dehydrogenase, mitochondrial No No No No --

Q92696 5.00E-68 Geranylgeranyl transferase type-2 subunit alpha No -- -- -- --

B0FLL2 7.00E-163 6-phosphofructo-2-kinase/fructose-2, 6-
bisphosphatase 2 transcript variant 3 Yes Yes Yes No Yes

E9PLK3 0 Puromycin-sensitive aminopeptidase Yes Yes Yes Yes Yes

B3KTM8 1.00E-26 Mortality factor 4-like protein 1 No No No Yes No

P23526 0 Adenosylhomocysteinase Yes Yes Yes Yes No

P30405 1.00E-77 Peptidyl-prolyl cis-trans isomerase F, mitochondrial Yes Yes Yes Yes Yes

P62306 3.00E-34 Small nuclear ribonucleoprotein F Yes Yes Yes Yes Yes

P34896 0 Serine hydroxymethyltransferase, cytosolic Yes Yes No Yes Yes

P53597 5.00E-132 Succinyl-CoA ligase [ADP/GDP-forming] subunit 
alpha, mitochondrial No No No No No

O43765 5.00E-61 Small glutamine-rich tetratricopeptide repeat-
containing protein alpha Yes Yes Yes No Yes

P09622 0 Dihydrolipoyl dehydrogenase, mitochondrial No No Yes No No

P63104 2.00E-145 14-3-3 protein zeta/delta Yes Yes Yes No Yes
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0.96 0.86 0.91 G5EGK8 let-92 Serine/threonine-protein 
phosphatase 

R.NVVTVFSAPNYC*YR
.C

0.83 0.99 0.91 Q19749 F23B12.5 Dihydrolipoyllysine-residue 
acetyltransferase comp K.ASALAC*QR.V

0.96 0.87 0.915 P47207 cct-2 T-complex protein 1 subunit beta K.LGEAC*SVVLR.G

0.87 0.97 0.92 Q9N4P2 glrx-21 Protein GLRX-21, isoform a K.TSC*TFCNR.A S-glutathionyl cysteine, 
Redox-active disulfide

0.91 0.93 0.92 P50432 mel-32 Serine 
hydroxymethyltransferase K.AIIAGVSC*YAR.H

0.92 0.93 0.925 Q07750 unc-60 Actin-depolymerizing factor 1, 
isoforms a/b R.TDNLTDC*R.Y

0.95 0.91 0.93 P47209 cct-5 T-complex protein 1 subunit 
epsilon R.MLSIEQC*PNNK.A

0.94 0.92 0.93 O18229 Y57G11C.3 Putative 6-
phosphogluconolactonase K.NVAFIIC*GK.Q

0.91 0.95 0.93 Q9TZS5 cct-7 Protein CCT-7, isoform a R.QLC*QNAGLDALDV
LNK.L

0.92 0.95 0.935 Q22494 vha-15 Probable V-type proton ATPase 
subunit H 2 K.LAC*FGTTR.M

0.9 0.97 0.935 Q20121 acs-4 Protein ACS-4 R.YLEGYC*SPFLDR.I

0.97 0.91 0.94 H2L023 cas-1 Protein CAS-1, isoform b K.LVTVVSDIC*.-

0.92 0.96 0.94 Q20585 rpn-7 26S proteasome non-ATPase 
regulatory subunit 6 R.LIATGQLQC*R.I

0.88 1 0.94 O44451 C04C3.3 Pyruvate dehydrogenase E1 
component subunit beta, K.VVC*PYSAEDAK.G

0.94 0.95 0.945 P52018 cyn-11 Peptidyl-prolyl cis-trans 
isomerase 11 K.LPIVVVQC*GQL.-

0.91 0.98 0.945 O17915 ran-1 GTP-binding nuclear protein ran-
1 R.VC*ENIPIVLCGNK.V

0.91 0.98 0.945 O17915 ran-1 GTP-binding nuclear protein ran-
1 R.VCENIPIVLC*GNK.V

0.94 0.96 0.95 Q9N358 cct-8 T-complex protein 1 subunit theta R.IAVYTC*PFDLTQTET
K.G

0.9 1 0.95 P53596 C05G5.4 Probable succinyl-CoA ligase 
[ADP/GDP-forming] sub

R.LVGPNC*PGIISADQC
K.I

0.9 1 0.95 P53596 C05G5.4 Probable succinyl-CoA ligase 
[ADP/GDP-forming] sub

R.LVGPNCPGIISADQC*
K.I

0.88 1.02 0.95 Q19626 vha-12 Probable V-type proton ATPase 
subunit B K.NTIC*EFTGDILR.T

0.98 0.93 0.955 Q95ZN7 nmt-1 Glycylpeptide N-
tetradecanoyltransferase K.C*ADMKPSQIGLVLQ.-

0.92 0.99 0.955 Q19825 rrt-1 Probable arginine--tRNA ligase, 
cytoplasmic R.STIIGDSIC*R.L

0.95 0.97 0.96 Q9XW92 vha-13 V-type proton ATPase catalytic 
subunit A K.LAANNPLLC*GQR.V

0.75 1.17 0.96 G5EBR1 gdi-1 Protein GDI-1, isoform a K.C*GDEIVR.G

0.8 1.14 0.97 Q86S29 cct-7 Protein CCT-7, isoform b K.C*AATTLSSK.L

0.94 1.01 0.975 G5EDW8 VF13D12L.3 Protein VF13D12L.3 K.SEADLGQC*FVAIDPE
AFAPGFADR.L

0.94 1.01 0.975 Q27535 ZC434.8 Probable arginine kinase 
ZC434.8 

R.SLQGYPFNPC*LSETN
YK.M

1.02 0.93 0.975 P52015 cyn-7 Peptidyl-prolyl cis-trans 
isomerase 7 K.SEC*LIADC*GQL.-

0.91 1.04 0.975 Q20057 F35G12.11 Protein F35G12.11 R.C*QHPEGGEK.V

0.89 1.06 0.975 Q05036 C30C11.4 Uncharacterized protein 
C30C11.4 

K.VSDC*VLAVPSYFTD
VQR.R

1 0.96 0.98 Q94272 fah-1 Protein FAH-1 R.IQQLLSEDC*AVLR.D

0.96 1.02 0.99 Q10454 F46H5.3 Probable arginine kinase 
F46H5.3 R.FLQAANAC*R.Y



211

P62714 0 Serine/threonine-protein phosphatase 2A catalytic 
subunit beta isoform Yes Yes Yes Yes Yes

H0YDD4 3.00E-169 Acetyltransferase component of pyruvate 
dehydrogenase complex Yes Yes No No No

P78371 0 T-complex protein 1 subunit beta Yes Yes Yes Yes Yes

Q9NS18 1.00E-17 Glutaredoxin-2, mitochondrial Yes Yes Yes Yes Yes

P34896 0 Serine hydroxymethyltransferase, cytosolic Yes Yes Yes No No

Q9Y281 1.00E-09 Cofilin-2 Yes Yes Yes Yes Yes

P48643 0 T-complex protein 1 subunit epsilon Yes Yes Yes No Yes

O95336 3.00E-26 6-phosphogluconolactonase No No No No Yes

Q99832 0 T-complex protein 1 subunit eta Yes Yes Yes Yes Yes

Q9UI12 9.00E-167 V-type proton ATPase subunit H No No Yes -- No

O60488 0 Long-chain-fatty-acid--CoA ligase 4 No No No No No

Q01518 1.00E-108 Adenylyl cyclase-associated protein 1 No No -- No No

Q15008 1.00E-126 26S proteasome non-ATPase regulatory subunit 6 Yes Yes No Yes Yes

P11177 1.00E-172 Pyruvate dehydrogenase E1 component subunit beta, 
mitochondrial No No No No No

O43447 6.00E-90 Peptidyl-prolyl cis-trans isomerase H Yes Yes Yes No Yes

P62826 2.00E-139 GTP-binding nuclear protein Ran Yes Yes Yes Yes Yes

P62826 2.00E-139 GTP-binding nuclear protein Ran Yes Yes Yes Yes Yes

P50990 0 T-complex protein 1 subunit theta Yes Yes Yes Yes No

P53597 5.00E-132 Succinyl-CoA ligase [ADP/GDP-forming] subunit 
alpha, mitochondrial Yes Yes Yes Yes Yes

P53597 5.00E-132 Succinyl-CoA ligase [ADP/GDP-forming] subunit 
alpha, mitochondrial Yes Yes Yes No Yes

P21281 0 V-type proton ATPase subunit B, brain isoform Yes Yes Yes No No

O60551 3.00E-170 Glycylpeptide N-tetradecanoyltransferase 2 Yes Yes Yes No No

P54136 0 Arginine--tRNA ligase, cytoplasmic No No Yes No No

P38606 0 V-type proton ATPase catalytic subunit A No No No -- No

P50395 0 Rab GDP dissociation inhibitor beta No No No No No

Q99832 0 T-complex protein 1 subunit eta Yes Yes Yes Yes Yes

P00966 2.6 Argininosuccinate synthase -- -- No -- --

P12277 1.00E-83 Creatine kinase B-type No No Yes -- --

P30405 1.00E-78 Peptidyl-prolyl cis-trans isomerase F, mitochondrial No No No No No

P84090 3.00E-24 Enhancer of rudimentary homolog No No -- -- --

O95757 0 Heat shock 70 kDa protein 4L Yes Yes Yes No Yes

P16930 0 Fumarylacetoacetase No No No -- No

P06732 4.00E-82 Creatine kinase M-type No No Yes -- --
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0.94 1.04 0.99 Q19842 pcca-1 Propionyl-CoA carboxylase 
alpha chain, mitochondri

K.MADEAVC*VGEAPT
AK.S

1.15 0.84 0.995 G5EBK3 erm-1 ERM-1B K.YGDYVPETHVAGC*L
TADR.L

0.99 1 0.995 H2L0B0 nhr-104 Protein NHR-104, isoform a K.SEGLLC*K.K

0.99 1 0.995 Q17761 T25B9.9 6-phosphogluconate 
dehydrogenase, decarboxylating 

K.SNGEPC*CDWVGNA
GSGHFVK.M

0.96 1.03 0.995 P34575 cts-1 Probable citrate synthase, 
mitochondrial R.FRGYSIPEC*QK.L

0.94 1.06 1 Q9N5B3 W08E12.7 Protein W08E12.7 K.MGVVEC*EK.Y

0.97 1.04 1.005 Q9N4J8 cct-3 Protein CCT-3 R.ESGHQVQIGNINAC*
K.T

1.08 0.94 1.01 Q19825 rrt-1 Probable arginine--tRNA ligase, 
cytoplasmic R.LALC*DVTR.K

1.07 0.95 1.01 Q21926 irs-1 Isoleucine--tRNA ligase, 
cytoplasmic K.LLDC*PNR.Q

1.02 1 1.01 Q19626 vha-12 Probable V-type proton ATPase 
subunit B 

R.EDHSDVSNQLYAC*Y
AIGK.D

0.83 1.2 1.015 Q21265 tag-225 Putative metalloproteinase 
inhibitor tag-225 

R.VEGPNALYTVLC*GQ
VLPDDR.S Disulfide

1.01 1.02 1.015 P17331 gpd-4 Glyceraldehyde-3-phosphate 
dehydrogenase 4 

K.YDASNDHVISNASC*
TTNCLAPLAK.V Active site nucleophile

1.01 1.02 1.015 P17331 gpd-4 Glyceraldehyde-3-phosphate 
dehydrogenase 4 

K.YDASNDHVISNASCT
TNC*LAPLAK.V

0.99 1.04 1.015 Q05036 C30C11.4 Uncharacterized protein 
C30C11.4 R.FIPFIPC*K.V

0.97 1.06 1.015 Q04908 rpn-3 26S proteasome non-ATPase 
regulatory subunit 3 

K.GVKPVFASPESDC*Y
LR.L

1.03 1.01 1.02 P46554 B0285.4 Probable leucine carboxyl 
methyltransferase 1 R.TNDDATQC*K.Y

1 1.04 1.02 O17921 tbb-1 Protein TBB-1 R.EIVHVQAGQC*GNQI
GSK.F

0.98 1.07 1.025 Q9BL27 Y71H2AR.1 Protein Y71H2AR.1 K.LTC*IPTLLEVGNK.A

0.93 1.12 1.025 P49197 rps-21 40S ribosomal protein S21 R.YAIC*GAIR.R

0.99 1.07 1.03 Q17763 atp-5 Protein ATP-5 R.IPDPC*NIGLNETPEIE
NR.F

0.96 1.1 1.03 Q20772 F54D5.7 Probable glutaryl-CoA 
dehydrogenase, mitochondrial R.AITGLNGFC*.-

0.93 1.13 1.03 Q19825 rrt-1 Probable arginine--tRNA ligase, 
cytoplasmic R.DAVAFGC*VK.Y

1 1.08 1.04 P46562 alh-9 Putative aldehyde dehydrogenase 
family 7 member A1 R.STC*TINYSK.E

0.98 1.1 1.04 O18240 rps-18 Protein RPS-18 R.FAFVC*CR.K

0.98 1.1 1.04 O18240 rps-18 Protein RPS-18 R.FAFVCC*R.K

1.07 1.02 1.045 Q20585 rpn-7 26S proteasome non-ATPase 
regulatory subunit 6 

R.C*NEVQEQLTGGGLN
GTLIPVR.E

1.03 1.06 1.045 H2KYJ5 mtch-1 Protein MTCH-1, isoform a K.YTTC*AQALAVIGK.Q

1.27 0.83 1.05 Q2HQL4 gln-3 Glutamine synthetase R.VAEEFGVIASFDC*KP
IK.G

1.12 0.98 1.05 Q17335 H24K24.3 Alcohol dehydrogenase 
class-3 K.FFGATEC*INPK.S

0.99 1.11 1.05 Q9BL27 Y71H2AR.1 Protein Y71H2AR.1 K.ILTTGESWC*PDCVV
AEPVVEEVIK.D

Active site 
nucleophile/Redox-active 
disulfide

1.18 0.93 1.055 O61790 R12E2.11 Protein R12E2.11 R.MAAQAMC*EK.I

0.92 1.19 1.055 Q93934 R07H5.8 Protein R07H5.8 K.ANGWETTC*VK.E

1.06 1.05 1.055 Q2HQL4 gln-3 Glutamine synthetase R.TVC*LEGAER.K
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P05165 0 Propionyl-CoA carboxylase alpha chain, 
mitochondrial Yes Yes No No No

P15311 0 Ezrin No No No -- --

B3KY83 2.00E-18 Retinoic acid receptor RXR-alpha Yes Yes Yes -- --

P52209 0 6-phosphogluconate dehydrogenase, decarboxylating Yes Yes Yes Yes Yes

O75390 0 Citrate synthase, mitochondrial Yes Yes Yes No Yes

Q9UQ80 1.00E-128 Proliferation-associated protein 2G4 Yes Yes Yes No Yes

P49368 0 T-complex protein 1 subunit gamma No No No No No

P54136 0 Arginine--tRNA ligase, cytoplasmic Yes Yes Yes No Yes

P41252 0 Isoleucine--tRNA ligase, cytoplasmic No No No No No

P21281 0 V-type proton ATPase subunit B, brain isoform Yes Yes Yes No No

P16035 9.00E-10 Metalloproteinase inhibitor 2 Yes Yes -- -- --

P04406 0 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes Yes Yes Yes

P04406 0 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes Yes Yes Yes

O95757 0 Heat shock 70 kDa protein 4L No No No No No

O43242 1.00E-118 26S proteasome non-ATPase regulatory subunit 3 No No No Yes No

Q9UIC8 7.00E-75 Leucine carboxyl methyltransferase 1 Yes Yes Yes Yes No

P07437 0 Tubulin beta chain Yes Yes Yes Yes Yes

Q9BRA2 4.00E-20 Thioredoxin domain-containing protein 17 No No No -- No

P63220 1.00E-35 40S ribosomal protein S21 Yes Yes Yes No Yes

E7EVL6 0.17 Replication initiator 1 -- -- -- -- --

Q92947 0 Glutaryl-CoA dehydrogenase, mitochondrial No No No -- No

P54136 0 Arginine--tRNA ligase, cytoplasmic Yes Yes Yes No No

P49419 0 Alpha-aminoadipic semialdehyde dehydrogenase Yes Yes No -- Yes

P62269 2.00E-86 40S ribosomal protein S18 No No No No No

P62269 2.00E-86 40S ribosomal protein S18 No No No Yes Yes

Q15008 1.00E-126 26S proteasome non-ATPase regulatory subunit 6 No No No No No

Q9Y6C9 9.00E-36 Mitochondrial carrier homolog 2 No No No -- --

P15104 5.00E-178 Glutamine synthetase No No No No No

P11766 0 Alcohol dehydrogenase class-3 Yes Yes No No No

Q9BRA2 4.00E-20 Thioredoxin domain-containing protein 17 Yes Yes Yes -- Yes

E9PFD2 8.00E-50 Uridine 5'-monophosphate synthase No No No No No

P55263 8.00E-120 Adenosine kinase No No No Yes No

P15104 5.00E-178 Glutamine synthetase No No Yes Yes No
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1.05 1.06 1.055 Q09607 gst-36 Probable glutathione S-
transferase gst-36 R.AGTNAVDC*AR.L

1 1.11 1.055 Q9N456 glrx-10 Protein GLRX-10 K.SYC*PYCHK.A Redox-active disulfide

1.09 1.03 1.06 Q95X21 Y71H10B.1 Protein Y71H10B.1, 
isoform b 

K.LTNQMDEEYGC*LGS
LFR.T

1.08 1.04 1.06 P52015 cyn-7 Peptidyl-prolyl cis-trans 
isomerase 7 R.ALC*TGEK.G

1.04 1.09 1.065 Q27497 gsp-1 Serine/threonine-protein 
phosphatase PP1-alpha R.GNHEC*ASINR.I

1.01 1.12 1.065 Q8ITZ0 fum-1 Protein FUM-1, isoform b R.C*GLGELSLPENEPGS
SIMPGK.V

1.06 1.08 1.07 Q23621 gdh-1 Glutamate dehydrogenase R.YSLDVC*EDEVK.A

1.03 1.11 1.07 Q9XW92 vha-13 V-type proton ATPase catalytic 
subunit A K.C*LGSPER.E

1.06 1.09 1.075 O45622 erfa-3 Protein ERFA-3, isoform a K.TDITYVPC*SGLTGAF
IK.D

1.09 1.08 1.085 Q10454 F46H5.3 Probable arginine kinase 
F46H5.3 

R.SLQGYPFNPC*LSEA
NYLEMESK.V

1.04 1.13 1.085 Q9XVF7 rpl-8 60S ribosomal protein L8 K.AQIQIGNIVPVGTLPE
GTTIC*NVENK.S

1.03 1.16 1.095 O17643 idh-2 Isocitrate dehydrogenase 
[NADP] K.SSGGFVWAC*K.N

1.1 1.09 1.095 Q95Y90 rpl-9 60S ribosomal protein L9 R.TVC*SHIK.N

1.11 1.1 1.105 Q22038 rho-1 Ras-like GTP-binding protein 
rhoA K.LVIVGDGAC*GK.T GTP-binding

0.74 1.47 1.105 Q95017 ubc-9 SUMO-conjugating enzyme 
UBC9 

K.NADGTLNLFNWEC*
AIPGR.K

1.26 0.96 1.11 Q93379 gsr-1 Protein GSR-1, isoform a R.LGGTC*VNVGCVPK.
K

FAD-binding/Redox-active 
disulfide

1.09 1.13 1.11 O02286 R11A5.4 Protein R11A5.4, isoform a R.GIFIC*DGSQHEADEL
IDK.L

1.08 1.15 1.115 Q93572 rpa-0 60S acidic ribosomal protein P0 K.C*LLVGVDNVGSK.Q

0.96 1.27 1.115 Q18678 srs-2 Probable serine--tRNA ligase, 
cytoplasmic K.YAGVSTC*FR.Q

1.09 1.18 1.135 Q05062 cdc-42 Cell division control protein 42 
homolog K.YVEC*SALTQK.G

1.37 0.91 1.14 Q17761 T25B9.9 6-phosphogluconate 
dehydrogenase, decarboxylating R.VVVC*AAVR.L

1.18 1.1 1.14 D7SFI3 C02D5.4 Protein C02D5.4 R.FC*PWAQR.A Active site nucleophile

1.15 1.14 1.145 P04970 gpd-1 Glyceraldehyde-3-phosphate 
dehydrogenase 1 

K.YDASNDHVVSNASC
*TTNCLAPLAK.V Active site nucleophile

1.14 1.16 1.15 Q19297 F10D7.3 Uncharacterized monothiol 
glutaredoxin F10D7.3 K.TYC*PWSK.R Iron-Sulfur (2Fe-2S)

1.12 1.18 1.15 P49041 rps-5 40S ribosomal protein S5 K.TIAEC*LADELINAAK
.G

1.15 1.16 1.155 O45903 W09H1.5 Probable trans-2-enoyl-CoA 
reductase 1, mitochondr K.LALNC*VGGR.S

1.15 1.16 1.155 Q9XWI6 eif-3.B Eukaryotic translation initiation 
factor 3 subunit R.YFVTC*STLGGR.A

1.23 1.09 1.16 Q9BL60 vps-20 Protein VPS-20 K.ENC*LEKER.Q

1.16 1.17 1.165 Q8IA58 F22F7.1 Protein F22F7.1, isoform b R.ILQQYPDQC*SFYMF
K.N

1.13 1.21 1.17 Q93572 rpa-0 60S acidic ribosomal protein P0 K.AGAIAPC*DVK.L

1.09 1.25 1.17 G5ECU1 skr-1 Protein SKR-1 K.GLLDVTC*K.T

1.18 1.19 1.185 Q93830 exos-3 Protein EXOS-3 R.LINPSC*K.I

1.18 1.21 1.195 O17921 tbb-1 Protein TBB-1 K.TAVC*DIPPR.G

1.12 1.28 1.2 O16294 F32D1.5 Probable GMP reductase K.VGIGPGSVC*TTR.K
Thioimidate 
intermediate/Potassium 
binding



215

O60760 8.00E-31 Hematopoietic prostaglandin D synthase No No No -- Yes

P35754 2.00E-26 Glutaredoxin-1 Yes Yes Yes Yes Yes

P49902 1.00E-173 Cytosolic purine 5'-nucleotidase No No No -- No

P30405 1.00E-78 Peptidyl-prolyl cis-trans isomerase F, mitochondrial Yes Yes Yes Yes Yes

P62140 0 Serine/threonine-protein phosphatase PP1-beta 
catalytic subunit Yes Yes Yes Yes Yes

P07954 4.00E-176 Fumarate hydratase, mitochondrial No No Yes Yes Yes

P00367 0 Glutamate dehydrogenase 1, mitochondrial No No No No No

P38606 0 V-type proton ATPase catalytic subunit A Yes Yes Yes No Yes

Q8IYD1 0 Eukaryotic peptide chain release factor GTP-binding 
subunit ERF3B Yes Yes Yes No No

P06732 4.00E-82 Creatine kinase M-type No No Yes -- --

P62917 7.00E-134 60S ribosomal protein L8 Yes Yes Yes No Yes

P48735 0 Isocitrate dehydrogenase [NADP], mitochondrial Yes Yes Yes No Yes

P32969 3.00E-84 60S ribosomal protein L9 Yes Yes Yes No No

P61586 8.00E-125 Transforming protein RhoA Yes Yes Yes Yes No

P63279 2.00E-93 SUMO-conjugating enzyme UBC9 Yes Yes Yes No Yes

P00390 1.00E-180 Glutathione reductase, mitochondrial Yes Yes Yes Yes Yes

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial Yes Yes Yes -- --

P05388 2.00E-133 60S acidic ribosomal protein P0 Yes Yes Yes No No

P49591 0 Serine--tRNA ligase, cytoplasmic Yes Yes Yes Yes Yes

P60953 2.00E-124 Cell division control protein 42 homolog Yes Yes Yes Yes Yes

P52209 0 6-phosphogluconate dehydrogenase, decarboxylating No No No No Yes

P78417 2.00E-40 Glutathione S-transferase omega-1 Yes Yes Yes -- No

P04406 0 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes Yes Yes Yes

P35754 1.00E-12 Glutaredoxin-1 Yes Yes Yes Yes Yes

P46782 3.00E-125 40S ribosomal protein S5 Yes Yes Yes No Yes

Q9BV79 5.00E-92 Trans-2-enoyl-CoA reductase, mitochondrial Yes Yes Yes No Yes

P55884 1.00E-130 Eukaryotic translation initiation factor 3 subunit B No No No No No

Q96FZ7 5.00E-54 Charged multivesicular body protein 6 No No No No No

Q8NBX0 4.00E-88 Saccharopine dehydrogenase-like oxidoreductase No No No -- No

P05388 2.00E-133 60S acidic ribosomal protein P0 Yes Yes No No No

P63208 3.00E-73 S-phase kinase-associated protein 1 Yes Yes Yes Yes Yes

Q9NQT5 6.00E-50 Exosome complex component RRP40 Yes Yes Yes No Yes

P07437 0 Tubulin beta chain Yes Yes Yes Yes Yes

P36959 0 GMP reductase 1 Yes Yes Yes Yes Yes
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1.19 1.22 1.205 P54216 aldo-1 Fructose-bisphosphate aldolase 
1 R.ALQASC*LAK.W

1.19 1.22 1.205 Q22067 T01C8.5 Probable aspartate 
aminotransferase, cytoplasmic R.INIC*GLNTK.N

1.17 1.24 1.205 Q9XW92 vha-13 V-type proton ATPase catalytic 
subunit A K.YDRFC*PFYK.T

1.17 1.26 1.215 O18650 rps-19 40S ribosomal protein S19 R.GVAPNHFQTSAGNC*
LR.K

1.15 1.28 1.215 Q22494 vha-15 Probable V-type proton ATPase 
subunit H 2 R.EAALQMVQC*K.T

1.1 1.33 1.215 Q9BKU5 Y37E3.8 Protein Y37E3.8, isoform a K.SPVIDC*TK.L

1.09 1.34 1.215 O17695 hda-1 Histone deacetylase 1 K.GHGEC*AR.F

1.26 1.18 1.22 P52015 cyn-7 Peptidyl-prolyl cis-trans 
isomerase 7 K.SECLIADC*GQL.- S-nitrosocysteine

1.21 1.23 1.22 Q17409 tba-1 Alpha-1 tubulin R.TIQFVDWC*PTGFK.V

1.04 1.4 1.22 Q22067 T01C8.5 Probable aspartate 
aminotransferase, cytoplasmic 

R.SFGVQC*LSGTGALR.
A

1.53 0.94 1.235 Q09533 rpl-10 60S ribosomal protein L10 R.ANVDTFPAC*VHMM
SNER.E

1.22 1.25 1.235 Q03577 drs-1 Aspartate--tRNA ligase, 
cytoplasmic R.IQAGIC*NQFR.N

1.39 1.09 1.24 Q94261 cif-1 COP9/Signalosome and eIF3 
complex-shared subunit 1 K.C*EPVVDSFIK.N

1.13 1.35 1.24 O45679 cysl-2 Cysteine synthase K.VEYMNPAC*SVK.D

1.25 1.24 1.245 Q17761 T25B9.9 6-phosphogluconate 
dehydrogenase, decarboxylating R.C*LSALKDER.V

1.06 1.44 1.25 P54811 cdc-48.1 Transitional endoplasmic 
reticulum ATPase homolog R.GVLFYGPPGC*GK.T

1.26 1.25 1.255 P49041 rps-5 40S ribosomal protein S5 K.AAC*PIVER.L

1.23 1.29 1.26 Q9XUY0 F56G4.6 Protein F56G4.6 R.NC*YGVIR.C

1.15 1.38 1.265 P54811 cdc-48.1 Transitional endoplasmic 
reticulum ATPase homolog 

K.NTVGFSGADLTEIC*
QR.A

1.14 1.39 1.265 P37165 ubl-1 Ubiquitin-like protein 1-40S 
ribosomal protein S27

R.C*HDTLVVDTATAAA
TSGEK.G

1.18 1.35 1.265 G8JYG1 nxt-1 Protein NXT-1, isoform b K.TTQEINKEDEELC*NE
SK.K

1.31 1.23 1.27 Q22352 T08H10.1 Protein T08H10.1 K.C*VESQLK.A

1.29 1.25 1.27 O44480 rpl-20 60S ribosomal protein L18a R.DTTVAGAVTQC*YR.
D

1.29 1.27 1.28 Q8WTM6 arx-4 Probable actin-related protein 2/3 
complex subunit R.NC*FASVFEK.Y

1.23 1.33 1.28 H2KZ06 clec-266 Protein CLEC-266, isoform a K.FYSIC*ER.N

1.3 1.27 1.285 O02286 R11A5.4 Protein R11A5.4, isoform a K.LEAYENNYIC*R.T

1.26 1.32 1.29 P48152 rps-3 40S ribosomal protein S3 R.AC*YGVLR.F

1.18 1.42 1.3 G5EE04 hip-1 Protein HIP-1 K.TDLATAC*K.L

1.34 1.28 1.31 Q22993 pmt-2 Protein PMT-2 R.DC*IQHIPDTEK.L

0.98 1.64 1.31 Q22633 hpd-1 4-hydroxyphenylpyruvate 
dioxygenase 

R.GC*EFLSIPSSYYDNL
K.E

1.34 1.29 1.315 Q94261 cif-1 COP9/Signalosome and eIF3 
complex-shared subunit 1

R.LIGELEC*NLETLQDR
.F

1.3 1.36 1.33 Q21215 rack-1 Guanine nucleotide-binding 
protein subunit beta-2- K.LWNTLAQC*K.Y

1.33 1.36 1.345 Q19905 sqv-4 UDP-glucose 6-dehydrogenase K.AAESIGC*ILR.E

1.38 1.35 1.365 Q21215 rack-1 Guanine nucleotide-binding 
protein subunit beta-2- K.VWNLGNC*R.L
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P04075 3.00E-166 Fructose-bisphosphate aldolase A No No No -- No

P17174 1.00E-157 Aspartate aminotransferase, cytoplasmic No Yes No No No

P38606 0 V-type proton ATPase catalytic subunit A Yes Yes Yes Yes Yes

P39019 1.00E-47 40S ribosomal protein S19 No No No No No

Q9UI12 9.00E-167 V-type proton ATPase subunit H Yes Yes Yes No No

P46776 8.00E-71 60S ribosomal protein L27a No No No No No

Q13547 0 Histone deacetylase 1 Yes Yes Yes Yes Yes

P30405 1.00E-78 Peptidyl-prolyl cis-trans isomerase F, mitochondrial Yes Yes No No Yes

Q9BQE3 0 Tubulin alpha-1C chain Yes Yes Yes Yes Yes

P17174 1.00E-157 Aspartate aminotransferase, cytoplasmic No No No No Yes

P27635 3.00E-111 60S ribosomal protein L10 Yes Yes Yes Yes Yes

P14868 0 Aspartate--tRNA ligase, cytoplasmic Yes Yes Yes Yes No

Q7L2H7 1.00E-50 Eukaryotic translation initiation factor 3 subunit M No No No -- --

P35520 8.00E-62 Cystathionine beta-synthase No No No No Yes

P52209 0 6-phosphogluconate dehydrogenase, decarboxylating Yes Yes Yes Yes No

P55072 0 Transitional endoplasmic reticulum ATPase Yes Yes Yes No Yes

P46782 3.00E-125 40S ribosomal protein S5 Yes Yes Yes Yes Yes

Q9Y282 3.2 Endoplasmic reticulum-Golgi intermediate 
compartment protein 3 -- -- -- -- --

P55072 0 Transitional endoplasmic reticulum ATPase Yes Yes Yes No Yes

P62979 4.00E-43 Ubiquitin-40S ribosomal protein S27a Yes Yes Yes Yes Yes

Q9NPJ8 3.00E-18 NTF2-related export protein 2 Yes Yes No -- No

O60218 2.00E-78 Aldo-keto reductase family 1 member B10 No No No No No

Q02543 1.00E-78 60S ribosomal protein L18a Yes Yes Yes No No

O15144 2.00E-156 Actin-related protein 2/3 complex subunit 2 Yes Yes Yes No No

P07306 8.00E-06 Asialoglycoprotein receptor 1 Yes Yes -- -- --

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial No No No -- --

P23396 1.00E-127 40S ribosomal protein S3 Yes Yes Yes No Yes

P50502 5.00E-78 Hsc70-interacting protein Yes Yes Yes No No

Q9NZJ6 2.00E-05 Ubiquinone biosynthesis O-methyltransferase, 
mitochondrial No No No No No

P32754 2.00E-173 4-hydroxyphenylpyruvate dioxygenase No No No -- No

Q7L2H7 1.00E-50 Eukaryotic translation initiation factor 3 subunit M No No No -- No

P63244 5.00E-168 Guanine nucleotide-binding protein subunit beta-2-
like 1 Yes Yes Yes Yes Yes

O60701 0 UDP-glucose 6-dehydrogenase No No No -- No

P63244 5.00E-168 Guanine nucleotide-binding protein subunit beta-2-
like 1 Yes Yes Yes No Yes
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1.25 1.48 1.365 P49196 rps-12 40S ribosomal protein S12 K.IIGEYCGLC*K.Y

1.25 1.48 1.365 P49196 rps-12 40S ribosomal protein S12 K.IIGEYC*GLCK.Y

1.31 1.43 1.37 P46561 atp-2 ATP synthase subunit beta, 
mitochondrial R.C*IAMDGTEGLVR.G

1.3 1.47 1.385 Q8WQA8 rps-20 Protein RPS-20 K.TPC*GEGSK.T

1.47 1.31 1.39 P62784 his-1 Histone H4 R.DAVTYC*EHAK.R

1.25 1.54 1.395 Q9N4A5 Y77E11A.1 Protein Y77E11A.1 K.GFDIKDC*LQR.D

1.59 1.23 1.41 Q23381 mmcm-1 Probable methylmalonyl-CoA 
mutase, mitochondrial R.LPAC*ANQILEK.L

1.31 1.52 1.415 P53013 eft-3 Elongation factor 1-alpha R.GSVC*SDSK.Q

1.4 1.45 1.425 P48152 rps-3 40S ribosomal protein S3 R.GLC*AVAQCESLR.Y

1.4 1.45 1.425 P48152 rps-3 40S ribosomal protein S3 R.GLCAVAQC*ESLR.Y

0.91 2 1.455 P91998 F53F1.3 Protein F53F1.3 K.IC*NLNLDK.H

1.58 1.34 1.46 P91500 T27A3.6 Protein T27A3.6 K.AYVLALAGC*TNSGK
.S

1.46 1.46 1.46 O02056 rpl-4 60S ribosomal protein L4 K.LGPVVIYGQDAEC*A
R.A

1.37 1.55 1.46 Q9N4L8 lpd-5 Protein LPD-5 K.EDAIAFC*EK.N

1.38 1.55 1.465 Q9BKU5 Y37E3.8 Protein Y37E3.8, isoform a K.NQHYC*PTVNVER.L

1.44 1.5 1.47 Q22100 kat-1 Protein KAT-1 K.SGQIGVAAIC*NGGG
GSSGMVIQK.L Active site (proton acceptor)

1.45 1.52 1.485 O45865 ant-1.1 Protein ANT-1.1, isoform a K.NTLDC*AK.K

1.42 1.56 1.49 Q95X44 vha-8 Protein VHA-8 R.LVEQLLPEC*LDGLQ
K.E

1.51 1.48 1.495 G5EFE6 cpt-2 Protein CPT-2, isoform b K.EFVPTYESC*STAAFL
K.G

1.48 1.51 1.495 Q21962 R12C12.1 Protein R12C12.1, isoform a R.NLVC*TCPPIESYQ.-

1.48 1.51 1.495 Q21962 R12C12.1 Protein R12C12.1, isoform a R.NLVCTC*PPIESYQ.-

1.48 1.51 1.495 O02640 mdh-1 Probable malate dehydrogenase, 
mitochondrial 

K.NVQC*AYVASDAVK.
G

1.33 1.66 1.495 Q18688 daf-21 Heat shock protein 90 K.LGLDIGDDEIEDSAVP
SSC*TAEAK.I

1.42 1.6 1.51 Q95YF3 cgh-1 ATP-dependent RNA helicase 
cgh-1 K.GVEFEDFC*LGR.D

1.39 1.65 1.52 P34455 aco-2 Probable aconitate hydratase, 
mitochondrial 

K.VSLIGSC*TNSSYED
MTR.A Iron-Sulfur (4Fe-4S)

1.85 1.22 1.535 Q69Z12 K08E3.10 Protein K08E3.10 K.KVEAAC*GR.S

1.44 1.65 1.545 Q19264 F09E5.3 Putative deoxyribose-
phosphate aldolase R.IGASSLLDDC*LK.G

1.27 1.84 1.555 Q17489 unc-44 Protein UNC-44, isoform a K.DGSSPFDNQEEDEPIA
SC*K.Q

1.37 1.75 1.56 Q95XQ8 mcm-4 Protein MCM-4 R.IC*VADVQR.S

1.63 1.5 1.565 G5ECR7 elb-1 Protein ELB-1 K.AQC*PAALGLR.L

1.57 1.56 1.565 Q21230 K04G2.1 Eukaryotic translation 
initiation factor 2 subunit R.LFFLQCTNC*GSR.C

1.75 1.39 1.57 G5EF01 tbb-6 Protein TBB-6 K.EIINVQVGQC*GNQIG
AK.F

1.5 1.64 1.57 O02056 rpl-4 60S ribosomal protein L4 R.SGQGAFGNMC*R.G

1.48 1.66 1.57 Q22054 rps-16 40S ribosomal protein S16 K.KTATAVAHC*K.K

1.89 1.28 1.585 O01576 npp-11 Protein NPP-11 K.C*ADFDLDQITK.S

1.54 1.64 1.59 H2KZV8 mlp-1 Protein MLP-1, isoform b K.GVGFGLGAGC*LTTD
SGEK.F
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P25398 2.00E-47 40S ribosomal protein S12 Yes Yes Yes No Yes

P25398 2.00E-47 40S ribosomal protein S12 No No No No No

P06576 0 ATP synthase subunit beta, mitochondrial No No No No No

P60866 8.00E-56 40S ribosomal protein S20 Yes Yes Yes No Yes

P62805 4.00E-66 Histone H4 No No No No No

Q2TB90 1.00E-93 Putative hexokinase HKDC1 Yes Yes No No No

P22033 0 Methylmalonyl-CoA mutase, mitochondrial No No -- -- --

Q05639 0 Elongation factor 1-alpha 2 Yes Yes No Yes No

P23396 1.00E-127 40S ribosomal protein S3 Yes Yes Yes No Yes

P23396 1.00E-127 40S ribosomal protein S3 No No No No No

Q04828 4.00E-49 Aldo-keto reductase family 1 member C1 No No -- No --

O96007 6.00E-32 Molybdopterin synthase catalytic subunit No No No Yes No

P36578 1.00E-133 60S ribosomal protein L4 No No No No No

O43181 4.00E-44 NADH dehydrogenase [ubiquinone] iron-sulfur 
protein 4, mitochondrial No No Yes -- No

P46776 8.00E-71 60S ribosomal protein L27a Yes Yes No No Yes

P24752 2.00E-155 Acetyl-CoA acetyltransferase, mitochondrial Yes Yes Yes Yes Yes

P12235 1.00E-143 ADP/ATP translocase 1 Yes Yes Yes Yes Yes

P36543 1.00E-87 V-type proton ATPase subunit E 1 No No No No No

P23786 4.00E-128 Carnitine O-palmitoyltransferase 2, mitochondrial Yes Yes Yes No --

P23378 0 Glycine dehydrogenase (decarboxylating), 
mitochondrial Yes Yes Yes Yes Yes

P23378 0 Glycine dehydrogenase (decarboxylating), 
mitochondrial Yes Yes Yes Yes No

P40926 7.00E-131 Malate dehydrogenase, mitochondrial Yes Yes Yes No Yes

P07900 0 Heat shock protein HSP 90-alpha No No No No No

P26196 0 Probable ATP-dependent RNA helicase DDX6 Yes Yes Yes No No

Q99798 0 Aconitate hydratase, mitochondrial Yes Yes Yes Yes Yes

P14649 2.00E-17 Myosin light chain 6B No No No No No

Q9Y315 4.00E-87 Deoxyribose-phosphate aldolase No No -- -- --

Q8N8A2 0 Serine/threonine-protein phosphatase 6 regulatory 
ankyrin repeat subunit B No No -- -- --

P33991 0 DNA replication licensing factor MCM4 No No No No No

Q15370 5.00E-19 Transcription elongation factor B polypeptide 2 No No No -- --

P20042 6.00E-75 Eukaryotic translation initiation factor 2 subunit 2 Yes Yes Yes Yes Yes

P68371 1.00E-175 Tubulin beta-4B chain Yes Yes Yes Yes Yes

P36578 1.00E-133 60S ribosomal protein L4 Yes Yes Yes Yes Yes

P62249 2.00E-76 40S ribosomal protein S16 Yes Yes Yes No Yes

P98088 1.70E-47 Mucin-5AC No No No -- --

P50461 9.00E-29 Cysteine and glycine-rich protein 3 Yes Yes No -- --
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1.61 1.58 1.595 Q9GYJ9 snx-1 Protein SNX-1 K.ALSMLAAC*EESTSL
SR.A

1.52 1.69 1.605 P53588 F47B10.1 Probable succinyl-CoA 
ligase [ADP-forming] subunit R.C*DVIAQGIIQAAR.E

1.63 1.59 1.61 Q22053 fib-1 rRNA 2-O-methyltransferase 
fibrillarin 

K.ANC*IDSTAEPEAVFA
GEVNK.L

1.56 1.66 1.61 A3QMC5 rpl-34 Protein RPL-34 R.AYGGC*LSPNAVK.E

1.46 1.77 1.615 Q8WQA8 rps-20 Protein RPS-20 K.VC*AQLIDGAK.N

1.58 1.66 1.62 O17234 gsto-3 Protein GSTO-3, isoform a R.FC*PYAQR.V Active site nucleophile

1.54 1.72 1.63 Q09533 rpl-10 60S ribosomal protein L10 K.MLSC*AGADR.L

1.65 1.64 1.645 Q27371 mup-2 Troponin T R.NFLAAVC*R.V

1.68 1.67 1.675 Q9N5K2 rpb-5 DNA-directed RNA polymerases 
I, II, and III subuni R.IQQC*DPVAR.Y

1.57 1.81 1.69 P48150 rps-14 40S ribosomal protein S14 R.IEDVTPIPSDC*TR.R

1.59 1.8 1.695 Q9TXP0 rps-27 40S ribosomal protein S27 K.LTEGC*SFR.K

1.71 1.71 1.71 P02566 unc-54 Myosin-4 K.C*NLTLDQK.G

1.67 1.76 1.715 Q966I8 pbs-1 Proteasome subunit beta type K.ITPITDNMVVC*R.S

1.54 1.9 1.72 P50432 mel-32 Serine 
hydroxymethyltransferase 

K.AVMDALGSAMC*NK.
Y

1.67 1.8 1.735 P46769 rps-0 40S ribosomal protein SA K.LIDIGVPC*NNK.G

1.74 1.77 1.755 P53588 F47B10.1 Probable succinyl-CoA 
ligase [ADP-forming] subunit R.ILPC*DNLDEAAK.M

1.77 1.75 1.76 O01974 eif-3.H Eukaryotic translation initiation 
factor 3 subunit K.SC*SSDKYSTR.H

1.74 1.79 1.765 P02566 unc-54 Myosin-4 R.LPIYTDSC*AR.M

1.76 1.82 1.79 P48158 rpl-23 60S ribosomal protein L23 R.ISLGLPVGAVMNC*A
DNTGAK.N

1.64 1.96 1.8 Q27389 rpl-16 60S ribosomal protein L13a R.C*NINPAR.G

1.59 2.01 1.8 O17586 pas-1 Proteasome subunit alpha type-6 K.NGYDMPC*ELLAK.K

1.75 1.87 1.81 Q22100 kat-1 Protein KAT-1 K.DGLTDAYDKVHMGN
C*GEK.T

1.66 1.96 1.81 P46769 rps-0 40S ribosomal protein SA R.FSPGC*LTNQIQK.T

1.74 1.89 1.815 O02141 C46G7.2 Protein C46G7.2 K.SDSVSTLAPSLALPQ
YC*R.E

1.59 2.08 1.835 H2KZV8 mlp-1 Protein MLP-1, isoform b K.LLDSCTVAPHEAELY
C*K.Q

1.79 1.9 1.845 Q21307 mek-1 Protein MEK-1, isoform a K.LC*DFGIAGR.L

1.94 1.76 1.85 Q21284 K07E3.4 Protein K07E3.4, isoform a K.LPIC*MAK.T

1.87 1.88 1.875 Q22101 T02G5.7 Protein T02G5.7 K.GPMGLC*AEK.T

1.98 1.79 1.885 P30627 glb-1 Globin-like protein R.QEISDLC*VK.S

1.95 1.82 1.885 O76449 ZK1055.7 Protein ZK1055.7 K.EDWTSAPLVLSTAQP
C*LAGR.I

1.92 1.94 1.93 P02566 unc-54 Myosin-4 K.ASNMYGIGC*EEFLK.
A

2.12 1.75 1.935 Q22392 dhs-19 Protein DHS-19 K.TGCVGLVDYC*ASK.
H

2.11 1.82 1.965 O45812 T23G11.7 Protein T23G11.7, isoform b K.STQIFTC*LR.D

2.4 1.56 1.98 P37806 unc-87 Protein unc-87 R.FASQAGMIGFGTC*R.
N

1.82 2.15 1.985 Q9UAQ6 rab-1 Protein RAB-1 R.YAC*ENVNK.L

1.88 2.12 2 P49196 rps-12 40S ribosomal protein S12 K.GLHETC*K.A
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O60749 4.00E-95 Sorting nexin-2 No No Yes No Yes

Q9P2R7 0 Succinyl-CoA ligase [ADP-forming] subunit beta, 
mitochondrial Yes Yes Yes Yes Yes

P22087 6.00E-133 rRNA 2'-O-methyltransferase fibrillarin Yes Yes Yes -- Yes

P49207 2.00E-29 60S ribosomal protein L34 No No No No No

P60866 8.00E-56 40S ribosomal protein S20 Yes Yes Yes No Yes

P78417 1.00E-38 Glutathione S-transferase omega-1 Yes Yes Yes No No

P27635 3.00E-111 60S ribosomal protein L10 Yes Yes Yes Yes Yes

P45379 1.60E-20 Troponin T, cardiac muscle No No No -- --

P19388 2.00E-122 DNA-directed RNA polymerases I, II, and III subunit 
RPABC1 No No No No No

P62263 9.00E-84 40S ribosomal protein S14 No No No No No

P42677 8.00E-38 40S ribosomal protein S27 Yes Yes Yes No Yes

P13533 0 Myosin-6 No No Yes No No

P28072 2.00E-66 Proteasome subunit beta type-6 Yes Yes Yes Yes Yes

P34896 0 Serine hydroxymethyltransferase, cytosolic No No No No No

P08865 6.00E-107 40S ribosomal protein SA Yes Yes Yes Yes No

Q9P2R7 0 Succinyl-CoA ligase [ADP-forming] subunit beta, 
mitochondrial Yes Yes No No No

O15372 8.00E-63 Eukaryotic translation initiation factor 3 subunit H No No No -- No

P13533 0 Myosin-6 No No Yes No No

P62829 4.00E-85 60S ribosomal protein L23 Yes Yes Yes Yes Yes

P40429 3.00E-73 60S ribosomal protein L13a No No Yes No No

P60900 2.00E-102 Proteasome subunit alpha type-6 No No No Yes No

P24752 2.00E-155 Acetyl-CoA acetyltransferase, mitochondrial Yes Yes Yes No Yes

P08865 6.00E-107 40S ribosomal protein SA No No No No No

Q9UM73 0.7 ALK tyrosine kinase receptor -- -- -- -- --

P50461 9.00E-29 Cysteine and glycine-rich protein 3 Yes Yes Yes -- Yes

O14733 1.00E-111 Dual specificity mitogen-activated protein kinase 
kinase 7 Yes Yes Yes Yes No

P11586 0 C-1-tetrahydrofolate synthase, cytoplasmic Yes Yes Yes Yes Yes

P24752 1.00E-127 Acetyl-CoA acetyltransferase, mitochondrial Yes Yes Yes No Yes

Q9ULR3 0.39 Protein phosphatase 1H -- -- -- -- --

Q9Y6X9 4.8 MORC family CW-type zinc finger protein 2 No No -- -- --

P13533 0 Myosin-6 No No No No No

Q8N3Y7 1.00E-98 Epidermal retinol dehydrogenase 2 Yes Yes No No No

Q9NP79 2.00E-51 Vacuolar protein sorting-associated protein VTA1 
homolog Yes Yes Yes -- No

K7ER02 1.00E-17 Calponin-1 No No -- -- --

P62820 1.00E-120 Ras-related protein Rab-1A No No Yes No No

P25398 2.00E-47 40S ribosomal protein S12 No No Yes No No
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1.86 2.26 2.06 O45924 Y39E4A.3 Protein Y39E4A.3, isoform 
a 

R.GYTMENFMNQC*YG
NADDLGK.G

1.97 2.24 2.105 Q09444 ubh-4 Probable ubiquitin carboxyl-
terminal hydrolase ubh R.GHC*LSNSEEIR.T

2.15 2.1 2.125 Q09596 gst-5 Probable glutathione S-
transferase 5 

K.ETC*AAPFGQLPFLE
VDGK.K

2.04 2.27 2.155 G5ECV9 alh-3 Protein ALH-3 K.GENC*IAAGR.V Active site

1.84 2.51 2.175 Q9N3C9 rpb-7 Protein RPB-7 K.LFNEVEGTC*TGK.Y

1.35 3 2.175 P34574 chc-1 Probable clathrin heavy chain 1 R.AAIGQLC*EK.A

2.22 2.14 2.18 Q69Z13 K08E3.5 Protein K08E3.5, isoform f K.LNGGLGTSMGC*K.G

2.08 2.29 2.185 O01692 rps-17 40S ribosomal protein S17 R.VC*DEVAIIGSK.P

2.17 2.21 2.19 Q19246 dhs-25 Protein DHS-25 K.TPMTEAMPPTVLAEI
C*K.G

2.2 2.32 2.26 A7LPE5 gpdh-2 Protein GPDH-2, isoform c K.NVVAC*AAGFTDGL
GYGDNTK.A

2.14 2.56 2.35 Q17334 sodh-1 Alcohol dehydrogenase 1 K.LMNFNC*LNCEFCK.
K Zinc-binding

2.14 2.56 2.35 Q17334 sodh-1 Alcohol dehydrogenase 1 K.LMNFNCLNC*EFCK.
K Zinc-binding

2.14 2.56 2.35 Q17334 sodh-1 Alcohol dehydrogenase 1 K.LMNFNCLNCEFC*K.
K Zinc-binding

2.33 2.43 2.38 Q18212 hel-1 Spliceosome RNA helicase 
DDX39B homolog K.YFVLDEC*DK.M

2.32 2.45 2.385 O44906 W05G11.6 Protein W05G11.6, isoform 
a 

K.AELMNPAGIYIC*DG
SQK.E

2.25 2.56 2.405 O44906 W05G11.6 Protein W05G11.6, isoform 
a K.TNAMAMESC*R.A

2.27 2.55 2.41 Q18496 acs-19 Protein ACS-19, isoform a K.TNISYNC*LER.N

2.27 2.63 2.45 P90889 F55H12.4 Protein F55H12.4 R.GSTGHC*YK.K

2.7 2.21 2.455 G5EF87 swsn-1 Protein SWSN-1 K.GVQAAAASC*LAAA
AVK.A

2.3 3.04 2.67 Q23621 gdh-1 Glutamate dehydrogenase K.NFDPFTELMYEKC*D
IFVPAACEK.S

2.3 3.04 2.67 Q23621 gdh-1 Glutamate dehydrogenase K.CDIFVPAAC*EK.S

2.67 2.75 2.71 G5EES6 ufd-3 Protein UFD-3, isoform b K.ALAVTQGGC*LISGG
RDETVK.F

2.6 2.94 2.77 G5EG13 dhs-12 Protein DHS-12 R.AAIVNIGSDC*ASQAL
NLR.G

2.55 3 2.775 O17759 tkt-1 Protein TKT-1 R.ISSIEMTC*ASK.S

2.69 2.88 2.785 Q10457 B0286.3 Probable multifunctional 
protein ADE2 

R.MPNGIGC*TTVLDPS
EAALAAAK.I

2.82 2.79 2.805 P91859 F32A7.5 Protein F32A7.5, isoform d K.DISGEQLQAILC*GK.
Q

2.36 3.32 2.84 Q19655 F20D6.11 Protein F20D6.11 K.FSGC*NQGSTK.E

2.75 3.06 2.905 P27639 inf-1 Eukaryotic initiation factor 4A K.RAIVPC*TTGK.D

2.59 3.31 2.95 Q27464 gspd-1 Glucose-6-phosphate 1-
dehydrogenase K.SSC*ELSTHLAK.L

2.67 3.29 2.98 Q23624 ZK829.7 Protein ZK829.7 R.AILEVC*DPSSALDAD
QSGGVPIPAATSE.-

4.81 1.41 3.11 Q93874 rab-14 Protein RAB-14 K.AFAEENGLTFLEC*SA
K.T

3.25 3 3.125 Q23069 moc-2 Protein MOC-2 R.VCVITVSDTC*SAGT
R.T

3.4 3.66 3.53 O44906 W05G11.6 Protein W05G11.6, isoform 
a K.FIAAAFPSAC*GK.T GTP-binding

4.22 4.49 4.355 Q17334 sodh-1 Alcohol dehydrogenase 1 K.DTNLAAAAPILC*AG
VTVYK.A Zinc-binding (catalytic)
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P12694 0 2-oxoisovalerate dehydrogenase subunit alpha, 
mitochondrial Yes Yes Yes No Yes

Q9Y5K5 1.00E-97 Ubiquitin carboxyl-terminal hydrolase isozyme L5 No No No -- No

O60760 2.00E-35 Hematopoietic prostaglandin D synthase No No No -- --

Q3SY69 0 Mitochondrial 10-formyltetrahydrofolate 
dehydrogenase Yes Yes Yes Yes Yes

P62487 2.00E-98 DNA-directed RNA polymerase II subunit RPB7 Yes Yes Yes Yes Yes

Q00610 0 Clathrin heavy chain 1 Yes Yes Yes No Yes

Q16851 0 UTP--glucose-1-phosphate uridylyltransferase Yes Yes Yes Yes Yes

P08708 1.00E-55 40S ribosomal protein S17 Yes Yes Yes Yes No

Q92506 2.00E-76 Estradiol 17-beta-dehydrogenase 8 No No No No No

P21695 2.00E-120 Glycerol-3-phosphate dehydrogenase [NAD(+)], 
cytoplasmic No No Yes No No

P08319 7.00E-20 Alcohol dehydrogenase 4 Yes Yes Yes Yes Yes

P08319 7.00E-20 Alcohol dehydrogenase 4 Yes Yes Yes Yes Yes

P08319 7.00E-20 Alcohol dehydrogenase 4 Yes Yes Yes Yes Yes

Q13838 0 Spliceosome RNA helicase DDX39B Yes Yes Yes Yes Yes

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial Yes Yes Yes -- --

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial No No No -- --

Q9NR19 0 Acetyl-coenzyme A synthetase, cytoplasmic No No No Yes Yes

B2RXH2 7.6 Lysine-specific demethylase 4E -- -- -- -- --

Q8TAQ2 4.00E-133 SWI/SNF complex subunit SMARCC2 No No -- No No

P00367 0 Glutamate dehydrogenase 1, mitochondrial Yes Yes Yes No Yes

P00367 0 Glutamate dehydrogenase 1, mitochondrial No No No No No

Q9Y263 5.00E-75 Phospholipase A-2-activating protein No No No No No

Q8NEX9 8.00E-12 Short-chain dehydrogenase/reductase family 9C 
member 7 No No No No No

P29401 0 Transketolase No Yes No No No

P22234 9.00E-148 Multifunctional protein ADE2 Yes Yes Yes No --

P46821 1.00E-11 Microtubule-associated protein 1B No No No -- --

Q96NN9 5.00E-99 Apoptosis-inducing factor 3 No No No -- No

Q14240 0 Eukaryotic initiation factor 4A-II Yes Yes Yes No No

P11413 0 Glucose-6-phosphate 1-dehydrogenase No No No No No

Q00796 1.00E-11 Sorbitol dehydrogenase Yes -- No -- --

P61106 5.00E-130 Ras-related protein Rab-14 No No No No No

Q9NQX3 6.00E-37 Gephyrin Yes Yes Yes -- No

Q16822 0 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial Yes Yes Yes -- --

P08319 7.00E-20 Alcohol dehydrogenase 4 Yes Yes Yes Yes Yes
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4.04 5.14 4.59 Q93545 F20G2.2 Protein F20G2.2 K.SC*SIDLAK.Y

12.61 15.62 14.115 O16228 djr-1.2 Protein DJR-1.2 K.LAEC*PVIGELLK.T
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O14756 2.00E-16 17-beta-hydroxysteroid dehydrogenase type 6 No No No No No

Q99497 5.00E-42 Protein deglycase DJ-1 No No No -- Yes
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Protein 1 2 1 2 Human Homologue
Beta-lactamase domain-
containing protein 2 0 6 0 0 0.000 yes Serine beta-lactamase-like protein

Putative serine protease K12H4.7 2 8 0 0 0.000 yes Thymus-specific serine protease

Protein F09C8.1 159 119 28 22 0.180 yes Phospholipase B1
Protein LIPS-15 25 43 17 4 0.309 no Lysosomal thioesterase PPT2
Protein FAAH-1, isoform a 131 123 66 23 0.350 yes Fatty-acid amide hydrolase 1
Protein F56C11.6, isoform a 4 6 2 0 0.400 yes Cholinesterase
Uncharacterized NTE family 
protein ZK370.4 33 28 21 6 0.443 yes Patatin-like phospholipase domain-

containing protein 7
Protein FAAH-3 42 55 28 19 0.485 yes Fatty-acid amide hydrolase
Uncharacterized serine 
carboxypeptidase K10B2.2 8 50 21 8 0.500 yes Lysosomal protective protein (Cathepsin 

A)

Protein Y16B4A.2 176 195 114 72 0.501 yes Lysosomal protective protein (Cathepsin 
A)

Protein FAAH-2 62 95 44 35 0.503 yes Fatty-acid amide hydrolase
Protein PCP-2 5 12 6 3 0.529 yes Thymus-specific serine protease
Protein F16F9.4 3 29 11 6 0.531 yes Neutral cholesterol ester hydrolase 1
Protein TRY-1 0 13 7 0 0.538 yes Serine protease 33, EOS
Protein R07B7.8 34 62 31 25 0.583 yes Phospholipase B1

Protein TSN-1 6 14 8 4 0.600 no Staphylococcal nuclease domain-
containing protein 1

Protein K11G9.1 82 78 54 55 0.681 yes Cholinesterase
Protein K10C2.1 329 258 176 268 0.756 no Lysosomal protective protein
Protein D2024.2 76 92 73 60 0.792 yes Probable arylformamidase

Protein LIPS-5, isoform a 5 5 4 0 0.800 yes Lysosomal acid lipase/cholesteryl ester 
hydrolase

Protein FAAH-4, isoform b 202 0 126 202 0.812 yes Fatty-acid amide hydrolase
Protein FIL-1 4 13 10 4 0.824 no Fasting Induced Lipase
Protein FAAH-4, isoform a 202 167 126 202 0.889 yes Fatty-acid amide hydrolase
Dipeptidyl peptidase family 
member 1 8 16 11 0 0.917 yes  Dipeptidyl peptidase 4

Dipeptidyl peptidase family 
member 2 127 141 115 142 0.959 yes Seprase

Protein LACT-4 142 68 106 97 0.967 yes Serine beta-lactamase-like protein
Protein DPF-5 106 121 126 95 0.974 yes Acylamino-acid-releasing enzyme
Protein PCP-3 0 0 0 0 0.000 yes Thymus-specific serine protease

DAF16 DAF2 Consv. 
Act. Site

Fold 
Change

Table 4A-1. MS results showing the 87 C. elegans serine hydrolase proteins (based on homology to
human serine hydrolases if unannotated) labeled by FP-biotin in 4 day old daf-2 and daf-16;daf-2
mutants. Proteins are listed by fold change from most decreased to most increased in daf-2 mutants.
Human homologues and conservation of the active site serine in C. elegans are indicated.  
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Protein Y37H2A.13 0 0 0 0 0.000 no Dipeptidyl peptidase 
Protein T08B1.4, isoform b 21 22 26 18 1.023 no triacylglycerol lipase
Uncharacterized serine 
carboxypeptidase F13D12.6 178 215 136 268 1.028 yes Lysosomal protective protein

Bifunctional glyoxylate cycle 
protein 7 12 15 5 1.053 no Sn1-specific diacylglycerol lipase alpha

Protein Y71H2AM.13 84 95 111 92 1.134 yes Liver carboxylesterase 1
Protein W02B12.1 30 36 37 41 1.182 no Phospholipase A2
Protein PES-9 3 7 6 0 1.200 no Cytosolic non-specific dipeptidase
Uncharacterized serine 
carboxypeptidase F41C3.5 906 801 697 1533 1.306 yes Lysosomal protective protein

Protein R05D7.4 106 106 154 123 1.307 yes Abhydrolase domain-containing protein 
11

Protein DPF-3, isoform a 210 209 291 264 1.325 yes Dipeptidyl peptidase 
Protein DPF-3, isoform b 210 209 291 264 1.325 yes Dipeptidyl peptidase 
Acetylcholinesterase 0 3 6 2 1.333 yes Cholinesterase
Protein ACE-3 0 3 6 2 1.333 yes Cholinesterase
Protein B0238.1 340 299 329 526 1.338 yes Carboxylesterase 5A
Protein ATH-1 143 284 233 357 1.382 yes Acyl-protein thioesterase 1
Protein F47A4.5 6 4 7 0 1.400 yes calcium-independent phospholipase A2
Protein GYG-1, isoform b 0 6 10 7 1.417 no GYG1 protein
Protein LACT-1 72 136 160 143 1.457 no Beta-lactamase
Esterase CM06B1 49 44 85 67 1.634 yes Cholinesterase
Protein F55F3.2, isoform b 14 36 46 39 1.700 no Brain carboxylesterase 
Protein F55F3.2, isoform a 14 36 46 39 1.700 no Brain carboxylesterase 
Protein K01A2.5 60 60 105 114 1.825 yes Valacyclovir hydrolase
Protein Y45F10A.3 33 61 79 105 1.957 yes Arylformamidase
Protein Y65B4BR.1 0 0 2 0 2.000 no Phospholipase A2

Protein LACT-3 0 6 13 0 2.167 yes Serine beta-lactamase-like protein 
LACTB,

Protein F15A8.6 4 4 9 0 2.250 yes Cholinesterase
Prolyl carboxy peptidase like 
protein 5 38 23 47 98 2.377 yes Lysosomal Pro-X carboxypeptidase

Protein Y48G10A.1 299 198 396 798 2.402 yes S-formylglutathione hydrolase
Putative serine protease pcp-1 0 3 10 5 2.500 yes Lysosomal Pro-X carboxypeptidase
Protein Y49E10.16, isoform a 23 17 53 49 2.550 yes Monoglyceride lipase
Protein Y43F8A.3, isoform b 4 10 0 18 2.571 yes Neutral cholesterol ester hydrolase 1
Gut esterase 1 297 710 1227 1511 2.719 yes Brain carboxylesterase 
Protein M05B5.4 31 38 96 93 2.739 yes phospholipase A2
Protein T08B2.7, isoform b 4 8 22 11 2.750
Protein T08B2.7, isoform a 4 8 22 11 2.750

Protein Y73B6BL.4 0 0 4 2 3.000 yes Calcium-independent phospholipase A2-
gamma

Protein C45B2.6 0 0 3 0 3.000 yes calcium-independent phospholipase A2
Dipeptidyl peptidase family 
member 6 0 0 3 3 3.000 yes Acylamino-acid-releasing enzyme
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Protein D1054.1 0 4 20 7 3.375 yes Patatin-like phospholipase domain-
containing protein 4

Protein Y40D12A.2 2 7 16 0 3.556 yes Lysosomal protective protein (Cathepsin 
A)

Protein LIPS-17 5 30 84 50 3.829 Lipase Class 2
Protein TKT-1 2 8 34 12 4.600 ? Transketolase
Protein F13H8.11 3 9 34 22 4.667 yes Phospholipase B1
Protein K07C11.4 12 19 91 59 4.839 yes Cocaine esterase
Protein DPF-4 2 5 26 8 4.857 yes Acylamino-acid-releasing enzyme
Probable protein phosphatase 
methylesterase 1 11 12 39 73 4.870 yes Protein phosphatase methylesterase 1

Protein C40H1.9 0 0 2 8 5.000 yes Monoglyceride lipase
Protein Y43F8A.3, isoform a 4 10 56 18 5.286 yes Neutral cholesterol ester hydrolase 1
Putative subtilase-type proteinase 
F21H12.6 8 11 78 34 5.895 yes Tripeptidyl-peptidase 2

Protein W07A8.2, isoform a 0 0 16 9 12.500 yes calcium-independent phospholipase A2
Protein W07A8.2, isoform c 0 0 16 9 12.500 yes calcium-independent phospholipase A3
Protein W07A8.2, isoform b 0 0 16 9 12.500 yes calcium-independent phospholipase A4
Protein IPLA-1, isoform c 0 0 22 4 13.000 yes Phospholipase DDHD1
Protein IPLA-1, isoform b 0 0 22 4 13.000 yes Phospholipase DDHD1
Protein IPLA-1, isoform a 0 0 22 4 13.000 yes Phospholipase DDHD1
Protein IPLA-1, isoform d 0 0 22 4 13.000 yes Phospholipase DDHD1
Intracellular phospholipase A1 0 0 22 4 13.000 yes Phospholipase DDHD1
Protein C23H4.2 0 0 13 13 13.000 yes Cocaine esterase (Carboxylesterase)
Protein C17H12.4 0 0 23 4 13.500 yes Liver carboxylesterase 1



229

+ + - - + + - - + + + - -
Protein 1 2 1 2 1 2 1 2 1 2 3 1 2

HBB Hemoglobin subunit beta 9 9 2 0 16 23 2 0 4 7 5 2 0

IGKC Ig kappa chain C region 244 122 5 6 306 206 17 0 163 288 179 8 4

IGHM Ig mu chain C region 153 103 3 13 82 61 10 0 81 172 111 0 3
ALB Serum albumin 1172 532 10 15 911 963 28 15 603 840 1239 0 22
IGHG1 Ig gamma-1 chain C 
region 974 378 17 35 522 521 28 46 445 970 726 6 16

HP Haptoglobin 172 71 2 4 184 187 9 0 107 207 125 0 2
IGHG3 Ig gamma-3 chain C 
region 716 246 18 22 385 358 16 0 276 728 534 0 7

APOA1 Apolipoprotein A-I 419 287 0 6 256 257 22 4 241 242 297 0 3
C4B Complement C4-B 311 150 8 5 146 152 5 6 116 234 202 2 0
IGHG4 Ig gamma-4 chain C 
region 708 222 12 23 415 423 17 31 331 603 504 0 5

IGHG2 Ig gamma-2 chain C 
region 635 207 0 0 420 429 16 13 312 507 415 0 4

C3 Complement C3 849 442 9 11 403 454 17 7 501 895 417 4 4
IGLL5 Immunoglobulin 
lambda-like polypeptide 5 186 85 3 0 56 30 6 0 154 170 79 0 0

APOA2 Apolipoprotein A-II 48 32 3 0 42 35 5 0 27 49 28 0 0
IGLC2 Ig lambda-2 chain C 
regions 219 111 3 4 63 30 6 0 183 201 122 0 0

Ig kappa chain V-III region 
HAH 38 15 0 0 69 20 4 0 22 37 44 0 0

Ig heavy chain V-III region 
VH26 46 19 0 0 35 24 2 0 17 29 23 0 0

C4BPA C4b-binding protein 
alpha chain 61 71 0 0 34 26 2 0 29 71 29 0 0

IGHA1 Ig alpha-1 chain C 
region 257 155 2 3 137 36 5 0 186 217 170 0 0

SERPINA1 Alpha-1-
antitrypsin 107 68 0 2 43 30 2 0 20 29 31 0 0

SERPING1 Plasma protease 
C1 inhibitor 95 30 0 0 55 22 2 0 16 47 38 0 0

HPR Haptoglobin-related 
protein 49 30 0 0 92 61 3 0 46 54 43 0 0

APOB Apolipoprotein B-100 129 127 0 4 120 64 2 3 85 208 102 0 0

Healthy RA1 RA2
biotin-PG

Table 6A-1. MS results showing the 363 biotin-PG-labeled proteins in human healthy
and RA sera. Highlighted in green are the 150 proteins that have at least 5 spectral
counts in at least 1 run and a greater than 2-fold average spectral count than the control
sample. Highlighted in orange are the 5 keratin proteins with possible RA significance
as they are increased more than 2-fold in RA samples versus healthy samples and not
identified in the controls. Highlighted in red are the other keratin proteins that were
removed from analysis due to the significantly high number of spectral counts in the
control samples.  
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CFH Complement factor H 289 158 2 0 181 100 2 0 104 226 206 0 0
HPX Hemopexin 597 322 0 0 263 417 6 2 295 547 433 0 0
KRT75 Keratin, type II 
cytoskeletal 75 0 61 0 21 0 0 0 0 0 48 0 0 0

PLG Plasminogen 114 74 0 2 66 37 0 0 33 69 69 0 0
IGHA2 Ig alpha-2 chain C 
region 192 113 0 3 123 0 0 0 0 155 140 0 0

A2M Alpha-2-macroglobulin 266 163 2 0 75 38 0 0 68 139 71 0 0
CP Ceruloplasmin 375 183 0 2 365 248 0 0 137 328 244 0 0
IGKV4-1 Ig kappa chain V-IV 
region 19 19 0 0 16 23 0 0 17 29 13 0 0

C9 Complement component C9 37 25 0 0 36 21 0 0 17 36 31 0 0

KLKB1 Plasma kallikrein 15 14 0 0 17 6 0 0 10 17 13 0 0
ITIH2 Inter-alpha-trypsin 
inhibitor heavy chain H2 63 62 0 0 69 22 0 0 45 61 71 0 0

C8B Complement component 
C8 beta chain 8 13 0 0 17 11 0 0 8 11 8 0 0

KNG1 Kininogen-1 50 34 0 0 47 24 0 0 23 29 47 0 0
TF Serotransferrin 324 202 0 0 170 162 0 0 111 244 189 0 0
CFI Complement factor I 14 6 0 0 11 6 0 0 8 10 14 0 0
APOH Beta-2-glycoprotein 1 68 50 0 0 36 41 0 0 21 40 60 0 0
ITIH1 Inter-alpha-trypsin 
inhibitor heavy chain H1 55 31 0 0 33 35 0 0 22 59 31 0 0

TTR Transthyretin 26 27 0 0 13 18 0 0 9 27 19 0 0
C5 Complement C5 47 45 0 0 85 35 0 0 38 66 36 0 0
ITIH4 Inter-alpha-trypsin 
inhibitor heavy chain H4 56 40 0 0 69 19 0 0 32 38 49 0 0

C1R Complement C1r 
subcomponent 25 15 0 0 32 14 0 0 10 21 18 0 0

AGT Angiotensinogen 8 11 0 0 15 5 0 0 10 11 5 0 0
F2 Prothrombin 56 24 0 0 31 25 0 0 18 42 34 0 0
RBP4 Retinol-binding protein 
4 14 13 0 0 10 9 0 0 15 6 4 0 0

C1S Complement C1s 
subcomponent 21 11 0 0 25 9 0 0 15 31 22 0 0

CFB cDNA FLJ55673, highly 
similar to Complement factor 
B (EC 3.4.21.47)

125 95 0 0 51 46 0 0 40 104 104 0 0

C1QB Complement C1q 
subcomponent subunit B 6 3 0 0 4 4 0 0 6 8 10 0 0

C8G Complement component 
C8 gamma chain 10 6 0 0 7 2 0 0 7 11 12 0 0

PON1 Serum 
paraoxonase/arylesterase 1 9 6 0 0 22 8 0 0 13 16 17 0 0

GC Vitamin D-binding protein 64 37 0 0 31 34 0 0 24 19 22 0 0

LGALS3BP Galectin-3-
binding protein 5 3 0 0 4 3 0 0 2 5 8 0 0

APCS Serum amyloid P-
component 9 5 0 0 9 3 0 0 4 12 6 0 0

CLU Clusterin 16 15 0 0 25 9 0 0 8 7 21 0 0
AMBP Protein AMBP 28 16 0 0 16 6 0 0 11 11 23 0 0
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C6 Complement component C6 4 9 0 0 11 7 0 0 3 12 5 0 0

A1BG Alpha-1B-glycoprotein 19 9 0 0 13 6 0 0 4 17 16 0 0
SERPINF1 Pigment epithelium-
derived factor 17 16 0 0 12 2 0 0 11 14 6 0 0

PROS1 Vitamin K-dependent 
protein S 10 19 0 0 12 7 0 0 5 18 22 0 0

HBA2 Hemoglobin subunit 
alpha 14 7 0 0 16 16 0 0 2 11 8 0 0

APOC3 Apolipoprotein C-III 0 5 0 0 6 5 0 0 7 8 5 0 0
SERPINC1 Antithrombin-III 163 73 0 0 84 52 0 0 49 92 52 0 0
AHSG Alpha-2-HS-
glycoprotein 44 43 0 0 39 5 0 0 17 28 27 0 0

PGLYRP2 N-acetylmuramoyl-
L-alanine amidase 14 7 0 0 7 6 0 0 4 12 4 0 0

APOE Apolipoprotein E 13 11 0 0 23 3 0 0 7 12 17 0 0
APOA4 Apolipoprotein A-IV 50 29 0 0 32 18 0 0 12 31 65 0 0
IGFALS Insulin-like growth 
factor-binding protein complex 
acid labile subunit

15 11 0 0 15 2 0 0 4 10 7 0 0

C7 Complement component C7 15 11 0 0 20 9 0 0 13 24 40 0 0

FCN3 Ficolin-3 10 7 0 0 13 0 0 0 8 14 5 0 0
SERPINA3 Alpha-1-
antichymotrypsin 30 23 0 0 75 34 0 0 26 13 31 0 0

F13B Coagulation factor XIII 
B chain 0 11 0 0 16 8 0 0 5 15 15 0 0

VTN Vitronectin 32 10 0 0 10 12 0 0 4 17 15 0 0
GPLD1 Phosphatidylinositol-
glycan-specific phospholipase 
D

4 3 0 0 9 8 0 0 4 17 11 0 0

SERPINA4 Kallistatin 3 5 0 0 11 7 0 0 2 3 4 0 0
APOL1 Apolipoprotein L1 0 6 0 0 5 2 0 0 4 2 4 0 0
GSN Gelsolin 30 9 0 0 20 0 0 0 13 14 22 0 0
APOC2 Apolipoprotein C-II 0 4 0 0 9 5 0 0 5 3 10 0 0
FN1 Fibronectin 36 29 0 0 61 49 0 0 77 184 97 0 0

SERPIND1 Heparin cofactor 2 4 8 0 0 15 2 0 0 3 21 8 0 0

CD5L CD5 antigen-like 8 4 0 0 5 0 0 0 0 9 4 0 0

Ig kappa chain V-III region VG 16 0 0 0 39 9 0 0 12 14 9 0 0

F12 Coagulation factor XII 25 11 0 0 22 0 0 0 0 44 23 0 0
C8A Complement component 
C8 alpha chain 7 0 0 0 9 0 0 0 2 6 4 0 0

CFHR1 Complement factor H-
related protein 1 0 13 0 0 6 9 0 0 0 26 14 0 0

SAA4 Serum amyloid A-4 
protein 4 0 0 0 10 16 0 0 4 0 8 0 0

IGKV1-5 Ig kappa chain V-I 
region HK102 10 0 0 0 9 0 0 0 3 18 6 0 0

SERPINF2 Alpha-2-
antiplasmin 4 5 0 0 7 0 0 0 0 4 0 0 0

PZP Pregnancy zone protein 0 22 0 0 13 0 0 0 11 16 0 0 0
MYH9 Myosin-9 8 9 0 0 16 0 0 0 0 10 0 0 0
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CPN2 Carboxypeptidase N 
subunit 2 0 3 0 0 5 0 0 0 0 2 4 0 0

LUM Lumican 3 4 0 0 6 0 0 0 0 2 0 0 0
APOD Apolipoprotein D 3 0 0 0 12 0 0 0 0 9 9 0 0
Uncharacterized protein 19 3 0 0 15 0 0 0 0 0 14 0 0
SERPINA10 Protein Z-
dependent protease inhibitor 0 4 0 0 0 0 0 0 5 4 0 0 0

Ig heavy chain V-I region V35 9 2 0 0 0 0 0 0 2 10 0 0 0

MACF1 Microtubule-actin 
cross-linking factor 1, isoforms 
1/2/3/5 

4 0 0 0 0 0 0 0 2 5 0 0 0

QSOX1 Sulfhydryl oxidase 1 0 2 0 0 5 0 0 0 0 0 2 0 0
C2 Complement C2 0 0 0 0 9 0 0 0 0 10 0 0 0
CFB Complement factor B 0 0 0 0 0 46 0 0 40 0 0 0 0
SAA2 Serum amyloid A-2 
protein 0 0 0 0 9 14 0 0 0 0 0 0 0

Ig kappa chain V-III region 
NG9 0 0 0 0 18 0 0 0 0 0 10 0 0

TTN Titin 5 4 0 0 0 2 0 0 4 2 3 0 0
ORM2 Alpha-1-acid 
glycoprotein 2 6 7 0 0 3 0 0 0 3 0 0 0 0

ECM1 Extracellular matrix 
protein 1 2 0 0 0 3 7 0 0 0 3 0 0 0

APOC1 Apolipoprotein C-I 0 4 0 0 5 0 0 0 0 0 0 0 0
ORM1 Alpha-1-acid 
glycoprotein 1 7 0 0 0 3 0 0 0 0 0 0 0 0

KRT82 Keratin, type II 
cuticular Hb2 0 8 0 0 0 0 0 0 24 0 0 0 0

KRT83 Keratin, type II 
cuticular Hb3 0 14 0 0 0 0 0 0 44 0 0 0 0

KRT81 Keratin, type II 
cuticular Hb1 0 14 0 0 0 0 0 0 45 0 0 0 0

KRT79 Keratin, type II 
cytoskeletal 79 0 61 0 0 0 0 0 0 0 0 0 0 0

Ig kappa chain V-III region 
CLL 0 0 0 0 22 0 0 0 0 0 0 0 0

KRT33B Keratin, type I 
cuticular Ha3-II 0 0 0 0 8 0 0 0 0 0 0 0 0

KRT33A Keratin, type I 
cuticular Ha3-I 0 0 0 0 6 0 0 0 0 0 0 0 0

PKP1 Plakophilin-1 0 0 0 0 0 13 0 0 0 0 0 0 0
ENO1 Alpha-enolase 0 0 0 0 0 8 0 0 0 0 0 0 0
SBSN Suprabasin 0 0 0 0 0 5 0 0 0 0 0 0 0
CAT Catalase 0 0 0 0 0 8 0 0 0 0 0 0 0
NCCRP1 Non-specific 
cytotoxic cell receptor protein 
1 homolog 

0 0 0 0 0 5 0 0 0 0 0 0 0

Ig heavy chain V-II region 
ARH-77 0 0 0 0 0 0 0 0 0 5 0 0 0

RPL4 60S ribosomal protein 
L4 0 0 0 0 0 0 0 0 0 5 0 0 0

PRSS1 Trypsin-1 0 0 0 0 0 0 0 0 0 0 6 0 0
PRSS2 Trypsin-2 0 0 0 0 0 0 0 0 0 0 6 0 0
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ARG1 Arginase-1 0 0 0 0 0 23 0 0 0 0 0 0 0
HBD Hemoglobin subunit 
delta 6 0 0 0 16 0 2 0 0 0 0 2 0

KPRP Keratinocyte proline-
rich protein 0 3 3 0 0 58 4 3 0 2 0 0 0

SERPINB12 Serpin B12 0 0 3 0 0 18 0 0 0 2 0 0 0
HRNR Hornerin 0 0 8 0 0 130 0 0 0 7 0 0 0
FLG2 Filaggrin-2 0 4 5 0 0 16 0 0 0 0 0 0 0
HABP2 Hyaluronan-binding 
protein 2 3 6 0 0 2 0 0 0 0 0 3 0 0

PRSS3 Trypsin-3 0 3 0 0 0 0 0 0 0 5 0 0 0
IGJ Immunoglobulin J chain 0 0 0 0 4 0 0 0 0 10 0 0 0
CLEC3B Tetranectin 0 0 0 0 2 0 0 0 0 0 5 0 0
SAA1 Serum amyloid A-1 
protein 0 0 0 0 8 0 0 0 0 0 3 0 0

DSC1 Desmocollin-1 0 0 0 0 0 6 0 0 0 0 0 0 0
CFHR3 Complement factor H-
related protein 3 0 0 0 0 9 0 0 0 0 0 0 0 0

HRG Histidine-rich 
glycoprotein 29 14 7 8 21 7 8 8 12 11 24 2 5

ACTB Actin, cytoplasmic 1 0 0 0 2 0 11 4 5 0 0 0 0 0
JUP Junction plakoglobin 2 8 3 6 0 115 5 18 0 6 0 0 0
DSG1 Desmoglein-1 0 0 6 0 0 33 2 4 0 3 0 0 0
DSP Desmoplakin 0 8 14 7 0 106 5 13 2 9 2 0 0
TGM3 Protein-glutamine 
gamma-glutamyltransferase E 0 0 2 0 0 17 0 0 0 0 0 0 0

BLMH Bleomycin hydrolase 0 0 2 0 0 7 0 0 0 0 0 0 0
SERPINB3 Serpin B3 0 0 2 0 0 5 0 0 0 0 0 0 0
KRT86 Keratin, type II 
cuticular Hb6 0 14 0 0 22 0 0 0 45 0 0 0 0

KRT85 Keratin, type II 
cuticular Hb5 0 14 0 0 17 0 0 0 45 0 0 0 0

KRT71 Keratin, type II 
cytoskeletal 71 0 13 0 0 0 34 0 0 0 0 0 0 0

KRT17 Keratin, type I 
cytoskeletal 17 0 6 0 0 0 73 0 0 0 6 0 0 0

KRT13 Keratin, type I 
cytoskeletal 13 0 0 0 0 2 28 0 0 0 0 0 0 0

KRT27 Keratin, type I 
cytoskeletal 27 0 2 0 0 0 0 0 0 0 0 0 0 0

KRT28 Keratin, type I 
cytoskeletal 28 0 0 0 0 0 3 0 0 0 0 0 0 0

KRT10 Keratin, type I 
cytoskeletal 10 82 180 257 194 77 730 241 232 79 154 50 72 15

KRT9 Keratin, type I 
cytoskeletal 9 25 80 191 120 21 1080 104 327 30 119 43 37 13

KRT1 Keratin, type II 
cytoskeletal 1 105 195 322 252 87 767 237 408 91 230 151 79 28

KRT16 Keratin, type I 
cytoskeletal 16 0 24 17 41 9 80 23 21 0 14 4 0 3

KRT14 Keratin, type I 
cytoskeletal 14 4 19 28 55 0 130 32 34 2 21 9 4 3

KRT2 Keratin, type II 
cytoskeletal 2 epidermal 68 156 204 96 43 583 231 135 35 156 45 31 14
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KRT5 Keratin, type II 
cytoskeletal 5 26 86 85 33 18 259 85 53 16 63 28 10 0

KRT18 Keratin, type I 
cytoskeletal 18 0 0 3 19 0 0 3 0 0 0 0 0 0

KRT36 Keratin, type I 
cuticular Ha6 0 0 0 19 0 0 3 0 0 0 0 0 0

KRT84 Keratin, type II 
cuticular Hb4 0 17 0 0 0 0 33 0 20 19 0 0 0

KRT4 Keratin, type II 
cytoskeletal 4 0 0 0 0 0 0 0 3 0 0 0 0 0

KRT3 Keratin, type II 
cytoskeletal 3 0 43 55 0 10 0 76 0 0 45 0 0 0

KRT8 Keratin, type II 
cytoskeletal 8 0 13 0 0 4 0 0 29 0 17 0 0 0

KRT78 Keratin, type II 
cytoskeletal 78 0 0 16 3 0 38 24 0 0 0 0 0 0

KRT77 Keratin, type II 
cytoskeletal 1b 15 14 34 18 0 56 27 0 0 0 0 0 0

KRT80 Keratin, type II 
cytoskeletal 80 0 0 2 0 0 2 0 0 0 0 0 0 0

KRT6A Keratin, type II 
cytoskeletal 6A 0 107 75 32 17 169 81 58 16 95 27 10 0

KRT31 Keratin, type I 
cuticular Ha1 0 0 0 19 8 0 0 0 22 0 0 0 0

C4BPB C4b-binding protein 
beta chain 3 4 0 0 3 0 0 0 0 4 3 0 0

CPB2 Carboxypeptidase B2 3 0 0 0 3 0 0 0 0 4 4 0 0
HBE1 Hemoglobin subunit 
epsilon 3 0 0 0 2 0 0 0 0 2 2 0 0

SERPINA5 Plasma serine 
protease inhibitor 0 3 0 0 2 0 0 0 0 3 2 0 0

F5 Coagulation factor V 3 4 0 0 0 0 0 0 0 3 2 0 0
PROC Vitamin K-dependent 
protein C 0 3 0 0 4 0 0 0 0 4 2 0 0

SHBG Sex hormone-binding 
globulin 0 4 0 0 2 0 0 0 0 2 2 0 0

MASP1 Mannan-binding lectin 
serine protease 1 0 2 0 0 2 0 0 0 0 0 2 0 0

Ig kappa chain V-I region 
Walker 0 2 0 0 3 0 0 0 0 3 0 0 0

TTN Titin 3 2 0 0 2 0 0 0 0 0 0 0 0
CTLA4 Cytotoxic T-
lymphocyte protein 4 0 0 0 0 2 0 0 0 0 2 4 0 0

C1QC Complement C1q 
subcomponent subunit C 0 3 0 0 0 0 0 0 0 0 3 0 0

CRP C-reactive protein 0 0 0 0 3 3 0 0 0 0 0 0 0
LCAT Phosphatidylcholine-
sterol acyltransferase 2 0 0 0 0 0 0 0 2 0 0 0 0

INO80 DNA helicase INO80 0 2 0 0 0 2 0 0 0 0 0 0 0

CHD5 Chromodomain-helicase-
DNA-binding protein 5 0 0 0 0 0 2 0 0 2 0 0 0 0

DOCK10 Dedicator of 
cytokinesis protein 10 2 0 0 0 0 0 0 0 0 2 0 0 0

C1QA Complement C1q 
subcomponent subunit A 0 2 0 0 0 0 0 0 0 2 0 0 0

AFM Afamin 0 2 0 0 3 0 0 0 0 0 0 0 0
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F9 Coagulation factor IX 0 0 0 0 0 0 0 0 2 3 0 0 0
CD14 Monocyte differentiation 
antigen CD14 2 0 0 0 0 0 0 0 0 3 0 0 0

PRG4 Proteoglycan 4 0 2 0 0 0 0 0 0 0 3 0 0 0
FETUB Fetuin-B 0 3 0 0 0 0 0 0 0 0 2 0 0
ITIH3 Inter-alpha-trypsin 
inhibitor heavy chain H3 2 0 0 0 4 0 0 0 0 0 0 0 0

HIST1H1E Histone H1.4 2 0 0 0 0 0 0 0 0 0 0 0 0
HIST1H1B Histone H1.5 2 0 0 0 0 0 0 0 0 0 0 0 0
C3orf19 Uncharacterized 
protein C3orf19 2 0 0 0 0 0 0 0 0 0 0 0 0

ALPPL2 Alkaline phosphatase, 
placental-like 2 0 0 0 0 0 0 0 0 0 0 0 0

SCIN Adseverin 2 0 0 0 0 0 0 0 0 0 0 0 0
RHPN2 Rhophilin-2 2 0 0 0 0 0 0 0 0 0 0 0 0
C18orf34 Uncharacterized 
protein C18orf34 2 0 0 0 0 0 0 0 0 0 0 0 0

EMILIN1 EMILIN-1 2 0 0 0 0 0 0 0 0 0 0 0 0
TCOF1 Treacle protein 2 0 0 0 0 0 0 0 0 0 0 0 0
SLTM SAFB-like transcription 
modulator 2 0 0 0 0 0 0 0 0 0 0 0 0

KIAA0319 Dyslexia-
associated protein KIAA0319 2 0 0 0 0 0 0 0 0 0 0 0 0

DNMBP Dynamin-binding 
protein 2 0 0 0 0 0 0 0 0 0 0 0 0

TIAM1 T-lymphoma invasion 
and metastasis-inducing 
protein 1

2 0 0 0 0 0 0 0 0 0 0 0 0

MYOM2 Myomesin-2 2 0 0 0 0 0 0 0 0 0 0 0 0
C18orf34 Uncharacterized 
protein C18orf34 2 0 0 0 0 0 0 0 0 0 0 0 0

CHD9 Chromodomain-helicase-
DNA-binding protein 9 2 0 0 0 0 0 0 0 0 0 0 0 0

RBBP6 E3 ubiquitin-protein 
ligase RBBP6 2 0 0 0 0 0 0 0 0 0 0 0 0

BRWD1 Bromodomain and 
WD repeat-containing protein 
1

2 0 0 0 0 0 0 0 0 0 0 0 0

MED12L Mediator of RNA 
polymerase II transcription 
subunit 12-like protein

2 0 0 0 0 0 0 0 0 0 0 0 0

MEGF8 Multiple epidermal 
growth factor-like domains 
protein 8

2 0 0 0 0 0 0 0 0 0 0 0 0

ARFGEF3 Brefeldin A-
inhibited guanine nucleotide-
exchange protein 3

2 0 0 0 0 0 0 0 0 0 0 0 0

AHNAK Neuroblast 
differentiation-associated 
protein AHNAK

2 0 0 0 0 0 0 0 0 0 0 0 0

HECTD4 Probable E3 
ubiquitin-protein ligase 
HECTD4

2 0 0 0 0 0 0 0 0 0 0 0 0

NEB Nebulin 2 0 0 0 0 0 0 0 0 0 0 0 0



236

OBSCN Obscurin 2 0 0 0 0 0 0 0 0 0 0 0 0
FSIP2 Fibrous sheath-
interacting protein 2 2 0 0 0 0 0 0 0 0 0 0 0 0

S100A7A Protein S100-A7A 0 2 0 0 0 0 0 0 0 0 0 0 0
KIAA0391 Mitochondrial 
ribonuclease P protein 3 0 2 0 0 0 0 0 0 0 0 0 0 0

ARL6IP4 ADP-ribosylation 
factor-like protein 6-interacting 
protein 4

0 2 0 0 0 0 0 0 0 0 0 0 0

CSNK2A1 Casein kinase II 
subunit alpha 0 2 0 0 0 0 0 0 0 0 0 0 0

UBN1 Ubinuclein-1 0 2 0 0 0 0 0 0 0 0 0 0 0
COL7A1 Collagen alpha-
1(VII) chain 0 2 0 0 0 0 0 0 0 0 0 0 0

REV3L DNA polymerase zeta 
catalytic subunit 0 2 0 0 0 0 0 0 0 0 0 0 0

SACS Sacsin 0 2 0 0 0 0 0 0 0 0 0 0 0
PLEC Plectin 0 2 0 0 0 0 0 0 0 0 0 0 0
APOM Apolipoprotein M 0 0 0 0 4 0 0 0 0 0 0 0 0
MLL Histone-lysine N-
methyltransferase MLL 0 0 0 0 4 0 0 0 0 0 0 0 0

LPA Apolipoprotein(a) 0 0 0 0 4 0 0 0 0 0 0 0 0
LBP Lipopolysaccharide-
binding protein 0 0 0 0 3 0 0 0 0 0 0 0 0

FBLN1 Fibulin-1 0 0 0 0 3 0 0 0 0 0 0 0 0
PCCA Propionyl-CoA 
carboxylase alpha chain, 
mitochondrial 

0 0 0 0 3 0 0 0 0 0 0 0 0

AHNAK Neuroblast 
differentiation-associated 
protein AHNAK

0 0 0 0 3 0 0 0 0 0 0 0 0

PPBP Platelet basic protein 0 0 0 0 2 0 0 0 0 0 0 0 0

GTF2E1 General transcription 
factor IIE subunit 1 0 0 0 0 2 0 0 0 0 0 0 0 0

PINK1 Serine/threonine-
protein kinase PINK1, 
mitochondrial

0 0 0 0 2 0 0 0 0 0 0 0 0

BCDIN3D Probable 
methyltransferase BCDIN3D 0 0 0 0 2 0 0 0 0 0 0 0 0

NUFIP2 Nuclear fragile X 
mental retardation-interacting 
protein 2

0 0 0 0 2 0 0 0 0 0 0 0 0

ARHGEF11 Rho guanine 
nucleotide exchange factor 11 0 0 0 0 2 0 0 0 0 0 0 0 0

GLDC Glycine dehydrogenase 0 0 0 0 2 0 0 0 0 0 0 0 0

ASTN2 Astrotactin-2 0 0 0 0 2 0 0 0 0 0 0 0 0
TPR Nucleoprotein TPR 0 0 0 0 2 0 0 0 0 0 0 0 0
SPTBN2 Spectrin beta chain, 
non-erythrocytic 2 0 0 0 0 2 0 0 0 0 0 0 0 0

KAT6A Histone 
acetyltransferase KAT6A 0 0 0 0 2 0 0 0 0 0 0 0 0

DUSP26 Dual specificity 
protein phosphatase 26 0 0 0 0 0 2 0 0 0 0 0 0 0
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GGCT Gamma-
glutamylcyclotransferase 0 0 0 0 0 4 0 0 0 0 0 0 0

ANXA2 Annexin A2 0 0 0 0 0 4 0 0 0 0 0 0 0
ATP6V1E2 V-type proton 
ATPase subunit E 2 0 0 0 0 0 2 0 0 0 0 0 0 0

CPA4 Carboxypeptidase A4 0 0 0 0 0 2 0 0 0 0 0 0 0
KIAA1257 Uncharacterized 
protein KIAA1257 0 0 0 0 0 2 0 0 0 0 0 0 0

PRDX2 Peroxiredoxin-2 0 0 0 0 0 4 0 0 0 0 0 0 0
AGK Acylglycerol kinase, 
mitochondrial 0 0 0 0 0 2 0 0 0 0 0 0 0

DDX21 Nucleolar RNA 
helicase 2 0 0 0 0 0 2 0 0 0 0 0 0 0

FAM116B Protein FAM116B 0 0 0 0 0 2 0 0 0 0 0 0 0
CKAP2 Cytoskeleton-
associated protein 2 0 0 0 0 0 2 0 0 0 0 0 0 0

POF1B Protein POF1B 0 0 0 0 0 4 0 0 0 0 0 0 0

PLCB3 1-phosphatidylinositol 
4,5-bisphosphate 
phosphodiesterase beta-3

0 0 0 0 0 2 0 0 0 0 0 0 0

TOP2A DNA topoisomerase 2-
alpha 0 0 0 0 0 2 0 0 0 0 0 0 0

MATR3 Matrin-3 0 0 0 0 0 2 0 0 0 0 0 0 0
COL4A2 Collagen alpha-2(IV) 
chain 0 0 0 0 0 2 0 0 0 0 0 0 0

HDAC6 Histone deacetylase 6 0 0 0 0 0 2 0 0 0 0 0 0 0

FAM47C Putative protein 
FAM47C 0 0 0 0 0 2 0 0 0 0 0 0 0

SCN11A Sodium channel 
protein type 11 subunit alpha 0 0 0 0 0 2 0 0 0 0 0 0 0

CEP290 Centrosomal protein 
of 290 kDa 0 0 0 0 0 2 0 0 0 0 0 0 0

DNAH2 Dynein heavy chain 2, 
axonemal 0 0 0 0 0 2 0 0 0 0 0 0 0

AGRN Agrin 0 0 0 0 0 2 0 0 0 0 0 0 0
BOD1L1 Biorientation of 
chromosomes in cell division 
protein 1-like 1

0 0 0 0 0 2 0 0 0 0 0 0 0

FLG Filaggrin 0 0 0 0 0 2 0 0 0 0 0 0 0
SEPP1 Selenoprotein P 0 0 0 0 0 0 0 0 2 0 0 0 0
ARL6IP4 ADP-ribosylation 
factor-like protein 6-interacting 
protein 4

0 0 0 0 0 0 0 0 2 0 0 0 0

ZNF609 Zinc finger protein 
609 0 0 0 0 0 0 0 0 2 0 0 0 0

KDM2A Lysine-specific 
demethylase 2A 0 0 0 0 0 0 0 0 4 0 0 0 0

CEP135 Centrosomal protein 
of 135 kDa 0 0 0 0 0 0 0 0 2 0 0 0 0

CACNA1A Voltage-dependent 
P/Q-type calcium channel 
subunit alpha-1A

0 0 0 0 0 0 0 0 2 0 0 0 0
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UGGT1 UDP-
glucose:glycoprotein 
glucosyltransferase 1 

0 0 0 0 0 0 0 0 2 0 0 0 0

CENPF Centromere protein F 0 0 0 0 0 0 0 0 2 0 0 0 0
MGA MAX gene-associated 
protein 0 0 0 0 0 0 0 0 2 0 0 0 0

Ig kappa chain V-I region 
HK101 0 0 0 0 0 0 0 0 0 4 0 0 0

GPX3 Glutathione peroxidase 
3 0 0 0 0 0 0 0 0 0 2 0 0 0

PLA2G7 Platelet-activating 
factor acetylhydrolase 0 0 0 0 0 0 0 0 0 2 0 0 0

PIGR Polymeric 
immunoglobulin receptor 0 0 0 0 0 0 0 0 0 2 0 0 0

SRFBP1 Serum response factor-
binding protein 1 0 0 0 0 0 0 0 0 0 2 0 0 0

VASH1 Vasohibin-1 0 0 0 0 0 0 0 0 0 2 0 0 0
MAP7D2 MAP7 domain-
containing protein 2 0 0 0 0 0 0 0 0 0 2 0 0 0

FAM98A Protein FAM98A 0 0 0 0 0 0 0 0 0 2 0 0 0
INA Alpha-internexin 0 0 0 0 0 0 0 0 0 2 0 0 0
ATP1A1 Sodium/potassium-
transporting ATPase subunit 
alpha-1 

0 0 0 0 0 0 0 0 0 2 0 0 0

FER Tyrosine-protein kinase 
Fer 0 0 0 0 0 0 0 0 0 2 0 0 0

FANCI Fanconi anemia group 
I protein 0 0 0 0 0 0 0 0 0 4 0 0 0

RBM15 Putative RNA-binding 
protein 15 0 0 0 0 0 0 0 0 0 2 0 0 0

COL24A1 Collagen alpha-
1(XXIV) chain 0 0 0 0 0 0 0 0 0 2 0 0 0

MYO1F Unconventional 
myosin-If 0 0 0 0 0 0 0 0 0 2 0 0 0

EPHA8 Ephrin type-A receptor 
8 0 0 0 0 0 0 0 0 0 2 0 0 0

RIMS1 Regulating synaptic 
membrane exocytosis protein 1 0 0 0 0 0 0 0 0 0 2 0 0 0

TIAM1 T-lymphoma invasion 
and metastasis-inducing 
protein 1

0 0 0 0 0 0 0 0 0 2 0 0 0

CCDC108 Coiled-coil domain-
containing protein 108 0 0 0 0 0 0 0 0 0 2 0 0 0

PCNXL3 Pecanex-like protein 
3 0 0 0 0 0 0 0 0 0 2 0 0 0

KIAA2026 Uncharacterized 
protein KIAA2026 0 0 0 0 0 0 0 0 0 2 0 0 0

ITPR1 Inositol 1,4,5-
trisphosphate receptor type 1 0 0 0 0 0 0 0 0 0 2 0 0 0

PDZD2 PDZ domain-
containing protein 2 0 0 0 0 0 0 0 0 0 2 0 0 0

MYO5A Unconventional 
myosin-Va 0 0 0 0 0 0 0 0 0 2 0 0 0

KIAA1109 Uncharacterized 
protein KIAA1109 0 0 0 0 0 0 0 0 0 2 0 0 0
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ARID5B AT-rich interactive 
domain-containing protein 5B 0 0 0 0 0 0 0 0 0 0 2 0 0

STIM1 Stromal interaction 
molecule 1 0 0 0 0 0 0 0 0 0 0 2 0 0

USP8 Ubiquitin carboxyl-
terminal hydrolase 8 0 0 0 0 0 0 0 0 0 0 2 0 0

PDE1C Calcium/calmodulin-
dependent 3',5'-cyclic 
nucleotide phospodiesterase 1C 

0 0 0 0 0 0 0 0 0 0 2 0 0

FAM21C WASH complex 
subunit FAM21C 0 0 0 0 0 0 0 0 0 0 2 0 0

EXTL3 Exostosin-like 3 0 0 0 0 0 0 0 0 0 0 2 0 0
MTR Methionine synthase 0 0 0 0 0 0 0 0 0 0 2 0 0
SUV420H1 Histone-lysine N-
methyltransferase SUV420H1 0 0 0 0 0 0 0 0 0 0 2 0 0

MYH11 Myosin-11 0 0 0 0 0 0 0 0 0 0 2 0 0
BSN Protein bassoon 0 0 0 0 0 0 0 0 0 0 2 0 0
ABCC2 Canalicular 
multispecific organic anion 
transporter 1 

0 0 0 0 0 0 0 0 0 0 2 0 0

ZZEF1 Zinc finger ZZ-type 
and EF-hand domain-
containing protein 1

0 0 0 0 0 0 0 0 0 0 2 0 0

SPINK5 Serine protease 
inhibitor Kazal-type 5 0 0 0 0 0 0 0 0 3 0 0 0 0

MST1 Hepatocyte growth 
factor-like protein 0 0 0 0 0 0 0 0 0 3 0 0 0

THBS1 Thrombospondin-1 0 0 0 0 0 0 0 0 0 3 0 0 0
ALMS1 Alstrom syndrome 
protein 1 0 0 0 0 0 0 0 0 0 3 0 0 0

CFHR2 Complement factor H-
related protein 2 0 0 0 0 0 0 0 0 0 0 3 0 0

LYL1 Protein lyl-1 0 0 0 0 0 0 0 0 0 0 3 0 0
ZNF469 Zinc finger protein 
469 0 0 0 0 0 0 0 0 0 0 3 0 0

PRDX1 Peroxiredoxin-1 0 0 0 0 0 3 0 0 0 0 0 0 0
CASP14 Caspase-14 0 0 0 0 0 3 0 0 0 0 0 0 0
PKM Pyruvate kinase 
isozymes M1/M2 0 0 0 0 0 3 0 0 0 0 0 0 0

CTSD Cathepsin D 0 0 0 0 0 3 0 0 0 0 0 0 0
Uncharacterized protein 0 0 0 0 0 3 0 0 0 0 0 0 0
TGM1 Protein-glutamine 
gamma-glutamyltransferase K 0 0 0 0 0 3 0 0 0 0 0 0 0

DDX42 ATP-dependent RNA 
helicase DDX42 3 0 0 0 0 0 0 0 0 0 0 0 0

BCL9 B-cell CLL/lymphoma 9 
protein 3 0 0 0 0 0 0 0 0 0 0 0 0

RAB3IL1 Guanine nucleotide 
exchange factor for Rab-3A 3 0 0 0 0 0 0 0 0 0 0 0 0

S100A8 Protein S100-A8 0 3 0 0 0 0 0 0 0 0 0 0 0
F11 Coagulation factor XI 0 3 0 0 0 0 0 0 0 0 0 0 0
TLL1 Tolloid-like protein 1 0 3 0 0 0 0 0 0 0 0 0 0 0
DCD Dermcidin 0 0 12 9 0 0 20 11 0 0 0 0 0
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LYZ Lysozyme C 0 0 0 0 0 0 2 0 0 2 0 0 0
ACE Angiotensin-converting 
enzyme 0 0 0 0 0 0 0 82 0 40 31 0 0

ACTA2 Actin, aortic smooth 
muscle 0 0 0 0 0 0 2 0 0 0 0 0 0

ACTA1 Actin, alpha skeletal 
muscle 0 0 0 0 0 0 2 0 0 0 0 0 0

UBC Polyubiquitin-C 0 0 0 0 0 0 4 0 0 0 0 0 0
UBBP4 Protein UBBP4 0 0 0 0 0 0 4 0 0 0 0 0 0
UBA52 Ubiquitin-60S 
ribosomal protein L40 0 0 0 0 0 0 4 0 0 0 0 0 0

RPS27A Ubiquitin-40S 
ribosomal protein S27a 0 0 0 0 0 0 4 0 0 0 0 0 0

LUZP1 Leucine zipper protein 
1 0 0 0 0 0 0 2 0 0 0 0 0 0

S100A9 Protein S100-A9 0 0 0 0 0 0 7 0 0 0 0 0 0
DNAH14 Dynein heavy chain 
14, axonemal 0 0 0 0 2 0 0 2 0 0 0 0 0

AZGP1 Zinc-alpha-2-
glycoprotein 0 0 3 0 4 0 2 0 0 0 0 0 0

GAPDH Glyceraldehyde-3-
phosphate dehydrogenase 0 0 5 0 0 13 3 0 0 0 0 0 0

H2AFZ Histone H2A.Z 0 0 0 2 0 0 0 0 0 0 0 0 0
H2AFJ Histone H2A.J 0 0 0 2 0 0 0 0 0 0 0 0 0
HIST1H2AA Histone H2A 
type 1-A 0 0 0 2 0 0 0 0 0 0 0 0 0

HIST3H2A Histone H2A type 
3 0 0 0 2 0 0 0 0 0 0 0 0 0

H2AFV Histone H2A.V 0 0 0 2 0 0 0 0 0 0 0 0 0
HIST2H2AC Histone H2A 
type 2-C 0 0 0 2 0 0 0 0 0 0 0 0 0

H2AFX Histone H2A.x 0 0 0 2 0 0 0 0 0 0 0 0 0
HIST1H2AM Histone H2A 
type 1 0 0 0 2 0 0 0 0 0 0 0 0 0

SERPINB4 Serpin B4 0 0 2 0 0 0 0 0 0 0 0 0 0
PARP10 Poly 0 0 2 0 0 0 0 0 0 0 0 0 0

PIP Prolactin-inducible protein 0 0 2 2 0 0 0 0 0 0 0 0 0

HIST4H4 Histone H4 0 0 0 4 0 0 0 0 0 0 0 0 0
S100A7 Protein S100-A7 0 2 2 0 0 0 0 0 0 0 0 0 0


