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Abstract 

We present Scanning Tunneling Microscopy (STM) studies on several systems in which spin-orbit 

coupling leads to new and interesting physics, and where tuning by doping and/or strain can significantly 

modify the electronic properties, either inducing a phase transition or by sharply influencing the 

electronic structure locally.  

In the perovskite Iridate insulator Sr3Ir2O7, we investigate the parent compound, determining the 

band gap and its evolution in response to point defects which we identify as apical oxygen vacancies. We 

investigate the effects of doping the parent compound with La (in place of Sr) and Ru (in place of Ir). In 

both cases a metal-insulator transition (MIT) results: at x ~ 38% with Ru, and x ~ 5% with La. In the La-

doped samples we find nanoscale phase separation at dopings just below the MIT, with metallic spectra 

associated with clusters of La atoms. Further, we find resonances near the Fermi energy associated with 

individual La atoms, suggesting an uneven distribution of dopants among the layers of the parent 

compound.  

 Bi2Se3 is a topological insulator which hosts linearly dispersing Dirac surface states. Doping with 

In (in place of Bismuth) brings about topological phase transition, achieving a trivial insulator at x ~ 4%.  

We use high-magnetic field Landau level spectroscopy to study the surface state’s properties approaching 

the phase transition and find, by a careful analysis of the peak positions find behavior consistent with 

strong surface-state Zeeman effects: g~50. This interpretation implies, however, a relabeling of the 

Landau levels previously observed in pristine Bi2Se3, which we justify through ab initio calculations. The 
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overall picture is of a g-factor which steadily decreases as In is added up to the topological phase 

transition. 

 Finally, we examine the effects of strain on the surface states of (001) thin films of the 

topological crystalline insulator SnTe. When these films are grown on closely-related substrates—in this 

case PbSe(001)—a rich pattern of surface strain emerges. We use phase-sensitive analysis of atomic-

resolution STM topographs to measure the strain locally, and spatially-resolved quasiparticle interference 

imaging to compare the Dirac point positions in regions with different types of strain, quantifying for the 

first time the effect of anisotropic strain on the surface states of a topological crystalline insulator. 
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1: Introduction 

1.0 Plan of the thesis 
 

This thesis presents Scanning Tunneling Microscopy (STM) studies on lightly doped or strained versions 

of several materials of recent interest in condensed matter physics. These materials all have in common 

the fact that spin-orbit coupling plays a key role in establishing their physical properties: the “spin-orbit 

Mott” state in the perovskite Iridates (Chapter 3), and the band inversion in topological insulators 

(Chapter 4) and topological crystalline insulators (Chapter 5).  

To explain the physics of these materials and why they are interesting, we include a rather detailed 

exposition of the effects of spin-orbit coupling starting from the level of simple atomic physics, and 

proceeding through the Hall, spin Hall, and quantum spin Hall effects to topological insulators, 

topological crystalline insulators, and the more strongly correlated iridate compounds (Chapter 1). 

The technique of STM as used in this work is described in chapter 2. We skirt through the basics of STM 

and quickly permit ourselves to treat the differential conductance as proportional to the sample’s local 

density of states. (This approximation, which almost amounts to an assumption, is known to lose its 

validity in diverse circumstances including superconducting tips1 and local gating of the sample2, which 

will not concern us here.) We then describe the techniques frequently used in STM to establish the k-

space dispersion relations of (Bloch) electrons: quasiparticle interference imaging and Landau level 

spectroscopy, and a relatively new technique of using STM to measure the local strain in the atomic 

lattice, which we apply to effect in chapter 5. 

The body chapters follow, which are summarized in the abstract. 

1.1 Spin-orbit coupling 
 

Spin-orbit coupling arises from the intrinsic magnetic moment of the electron 
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2 4
e eg g
m m

 μ S σ   (1.1) 

where e and m are the charge and mass of the electron, S is the spin and is the vector of Pauli matrices, 

and g is the gyromagnetic ratio which for free electrons is very nearly 2. An electron moving in an electric 

field—for example, the field of an atom or crystal lattice—sees a magnetic field B proportional to v E , 

which changes its energy by  

 U  μ B . (1.2) 

For electrons orbiting a hydrogen-like atom (that is, a nucleus of charge Ze with potential ( ) /U r Ze r 

) it turns out that for reasonably small Zthe energy levels shift by3,4  

 4 2( )BE Z E    (1.3) 

where BE = 13.6 eV is the Bohr energy, and ≈ 1/137 is the fine structure constant. Eq. 1.3 shows that 

spin-orbit splitting is large only for heavy atoms, where the electron attains relativistic speeds in the 

potential well (i.e. where E and c v E can achieve comparable magnitudes. In hydrogen-like atoms v/c ~ 

Z.). 

With the exception of SnTe, the materials studied here are all contain heavy elements: The decisive role 

of spin-orbit coupling is most obvious in the Iridate compounds (Z=77; chapter 3) and Bi2Se3 (Z=83; 

chapter 4).  

1.2 SOC in condensed matter; the Rashba effect 
 

Although the Rashba effect is not directly related to the experimental work shown in this thesis, it forms a 

convenient bridge between spin-orbit coupling in general and the more complicated effects studied later 

on. Furthermore, Rashba splitting is present in several noble metal surface states, the study of which 

played an important role in the development of STM. We briefly describe it below. 
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With eff c  vB E and g=2 Eq. (1.2) reduces to5 

   2ˆ /SO BH mc  E p σ  . (1.4) 

For free electrons, once the Thomas correction6 is taken into account, the proportionality constant is one 

half.7  Clearly, ˆ
SOH tends to lift the spin degeneracy of the overall Hamiltonian, and if E is constant over 

the wave packet its solutions are eigenstates of σ in the direction specified by . E p (See Fig. 1.1) 

In solid state physics the electrons are usually taken to be in Bloch states defined by the wavevector k, the 

spin, and a band index. The necessary symmetries of these Bloch states limits the ability of ˆ
SOH to lift the 

degeneracy in actual materials: Time reversal symmetry requires that ( , ) ( , )E E   k k  (Kramers’ 

theorem)8, and if the crystal is inversion symmetric we also have ( , ) ( , )E E   k k . In that case the 

spin degeneracy is not lifted; ˆ
SOH =0 for all states. 

At the crystal surface, however, inversion symmetry is broken. Taking ẑ  as the surface normal, we have 

an average electric field ˆEE z , which when substituted into (1.4) gives9 

  ˆ ˆSOH   z p σ ,  (1.5) 

so that the total Hamiltonian for quasi-free electrons is 

  
2 2

ˆ ˆ
2 2SO x y y x
p pH H p p
m m

         . (1.6) 

The characteristic dispersion of this Hamiltonian is shown in Fig. 1.1.  ˆ
SOH polarizes the spins 

azimuthally and makes an energy gap of 2 p  between the clockwise and anti-clockwise spins.  
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Fig. 1.1: Rashba-split 2DEG. The energies (orange) and spin-polarizations (red) of a Rashba-split quasi-free 2-
dimensional electron gas (2DEG). (a) shows the px-E  plane; (b) shows the px-py plane. (b) roughly corresponds to 
the dashed horizontal line in (a). 

The Hamiltonian (1.6) is a reasonably good fit for the (111) surface states of Cu10, Ag11, and Au12,13. As 

we will discuss in great detail below (see also Chapter 4), it is also the standard low-energy 

approximation for the surface states of topological insulators14. 

1.3 Topological insulators 
 

We would now like to connect this simple exposition of spin-orbit coupling to the essential physics of the 

systems studied in this thesis: In-doped Bi2Se3, Sr3Ir2O7, and SnTe. The first of these is a topological 

insulator whose band inversion is directly attributed to spin-orbit coupling14, and whose phase transition 

with increasing In content is at least partly attributed to a weakening of the SOC.15 Although a full 

treatment of SOC’s role in the band inversion is beyond our means, we will try to sketch out the 

importance of SOC to the intrinsic spin Hall effect, which was an important technological motivation of 

the search for topological insulators16,17.  
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 1.3.1 The spin Hall effect 
 

The conventional Hall effect was discovered in 1879 by Edwin Hall, who imagined that the Lorentz force 

on a current flowing through a transverse magnetic field would create “a state of stress in the conductor, 

the electricity pressing, as it were, toward one side of the wire.”18,19  

Much later (after the electron had been discovered and ascribed the property of spin), D’yakonov and 

Perel’ argued that as the electrons moved through the conductor, spin-orbit-split scattering processes 

would cause an accumulation of polarized spins on the sides of the wire20, with opposite spins on opposite 

sides. This effect, which requires defects to generate the Mott scattering21, is now termed the “extrinsic” 

spin Hall effect in contrast to the intrinsic effect, which results from the band structure itself22,23.  

The intrinsic spin Hall effect was predicted for GaAs in 200316 and the Rashba-split 2DEG (Eq. (1.6)) 

soon after23. In both cases it relies on the splitting of a band into branches by the spin-orbit coupling: for a 

single branch characterized by a definite spin orientation at each momentum k (e.g. the outer circle of 

Fig. 1.1(b)), the accelerating electric field tends to cant the spins in such a way as to generate a spin 

current 16,22,23: 

 i ijk
j s kJ E    (1.7) 

 where J is the spin current (tensor) , ijk is the unit antisymmetric tensor, and s is the spin Hall 

conductivity16. Here i
jJ  represents a current flowing in in the j direction of spins oriented along i, and in 

particular we expect an electric field in the x-direction to cause a flow of z-oriented spins in the y-

direction, and a flow of y-oriented spins in the negative z-direction. The corresponding accumulation of 

spins on the edges of a Hall bar or wire is shown in Fig. 1.2. 



 6 
 

 

Fig. 1.2: The accumulation of spins at the edge of a wire under the spin Hall effect. (a) shows the top view (as 
of a Hall bar), and (b) shows the cross-section of a circular wire. We assume s > 0. 

 

The spin Hall effect in GaAs and InGaAs was observed24,25 in 2004 to much excitement26 (compare Fig. 

1.2a to Fig. 2A of 24). 

To make the connection with topological insulators let us point out a very important characteristic of the 

intrinsic spin Hall effect: the effects arising from band elements with opposite helicity tend to cancel, and 

it is therefore necessary that in some “net region” of k-space one of these elements be occupied while the 

other is unoccupied.16,23 For the Rashba Hamiltonian this is automatically the case when the Fermi energy 

is positive (see Fig. 1.3), and it was argued that in that case the Hall conductivity in the limit of zero 

spectral broadening achieves the precise value / 8e  23. This value of s  was later shown to be 

wrong27,28, but the argument immediately shows the usefulness of the topological insulator surface state, 

and the desirability of doping or gating the TI to place the Dirac point at the Fermi level (Fig. 1.3b).  
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Fig. 1.3: Areas of k-space contributing to the intrinsic spin Hall effect. (a) In the Rashba 2DEG only that 
annulus contributes where the upper branch is unoccupied and the lower branch is unoccupied. (b) In the TI with 
Ef=0 entire bottom of the surface state contributes to the spin Hall effect. (The surface state Hamiltonian in Bi2Se3 is 
essentially a Rashba 2DEG with the outer branch removed.14) 

 

1.3.2 The quantum spin Hall effect 
 

Topological insulators have attracted such great interest that their history has already been detailed in 

several review articles and books29–34. In 2005 Kane and Mele argued that graphene with spin-orbit 

coupling should show an intrinsic spin Hall effect with quantized, dissipationless / 2s e  .35 In 2006 

another proposal envisioned a quantum spin Hall insulator state arising in a conventional semiconductor 

with a strain gradient.36 That paper cleverly exploited a certain equivalence to replace the electric field in 

the spin-orbit coupling term   v ×E σ with corresponding elements of the strain tensor. For spatially 
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varying strain this term in the Hamiltonian acts like the vector potential of a magnetic field (now it would 

be called a “pseudomagnetic” field37–39), and a certain type of strain gradient was proposed to imitate a 

uniform magnetic field in in +z-direction for spin-up electrons, and the opposite for spin-down electrons. 

(That is, the Hamiltonian took the form  2 / 2zH p e m  A  where A is the vector potential of a 

uniform field in the z-direction.) The result of all this is that for strong strain gradients the up- and down-

spins are subject to the quantum Hall effect with the edge states propagating in opposite directions, and a 

net spin Hall conductivity of / 2e  is achieved although the charge Hall conductivity is zero. 

The main conceptual advance necessary for TI’s was the topological characterization of band structures, 

and in particular the realization that the ordinary insulator and the quantum spin Hall insulator were 

topologically distinct40,29–31. The topological distinctness of different filling factors of the integer quantum 

Hall effect (not spin Hall) had already been realized, and was expressed in the value of a certain integral 

over all occupied states in a unit-cell of k-space.41 In Ref. 40 the corresponding integral was a line integral 

around an area comprising half the Brillouin zone. The generalization of the quantum spin Hall effect and 

the topological band classifications to 3-dimensional systems (3D) is a bit complicated: here the band 

structure is characterized by four Z2 invariants42,43 which, however,  can usually be calculated by referring 

to the properties of the electronic states at the time-reversal invariant points of the Brillouin zone rather 

than by integration. The topological classification scheme is, however, slightly beyond the scope of this 

thesis and we refer the reader to the literature (e.g. Ref. 44). 

1.3.3 Topological insulators 
 

In 2006 Berenvig and Zhang proposed that the quantum spin Hall state would be realized in 

nanostructures consisting of a quantum well sandwich in which HgTe formed the “meat” and CdTe the 

bread, when the HgTe exceeded dc > ~6 nm45. This prediction was experimentally verified in 2007 

yielding dc = 6.3 nm46. (It should be noted, however, that two-dimensional Dirac fermions at the interface 
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between HgTe and CdTe resulting from the mutual band inversion, as also at the interface between PbTe 

and SnTe, had already been predicted in the 1980’s47.) 

In 2008 the first 3D topological insulator BixSb1-x , which had been predicted in Ref. 42, was identified by 

angle-resolved photoemission spectroscopy (APRES)48. At this point we should add that the 3-D 

topological insulator is characterized by metallic 2-D surface states (analogous to the 1-D edge states 

found in the quantum spin Hall systems35,45) which makes it particularly susceptible to characterization by 

surface-sensitive probes like ARPES and STM. These surface states are (like their 1-D counterparts) 

protected against backscattering by time-reversal symmetry, which property was also verified for BixSb1-x 

in 2009, by STM49. 

However, BixSb1-x has a rather narrow band gap, and its surface state is rather complex: in the ARPES 

study it crossed the Fermi energy five times48. (That the number of crossings should be odd is an essential 

characteristic of the 3D topological insulator.42) A topological-insulating system without these 

characteristics was desirable, and in 2009 this new class of TI’s, comprising Bi2Se3, Bi2Te3, and Sb2Te3, 

was theoretically predicted and experimentally confirmed (ARPES) in two articles which (in an unusually 

short time-lag between theory and experiment) were published online on the same day50,51.  

Because Bi2Se3 is dealt with extensively later (and also because it is now regarded as a “prototypical” 

topological insulator52,53) we should now describe it in some detail. Bi2Se3 is a layered crystal in which 

the basic unit is five-layer sandwich of the form Se-Bi-Se-Bi-Se. The crystal structure is shown in Fig. 1 

of Ref. 51 which we reproduce in Fig. 1.4 below. The atoms in each layer form a triangular lattice with the 

atomic positions in succeeding layers following an A-B-C pattern. (As a result of this pattern the lattice 

unit cell cuts through three quintuple layers.) The quintuple layers are weakly bonded by Van der Walls’ 

forces, resulting in an easy cleave between quintuple layers with a Se lattice at the resulting surface. The 

bulk band gap is ~300 meV and the surface state consists of a single helical Dirac cone centered at  (that 

is, k=0) with noticeable curvature14,50,51 and the Dirac point near the bottom of the bulk band gap. For 
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small p the surface state Hamiltonian can be approximated as Eq. (1.6) with the linear, helical term 

dominant and the quadratic term a small correction; with increasing p the approximation becomes invalid 

before the band curves upward14. (Indeed the Hamiltonian can be further approximated as the linear term 

alone of Eq. (1.6),  y x x yH p p    , although we generally will not do this.) 

 

Fig. 1.4 Crystal and electronic structure of Bi2Se3. (a) shows the crystal structure (adapted from Ref. 51) with 
quintuple layer indicated on the right and expanded in the lower left. (b) shows the surface state as imaged by 
ARPES in Ref. 50 (c) schematizes the spin texture of the surface state, from Ref. 14. 

 

Since its discovery Bi2Se3 has been thoroughly characterized by numerous experimental probes including 

ARPES51,54,55, STM56,57, and high-field transport oscillations58, and doped and strained modifications of it 

have also been the object of intense study59,60. Nevertheless, even in this thoroughly explored system a 

discrepancy between the Shubnikov-de Haas and high-magnetic-field STM studies seems to have 

smoldered regarding the strength of the surface state effective g-factor. In chapter 4 (as of September 

2015, unfortunately not yet published) we are pleased to contribute to a solution of this problem. 

In the years since the introduction of Bi2Se3 attempts have been made to optimize the material for device 

applications and physical research (as-grown Bi2Se3 is conducting in the bulk due to unavoidable Se 

vacancies) and also to use doping (and strain60) to achieve new physical states. The former has led to the 

development of Bi2Te2Se61,62 (whose crystal structure resembles Bi2Se3 except that the outer two layers of 
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the quintuple layer are Te) and Bi2-xSbxTe3-ySey
63, in which Sb also substitutes for Bi. (For a review, see 

Ref. 31.) 

One of the interesting subjects relating to topological insulators is the phase transition which occurs 

between the topological insulator and the “trivial” insulating state. (An example of this was already 

encountered in the HgTe quantum wells.45) In the original paper predicting that Bi2Se3 was a topological 

insulator it was found that Sb2Se3, which has the same crystal structure, was a trivial insulator,51 from 

which it follows that a phase transition should occur at some critical Sb concentration xc. Schematically, 

the band-inverted insulator is regarded as having a negative band gap which, on its way to the “positive 

gap insulator” (Sb2Se3 in this case), must pass through zero47,64 at xc where the topological surface state 

disappears. For the phase transitions in Sb- and In-doped Bi2Se3 this is associated with a weakening of the 

spin-orbit coupling with increasing concentration of the lighter element, though the difference between 

the relatively quick phase transition with In as compared with Sb suggests that other effects play a 

significant role.15 This phase transition is discussed in Chapter 4. 

1.3.4 Topological crystalline insulators 
 

Topological crystalline insulators (TCIs) are distinct from topological insulators in that the surface states 

are protected not by time-reversal symmetry as in the case of TI’s, but by particular crystalline 

symmetries65,66. As a result (and unlike topological insulators), symmetry-protected metallic surface states 

appear only on those surfaces which preserve the particular crystalline symmetry. At the time of this 

writing the best (and, it seems, only) known class of topological crystalline insulators are the IV-VI 

semiconductors (Pb,Sn)Te and (Pb,Sn)Se67–69 in which the (110) mirror symmetry protects the topological 

surface states. In these systems the low-index symmetry-preserving surfaces are the (001), (110), and 

(111) surfaces, each of which has its own distinct Dirac surface states70 with multiple Dirac cones.  

The close study of one of these materials (SnTe) in chapter 5 makes a detailed description necessary:The 

IV-VI semiconductors which are TCI’s crystallize in the rocksalt structure and have band inversions at 
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the eight L points of the bulk Brillouin zone70–72 (see Fig. 1.5). In the first approximation the surface state 

Dirac points are located at the projections of these L points onto the corresponding surface:   and   for 

the (111) surface, and the two  points for the (001) surface respectively. (We will call them  and Y

although in Fig. 1.5 they are labeled 1,2 .) 

 

Fig. 1.5 (001) and (111) surface states of TCIs. (a) shows the L points and their projections on the (111), (001), 
(110) surfaces; (b) shows the associated Dirac surface states for the (001) and (111) surfaces. Fig. is adapted from 66 
with panel (a) from 70. 

On the (001) surface there are at each  point two “parent” Dirac cones offset in energy. The parent 

“cones” (in the k p  model) are actually elliptic cones whose anisotropy is rather small for (PbxSn1-

x)Se72,73 but very pronounced in SnTe69,74,75. Without interaction the parent cones would merge along an 

elliptical contour, but hybridization causes them to repel each other and reduces the surface of intersection 

to two points along the symmetry-protected    line. This produces the double-cone structure shown in 

Fig. 1.5(b), with four of the resulting “child” Dirac cones in the first surface Brillouin zone. The 

hybridization distorts the child Dirac cones (note the non-circular cross-sections in the second and third 
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panels of Fig. 1.6(b)), and forces a Lifshitz transition, both above and below the “child” Dirac points, 

where the cones merge.  

 

Fig. 1.6 Close-up of the (001) TCI surface states near the   point. (a) A 3-D plot of the pair of “child” Dirac 
points with color indicating the orbital character, from Ref. 72. (b) A series of cross-sections of the surface state, 
from Ref. 67. Note the Lifshitz transition between the third and fifth panels from the top. 

 

Further, it turns out that in (PbxSn1-x)Se there is a surface orthorhombic distortion which breaks one of the 

mirror symmetries, and endows the corresponding valley of Dirac fermions with mass76,77. (Indeed 

(PbxSn1-x)Se is a nice playground for demonstrating the capabilities of STM, and we will return to this 

system briefly in Chapter 2.) 

Despite its complicated appearance, all of the physics described above can be captured in a 4x4 matrix 

Hamiltonian containing constants and terms linear in k which, like Eq. (1.6), can also be written in terms 

of (tensor products of) Pauli matrices67,72,73. (This matrix, however only describes the surface states near 

one   point.) 

One of the most interesting features of the (001) surface states is that the (child) Dirac nodes are not 

locked to the time-reversal invariant momenta, but move freely as the parameters of the Hamiltonian 

change. Among the “knobs” that can produce such changes are chemical doping78, temperature68,79, and 
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strain80,81. Generally speaking, compressive strain tends to increase the inverted band gap, making the 

system more topological and moving the Dirac nodes closer to  80. Moreover, for strain the response of 

the Dirac nodes (i.e. their shift in momentum space) is entirely analogous to an electromagnetic vector 

potential, and the pseudomagnetic fields resulting from spatially varying strain have been predicted to 

lead to exotic physics including superconductivity39 (which had long ago been discovered in (001)-

oriented IV-VI semiconductor junctions82,83). The motion of the Dirac nodes in SnTe under two types of 

strain is mapped out in chapter 5. 

1.4 The perovskite Iridates – Sr-327 
 

Although the parent compound of Chapter 3, Sr3Ir2O7, is both an insulator84,85 and a system with strong 

spin-orbit coupling86, its physics is quite different from the systems described above. All of the latter 

could be formulated within the independent electro approximation, in which the band structure is created 

by the periodic potential of the lattice and electron-electron interactions are regarded as a perturbation.87 

By contrast, in the Iridates86, and in many transition-metal oxides (TMOs) generally88, electron 

correlations play a key role.  

The greatest manifestation of electron correlations in TMOs is the Coulomb repulsion between electrons 

occupying the same lattice site. This was included as U in the famous Hubbard model89 

 †

, ,
ij i j i i

i j i

H t c c U n n 


      (1.8) 

where †c and c  are creation and annihilation operators for electrons on a particular lattice site (i or j) with 

spin   , and †
i i in c c   is the number of such electrons on the ith site. In the first term t represents the 

amplitude for hopping from atom i to j (the kinetic energy term), and U represents the Coulomb energy 

penalty. (Note that in contrast to Eq. (1.6) the Hubbard model is an explicitly many-body Hamiltonian.) 
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At half-filling (that is, one electron per lattice site) the ground state of the Hubbard model transitions from 

metallic to insulating with increasing U/t, and the resulting insulator is the Mott or Mott-Hubbard 

insulator (Fig. 1.7)88,90,91. Particularly well-known Mott insulators include the parent compounds of the 

Cuprate superconductors92.  

 

Fig. 1.7 Schematic Hubbard model phase diagram, from Ref. 88. The Mott insulator is the dark vertical line at 
half filling. “The shaded area is in principle metallic but under the strong influence of the metal-insulator transition, in which 
carriers are easily localized by extrinsic forces such as randomness and electron-lattice coupling.”88 The two ways of achieving 
the metal-insulator transition in this system are indicated by dark grey arrows: “filling control” (FC) and the changing of U/t at 
constant filling (BC). 
 

In the study of the perovskite Iridates, particularly Sr2IrO4, the insulating behavior was regarded as 

surprising in view of the basic d-orbital physics86: as the size of the d-orbital increases one generally 

expects t in Eq. (1.8) to increase (from increased overlap of neighboring wave functions) and U to 

decrease, tending to render the 5d5 Iridates metallic. In the original proposal86 the role of spin-orbit 

coupling was to split the t2g manifold (containing the dxy, dyz, dxz orbitals which are split from the other 

two d orbitals by the octahedral crystal field) into jeff=3/2 and jeff=1/2 subbands, with four electrons in the 

former and one in the latter. This half-filled jeff=1/2 is split by the Hubbard U into upper and lower 
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Hubbard bands leading to an insulating state. (The jeff=1/2 state is formed from an Lz = 1 state of 

xz i yz  with antialigned spin, combined with xy  with aligned spin84,93.)  

Sr-327 is the n=2 member Ruddlesden–Popperseries Srn+1IrnO3n+1, which have a layered structure depicted 

in Fig. 1.8. In the n=1 member, Sr-214, the Ir planes are separated by two SrO planes rendering the Ir-Ir 

hopping largely two-dimensional, whereas the “n= ” member SrIrO3 has a fully three-dimensional 

structure with hopping possible in all directions. In the framework of the Hubbard model this tends to 

increase the bandwidth, favoring metallic behavior for a given U. For the Iridates this leads to a 

“dimensionality-driven” transition from an insulartor at n=1 to a correlated metal at n= 84. That is, Sr-

327 was predicted to be close to the metal-insulator transition in this system. In chapter 3 we study both 

the parent compound and the metal-insulator transition (as a function of doping, not number of layers) 

using STM. 
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 Fig. 1.8 Perovskite crystal structure of the Ruddlesden-Popper Series. (a), (b) and (c) are n=1, n=2, n=3 
respectively. In the Iridates the easy cleave planes are indicated by red dashed lines. The “n= ” crystal structure is 
visible within the n=3 unit cell as indicated. The black-and-white figure is adopted from 94. (Note that for us A, A’ = 
Sr, B=Ir, C=O.) 
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Chapter 2 – Scanning tunneling microscopy 

In this chapter we discuss the technique STM as employed in this thesis: low-temperature, ultrahigh 

vacuum (UHV) STM designed to measure the local density of states with atomic resolution. We briefly 

sketch the history of STM and its use as a band structure probe (and comparison with other such probes), 

concentrating in particular on Landau level spectroscopy and quasiparticle interference.  We also explain 

the Lawler-Fujita drift correction procedure95 and its use in measuring strain on an atomic scale. All of the 

computer code used to analyze data for this thesis was written by the author (in Java)1, although the ideas 

for the various algorithms were generally originated by others. 

2.1 Basics of Scanning tunneling microscopy and spectroscopy (STM/S) 
 

Scanning tunneling microscopy is now more than 30 years old and its basic ingredients, both technical 

and theoretical, have been described by numerous authors96–98. It is based on the phenomenon of vacuum 

tunneling: electrons quantum-mechanically tunnel through a (vacuum) gap of a few Angstroms between a 

sample surface and a sharp metallic tip. When a bias voltage is applied (in our case, to the sample while 

the tip is held at virtual ground) this tunneling produces a steady current on the order of pA to nA. The tip 

itself is moved in 3D space by piezoelectric actuators: in a typical imaging mode it scans back and forth 

in the horizontal plane (x-y) while a feedback loop adjusts its altitude to keep the tunneling current 

constant. 

In the results shown in this thesis it will generally be assumed that  

  , ( , )dI eV LDOS eV
dV

 r r   (2.1) 

                                                             
1 However, publicly available math libraries were made use of. The jtransforms package for fast Fourier transforms 
and the Apache Commons math project deserve special mention. 
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where dI/dV is the differential conductance at sample bias V, r is the tip position, and LDOS is the local 

density of states as a function of position and energy:   2
( , ) ( )i i

i
LDOS E E E  r r where the 

sum is over all states in the sample.  

Eq. (2.1) can be derived from the Tersoff-Hamann theory of a spherically symmetric tip with an s wave 

function99, in which case r is the center of curvature of the tip apex. Chen, however, pointed that for 

realistic tips this apex was so far from the surface as to be unable to account for the observed atomic 

corrugations on certain metals, and proposed that the tip orbital was a dangling d state100. Generally, if the 

tip wave function is other than s-wave the resulting current is predicted to reflect spatial derivatives of the 

sample wave function at the tip position: the derivative in the x-direction for a px orbital, second 

derivatives for the d orbitals, and so on101, so that for a dangling 2 23z rd


orbital the dI/dV would involve 

 2 2/ z   100. For practical purposes, however, it is often sufficient (for normal-state metallic tips) to 

use Eq. (2.1) and regard r as a two-dimensional variable102,103. In this thesis we regard Eq. (2.1) as valid 

for fixed tip position (i.e. when sweeping V with the tip stationary and the feedback look off), and the 

difficulties associated with the variation of that height with r as situationally negligible. 

2.2 STM/S as a band structure probe – Quasiparticle interference 
 

The designers of the STM initially conceived it as a nanoscale spectroscopic tool rather than an imaging 

device104. (Nevertheless, its breakthrough to fame is attributed to its successful atomic-resolution imaging 

of the (7x7) reconstruction on Si(111)104,105.)  Being an inherently real-space probe, its ability to 

characterize Bloch states defined in k-space is not immediately obvious. 

Early efforts in this direction included well-known studies on Cu and Au(111)106,107. In both cases, 

scattering of electrons at a step edge created spatial modulations in the local density of states which were 

directly visualized by STM. In the case of Cu the wavelength of these modulations as a function of energy 
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directly corresponded to the band dispersion of the Cu(111) surface state (Fig. 2.1), although this was not 

so in Au107. 

 

Fig. 2.1. Band dispersion extracted from standing waves in Cu (111) and Au(111). (a) shows the dI/dV as a 
function of distance from a step edge on Cu(111) at different bias voltages, from Ref. 106. The dashed lines are the 
results (Bessel functions) of a calculation for a simple 2DEG in the presence of a hard 1D potential representing the 
step edge. The inset shows E(k) extracted from the fits to the theory plotted with a parabolic fit. (b) shows a similar 
E-k plot from Ref. 107, where the solid line is the surface state dispersion extracted ARPES Ak  and the dashed 
line is k(E) = (kF + kA)/2. 

 

The practice of characterizing the band dispersion by analyzing the (energy-dependent) wave-numbers of 

standing waves is now called the quasiparticle interference (QPI) method102. A detailed theoretical 

treatment of QPI is complicated108–111, but the following handwavy explanation accounts for the basic 

features of much of the experimental data49,73: an impurity scatters the quasiparticle from some initial 

state with momentum ki to a final state with momentum kf. The initial and final wavefunctions interfere, 
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creating modulations with wavevector q  (ki - kf) in the local density of states. (This picture assumes 

that the initial and final states are itinerant states with well-defined k and ~ ie k r .) In Refs. 106,107 the 

whole standing wave pattern was fit in order to extract q; nowadays one takes the Fourier transform of 

dI/dV(r) and looks for peaks73,102. 

This intuitive picture of quasiparticle interference makes it easy to guess where in the Fourier transform 

the modulations will appear if E(k) is known: simply draw arrows between states on the “Fermi contour” 

at that energy (constant energy contour or CEC), then translate one end of the arrow to the origin. 

Equivalently one can take the autocorrelation of either a drawing of the CEC, or the spectral function 

( , )A k derived from a calculation (See Fig. 2.2). 

 

Fig. 2.2. Graphical exposition of quasiparticle interference (a) shows the parabolic dispersion of a simple 2DEG, 
and (b) a representative constant energy contour (CEC) at E = “E0”. (d) is the autocorrelation of (b), with a clear 
maximum at q = 2k0. (c) is the actual Fourier transform of the dI/dV on Cu (111) at +2 mV (unpublished). (e) and (f) 
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are for the much more complicated band structure of Sr3Ru2O7 from Ref. 112, and contain theoretical CECs and an 
experimental Fourier ransform respectively. (Compare (b) and (c) to (e) and (f)).  

 

The use of the Fourier transform in quasi-particle interference studies has been impactful enough to 

spawn a new acronym: Fourier transform scanning tunneling spectroscopy or FT-STS113. The acquisition 

of a dataset in FT-STS has since become something of a craft, almost independent of the particular 

sample, and we may briefly state its rules although some of them are obvious and others have been stated 

elsewhere (e.g. Ref. 102): 

The dI/dV(r) at a given voltage being a square image made of square pixels (as is usually the case), the k-

space resolution is isotropic and equal to 2 L  for image size L. To resolve fine features in k-space one 

should therefore choose a large L. Most scattering, however, involves states in or near the first Brillouin 

zone, so that the scattering vectors are no larger than a reciprocal lattice vector. Therefore, the Fourier 

transform need only include a region of k-space containing the first reciprocal lattice vectors with some 

margin. The extent of the Fourier transform in k-space is  2 2N L where N is the number of pixels, 

or a where a is the pixel size. The resolution therefore does not need to be very high; the high pixel 

density needed for good atomic resolution images would waste a large region of k-space. The orientation 

of the image is also important, especially if one is trying to fit a square reciprocal lattice into a square 

Fourier transform. (Care must be taken, however, that the Bragg peaks be placed not too close together 

taking into account that k-space is periodic; see section 2.4.) 

Generally one tries to fix a as large as is reasonable, and then increase L until the acquisition time (which 

is the ultimate limiting factor as each pixel takes several milliseconds) reaches its practical limit, 

ultimately determined by the need to stop measurement and refill the cryostat.  There is, however, no 

natural upper limit on L. (In our case the STMs (built by Unisoku) had a coarse motion capability and 

indeed we spent many days on various samples looking for flat, clean areas in which large-L datasets 

could be taken.) 
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Lastly, one of the great advantages of STM (as opposed to the classic k-space probe, ARPES) is its 

spatial resolution, which among other things permits one to mask out parts of the real-space dI/dV(r) map 

and compare the QPI signature in different regions. This is done extensively in Chapter 5. 

2.3 Landau level spectroscopy (STS)2 
 

This method for characterizing the band structure relies on the Landau quantization of electrons in a 

magnetic field4,114,115. Classically, in a magnetic field the electron’s motion remains free along the 

direction of the field (B) while in the perpendicular plane the trajectory is bent into a circular orbit, which 

is quantized into the discrete Landau energy levels. For electrons in free space the quantization is 

identical to that of the simple harmonic oscillator; for condensed matter systems the quantization scheme 

is much richer and more complicated116,117. Quasi-classically, however, the behavior of Bloch electrons is 

somewhat analogous to those of free electrons: in free space the Lorentz force moves the electron on a 

circle in k-space, and the projection perpendicular to B of the corresponding real space orbit is circular; 

Bloch electrons traverse in k-space the CEC defined at their energy and kz (the magnetic field being along 

z), and their real-space orbits mirror the (rotated) shape of the CEC116. As they traverse this k-space 

contour the electrons accumulate the famous Berry phase118, which is often mentioned in the context of 

topological insulators29,119 and whose π value distinguishes the Dirac surface state from other types of 

2DEG120. 

In this thesis we will be concerned with 2D surface states, so we can afford to give a bastardized version 

of the theory of quantum oscillations116 in which the complications associated with kz are ignored: the 

effect of Landau quantization is to reduce the density of states curve to a series of sharp peaks at the 

discrete Landau level energies. As the magnetic field is swept these peaks move in energy, and as they 

pass one by one through EF they cause oscillations in the magnetization121 and transport122 properties of 

the sample. (In 2D these oscillations are intimately connected with the quantum Hall effect.) It can be 

                                                             
2 (STS) is added in parentheses because Landau level spectroscopy is apparently much more general: a book was 
published with this title in 1991, well before the STM technique.189 
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shown that semiclassically the Landau quantization encloses an equal increment of k-space area for each 

Landau level116:  

  2 /NA N eB      (2.2) 

where AN is the k-space area corresponding to the Nth Landau level and   is a phase constant. As a result 

the oscillations in the transport properties as a function of 1/B have a definite frequency which is 

proportional to the area enclosed by the Fermi contour. The study of these oscillations in 3D was brought 

to a high degree of development by the 1960’s116, and was a very effective and well-established method 

of characterizing the Fermi surfaces of metals87 at a time when ARPES was rudimentary123 and STM was 

a twinkle in certain workers’ eyes124.  

In high-field STS the Landau level peaks appear directly in the dI/dV(V) spectrum, and as a function of 

field one can track them not just as they pass through EF, but throughout the energy range in which peaks 

are visible. It is thus possible to use STS to establish not just the area of the Fermi surface, but the area of 

all CECs in the energy range and therefore (if isotropic) the dispersion relation of the 2D band. 

In practice the number of Landau levels observed in STS spectra is usually much smaller than in metallic 

quantum oscillations measurements, which can involve hundreds of Landau levels87,116 (Fig. 2.3a). 

Instead of sweeping the field and measuring the rate at which peaks pass through a given energy, one 

indexes the peaks sequentially and establishes the dispersion relation directly from Eq. (2.2). (Miller et al. 

actually did “sweep the field” in graphene, with good results125.) Several different magnetic fields are 

used, but this is not essential to the technique and is usually done for two reasons: (1) to increase the 

density of data points enough to approximate a continuous curve, and (2) to check the indexing scheme by 

verifying that the A(E) curve extracted from (2.2) is indeed field-independent. 



 25 
 

 

Fig. 2.3 Quantum oscillations and Landau level spectroscopy. (a) and (b) show de Haas-van Alphen oscillations 
in Rh and Ag, from 87; the x-axis is the magnetic field. (c) shows Landau level peaks in dI/dV spectra taken on 
Sb(111), from 126. The number of resolved STS Landau levels is usually significantly lower than in (c)57,76,127.  

 

Point (2) bears elaboration in view of the peculiarities of Landau level spectroscopy when only a few 

peaks are visible. The most obvious “internal” check of the correctness of an indexing scheme is that the  

quantity A(E) (or equivalently E(k) for isotropic systems), as extracted from the Landau level peaks, 

should have no dependence on the field strength. To bring this about one can shift the peak indices up and 

down in unit increments; in Bi2Te3 we even permitted ourselves to skip one of the peaks127. But the 

condition itself becomes problematic when N is small: Eq. (2.2) was derived semiclassically and as such 

should be strictly valid only for N >> 1. In general it may be impossible to fit the lowest few Landau 

levels to a single curve using (2.2), for any indexing scheme. (This is so in Bi2Se3 when you look closely.) 

In that case it is necessary to go beyond Eq. (2.2) and use knowledge derived from other sources. If one is 

lucky the low-energy Hamiltonian will provide an exact solution for the lowest few Landau levels (this 
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the case for the Bi-based topological insulators14), and one can then tweak one’s indexing scheme to 

conform to it. (Our study of the low-index Landau levels in In-doped Bi2Se3 (chapter 4) obliged us to 

conclude that the indexing scheme originally applied in the parent compound56,57 indeed needed a 

tweaking: we had to reduce each index by one.) 

 Another means of distinguishing the Landau levels, which seems entirely unique to STM, is through the 

nodal structure of their wave functions128,129. In a homogenous 2DEG each Landau level is highly 

degenerate, but the native spatial inhomogeneity in topological insulators127,129,130 (and other systems128) 

lifts this degeneracy by adding a 2D potential landscape. (If this potential landscape is especially simple, 

for example 1D stripes or a central potential well, the well-known gauges can still be used and the 

problem solved more or less exactly127,129.) Within this landscape the Landau orbits tend to drift along 

equipotential lines128,131, so that when the potential gradient is steep the individual wave functions’ 

probability density (   2
 r ) can almost be imaged directly. Generally, the index of the Landau level 

equals the number of nodes in its wave function (cf. the simple harmonic oscillator or indeed any 1D 

problem4) and the nodes, like the wave functions, tend to follow the equipotential lines128,129,131. 

In the topological Dirac system the situation regarding the nodes is a bit more complicated, since the 

solutions of the Hamiltonian are two-component spinors whose components differ by one in the number 

of nodes129. In chapter 4 we present detailed first-principles calculations of the nodal structure of the wave 

functions in Bi2Se3, showing that our tweaking of the indexing scheme is consistent with the existing 

experimental data129. 

2.4 Landau level spectroscopy vs. QPI 
 

Although they both measure the same things, Landau level spectroscopy and the QPI method have certain 

contradictory characteristics which makes a fusion of the techniques especially difficult: QPI requires 

defects to generate the scattering events and produce the standing waves, whereas Landau level 
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spectroscopy prefers a clean sample with a long mean free path. (If the lifetime is too short the peaks will 

smear together.) There is also a difference in their characteristic wavelengths: In Landau level 

spectroscopy the characteristic wave number is 2 /~N Nk A N eB  , and the corresponding 

wavelength 2 2 2N N Bk N eB N       where B is the magnetic length. At 7.5T (the 

highest field used in our lab at BC) the magnetic length is 9.7 nm, so for N=1 or 2 the expected 

wavelength would require a huge area to resolve convincingly in the Fourier transform (and may not give 

a recognizable scattering signature at all). QPI scattering vectors, by contrast, can span the Brillouin zone 

and have wavelengths on the order of a unit cell. Therefore, overlap between QPI and Landau level 

spectroscopy datasets demands a strong magnetic field, a large number of visible Landau levels, and a 

“Goldilocks” number of defects. It is comforting to know that in the rare cases when the two methods do 

overlap on the same sample, they agree with each other126,132. (As the available magnets become stronger, 

we expect that the area of overlap will tend to increase.)  

2.5 Strain measurement and the Lawler-Fujita drift correction method 
 

In STM the relation between the piezo voltages and the tip position (with respect to the landmarks in a 

particular sample) is not the ideal linear relation, but a complicated one marred by nonlinearities, thermal 

drift and hysteretic effects (see e.g. 133). As a result the atomic lattice is not uniformly periodic throughout 

the image, and consequently the Fourier transform of the topography or dI/dV represents k-space not in 

the sense of the reciprocal atomic lattice, but only the reciprocal piezo voltage (Fig. 2.4). This distinction 

was more-or-less tolerated until 2010, when Lawler, Fujita et al. needed a perfectly periodic lattice in 

order to search for signatures of nematicity in k-space95, and developed an algorithm capable of the taking 

the usual, distorted type of STM image and calculating and applying the necessary “undistortion.”   
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Fig. 2.4. An example of hysteretic effects in an STM scan. (a) is the topography, and (b) the Fourier transform. 
Note how near the top of (a) the vertical lines of atoms bend to the right. The corresponding smearing out of the 
Bragg peak in (b) is circled in red. (In principle the whole of k-space is is thus smeared out.)  

 

The method of calculating the distortion is fairly straightforward and (as it turns out) had already been 

invented by transmission electron microscopists much earlier134: The points of the ideal lattice and the 

actual, distorted lattice are connected by a smoothly-varying displacement field ( )u r , which also appears 

in the distorted lattice’s Fourier transform. The first-order Fourier expansion of the ideal lattice is given 

by 1 2
1 2 c.c.i iAe A e  k r k r , and the real lattice, being shifted from r to r + u, can be approximated 

similarly:   

   1 2( ) ( )
1 2 c.c.i iT A e A e     k r u k r ur   (2.3) 

where T represents the actual topography, and k1 and k2 are the basic reciprocal lattice vectors. If the 

approximation (2.3) is valid, it is very easy to find expressions proportional to 1,2ie k u for all r: simply 

multiply T(r) by 1,2ie k r  and smooth with some length scale to average out the other, rapidly oscillating 
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terms. From these expressions one can extract (k1,2   u) for all r, thence u(r) using linear algebra. (A 

slightly more detailed presentation is given in the appendix to chapter 5.) 

It is clear that this field u(r) is conceptually identical to the displacement field of elasticity theory135 

(Indeed this was pointed out in 95 in parentheses.): If there is genuine surface strain in the sample, that 

strain will necessarily appear in u alongside the other effects, provided of course that the smoothing 

length scale is not large enough to average it out. 

To separate the terms in u which represent genuine strain from those caused by STM-related technical 

issues is in general no easy task, and we believe this thesis (except for the related publication 74) is the 

first to try to do it. Fortunately in the specific system we studied, SnTe thin films grown on PbSe, the 

strain is associated with a periodic pattern of dislocations with a quasi-lattice constant of about 15 nm. 

This is much smaller than the scan size used to obtain dI/dV(r), 130 nm, and the difference in length 

scales made it possible to get away with subtracting from u (or its derivatives) a low-order best-fit 

polynomial in r. This is expected to remove the effects of nonlinearities and slow thermal drift, as well as 

most of the hysteresis (which the skilled STM operator can usually keep to a minimum). 

We may add that the Lawler-Fujita drift correction algorithm in its original form recommends itself as a 

processing step in the more general analysis of STM data. In particular, by lining up the atoms on a 

periodic grid it makes it possible to convert pixels to atomic coordinates by simple linear algebra, which 

is ideal for identifying the lattice position of point defects136; we will use it for this in Chapter 3. Also, as 

already mentioned it “de-smears” k-space and thus improves the mathematical rigor as well as the 

aesthetics of FT-STS.   
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Chapter 3 – Doping effects in Sr3Ir2O7 

As mentioned in the Introduction, Sr3Ir2O7  (usually abbreviated Sr-327) is predicted to belong to a novel 

class of spin-orbit driven Mott insulators84,86. The study of these systems is intrinsically interesting (and 

theoretically difficult) because the hopping, spin-orbit coupling and correlation effects have comparable 

energy scales. The analogy with the cuprates, where the doping of a Mott insulator leads to 

“unconventional” high-temperature superconductivity92, lends particular interest to doping studies in these 

compounds137.  

Our results fall logically into two sections: (1) the parent compound (which may however be regarded as 

locally doped by apical oxygen vacancies), and (2) the doping effects proper, which focuses on La-doping 

(Sr1-xLax)Ir2O7 and compares it to both the case of Ru-doping138 and briefly with the La-doping of 

Sr2IrO4.139 The results in section (1) have been largely published already85 although our presentation is a 

bit different from the reference; the results of (2) have only partly been published140. 

3.1 Parent compound 
 

As mentioned in the introduction, Sr-327 lies along the dimensionally-driven metal-insulator transition 

between the insulator Sr-214 (n=1 in the Ruddlesden-Popper series), and the metallic Sr-113 (n=∞)84. 

The gap size in this compound was not clear, with the initial optical study reporting a small gap (“almost 

zero”)84 while a later ARPES study found a ~90 meV gap141. (The smaller gap had been used to account 

for the antiferromagnetic transition at 285K142 given the large magnon gap143.) Other, related aspects of 

the ground state in Sr-327 were also unclear; the spin-orbit Mott concept was challenged in Sr-214144 and 

Sr-327145; the latter argued that the jeff =1/2 and 3/2 bands were not sufficiently split.  

Given the above, an STM study of the parent compound was highly desireable. (Also, as pointed out in 85, 

STM had proved its value in revealing microscopic inhomogeneity in strongly-correlated TMOs146, and 

no STM work on the Iridates had yet been done.) 
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The basic topographic features of the sample are shown in Fig. 3.1. The surface lattice constant is about 

3.9 Å, regardless of bias voltage, indicating that the maxima in the topography correspond either to Sr or 

O atoms. Usually in such cases it is difficult to tell which sublattice it is, but here we have an obvious 

clue: in the topography (and also in the dI/dV; see below) there are defects with two orientations, which 

are mirror-images of each other in the a- or b-axis and whose centers are always found in the middle of a 

group of four surface atoms (Fig. 3.1 (f)-(i)). As shown in more detail below, the symmetry of these 

defects corresponds to the rotation about the crystalline c-axis of the oxygen octohedra (shown from the 

side in Fig. 3.1(a)): the rotated octahedron has a “chiral” aspect when viewed from above and breaks the 

mirror symmetry, and the left- and right-rotated octohedra are mirror images of each other. These 

considerations show that the lattice in the topography corresponds to Sr, and identify the defect site as the 

Ir atom, or an O atom directly above or below it. (Indeed similar conclusions were drawn in an STM 

study of Sr3Ru2O7.112) 
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Fig. 3.1. Topographic images of Sr-327, from Ref. 85 (a) shows the crystal structure; note in particular the 
alternating rotation angle of the (brown) oxygen octahedra. The SrO plain is exposed in the cleaving process, and 
the step edges correspond to one bilayer (b). (c) and (d) show topographies at positive and negative bias 
respectively; the lattice constant corresponds to the Sr-Sr (equivalently, O-O) distance of 3.9 Å. The corresponding 
Bragg peaks are circled in pink (e) with a √2x√2 pattern’s Bragg peaks in green. Two “chiral” defects are shown in 
(f), (g) and schematically in (h), (i).  

 

The local density of states (LDOS) shows great unevenness in large part associated with the chiral defects 

(Fig. 3.2). To characterize the inhomogeneity of Sr-327 (and the role of the chiral defects) we took lines 

of spectra (“line cuts”) through an isolated defect and into a region free of defects (Fig. 3.2 (a)-(e)) in 

relatively narrow (b),(c) and wide (d),(e) energy ranges. Far from the defect (the bottom of panels (a)-(e) 

the LDOS shows a substantial insulating gap of more than 100 meV, but over the defect the gap closes 

and the spectrum near EF assumes a “V” shape. The inhomogeneity in the gap size is shown even more 

graphically in Fig. 3.2 (f)-(h). Here we took an atomic resolution dI/dV map in order to inspect the LDOS 

within a ~20nmx20nm area within +/- 180 mV of EF. As can be seen in Fig. 3.2(h) (as also in panels (d)-

(e)), the LDOS below EF is fairly uniform and corresponds approximately to a pinning of EF to the top of 

the valence band. Above EF the spectra vary within a huge range including highly gapped spectra (gap ≈ 

180 meV; white curves in (h)) and fully metallic spectra (black curves) in clusters of the chiral defects.3  

To fully capture this inhomogeneity we made “gap maps” (inspired by the practice in STM on the 

Cuprates147,148) in the following manner: we define the insulating gap as the region in which the STS-

measured dI/dV is indistinguishable from zero, and for each dI/dV spectrum determine the size of the 

energy range in which this condition is satisfied. This produces a 2-D image as in Fig. 3.2 (g). To 

visualize the associated variation in the spectra, we bin the 3-D dI/dV dataset against the gap map. (That 

is, we sort the pixels of the gap map and divide it evenly into bins; for each bin the average spectrum is 

the average of spectra for all pixels belonging to the bin.) The spectra far from defects (white regions in 

Fig. 3.2 (g) and spectra in (h)), which must show the intrinsic band structure of Sr-327, show a ~150 meV 

                                                             
3 See also Fig. 5 of Ref. 85 
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gap, much larger than suggested141 even by ARPES4. The nanoscale metallicity induced even by a 

relatively small concentration of defects shows the importance of high sample quality for spatially 

insensity measurement techniques.  (See also our study of La-doping below.) 

The obvious question what the “chiral defects” are seems relatively straightforward. According to the 

symmetry arguments given above they must be located on the Ir site, or above or below it along the c 

axis. The most logical candidate are apical oxygen vacancies, since they donate two electrons each, and 

indeed oxygen-deficient Sr-214 was shown to undergo a transition to a (strange) metal for defect 

concentrations as low as 1%149.  

                                                             
4 ARPES, however, cannot see the unoccupied states and the cited study’s gap estimate was not a direct 
measurement. 
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Fig. 3.2: Electronic inhomogeneity around chiral defects. Panels (a)-(e) are from Ref. 85. (a) shows an STM 
topography with an isolated chiral defect (near top); (b) and (c), and (d) and (e) show tunneling spectra taken along 
the dotted line indicated in a); (b) and (d) are color plots and (c) and (e) are line graphs vertically shifted to show the 
changing spectral shape. (f) is a constant-energy cut of a dI/dV(r,E) map, at +180 mV bias; the chiral defects are the 
small blue squares (four of them circled in yellow). (g) is a gap map as defined in the main text; metallic and 
insulating regions are indicated by the corresponding capital letters. (h) is a collection of spectra from the dI/dV map 
used in (f) and (g); each spectrum color is the average of spectra at the corresponding pixel color in (g).   

 

Before proceeding let us look a little more closely at the chiral defects. In Fig. 3.2 (f) one can see that the 

blue squares are slightly tilted with resepect to the lattice: the right- and left-most defects are slightly 

clockwise with the center two defects slightly anticlockwise. To characterize this rotation we carefully 

measured the “angles” of the impurities and found average rotations of 12 +/- 2°, consistent with the 11.8° 

value obtained initially from X-ray diffraction150 (Fig. 3.3). Unfortunately this angle measurement is 
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probably not sensitive enough to detect small changes in the O-Ir-O binding angle, which have potentially 

significant effects on the hopping integrals and electronic properties.149 (However, other types of impurity 

profile might permit more sensitive angle measurements along the same lines, e.g. the black squares in 

Ref. 112.) To check that the tilting really corresponds to the alternating rotation of the oxygen octohedra in 

Sr-327, we checked the lattice position of each chiral defect and found that all defects with positive angles 

were on “even” lattice sites (P+Q even in Fig. 3.3 (e)) and vice versa.  

  

Fig. 3.3: Tilting of the oxygen octohedra measured by STM (a) A section of the dI/dV at +130 mV, from the 
same area (rotated) as Fig. 3.2 (f). (b) The same region topography used to acquire the dI/dV map, at -180 mV. 
Examples of the two subtypes of defect are circled in red and orange in (a) and (b), and indicated respectively in (c) 
and (d). (e) shows the top view of the crystal with rotated octohedra; the two sublattice are shaded red and yellow. 
(Cf. Fig. 3.1(a)). (f) is the actual histogram of the angle measurements with Gaussian fits superimposed, from Ref. 85 
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To determine what range of parameters could produce the large intrinsic gap we5 performed generalized 

gradient approximation + U (GGA+U) calculations. These results are shown in Fig. 3 of Ref. 85, here we 

say merely that it was necessary to assign considerable magnitudes to both spin-orbit coupling (1.7 times 

the value self-consistently obtained in GGA85) and correlations (U≈1.5 eV). Besides being electron 

donors, the apical oxygen vacancies are predicted to draw the Ir atoms towards themselves, changing the 

crystal field noticeably; see the supplement of Ref. 85. (This is in contrast to La dopants discussed below.)  

Subchapter Appendix: How we measured the defect angles 
 

We first corrected the dI/dV map using the Lawler-Fujita drift correction procedure95. (This was 

necessary in order to define the crystalline axes against which the angle is to be measured.) Then we 

identify each square in the dI/dV map we want to measure (Fig. 3.4 (a)) and zoom in on it (Fig. 3.4 (b)). 

Because it has approximately the form of a bright square on a dark background we construct such an 

object in pure form (Fig. 3.4 (c)) and, after positioning and sizing artificial square to place them on top of 

each other we rotate the artificial square through 90 degrees and calculate the numerical correlation 

between the two images at each orientation. The correlation curve is always vaguely sinusoidal (Fig. 3.4 

(d)) and the angle of maximum correlation is then selected for the impurity. This procedure eliminates the 

human error in direct measurement but it is time-consuming, and it requires of the impurity a certain 

shape, which in this case symmetry did not dictate. (See also Ref. 85, supplementary information.) 

                                                             
5 Here I mean our theoretical collaborators and not ourselves personally. 
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Fig. 3.4: Angle measurement of impurities (a) A section of the dI/dV at +130 mV, the same as Fig. 3.2 (f). Here 
the dI/dV is in greyscale and the selected impurities are marked by colored circles. (b) A single impurity (indicated 
by the arrow in (a); (c) is its artificial square. (d) A graph of correlation versus tilt angle indicating in this case a tilt 
of about -12 degrees. From the supplement of Ref. 85 

 

3.2 La doping in Sr-327 
 

When La is introduced into Sr-327 (Chemical formula: (LaxSr1-x)3Ir2O7) there is a metal-insulator 

transition for x ≳ 5%140,151. Above this point, ARPES studies152,153 show well-defined electron pockets 

whose area is proportional to x, as usual when adding electrons to a Fermi sea. (The bulk valence band 

also seems to move upwards, establishing a negative electronic compressibility.153) We will concentrate 

on lower concentrations of La: 3-4.8% nominally, which straddle the metal-insulator transition and 

provide an opportunity to investigate how the local density of states evolves as we pass through it. Below 

the metal-insulator transition we see significant nanoscale inhomogeneity associated with a phase-

separated ground state140; we also see some interesting phenomena relating to the individual La atoms 

which we describe below but cannot fully explain. 

 3.2.1 Topography – surface dopants  
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In studying the effects of light doping by STM one of the most obvious tasks is to find and identify the 

dopants. In La-doped Sr-327, however, the complete “dopant search” is a bit complicated: the most 

obvious surface defects are numerically insufficient to account for the doping concentration as estimated 

by the sample growers and confirmed by energy dispersive spectroscopy (EDS). They do, however, help 

to characterize the crystal structure and thus provide a convenient starting point for the narrative. 

The “obvious” dopants are shown in Fig. 3.5 (a) and (b), and take the form of bright squares with a 

slightly depressed center. These squares (which are present in STM topographs at both positive and 

negative bias) are centered on the topographic maxima which, given our previous experience on the 

parent compound85, invites us to assume that they are La atoms substituting at Sr sites. Moreover, the 

defects are clearly dimorphic, and the symmetries of the two types show unambiguously that they belong 

to the Sr lattice (Fig. 3.5 (c)-(e)). This can be seen as follows: because of the alternating rotation of the 

IrO6 octohedra about the c axis, the two Sr sites in the SrO plane are inequivalent: For one site the closest 

two O atoms in the IrO2 plane are along the a axis, while for the other they are along the b axis. The 

immediate environment of the Sr site thus preserves reflection symmetry about the a and b axes, but is 

reduced from C4 to C2 symmetry. (This is the exact opposite of the case for the apical oxygen sites.85,112)  
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Fig. 3.5. Surface La dopants on Sr sites. (a) a 44 nm topograph at +200 mV bias; six of the C2-symmetric defects 
are circled. (b) a zoomed-in view of the six defects circled in (a). (c) A schematic showing the two types of Sr-site 
defect with their “long axes” indicated by arrows. (e) and (f) show representative Sr-site defects at the two sublattice 
sites, interpolated from (b). The two sublattice sites are shown in pink and brown respectively. (Unfortunately the 
lack of visible chiral defects made it impossible to clearly establish the arrow-color correspondence between (c) and 
the other panels; it might be reversed.)  
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Similarly to the apical oxygen vacancies (chapter 3; 85) we found that the two types of defect are perfectly 

correlated with their lattice positions (i.e. all the “capital H” defects (Fig. 3.5 (d)) are on odd-numbered Sr 

sites, and vice versa). However, a close inspection of the topography (Fig. 3.5(a) and others) shows that 

the number of defects does not correspond to the number of expected La atoms: in Fig. 3.5 (a) there are 

slightly less than half as many as expected for x ≈ 3.2%. We will find the missing atoms again shortly, 

but in the meantime let us set them aside. 

3.2.2 Nanoscale inhomogeneity in the local density of states  
 

To study the metal-insulator crossover in La-doped Sr-327 we took atomically resolved dI/dV(r, V) maps 

at x ≈3.2%, 3.5%, and 4.8%. In the latter compound the spectra are gapless everywhere and show a 

characteristic asymmetric “V” shape, with the positive side steeper (Fig. 3.6(b)). In many of the spectra 

there is also a small “hump” at around -16 meV. For context we show the phase diagram for La-doped Sr-

327 which places the 4.8%-doped sample distinctly within the metallic regime (Fig. 3.6(b), 140).  

 

 

Fig. 3.6: Line cut in metallic La-doped Sr-327 (a) A topography at +300 mV; the spectra are taken along the 
black-red line. (Incidentally the dimorphism of the La defects is not so evident here as in Fig. 3.5; our ability to 
detect it is somewhat tip-dependent.) (b) The dI/dV measured along the line, between -300 and +100 meV; the color 
of the spectrum corresponds to its position on the line. The vertical dashed line indicates the “hump.”   
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Fig. 3.7: Metal-insulator transition in La-doped Sr-327. From Ref. 140. (a) Resistivity as a function of temperature 
for (Sr1-xAx)Ir2O7, A = La or Ca. (b) Phase diagram of La-doped 327. From left to right the acronyms stand for 
antiferromagnetic insulator, metal insulator transition, and paramagnetic metal. TAF is the antiferromagnetic 
transition temperature and TS is the temperature of a structural distortion which accompanies the metallic state.140 

 

For the lower dopings, between 3 and 4%, the dI/dV maps are characterized by nanoscale inhomogeneity 

in which metallic and fully gapped insulating regions coexist. This was true of both ~3% samples. We 

will find that the inhomogeneity seems to be associated with another type of defect, which we identify as 

a subsurface La dopant. Although they were very similar in doping, and there is a clear phase separation 

in both samples, the degree of dopant clustering is a bit different. The individual defects are most clearly 

visible in the ~3.2% sample, hereafter called sample A (Figs. 17, 21), but the starkest clustering 

behavior—and also the strongest phase separation—can be observed in the 3.5% sample, sample B. 

Unfortunately, we will be forced to jump back and forth between the samples: we start by exhibiting the 

inhomogeneity in sample B, then return to sample A to introduce and characterize the defects, and finally 

look more closely at them in sample B. (Historically we measured sample B first, then sample A, then re-

cleaved and measured sample B at which point the data shown in this thesis was taken.) 

To examine the inhomogeneous local density of states we took dI/dV(r,V) maps in areas of a few tens of 

nanometers, covering the Fermi energy and the gap energy scale. The results of one such map (30 x 30 
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nm2) on sample B are shown in Fig. 3.8. The spectra range from fully insulating spectra reminiscent of 

the parent compound (Chapter 3.1; 85) with a gap of up to 200 meV, to metallic spectra which broadly 

resemble the metallic system at x = 4.8% (Fig. 3.8 (g)). In this measurement fully two thirds of the spectra 

were found to be without a gap (Fig. 3.8 (e)), while the insulating spectra were concentrated in small 

patches of which the largest (or at least the roundest) was about 5 nm across. This phase separation shows 

that the doping-induced metal-insulator transition is first order140, which is also consistent with recent 

theoretical work on filling-controlled phase transitions in Mott insulators154.  
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Fig. 3.8 Nanoscale phase separation in the density of states for x ≈ 3.5%. (a)-(d) show (smoothed) constant-
voltage cuts of a a 30x30 nm dI/dV(r,V) map at V = -100 mV, -50 mV, 0, and +50 mV respectively (vertical lines in 
(g)); all four panels use the same color scale. (e) shows the gap map as defined in the main text. (f) is the 
simultaneous [constant-current mode] topography showing the tip altitude at the time each spectrum was taken. Note 
the characteristically small number of square defects, the dark patches where low density of states between the 
setpoint voltage and EF and the setpoint voltage causes the tip to push inward, and the horizontal discontinuity 
where the state of the tip changed. (g) is a 128-bin “spectral histogram” showing the diversity of the dI/dV spectra 
from fully insulating (purple) to metallic (yellow and red). (h) overlays the topography (f) on the gap map (e). 
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However, and in contrast to the apical oxygen defects in the parent compound, this phase separation does 

not seem to be controlled by density fluctuations of the square-shaped La dopants (Fig. 3.8(h)), and a 

dopant count shows that their total concentration in the map area was only ~1%.  Where could the extra 

La have gone? 

To answer this question we introduce data taken on sample A (Fig. 3.9). Between this sample and the 

previous one there are two obvious differences: (1) Although there are still insulating patches, the strictly 

gapped spectra occupy a much smaller fraction of the total area, and the transition from the insulating to 

metallic spectrum corresponds more to a raising up of the gap floor rather than a closing of the gap (Fig 

3.9 (g)). Further (2), near EF one can see a forest of bright atom-sized dots in the density of states (Fig. 

3.9(c)), which fade in an out as the voltage is swept. Most of them line up with the observed Sr lattice, but 

have no clear association with the surface La dopants (Fig. 3.9(h)). They are, moreover, clearly correlated 

with the phase separation since far from EF the metallic patches (bright portions of Fig. 3.9 (a) and (d)) 

show the greatest density of spots and vice versa. 
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Fig. 3.9 Phase separation and resonances at x ≈ 3.2%. Panels (a)-(d) show constant-voltage cuts of dI/dV(r,V) in 
a 40x40nm2 region at V = -80 mV, -40 mV, 0, and +40 mV respectively (vertical lines in (g)) with the same color 
scale in each panel. (e) is the gap map and (f) is the simultaneous topography. (g) is 64-bin plot showing the spectral 
diversity. In (h) we have overlaid the topography (red color scale) on the zero-bias dI/dV to show the relative 
positions of the La squares and the resonances.  

 

A closer look at these bright dots is shown in Fig. 3.10. Each dot is associated with one or two broad 

peaks in the density of states as a function of energy within +/- 20 meV of EF (Fig. 3.10(d), (e)), whose 
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full width at half max ranges from 25 to 50 meV. Interestingly, some of the dots have a clear double-peak 

feature in which the lower peak is below and the upper peak above EF (purple curve in Fig. 3.10 (e)), 

while in others the two peaks are barely distinguishable (orange curve) and in some cases there seems to 

be only one peak (red and green curves). (This is observed in both samples although we show data only 

from sample A.) To nail the dots down spatially, we used the Lawler-Fujita drift-correction procedure95 to 

make the lattice vectors uniform, then manually picked the dot centers in the dI/d V map and plotted their 

lattice coordinates modulo unity (Fig. 3.10 (f)). This procedure is a bit crude, but the close overlap of 

many of the dots made spatial fitting impracticable. The vast majority of the dots were concentrated near 

the lattice coordinate of the surface Sr atom (center of Fig. 3.10 (f)).  

 

Fig. 3.10. Spatial and energy profile of the brigh dots. (a)-(c) show the constant-voltage dI/dV  cuts from a 
20x20nm map at -16, 0, and +16 mV respectively. It should be evident that some, but not most of the dots 
visible at +16 are gone at -16, and vice versa. (d) shows dI/dV spectra taken at the four points indicated in 
(a)-(c), and (e) shows the background-substracted spectra—here the background was the average 
spectrum of the dI/dV map as a whole. (f) is a scatter plot showing the manually-obtained dot positions in 
lattice units. The Sr position is at the center of the box, and the apical oxygen/Iridium site is split over the 
corners. 

 



 47 
 

What could the dots be? The most obvious answer is that they are La dopants buried beneath the surface, 

probably occupying Sr sites one layer down. (In the crystal structure of Sr-327 (Figs. 3.1, 1.8), the Sr sites 

of one bilayer are on the same vertical line.) Naïve theoretical reasoning suggests that the resonance 

features are consistent with this picture: The resonance features are near EF which (in both samples) is the 

bottom of the bulk conduction band (upper Hubbard band within the spin-orbit Mott picture84,86), where 

added electrons would be expected to sit; the La atom breaks the translational symmetry and may provide 

a preferential site for the donated electrons. In this case the resonances below EF would correspond to 

impurity states in a semiconductor, while those above EF correspond to electrons that left their donors and 

become itinerant. The double-peak feature is interesting, and may possibly be associated with the spatially 

inhomogeneous breakdown140 of antiferromagnetic order155 near the metal-insulator transition. The above 

is, however, speculative and the problem would benefit from the attention of a theorist.6 

We can, however, count reliably: we identified 240 bright dots in Figs. 3.10 (a)-(c), amounting to a 

dopant concentration of 8.5% in a nominally 3.2%-doped sample. These numbers together strongly imply 

that the La dopants preferentially occupy the middle Sr layer in the crystal structure (Fig. 3.11). If we 

leave interstitials out and assume that all of the observed dots are middle-layer La dopants (and that the 

surface layer and the third layer contain equal dopant densities, the latter being invisible to STM), the true 

doping formula would be  

    1 2density of dots density of squares
3 3

x    . (3.1) 

For sample A the densities in Eq. (3.1) are ~8.5% and ~1.5% respectively, so we obtain x≈3.8% which is 

quite consistent with the phase diagram (Fig. 3.6(b)) and moderately consistent with the EDS value of 

3.2%. If the dots include interstitial La atoms as well, the calculated x would drop slightly. The 
                                                             
6 In this connection we should emphasize that for the Iridates the Mott analogy deals strictly with the Ir orbitals 
and lattice sites: It is the Ir 5d states which form the jeff=1/2 band, and the Coulomb repulsion which splits that 
band is an Iridium double occupancy penalty, which should not apply to an occupied resonance at a La/Sr lattice 
site. (That is, the Hubbard term would prevent that electron from leaving the Sr lattice and entering the Ir lattice. It 
is not obvious that there should be a preferred spin direction of a La-site electron in the antiferromagnetic state of 
Sr327.) 
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preponderant preference for the middle layer (more than 5:1 in this case, and the figure for sample B must 

be comparable given its small number of squares) is striking and should be noticeable in density 

functional theory calculations.  

 

Fig. 3.11 Possible sites for La dopants in Sr-327. In the bilayer the outer two SrO planes are crystallographically 
equivalent, and inequivalent to the middle SrO layer. The red dotted lines are cleave planes; the STM tip would 
come down from the top.  

 

Appendix 3.A: La dopants in Sr-214 
 

We have performed STM/S measurements on the La-doped n=1 member of the Ruddlesden-Popper 

series, (SrxLa1-x)2IrO4, which also undergoes a phase transition for small amounts of La139,156.  In this 

compound the initially stronger Mott gap (600 meV)157,158 is suppressed less easily; STM observes 

nanoscale phase separation at x ≈ 5%, and a detailed study shows that phase separation must persist even 

to significantly higher doping concentrations.139 

Here, however, we would merely like to point out that in the single-layer compound, in contrast to Sr-

327, there is no “middle” Sr layer for the La dopants to hide in. Correspondingly, the number of observed 

La-dopant squares is higher, and actually does correspond to the nominal doping of the sample (Fig. 
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3.12(a)). Further, the gapless regions found by STM are correlated with the local density of the square 

defects much more strongly than was the case in Sr-327 (Fig. 3.12(b)-(d)).   

 

Fig. 3.12 STM/S data on La-doped Sr-214, from Ref. 139. (a) shows a 12x12 nm2 topography from an x ≈ 0.05 
sample; (b) and (c) are gap maps and local defect density maps from a 15x15 nm2 dI/dV map in a different region 
from (a); the defect density was a sum of normalized Gaussians, one for each labeled defect. (d) shows a line cut 
along the path indicated by the black arrows in (c) and (b) and showing the transition from the insulating (black) to 
metallic spectra (red). 

 

Appendix 3.B: Removal of a dopant by the tip 
 

In STM it is sometimes difficult to tell not only the chemical species of the atoms in the imaged lattice, 

but also the precise identity of the impurities. In this study we were able to prove unambiguously that the 

square defects lay on Sr lattice sites, but their identification as La substitutions relied mainly on the  
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correspondence between defect concentration and nominal doping (with the position of La next to Sr in 

the chemical formula), and on the non-observation of such defects in undoped samples. A Sr vacancy 

would be expected to have the same symmetry and dimorphic character as a La substitution. 

In this case, however, an amusing incident occurred which helped assure us that the squares were really 

substitutions and not vacancies: during scanning one of these dopants was removed by the tip, and a clear 

“hole” left in its place (Fig. 3.13). The hole showed the same C2 symmetry as the defect that had been 

removed, and a similar hole was subsequently identified elsewhere in the sample. 

 

Fig. 3.13. Topography before and after removal of a defect. Defect indicated by red circle. 

 

Appendix 3.C: Comparison with Ru-doping of Sr-327. 
 

Our group also studied Ru-doped Sr-327 by STM/S in concert with our collaborators, who prepared the 

samples and characterized them using X-ray diffraction, neutron scattering, and transport 

measurements138. In these samples we also found nanoscale phase separation as a function of doping (Fig. 

3.14). Although the two cases are described in papers138,140 , we briefly contrast them. 

Formally, the most obvious difference is that in Sr3Ir2O7 the La substitutes at the Sr (“A”) site while Ru is 

an Ir (“B”) site dopant. Since the parent compound’s band structure is determined by the Ir 5d orbitals, the 
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Ru dopants directly destroy the jeff=1/2 Mott picture locally; in contrast, the La’s donate their electrons to 

a band structure which is not fundamentally changed. With Ru doping, metallic transport behavior is not 

realized until x ≈ 35%138, and the STM measurements reveal nanoscale phase separation (Fig. 3.14). The 

spatial inhomogeneity persists through x = 50%, where the spectra, although universally gapless, range 

from a somewhat nondescript “V” shape (Fig. 3.14(f)) to a sharper V, very similar to spectra obtained on  

Sr3Ru2O7 (“x = 1”) by Lee et al.112 (Gold curve in Fig. 3.14(f); 138). This led to the conclusion that the 

transition in transport properties was associated with the localized (and probably Ru-rich, although we 

could not see the individual dopants as in the La-doped case) metallic “puddles” percolating throughout 

the sample138. This is in clear contrast to the La-doping case, where the phase separation and gross 

inhomogeneity were limited to x ≲ 4%, and quickly gave way to an essentially homogeneous metallic 

phase with well-defined bands152,153, more-or-less consistent with the picture of a “filling-controlled” 

metal-insulator transition in a Mott insulator88.  

 

Fig. 3.14. Phase separation, transition, and diagram of Ru-doped Sr-327. Except for panels (c) and (d), adapted 
from 138. (a) and (e) show topographs from samples with 35% and 50% Ru content respectively (white scale bar is 3 
nm). (b) and (f) show point spectra from the regions shown in (a) and (e) respectively; the gold and blue spectra 
correspond to black and white crosses respectively. (c) shows a gap map extracted from a dI/dV map at x = 0.35, and 
(d) shows the spectra binned against the gap size (compare (b)). The red line indicates the gap cutoff. (g) and (h) 
show the phase diagram of Sr3(Ir1-xRux)2O7 and a cartoon of the percolative phase transition in real space, from Ref. 
138. 
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Chapter 4: Strong Zeeman effects in the Landau level spectrum of (InxBi1-x)2Se3 

4.0 Historical note 
 

The data shown in this chapter were taken as part of an attempt to study the topological phase transition in 

(InxBi1-x)2Se3. We tried to use Landau level spectroscopy to study the topological surface states and their 

transformation as one approaches (and goes through) the metal-insulator transition. Due to a complicated 

conspiracy of technical and experimental factors—that our field went only to 7.5T, the samples being 

“inherently doped” putting the Landau levels far from EF, plus any tendency of the In atoms to disrupt the 

Landau orbits—we were only able to image the lowest several Landau levels. Moreover, attempts to plot 

the Landau levels in the usual manner (E vs. NB ) led to results which were irreconcilable with our 

conception of topological insulator surface states and almost totally incomprehensible.  

The solution which we finally hit upon had the effect of converting our study from an investigation of the 

topological phase transition as such into an almost-metrology paper on Landau level spectroscopy, which 

focused greatly degree on the parent compound, and particularly deals with the breakdown of the 

semiclassical approximation (Eq. (2.2)) at low N  and the “nonideality”159 of the Dirac fermions in Bi-

based topological insulators. We acquired some Landau level data beyond the topological phase transition 

(at x ~ 5%) which we include as an appendix, with comments.  

4.1 Introduction 

Three-dimensional topological insulators (3D TIs)42,160,161, including Bi2Se3 and similar compounds31,50,51  

have been the focus of great interest both for their rich physics and potential for future applications.30 

Tuning these systems by chemical doping has enabled control of the chemical potential54, gapping of the 

surface state59,162, and realization of the phase transition between the topological and trivial states.64 The 

topological phase transition is especially interesting physically, and in (InxBi1-x)2Se3 it is relatively 

accessible because both end-members have the same crystal structure and the critical doping level, 3% < 
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xc < 7%, is relatively low.163,164 Besides the intrinsic interest, a recent theoretical work15 predicts 

clustering of the In dopants and a possible percolative nature of the phase transition.  

To study the surface states of (InxBi1-x)2Se3 we performed low-temperature (4K) scanning tunneling 

microscopy and spectroscopy (STM/S) on UHV-cleaved single crystals grown by the Bridgman method. 

We begin in the topological regime, and in Fig. 4.1 show data from two samples at x=1% and x=2.5%. 

The two types of point defect most commonly observed are indicated by the circles in Fig. 4.1(a). The 

number of these defects is consistent with their being In dopants, and their position with respect to the 

atomic lattice suggests that the dopants indicated by red and orange circles respectively are associated 

with In substitutions in the first and second Bi layer from the surface (see Appendix).  

4.2 Landau level spectroscopy 

We use Landau level spectroscopy (LLS) to characterize, in as much detail as possible, the low-energy 

characteristics of the Dirac surface state. Quasi-classically, the Nth Landau level is composed of electrons 

whose orbits in k-space enclose an area 

    2 /NA E N eB      (4.1) 116,165. 

 Where 1 / 2  for a conventional 2DEG, but zero for Dirac systems120. EN	are the energies of the 

Landau levels: practically, the positions of peaks in a dI/dV spectrum at given magnetic field B. Spectra at 

several values of B provide a dense array of points, yielding the curve (ܧ)ܣ, which for isotropic systems

2( )A k  fully characterizes the band dispersion. In that case the k-space orbit radius is proportional to 

   N B , and for Dirac systems a plot of E vs.  NB  may be directly compared with ܧ vs. ݇ plots 

obtained from e.g. ARPES.166,57,56  

Eq. (1) is a quasi-classical approximation which loses its validity for small N167, and when extra terms are 

added to the Hamiltonian the (  )NE NB  are not expected to lie on the same curve. The plots retain their 
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usefulness, however, since the deviations from single-curvedness help to characterize the underlying 

physics. 

Field-dependent dI/dV spectra for x=1% and 2.5% (taken at the same spatial position and setup conditions 

for each field strength) are shown in Fig. 4.1(b) and (f) respectively. As in pristine Bi2Se3, both samples 

showed a clear peak near the minimum of the zero-field spectrum which disperses very little with field 

(grey dashed line in Fig. 4.1), and which we initially indexed N=056,57. The resulting ܧ vs. √ܰܤ	plots are 

shown in Fig. 4.1(c) and (g). Although the surface state at these dopings is still expected to be 

topological163,164, the LLs clearly fall on different curves. To see why, we must consider the surface state 

Hamiltonian in greater detail. 

 
Fig. 4.1 STM topographs and Landau level spectra in lightly In-doped Bi2Se3. Panels (a)-(d) and (e)-(h) show 
data taken from samples with 1% and 2.5% In respectively. In the topographs (a) and (e) the In dopants are visible 
as black triangles and bright-centered triads (red and orange circles respectively in (a)). (b) and (f) show magnetic-
field dependedent dI/dV spectra acquired in In-free regions; the Landau levels are visible as small peaks and 
extracted following background subtraction (see supplementary information). (c) and (g) show E vs. √ܰܤ with the 
(almost) non-dispersing peak near the spectral minimum indexed as N=0; (d) and (h) show the same, indexing it as 
N=-1. 

 

This is51,14  
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     2,x y D x y y xH k k E V k k Ck       (4.2) 

where ܧ஽is the Dirac point energy, V is the velocity multiplied by , i  are Pauli matrices in the basis of 

the electron spin, and the cubic term14,168 is omitted. In the presence of a B field along the z-axis, and 

using the ansatz that the spin-up and spin-down components bear wave functions with quantum numbers 

N-1 and N respectively14,169, the Hamiltonian becomes14 

 (2 ) 2   ( / 2)D y z B zH E C NB V NB CB gB            (4.3) 

where /B eB  , and in the Zeeman term ݃ ≠ 2 in general14,170. Diagonalization yields the Landau level 

energies (14; see also 171 in which the ansatz is inverted relative to ours) 

  2 2(2 )  ( / 2) 2N D BE E C NB BC gB NBV         (4.4) 

For 0C g  , (4) reduces to the form familiar from the experimental literature. With nonzero C and g, 

( , )NE N B  is not a function of  NB  only; let us however express it as a function of  NB   and N: 

    22 2 2 2 2, 2   / 2  DE N E C D N V          (4.5) 

 where  ( , ) , /C V C V e   , / 2BD C g  , and of course 2 /N B  . In Fig. 4.1 (c) and (g) the most 

striking feature is that the higher LLs are shifted upward in energy at constant  , by as much as 13 meV 

for N=1 to 2 (Fig. 4.1(g)). But, for positive LLs, (5) makes clear that if N increases at constant   the 

energy must decrease, regardless of the parameter values. 

This glaring inconsistency led us to conclude that the naïve indexing scheme could not be applied 

successfully to In-doped samples. Fortunately, there is an alternative: if we decrement each Landau level, 

we obtain the plots in Fig. 4.1 (d) and (h). Now the most significant features are: (1) that the N=0 LL 

disperses with magnetic field, about 1.8 meV/T at x=1%, and 1.6 meV/T at x=2.5%; (2) that the N=-1 LL 
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hardly disperses at all (although at x=2.5% it barely creeps downward at ~0.4 meV/T); (3) that for N>0 

the LLs lie reasonably close to the same line. Except (2), these features can be easily reconciled with the 

known physics of topological insulator surface states. 

The N=0 LL disperses due to the quadratic term and Zeeman effect.14 Explicitly 

 0 ( / 2) .D BE E C g B     (4.6) 

(Because of the ansatz, there is no “-” solution for N=0.14,171) If we ignore the quadratic term and attribute 

the observed dispersion solely to Zeeman coupling, the slope of E0 yields g ≈ 61 and 54 for x=1% and 

2.5% respectively.  

To characterize the surface state, and decouple the Zeeman and curvature effects on the N=0 LL, we 

performed least-squares fitting of the entire LL dataset at each doping to the four-parameter model 

defined by Eqs. (4.4) and (4.6). The results are shown in Table 4.1, and the expected Landau levels are 

connected by the black lines in Fig. 4.1 (d) and (h). All fits yield C ≳ 20 eV∙Å2, but our momentum-space 

range is inadequate to resolve the band curvature precisely: at k ≈ 0.025 Å-1 a change of 3 eV∙Å2 in C 

moves the energy by only ~2 meV.  

To overcome this limitation we fit to the model with ܥ fixed at 23.7 eV∙Å2, consistent with ARPES for 

pristine Bi2Se3
14,50. When the odd N=-1 LL is excluded, the decline of ݃ between x=1 and 2.5% is 

statistically significant. (For residuals plots, see appendix) 
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 fixed ܥ free ܥ 

 Including N = -1 Excluding N = -1 Including N = -1 Excluding N = -1 

 1% In 2.5% In 1% In 2.5% In 1% In 2.5% In 1% In 2.5% In 

 ஽ (meV) -275 -264 -279 -264 -274 -263 -278 -265ܧ

ܸ (eV Å) 1.70±0.01 1.84±0.01 2.03±0.04 2.04±0.05 1.76±0.03 1.87±0.04 1.91±0.01 1.95±0.02 

 29.3±0.4 27.2±1.0 20.2±1.2 20.7±2.1 23.7 23.7 23.7 23.7 (eV Å2)	ܥ

݃ 30.3±0.5 27.3±1.1 55±2.7 41±2.4 25.5±0.5 25.3±0.5 47±1.1 35.1±1.5 

Table 4.1. Model parameter estimates for In-doped Bi2Se3. The errors were obtained by taking the standard 
deviation of fitting results for datasets with one point removed. 

 

4.3 Pristine Bi2Se3 

We have seen that in order to obtain sensible results on In-doped Bi2Se3 it was necessary to depart from 

the indexing scheme previously applied to the undoped system.56,57 The successful fits raise the possibility 

that the low-lying LLs of naively-indexed pristine Bi2Se3 bear a similar problematic feature to that 

revealed in Fig. 4.1 (c) and (g), which has hitherto been overlooked. To examine this question we 

acquired field-dependent LL spectra on pristine Bi2Se3 (Fig. 4.2); we also carefully analyzed the 

previously published (and, frankly, better) field-dependent STS data on the same system56,57,169 

(supplementary Fig. Sx).  

The problem remains (Fig. 4.2 (c)), although it is somewhat less obvious than in the In-doped samples: 

the upward shift from N=1 to N=2 at constant   is but 9 meV instead of 13. The re-indexed LL data (Fig. 

4.2 (d)) shows the same basic features as the data for x > 0. The N=0 LL disperses a bit faster, 2.0 meV/T, 

and the g-factor extracted from the least-squares fit is correspondingly a bit larger: with C fixed and the 

N=-1 Landau level excluded; the increase in ݃ is statistically significant (Table 4.2). 

If we accept our indexing of the pristine data, we find a coherent physical picture: The strong Zeeman 

coupling in the surface states of pristine Bi2Se3 weakens with increasing In, which reduces the spin-orbit 
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coupling and changes the orbital character of the bands near the Fermi energy.163 The extent to which this 

picture is consistent with other evidence will be discussed below.  

 

Fig. 4.2 Field-dependent Landau level spectroscopy on pristine Bi2Se3. (a) A typical, low-resolution STM 
topograph on the Bi2Se3 surface. The spectra (b) were taken along a short line in the upper-right corner of the 
topography. (c) and (d) are E vs. √ܰܤ plots with the Landau level at the spectral minimum (grey dashed line in (b)) 
indexed as N=0 and N=-1 respectively; Cf. Fig. 4.1 (c) and (d), (g) and (h). The black lines in (d) connect Landau 
levels predicted by fitting to the model (see text), with all four parameters free and including N=-1. 

 

 0% In 1% In 2.5% In 

ED (meV) -208 -278 -265 

V (eV Å) 2.24±0.02 1.91±0.01 1.95±0.02 

C (eV Å2) 23.7 23.7 23.7 

g 76±2 47±1.1 35.1±1.5 

Table 4.2. Model parameter estimates with ܥ fixed and excluding the N=-1 LL. The errors were obtained by 
taking the standard deviation of fitting results for datasets with one point removed. 
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4.4 Discussion 

Quantum oscillations studies on the surface states of Bi2X3 TIs have been largely consistent with g-factors 

on the order of 50.58,159,172 A well-known early work on Bi2Se3 found g=50±10: “The associated field 

dependence of the N=0 LL should, in principle, be observable through STS measurements.”58 

Subsequently Taskin and Ando159 carefully analyzed Shubnikov-de Haas data for three TI systems—

Bi2Se3, Bi2Te3, and Bi2Te2Se—and found (taking into account their opposite sign) g-factors ranging from 

39 to 65. In a later paper, Wright and McKenzie172 calculated g ≈	60 and 50 for Bi2Te2Se and Bi2Se3, 

respectively. (We note however that a study by Xiong et al.173 on BTS, cited in Ref. 172, claims a small g-

factor.) If correct, our interpretation would contribute towards harmonizing two important experimental 

techniques. 

Can it be? The strongest evidence against it, as far as we know, is to be found in Ref. 169 But before 

getting to that, let us make some more general comments about field-dependent STS on Bi2Se3, with 

particular reference to the earlier works56,57.  

In a 2D Dirac system the density of states increases linearly with energy, in both directions, from a zero 

value at ED. We expect, then, that the zero-field dI/dV spectrum should take the form of a “V,” with Dirac 

point at the nadir.7 In practice, however, this shape is not reliably obtained. In Ref. 57 the zero-field 

spectrum (Fig. 1) was V-like, and the LL appearing near the minimum could be naturally identified as 

belonging to the Dirac point. In Ref. 56, by contrast, the zero-field spectrum did not much resemble a V: In 

the field-dependence figure (Fig. 2) it is mostly flat, and the clearest feature is a step between the Landau 

levels named 0 and 1.8  

This variability in the spectral shape is reflected in our own data: in the 1% sample the spectrum is V-

shaped, while in the 2.5% sample it is mostly flat, with (as in 56) a clear step between the first two LLs, 

                                                             
7 The small, positive quadratic term should bend the left half of the “V” upwards, and the right half downwards. 
8 In Ref. 56, in connection with labeling the non-dispersing Landau level N=0, the supposed negligibility of the 
Zeeman coupling was referred to explicitly. 
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which is very near where our model places the Dirac point. Although it is strange that for V-shaped 

spectra the Dirac point should not lie precisely at the bottom (our fits generally predict 10-20 meV above 

it), the diversity in spectra obtained with different tips suggest that matrix elements may play a significant 

role in the zero-field spectral shape. 

Ref. 169 cleverly exploited an impurity potential to visualize the low-index Landau level wave functions 

directly. In Fig. 2 of that work, the authors show wave functions for LLs which they label N=0, 1, and 2. 

The last two of these are, as shown in great detail in the appendix, tantalizingly close to what is expected 

for the N=0 and 1 LLs in the presence of strong Zeeman coupling. Briefly: If (as in 169) we suppress the 

quadratic and Zeeman terms, the Hamiltonian (3) contains terms proportional only to the identity matrix 

and ߪ௬, and its eigenstates mix spin-up and down components with equal weight. But when those terms 

are included, the ߪ௭ component of (3) becomes important, and for N=1 leads to a substantial spin-

polarization of the Landau levels: about 80% at 11T. 

With the mandatory ansatz14,169,171 the N=0 LL is fully spin-polarized, and its wave function has no nodes. 

The N=1 LL, which without Zeeman terms contains zero- and single-noded wave functions with equal 

weight169, now favors the noded component by a 4:1 ratio: its density of states contains a single, deep 

node-like depression, strikingly similar to what Ref. 169 calls the N=2 LL. The N=-1 LL favors the 

nodeless component in equal measure: its wave function should look very similar to N=0. This too is 

reproduced in 169, although its apparent size is smaller than expected. Ref. 169 also reported a splitting of 

the N=1 Landau level, which we would label N=0. This is not consistent with the behavior of an N=0 LL 

in a centrally-symmetric potential, but could perhaps arise in a potential (as in 169) where this symmetry is 

not strictly adhered to. 

Although in our interpretation the decline of g with increasing In is plausible, the almost complete non-

dispersion of the N=-1 LL remains problematic. Part of it, probably, is due to the upward curvature of the 

surface state below the Dirac point from nonzero C. But (because the surface state keeps going until it 
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merges with the bulk valence band) this curvature must become unphysical at not-very-large k. In its 

absence, we may only speculate. It seems possible, however, that the different orbital character of the 

surface state fermions above and below the Dirac point 52,174 might differentiate their Zeeman coefficients. 

Appendix 4.A Identification and lattice position of the In dopants. 
 

Bi2Se3 has a layered crystal structure51 (Fig. 4.3) and cleaves between the Van der Walls-bonded 

quintuple layers. Because of the “ABC” structure, the bismuth atoms in the first layer down are located 

between the top-layer Se atoms when viewed from above (Fig. 4.3(b) and (c)), while the second layer lie 

directly beneath the exposed Se. In Fig. S1d we enhanced the atomic signal (by smoothing and taking the 

minus second derivative) to show the atomic lattice clearly; the centers of the dark triangles (1) and 

lighter triplets (2) are seen to lie in between and on top of the observed lattice, respectively. 

 

Fig. 4.3. Crystal structure and In dopants. (a)-(c) The crystal structure of Bi2Se3, from 51. (d) An  enhanced 
(smoothed second derivative) topography on (InxBi1-x)2Se3 for x = 2.5%, designed to show the Si lattice clearly. The 
two types of In dopants referred to in the main text are indicated by the arrows “1” and “2”. 
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Appendix 4.B Residuals for various fits to the model Hamiltonian 
 

In Fig. 4.4 we plot the residuals as a function of magnetic field for the four types of fits contained in 

Table 1 of the main text. For the fits in (d) and (h), whose results were also used in Table 4.2 of the main 

text, fit generally came within +/- 1.5 meV for the lower Landau levels (N=0 and N=1) regardless of 

magnetic field.  

As explained in the main text, labeling the nondispersing Landau level N=0 leads to impossible results. 

However, we may still attempt the least squares procedure as shown in Fig. 4.5. As expected, the fit is 

unable to produce an increase energy with N at constant NB . The best we can do is to draw a 

reasonably continuous curve through the middle of the pattern, leaving large residuals with obvious 

systematics for almost all N. At 1% In we find ܧ஽ = −0.301, ܸ = 2.16 eV∙Å, 30.0 = ܥ eV∙Å2, ݃=-14. At 

2.5% we find ܧ஽ = −0.286, ܸ = 2.21 eV∙Å, 26.7 = ܥ eV∙Å2, ݃=-3. 

 

Fig. 4.4 Residuals of least-squares fits. The eight panels are the residuals as a function of magnetic field for the 
eight columns of Table 4.1. The upper row (a-d) is for 1% In; (e-h) are for 2.5%. (a) and (e) are from the fitting with 
all four parameters free, including the N=-1 LL. (b) and (f) are the same, excluding the N=-1 LL. (c) and (g) are 
from fitting with C fixed, including the N=-1 LL. (d) and (h) fix ܥ but exclude the N=-1 LL. Residuals are defined as 
the predicted value minus the experimental value. 
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Fig. 4.5 Least-squares fitting and residuals with naïve indexing. (a) and (b) are ܧ	ݏݒ.  plots for the x=1% ܤܰ√
and 2.5% samples respectively, assuming that the nondispersing Landau level is N=0. (The experimental data are 
identical Fig. 1 (c) and (g).) The black lines connect the predicted Landau levels. (c) and (d) are the residuals plots 
associated with (a) and (b) respectively. 

 

Appendix 4.C Previously published Landau levels on Bi2Se3 

 

In Fig. 4.6 we display the low-index Landau levels obtained from the published sources56,57,129, as indexed 

by them with the non-dispersing peak N=0. To extract the Landau levels from 56 and 129 we digitized the 

spectra and applied the same peak-fitting procedure as was used for the data in the main text; T. Hanaguri 

kindly furnished us the data from 57 directly.  

To fit the peaks, we first subtracted the zero-field spectrum, then an additional low-order polynomial (less 

than 5 in all cases) to get a flat background. The peak positions were then identified approximately by 

eye; to find them precisely we fit a small (~5 meV) window about the optical maximum to an inverted 

parabola. 

In all cases we see the same unacceptable increase in E with N at constant √ܰܤ, although its magnitude is 

not always the same; compare Fig. 4.6 (b) with (f). When we re-index the Landau levels from 56,129 and 
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try to least-squares fit them, the results are correspondingly somewhat different. It is not clear why; 

however, in Bi2Se3 and Bi2Te3 there is often significant potential variation due to charged defects129,130,175, 

which shifts the LLs in energy differently according to the size of their wave functions127, which vary 

with N, and with B	as the magnetic length changes.  

 

Fig. 4.6 ܧ	ݏݒ. -for previously published Landau levels on Bi2Se3. Panels (a), (c), (e) show magnetic field ܤܰ√
dependent dI/dV spectra on Bi2Se3 as presented in Refs. 56,57,129 respectively. (Panels (a) and (c) were in the main 
text of their respective papers, and (e) was in the supplement.) Panels (b), (d), (f), show the respective ܧ	ݏݒ.  ܤܰ√
plots. The upward shift in ܧ with increasing ܰ is noted in (b) and (f).    
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Appendix 4.D The low-index wave functions and their appearance in experiment 
 

In this section we discuss the theory of Landau level wave functions in connection with the results shown 

in Ref. 129. Their STS signature is shown in Fig. 2 of that work (here reproduced as Fig. 4.7), whose 

labeling is in accord with the very natural assumption that the N=0 LL has the smallest wave function. 

Although we will show that the wave functions labeled N=1 and N=2 are actually consistent with 

expectations for the N=0 and N=1 Landau levels, the N=-1 LL can never be made smaller than N=0, and 

its smallness must be ascribed to other physics, possibly matrix element effects (see also below). 

Because our wave functions were defined ab initio as part of the calculation, we present the derivation, 

which is based on lecture notes by H. Murayama.176  

Landau level wave functions in the symmetric gauge 
 

In the magnetic field ܘ → મ ≡ ܘ − (e/c)ۯ and the Hamiltonian of a trivial, otherwise free 2DEG 

becomes 

 
2

.
2

H
m


Π

  

From here we suppress all dimensional constants (݉ = ݁ = ℏ = ܤ = 1), thus using ݈஻ = ඥℏ/݁ܤ as the 

unit of length, and ℏ߱஼ = ℏ݁ܤ/݉ as the unit of energy.  

We have two sets of ladder operators  

        † †1 1 1 1Π Π ,  Π Π ;           ,  
2 2 2 2x y x ya i a i b X iY b X iY          (4.7) 

  	 

which obey the usual bosonic commutation relations. Here ܺ and ܻ are operators for the guiding center 

coordinates (for details, see 176). The basis states are defined by two quantum numbers N and m such that 
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|ܰ,݉⟩ =
	൫ܽற൯ே 	൫ܾற൯௠|0,0⟩

√ܰ!݉!
 

where	|0,0⟩ is a certain normalized ground state. In the symmetric gauge (ۯ = (۰ ×  the ladder (2/(ܚ

operators are conveniently expressed in terms of the complex position variables ,     z x iy z x iy    : 

† †1 1 1 1 1 12 ,  2 ;       2 ,  2 ,
2 2 2 22 2 2 2

i ia z a z b z b z
z z z z

                                    
  (4.8) 

  

and the ground state is a normalized Gaussian: 

⟨0,0|ܚ⟩ ≡ ଴ܹ଴(ܚ) = ଴ܰ଴݁ି௭௭̅/ସ 

where 00 1/ 2N  . It is easy to verify that  

 ேܹ଴(ܚ) = ܰே଴ݖே݁
ି	೥೥തర , ଴ܹ௠(ܚ) = ଴ܰ௠̅ݖ௠݁

ି	೥೥തర ,	 

where ேܹ௠(ܚ) ≡  .⟨݉,ܰ|ܚ⟩

The N=0 density of states 
 

The solutions of the topological insulator Hamiltonian are two-component spinors with distinct wave 

functions in each channel. For the N=0 Landau level, however, the wave functions are consist solely of 

଴ܹ௠(ܚ); let us discuss them in some detail. (Fig. 4.8) 
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Fig. 4.7. Experimentally visualized Landau level wave functions; Fig. 2 of Ref. 129. The Landau level indices are 

as in the original. 

 

In Fig. 4.8(b) we see that for m > 0 the | ଴ܹ௠(ܚ)|ଶ are appreciably different from zero in a region of size 

~ 2 ݈஻. The local density of states feature measured by STM, however, should be a bit larger: The |0,݉⟩ 

states’ degeneracy is split by a potential which leaves states of adjacent	݉ close together in energy, and 

when the inverse lifetime Γ is comparable to this spacing, the observed density of states will have 

contributions from several ݉.  
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Fig. 4.8 Wave functions of the N=0 Landau level. a) Color plots of ଴ܹ௠(ܚ) for several values of m; color scale is 
on the bottom left. (b) Probability amplitude | ଴ܹ௠(ܚ)|2 for the same values of m, normalized so that all maxima are 
at the same height.  

 

This additional smearing was carefully considered in Ref. 129; see Figs. 4c and S3. We have repeated the 

calculation of Ref. 129 in detail for the N=0 Landau level, using a buried Coulomb potential (ܸ(ݎ) =

ଶݎ√/ܷ + ݀ଶ for ܷ = 1.3 and ݀ = 2) and Lorentzian broadening width Γ = 0.05; we calculate the energy 

shifts of |0,݉⟩ by first-order perturbation theory. The result is shown in Fig. S7. To correspond to 129 as 

closely as possible, we took a slice of the dI/dV at the same energy (E = -0.675) and sampled the density 

of states as a function of x in the same range (Fig. S7 (b)), showing the contribution of the dominating 

eigenstate (m=5) as well as the others, and their sum (thick black curve). Fig. S7 (b) should therefore be 

entirely equivalent to the “n=0” panel in Fig. 4c of 129. 

We see that the combined density of states peak has a full with at half-max (FWHM) of 2 ݈஻. This 

corresponds almost perfectly to the dimension of the feature actually imaged in Ref. 129, but there labeled 

N=1 (Fig. S7(c)). 

We now proceed to the N=1 Landau level, for which we must write the full TI Hamiltonian. 



 69 
 

 

Fig. 4.9 Density of states of the N=0 Landau level. (a) Intensity plot showing ݎ)ܱܵܦ, (ܧ = ∑ | ଴ܹ௠(ܚ)|ଶ௠ ܧ)ܮ	 −
;଴௠ܧ Γ) where ܮ is the normalized Lorentzian with half-width Γ: ܮ(߱; Γ) = Γ/ߨ(߱ଶ + Γଶ). ܧ଴௠ was determined by 
first-order perturbation theory. (b) Horizontal cut through the desnsity of states at ܧ = −0.675. (the green line in 
(a)). The contribution of | ଴ܹ௠|ଶ is plotted for each m, and the total density of states in black. (Panel (b) should be 
equivalent to the lowest panel of Fig. 4c of 129, except that it also shows the contributions for m ≠ 5.) (c) Fig. 2f of 
129, annotated for comparison with (b). 

 

Full surface-state Hamiltonian 
 

In the magnetic field the Hamiltonian becomes 

 
ܪ − ஽ܧ = ܸ൫ߪ௫Π௬ − ௬Π௫൯ߪ + Πଶܥ − ௭ߪߛ = ቆ

Πଶܥ − ߛ ܸ൫Π௬ + ݅Π௫൯
ܸ൫Π௬ − ݅Π௫൯ Πଶܥ + ߛ

ቇ

= ൮
ܥ2 ൬ܽறܽ +

1
2
൰ − ߛ ܸ݅√2ܽற

−ܸ݅√2ܽ ܥ2 ൬ܽறܽ +
1
2
൰ + ߛ

൲ 

 

 

 

(4.9) 

where = ݃ߤ஻2/ܤ. The relative position of ܽ and ܽற in the matrix, and the requirement that the solutions 

be also eigenstates of the total angular momentum ܬ௭ = (ܾறܾ − ܽறܽ) +  ௭/2,129,176 force the ansatzߪ

 |߯ே௠⟩ = ൬ ⟨݉,ܰ|ߙ
ܰ|ߚ − 1,݉⟩൰ (4.10) 

where |ߙ|ଶ + ଶ|ߚ| = 1. We find ߙ and ߚ by numerically diagonalizing the matrix: 

 

෡௜௝ܪ = ൮
ܥ2 ൬ܰ +

1
2
൰ − ߛ ܸ݅√2ܰ

−ܸ݅√2ܰ ܥ2 ൬ܰ −
1
2
൰ + ߛ

൲ = ܰܥ2 − ௬ߪ2ܰ√ܸ + ܥ) − ௭ߪ(ߛ  

 

(4.11) 
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for N>0. For N=0 we have perforce  

 |߯଴௠⟩ = ቀ|0,݉⟩
0

ቁ, 

 

(4.12) 

so ܧ଴ = ܥ) − -Parenthetically, regarding the sign of ݃: In the main text we placed |0,݉⟩ in the spin .(ߛ

down slot following 14, and obtained (from ܪ௓௘௘௠௔௡ = ଴ܧ	(௭ߪߛ− = ܥ) + ݃ ,In 59 .(ߛ > 0 corresponds to 

the N=0 LL dispersing upward with field. However, Ref. 14 has ܧ଴ = ܥ) − ܥ| uses 171 ;(ߛ −  In any .|ߛ

case, we now flip the sign of ݃ relative to the main text.  

 

N=1 spinor states 
 

For N=1, the eigenspinors are  

 |߯ே௠⟩ = ൬1|ߙ,݉⟩
 ൰. (4.12)⟨݉,0|ߚ

The |1,݉⟩ wave functions are shown in Fig. 4.10 for several values of m. For m > 1 they have a single 

radial node between two peaks in the probability density separated by very nearly 2 lB, which agrees 

remarkably well with the width of the feature observed in Ref. 169 and labeled N=2 (Fig. 4.7 (i)). The real-

space probability density of the N=1 eigenspinors, however, clearly includes contributions from 

wavefunctions with N=1 and N=0: 

 |χ1m(r)|2 = ⟨߯ଵ௠|ܚ⟩⟨ܚ|߯ଵ௠⟩ = |ଶ|ߙ| ଵܹ௠(ܚ)|ଶ + |ଶ|ߚ| ଴ܹ௠(ܚ)|ଶ. (4.13) 

In Ref. 169 it was assumed that |ߙ|ଶ = ଶ|ߚ| = ଵ
ଶ
, so that the lower-spin wave function largely fills in the 

node of the upper-spin wave function to produce a relatively featureless probability distribution (Fig. 4.11 

(b); see also 169); this allowed the authors to label a nodeless feature N=1 (Fig. 4.7 (f)). 
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Fig. 4.10 Wave functions of the N=1 Landau level. a) Color plots of ଵܹ௠(ܚ) for several values of m; color scale is 
on the bottom left. (b) Probability amplitude | ଵܹ௠(ܚ)|2 for m=1, 10, and 20, normalized so that all maxima are at 
the same height. A 2 lB scale bar is included for comparison with (c), from Ref. 129. 

 

But when the ߪ௭	 term in the Hamiltonian (4.11) becomes non-negligible the relative magnitudes of ߙ and 

 will change considerably. (Inspection shows that the (i.e. the spin polarization of the Landau level)  ߚ

spin polarization is greatest at low N and high B; the assumption of Ref. 169 is correct for large N.)  

Explicitly, for N=1 we have (reverting to SI units) 

ேୀଵܪ  = ෨ܤܥ2 − ܸඥ2ܤ෨	ߪ௬ 	 + ෨ܤܥ) −  ௭ (4.13)ߪ(2/ܤ஻ߤ݃

where (ܥሚ, ෨ܸ , (෨ܤ = ,ܥ) ܸ, ܸ ℏ. Putting/݁(ܤ = 2	ܸ݁Å, ܥ = 23.7	ܸ݁Åଶ, ݃ = 	−60, and B = 11T (the same as 

used experimentally in Ref. 129), we find  ܪ = ൫8 − ௬ߪ37 +  meV. The eigenspinors are in the yz	௭൯ߪ23

plane: the +1 LL is 77% spin up, and the −1 LL is 77% spin down.  
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Fig. 4.11: The N=1 Landau level with and without Zeeman coupling. (a) The N=1 density of states for m=5, 
assuming equal weights for spin up and spin down; the + and – eigenspinors have equivalent density of states. (b) 
and (c) are the + and – eigenspinors for m=5 obtained from solving the Hamiltonian, with ܸ = 2	ܸ݁Å, ܥ =
23.7	ܸ݁Åଶ, 	݃ = 	−60, and B = 11T. 

 

We see that the Zeeman coupling accounts for both the nodal trough in the N=+1 LL and the nodeless 

appearance, but not the smallness, of the N=-1 LL. That, however, might possibly be due to matrix 

element effects: In the dI/dV spectra of 129 (Fig. 1a) the peak labeled N=0 is much shorter than the others, 

with less spectral weight. It is tempting to speculate that this causes the wave function tails to fade into 

the noise background more quickly, reducing the apparent size of the wave function. 

We should point out that although the relative spin polarization of the N=+1 and -1 wave functions 

depends on the ansatz choice (which itself involves sign factors involving B and the electric charge176) the 

relative “node polarization” does not. The upward dispersion of the N=0 LL is determined 

experimentally, and the same coefficient of ߪ௭ which makes ܧ଴ > 0 contributes to the increase of ܧାଵ. 

Thus, regardless of the ansatz, the N=0 and N=+1 LLs must have the same majority spin channel. (If the 

N=0 Landau level had dispersed downward, the situation would be reversed.) 

Conclusion of Appendix 4.D 
 

The Landau level wave functions, as imaged by STS in Ref. 129, are strikingly compatible with the 

indexing scheme we advance based on other arguments. A careful spin-polarized STM experiment, such 

as envisioned in Ref. 129, ought to be able to distinguish our indexing schemes. 

 

Appendix 4.E: Landau levels at x = 5% 
 

Besides the datasets at 0, 1, and 2.5% In concentration, we also acquired Landau level data on a 5% In-

doped sample. This doping is at the center of the range given in Ref. 163 for the topological phase 
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transition—3% < x < 7%; see also164, where according to the usual picture the band inversion is undone, 

and the fate of the topological surface state is unclear. In this sample we only saw a few Landau levels (up 

to 3 at 7.5T), and their distribution is qualitatively different from the three dopings discussed above.  

 
Fig. 4.12: Landau peaks in an x ≈ 5% sample. (a) A 15x15nm2 topography showing the area in which the line cut 
used for analysis was taken (green line). (b) dI/dV as a function of bias and magnetic field, averaged along the line; 
spectra are offset for clarity. (c) shows the background-subtracted dI/dV with fitted peaks identified as vertical blue 
strips. The overlaid colors match the symbol color in (d)-(f), which show E vs. ඥ(ܰ +  for two indexing ܤ(ߛ
schemes with 0 = ߛ (d) and (e), and the most natural one with 1/2 = ߛ. 

 

The most obvious difference is that the bottom of the rather V-shaped background spectrum (Fig. 4.12 

(b)) does not develop a non-dispersing Landau peak. Instead, the first visible peak appears 15-20 meV 

above the minimum and disperses sharply upward at about 2.1 meV/T; compare 2.0, 1.8, and 1.6 meV/T 

for our N=0 LL in 0%-, 1%-, and 2.5%-doped samples respectively. This suggests that the surface sate at 

5% In is qualitatively different and perhaps a topologically trivial. (This is essentially independent of our 

indexing of the nondispersing peak as N=-1: if it was N=0 its disappearance would also signify the loss of 

the Dirac character of the surface states.)    
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We found empirically that when we plot the energy of the peaks against ට(ܰ + ଵ
ଶ
 i.e. use Eq. (4.1) ,ܤ(

with γ = ½, the results lie reasonably close to a straight line, whose slope (about 4.0*105 m/s) is quite 

close to the values obtained at the other dopings. (In Fig. 4.13 we plot them all on one graph.) The 

apparent change from γ = 0 to ½ seems, at first glance, like a telltale sign of the topological-trivial phase 

transition in a surface state whose kinematic properties remain nearly unchanged120,165.  

 

Fig. 4.13 E vs k plots for all the samples shown in this chapter. The plotting is against ඥ(ܰ +  for 0=ߛ where ܤ(ߛ
x = 0%, 1%, and 2.5%, and 1/2=ߛ for x =5%. The 5% data did not have a C0 and was shifted with respect to the 
intercept of its linear fit. 

 

In making such a claim, however, we must tread very carefully in view of the distinction between 

“nomal,” topologically trivial, spin degenerate surface states and the chiral topological surface states in 

TI’s. In the TI surface state Hamiltonian (Eq. (4.2)) the dominant, linear term directly lifts the spin 

degeneracy, so that the Zeeman effect only shifts the Landau peaks in energy. Contrariwise, in the 

conventional 2DEG these peaks are doubly degenerate without Zeeman coupling, which splits each peak 

in two. (For STM results see e.g. 128, or 177 for graphene.) All of the following suggestions contain features 

that are difficult to reconcile with the observed Landau levels: 
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(1) If the Dirac fermions acquired a field-independent mass term proportional to ߪ௭, this would not 

increase the dispersion of the lowest Landau level with the field: in the absence of the Zeeman and 

quadratic terms it would sit right at the band bottom: E0 = m. (This is clear from our analysis of Eq. (4.2) 

and is also found experimentally76.) Conversely (2), if the surface state Hamiltonian retained its Rashba 

form (4.2) but ceased to span the band gap (the quadratic bands bending back up to the valence band as in 

Fig. 1.1) the low-index Landau level spectrum should be quite indistinguishable, and in particular the 

N=0 Landau level would remain near the Rashba-Dirac point. If (3) an almost-linear 2DEG with spin 

degeneracy had taken the place of the Dirac surface states, the change in Berry phase would be 

explained120,165, but on the other hand Zeeman coupling would lift the spin degeneracy and split the 

Landau levels into two branches, one of which would disperse downward with the field. (From the values 

used above, the splitting should be ~10-25 meV depending on the g-factor.) 

The only scenario which avoids these difficulties is a “conventional” (in the sense of zero Berry phase 

around the band bottom) but near-linear 2DEG with only one spin branch. Although it is not immediately 

clear what the Hamiltonian of such a 2DEG would be, it is interesting to note that a recent spin-resolved 

ARPES study on TlBi(SxSe1-x) (which undergoes an analogous phase transition at x ≈ 0.564,178) observed a 

surface state, barely on the trivial side of the phase transition, with strikingly similar properties to those 

required here179. (See also 180.) That surface state was helically spin-polarized at large k, but was gapped 

and lost its spin polarization close to Γത, unlike the topological surface states. Further, there was no out-of-

plane spin polarization even at the band bottom179,180, which would have been expected had the surface-

state gap resulted from adding a mass term ݉ߪ௭ to Eq. (4.2). The zero Berry phase (γ = ½) and near-

linear dispersion suggested in our own data are rather consistent with these features of the 

“unconventional” state of Ref. 179: single spin branch, incomplete spin polarization, lack of a Dirac point 

(Fig. 4.14). Indeed, the analogy between TlBi(SxSe1-x) and (InxBi1-x)2Se3 is made explicitly in the 

supplement of Ref. 179, which includes ARPES data showing partial spin polarization of a gapped surface 

state in the latter at x = 6%.    
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Fig. 4.14 Schematic of the remnant surface state in TlBi(SSe). From Ref. 179. (a) and (b) show surface states 
and spin polarizations for the barely-trivial and topological sides of the phase transition, respectively. Panel (a) 
matches our Landau-level derived impression of the surface state at 5% In. 
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Chapter 5: The effects of local strain on the surface states of SnTe 
 

5.0 Background 
 

This chapter is essentially the draft of a paper which we wrote following an earlier publication 74 in which 

we first used the Lawler-Fujita procedure to measure the 2-D strain in SnTe thin film locally, conceiving 

strain in the sense of an isotropic compression, (“strain” ∝ ∇ ∙  and showing how it affected the Dirac (ܝ

surface states as manifested in their quasiparticle interference patterns. 

After some thought we realized that not only should it be possible to extract the whole strain tensor (given 

the necessary algebraic manipulations) but that the sample under study would also have regions of strong 

uniaxial strain with analgous effects on the surface states, which were then looked for and found. Further 

comments are left to the chapter body and conclusions. 

5.1 Introduction 
 

Topological crystalline insulators (TCIs) are a recently discovered65,67 subclass of topological insulators 

which harbor massless Dirac surface states tunable by temperature68,181 and alloying composition 

change78. In contrast to Z2 topological insulators29,30,42  in which the Dirac crossing is protected by time-

reversal symmetry, Dirac point in TCIs is protected by a discrete set of crystalline symmetries65. This 

unique crystalline protection of the surface states provides a route towards controlling their dispersion by 

using different types of structural deformations. Theory predicted76 and experiments confirmed77 that 

lattice distortion that breaks the mirror symmetry protecting the Dirac point in TCIs enables otherwise 

massless Dirac SS fermions to acquire mass. However, from both the fundamental and the applications 

perspectives, one of the key goals remains uncovering new pathways for manipulation of topological SS 

via structural deformations without breaking any crystalline symmetry protecting the Dirac nodes. 

Theoretically, strain in TCIs is predicted to give rise to a variety of exotic phenomena, including tuning 

the band gap through the phase transition from the trivial to the topological state80,182. Spatially 
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inhomogenous strain is associated with psuedomagnetic fields analogous to those observed in graphene37, 

with intriguing potential consequences including unconventional superconductivity39. In a recent study74 

we observed a quasi-periodic strain pattern on the surface of thin films of the TCI SnTe, and were able to 

correlate the locally-measured compressive strain with the average momentum-space distance of the 

Dirac points from the edges of the Brillouin zone. Here we more fully treat the influence of strain on the 

Dirac surface states, and obtain experimental values for two of the coefficients which determine the shift 

of the Dirac points as a function of strain. In particular, we unveil the effect of uniaxial strain on the Dirac 

surface states for the first time, which should prove helpful in developing future “straintronic” devices 

based on TCIs. 

The effect of strain on the (001) surface states of TCIs was discussed using symmetry considerations in 

Ref. 39. It was found that to first order 

 
 

 
1 1 2 3

2 3 1 2

ˆ ˆ

ˆ ˆ
xx yy

yy xx

u u S

S u u

  

  

  
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A x y

A x y
  (5.1) 

where ۯଵ and ۯଶ are the momentum-space shifts of the Dirac cones near തܺ and തܻ respectively, ij j iu u   

are the spatial derivatives of components of ܝ (the displacement vector of elasticity theory135), ܵ is the 

shear strain   / 2xy yxu u  ଵ,ଶ,ଷ are arbitraryߙ ො are unit vectors in momentum space, andܡ ො andܠ ,

constants. The physical significance of Eq. (5.1) is that the diagonal elements of the strain tensor, ݑ௫௫ and 

 ௬௬, shift each Dirac cone along the line connecting its time-reversal-invariant point to Γത, while shearݑ

strain moves the cones transversely. The relative signs are chosen so that compressive strain shifts the 

Dirac cones inward from the zone edge, consistent with theory80 and experiment74 (Fig. 5.1 (c), (d)). If we 

define the isotropic linear compression   / 2xx yyC u u  , and the uniaxial stretch   / 2xx yyU u u  , 

we can rewrite Eq. (1) as:  
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 

 
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2 3

ˆ ˆ

ˆ ˆ

C U S

S C U

  

  

  
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A x y

A x y
  (5.2) 

where ߚ = ଵߙ + ߛ ଶ andߙ = ଵߙ −  ଶ. Eq. (5.2) makes explicit the symmetry-derived constraint thatߙ

uniaxial strain shifts the two pairs of Dirac cones in opposite directions.39,81 

In the following we use Fourier-transform scanning tunneling microscopy (FT-STM) to estimate the 

values of ߙଵ and ߙଶ, or equivalently ߚ and ߛ, in SnTe. We do not consider ߙଷ here; we found that the 

shear strain in these films was about 1/3rd as strong as the other elements, and not as ordered spatially 

(Fig. 5.2(h)). 

 

 

Fig. 5.1. Strain schematic. (a) The (001) surface Brillouin zone of unstrained SnTe (b); the Dirac cones are 
indicated by red dots. (c) and (d) In isotropically compressed  SnTe the Dirac nodes move inward towards the zone 
center. (e) Schematic of the misfit dislocation network appearing at the interface between the PbSe (001) substrate 
(purple) and the SnTe film (yellow), adapted from 39. 

 

5.2 Experiment 
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The SnTe (001) thin film (~40 monolayers (MLs)) used in this experiment was grown on a PbSe (001) 

substrate cleaved in UHV and heated to ~300° C during deposition. The source was an electron-beam 

evaporator loaded with high-purity SnTe. All STM data was acquired at 4 Kelvin. It has been known for 

decades that many (001)-oriented heterostructures of IV-VI semiconductors exhibit grid-like quasi-

periodic arrays of misfit dislocations, with associated strong strain patterns near the interface 82. These 

sub-surface dislocations manifest themselves as linear “dips” or troughs in the STM topographs directly 

above the line of the dislocation183,184, as seen in Fig. 5.2 (a). The troughs were seen consistently at both 

positive and negative bias voltages, consistent with their structural (rather than electronic) origin. dI/dV 

spectra show that the film is p-type with the Dirac point at approximately +300 mV (not shown; see Ref. 

74), consistent with an earlier report.75 

 

Fig. 5.2: Spatial distribution of different types of strain. (a) STM topograph of ~130 nm square region of the 
sample (Vset = -50 mV, Iset = 200 pA) (b) Schematic of the (001) surface of SnTe. Arrows in (b) denote the x- and y-
axes. (c)-(f) The components of the 2 x 2 strain tensor સ(ܚ)ܝ extracted from topograph in (a). uij denotes డ௨೔

డ௝
. (g)-(j) 

Physically significant linear combinations of the tensor elements in (c)-(f): (g) The isotropic compression ܥ ≡
	൫ݑ௫௫ + ܷ ௬௬൯/2; (i) the uniaxial strainݑ ≡	 ൫ݑ௫௫ − ܵ ௬௬൯/2; (h) the shear strainݑ ≡ 	 ൫ݑ௫௬ +  ௬௫൯/2; (j) the localݑ
rotation angle ܴ ≡	 ൫ݑ௫௬ −  .௬௫൯/2ݑ

 

To experimentally determine the local strain in the topmost atomic layer, we used a phase-sensitive 

analysis method uniquely suited for atomic-resolution STM topographs.95,134  If a topograph contains a 
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periodic lattice, small deviations can be measured by spatial lock-in techniques: one multiplies the 

topography by a plane wave corresponding to one of the lattice vectors, and the (smoothed) result is a 

complex quantity whose phase is proportional to the shift of the atomic lattice in that direction at the 

given point. This phase shift, for both lattice vectors, gives the displacement field (ܚ)ܝ to a spatial 

resolution fixed by the smoothing length scale, which can be as low as a few lattice constants. The 

Lawler-Fujita procedure95 also re-maps the topography onto this ideal lattice, that its Fourier transform 

should correspond to the true reciprocal space of a periodic system. For this reason (i.e. to measure 

scattering Q-vectors with respect to a uniform reciprocal lattice), we used Lawler-Fujita on the Fourier-

transformed dI/dV data shown here. To measure the strain, however, we used a slightly different method 

based on the same principle, which calculates the derivatives of  (ܚ)ܝ without evaluating the vector 

itself.134 (See appendix for details.) 

To establish the momentum-space shifts of the Dirac cones, we use the quasi-particle interference (QPI) 

method:102 the elastic scattering of quasi-particles produces standing waves in the density of states, which 

appear as oscillations of the measured dI/dV with wavevector ܙ = ܑܓ −  are the initial and ܎,ܑܓ where ,܎ܓ

final momenta of the quasipartle. These ܙ-vectors can be directly extracted from the Fourier transform of 

 and (the relevant band structure being known) reveal the momentum-space position of the ,(ܸ,ܚ)ܸ݀/ܫ݀

underlying states. In the case of SnTe (001) the surface states comprise two pairs of Dirac cones near തܺ 

and തܻ; both pairs undergo Lifshitz transitions so that at the energies shown here—~200-250 meV below 

the Dirac point—the constant-energy-contours resemble the ellipses shown in the inset of Fig. 5.3 (a).67,69 

In this paper we will focus on the vectors labeled Q1x and Q1y in Fig. 5.3 (a); each one corresponds to a 

single “valley” of Dirac fermions, and represents scattering across the Γത point between two ellipses on 

opposite sides. 

To visualize and quantify the effect of strain on the surface states we mask the	signal (݀ܚ)ܸ݀/ܫ, ܸ) ≡

 into regions based on the type and sign of the strain and compare Fourier transforms. From this ((ܚ)ܩ

comparison we extract the radial shifts of Q1x and Q1y, which reflect a length-wise stretching of the 
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ellipse-pairs at തܺ and തܻ respectively, as predicted by Eqs. (5.1) and (5.2).9 Explicitly, we introduce a 

masking function (ܚ)ܯ ∈ [0,1] and Fourier-transform the mean-shifted product  

(ܚ)ெܩ = (ܚ)ܯ(ܚ)ܩ + (1 −  ,ܩ̅((ܚ)ܯ

where ̅ܩ = ∫ (ܚ)ܯ(ܚ)ܩܚ݀ / ∫  the sole function of the second term is to ;ܩ is the mask-average of (ܚ)ܯܚ݀

reduce ringing by using ̅ܩ as the background for ܩெ(ܚ). For each mask we compute the average strain 

similarly:  ݑపఫതതതത = (ܚ)ܯ(ܚ)௜௝ݑܚ݀∫ / ∫  పఫതതതത in our possession, we mayݑ With the shifts ΔQ1x,y and .(ܚ)ܯܚ݀

directly fit to Eq. (5.1), remembering that because Q1 represents scattering across the Brillouin zone, the 

shift of the Dirac cones themselves is ΔQ1/2. 

In this paper, we use dI/dV data taken using the lock-in technique during a 130nm atomic-resolution 

topography at +50 mV bias. The strain fields to be averaged were computed from the same scan; the same 

masking functions were used on both. Although we only show data taken at +50 mV, the behavior at +25 

and +75 mV are qualitatively identical, and in Ref. 74 we found that the response to compressive strain 

was consistent from -50 mV to +175 mV.  

5.3 Results 
 

The strain in the 130 nm region of interest is shown in Fig. 5.2. The diagonal elements of the strain tensor 

(Fig. 5.2 (c) and (f)) each show a clear one-dimensional pattern, with blue lines of compression co-

located with the troughs in the topograph (Fig. 5.2 (a)). The orientation of the pattern is consistent with its 

origin in the network of misfit dislocations at the interface. Examining Fig. 5.1 (e), we see that the misfit 

dislocation parallel to ݕ (which terminates in the brighter wall of the cartoon) is associated with a marked 

stretching of the lattice in the ݔ-direction (i.e. with variation in ݑ௫௫), translationally invariant in the ݕ-

direction. Similarly, the misfit dislocations aligned along ݔ produce variations in ݑ௬௬, which is ideally a 

function of ݕ only. The expected pattern is reproduced in detail in Figs. 5.2 (c) and (f), with one 
                                                             
9 Although Eqs. (1) and (2) only refer to energies near the Dirac point, the physics should still apply below the 
Lifshitz transition.  
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exception: Although the discrepancy in lattice constants causes the SnTe lattice to be stretched near the 

dislocation line (as in Fig. 5.1(e)), we observe at the top surface, on the contrary, a compression of the 

lattice in the bottom of the troughs, by up to about 2%74. An explanation of this phenomenon is beyond 

the scope of this paper; it probably involves the relaxation of the free top surface.184  

The derived quantities, ܥ and ܷ, each show strong variation determined by their basic constituents. The 

compression (Fig. 5.2(g)) is greatest where two troughs intersect, and smallest (negative) in the midpoint 

between intersections; this produces a distinctive cell pattern which resembles the topography (Fig. 

5.2(a)). The uniaxial stretch (Fig. 5.2(i)) is greatest where maxima of ݑ௫௫ coincide with minima of ݑ௬௬: 

in the troughs parallel to ݕ but between the troughs along ݔ; the opposite sign occurs in troughs parallel to 

 These, by and large, are the orange and purple parts of Fig. 5.2(i) .ݕ and between those parallel to ݔ

respectively. 

To examine the effects of each type of strain on the QPI pattern, we applied masks which fell broadly into 

two types: for the individual components ݑ௫௫ and ݑ௬௬ the masks were a series of one-dimensional strips 

parallel to ݕ and ݔ respectively, and for the combined quantities  ܥ and ܷ they were a two-dimensional 

quasi-grid of spots, one for each cell of the dislocation lattice. In both cases the maxima of the masking 

function could be located at an arbitrary point in the dislocation unit cell, making it possible to smoothly 

vary the average strain without changing the mask shape, which would distort the FFT and compromise 

the fitting process.10 Graphs showing the evolution of strain and ΔQ1 as a function of this “mask position 

variable” are shown in Fig. 5.4.  

                                                             
10 This also makes it possible to produce movies showing the “breathing” of the FFT as a function of average strain.  
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Fig. 5.3 Strain-filtered Fourier transforms of dI/dV. (a) The Fourier transform of dI/dV acquired in the 130nm 
area shown in Fig. 5.2(a); the indicated features Q1x and Q1y represent scattering across the center of the Brillouin 
zone between the inner portions of the pockets (inset) at തܺ,	ܺ′ഥ , and തܻ,	ܻ′ഥ  respectively. (b)-(e) The Fourier transforms 
of masked dI/dV, with masks chosen to capture the maxima (blue in (b)-(d), orange in (e)), and minima (red in (b)-
(d) and purple in (e)) of ݑ௫௫, ݑ௬௬, ܥ, and ܷ respectively; the arrows are guides to the eye. In (b), (c), (d) ((e)) the 
blue (orange) and red (purple) subsets correspond to masks coincident with the blue (orange) and red (purple) areas 
of Fig. 5.2 (c), (f), (g), and ((i)) respectively. (For details of the masking procedure, see supplementary information.) 

 

Qualitatively, however, it is sufficient to compare Fourier transforms of ܩெ(ܚ) for masks capturing the 

extreme values of each type of strain (Fig. 5.3). For ݑ௫௫ (Fig. 5.3(b)), we find that compression is 

associated with a pronounced shift of Q1y towards the center, while Q1x remains virtually unchanged. 

Correspondingly, compression in the ݕ-direction produces an inward shift of Q1x (Fig. 5.3(c)). Taken 

together, these results imply that ߙଶ from Eq. (5.1) is much larger than ߙଵ; the averaged fitting results 

(Table 1) show a ratio of about 5:1. The isotropic compression (Fig. 5.3(d)) is associated with a large 

inward shift of both Q1’s (as found in Ref. 74), while uniaxial stretch shifts them in opposite directions 

(Fig. 5.3(e)). Because ߙଶ >  ଵ, the sign of the change due to uniaxial strain is opposite to what mightߙ

naively be expected: pure “positive” uniaxial strain (ݑ௫௫ = ௬௬ݑ− > 0) shifts Q1x outward and Q1y 

inward.  
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Fig. 5.4. ΔQ1 and average strain vs. mask position. Each panel shows ΔQ1x,y vs mask position for masks designed 
to capture variation in a particular type of strain. The types of strain varied in panels (a), (b), (c), (d) are ݑ௫௫, ݑ௬௬, ܥ, 
and ܷ respectively; the “complementary” strain type (ݑ௬௬, ݑ௫௫, ܷ, and ܥ respectively) are plotted for completeness. 
The types of strain varied in panels (a)-(d) are the same as in Fig. 5.3 (b)-(e) respectively. 

 

To extract the desired coefficients quantitatively, we smoothly translated the various masks through the 

dislocation lattice, simultaneously extracting ΔQ1x,y and the average strain (Fig. 5.4), then plotted one 

against the other (Fig. 5.5). The results are summarized in Table 5.1. Because we employed masks to 

independently measure the effect of four different types of strain—ݑ௫௫, ݑ௬௬, ܥ, and ܷ—we were able to 

obtain two complete sets of coefficients; we were able to perform (nominally) independent fits to Eqs. 

(5.1) and (5.2). The difference between the two sets of values gives an indication of the probable 

statistical error. On average, we find ߙଵ ≈ 0.3 Å-1, ߙଶ ≈ 1.5 Å-1; their sum is in good agreement with the 

predicted response of other IV-VI semiconductors to compressive strain.80  
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Fig. 5.5 ΔQ1 vs. average strain. (a)-(d) show  ΔQ1x,y plotted against the mask average of the average strain. The 
masks were chosen to maximize the variation of ݑ௫௫, ݑ௬௬, ܥ, and ܷ respectively; the data are the same as in Fig. 5.4 
(a)-(d) respectively.  

 

 

Slopes (Å-1) Coefficients (Å-1) 
 ΔQ1x ΔQ1y  From ݑ௫௫ & ݑ௬௬  From ܥ & ܷ Average 

vs. ݑ௫௫ -0.05 -3.15 ߙଵ 0.28 0.37 0.3 
vs. ݑ௬௬  ଶ 1.42 1.57 1.5ߙ 1.04- 2.53- 
vs.	1.8 1.94 1.70 ߚ 4.7- 3.04- ܥ 
vs. ܷ 2.63 -2.14 1.2- 1.20- 1.14- ߛ 
Table 5.1: Fitting slopes and extracted coefficients for Eq. (5.1) and (5.2). 

 

In extracting each of the four coefficients we took the average value of slopes involving ΔQ1x and ΔQ1y. 

These, however, were sometimes quite different: compare panels (a) and (b) of Figs. 5.4 and 5.5, or the 

different amplitude of the variation in panel (c) of either figure. Although some of the difference could be 

due to tip anisotropy, one should also consider the ferroelectric transition which occurs in SnTe at low 
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temperatures.75,185 In the ferroelectric phase, the symmetry which gives rise to Eqs. (1) and (2) is broken, 

and the two Dirac cones should in principle be affected differently by all types of strain including 

isotropic compression. It would be interesting to determine if the ferroelectric distortion might account for 

some of the asymmetry observed here. 

Appendix 5.A: Measurement of the strain 
 

The image-analysis method we used to extract the strain is derived in Ref.  134 and is closely related to the 

Lawler-Fujita distortion correction algorithm.95 We describe it briefly below.  

The atomic lattice in an STM topography can be expanded in a Fourier series. To first-order, ܶ(ܚ) ≈

ܚ⋅భܓଵ݁௜ܣ + ܚ⋅మܓଶ݁௜ܣ + c. c. where ܓଵand ܓଶ are the basic reciprocal lattice vectors. When the lattice is 

distorted the maxima corresponding to the atoms shift from ܀ to ܀ +  so that the Fourier expansion ,(܀)ܝ

becomes  

(ܚ)ܶ ≈ (ܝାܚ)⋅భܓଵ݁௜ܣ + (ܝାܚ)⋅మܓଶ݁௜ܣ + c. c. 

When we multiply by ݁ି௜ܓభ⋅ܚ, we obtain  

ଵܶ(ܚ) ≈ ܝ⋅భܓଵ݁௜ܣ + ܚ⋅భܓି(ܝାܚ)⋅మܓଶ݁௜ܣ + ⋯ 

All the terms in ଵܶ besides the first oscillate rapidly; they vanish upon smoothing with some length scale 

;ܚ)leaving ෨ܶଵ ,ܮ (ܮ ≈ ;ܚ)we similarly obtain ෨ܶଶ ;ܝ⋅భܓଵ݁௜ܣ L) ≈ Generally, extracting ଵܶ෩ .ܝ⋅మܓଶ݁௜ܣ  and ෨ܶଶ 

requires that in the vicinity of the Bragg peak the only significant spectral weight be due to the atomic 

lattice; this “vicinity” is of order 1/ܮ.  

The strain is given by the derivatives of ܝ. To find these, we first normalize ෨ܶଵ and ෨ܶଶ throughout all 

space ( ෩ܰଵ ≡ ෨ܶଵ/ห ෨ܶଵห = ݁௜ܓభ⋅ܝ), then take the gradient and multiply by the complex conjugate: 

સ(ܓଵ ⋅ (ܝ =
1
݅
෩ܰଵ

⋆	સ ෩ܰଵ 
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and similarly for સ(ܓଶ ⋅ ଵ,ଶܓTo go from the derivatives સ൫ (.cf. 134 Appendix D) .(ܝ ⋅  used in ܝ൯ to the સܝ

this paper (Fig. 5.2 (b)-(e)) requires normalization and some additional linear algebra, which is trivial if 

 .ଵ,ଶ already form a square latticeܓ

 Experimental considerations 

In the STM literature the main contributions to ܝ have been not strain, but technical factors specific to 

STM: piezoelectric effects (nonlinearities, hysteresis, curvature of the tube) and thermal drift.95 The 

hysteretic effects are often especially pronounced at the beginning of an STM scan; for the data in this 

paper we cropped the first 24 lines out of 1,024. The other effects vary slowly compared to the dislocation 

lattice, and should be approximated reasonably well by a power series in ܚ. To eliminate them, we 

subtracted a 4th-order polynomial fit from each component of સ(ܚ)ܝ. 

The smoothing length ܮ also plays an important role. We used Gaussian smoothing (i.e. the smoothing 

function ܵ(ܚ) was ଴ܰ݁ି௥
మ/ଶ௅మ). For Fig. 5.2, we used 2 = ܮ nm; for the mask-averaged strain (Figs. 5.4 

and 5.5) we used 1.5 = ܮ nm.  

Appendix 5.B: Details of the masking procedure 

The masking procedure was designed around the fact that the dislocations were well-ordered and nearly 

parallel to the lattice vectors ܠො and ܡො within the scan area (Fig. 5.6 (a)). Each “trough” in the topography 

was located (by finding the local maximum of the smoothed second derivative of the topography, 

averaged over the direction nominally parallel to it) and assigned an integer index, making the rectilinear, 

quasi-Cartesian grid shown in Fig. 5.6 (b). This grid defines a 2-D coordinate system which was used to 

formulate the masking functions (ܚ)ܯ.  

All masking functions used are periodic with respect to this grid, and can be defined in terms of the 

distance between a pixel and a certain point, or locus of points, within the dislocation-lattice unit cell. For 

each pixel ܚ, we define the dislocation-grid distance between ܚ and the nearest point whose dislocation-
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grid coordinates modulo 1 are (ߤ,    This is .(ߥ

(ܚ)݀ = ඥ((ܽ − (ߤ − ܽ)݀݊ݑ݋ܴ − ଶ((ߤ + ((ܾ − (ߥ − ܾ)݀݊ݑ݋ܴ −  ,ଶ((ߥ

where (ܽ, ܾ) are the dislocation-grid coordinates of ܚ and the ܴ݀݊ݑ݋ function rounds its argument to the 

nearest integer. (Clearly, ݀(ܚ) ∈ ൣ0, √2൧.)  

For the one dimensional masks we are interested only in one coordinate or the other: 

݀௔(ܚ) = |(ܽ − (ߤ − ܽ)݀݊ݑ݋ܴ −  ,|(ߤ

݀௕(ܚ) = |(ܾ − (ߥ − ܾ)݀݊ݑ݋ܴ −  ;|(ߥ

then ݀(ܚ) = ට݀௔
ଶ + ݀௕

ଶ. For the case ߤ, ߥ = 0 these distances are shown in Fig. 5.6 (d)-(f) respectively.  

 

Fig. 5.6 Masking function ingredients (a) The drift-corrected topography at +50 mV. (b) The grid lines extracted 
from the topography, defining the dislocation coordinate system. (c) The raw dI/dV, simultaneously acquired with 
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the topography in (a). (d)-(f) are distances defined in the main text, for ߤ, ߥ = 0. The blue dots are the integer points 
of the coordinate system (the line-crossings in (b)), and approximately coincide with the intersection of troughs in 
(a). (d), (e), (f), are ݀௔, ݀௕, ݀(ܚ) respectively. 

 

For each type of strain the mask was a well-known monotonic function of the corresponding distance; for 

the one-dimensional masks we used Gaussians: 

(ܚ)௫௫ܯ = ݁ିௗೌ
మ/ఒమ , (ܚ)௬௬ܯ = 	 ݁ିௗ್

మ/ఒమ  

where the subscripts denote the type of strain we want to vary, and ߣ is chosen so that the mask should 

include a certain fraction of the total spectral weight, 1/3rd for both (i.e., ∫ (ܚ)ܯܚ݀ = 1/3). We used 

ߣ = 0.186, found by binary search.  

For the 2-D masks we used the Fermi function: 

(ܚ)ܯ = 1/(1 + ݁(ௗ(ܚ)ିఝ)/்) 

with ܶ = 0.05 and ߮ = 0.268, designed so that  ∫ (ܚ)ܯܚ݀ = 1/4.  

The masks were translated by varying (ߤ, ௫௫ܯ For .(ߥ  and ܯ௬௬, ߤ and ߭ respectively were swept from 0 

to -2. For isotropic compression (ߤ,  was swept from (0,0) to (-2,-2); for uniaxial stretch the sweep was (ߥ

from  (0, 0.5) to (-2,-1.5). 

Actually, for all four types of masks the sweeps can be expressed as  

,ߤ) (ߥ = ଴ߤ) , (଴ߥ +  (1−,1−)ߟ

where the “mask position variable” ߟ goes from 0 to 2, and is the abscissa of the graphs in Fig. 5.4; it also 

appears in the y-axis of Fig. 5.7. Because of the periodicity the range 1 to 2 is equivalent to 0 to 1; it was 

included for aesthetic reasons in Fig. 5.4, and in order to make the movies more watchable. 
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We note here that because the masked dI/dV was largely the same for adjacent values of ߟ (dߟ = 0.03 for 

64 points between 0 and 2) the scatter plots in Fig. 5.5 do not represent nearly as many independent 

measurements of ΔQ1 as their number of points might be taken to imply. We may guess that the number 

of truly independent measurements of ΔQ1 is the reciprocal of the fraction of spectral weight contained in 

the mask: 3 for ݑ௫௫ and ݑ௬௬; 4 for ܥ and ܷ. Since the overlap between different masking functions is 

finite by design, these three or four inherently different measurements cannot be strictly separated, as in 

Ref. 74. Their number, however, is sufficient for fitting to a straight line. 
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Fig. 5.7 Masking functions. The masking functions used are shown for each type of strain, and for important values 
of the mask position ߟ. The trough junctions (grid points of the dislocation lattice) are blue dots as in Fig. 5.6. For 
each strain type (using the sign conventions in this paper) the largest average strain occurred at ߟ ≈ 0, and the 
smallest (negative) at ߟ ≈ ߟ ;0.5 = 0.25 and 0.75 were approximately neutral (cf. Fig. 5.4). All masks move “to the 
left” (through the field of dots) with increasing ߟ. 

 

Appendix 5.C: Processing of the FFTs 
 

Because ΔQ1 was the shift of a rather broad peak, smeared out by mask-induced ringing, the quality and 

consistency of the peak-fitting procedure was important. Before fitting for Q1 the Fourier transforms of 

 were subjected to the following: (1) Reflection-symmetrization about one of the basic reciprocal (ܚ)ெܩ

lattice vectors (ܠො, but since the magnitude of the FFT is inversion-symmetric using ܡො would have given 

the same result); (2) k-space smoothing on a length scale sufficient to wash out the ringing; we used 

Gaussian smoothing ( ଴ܰ݁ି௥
మ/ଶ௅మ  with ܮ = 0.048Å-1 = 10 momentum-space pixels). Then (3) we took the 

Laplacian in k-space (multiplied by -1) to accentuate the peak features.  

Step (1) was applied to Fourier transforms in Fig. 5.3. Its effect is to make the QPI feature mirror-

symmetric about the line bisecting it, so that each half-QPI peak makes it possible for each half-peak in 

Fig. 5.3(b)-(e)  

The results of the three steps, as applied to the Fourier transform of the unmasked dI/dV (Fig. 5.8(a)), are 

shown in Fig. 5.8 (b)-(d). The thus-processed FFTs of the masked dI/dV at ߟ = 0 and 0.5, the same as 

Fig. 5.3 (b)-(e) of the main text, are shown in panels Fig. 5.3 (e)-(h). One of the consequences of the 

processing is that the inner scattering peak, denoted Q1’ in Fig. 5.3 (d), is plainly visible in the FFTs of 

the masked data. This vector represents intra-pocket scattering along the long axes of the ellipses, and 

should be equally indicative with Q1 of the strain-induced shifts in the Dirac cones predicted by equations  

(5.1) and (5.2). The geometry of the constant energy contour (Fig. 5.8(d) inset) shows that the sum Q1’x,y 

+ Q1x,y = one reciprocal lattice vector, and indeed we see in Fig. 5.8 (e)-(h) that a significant shift of Q1x,y 

of is always associated with a roughly equal shift of  Q1’x,y in the opposite direction.  
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To actually extract Q1x,y we took line cuts in the fully-processed FFT in the ܠො and ܡො directions (from the 

origin), and fit the peak to an inverted parabola; the fitting window had a half-width of 0.04 Å-1, and its 

position shifted with ߟ to keep the peak centered. 

 

Fig. 5.8 Pre-fit processing of the Fourier transforms. The raw FFT (a) is symmetrized (b) by reflection about the 
 axis (green dashed line in (a)). We smooth sufficiently to wash out the ringing introduced by the masking-ݔ
functions (c), and take the second derivative (d). The result clearly reveals the intra-pocket scattering feature, 
denoted Q1’. Panels (e)-(f) are thus-processed FFTs of the masked dI/dV, for mask position ߟ = 0 (blue and orange) 
and ߟ = 0.5 (red and purple); as in Fig. 3 (b)-(e) of the main text. 

 

Appendix 5.D: Dependence of the results on the mask type 
 

The variation in Q1x,y and the average strain ݑపఫതതതത clearly depends on the specific functional form of (ܚ)ܯ. 

To examine this dependence, we repeated the fitting and masking procedure for compressive strain with 

several different functions. The results are shown in Figs. S4 and S5. In Fig. S4 one finds that tighter 

masking functions lead to greater variation in both the average strain and the ΔQ’s. Although there is 
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some trend observed, with looser masks associated with slightly steeper slopes, for all five masks the 

slopes were within about 10% of their mean. 

 

Fig. 5.9 Masking for compressive strain with different masks. The five panels show the variation in ΔQ1x,y, ̅ܥ and 
ഥܷ	against ߟ for the masks, whose values for ߟ = 0 are shown below the corresponding graph (color scale same as 
Fig. 5.7). (a),(b),(c) are Gaussian masks designed to capture 1/3rd, 1/4th, 1/5th of the total spectral weight 
respectively. (That is, (ܚ)ܯ = ݁ିௗమ/ఒమ for ߣ = 0.338, 0.286, 0.253 respectively.) (d) and (e) are masks employing 
the Fermi function with T=0.05 capturing 1/5th and 1/4th respectively of the total spectra weight. (߮ = 0.267 and 
0.235 respectively.) The mask shown in (e) is the same as that used in the main paper.  

 

Fig. 5.10: ΔQ1 vs compressive strain for different mask types. The average compressive strain and ΔQ1 values 
are plotted for the five mask types shown in Fig. 5.9; the shapes are indicated in the legend and the letter labels 
indicate the corresponding panel of Fig. 5.9. The slopes of the linear fits to the data are for ઢQ1x -3.53, -3.28, -3.11, -
2.93, -3.04 respectively; the slopes for ઢQ1y are -5.33, -5.02, -4.76, -4.50, -4.70 respectively. All slopes are in Å-1; 
cf. Table 5.1. 
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Chapter 6: Conclusions and Outlook 
In all of the materials studied in this thesis, there are still many unanswered questions, and much 

interesting work remains to be done.  

In the Ruddelsden-popper Iridates, the trend of decreasing gap size with n, and the rather large intrinsic 

gap found in Sr-327, suggests that the dimensionally-driven phase transition occurs at some intermediate 

n between 2 and ∞, and it would be interesting to study, say, the n=3 compound with STM to see how the 

fragile, but still hard-gapped insulating state of Sr-327 evolves as one more closely approaches the 3-

dimensional limit. Further, some of the predictions for exotic physics in the Iridates occur in other 

compounds (e.g. Na2IrO3 
186,187 and the pyrochlores188) which are, however, perhaps more difficult to 

study by STM due to the lack of the easy cleave planes present in the perovskites. 

Although the now-prototypical 3D TI’s have been known for more than five years, chapter 4 showed that 

significant gaps in our knowledge remain. In both (InxBi1-x)2Se3 and TlBi(SxSe1-x)179,180 there seems to be a 

strange, “remnant” surface state for which, as far as we know, a credible Hamiltonian has yet to be 

written down. Further, chapter 4 has not yet been independently published, and under the now-dominant 

interpretation of the STS spectra on Bi2Se3 the strength of the surface-state Zeeman coupling should also 

be regarded as a disputed point. 

Of all the results presented in this thesis the study of strain effects on the (001) surface states of SnTe 

presents the most enticing hint of future results. The exotic states ascribed to strong pseudomagnetic 

fields in these heterostructures 39 were predicted to occur at the (buried) interface, but chapter 5 shows 

that measurable and physically significant strain can also be found at the top surface. One might well 

imagine that with the right choice of substrate, film material and thickness the strain at the top surface 

would be sufficient to create manifestations of the strong pseudomagnetic fields (e.g. Landau levels) 

directly accessible with the STM tip. (Indeed, simple calculations show that the pseudomagnetic fields in 

the film studied in chapter 5 should have reached the order of 50T, though in regions hardly larger than 

the magnetic length; the lack of clear Landau levels in chapter 5 is almost surprising.) Regardless of the 



 96 
 

outcome of particular experiments, however, the local measurement of strain by STM seems destined to 

become an important part of the toolkit, and find numerous yet unforeseen uses in surface science. 
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