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Abstract

Khovanov homology and Heegaard Floer homology have opened new horizons in knot theory

and three-manifold topology, respectively. The two invariants have distinct origins, but the

Khovanov homology of a link is related to the Heegaard Floer homology of its branched

double cover by a spectral sequence constructed by Ozsváth and Szabó.

In this thesis, we construct an equivalent spectral sequence with a much more trans-

parent connection to Khovanov homology. This is the first step towards proving Seed and

Szabó’s conjecture that Szabó’s geometric spectral sequence is isomorphic to Ozsváth and

Szabó’s spectral sequence.

These spectral sequences connect information about contact structures contained in each

invariant. We construct a braid conjugacy class invariant κ from Khovanov homology by

adapting Floer-theoretic tools. There is a related transverse invariant which we conjecture

to be effective. The conjugacy class invariant solves the word problem in the braid group

among other applications. We have written a computer program to compute the invariant.
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Introduction

Knots, links, and braids are familiar to anyone who has owned a pair of shoes, watched the

Olympics, or eaten challah. More than many other fields, knot theory offers the opportunity

to translate concrete, ‘real-world’ ideas into formal mathematics. For example, compare the

two knots in Figure 1. Any sailor worth her salt will tell you that these two are “the same

knot” even though they are tied in different materials and the knot on the left is looser.

This is very different from the concept of sameness usually found in a high school geometry

class, where an 89◦ angle is never equivalent to a right angle, even though they are quite

close. So we need a notion of equivalence for knots that is looser than equality. Two knots

which are “the same” in the everyday sense are called isotopic in knot theory. Roughly, two

knots are isotopic if one can be deformed to look like the other without any cutting. Such

a deformation is called an isotopy.

Figure 1: Two bowline knots. [19], [15]

To do math on paper, we study knots through two-dimensional projections. But two

diagrams for the same knot can look very different, see Figure 2. Translating facts about

two-dimensional diagrams into facts about three-dimensional objects is a central technical

concern in knot theory. Certain simple operations on a knot diagram produce another

diagram for the same knot. Thanks to Reidemeister, we know a complete set of such moves:

given one diagram for a knot, one can obtain any other by repeatedly applying three simple

1
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Figure 2: These are diagrams of isotopic knots!

moves. They are pictured in the next chapter, Figure 1.2. (Given two diagrams for the

same knot, Reidemeister’s theorem does not say exactly how to transform one to the other,

but just that some sequence of moves will do.)

Knots and links are only interesting insofar as they live in an ambient space. In contrast,

the three-dimensional spaces we study are often lack a boundary or an embedding into an

ambient space. We can’t pull our vision back to see the whole picture as we can with knots.

It doesn’t make sense to talk about isotopy, because there is no ambient space in which to

do the deformation. Instead, we talk about diffeomorphic1 spaces; two spaces X and Y are

diffeomorphic if there is a smooth function f : X → Y which has a smooth inverse. The

map f is called a diffeomorphism. The diffeomorphism allows us to translate any topological

statement about X into an equivalent statement for Y and vice-versa. One can say that X

is the same space as Y but described differently, and f is a faithful and complete translation

between the two descriptions.

All the spaces we study are manifolds, which means they look like ordinary Euclidean

space close up. Three-dimensional Euclidean space, denoted by R3, is a three-dimensional

manifold. The three-sphere S3 looks like R3 close up but has an extra point ‘at infinity’, just

as the two-dimensional sphere can be seen as a disk (everything but the North Pole) with

an extra point (the North Pole). A more exotic example is S1 × S2, the three-dimensional

space formed by attaching a two-dimensional sphere to every point of a circle.

Just like knots, three-dimensional spaces can be described by two-dimensional diagrams

called Heegaard diagrams. There is a set of Reidemeister-type moves for these diagrams

developed by Reidemeister and Singer. The basic idea behind Heegaard diagrams is to

1We will also sometimes use the terms homeomorphic and homeomorphism, which use continuous maps
rather than smooth maps. This is a purely technical concern for one-, two-, and three-dimensional spaces.
In four dimensions the difference is quite important and interesting in general, but we won’t need to think
much about it.
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(a) Straight lines. (b) Wiggled lines.

Figure 3

divide a three-dimensional space into two simple pieces separated by a surface. Because the

pieces are so simple, all of the complexity of the space is encoded by the way the pieces are

attached to the surface. This attachment can be described by drawing curves on a surface,

and a picture of these curves is a Heegaard diagram.

Knot theory and the study of three-manifolds are closely related. For one, there is an

operation called surgery along a knot or link which transforms one manifold into another.

This operation is so powerful that it can transform the three-sphere, the simplest three-

manifold, into any other three-dimensional manifold. One can gain insight into a three-

manifold by studying the surgeries which create it and vice-versa. Second, for every link in

the three-sphere there is a special three-manifold called its branched double cover. It has

long been recognized that the manifold-theoretic properties of branched covers reflect the

knot-theoretic properties of the underlying link, and vice-versa.

The connection between the two subjects persists in more recent developments. Low-

dimensional topology has been lit up by two new tools, Khovanov homology for links and

Heegaard Floer homology for three-manifolds. These two are connected through the double

branched cover construction. This connection is central to all the work in this thesis, whose

central motivation is that if we see something interesting in one theory, we should go looking

for it in the other.

We can illustrate the basic idea of homology by thinking about intersections between

curves. We’re supposed to be able to wiggle things around in topology, so the two pictures

in Figure 3 should be thought of as equivalent. The two intersection points in Figure 3b are

not essential, in the sense that you could remove them by wiggling. On the other hand, in

Figure 4, we see two curves on a torus with an intersection point which cannot be wiggled

away (try it!). So to understand intersections from a topological perspective, we need to

do more than count intersection points. We need to record the relationships between them,

and we need to analyze these relationships to identify which points are important and which
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Figure 4: Curves on a torus.

aren’t.2

The mathematical object which encodes all this information is necessarily more com-

plicated than a number or even a list of numbers. It’s called a chain complex which is

generated by the intersection points. The gadget which records relationships between in-

tersection points is a function on the chain complex called a differential, and the simplified

structure containing only essential information is called the homology of the chain complex.

The configurations of curves in Figure 3 will yield different chain complexes (because they

have different numbers of intersection points) but the same homology.

Heegaard Floer homology is a tool for studying three-dimensional manifolds defined

by Ozsváth and Szabó. Let Y stand for a three-manifold. Pick any3 Heegaard diagram

which represents Y . The Heegaard Floer chain complex is generated by certain families of

intersection points between the curves in the diagram. It takes a lot of work to even define

the differential, which comes from symplectic geometry. A foundational theorem, proved

by Ozsváth and Szabó, states that the homology of this chain complex will be the same no

matter which diagram for Y you start with. Heegaard Floer homology has been used to

prove all sorts of theorems about three-manifolds, often by choosing a diagram adapted to

a particular problem.

Khovanov homology is a tool for studying knots and links defined by Khovanov. Kho-

vanov was motivated, in part, by the Jones polynomial, an easy to define but mysterious

2In fact, the idea of essential versus inessential points is somewhat misleading. In other contexts, we can
find curves which intersect three times with only one essential intersection. But the points are all on equal
footing: one cannot say that one is more essential than the other. Rather, we can only say that among the
three of them, one is essential and the other two are redundant. We say that the three points are homologous,
that they together form a homology class, and that any one of them is a representative of the class.

3Well, not any.
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gadget developed by Jones in the 1980s. Let K stand for a link, and pick any diagram for

K. Jones constructed an algorithm for producing a polynomial from the diagram, and he

showed that the polynomial does not depend on your choice of diagram for K.4 Just as the

homology we first described provides a richer picture of intersection numbers, Khovanov

homology provides a richer picture of the Jones polynomial.

Khovanov and Heegaard Floer homology were developed in the same period, and it was

quickly realized that the Khovanov homology of a link should be related to the Heegaard

Floer homology of its branched double cover. Ozsváth and Szabó constructed such a relation

in the form of an algebraic gadget called a spectral sequence. Concretely, this is an algorithm

for computing the Heegaard Floer homology of the branched double cover of a link which,

as an intermediate step, computes the Khovanov homology of that link. And this is not

just any algorithm: it starts with a large chain complex and computes the homology of the

whole thing by computing the homology of smaller pieces, one at a time. The result at each

step is simpler than at the previous step. This implies that the Heegaard Floer homology

of a link’s branched double cover is simpler than that link’s Khovanov homology. This is a

striking result given the very different origins of Heegaard Floer homology and Khovanov

homology.

The first piece of original work in this thesis is an alternative construction of this con-

nection. Ozsváth and Szabó use complex Heegaard diagrams to construct their spectral

sequence. We show that an equivalent spectral sequence can be built from simpler Hee-

gaard diagrams with a much more transparent connection to Khovanov homology. In a

certain sense, these are the simplest possible Heegaard diagrams one could use; if they were

any simpler, they could not encode Khovanov homology. It is easy to use these diagrams

to see how the spectral sequence translates certain pieces of Khovanov-theoretic data into

Floer-theoretic data.

Szabó constructed another spectral sequence which he and Seed conjectured to be equiv-

alent to Ozsváth and Szabó’s. The Szabó spectral sequence is much easier to work with.

Our original motivation for this work was to prove the conjecture using our diagrams as a

4For example, the Jones polynomial of square knot is (q−1 + q−3 − q−4)(q + q3 − q4), and the Jones
polynomial of an unknotted circle is 1. It is not known if any other knot has Jones polynomial 1!
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bridge between the two theories. Unfortunately, our spectral sequence is provably not the

same as Szabó’s. Nevertheless, the differences between the two theories are quite interest-

ing, and we hope to revisit the problem in future work. This work previously appeared in

our note “Branched diagrams and the Ozsváth-Szabó spectral sequence”, available on the

Arxiv [57].

In the next chapter, we construct a new tool for studying transverse links using Khovanov

homology. Although this chapter does not use Floer homology, the motivation came from

the Ozsváth-Szabó spectral sequence. Various Heegaard Floer enthusiasts, inspired by work

of Hutchings, Latschev, and Wendl, have tried to use Heegaard Floer homology to give more

sensitive information about contact structures (an interesting three-dimensional thing) than

had previous been possible. Baldwin suggested that we look for an equivalent structure in

Khovanov homology. Our tool, called κ, assigns to each braid a positive, even number. If

two braids are equivalent in a certain way, they must have the same value of κ. By studying

how κ changes for different braids, we are able to answer braid-theoretic questions. We also

disprove a conjecture about an elaboration of Khovanov homology called annular Khovanov

homology. The contents of this chapter are joint work with Diana Hubbard, and appeared

in our article “An annular refinement of the transverse element in Khovanov homology”

[29].

We have tried to keep the first chapter readable by non-mathematicians, but there are

some places where we cannot avoid a technical viewpoint. We abandon that effort in all

the following chapters.

To recap: in Chapter 1, we review the basic topological constructions which are essential

to what follows. In Chapter 2, we review Khovanov homology and Heegaard Floer homology.

In Chapter 3, we construct a simplification of the Ozsváth-Szabó spectral sequence. In

Chapter 4, we define a conjugacy class invariant of braids which we use to study transverse

links and certain spectral sequences.



Chapter 1

Topological preliminaries

The fundamental objects of study in low-dimensional topology are knots, surfaces, and

three- and four-dimensional manifolds. In this chapter we review the facts and constructions

about these objects which will be fundamental to the rest of the thesis.

1.1 Knots, links, and braids

1.1.1 Diagrams and invariants

A knot is a smooth embedding of a circle into three-sphere S3, or, almost equivalently,

three-dimensional Euclidean space R3. A link is a smooth embedding of several circles into

S3 (or R3). We often study links by studying their projections to a plane. Usually, such a

projection has points where two or more strands overlap. We may assume that at most two

strands overlap at any single point. Such a projection along with the information of which

strand crosses over which at double points is called a diagram. See Figure 1.1.

Figure 1.1: Two diagrams of a trefoil knot.

7
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Figure 1.2: The three Reidemeister moves. The moves only show a small part of a larger
link diagram. The rest of the diagram is assumed to stay the same. The move can be
understood as going from left to right or right to left. There are several variants of each
move which are obviously also kosher, e.g. the twist in the first move could be made in the
opposite direction.

Anyone who has played Cat’s Cradle knows that a link has many diagrams. It is

important to understand how different diagrams for the same link are related – after all,

we are ultimately interested in knots and links rather than diagrams. Certainly, one is free

to push around the curves in a diagram without creating or destroying any crossings. This

operation is called planar isotopy. A complete characterization of how diagrams for the

same knot may be related was first provided by Reidemeister in 1926.

Theorem. [56] Any two diagrams for a link are related by a finite sequence of planar

isotopies and the three moves shown in Figure 1.2.

This theorem allows us to distinguish between properties of link and properties of their

diagrams. For example, as the first and second Reidemeister moves change the number

of crossings in a diagram, “number of crossings” is a property of diagrams rather than of

links.1 On the other hand, every diagram for a particular link will always have the same

number of components. Thus “number of components” is a property of a link which can be

computed from any diagram. Properties of links which can be computed from a diagram

1One way to address this issue is to define the crossing number of a link as the minimum number of
crossings in all diagrams for that link. This fix – taking the minimum or maximum over all diagrams – tends
to produce knot invariants which can only be computed using cleverness, as the set of all diagrams for a link
is infinite. See Section 4.3 for an example.
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are called link invariants.2

1.1.2 Braids

A braid is a set of strands as in Figure 1.3. The strands are not permitted to backtrack,

and there can be no closed circles. Just as with knots, we will consider two braids to be

the same if one can be isotoped to the other. The number of endpoints on either end of a

braid is called its index.

Figure 1.3

Two braids with the same index may be composed by stacking one on top of the other.

For braids β and β′ with the same number of endpoints, write ββ′ for their composition.

For every index there is an identity braid 1 which consists of only vertical strands. It is

clear that β1 = 1β = β. Every braid β has a unique inverse β−1 so that ββ−1 = β−1β = 1.

The group of braids with n strands is called the n-strand braid group and is denoted Bn.

Artin [3] discovered a useful, purely algebraic presentation of the braid group. Let

σi ∈ Bn be the braid in which the (i+ 1)-st strand crosses over the i-th strand and all other

strands are vertical. See 1.5.

2The term “link invariant” is often used to describe any old property of a link. For example, the crossing
number cannot in general be computed from a single link diagram, and it is not clear to the author in what
sense it is “invariant.”

Figure 1.4: The composition of the braid on the left with the braid on the right is the braid
in Figure 1.3.
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Theorem. The braid group Bn is generated by3 σ1, . . . , σn−1 subject to the following rela-

tions:

• If |i− j| > 1, then σiσj = σjσi.

• If |i− j| = 1, then σiσjσi = σjσiσj.

It is easy to convince oneself that the σi generate Bn and to prove the relations by

drawing a picture or three. The question of whether two sequences of generators represent

the same element in Bn is called the word problem. There are several available solutions to

the braid group, e.g. by Artin [3] and Garside [21]. We provide another in Corollary 4.3.7,

section 4.3.

Figure 1.5: The Artin generator σ2 in B4 and its inverse σ−1
2 .

A braid can be closed into a link by connecting the top endpoints to the corresponding

bottom endpoints. We write β̂ for the closure of β. We will call a diagram D a braid closure

diagram if there is some β so that D is planar isotopic to β̂.

Proposition. (Alexander, [1]) Every link is the closure of a braid.

Markov [42] characterized precisely when two braids close to isotopic links. Before we

can state his theorem, we need to define two additional operations on braids. First, let

σ be a braid on n strands. There is a map cσ : Bn → Bn defined by cσ(β) = σ−1βσ

called conjugation by σ. Second, there is a pair of maps S± : Bn → Bn+1 defined by

S±(β) = βσ±1
n . These operations are called positive and negative) stabilization. Conjugation

and stabilization are together called Markov moves. Applying a Markov move to a braid β

certainly alters β, but it does not alter β̂ (try it!).

Theorem. Two braids close to isotopic links if and only if they are related by a finite

sequence of Markov moves.

3i.e. “every braid may be written as a composition of”
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The n-strand braid group may also be understood as the mapping class group of a disk

with n marked points. The mapping class group of a manifold with marked points is set of

diffeomorphisms of that manifold modulo4 those diffeomorphisms which are isotopic to the

identity and with the proviso that diffeomorphisms may permute the marked points. We

think of the braid as a distortion of the disk which braids the marked points. One can keep

track of this action through certain arcs on the punctured disk, as follows. The following

two definitions (with more detail) can be found in [7]. Let Dn denote the standard unit

disk in C with n marked points p1, . . . , pn positioned along the real axis.

Definition. An arc γ : [0, 1]→ Dn is admissible if it satisfies

1. γ is a smooth embedding transverse to ∂Dn

2. γ(0) = −1 ∈ C and γ(1) ∈ {p1, . . . , pn}

3. γ(t) ∈ Dn − (∂Dn ∪ {p1, . . . , pn}) for all t ∈ (0, 1) and

4. dγ
dt 6= 0 for all t ∈ [0, 1].

Definition. The braid σ ∈ Bn is right-veering if for all admissible arcs γ, the arc σ(γ) lies

to the right of γ when pulled tight.

A negatively stabilized braid is not right-veering. and neither is a σi-negative braid is

not right-veering. (σi-negative means that the braid can be represented by a word which

contains σ−1
i but not σi for some i.)

1.2 Three-manifolds

A manifold is a topological space which looks Euclidean close up. For example, the piece of

Earth within the reader’s field of vision5 is essentially Euclidean despite the fact that the

Earth is widely believed to be round [2]. So the surface of the Earth can be modeled as a

two-dimensional manifold because up close it looks like two-dimensional Euclidean space.

In this thesis, we study three- and four-dimensional manifolds. Heegaard diagrams are

an essential tool to visualize these spaces, so we introduce them next. After that we touch

4i.e. “in which we declare to be equal”
5Here we exclude exceptionally tall or airborne readers.
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briefly on Morse theory, which offers a proof that every three-manifold has a Heegaard

diagram and motivates the construction of Heegaard Floer homology in Section 2.2. Next

we define the essential operation of Dehn surgery. These two sections are rather technical.

We end the chapter with a discussion of contact structures and transverse links in three-

manifolds.

All the three-manifolds in this paper may be assumed to be closed, connected, and

orientable unless otherwise noted.

Before proceeding, we introduce two essential building blocks of manifolds. First, a n-

dimensional k-handle is an n-dimensional ball with a special decomposition of its boundary.

More precisely, an n-dimensional k-handle is the space Rk × Rn−k with boundary Rk−1 ×

Rn−k ∪Rk ×Rn−k−1. The first component of the boundary is called the attaching disk and

the second is called the co-attaching disk. To attach a handle to a manifold, one identifies

a neighborhood of the attaching disk of the handle with some disk on the base manifold. A

handle decomposition of a manifold is a sequence of handle attachments which produce the

manifold.

Figure 1.6: On the left, a genus 1 handlebody. On the right, a genus 2 handlebody.

Second, an n-dimensional handlebody is an n-dimensional space which is retracts to a

wedge of circles, see Figure 1.6. In dimension three, the genus of a handlebody is the genus

of its boundary, i.e. the number of holes in the surface. Three-dimensional handlebodies

are classified up to diffeomorphism by their genus.
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1.2.1 Heegaard diagrams

Let Y be a three-manifold and Σ ⊂ Y a closed, oriented surface. The pair (Y,Σ) is called

a Heegaard splitting if Σ divides Y into two parts, each of which is diffeomorphic to a

handlebody. For example, if one visualizes S3 as R3 with an extra point, the unit sphere

around the origin splits S3 into two three-dimensional balls. The standard torus splits S3

into two solid tori, and so on.

Let us consider the reverse perspective. Let Σ be a genus g, compact, oriented surface.

If we attach g 1-handles to the inside so that they do not overlap, the resulting boundary

(on the inside) is a sphere, which can be filled in by a ball in exactly one way. The space is

now a handlebody. On the outside of this surface, we may draw the co-attaching circles of

g 2-handles. After attaching the 2-handles, the remaining boundary component is again a

sphere, and by filling it in we obtain a closed three-manifold. The upshot is that a genus g

handlebody, along with two sets of g curves (satisfying some technical conditions), describe

two handlebodies glued along a common boundary.

Definition. A Heegaard diagram is a genus g surface along with two sets of g homologically

independent curves.

Every three-manifold may be described by a Heegaard diagram. Figure 4 (from the

introduction) and Figure 2.3 is a Heegaard diagram from S3. Figure 2.4 is a diagram for

S1 × S2. The curves can also twist around the torus in more complicated ways, in which

case the diagram represents a lens space. A Heegaard diagram for a more complicated

three-manifold must sit on a higher genus surface.

1.2.2 Morse theory

Let M be an n-manifold and let f : M → R be a smooth function. Recall that the critical

points of f are those x ∈ M so that df(x) = 0. A critical point p is non-degenerate if the

Hessian matrix of partial derivatives Hf (p) =

(
∂2f

∂xi∂xj
(p)

)
is non-singular. Equivalently,

we may think of df as a section of the cotangent bundle of M , and a singular point is

non-degenerate if df and the zero section intersect transversely at p. It follows immediately

from either definition that non-degenerate critical points are isolated. Morse functions
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are generic, in the sense that any smooth function can be approximated well by a Morse

function.

For the rest of the section, suppose that f is a Morse function. Let p be a critical

point of f . The index of f at p is the number of negative values of Hf (p), counted with

multiplicity. Equivalently, the index is the largest negative-definite eigenspace of the bilinear

form 〈v, w〉 = vtHf (p)w.

We are now in position to state some classical Morse-theoretic results, all from [44].

Lemma. Suppose that f : M → R is a Morse function and that p is a critical point of f

with index k. There is a neighborhood of p with a coordinate system (x1, . . . , xn) so that p

lies at 0 and f has the form

f(x) = f(p) +
k∑
i=1

−x2
i +

n∑
j=k+1

x2
j .

Write Mc for the sub-level set f−1(−∞, c). Recall that y ∈ R is a critical value of f if

there is critical point x ∈M so that f(x) = y.

Theorem. Suppose that the interval (c − ε, c) contains no critical values. Then Mc−ε is

diffeomorphic to Mc.

Suppose instead that (c−ε, c) contains one critical value corresponding to a single critical

point of index k. Then Mc is diffeomorphic to Mc−ε with a single k-handle attachment.

Let ψt be the negative gradient flow of f . Let Np = {y ∈ Y : limt→−∞ ψt(y) = p} and

Tp = {y ∈ Y : limt→∞ ψt(y) = p}. These are called the unstable and stable manifolds of

p. Loosely, the Np is the set of points which flow down from p, and Tp is the set of points

which flow down to p.

Lemma. Let p be a critical point of index k. The dimension of Np is k, and the dimension

of Tp is n− k.

Now suppose that Y is a three-manifold and that f is Morse function so that for every

critical point p of index k we have f(p) = k. (Such a function is called self-indexing.) We

will also assume that f has only one critical point of index 0 and index 3. Then f−1(3
2) is
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a Heegaard splitting of Y : the sub-level set Y3/2 consists of a 0-handle with some 1-handles

attached, so it is clearly a handlebody. Considering the function 3 − f we see that the

interior of Y \ Y3/2 is also a handlebody. We will write Σ for f−1(3
2).

Let p ∈ Y be an index 1 critical point. Then the stable manifold of p has dimension 2,

and it intersects Σ in a curve. By the above theorem, this curve is exactly the attaching

curve of the handle corresponding to p. Similarly, the unstable manifold of an index 2 critical

point intersects Σ in a curve, the co-attaching curve of the corresponding handle. So if all

three-manifolds have a self-indexing Morse function (they do) then every three-manifold

has a Heegaard diagram.

1.2.3 Dehn surgery

Another important perspective on three-manifolds comes from Dehn surgery. We refer the

reader to [56] and [23] for details, proofs, and clarity.

Let K ⊂ Y be a knot and let ν(K) be a normal neighborhood of K, i.e. a solid torus with

K at its core. Let φ : ∂ν(K) → ∂ν(K) be an orientation-reversing homeomorphism. The

manifold Yφ(K) = (Y \ν(K))∪φS1×D2 is called the result of Dehn surgery on Y along K.

The situation may be simplified as follows: let [µ], [λ] be a basis for H1(∂ν(K)). Here µ is the

meridian, which is uniquely determined by the condition that it bound a disk in ν(K). Then

φ (and thus Yφ(K)) is determined up to isotopy by φ∗([µ]). Writing φ∗([µ]) = p[µ] + q[λ],

we may thus6 index the results of surgery by the number p/q ∈ Q ∪ {∞}. In S3, we will

always take λ to be the Seifert longitude, i.e. the homology class of the intersection of a

Seifert surface for K with ∂ν(K).

Among other reasons, Dehn surgery is important because of the following classical the-

orem of Lickorish and Wallace.

Theorem. Every three-manifold may be obtained by surgery on a link7 in S3.

6To be careful, one should also show that φ∗([µ]) is always primitive.
7To do surgery on a link, simply do surgery on each component.
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1.3 Contact structures

The study of contact geometry began in physics. Suppose one wants to study the motion

of eight planets and one minor-planet around a fixed sun. We assume that this solar

system is planar, so all the planets move in two dimensions. To describe a state of the

system, we need to describe the position and momentum of each planet. This takes four

parameters per planet, so we will need 36 parameters in all. Equivalently, the space of

possible configurations of these planets has 36 dimensions. We can think of the motion of

the planets as a single path through this 36-dimensional space called the phase space of the

system.

This is the beginning of a longer story in classical mechanics, but the point is that

the evolution of a physical system can be understood as the path of a single point in a

big phase space. Because we need to record both the position and momentum of each

planet, this phase space will always be even-dimensional. Moreover, these dimensions are

paired, e.g. the horizontal position parameter is paired with the horizontal momentum

parameter. This structure, along with the barebones mathematical framework to describe

classical mechanics, is called a symplectic structure, and the study of symplectic structures

on manifolds is called symplectic topology and geometry. This field, abstracted away from

physics, has been a great source of new tools and questions in topology.

Returning to the solar system, every freshman physics student knows that within this

system there is kinetic energy related to the momenta of the planets and potential energy

related to their relative positions. So there is a function which assigns a total energy to

every point in the phase space. The principle of conservation of energy says that the total

energy in this system will never change. Suppose the solar system starts at some point

in the phase space with energy E0. As the system moves around the phase space, it will

only ever reach other points with energy E0. In general, this space of such points will be

35-dimensional, one less than the size of the phase space.

The restricted phase space cannot have a symplectic structure because it has odd di-

mension. The analogous object is a contact structure. Contact structures have popped

up here and there in classical physics, but did not receive much attention in mathematics
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before breakthroughs by Eliashberg and Giroux.

Having said all that, in this thesis we are interested only in contact structures on three-

manifolds, and we are don’t make any connections to physics. For more details on the

mathematics, see [46].

Definition. Let Y be a three-manifold. A contact structure on Y is a two-plane field ξ

which is totally non-integrable; i.e., for any open set U ⊂ Y , there is no surface Σ ⊂ U so

that TΣ = ξ.

Locally, a contact structure ξ is the kernel of a 1-form α so that α ∧ dα 6= 0. Such a

1-form is called a contact form. The relationship between contact structures and contact

forms is somewhat delicate, but it is not important for what follows.

Two contact structures are isotopic if they are isotopic as plane fields via an isotopy

through contact structures. Two contact structures ξ, ξ′ on Y are contactomorphic if there

is a diffeomorphism φ : Y → Y so that φ∗ξ = ξ′. By a theorem of Grey [24], these two

notions of equivalence are identical.

The standard contact structure on R3, denoted by ξstd, is the kernel of αstd = dz−x dy.

This structure is contactomorphic to the cylindrical contact structure ξcyl, the kernel of

αcyl = dz + r2 dθ. The cylindrical structure is much easier to visualize: at the origin,

ξcyl = ker(dz), the xy-plane. Moving along a ray in the xy-plane, the parameter r increases

and the contact planes tilt along the ray. The angle increases towards 90◦ as r → ∞. As

αcyl is invariant under vertical translation and θ-wise rotation, this suffices to describe the

whole structure.

1.3.1 Transverse links

There are two natural ways in which a link can interact with a contact structure. The link

may be embedded so that it is everywhere tangent to the contact planes, in which case we

call the link Legendrian. Or the link may transversely intersect the contact planes, in which

case we call the link transverse. We focus on the latter sort, which are in some ways more

mysterious.

Two links are said to be transversely isotopic if they are isotopic through a family of
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transverse knots. (Don’t fret, there’s a diagrammatic way to understand this.) This implies

that transverse isotopy is a more restrictive notion than smooth isotopy. In fact, every knot

has infinitely many non-transversely isotopic representatives.

Beyond smooth isotopy class, there is one [20] “classical” invariant of transverse links:

the self-linking number. Suppose that the transverse link K is homologically trivial (as

most of the knots in this thesis are). Let Σ be a surface bounded by K. Let v be a vector

field along Σ in ξ. Then the self-linking of T , or sl(T ), is the linking number of T with

a pushoff of T in the direction v. (For a diagrammatic definition, skip a few paragraphs

ahead.)

There are transverse links with the same isotopy class and self-linking number ([33], [12],

[18]), so the classical invariants do not totally characterize transverse links. A smooth link

which supports such transverse links is called transversely non-simple. An invariant which

can distinguish links in a transversely non-simple family is called effective. It is known

that certain transverse invariants from Heegaard Floer homology are effective, but it is not

known if the transverse invariant from Khovanov homology is effective (see Section 2.1.2).

There is a “transverse Markov theorem” relating braids and transverse links in R3. It

is easiest to visualize in the cylindrical contact structure ξcyl. Any transverse link which

lies sufficiently far from the z-axis must wind around the z-axis just like a braid closure.

Conversely, any braid may be transversely embedded far away from the z-axis. To close

the braid, wrap strands around the z-axis. Close study of such arguments led Orevkov and

Shevchishin [45] and Wrinkle [62], independently, to the following.

Theorem. The above procedure gives a one-to-one correspondance between transverse links

up to transverse isotopy and braids up to positive stabilization.

To summarize: let β be a braid. Then any sequence of conjugations and positive sta-

bilizations of β produce a braid whose closure is transversely isotopic to β. Moreover, any

braid which closes to the same transverse link may be obtained by conjugations and positive

(de)stabilizations of β.

If L is a transverse link which is the closure of the braid β ∈ Bn, then sl(β) = exp(β)−n

where exp(β) is the sum of the exponents on any word equal to β. This formula shows that



1.3. CONTACT STRUCTURES 19

a link and its negative stabilization are never transversely isotopic. The essential geometric

difference between positive and negative stabilization in ξcyl is that in positive stabilization

the “lasso” is always oriented along the braid axis, and therefore can cross it while still

maintaining transversality with ξcyl.





Chapter 2

Some homologies

In this section, we define Khovanov homology, a homology theory for links, and Heegaard

Floer homology, a homology theory for three-manifolds. These two tools have indepen-

dently sparked waves of new activity in low-dimensional topology, and have connections

with representation theory and contact/symplectic topology. Moreover, the two theories

are connected by an algebraic gadget called a spectral sequence. This spectral sequence

animates all the work in later chapters.

This is also the section in which we give up the pretense that any of this document will

be readable by non-mathematicians.

2.1 Khovanov homology of links

There are many great introductions to Khovanov homology (e.g. [10]), so we will only recall

enough to set some notation and to do our due diligence.

Let L ⊂ S3 be a link with diagram D. Suppose first that D has no crossings. Let V

be a two-dimensional vector space over1 Z/2Z with generators v+ and v−. Write |D| for

the number of components in D. The Khovanov chain complex CKh(D) associated to D is

V ⊗|D| with no differential, and the Khovanov homology of D is V ⊗|D|.

Now suppose that D has c > 0 crossings. To be precise, we should order the crossings,

but the end result does not depend on the choice of order and we shall speak of it no more.

1Khovanov homology is not much more complicated over Z.

21
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Each crossing may be resolved in one of two ways, called the 0- and 1-resolution, as shown

in Figure 2.1. A complete resolution of D is a choice of resolution for each crossing. For a

complete resolution r, write D(r) for the resulting diagram. The diagram D(r) always has

no crossings. The complete resolutions of D are indexed by the cube of resolutions {0, 1}c.

Figure 2.1: The 0- and 1-resolution of a crossing.

The vector space underlying the Khovanov chain complex is

CKh(D) =
⊕

r∈{0,1}c
V ⊗|D(r)|.

The simple tensors in CKh(D) are labelings of the components of a resolved diagram with

v+ and v−. We refer to these as canonical generators of CKh(D).

In the classical story, CKh(D) is a bigraded complex. Orient the link, and define a

crossing to be positive if the over-crossing strand and under-crossing strand determine the

usual orientation on the page. Let x ∈ V ⊗|D(r)| be a canonical generator. The first grading,

called the homological grading, is defined by h(x) = |r| − n− where |r| is the sum of the

entries of r and n− is the number of negative crossings in D. The second grading is called

the internal or quantum grading. First, grade V by q̃(v+) = 1 and q̃(v−) = −1. Now

additively extend q̃ to tensor products. The quantum grading of a canonical generator is

defined by

q(x) = q̃(x) + |r|+ n+ − 2n−

where n+ is the number of positive crossings in D.
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We can delay no longer in defining the differential on CKh(D). The classical proposition

1 ≥ 0 (see [14]) allows us to partially order the entire cube: for two resolutions r and r′,

we have r′ ≥ r precisely if every entry in r′ is greater than or equal to every entry in r. If

r′ ≥ r and r and r′ differ in only one entry, we say that r′ is an (immediate) successor of r.

If r′ is an immediate successor of r, then D(r) and D(r′) differ at a single resolved

crossing. Either D(r′) may be obtained from D(r) by splitting a component into two or by

merging two components into one. To define maps dr,r′ : V
|D(r)| → V |D(r′)|, we focus on the

tensor factors corresponding to the split or merged components. If D(r′) is related by D(r)

by merging two components, then dr,r′ acts by a map m on the factors corresponding to the

merged components and as the identity otherwise. If instead D(r′) is obtained from D(r)

by splitting a component, then dr,r′ acts by a map ∆ on the split factor and the identity

otherwise. Let m : V ⊗ V → V be the map defined by

m(v+ ⊗ v+) = v+

m(v+ ⊗ v−) = m(v− ⊗ v+) = v−

m(v− ⊗ v−) = v−

and linearity. Let ∆: V → V ⊗ V be the map defined by

∆(v+) = v+ ⊗ v− + v− ⊗ v+

∆(v−) = v− ⊗ v−

and linearity.

Now let d : CKh(D)→ CKh(D) be the sum of all these maps, i.e.

d =
∑

r∈{0,1}c

∑
r′ a successor of r

dr,r′ .

Khovanov showed that d ◦ d = 0, and more yet.

Theorem. [34] Suppose that D and D′ are two diagrams for the link L. Then there is a

bigraded quasi-isomorphism between the complexes (CKh(D), ∂) and (CKh(D′), ∂′).
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Khovanov proves this by assigning a bigraded quasi-ismorphism to each Reidemeister

move. Later results of Jacobsson [32], Bar-Natan [11], and Khovanov [36] show that these

quasi-isomorphisms are “natural” in the sense that any two sequences of Reidemeister moves

from D to D′ induce chain-homotopic quasi-isomorphisms. The homology of (CKh(D), ∂)

for any diagram D of L is called the Khovanov homology of L and is denoted Kh(L).

Khovanov constructed his homology theory (in part) to better understand the famous

Jones polynomial. The Euler characteristic of the bigraded complex Ci,j is defined to be∑
i,j (−1)iqj rank(Ci,j). The Euler characteristic of the Khovanov homology of a link is the

unnormalized Jones polynomial ; to get the genuine object, divide by (q + q−1).

2.1.1 Reduced Khovanov homology

There are two ways to define the reduced Khovanov homology. They yield bigraded quasi-

isomorphic theories, but we will see in Chapter 4 that they are distinguishable in the

presence of additional geometric data.

Let L be a link with diagram D. Choose a basepoint p on the image of L in D.

For convenience, we will assume that the last tensor factor of each generator of CKh(D)

corresponds to the component containing p. There is a chain map xp : CKh(D)→ CKh(D)

defined on generators by

xp(y ⊗ v+) = y ⊗ v−

xp(y ⊗ v−) = 0

The reduced subcomplex C̃Khp(D) is ker(xp). The reduced quotient complex CKhp(D) is

coker(xp). The homologies of these complexes are both called reduced Khovanov homology;

the ambiguity is justified by the fact that their homologies are isomorphic as h- and q-graded

complexes (with a constant shift in the q-gradings) [35]. It is clear that C̃Khp(D) has a

basis of canonical generators. The projections of canonical generators of the form y ⊗ v+

form a basis of CKhp(D). Whenever we take a representative of an element in the quotient

complex, we will assume it is a sum of these canonical generators.

The reduced theories may be defined more geometrically as follows: place a little circle



2.1. KHOVANOV HOMOLOGY OF LINKS 25

on D near p. The map xp is the map given by the cobordism which merges this circle, with

a v−-label, to whichever component contains p. This is the original perspective taken by

Khovanov, and it fits naturally into Bar-Natan’s cobordism framework.

For knots, the reduced theory does not depend on a choice of basepoint.

2.1.2 Khovanov homology and transverse links

The first application of Khovanov’s theory to transverse links comes from Plamenevskaya

[52]. For the rest of this section, all links are assumed to live in S3.

Recall (Section 1.3.1) that there is a one-to-one correspondance between transverse links

and braids up to positive stabilization and conjugation; the point is that a braid closure

diagram is naturally the diagram of a transverse link. A braid closure diagram has a

unique resolution in which each positive crossing is given the 0-resolution and each negative

resolution is given the 1-resolution. This is called the braidlike resolution.

Let L be a transverse link, β a braid so that β̂ = L, and D a braid closure diagram of β.

Let r be the braidlike resolution of D. Define ψ(L) to be the element of CKh(D(r)) which

has all v− labels. This element is called the transverse invariant in Khovanov homology on

account of the following proposition.

Proposition. [52] Let D and D′ be braid closure diagrams which are related by a sequence of

conjugations and positive stabilizations. The induced map ρ on Khovanov homology satisfies

ρ(ψ(D)) = ψ(D′). Moreover, q(ψ(L)) = sl(L) and h(L) = 0.

If L is a negative stabilization of another link, then [ψ(L)] = 0. If L is σi-negative for

any i, then [ψ(L)] = 0. If L can be represented by a right-veering braid, then [ψ(L)] 6= 0. If

L can be represented by a quasipositive2 braid, then [ψ(L)] 6= 0.

It is not known if ψ is effective.

2.1.3 Khovanov homology and cobordisms

The Khovanov differential is defined by assigning linear-algebraic maps to diagrammatic

merges and splits. The diagrammatic moves may be understood more geometrically as

2A braid is quasipositive if it can be written as a product of conjugations of positive generators.
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simple cobordisms, as in Figure 2.2. Morse theory shows that any surface may be understood

as a stack of merge, split, cup, cap, and identity cobordisms; in fact, this is a handle

decomposition. Suppose that Σ is a cobordism between the links L1 and L2, and fix a

handle decomposition of Σ. Each of the simple cobordisms in the decomposition is assigned

a map, and the map φΣ is composition of these maps. The references to Jacobsson, Bar-

Natan, and Khovanov above show (independently) that these maps do not depend on the

handle decomposition of Σ.

Figure 2.2: From left to right: merge, split, cup, cap, and identity morphisms.

This is an essential feature of Khovanov homology. In Bar-Natan’s wonderful reformu-

lation [11], he realizes Khovanov homology as a theory firstly about tangles and cobordisms

and secondly about vector spaces and maps.

2.2 Heegaard Floer homology of three-manifolds

Heegaard Floer homology is an adaptation (or specialization) of Lagrangian Floer homology

to study three- and four-manifolds. It fits into a larger project of computing and under-

standing Seiberg-Witten invariants, but it is still difficult to do many concrete computations

using the original definition. The grid diagram approach has made Heegaard Floer homol-

ogy easier to work with, but is a book length project on its own. To paraphrase Jacob

Rasmussen, Heegaard Floer homology is similar to ordinary homology in that it offers a

unifying perspective on many otherwise disparate phenomena in three-manifold topology.3

So here’s the standard disclaimer: the entire theory is really complicated, and we will

stick to describing the parts of the theory which we need for later chapters.

3More hype: Heegaard Floer homology is closely related to instanton Floer homology, monopole Floer
homology, embedded contact homology, Khovanov homology...
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2.2.1 Formal properties

Following Rasmussen’s approach in [53], we first describe some “formal” properties of Hee-

gaard Floer homology without proof. See [47] for details.

Let Y be a closed orientable three-manifold. Heegaard Floer homology assigns to Y a

graded4 vector space5 ĤF (Y ). It also has a direct sum decomposition

ĤF (Y ) =
⊕

s∈Spinc(Y )

ĤF (Y, s)

where Spinc(Y ) is the set of Spinc-structures on Y . (Spinc(Y ) is a “H1(Y )-torsor” –

H1(Y ) acts freely and transitively.)

Heegaard Floer homology has a Künneth formula for connected sums: ĤF (Y#Y ′) =

ĤF (Y )⊗ ĤF (Y ′). (What does this say about ĤF (S3)?)

Heegaard Floer homology has a functorial structure. Let W be a cobordism from Y to

Y ′. Then W induces a map F̂W : ĤF (Y )→ ĤF (Y ′). Now suppose that W ′ is a cobordism

from Y ′to Y ′′. Then W ′ ◦W is a cobordism from Y to Y ′′, and F̂W ′ ◦ F̂W = FW ′◦W . An

integrally-framed surgery on a knot in a three-manifold may be understood as a cobordism

between the original and surgered manifolds [23], so Heegaard Floer homology assigns maps

to surgeries. For certain geometrically related surgeries, these maps fit into exact triangles,

see e.g. [47].

The empty manifold ∅ has Heegaard Floer homology Z/2Z, and a closed four-manifold

may be understood as a cobordism from ∅ to ∅. The induced map Z/2Z → Z/2Z is not

very interesting (e.g. it is totally determined by the ordinary homology) but this is the idea

behind the (very interesting) Heegaard Floer four-manifold invariant.

The vector space ĤF (Y ) is the homology of the Heegaard Floer chain complex ĈF (Y ).

Actually, the chain complex is constructed from a Heegaard diagram, so ĈF (Y ) is a sig-

nificant abuse of notation: two different Heegaard diagrams may yield different chain com-

plexes. But the homology ĤF (Y ) does not depend on choice of Heegaard diagram as long

all involved diagrams satisfy certain technical conditions.

4There is always a relative Z/2Z grading, but this can be improved to Z/nZ, Z, or Q under various
toological conditions. Sometimes these can be upgraded to absolute gradings.

5Again, we work over Z/2Z rather than Z for simplicity.
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There are two computations of Heegaard Floer homology which are important for our

work which we delay until we provide a proper definition.

2.2.2 Definition

Let Y be a three-manifold. Let (Σ,α,β) be a genus g Heegaard diagram for Y . Let

z ∈ Σ \ (α ∪ β). The data (Σ,α,β, z) is called a pointed Heegaard diagram. The Heegaard

Floer chain complex ĈF (Σ,α,β, z) is generated by g-tuples (x1, . . . , xg) of intersection

points between α and β which satisfy the condition that if xi ∈ αj ∩ βk, then no other xi

can lie in αj or βk. (“You may use each curve once and only once in each generator.”)

This generating set may be described geometrically. Let Symg(Σ) be the g-fold symmet-

ric power of Σ, i.e. Symg(Σ) = Σ×g/Sg where the symmetric group Sg acts by permuting

coordinates. Let Tα be the image of α1 × · · · × αg in Symg(Σ), and define Tβ similarly.

Then ĈF (Σ,α,β, z) is generated by the collection of points Tα ∩ Tβ.

As Σ is a surface, it can be equipped with a complex structure j. It is not hard to

extend this to Σ×n, and then to Symg(Σ), at least away from the diagonal. Ozsváth and

Szabó show that j may be extended to an almost complex structure6 J on Symg(Σ). A

pseudoholomorphic disk is a map φ : D2 → Symg(Σ) so that φ ◦ i = J ◦ φ, where i is the

usual complex structure on D2 as a subset of C. Pseudoholomorphic disks were first used

by Gromov to great effect in symplectic topology [27].

Let x, y ∈ Tα ∩ Tβ. Write ∂+D2 for the boundary component of D2 with positive real

part and ∂−D2 for the boundary component of D2 with negative real part. A continuous

map φ : D2 → Symg(Σ) is called a Whitney disk from x to y if φ(−i) = x, φ(i) = y,

φ(∂+D2) ⊂ Tα, and φ(∂−D2) ⊂ Tβ. Write π2(x, y) for the set of Whitney disks from x to

y, considered up to homotopy rel boundary.

For φ ∈ π2(x, y), write M̂(φ) for the moduli space of pseudoholomorphic disks homotopic

to φ. The dimension of this space is controlled by the Maslov index µ(φ), a gadget from

symplectic topology. In favorable circumstances, the Maslov index is precisely the dimension

6At it’s heart, the defintion of Heegaard Floer homology ‘should’ be “the Lagrangian Floer homology of
Tα and Tη in Symg(Σ).” The Lagrangian Floer construction depends on the existence of an almost complex
structure with particular properties. Ozsváth and Szabó get around this by considering families of almost
complex structures. Yakili later showed the existence of the right complex structure.
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of the moduli space. In any positive dimension, the moduli space has an R-action given by

the vertical translation within D2 ⊂ C. Write M(φ) = M̂(φ)/R. Note that dim(M(φ)) =

dim(M̂(φ))− 1 as long as dim(M̂(φ)) was positive to begin with.

Now let x ∈ Tα ∩ Tβ. Define the differential ∂ : ĈF (Σ,α,β, z) → ĈF (Σ,α,β, z) as

follows:

∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1
nz(φ)=0

|M(φ)| y.

Here nz(φ) is the intersection number between φ and the subvariety {z}×Symg−1(Σ) ⊂

Symg(Σ). Using various techniques from the world of Lagrangian Floer homology, one can

show that ∂2 = 0. Write ĤF (Σ,α,β, z) for the homology of ĈF (Σ,α,β, z).

Theorem. Suppose that (Σ,α,β, z) and (Σ′,α′,β′, z′) are pointed Heegaard for the three-

manifold Y . Suppose in addition that each diagram is weakly admissible, as defined in the

next section. Then ĤF (Σ,α,β, z) ∼= ĤF (Σ′,α′,β′, z′).

We define the Heegaard Floer homology of Y , denoted by ĤF (Y ), to be the Heegaard

Floer homology of any weakly admissible Heegaard diagram for Y .

2.2.3 Computing Heegaard Floer homology

As detailed in [48], a holomorphic disk may be understood through a projection to Σ which

we call its domain. The curves in α and β split Σ into regions. A domain is a sum (over

Z) of regions on Σ. Let {Ri} be the regions of (Σ,α,β) and let xi ∈ Ri. To a disk φ we

assign the domain Σinxi(φ)Ri. The resulting domain does not depend on the choice of xi.

A periodic domain is a domain whose boundary is a union of entire α and β curves.

The set of periodic domains for a particular diagram form a group. In [48] this group is

shown to be isomorphic to H1(Y ). A Heegaard diagram is called weakly admissible if every

periodic domain has both positive and negative coefficients. For the rest of this section, we

will work only with admissible diagrams.

As one might expect, domains of pseudoholomorphic disks are heavily constrained.
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Lemma. [48] Let φ be a pseudoholomorphic disk connecting x and y. Let R be the domain

of φ.

• All the coefficients of R are positive.

• If φ′ is another disk connecting x and y with domain R′, then R = R′ if and only if

φ and φ′ are homotopic.

• Let ∂αφ be the part of the boundary of the domain of φ which lies along α curves (as

a 1-chain). Define ∂βφ identically. Let ∂ be the usual boundary operator. (Sorry.)

Then ∂∂αφ = −∂∂βφ = y − x. Roughly, the boundary of R traces a path from x to y

(along α curves) and back (along β curves).

• Suppose that φ and φ′ are both pseudoholomorphic disks connecting x and y. Then the

difference of their domains is a periodic domain. (To be fancier, the space of domains

representing pseudoholomorphic disks between x and y is an affine space over the

group of peroidic domains.)

These conditions do not guarantee the existence of pseudoholomorphic disks. Our main

tool toward that end is the Riemann mapping theorem.

For us, the most important fact about the Maslov index µ(φ) is the formula due to

Lipshitz [40]. We need to define a few terms Let R be the domain of a pseudoholomorphic

disk in π2(x, y). Any a ∈ x is an intersection point between and α and β curve, and so

locally there are four regions adjacent to a. Let na(R) be the average of the coeficients of

R in these regions. Let nx(R) =
∑

a∈x na(R).

Let S ⊂ Σ be an embedded subsurface with boundary along α ∪ η. Using the local

picture of intersection points, the corners of S may be classified as acute and obtuse: an

accute corner occupies only one of the four regions adjacent to the corner. Define the Euler

measure e(S) = χ(S) − acute(S)
4 + obtuse(S)

4 . The Euler measure is additive, so it may be

extended to arbitrary regions.

Lemma ([41]). Let D be the domain of a pseudohomolomorphic disk in π2(x, y). Then

µ(D) = nx(D) + ny(D) + e(D).
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2.2.4 Two computations

Example 1. The Künneth formula for Heegaard Floer homology implies that ĤF (S3) =

Z/2Z, but we can compute this directly from a Heegaard diagram.

Figure 2.3

From this diagram, ĈF (Σ,α,η, z) is generated by the lone intersection point, x. This

diagram has only one embedded region, and it contains the basepoint z. This implies that

there are no periodic domains on the diagram – and there shouldn’t be, as H1(S3) vanishes

– so it is vacuously weakly admissible. Moreover, the differential ∂ must be zero, and

ĤF (Σ,α,η) is also generated by x.

Example 2. Here is a Heegaard diagram for S1 × S2.

Figure 2.4

ĈF (Σ,α,η, z) is generated by a and b. The group of periodic domains is generated by

the green region minus the yellow region. This periodic domain has positive and negative

coefficients and generates the whole group (which must have the same rank as H1(S1×S2)).

Therefore the diagram is weakly admissible.

To compute ∂, we must analyze maps from the disk into Sym1(T 2) = T 2. The Riemann

Mapping Theorem implies that there is an R’s worth of such maps whose image is the green

region and another R’s worth whose image is the yellow region. (To show carefully that

there are no other disks, study their putative image in the universal cover.) It is not hard
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to show that the Maslov index of these disks is 1.

Diagrams for S1 × S2 (or connected sums of S1 × S2s) which consist only of parallel

curves are called standard. They will be important in Chapter 3

2.2.5 Heegaard Floer homology and contact structures

Let (Y, ξ) be a contact three-manifold. Ozsváth and Szabó identify an element c(Y, ξ) ∈

ĤF (Y ) (or c(ξ) when Y is clear from context) which carries information about ξ [49]. The

essential property of c(ξ) is that it vanishes whenever ξ is overtwisted. Overtwistedness is an

important property in contact topology, and a non-overtwisted contact structure is called

tight.

2.3 The spectral sequence from K̃h(L) to ĤF (S3(L))

2.3.1 Why tho

It’s not hard to make the case that a spectral sequence like Ozsváth and Szabó’s ought to

exist. Let L ⊂ S3 be a link and let S3(L) denote the branched double cover of L. The

evidence:

• For a flat diagram D′ with k components, K̃h(D′) ∼= (Z/2Z⊕ Z/2Z)⊗k−1.

• The branched double cover of D′ is #k−1(S1×S2), which has Heegaard Floer homology

(Z/2Z⊕Z/2Z)⊗k−1. The relative gradings of the Floer and Khovanov homologies are

essentially the same.

• The Khovanov differential is constructed from cobordism between link diagrams.

These lift to surgery cobordisms between branched double covers. Heegaard Floer

homology assigns maps to these cobordisms. So we can “take the branched cover” of

the entire Khovanov chain complex setup and get a Heegaard Floer setup.

• Heegaard Floer cobordism maps between #(S1×S2)s are determined by simple topo-

logical data.

Hopefully this convinces you that Khovanov homology can be computed in a Floer context.

The much more remarkable part is that this same cube of resolutions can be used to compute
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ĤF (S3(L)). For a diagram with only one crossing, this is equivalent to a well-known surgery

exact sequence in Heegaard Floer homology. For a diagram with many crossings, one

coallates these exact sequences into a spectral sequence. This is possible because Heegaard

Floer homology can assign maps to more complicated cobordisms, and these maps satisfy

certain interpolation conditions called A∞-relations.

2.3.2 Branched double covers and surgery

We now demonstrate the connection between change of resolution on a diagram and Dehn

surgery along an auxiliary knot. Let L be a link in S3. The branched double cover S3(L)

may be constructed as follows: take two disjoint copies of S3. Let S be a Seifert surface

for L. This surface is orientable, and we are justified in talking about it’s top and bottom.

Now implement the following teleportation regime: if a spaceship flies into the top of one

copy of S, it comes out the bottom of the other copy, and vice versa. See Figure 2.5.

Figure 2.5: A schematic for the branched cover of S3 over a trefoil knot.

A similar picture shows that S3(U) ∼= S3. For the m-component unlink Um we have

S3(Um) = #m−1S1 × S2.

Now suppose that r′ is a successor of r so that D(r) and D(r′) differ only by a merge

or split operation. These may be realized as two-dimensional surgery along an auxiliary

arc, see 2.6. In the branched double cover, this arc lifts to a knot and the two-dimensional

surgery lifts to 0-framed Dehn surgery.
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Figure 2.6: A crossing and its two resolutions. One may realize the change of resolution
from middle to right by a two-dimensional surgery along the dotted arc. Its image in the
resulting diagram is also shown.

2.3.3 Pseudoholomorphic polygons

Let Σ be a closed surface and suppose that η1, . . . ,ηn are sets of curves so that for any i

the diagram (Σ,ηi,ηi+1) is a weakly admissible Heegaard diagram. Let z ∈ Σ \ (
⋃
i ηi) be

a basepoint. Ozsváth and Szabó define a map

fn−2 : ĈF (Σ,η1,η2, z)⊗ ĈF (Σ,η2,η3, z)⊗ · · · ⊗ ĈF (Σ,ηn−1,ηn, z)→ ĈF (Σ,η1,ηn, z)

by

fn−2(x1 ⊗ · · · ⊗ xn) =
∑

y∈Tη1∩Tηn

∑
φ∈π2(x1,...,xn,y)

nz(φ)=0
µ(φ)=0

|M(φ)| y.

Here π2(x1, . . . , xn, y) is the space of Whitney (n+1)-gons with corners at x1, . . . , xn and

y. The moduli spaceM(φ) is hatless because spaces of Whitney polygons do not admit a R-

action. We will still identify f0 with the differential ∂ : ĈF (Σ,η1,η2, z)→ ĈF (Σ,η1,η2, z).

Just as in the bigon case, every polygon φ has a domain on Σ, and for sufficiently nice

diagrams the space M(φ) is finite as long as µ(φ) = 0.

The Maslov index may be computed by Sarkar’s formula [58]. Let D be the domain of

a pseudoholomorphic polygon connecting connecting the points x1,2, x2,3, . . . , xn,1 where

xi,i+1 is a collection of intersection points between curves in ηi and ηi+1. Define nxi,i+1 just

as nx in Lipshitz’s formula. Orient the edges of D and let ∂i be the boundary of D along

curves in ηi.
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Lemma ([58]). Let D be the domain of a pseudoholomorphic polygon in π2(x1,2, x2,3, . . . ,

xn,1). Let k be the number of curves in each collection ηi. Then

µ(D) = nx1,2(D) + nxn,1(D)− e(D) +
∑

n≥j>`>1

∂j(D) · ∂`(D),

where · denotes the algebraic intersection number and e(D) is again the Euler measure.

These maps satisfy the A∞ relations:

n−1∑
j=0

n−1∑
i=0

fn−i+1(x1, . . . , xj , fi(xj+1, . . . , xj+i), xj+i+1, . . . , xn) = 0.

The left-hand side of the equation is the sum of all the ways to combine (or Associate)

a pair of fs to combine n elements into one. For n = 1 this simplifies to f0 ◦ f0 = 0, or just

the statement that f0 is a differential. For n = 2 we get

f0(f1(x1, x2)) = f1(f0(x1), x2) + f1(x1, f0(x2))

or equivalently that f1 is a chain map on the complex ĈF (η1,η2)⊗ ĈF (η2,η3). The next

relation shows that f1 is “associative” up to homotopy.

2.3.4 Bouquet diagrams

The A∞ structure described above is quite intricate. To get handle on it, Ozsváth and Szabó

use special Heegaard diagrams for branched double covers. We describe these diagrams in

the most general case, but the reader won’t miss much by replacing all instances of Y with

S3.

Let K ⊂ Y be a link with k components. Choose some basepoint w ∈ Y \K. Connect

each component of K to w through pairwise disjoint arcs. The union of K with such a

collection of arcs is called a bouquet for K.

Definition. Let Γ be a bouquet for K. A pointed Heegaard diagram (Σ, {αi}ni=1, {ηi}ni=1, z)

presenting Y is subordinate to the bouquet Γ if it satisfies the following conditions.

• The diagram (Σ,α, {ηi}ni=k+1, z) presents Y \ ν(Γ).
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• Surger out the curves {ηi}ni=k+1 from Σ. Each remaining ηi lies on a punctured torus

∂Ni ⊂ N(Γ) which surrounds the component Ki for 1 ≤ i ≤ k.

• For 1 ≤ i ≤ k, the curve ηi is a meridian of the component Ki.

Loosely, the first k of the η curves describe a normal neighborhood of Γ and the remaining

η curves fill out the rest of Y . Such a diagram exists for every pair (Y,K), and the resulting

spectral sequence does not depend on a choice of bouquet [51]. We refer to such diagrams

as K-bouquet diagrams for short.

Suppose that the curves {ηi}ki=1 in a K-bouquet diagram are∞-framed curves along the

tori Ni. Let γi be a longitude on Ni let δi = ηi+γi, so that |ηi∩δi| = |δi∩γi| = |γi∩ηi| = −1

and that each of these curves is disjoint from z. For I ∈ {0, 1,∞}k, define the set of curves

η(I) by

ηj(I) =


ηi if i > k or Ij =∞

γi if Ij = 0

δi if Ij = 1

The diagram (Σ,α,η(I), z) is a pointed Heegaard diagram for the result of I-framed surgery

along K.

Now let D be a diagram for a link L ⊂ S3 with c crossings. We have already seen that

a change in resolution of D may be realized by surgery along an auxiliary knot. If we make

several changes, they may be realized together by surgery along a link. Define a path of

resolutions I to be a chain of successors, i.e. I = {I1, I2, . . . , In : Ii+1 is a successor of Ii}.

To simplify notation, we allow for paths of length one. From a path of resolutions I =

{I1, . . . , In} one can build the bouquet multidiagram

(Σ,α,η(I1),η(I2), . . . ,η(In), z).

In general, η(Ij) and η(Ij+1) will have curves in common, which is unsuitable for Floer

homology. We implicitly perturb identical curves so that they intersect twice pairwise and

so that the resulting multidiagram is admissible. We will say that two such curves are

parallel. Roberts showed that these perturbations can be done in a systematic way [54].
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Because η(Ii) and η(Ii+1) consist of almost identical curves, the group

ĈF (η(Ii),η(Ii+1)) = ĈF (#k−1S2 × S1)

has a generator (and cycle) of highest degree which we denote by Θi, see our model calcu-

lation in Section 2.2.4 and [47]. For each path I of length greater than one there is a map

dI : ĈF (α,η(I1))→ ĈF (α,η(In)) defined by

dI(x) = fI(x⊗Θ1 ⊗ · · · ⊗Θn−1).

For paths of length 1, define ∂I to be the usual differential on ĈF . For two resolutions

I, I ′ (possibly equal), write P (I, I ′) for the set of paths from I to I ′ and define

∂I,I′ =
∑

I∈P(I,I′)

∂I.

Write X =
⊕

I∈{0,1}k ĈF (Σ,α,η(I), z) and define D : X → X by D =
∑
∂I,I . Using the

structure of bouquet diagrams and multidiagrams, Ozsváth and Szabó show that (X,D) is

a complex and that H∗(X ′, D′) ∼= ĤF (S3(L)). Here are the essential steps:

1. The coefficient of y in D2(x) is the number of broken polygons connecting x and y in

which the degenerating chord intersects α. By broken polygon we mean two polygons

joined at a vertex. To show that D ◦D = 0, it suffices to show that the sum of these

particular degenerations is zero.

2. The space of pseudoholomorphic polygons may be compactified by adding a boundary.

The boundary is a space of broken polygons which includes those counted in the

previous step. Broken polygons are degenerations of larger polygons along a chord,

see Figure 3.7. Because they form the boundary of a compact space, the sum of all

these degenerations must vanish.

3. The other degenerations are those for which the degenerating chord spans η curves.

Ozsváth and Szabó show the following, using the particular structure of bouquet

diagrams:
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Lemma (Cancellation lemma). 7 Let I and J be resolutions of D. Then

∑
(I0,...,Ik)∈P(I,J)

fI(Θ0 ⊗Θ1 ⊗ · · · ⊗Θn) = 0,

where Θi ∈ ĤF (ηi,ηi+1) is a canonical generator.

The cancellation lemma shows that all degenerations whose chord spans η curves sum

to zero. This leaves only the degenerations along chords which intersect α, which

must therefore sum to zero. Therefore D ◦D = 0.

4. Suppose the link L has only one component.

Theorem. Let L be a framed knot in a three-manifold Y , and let

f̂ : ĈF (Y0(L))→ ĈF (Y1(L))

denote the chain map induced by the surgery cobordism. Then ĈF (Y ) is quasi-

isomorphic to the mapping cone of f̂ .

This is a stronger version of the surgery exact sequence [47]. For Y = S3, this shows

that H∗(X,D) ∼= ĤF (S3(K)) when K has a single crossing.

5. Use induction on the number of components of L:

Suppose that L has ` components. Let

X({0, 1,∞}`) =
⊕

I∈{0,1,∞}`
ĈF (Σ,α,η(I), z)

and for any subset S ⊂ {0, 1,∞}` write

X(S) =
⊕
I∈S

ĈF (Σ,α,η(I), z).

We abuse notation by writing D : X({0, 1,∞}`) → X({0, 1,∞}`) for the map analo-

gous to D : X → X for the ‘cube’ {0, 1,∞}`. The mapping cone lemma above shows

7This is one of at least three lemmas in this field which are called “the cancellation lemma.”
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that H(X({0, 1,∞}`), D′) = 0 for ` = 1. Now assume the lemma for k = `. As

X({0, 1}` × {0, 1∞})/X({0, 1}`+1 ∼= X({0, 1}` × {∞}),

there is a short exact sequence of complexes

0→ X({0, 1}`+1 → X({0, 1}` × {0, 1∞})→ X({0, 1}` × {∞})→ 0.

It follows from arguments similar to the strengthening of the surgery exact sequence

that H(X({0, 1}` × {0, 1∞}),so X({0, 1}`+1 ∼= X({0, 1}` × {∞}).

The complex (X,D) is filtered by the partial ordering on {0, 1}k and so its homology can

be computed via a spectral sequence. This is the Ozsváth-Szabó spectral sequence which

we denote by E.

Theorem. Let E be the spectral sequence induced by the order filtration on X.

• E0 = X as a group. The differential d0 is the sum of the internal differentials on each

Heegaard Floer chain group. Each of these groups is equal to ĈF (#m(S2 × S1)) for

some m ≥ 0.

• E1 ∼= C̃Kh(m(L)), the reduced Khovanov chain group of the mirror of L.

• E2 ∼= K̃h(m(L)), the reduced Khovanov homology of the mirror of L.

• E∞ ∼= ĤF (S3(L)), the Heegaard Floer homology of the branched double cover of L.

In any spectral sequence arising from such a filtration, the differential on the zeroth

page of this spectral sequence is the part of D which preserves the order filtration. This

explains the first two facts. To prove the third, one must analyze the Heegaard Floer maps

which count holomorphic triangles. In fact, the cobordism maps between connected sums

of S1 × S2s are determined by data in ordinary homology, which ultimately implies that

they “agree” with the maps on Khovanov homology.

For details of some of these constructions, see Roberts [54]. For invariance under choices

of analytic data, see Baldwin [6]. Baldwin, Hedden, and Lobb [8] have shown that any Floer-

type theory satisfying some mild conditions will support a similar sort of spectral sequence.
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2.3.5 The connection between the transverse and contact invariants

Let K ⊂ S3 be a transverse link in the standard contact structure ξstd. There is a unique

lift of ξstd to S3(L) which we denote by ξL. In the paper defining the transverse invariant

ψ(L), Plamenevskaya asked whether there is a connection between ψ(L) and c(ξL) via

the Ozsváth-Szabó spectral sequence. This questions was first answered by Roberts (with

elaboration from Baldwin and Plamenevskaya).

Theorem ([55], [9]). There is an element x ∈ E0(L) so that [x]2 ∈ E2(L) equals [ψ(L)]

and [x]∞ ∈ E∞(L).

Briefly, ψ(L) “converges” to c(ξL). This sort of convergence is not of much use on its

own; for example, the fact that [ψ(L)] does not imply that c(ξL) does, and vice-versa. Still,

it suggests that “what’s true for ψ may be true for c”. Our work in Chapter 4 is motivated

by this maxim.



Chapter 3

Branched diagrams and the

Ozsváth-Szabó spectral sequence

In this chapter we construct, for any link L with diagram D, a spectral sequence E′(D)

isomorphic to Ozsváth and Szabó’s using Heegaard diagrams with a more transparent con-

nection to Khovanov homology. We call these Heegaard diagrams branched. Branched

diagrams are minimal, in the sense that E′0(D) ∼= C̃Kh(D) as a bigraded vector space.1

The equality between the ranks of the two vector spaces is obvious from the diagrams, but

the gradings depend on the placement of a basepoint in a sensitive way, see Section 3.2.2.

Baldwin has shown that each Ei(D) is a link invariant for i ≥ 2, so each E′i(D) is

as well [6]. Now let D be a braid closure diagram for a transverse link in (S3, ξ). Let

ψ(D) ∈ CKh(D) be Plamenevsksaya’s transverse element [52]. Baldwin also showed that

the image of ψ on each page of E is a transverse invariant, and we obtain the same result

for E′. Roberts showed that the image of ψ on E∞ is naturally identified with the contact

element c(ξL) ∈ ĤF (−S3(−L)), where ξL is the lift of ξ to S3(−L) and c is the Heegaard

Floer contact invariant. We can easily identify a generator corresponding to these cycles on

a branched diagram. We hope to use this fact to further connect ψ with contact topology.

This chapter is nearly identical to parts of our article “Branched diagrams and the Ozsváth-Szabó
spectral sequence”, available on the Arxiv [57].

1E1(D) ∼= C̃Kh(D), but E0(D) will in general have much larger rank than the Khovanov chain complex.

41
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We pursued a spectral sequence from branched diagrams, first suggested to exist in

[26], to show that a certain combinatorial spectral sequence defined by Szabó is identical to

Ozsváth and Szabó’s. However, we find that the face maps in E′ are different from Szabó’s.

The face maps on Szabó’s theory Oz are largely determined by a handful of simple linear-

algebraic rules. It would be interesting to characterize the maps on E′ by similar rules to

see exactly how the two theories differ and to produce a combinatorial spectral sequence

isomorphic to E′. We speculate some more on this in the final section of the chapter.

3.1 Branched diagrams

In this section we introduce a different set of Heegaard diagrams for the branched double

cover of a resolution of a link. They first appeared, in a different guise, in [26].

Let L ⊂ S3 be a link and D a diagram for L with c crossings. Draw a small circle around

each crossing so that it contains exactly two arcs. For any two resolutions I and I ′ of D

the diagrams D(I) and D(I ′) differ only within those circles. In S3, the links differ only in

small balls.

Now let I0 be the resolution (0, · · · , 0) and consider the diagram D(I0). Color the arcs

inside the circles blue and add dotted arcs as shown in Figure 3.1. For a component with

no crossings, draw a dotted arc to divide it into two pieces and color one side red and the

other blue. Now place this diagram on a sphere and make a copy. Properly interpreted,

this pair of diagrams is a Heegaard diagram: the dotted arcs are branch cuts connecting

the two spheres to form a surface V . The red and blue arcs on each side are connected

through the branch cuts to form sets of red and blue circles which we denote by A and

B(I0), respectively.

Proposition 3.1.1. The Heegaard diagram (V,A,B(I0)) presents S3(D(I0)).

Proof. Place the diagram D(I0), along with the small circles around the crossings, onto a

2-sphere S ⊂ S3. There are 4k points at which the diagram meets the small circles. Leaving

those fixed, gently lift the blue curves off of the sphere and push the red curves into it. The

two balls bounded by S lift, in the branched cover, to handlebodies with (co)attaching

curves A and B, respectively. The resulting Heegaard diagram is exactly (V,A,B(I0)).
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Figure 3.1: On the left, the 0-resolution of a crossing. In the middle, one side of the
corresponding local picture on a branched diagram. On the right, the same for the 1
resolution. We have only shown one side of each branched diagram. The other side is
identical.

Figure 3.2: A branched diagram from the (1, 0, 0) resolution of a trefoil with the crossings
ordered clockwise from the top left. The bar in the middle indicates that the two diagrams
lie on different spheres, connected through the branch cuts. The left/top component is
marked.

The cautious reader will note that A and B(I0) each have 2k elements, but V has genus

2k−1. Moreover, the diagram has no basepoint. Choose a pair (a, b) with a ∈ A, b ∈ B(I0),

a∩ b 6= ∅; we will assume that the corresponding curves in D(I0) border the outermost part

of the diagram, but this is not strictly necessary. The diagram (V,A \ {a},B(I0) \ {b})

still presents S3(D(I0)), and the outermost regions on both sides of diagram are connected.

Place a basepoint z in that region. A and B will refer to A \ {a} and B \ {b} for the

remainder of this paper, and the diagram (V,A \ {a},B(I0) \ {b}, z) will be denoted by

Br (I0). The component of A ∪B from which curves were removed will be called marked.

Let I 6= I0 be a resolution of D. We define B(I) by comparison with B(I0). At each

crossing where I and I0 determine the same resolution, B(I) contains curves parallel to

those in B(I0). At crossings where they disagree, B(I) contains the green curves in Figure

3.3.
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Definition. The Heegaard diagram

Br (I) = (V,A,B(I), z)

is the branched diagram of D(I).

Figure 3.3: Three different local pictures of a branched multidiagram for a change of reso-
lution. On the left, the local picture at the changed resolution. The other pictures are local
pictures at unchanged crossings.

Definition. For a path of resolutions I, the Heegaard multidiagram

Br (I) = (V,A,B(I1), . . . ,B(In), z)

is the branched multidiagram of I.

If I ′ is an immediate successor of I, then (V,B(I),B(I)′, z) is a standard Heegaard

diagram for #2k−2(S2 × S1). Thus it has a highest degree generator (and cycle) ΘIi ∈

ĈF (V,B(Ii),B(Ii+1), z).

3.2 Bouquet diagrams from branched diagrams

Using branched diagrams, we can define a group X ′ =
⊕

I∈{0,1}c ĈF (Br (I)) and a map

D′ : X ′ → X ′ by analogy with X and D. It is not clear from the getgo that D′ is a

differential, much less that the argument from the last chapter produces a spectral sequence

isomorphic to Ozsváth and Szabó’s. Rather than attempting to adapt their proof, we will

show that for every branched (multi)diagram there is a bouquet (multi)diagram which is

differs from the branched diagram by a sequence of handleslides. In the next section, we
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show that the quasi-isomorphisms of Heegaard Floer chain complexes induced by these

handleslides induces an isomorphisms of spectral sequences.2

For D a diagram of L ⊂ S3 there is a bouquet diagram closely related to the branched

diagram Br (I0). The B(I0) curves of Br (I0) are paired together at crossings of D. Let

B′(I0) ⊂ B(I0) be a choice of one such curve at each crossing. The new diagram comes

from handlesliding each element of B′(I0) over the curve with which it is paired in B(I0).

Diagrammatically, replace the chosen curve with a circle which contains (in the fixed pro-

jection of the diagram) the two branch cuts. Call the collection of such circles C. Let

η(I0) = C ∪ B′(I0). For any other resolution I, define η(I) = C ∪ B′(I) as follows: at a

0-resolution, B′(I0) and B′(I) contain the same curves. At a 1-resolution, B′(I) instead

contains a curve which intersects the corresponding curve in B′(I0) once and does not

intersect any other B′(I) curves. See Figure 3.4.

Let Bo(I) = (V,A,η(I), z).

Figure 3.4: On top, both sides of Bo(I) at a 0-resolution. On the bottom, both sides of
Bo(I) at a 1-resolution.

2The Heegaard Floer homology of a three-manifold does not depend on the choice of Heegaard diagram:
given two diagrams for Y we can always connect them by a series of (pointed) isotopies, handleslides, and
(de)stabilizations. These moves induce natural isomorphisms on Heegaard Floer homology groups. But it
is not clear a priori that they induce isomorphisms of spectral sequences.
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Proposition 3.2.1. The Heegaard diagram Bo(I) presents S3(D(I)) and is a bouquet dia-

gram for the surgery arcs from the Ozsváth-Szabó construction.

Proof. The diagram Bo(I) differs from Br (I) by sliding the C curve over the B′(I) curve at

each crossing, so certainly (V,α,η(I)) presents S3(D(I)). The local picture associated to

a resolved crossing each has a single curve which intersects the branch cuts. These curves

intersect once and do not intersect any other curves, so they lie on a punctured torus on V .

They are clearly a meridian and longitude for the lift of the related surgery knot.

3.2.1 Admissibility and minimality

We now show that BrI and BoI are weakly admissible in the sense of [48]. On each side of

Br (I) there are circles formed by alternating A and B curves. Fixing our attention on one

side of the diagram, these circles are in one-to-one correspondence with closed components

of D(I), except for the marked component, which corresponds to a line rather than a circle.

For a component Q of D(I), we say a curve γ in A or B belongs to Q if γ is a subset of Q

through this correspondence.

Proposition 3.2.2. Branched diagrams are weakly admissible.

Proof. It suffices to show that every periodic domain on Br (I) has positive and negative

coefficients. Let Q1 be an innermost component of D(I). There are two regions bounded

by the curves belonging to this component, and their difference is a periodic domain P1.

Now let Q2 be a component which contains Q1 and does not contain any other component

which contains Q1. There are two regions bounded by the curves belonging to Q1 and

the B curves belonging to Q0, and their difference is a periodic domain P2. The region

obtained by instead using the A curves belonging to C0 differs from this one by ±P1. It

is straightforward to extend this method to the remaining components of D. The result

is a linearly independent set P of n − 1 primitive periodic domain, each corresponding to

a closed component. Each of these domains has both positive and negative coefficients.

The group of periodic domains on Br (I) is isomorphic to H1(S1 × S2;Z) ' Zn−1, so P

generates the group. It is clear that any sum of these domains has both positive and
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negative coefficients.3

We show that bouquet diagrams are admissible by a similar method. Curves A and

B′(I) ⊂ η(I) may be said to belong to component Q as above, but we will say a curve in

C belongs to a component only if its paired curve in B′(I0) does not.

Figure 3.5: A bouquet diagram for the 0-resolution of an unknot. The lightly shaded region
is the ‘obvious’ bigon for the left component. The darker region is topologically an annulus,
but it can represent a holomorphic disk into the symmetric product of the Heegaard surface
by cutting along a A curve.

Proposition 3.2.3. Bouquet diagrams are weakly admissible.

Proof. For each closed component of D(I), there are two regions bounded by curves belong-

ing to that component. If all the η(I) curves belonging to a component are also in B′(I),

then the regions are identical to those in the previous lemma. When a curve in C bounds

a region, it is still easy to see how one how it might bound one region. The complemen-

tary region is more complicated; an example is shown in Figure 3.5. Again, the difference

between these two regions is a periodic domain with positive and negative coefficients.

Every other Heegaard diagram considered in this chapter consists of some mixture of

branched and bouquet diagrams, along with pairs of parallel curves. Using the above

arguments it is easy to find a basis of periodic domains with positive and negative coefficients

and whose sums must have positive and negative coefficients provided that the parallel

curves are properly perturbed.

3The skeptic is encouraged to play the game Lights Out from Tiger Electronics.
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3.2.2 Correspondance with Khovanov chain complex

Proposition 3.2.4. Let Br (I) be a branched diagram for the resolution I of a diagram for

the link L. Only the unique torsion Spinc structure on S1×S2 is represented by a generator,

and rank ĈF (Br (I)) = rank ĤF (Br (I)) = rank K̃h(m(L)).

Proof. Write s0 for the unique torsion Spinc structure on S1 × S2. As in [47],

rank(ĤF (#nS1 × S2)) = rank(ĤF (#nS1 × S2, s0)) = 2n.

The Heegaard diagram Br (I) presents #n−1S1 × S2 where n is the number of connected

components of the resolved diagram. Thus it suffices to show that rank(ĈF (Br (I))) = 2n−1.

A generator of ĈF (Br (I)) can be written as a choice of one of two orientations of each

component of D(I) except for the marked component. Thus rank(ĈF (Br (I))) = 2n−1. In

particular, the differential on ĈF (Br (I)) vanishes.

An explicit correspondance is given as follows: for every pair of parallel curves in Br (I)

there is a pair of intersection points. The one with higher Maslov grading – i.e., the source

of the two cancelling disks – corresponds to v+, while the other corresponds to v−.

The correspondance depends on the placement of the basepoint z. Without z, it is

impossible to determine which generator in ĈF (S1 × S2) has higher Maslov grading. For

more on this point and the trouble it brings, look ahead to 3.4

For a three-manifold Y and a torsion Spinc structure s ∈ Spinc(Y ), the group ĈF (Y, s)

has an (absolute) Q-valued grading gr defined in [51]. We note here only a few properties

of gr. First, for any Heegaard diagram of S1 × S2 so that ĈF (S1 × S2) has exactly two

generators, the generators have gradings 1/2 and −1/2, respectively. Second, the grading

is compatible with the Künneth formula for Heegaard Floer homology: ĈF (Y1#Y2) ∼=

ĈF (Y1) ⊗Z/2Z ĈF (Y2) is an isomorphism is of graded vector spaces. In other words, the

grading of a generator in ĈF (Y1#Y2) is the sum of gradings of the corresponding generators

in ĈF (Y1) and ĈF (Y2).

In section 2.1 we defined gradings h and q on the Khovanov chain complex. Let h′ :



3.3. HANDLESLIDES 49

X ′ → Z be defined identically to h. Let q̃′ = 2 gr, and define q′ : X ′ → X ′ by

q′(x) = q̃′(x) + n+ − 2n−.

Proposition 3.2.5. The correspondance in the proof of Proposition 3.2.4 is a graded iso-

morphism of the vector spaces X ′(D) ∼= C̃Kh(D).

Proof. Just compare the formulas involved.

3.3 Handleslides

Let us recap: for a diagram D with c crossings of a link L ⊂ S3 we have two groups

X =
⊕

I∈{0,1}c ĈF (Bo(I)) and X ′ =
⊕

I∈{0,1}c ĈF (Br (I)). The group X is equipped with a

filtered differential D. The group X ′ is equipped with a filtered map D′, defined identically

mutatis mutandis. In this section we study the maps induced by the handleslides which

transform Bo(I) to Br (I).

Figure 3.6: A branched multidiagram representing a handleslide at a 0-resolved crossing.

To start, we examine the map induced by the handleslides near the first crossing (the

crossings must be ordered to have a cube of resolutions in the first place). As in [54], we

may draw and slide parallel curves together. Figure 3.6 shows a Heegaard multidiagram

realizing a handleslide at a 0-resolved crossing. The local picture at a 1-resolved crossing is

similar. At all other crossings, η(I) and B(I) curves are parallel. For any resolution I the

Heegaard diagram (V,η(I),B(I)) presents a connected sum of S1×S2s and ĈF (η(I),B(I))

has a highest degree generator ΘI . For every path I = {I1, . . . , In} there is a map ψI given
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on generators by

ψI(x) = f(x⊗ΘI1 ⊗ · · ·ΘIn−1).

Extend the cube of resolutions to {0, 1}c × {0, 1}, where the last coordinate specifies

whether to use curves from Bo(I) (for 0) or Br (I) (for 1). Let ψ1 be the map ψ1 =
∑
ψI

where the sum is taken over paths whose last coordinate changes. (We will freely conflate

ψ1 with the restriction of ψ1 to a map X → X1.) Define maps D0 and D1 by

D0 =
∑

J,J ′∈{0,1}k×{0}
dJ,J ′

D1 =
∑

J,J ′∈{0,1}k×{1}
dJ,J ′

Note that D0|X′×{0} = D.

Proposition 3.3.1. The map ψ1 satisfies ψ1 ◦D0 = D1 ◦ ψ1.

Proof. Let φ ∈ π2(x,ΘI1 , . . . ,ΘIn−1) with µ(φ) = 1. Write M(φ) for the space of holomor-

phic representatives of φ. This space has a compactification whose ends are pairs (φ1, φ2)

so that φ1 ? φ2 = φ and µ(φ1) = µ(φ2) = 0. Here ? is the concatenation operation. More

concretely, the ends are “broken polygons” joined at a vertex. Each of these corresponds to

a holomorphic polygon with µ = 1 and a degenerating chord, as shown in Figure 3.7. Com-

pactness implies that the sum of the ends must be zero modulo 2. In this schematic, each

edge of the polygon is mapped to a set of attaching curves (really, to a torus in a certain

symmetric product) and we will abuse notation by identifying the side of the polygon with

the curves.

Each polygon counted by ψ1 has a unique vertex v joining a η edge and a B edge.

This vertex, which we call v, represents the handleslide. The character of the degeneration

is determined by the position of the degenerating chord relative to v and to the A edge.

Suppose the chord has an endpoint on the A. The other endpoint must be either to the

left or to the right of v, so in the degeneration v ends up in one polygon or the other. The

polygon with v is counted by ψ1; it corresponds to a subpath whose last coordinate changes.



3.3. HANDLESLIDES 51

Figure 3.7: A holomorphic pentagon degenerates along a chord into a holomorphic triangle
and rectangle. Supposing that the vertex v is where the green and purple edges meet, this
degeneration is counted by ψ1 ◦D0

The other polygon is a component of either D0 or D1. Looking at all degenerations, every

component of φ1 ◦ D0 and D1 ◦ ψ1 appears exactly once. So degenerations along a chord

touching the A edge contribute ψ1 ◦D0 +D1 ◦ ψ1 to the boundary sum.

Suppose that the degenerating chord does not have an endpoint on A and also that it

does not separate A from v. After degenerating, one polygon contains A and v and the

other has edges which live entirely in one cube of resolutions. The cancellation lemma,

Lemma 4.5 of [50] or Lemma 7 of [54], shows that the maps counting such polygons sum

to zero. The case in which the degenerating chord separates v from A is the subject of the

following lemma. This completes the proof, as it shows that ψ1 ◦D + D1 ◦ ψ1 is equal to

the sum of all the boundary components, and therefore to zero.

Lemma 3.3.2. Let I, I ′ ∈ {0, 1}k ×{0, 1} be resolutions with differing last coordinates and

I < I ′. Then ∑
paths J from I to I′

fJ(Θ1 ⊗ · · · ⊗Θn) = 0.

Proof. Our argument closely follows those in [50] and [54]. Suppose that n > 2. We will

show that any element of π2(Θ1, . . . ,Θn) has positive Maslov index.

One may construct a polygon counted in the sum by splicing together several triangles.

There are three sorts of constituent triangles:

1. those of the form (η(J0),η(Ji),η(Ji+1))

2. those of the form (η(J0),B(Jj),B(Jj+1))
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3. a single triangle of the form (η(J0),η(Jk),B(Jk+1)).

The third type contains the vertex v. Every triple of the first type presents a surgery cobor-

dism between connected sums of S1×S2s. Any contributing triangle must have Maslov index

zero, so the corresponding map sends the highest degree generator in ĈF (η(J0),η(Ji)) ⊗

ĈF (η(Ji),η(Ji+1)) to the highest degree generator in ĈF (η(J0),η(J i+1)), see Lemma 3 in

[54]. To obtain an honest polygon we must ‘undo’ the degenerations, increasing the Maslov

index by one each time. There must be at least one triangle of type 1 or 2 if n > 2, so every

polygon has Maslov index greater than 0. As all the Θs live in torsion Spinc structures, the

addition of a doubly-periodic domain does not affect its Maslov index. It follows that no

such polygon has Maslov index zero. An identical argument applies to triples of the second

sort.

If n = 1 then the lemma is simply that Θ is a cycle. In the case n = 2, the map fJ

counts certain triangles in which one vertex is v. These correspond to changes of codes

of the form (0, . . . ; 0) → (1, . . . ; 0) → (1, . . . ; 1) or (0, . . . ; 0) → (0, . . . ; 1) → (1, . . . ; 1). In

each case there is a unique triangle connecting highest degree generators, see Figure 3.8.

The triangles shown have Maslov index according to Sarkar’s formula in Section 2.3.3. An

analysis of periodic domains shows that there are no other triangles between the highest

degree generators. The remaining curves in the diagram come in parallel triples.

Figure 3.8: The B curves for the paths (0, . . . ; 0) → (1, . . . ; 0) → (1, . . . ; 1) (left) and
(0, . . . ; 0)→ (0, . . . ; 1)→ (1, . . . ; 1) (right). The intersection points constituting the highest
degree generator are marked with circles. The shaded region is the region of the unique
holomorphic triangle connecting the generators.

This argument works just as well if we change a second crossing after changing the first,

and so on. Let Xi be the group obtained by doing i of these handleslides. Let Di be the



3.3. HANDLESLIDES 53

putative differential on Xi, and let ψi+1 : Xi → Xi+1 be the map induced by the next

handleslide. Let Ψ = ψn ◦ . . . ◦ ψ1 and write φi : Xi → Xi−1 for maps defined identically to

ψi but induced by the reverse handleslide. Let Φ = φ1 ◦ · · · ◦ · · · ◦ φn.

Lemma 3.3.3. The pair (X ′, D′) is a filtered complex.

Proof. Suppose D has n crossings so that X = Xn = Φ(X ′). By definition Dn = D.

Proposition 3.3.1 implies that the maps Ψ and Φ are D-D′-equivariant so Φ◦D′2 = D2◦Φ =

0. Let φ0
i be the component of φi which only counts paths of length two (i.e. holomorphic

triangles). Let Φ0 = φ0
2 ◦ · · · ◦ φ0

n so that Φ0 is a direct sum of maps Φ0
I : ĈF (Br (I)) →

ĈF (Bo(I)). The proof of topological invariance of Heegaard Floer homology shows that

each of these maps is a quasi-isomorphism. Now Lemma 3.2.4 implies that Φ0 is injective:

if rank(φ0
I) < dim(ĈF (Br (I))), then rank((φ0

I)∗) < dim(ĈF (Br (I))) = dim(ĤF (Br (I)))

and Φ0
I could not be a quasi-isomorphism.

For the sake of contradiction, suppose that (D′)2(x) 6= 0 for some x ∈ X. Then (D′)2(x)

may have components in several direct summands. Say that the weight of a resolution is the

sum of its entries. Let x0 be a non-zero component of (D′)2(x) in a direct summand whose

resolution I0 has lowest possible weight. Then Φ◦(D′)2(x) has a component Φ0◦(D′)2(x) 6= 0

in ĈF (Bo(I0)). Because x0 is in the lowest possible weight, no other component of Φ can

cancel with Φ0, so Φ ◦ (D′)2(x) 6= 0. This contradiction implies that (D′)2 = 0.

Now we are able to complete the proof of the theorem stated in the introduction.

Theorem 3.3.4. Let L ⊂ S3 be a link with diagram D. Let E′(D) be the spectral sequence

induced by the order filtration on (X ′, D′) and let E(D) be the Ozsváth-Szabó spectral se-

quence. Then Ek(D) ∼= E′k(D) for k ≥ 1.

Proof. The map Ψ is a filtered chain map, so it induces a map of spectral sequences. The

induced map on E1 is the direct sum of handleslide maps ĤF (Bo(I))→ ĤF (Br (I)) which

are shown to be isomorphisms in the proof of the topological invariance of Heegaard Floer

homology. This implies that the maps induced by Ψ are isomorphisms for k ≥ 1, see

Theorem 3.4 in [43].
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For a transverse link L ⊂ (S3, ξ) with braid closure diagram β̄, let ψ(β̄) ∈ CKh(β̄) be

Plamenevskaya’s transverse element in Khovanov homology [52].

Corollary 3.3.5. The vector spaces E′k(L) are smooth link invariants for k ≥ 2. The

image [ψ(β̄)] ∈ E′k(β̄) is a transverse link invariant for k ≥ 2.

Proof. In [6], Baldwin shows that Ek(L) is a (smooth) link invariant for k ≥ 2 and that

the image of ψ(L) on Ek(L) is a transverse invariant for k ≥ 2. The proofs of these facts

translate to the branched setting. The essential point is that if D and D′ are diagrams of L,

any sequence of Reidemeister moves induces a map X ′(D)→ X ′(D′) which in turn induces

an isomorphism on E′2. Theorem 3.4 in [43] implies that the two spectral sequences are

isomorphic.

For the second statement, we use the fact that ψ(β̄) has lowest annular grading among

all elements of the Khovanov complex of the closure of an annular link [55]. It is not hard

to see that the differential D′ does not increase this grading as in [55] and [26].

More concretely, if β̄ is a braid closure diagram for the transverse link L ⊂ (S3, ξ),

it is easy to spot ψ(β̄) in Br (β̄): simply look in the unique braidlike resolution and find

the Heegaard Floer generator with lowest grading. Work of Roberts [55] shows that this

same generator represents the Heegaard Floer contact invariant c(ξL) ∈ ĤF (§3(−L)) for

the contact structure ξL which lifts ξ.

3.4 Comparison with Szabó’s spectral sequence

In [61], Szabó defines a new spectral sequence from reduced Khovanov homology. Let

L ⊂ S3 be a link with a marked, spherical diagram D. Let COz(D) = CKh(D) as a

vector space. Define ∂1 : COz(D) → COz(D) to be the usual Khovanov differential. Now

consider a k-dimensional face of the cube. The lowest and highest weight resolutions of the

face differ by k changes of resolution which may be encoded by k arrows. We call these

arrows decorations. The lowest weight diagram along with these decorations is called a

k-dimensional configuration. Some subset of the closed components meet the decorations;

these components are called active circles. The remaining components are called passive
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circles. The circles in the lowest weight resolution are called starting circles and the circles

in the highest weight diagram are called ending circles. Szabó defines a map across the face

which depends on the configuration. Write ∂k for the sum of these maps defined across

k-dimensional faces. (The exact form of these maps can be found in [61].) Write Oz(D) for

the homology of COz(D).

Theorem (Szabó). (COz(D), ∂1 + ∂2 + · · · ) is a complex, and its homology Oz(D)is a link

invariant.

Write ∂Oz = ∂1 + ∂2 + · · · . This map is characterized by the several rules. Let C be a

k-dimensional configuration and let FC be the map assigned to C.

• Disconnected configurations: if the union of the active circles and their decorations is

disconnected, then FC = 0.

• Extension: on tensor factors corresponding to passive circles, FC acts as the identity.

• Grading: q(FC(x))− q(x) = k − 2.

• Reversal: The map FC is the same as the map assigned to r(C), the configuration

with oppositely oriented decorations.

• Naturality: Let φ : S2 → S2 be a diffeomorphism. Then Fφ(C) = Fφ(C), identifying

closed components of C and C ′ via φ.

• Duality: Write C0 for the starting circles and C1 for the ending circles. There is a dual

configuration C∗ from C1 to C0 whose decorations are the images of the decorations of

C under surgery. Let m(C∗) be the same configuration but on an oppositely oriented

sphere. There is a duality map on Khovanov homology which sends v+ → v− and

v− → v+. Let x be a generator of C̃Kh(C0) and y a generator of C̃Kh(C1). Then the

coefficient of FC(x) on y is equal to the coefficient of Fm(C∗)(y
∗) at x∗.

• Basepoint action and filtration: Let p ∈ D. Let xp : CKh(D) → CKh(D) be the

basepoint map. Then FC ◦ xp = xp · FC .

These rules appear to be related to properties of Heegaard Floer homology. For example,

the last rule is analogous to the fact that Heegaard Floer polygon maps are Z/2Z[U ]-module

maps. The first rule corresponds to the grading conjecture that there is a grading on the

Ozsváth-Szabó spectral sequence so that the differential on Ek acts with grading 2−k. The
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Figure 3.9: Configuration 2 in Szabó’s labeling.

basepoint rule allows us to define a reduced theory, C̃Oz.

To see how these rules determine the maps, consider the configuration C2 in Figure 3.9.

Suppose that FC2 is not zero. By extension and naturality, the map is determined by this

local picture. Let t be a simple tensor in C̃Kh(C2) in which one of the circles is labeled v−.

The filtration rule implies that FC2(t) = v−. The grading rule then implies that exactly

two of the active components is v−-labeled. A similar argument shows that FC2(t) = 0 if

more or fewer of the components are labeled v−. Finally, naturality implies that the outer

two components must be the v−-labeled ones because there is a diffeomorphism of S2 which

reverses their roles in the picture.

Based on structural similarities and Seed’s computations [59], Seed and Szabó conjecture

the following.

Conjecture ([59, 61]). Õz(L) ∼= ĤF (Σ(L)), and the spectral sequence from C̃Oz(D) to

ĤF (Σ(L)) is isomorphic to the Ozsváth-Szabó spectral sequence.

We initially pursued Theorem 3.3.4 in the hope of showing that E′(D) agrees with Oz(D)

or, more optimistically, that Oz(D) ∼= X ′(D). The latter is not true in general. Consider

the configuration C1 shown in Figure 3.10. Figure 3.11 shows the corresponding branched

diagram.4 If Oz(D) were identical to X ′(D) there would be a single (mod 2) holomorphic

quadrilateral representing the map FC1 , which maps v+⊗ v+ to v+⊗ v+. Figure 3.12 shows

that there are no such quadrilaterals: the region corresponding to such a quadrilateral

would differ from the region shown by a periodic domain, and the resulting domain would

have negative coefficients. In fact, the only non-zero component of the Heegaard Floer map

from the multidiagram in Figure 3.11 sends v+ ⊗ v+ to v+ ⊗ v−, where in the latter tensor

4We could also consider the case in which part of C1 is the marked component. The analysis is identical.
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product the labeling of the outer circle comes first.

Figure 3.10: Configuration 1 in Szabó’s labeling.

As noted at the end of Section 3.2.2, the correspondance between Floer and Khovanov

generators is determined by the basepoint z of the underlying branched diagrams. Moving

the basepoint across a curve flips the gradings of the generators corresponding to labelings

of any component containing that curve. There is a basepoint placement in Figure 3.12 so

that the quadrilateral map agrees with FC1 .

Similar examinations of the other configurations suggests that the discrepancy between

X ′ and Oz stems from the spherical symmetry in Oz which is broken by the placement of a

basepoint in X ′. In Oz, the two ending circles of configuration 1 are indistinguishable, and

in fact they may be isotoped to appear unnested in a planar diagram. This is not possible

in the Heegaard Floer world. The Heegaard Floer triangle maps agree with the maps on

Oz in configurations like configuration 2 in which circles are not nested.
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Figure 3.11: The branched Heegaard multidiagram from configuration 1. The black (resp.
grey) dots mark intersection points which belong to the Heegaard Floer generators corre-
sponding to v+ ⊗ v+ on the starting (resp. ending) circles.
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Figure 3.12: A region corresponding to a Whitney quadrilateral. The orange regions have
coefficient +1 and the negative regions have coefficient −1.





Chapter 4

An annular refinement of the

transverse invariant in Khovanov

homology

Given a link L equipped with an embedding into a thickened annulus (i.e. L ⊂ A× I ⊂

S3), its Khovanov chain complex can be endowed with an additional grading called the k-

grading, first studied in [4] and [55]. For a resolution with a single component, k(v±) = ±1

if the component is not null-homotopic in A × I, and k(v±) = 0 otherwise. We extend

the grading to tensor products by summation. The Khovanov differential is non-increasing

in the k-grading, so k induces a filtration on the Khovanov complex. The homology of

the associated graded chain complex is called annular Khovanov homology, denoted here

as AKh(L) (elsewhere also called sutured annular Khovanov homology or sutured Khovanov

homology and denoted SKh(L)). AKh is an invariant of annular links and not a transverse

invariant. For a braid closure β̄, the element ψ(β̄) ∈ CKh(β̄) is the unique element with

lowest k-grading.

Standard algebraic machinery (see [31] for an introduction and [43] for a thorough

treatment) produces a spectral sequence from the associated graded object of a filtered

The work in this chapter is joint with Diana Hubbard. It is identical except for some minor changes to
[29], to be published in Algebraic & Geometric Topology, published by Mathematical Sciences Publishers.

61
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complex to the homology of that complex and therefore from AKh to Kh. Our original

goal in this chapter was to define a (perhaps effective) transverse invariant by exploring the

behavior of Plamenevskaya’s class in this spectral sequence. AKh is known to distinguish

some braids whose closures are smoothly isotopic but not transversely isotopic (see [28]),

and so it is natural to suspect that the spectral sequence from AKh to Kh also captures

non-classical information.

For a braid β with closure β̄, write F i(β̄) = {x ∈ CKh(β̄) : k(x) ≤ i}.

Definition 4.0.1. Let β be an n-strand braid with closure β̄ and suppose that ψ(β̄) is a

boundary in CKh(β̄). Define

κ(β) = n+ min{i : [ψ(β̄)] = 0 ∈ H(F i)}.

If ψ(β̄) is not a boundary then define κ(β) =∞.

The function κ : Bn → Z is only a conjugacy class invariant rather than a transverse

invariant.

Theorem 4.0.1. κ is an invariant of conjugacy classes in the braid group Bn. It may

increase by 2 under positive stabilization and is thus not a transverse invariant.

Nevertheless, κ can distinguish conjugacy classes of some braids whose closures are

transversely non-isotopic but have the same classical invariants.

Proposition 4.0.2. For any a, b ∈ {0, 1, 2}, the pair of closed 4-braids

A(a, b) = σ3σ
−2
2 σ2a+2

3 σ2σ
−1
3 σ−1

1 σ2σ
2b+2
1 and

B(a, b) = σ3σ
−2
2 σ2a+2

3 σ2σ
−1
3 σ2b+2

1 σ2σ
−1
1 ,

related by a negative flype, can be distinguished by κ: indeed, κ(A(a, b)) = 4 and κ(B(a, b)) =

2. For any pair (a, b), the braids A(a, b) and B(a, b) are transversely non-isotopic but have

the same classical invariants [33].

Lipshitz, Ng, and Sarkar, using a filtered refinement of ψ(L) valued in the Lee–Bar-

Natan deformation of Khovanov homology, showed that Plamenevskaya’s class is invariant
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under negative flypes [41]. The above proposition could be seen as evidence that κ carries

non-classical information even if ψ does not.

κ has nice properties mirroring those of ψ, and our calculations have some interesting

consequences. In Section 4.3 we collect these observations. In particular, we show using

Proposition 4.0.2 that the spectral sequence from AKh to Kh does not necessarily collapse

immediately, providing a counterexample to Conjecture 4.2 from [30]. In addition, our work

together with that of Baldwin and Grigsby in [7] provides a solution (faster than that of

[7]) to the word problem for braids.

The behavior of κ under positive stabilization provided some promise that a reduced

analogue of κ might be a transverse invariant. In Section 4.4 we define κ for both versions

of reduced Khovanov homology. However, these constructions depend on the placement

of the basepoint. We still have some hope that these reduced constructions will provide

non-classical transverse information. In any case, the fact that the two reduced variants are

apparently independent demonstrates that the two reductions of Khovanov homology are

quite different with respect to the k-grading.

This project was inspired by similar constructions in Floer homology. Let (Y, ξ) be a

contact three-manifold. Recall that there are elements cξ ∈ ĤF (Y ) and ∅ξ ∈ ECH(Y )

(embedded contact homology) which are invariants of ξ. It is known that each of these

elements vanishes if (Y, ξ) is overtwisted ([49], [17]) or if (Y, ξ) contains Giroux n-torsion

for any n > 0 ([22]) (both converses are false). In [38], Latschev and Wendl study algebraic

torsion in symplectic field theory and show that it can obstruct fillability. Hutchings adapts

this work to embedded contact homology by constructing a relative filtration on ECH(Y ).

He defines the algebraic torsion of the contact element to be the lowest filtration level at

which ∅ξ vanishes. As ECH is known to be isomorphic to ĤF (see [39]) by an isomorphism

carrying ∅ξ to cξ, it is reasonable to suspect that there is an analogous construction in

Heegaard Floer homology . This is the subject of ongoing work by Baldwin and Vela-Vick

[5] and independently by Kutluhan, Matić, Van-Horn Morris, and Wand [37].

Now let L ⊂ (S3, ξ) be a transverse link. The branched double cover Σ(L) inherits a

contact structure ξ(L) from (S3, ξ). Plamanevskaya conjectured [52] and Roberts proved

[55] (see also [9]) that ψ(L) “converges” to cξ(L) in the Ozsváth-Szabó spectral sequence in
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the sense that there is some x ∈ E0(L) so that [x]2 = ψ(L) ∈ E2(L) and [x]∞ = cξ(L) ∈

E∞(L). This is a weak sort of convergence – in particular, the vanishing or non-vanishing

of the two elements are independent – but it has been used fruitfully, e.g. [9]. We hope to

use this connection to derive contact-theoretic information from κ.

4.1 The annular filtration

Let A ⊂ R2 be a standard annulus in R2. An annular link is a link L ⊂ A × [0, 1]. Let γ

be a simple closed curve from the inner boundary of A × {1
2} to the outer boundary. Let

π : A× I → A be the projection. Let L be an annular link with diagram D. A component

C of the resolved diagram is called trivial if the mod 2 intersection number of π(C) with

π(γ) is 0 and is called non-trivial otherwise. The k-grading of a generator x is

k(x) = #{non-trivial circles in x labeled v+}

−#{non-trivial circles in x labeled v−}.

Roberts [55], following [4], shows that the Khovanov differential is non-increasing in k.

Thus the subcomplexes F i(D) = {x ∈ CKh(D) : k(x) ≤ i} form a bounded filtration of

CKh(L). Moreover, the filtered chain homotopy type of CKh(D) is an invariant of L as an

annular link. For a filtered complex (X ′, d′,F ′i) the associated graded object is the direct

sum of complexes
⊕

iF
′
i /F ′i−1. There is a spectral sequence from the associated graded

object to the homology of the total complex, see [43]. The associated graded object of the

Khovanov chain complex filtered by k is called annular Khovanov homology and is denoted

by AKh(L). Roberts concludes the following.

Theorem 4.1.1. [55] For any annular link L there is a spectral sequence from AKh(L) to

Kh(L).

Braid closures may be naturally regarded as annular links, and annular Khovanov ho-

mology has proven to be a powerful tool in studying braids. See, for example, [26], [7], [25],

and [28].



4.2. DEFINITION AND INVARIANCE OF κ 65

4.2 Definition and invariance of κ

Let β ∈ Bn be a braid with transverse element ψ(β̄). The k-filtration on CKh(β̄) has the

form

0 ⊂ F−n ⊂ F2−n ⊂ · · · ⊂ Fn−2 ⊂ Fn = CKh(β̄)

where F−n is generated by ψ(β̄), so ψ(β̄) ∈ F i for i ≥ −n. We restate Definition 4.0.1:

Definition. Let β ∈ Bn and suppose that ψ(β̄) is a boundary in CKh(β̄). Define

κ(β) = n+ min{i : [ψ(β̄)] = 0 ∈ H(F i)}.

If ψ(β̄) is not a boundary, then define κ(β) =∞.

We will say that y ∈ CKh(β̄) realizes κ(β) if dy = ψ(β̄) and k(y) = κ(β)−n. Note that

κ is always even and that 2 ≤ κ(β) ≤ 2n. The only element with k-grading n is the all v+

labeling of the braidlike resolution, so in fact κ(β) ≤ 2(n − 1). We now show that κ is a

well-defined function on Bn. First, an algebraic lemma.

Lemma 4.2.1. Let (X, d,F) and (X ′, d′,F ′) be complexes with bounded filtrations, and

suppose that f : X → X ′ is a filtered chain map. For any non-zero cycle x ∈ X, define

κ(x) = min{i : [x] = 0 ∈ H∗(F i)} or κ(x) = ∞ if x is not a boundary. Define κ′

analogously on X ′. Suppose that f(x) = y 6= 0. Then κ(x) ≥ κ′(y). If there is a filtered

chain map g : X ′ → X with g(y) = x, then κ(x) = κ′(y).

Proof. Chain maps carry cycles to cycles, so if κ(x) is defined then so is κ′(y). There

is nothing left to prove if κ(x) = ∞, so suppose that κ(x) is finite. Then there is some

w ∈ Fκ(x) so that dw = x, and (f ◦d)(w) = y = (d◦f)(w). As f is filtered, f(w) ∈ F ′κ(x), so

κ′(y) ≤ κ(x). If there is a filtered chain map g with g(y) = x, then the opposite inequality

shows that κ(x) = κ′(y).

The κ of Lemma 4.2.1 differs from that of Definition 4.0.1 in that the latter is normalized

using the braid index, but the lemma clearly still applies to the Definition.

Proposition 4.2.2. Suppose that β and β′ are words in the Artin generators so that β = β′

in Bn. Then κ(β) = κ(β′).
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Proof. It will suffice to show that κ(β) is invariant under Reidemeister 2 and Reidemeister 3

moves which do not cross the braid axis. These moves induce natural maps on the Khovanov

chain complex which carry ψ(β) to ψ(β′), see [52]. For a digestible summary of these maps,

see [11]. If these maps are filtered, then Lemma 4.2.1 completes the proof.

The map induced by Reidemeister 2 (and its inverse) is a direct sum of identity maps

and compositions of saddles with cups and caps. The saddles, cups, and caps do not cross

the braid axis. Certainly the identity map is filtered. One may check directly that saddle

maps are filtered; alternatively, observe that a saddle may be viewed as a component of the

Khovanov differential of some annular link and so it must be filtered. Cups and caps that

do not cross the braid axis cannot change the k-grading. Thus the Reidemeister 2 map is

filtered. An identical analysis shows that the Reidemeister 3 maps are filtered.

Considering braids instead of their closures, we obtain the following.

Proposition 4.2.3. κ is an invariant of conjugacy classes in Bn.

A program to compute κ is available at www2.bc.edu/adam-r-saltz/kappa.html.

4.3 Examples and Properties of κ

4.3.1 Main example

An immediate first question is whether elements in k-grading −n+ 2 always suffice to kill

ψ(β) whenever [ψ(β)] = 0, that is, whether κ = 2 for all braids with [ψ(β)] = 0. Proposition

4.0.2, using examples from Theorem 1.1 in [33], shows that this is false. We restate it here:

Proposition. For any a, b ∈ {0, 1, 2}, the pair of closed 4-braids

A(a, b) = σ3σ
−2
2 σ2a+2

3 σ2σ
−1
3 σ−1

1 σ2σ
2b+2
1 and

B(a, b) = σ3σ
−2
2 σ2a+2

3 σ2σ
−1
3 σ2b+2

1 σ2σ
−1
1 ,

related by a negative flype, can be distinguished by κ: indeed, κ(A(a, b)) = 4 and κ(B(a, b)) =

2.

www2.bc.edu/adam-r-saltz/kappa.html
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Proof. By computation.

We do not know if this relation holds for all a, b ∈ Z≥0. As A(a, b) and B(a, b) are in the

same isotopy class, they have isomorphic Khovanov homologies. Still, annular Khovanov

homology can differentiate them (see [28]) for a, b ∈ {0, 1, 2}.

4.3.2 Negative Stabilization

Proposition 4.3.1. If a closed n-braid β is a negative stabilization of another braid, then

κ(β) = 2.

Proof. In Theorem 3 of [52], Plamenevskaya constructs an element y ∈ CKh(β) such that

dy = ψ(β) as follows: consider the resolution formed from taking the 0-resolution of the

negative crossing from the negative stabilization, the 1-resolution for all other negative

crossings, and the 0-resolution for all positive crossings. The element y is obtained by

assigning each circle in this resolution v−. It is clear that y has k-grading −n+ 2.

4.3.3 Positive Stabilization

Define an arc of a closed braid diagram to be a segment of the link that goes from one

crossing to another crossing without traversing over or under any other crossings. An

innermost arc is one for which we can draw a straight line from the braid axis to any point

on the arc without crossing any other arcs. An innermost point is a point lying on an

innermost arc.

Given an n-strand braid β, we define Spβ to be β positively stabilized once at an

innermost point p. That is: insert σn at the point p on the diagram.

Proposition 4.3.2. κ(β) is not a transverse invariant.

Proof. This is due to the fact that the chain map corresponding to positive stabilization is

not filtered (see Proposition 4.3.3). We have a concrete example: consider the braid B(0, 0)

from Proposition 4.0.2. By computation, κ(B(0, 0)) = 2 and κ(SpB(0, 0)) = 4 for all choices

of innermost points p.
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We note here that we can define a transverse invariant using κ, though it is not clear

how to compute it unless the transverse link is known to be represented by a braid with

κ = 2.

Definition 4.3.1. For an n-braid β, define κmin(β) to be the minimum κ(K) over all

transverse representatives K of β. It is a transverse invariant.

We can give bounds on the behavior of κ under positive stabilization:

Proposition 4.3.3. κ(β) ≤ κ(Spβ) ≤ κ(β) + 2.

0

v−

v+

0

+

v+ v+ v− v− v+

v−
v− v−

φ : ρ :

Figure 4.1: Chain maps for positive stabilization

Proof. Spβ has a positive crossing at p, and for an n-strand braid β we refer to this crossing

as σn,p. Suppose that σn,p appears last in the crossing ordering. We show the first inequality.

As described in [11], there is a chain map φ : CKh(Spβ)→ CKh(β) whose kernel contains

all elements in resolutions of Spβ where σn,p is 1-resolved and satisfying

φ(z ⊗ v−) = z

φ(z ⊗ v+) = 0

for elements in resolutions where σn,p is 0-resolved (see Figure 4.1). Consider an element

y ∈ CKh(Spβ) realizing κ(Spβ). The element y takes the form z1 ⊗ v− + z2 ⊗ v+ + z3. So

d(φ(y)) = d(z1) = φ(dy) = φ(ψ(Spβ)) = ψ(β)
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Hence z1 kills ψ(β), and so we have

κ(Spβ) = max k(z1 ⊗ v−, z2 ⊗ v+, z3) + n+ 1

≥ k(z1 ⊗ v−) + n+ 1 = k(z1) + n

≥ κ(β)

As described in [11] (see also [52]), there is a chain map ρ : CKh(β) → CKh(Spβ)

satisfying ρ(ψ(β)) = ψ(Spβ). It is given by

ρ(v−) = v− ⊗ v−

ρ(v+) = v+ ⊗ v− + v− ⊗ v+

Hence ρ can either decrease k-grading by one or increase it by one, depending on whether the

circles in question are trivial or non-trivial. Now, suppose we have an element y ∈ CKh(β)

realizing κ(β): then ρ(y) kills ψ(Spβ). The k-grading of ρ(y) is at most κ(β) − n + 1.

Stabilization increases strand number by one, so κ(Spβ) could at most be

κ(β)− n+ 1 + n+ 1 = κ(β) + 2.

4.3.4 Other properties and consequences

Propositions 4.3.1 and 4.3.3 immediately give us bounds for κ of braids related by exchange

moves and positive flypes:

Proposition 4.3.4. If two braids σ and β are related by a single exchange move or a single

positive flype, then |κ(σ)− κ(β)| ≤ 2.

Proof. Exchange moves and positive flypes can both be expressed as a composition of braid

isotopies, one single positive stabilization, and one single positive destabilization (see for

instance [13], [41]).
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Proposition 4.3.5. Suppose a closed n-braid β can be represented by a braid word con-

taining a factor of σ−1
i but no σi’s for some i = 1, . . . , n− 1. Then κ(β) = 2.

Proof. The argument we give here is very similar to arguments found in [52]. Consider

the resolution formed from taking the 0-resolution of one of the σ−1
i ’s, the 1-resolution for

all other negative crossings, and the 0-resolution for all positive crossings. We claim that

assigning each circle in this resolution v− yields an element y with dy = ψ and k(y) = −n+2.

The differential d on y is the sum of all maps with y as their initial end. By our choice of

resolution, any map corresponding to a merge map sends y to 0. Hence d is a sum of split

maps. Topologically, the only split maps that can start from this resolution are in the i’th

column; however, there are only negative crossings in this column, and at this resolution

they are all 1-resolved except for the one that is 0-resolved. So the only contributor to dy

is the map resolving that crossing, sending y to ψ(β).

Corollary 4.3.6. If an n-braid σ is not right-veering, then κ(σ) = 2.

Proof. By Proposition 3.1 of [7] and Proposition 6.2.7 of [16], σ is conjugate to a braid

that can be represented by a word containing at least a factor of σ−1
i but no σi’s for some

i = 1, . . . , n. The result follows by Proposition 4.3.5.

For a braid β ∈ Bn we denote its mirror as m(β) ∈ Bn.

Corollary 4.3.7. If κ(σ) 6= 2 and κ(m(σ)) 6= 2, then σ = 1 ∈ Bn.

Proof. The proof is similar to that of Corollary 1 of [7]. By Corollary 4.3.6, σ and m(σ)

are right-veering and hence σ is also left-veering. By Lemma 3.1 of [7], σ is the identity

braid.

This implies that κ solves the word problem. Indeed, the solution is faster than that of

[7], since it is only necessary to check if Plamenevskaya’s invariant vanishes by the E3 page

of the spectral sequence from annular Khovanov homology to Khovanov homology.

κ provides an obstruction to negative destabilization (Proposition 4.3.1). It can also

provide an obstruction to positive destabilization for a braid in the case that κ 6= 2 for its

mirror. Corollary 4.3.7 implies that it cannot provide an obstruction to destabilization in
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general. One might hope to show that κ 6= 2 for a braid and κ 6= 2 for its mirror, implying

that the braid is neither negatively destabilizable nor positively destabilizable. However,

Corollary 4.3.7 shows that if this is the case, the braid is trivial.

We end this section with a remark on spectral sequences. For any annular link L, there

is a spectral sequence whose E0 page is the annular Khovanov complex of L and whose E1

page is, as a group, the annular Khovanov homology of L. Since there are no differentials

that drop the k-grading by one, the E2 page is identical to the E1 page. Therefore the

first page at which the spectral sequence could collapse is E3. The following proposition

provides a counterexample to Conjecture 4.2 from [30].

Proposition 4.3.8. The spectral sequence from annular Khovanov homology to Khovanov

homology does not always collapse at the E3 page.

Proof. We consider the braid A(0, 0) from Proposition 4.0.2. The distinguished element

ψ(A(0, 0)) lives in homological grading 4 (before any final shifts) and has k grading −4.

Recall that ψ(A(0, 0)) is unique in the lowest k-grading. By Erd,m we mean the r’th page of

the spectral sequence at homological grading d and k-grading m.

Following [31] (recall: the differentials on CKh increase homological grading),

E3
4,−4 =

{x ∈ F−4CKh4|dx ∈ F−7CKH5}
F−5CKh4 + d(F−2CKh3)

=
{x ∈ F−4CKh4|dx = 0}

d(F−2CKh3)

=
span{ψ(A(0, 0))}
d(F−2CKh3)

= [ψ(A(0, 0))] 6= 0

since κ(A(0, 0)) 6= 2. However, [ψ(A(0, 0))] = 0 ∈ Kh4(A), and hence Kh4(A(0, 0)) 6=⊕4
k=−4E

3
4,k.

Precisely the same argument yields a more general statement:

Proposition 4.3.9. Given a braid β, the length of the spectral sequence from AKh(β) to

Kh(β) is bounded below by κ(β).
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4.4 Invariants in reduced Khovanov homology

It is implicit in the proof of Proposition 4.3.3 that κ increases under positive stabilization at

p precisely if every element which realizes κ has a canonical summand in which p lies on a

trivial v+-labeled circle. This situation cannot occur in (one version of) reduced Khovanov

homology, and so one might hope that a “reduced κ” is an invariant of transverse links.

That’s not quite the case – the eager reader may skip to the examples at the end of this

section – but the reduced invariants are interesting in their own right.

In this section let p be a non-double point on an n-strand annular braid diagram D of

β̄. For convenience, we will assume that the last tensor factor of each generator of CKh(D)

corresponds to the component containing p. The k-grading on CKh(D) induces a k-grading

on each variant of reduced Khovanov homology. On the subcomplex C̃Khp(D) this is simply

the restriction. We define the k-grading on CKhp(D) via canonical representatives: if y is

the canonical representative of y ∈ CKhp(D), then k(y) = k(y). However, the isomorphism

between the two variants is not in general k-filtered. Thus we will distinguish their ho-

mologies as the reduced homology K̃hp(D) and the reduced quotient homology Khp(D). We

write F̃ i and F i for the ith filtered levels of C̃Khp(D) and CKhp(D) respectively.

Each complex supports a variant of the transverse element ψ(D). The cycle corre-

sponding to ψ(D) is also a cycle in the subcomplex C̃Khp(D) for any p. When we wish

to emphasize that we are considering ψ(D) as an element of the subcomplex, we will write

it as ψ̃p(D). Plamenevskaya defines the reduced quotient invariant ψ
p
(D) to be the image

of the chain v− ⊗ · · · ⊗ v− ⊗ v+ in CKhp(D). Both ψ̃p and ψ
p

are invariant under braid

conjugation and stabilization away from p in the same sense (and with the same proofs) as

ψ. Both cycles have the lowest k-grading in their respective complexes, but ψ
p

does not

necessarily generate that lowest level.

As these constructions depend on a choice of p on a particular diagram for a link, we

will not write “ψ̃p(β̄)” or “ψ
p
(β̄)”.

Definition 4.4.1. Let β ∈ Bn, let D be an annular diagram for β̄, and let p ∈ D. If ψ̃p(D)
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is a boundary in C̃Khp(D), define

κ̃p(D) = n+ min{i : [ψ̃p(D)] = 0 ∈ H∗(F̃ i(D))}.

If ψ̃p(D) is not a boundary, then define κ̃p(D) = ∞. If ψp(D) is a boundary in CKhp(D),

define

κp(D) = n+ min{i : [ψ
p
(D)] = 0 ∈ H∗(F i(D))}.

If ψ
p
(D) is not a boundary, then define κp(D) =∞.

The arguments of Section 4.2 show that κ̃p(D) and κp(D) are invariant under positive

stabilization away from p and conjugations that do not cross p.

Lemma 4.4.1. For a fixed diagram D, either κ(D), κ̃p(D), and κp(D) are all finite or all

infinite. In the finite case, κ(D) ≤ κ̃p(D) ≤ κp(D) ≤ κ̃p(D) + 2.

Proof. There is a short exact sequence of complexes

0→ C̃Khp(D)
i−→ CKh(D)

π−→ CKhp(D)→ 0

where i is the inclusion and π is the projection to the quotient. The induced map on homol-

ogy i∗ carries [ψ̃p(D)] to [ψ(D)], so if [ψ(D)] 6= 0 then [ψ̃p(D)] 6= 0. If i∗ is injective, then

[ψ̃p(D)] 6= 0 implies that [ψ(D)] 6= 0. To show that i∗ is injective, we repeat Shumakovitch’s

argument [60] in our notation. Let ν : CKh(D)→ CKh(D) be the chain map defined on V

by the rule ν(v+) = 0 and ν(v−) = v+ and extended to tensor powers by the Leibniz rule.

Note that xp defines a map x′p : CKhp(D)→ CKh(D) by applying xp to canonical represen-

tatives. Let c ∈ CKhp(D) with canonical representative c. Then (ν ◦ x′p)(c) = (ν ◦ xp)(c),

in which the only term with a v+ label at p is exactly c. We conclude that π ◦ ν ◦ x′p is the

identity map, and therefore the short exact sequence splits. Thus i∗ is injective.

The first piece of the inequality follows immediately from the fact that C̃Khp(D) is a

subcomplex of CKh(D). For the next part, suppose that z realizes κp(D). Then d(xpz) =

ψ(D) and k(xpz) ≤ k(z), so κ̃p(D) ≤ κp(D). On the other hand, suppose that y realizes

κ̃p(D); every canonical summand of y has a v− at p. Let y+ be the element obtained from
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y by changing those v−’s to v+’s. Clearly xpd(y+) = ψ(D), so

dy+ = ψ
p
(D) + terms with v− at p.

Therefore dy+ = ψ
p
(D) and κp(D) ≤ k(y+) + n ≤ k(y) + 2 + n = κ̃p(D) + 2. (This also

shows that κ̃p(D) is finite if and only if κp(D) is finite.)

The reduced invariants are stable under positive stabilization at p in the following sense:

let p′ be a point on the same arc as p. For each reduced complex, the positive stabilization

map is filtered and preserves Plamanevskaya’s invariant, so Lemma 4.2.1 implies that the

appropriate version of κ does not change. But after this operation the image of p is not an

innermost point. We instead study ~Sp
′
, the operation of stabilizing at p′ and then moving

the basepoint to some point q on the new innermost strand.

Proposition 4.4.2. Let D be a diagram of β̄. Then κ̃q(~S
p′D) ≤ κ̃p(D) and κq(~S

p′D) ≤

κp(D) + 2.

Proof. The first inequality follows from Lemma 4.2.1 once one makes the observation that

the positive stabilization map carries C̃Khp(D) to a subcomplex of C̃Khq(~S
p′D) and carries

ψ̃p(D) to ψ̃q(D).

Suppose that z realizes κp(D). Let q be a point on the innermost strand of Sp
′D. Recall

that there is a map ρ on the Khovanov complex induced by positive stabilization. This map

descends to a map ρ : CKhp(D)→ CKhp(S
p′D) which sends z to a sum of generators with

v− at q and v+ at p. Let z′ ∈ CKhq(~S
p′D) be the element whose canonical representative z′

is obtained from that of ρ(z) by swapping these labels. Note that dxqz
′ = ρ(ψ(D)) = xqdz

′,

so dz′ = ψ
q
(D). Clearly k(z′) ≤ k(z) + 1. The second inequality follows after taking into

account that the operation Sp
′

increases braid index by one.

It is interesting to consider the sharpness of these inequalities using annular Khovanov

homology. The map xp is filtered and therefore induces a map on AKh(D) =
⊕
F i /F i−1,

the annular Khovanov homology of D.

Let p, p′, z, and z′ be as in the previous proof. The point q lies on a non-trivial circle

in every resolution of Sp
′D, so k(z′) > k(Sp

′
z) = k(z) precisely if p lies on a trivial circle in
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Figure 4.2: The result of the operation ~Cp on two strands.

some canonical summand of z. Equivalently, k(z′) = k(z) precisely if p lies on a non-trivial

circle in every canonical summand of z. Therefore κp(D) = κq(~S
p′D) if and only if some

z realizes κp(D) and p lies on a non-trivial circle in every canonical summand of z. Write

〈z〉 for the image of z in AKh(D). Then κp(D) = κq(~S
p′D) if and only if 〈z〉 ∈ ker(xp) for

some z which realizes κp(D).

While κp is not preserved under stabilization, it is preserved under a certain sort of

conjugation over p. Denote by Cp the operation of performing a braidlike Reidemeister 2

move over p. (In terms of braid words, this inserts σn−1σ
−1
n−1 or σ−1

n−1σn−1.) Denote by ~Cp

the operation Cp followed by moving the basepoint to the innermost strand at q. See Figure

4.2. The Reidemeister 2 map induces a filtered map CKhp(D)→ CKhq(~CpD) which carries

ψ to ψ.

Proposition 4.4.3. κp(D) = κq(~CpD).

To dash any hope that κp or κ̃p might be transverse invariants, we note that both

invariants depend on p. For κp this is true even for negative stabilizations.

Example 3. Let β = σ1σ
−1
2 ∈ B3. Certainly ψ is null-homologous and κ = κ̃p = 2 for any

p. Let p1 and p2 be points on the first and second strands of the braid. Then

κp1 = 2

κp2 = 4

For a meatier example, we revisit the transversely non-simple family using the previously

advertised computer program.

Example 4. Recall that Ng and Kandhawit define two infinite families of braids A(a, b)

and B(a, b) so that, for any a, b ∈ Z≥0, the closures of A(a, b) and B(a, b) have the same
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Figure 4.3: Values of κp and κ̃p may depend on p. The top braid is B0 and the bottom
braid is A0. The number above each arc represents a value of κp (for A0) or κ̃p (for B0)
when p is placed on that arc.

topological knot type and self-linking number but are not transversely isotopic. Write A0

and B0 for A(0, 0) and B(0, 0). We have already seen that κ(A0) = 4 and κ(B0) = 2. For

any p ∈ Ā0 we have κ̃p(A0) = 4 and κp(B0) = 4. On the other hand, κp(A0) and κ̃p(B0)

depend on p. See Figure 4.3.

It is straightforward to check that the two candidates for “reduced annular Khovanov

homology” are not isomorphic (for example with the closed 2-braid σ1). This fact is not

mentioned elsewhere in the literature. In addition, Shumakovitch’s map ν (see Lemma 4.4.1)

is not a chain map on the annular complex as it does not commute with the differential.

These calculations show that the difference between the two versions is significant, and that

the two reductions might provide different information.
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