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ABSTRACT

Landau Fermi-liquid theory was first introduced by L. D. Landau in the effort of

understanding the normal state of Fermi systems, where the application of the

concept of elementary excitations to the Fermi systems has proved very fruitful in

clarifying the physics of strongly correlated quantum systems at low temperatures.

In this thesis, I use Landau Fermi-liquid theory to study the transport phenomena

of two different correlated quantum liquids: the strongly interacting ultracold

Fermi gases and the ferromagnet/normal-metal (F/N) junctions. The detailed

work is presented in chapter II and chapter III of this thesis, respectively. Chapter

I holds the introductory part and the background knowledge of this thesis.

In chapter II, I study the transport properties of a Fermi gas with strong

attractive interactions close to the unitary limit. In particular, I compute the

transport lifetimes of the Fermi gas due to superfluid fluctuations above the BCS

transition temperature Tc. To calculate the transport lifetimes I need the scat-

tering amplitudes. The scattering amplitudes are dominated by the superfluid

fluctuations at temperatures just above Tc. The normal scattering amplitudes are

calculated from the Landau parameters. These Landau parameters are obtained

from the local version of the induced interaction model for computing Landau
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parameters. I also calculate the leading order finite temperature corrections to

the various transport lifetimes. A calculation of the spin diffusion coefficient is

presented in comparison to the experimental findings. Upon choosing a proper

value of F a
0 , I am able to present a good match between the theoretical result

and the experimental measurement, which indicates the presence of the superflu-

id fluctuations near Tc. Calculations of the viscosity, the viscosity/entropy ratio

and the thermal conductivity are also shown in support of the appearance of the

superfluid fluctuations.

In chapter III, I study the spin transport in the low temperature regime (often

referred to as the precession-dominated regime) between a ferromagnetic Fermi

liquid (FFL) and a normal metal metallic Fermi liquid (NFL), also known as the

F/N junction, which is considered as one of the most basic spintronic devices. In

particular, I explore the propagation of spin waves and transport of magnetization

through the interface of the F/N junction where nonequilibrium spin polarization

is created on the normal metal side of the junction by electrical spin injection.

I calculate the probable spin wave modes in the precession-dominated regime on

both sides of the junction especially on the NFL side where the system is out

of equilibrium. Proper boundary conditions at the interface are introduced to

establish the transport of the spin properties through the F/N junction. A possible

transmission conduction electron spin resonance (CESR) experiment is suggested

on the F/N junction to see if the predicted spin wave modes could indeed propagate

through the junction. Potential applications based on this novel spin transport

feature of the F/N junction are proposed in the end.
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CHAPTER I

Introduction and Background Knowledge

Landau Fermi-liquid theory is among the many achievements of the Soviet

physicist L. D. Landau in theoretical physics. The phenomenological theory of

Fermi liquids concerns mainly the study of the normal state of Fermi systems. It

introduces the concept of elementary excitations, which are the fermion quasipar-

ticles for a Fermi system. When applied to the normal state of strongly interacting

quantum systems, Landau Fermi-liquid theory has achieved great success in un-

derstanding the low temperature thermodynamic properties, such as specific heat,

magnetic susceptibility and compressibility; transport properties including spin d-

iffusion, viscosity and thermal conduction; as well as collective properties like spin

waves. Since this thesis is largely based on the application of Landau Fermi-liquid

theory to the study of the transport phenomena in correlated quantum liquids,

brief introductions to a few key pieces of knowledge of Landau Fermi-liquid theory

related to this work are presented in the sections to follow. For a complete review

on the topic of Landau Fermi-liquid theory, the reader may refer to the books by

Baym and Pethick [1], and Pines and Nozieres [2], which provide thorough illus-

trations of the phenomenological theory. The profundity of Landau Fermi-liquid

theory goes beyond mere phenomenology as it is closely linked to the many body

microscopic theory of quantum liquids. The reader may refer to the Nozieres book
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[3] for a detailed derivation of Landau Fermi-liquid theory from microscopic first

principles.

In order to have a continuous flow of knowledge in this thesis, the introductions

to the two different correlated quantum liquids studied in this work: the strongly

interacting ultracold Fermi gases and the F/N junctions, are postponed until their

respective chapters.

1.1 Quasiparticles

In Landau Fermi-liquid theory, the fermion quasiparticles are the elementary

excitations of a correlated Fermi system. The name “quasiparticle” itself indicates

an analogy between the Fermi-liquid quasiparticles and the bare fermion particles.

To understand the analogy, let us first consider an “ideal” Fermi gas — that

is, a gas of noninteracting fermions — of N fermion particles, each of mass m,

confined in a volume V . The quantum states of each individual fermion particle

are characterized by two quantum numbers, the momentum p and the spin σ = ±~
2

of the particle. The single particle wave function takes the form of a simple plane

wave:

ψp(r) =
1√
V
eip·r. (1.1)

The eigenstates of the system is the antisymmetric combinations of N such single

particle states, the wave functions of which are the Slater determinants ofN simple

plane waves shown above. It is enough to characterize an energy eigenstate of the

noninteracting Fermi gas by specifying a distribution function npσ to indicate the

occupancies of different single particle states, which equals to 1 if the state p, σ

is occupied and to zero otherwise. Each single particle state allows at most one

fermion according to Pauli exclusion principle for fermions. The ground state of

the system is formed by filling all N particles in the single particle states one by
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Figure 1.1: The ground state particle distribution function.

one from the lowest possible momentum state, and we end up with a state where

all single particle states with momentum less than the Fermi momentum, pf , are

occupied and all other states are left empty, the Fermi momentum being given by

N

V
=

1

3π2

(pf
~

)3
. (1.2)

The ground state distribution function n0
pσ takes the form shown in Fig. 1.1. The

surface defined by |p| = pf in the momentum space forms the so called Fermi

surface, and the energy of the particles on the Fermi surface defines the chemical

potential µ. At low temperatures, the energetically low-lying excited states of the

system may be created by either adding a particle with momentum greater than pf

to the system, referred to as a particle-like excitation, or removing a particle with

momentum less than pf from the system, referred to as a hole-like excitation. Any

excited energy eigenstaes of the system can be constructed by creating different

numbers of such fermion-like elementary excitations — particles and holes — in

the system.

For a real Fermi liquid where fermion particles interact with each other, the

Landau theory establishes a one-to-one correspondence between the eigenstates

of the real correlated Fermi liquid and the eigenstates of the ideal Fermi gas.

One can imagine the eigenstates of the correlated Fermi liquid gradually evolving

from the eigenstates of the ideal Fermi gas by slowly turning on the interaction

3



between particles. The ground state of the correlated Fermi liquid emerges from

the ideal Fermi gas ground state specified by its particle distribution function

n0
pσ. Quasiparticles and quasiholes are defined as the elementary fermion-like

excitations of the correlated system analogous to the particles and holes in the

ideal Fermi gas, which can be thought of as the fully dressed particle-like and

hole-like motions caused by adiabatically turning on the interactions. One need

to keep in mind, however, that the concept of quasiparticles is only well defined

in the vicinity of the Fermi surface, as elementary excitations of the real system

with energies far away from the Fermi surface decay rapidly compared to the

time required for adiabatically turning on the interactions in the ideal system.

The particle distribution function in the ideal Fermi gas is now referred to as the

quasiparticle distribution function in the correlated Fermi liquid, and I use npσ

to denote this quantity for the rest of this thesis. The ground state quasiparticle

distribution function n0
pσ coincides with that of the ideal Fermi gas given by Fig.

1.1. At some low temperature T , the quasiparticle distribution function is proved

to be the usual Fermi-Dirac distribution function

npσ =
1

e(εpσ−µ)/kBT + 1
, (1.3)

where εpσ is the quasiparticle energy to be defined in next section, and it reduces to

n0
pσ when the temperature is zero. It is worth pointing out that the real physically

meaningful quantity is the departure δnpσ from the ground state

δnpσ = npσ − n0
pσ, (1.4)

that measures the “excitations” — that is, the quasiparticles — of the real system

rather than npσ.

The study of the correlated Fermi systems using Landau Fermi-liquid theory
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is formulated around the concept of quasiparticles. A few key concepts and useful

results of the theory are illustrated in the following sections.

1.1.1 Quasiparticle Energy and Interactions

For an ideal Fermi gas, the total energy (per unit volume) of the system can

be expressed as a simple sum of the energies of each particle. In the case of a real

Fermi liquid, the total energy of the system is a functional of the quasiparticle

distribution function E[npσ], which in general cannot be specified explicitly. The

quasiparticle energy εpσ is defined as the small increment in the total energy when

a quasiparticle with momentum p and spin σ is added to the system,

δE =
1

V

∑
pσ

εpσδnpσ, (1.5)

where, δE = E[npσ]−E0, the variation in the total energy is measured with respect

to the ground state energy (per unit volume) E0, since we are only considering the

low-lying excitations of the system where well defined quasiparticles appear in the

immediate vicinity of the Fermi surface. Due to the particle interactions in the

real Fermi liquid, the energy of the quasiparticle in the state pσ is also dependent

on the presence of quasiparticles in other states p′σ′. Hence εpσ is given by

εpσ = ε0pσ +
1

V

∑
p′σ′

fpσ,p′σ′δnp′σ′ + . . . , (1.6)

where the first term ε0pσ denotes the ground state quasiparticle energy of state pσ

— that is, the energy increment of the system caused by adding a quasiparticle

(pσ) to the ground state, and the second term gives the interaction effect of

first order in δnpσ, where fpσ,p′σ′/V is defined as the interaction energy between

quasiparticles pσ and p′σ′ and δnp′σ′ specifies the distribution of the quasiparticle

p′σ′. From ε0pσ, we also define various useful quantities that will be mentioned
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frequently throughout this thesis. The velocity of a quasiparticle on the Fermi

surface (the Fermi velocity) is given by

vf =

(
∂ε0pσ
∂p

)
p=pf

. (1.7)

The effective mass m∗ of a quasiparticle is consequently defined through

vf =
pf
m∗ . (1.8)

The notion Fermi energy EF is defined as EF = p2f/2m
∗, which coincides with the

quasiparticle energies on the Fermi surface ε0pfσ = µ, in the case of an ideal Fermi

gas. We can also define the density of quasiparticle states at the Fermi surface by

N(0) =
1

V

∑
pσ

δ(ε0pσ − µ) = − 1

V

∑
pσ

∂

∂εpσ
n0
pσ. (1.9)

In the absence of an external magnetic field, the density of states is found to be

N(0) =
m∗pf
π2~3

=
3n

2EF

. (1.10)

According to Eqs. (1.5) and (1.6), the total energy of the system under quasipar-

ticle distribution δnpσ can be expressed as

E[npσ] = E0 +
1

V

∑
pσ

ε0pσδnpσ +
1

2

1

V 2

∑
pσ,p′σ′

fpσ,p′σ′δnpσδnp′σ′ + . . . . (1.11)

From Eq. (1.11), we find the quasiparticle interaction energy f is in fact a second

variation of the total energy,

fpσ,p′σ′ = V 2 δ2E

δnpσδnp′σ′
. (1.12)
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So far, the general picture of Landau Fermi-liquid theory has been drawn through

the definitions of the quasiparticle energy εpσ and interaction fpσ,p′σ′ , with Eq.

(1.11) serving as the foundation for developing the phenomenological theory.

The equilibrium quasiparticle distribution function npσ is further separated

into a number density part np and a spin density part σp through the following

relation,

npσ = np + σp · τσσ, (1.13)

where τ is the 2 × 2 Pauli spin matrices, σ is the quasiparticle spin measured

in units of ~
2
. When all the quasiparticle spins are quantized along the z axis, σ

equals 1 for spin up fermions and −1 for spin down fermions, τσσ = σz. The total

particle number density n and the total spin polarization (per unit volume) σ of

the system are therefore calculated from

n =
N

V
=

1

V

∑
pσ

npσ =
2

V

∑
p

np, (1.14)

σ =
1

V

∑
pσ

npστσσ =
2

V

∑
p

σp. (1.15)

Consequently, the quasiparticle energy εpσ can be written as

εpσ = εp + hp · τσσ, (1.16)

where εp is a mean quasiparticle energy summed up in spin indices, and hp is

proportional to the effective magnetic field. In the absence of spin-orbit coupling,

the quasiparticle interaction energy fpσ,p′σ′ can also be expressed as

fpσ,p′σ′ = f s
pp′ + fa

pp′τσσ · τσ′σ′ , (1.17)

where superscripts s and a stand for symmetric and antisymmetric in terms of the

7



spin configurations of the interacting quasiparticle pair. Eqs. (1.6), (1.13), (1.16)

and (1.17) lead to the following relations:

εp = ε0p +
2

V

∑
p′

f s
pp′δnp′ (1.18)

hp = h0
p +

2

V

∑
p′

fa
pp′δσp′ , (1.19)

where ε0p is the ground state spin averaged quasiparticle energy, and h0
p = −1

2
γ~HHH

(where γ is the gyromagnetic ratio) is the coupling to the external magnetic field

HHH .

1.1.2 Landau Parameters

The Landau parameters follow directly from the quasiparticle interaction ener-

gy f introduced in the previous section. Since quasiparticles are only well defined

close to the Fermi surface, the magnitudes of the quasiparticle momentums can

all be approximated by pf . Therefore, f
s
pp′ and fa

pp′ can be expanded in terms of

the angle θ between p and p′:

f
s(a)

pp′ =
∞∑
l=0

f
s(a)
l Pl(cos θ), (1.20)

where Pl are the Legendre polynomials. The Landau parameters are defined by

F
s(a)
l ≡ N(0)f

s(a)
l , (1.21)

which are dimensionless quantities that measure the strengths of the quasiparticle

interactions at the Fermi surface.

At low temperatures, the equilibrium thermodynamics of the real Fermi liquid

can be described by Landau Fermi-liquid theory with the interactions being cap-
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tured by the Landau parameters. For a Galilean invariant system, the effective

mass of a quasiparticle is related to the bare mass through the following equation,

m∗

m
= 1 +

F s
1

3
. (1.22)

The low temperature entropy (per unit volume) of the real Fermi liquid is given

by

s =
π2

3
N(0)k2BT, (1.23)

and the low temperature specific heat at constant volume is calculated to be

cV =
π2

2
nkB

T

TF

, (1.24)

where TF is the Fermi temperature defined by kBTF ≡ p2f/2m
∗. The zero temper-

ature compressibility and the spin susceptibility can be expressed as

K =
1

n2

(
∂n

∂µ

)
T=0

=
1

n2

N(0)

1 + F s
0

, (1.25)

and

χ =
~2

4

γ2N(0)

1 + F a
0

, (1.26)

respectively. The above results recover these of the ideal Fermi gas when the in-

teractions between quasiparticles are turned off by making the Landau parameters

F
s(a)
l go to zero.

1.1.3 Quasiparticle Scattering Amplitude

Quasiparticle scattering plays an important role in understanding the transport

phenomena of correlated Fermi systems. At low temperatures where the density

of the thermally excited quasiparticles are low, it is sufficient to consider only the

9



Figure 1.2: Scattering of two quasiparticles [1].

collisions between two quasiparticles. The two particle scattering process is shown

in Fig. 1.2, where |p1σ1, p2σ2⟩ and |p3σ3, p4σ4⟩ indicate respectively the states

of the incident and the scattered quasiparticles, and the scattering amplitude for

such a process can be written as

⟨p3σ3, p4σ4| t |p1σ1, p2σ2⟩. (1.27)

In the normal state, the above transition amplitude is equivalent to the vertex

function of particle-hole type in the microscopic quantum field theory [4]. The full

scattering amplitude t can be constructed from the bare quasiparticle interaction

f through repeated quasiparticle-quasihole pair creation and recombination pro-

cesses. A diagrammatic representation of this construction process is presented in

Fig. 1.3, where the spin indices are hidden, (p − q
2
, p′ + q

2
) and (p + q

2
, p′ − q

2
)

are the four momenta — the momentum and energy, p ≡ (p, ω) — states of the

incident and the scattered quasiparticle pairs, respectively. The full quasiparticle

scattering amplitude can be expressed as

tpp′(q, ω) = ⟨p+ q/2, p′ − q/2| t |p− q/2, p′ + q/2⟩, (1.28)

10



Figure 1.3: Diagram for repeated quasiparticle-quasihole scattering. The shaded
circle represents the full scattering amplitude t, and the unshaded
circle represents the bare quasiparticle-quasihole interaction f . The
lines connecting the two circles represent the quasiparticle-quasihole
propagators [1].

and

tpp′(q, ω + iη) = fpp′ −
∑
p′′ ̸=p′

fpp′′
q · ∇p′′n

0
p′′

ω + iη − q · vp′′
tp′′p′(q, ω + iη), (1.29)

where q is the momentum transfer, and, ω = εp+q/2 − εp−q/2, is the energy trans-

fer between the incident and scattered quasiparticles. In the low temperature

limit, the energies of the quasiparticles are approximated by the Fermi energy EF ,

therefore the energy transfer in the collision process is very small and we call this

the low frequency limit (“k-limit”) in which qvf ≫ ω. The scattering processes

concerned in this thesis are all studied under this limit. We can reduce the full

scattering amplitude in Eq. (1.29) in the k-limit to

tpp′(q, 0) = fpp′ +
∑
p′′ ̸=p′

fpp′′
∂n0

p′′

∂εp′′
tp′′p′(q, 0). (1.30)

Let us define a variable θ to stand for the angle between the momenta, p and p′,

of the incident quasiparticles, and another variable ϕ to denote the angle between

the plane containing the momentum vectors of the incident quasiparticles and the

plane containing the momentum vectors of the scattered quasiparticles, as shown

in Fig. 1.4. The scattering amplitude can then be written as a function of the

11



Figure 1.4: The relation of scattering angles θ and ϕ to the incident (p1 and p2)
and final (p3 and p4) quasiparticle momenta [1].

angles θ and ϕ, tpp′(q, 0) = t(θ, ϕ). The spin structure of the scattering amplitude

is similar to that of the functions fpσ,p′σ′ in which the scattering amplitude is

decomposed into a spin symmetric part ts(θ, ϕ) and a spin antisymmetric part

ta(θ, ϕ) according to the following relation,

tσσ′(θ, ϕ) = ts(θ, ϕ) + ta(θ, ϕ)τσσ · τσ′σ′ , (1.31)

where σ and σ′ are the spins of the incident quasiparticles. In the case of small

momentum transfer, q ≪ pf , which corresponds to ϕ = 0, there exists a simple

relation between the quasiparticle scattering amplitude and the Landau parame-

ters:

N(0)ts(a)(θ, ϕ = 0) =
∑
l

A
s(a)
l Pl(cos θ), (1.32)

A
s(a)
l =

F
s(a)
l

1 + F
s(a)
l /(2l + 1)

. (1.33)

An additional constraint on the Landau parameters called the “forward scattering

sum rule” states ∑
l

(As
l + Aa

l ) = 0, (1.34)
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which is derived from Eq. (1.31) and (1.32) using the fact that t↑↑(θ = 0, ϕ) = 0

due to the symmetry properties of the quasiparticle scattering process. The arrows

represent the spins of the incident quasiparticles and t↑↑(θ, ϕ) corresponds to the

total spin one (triplet) scattering channel denoted by

tt(θ, ϕ) = t↑↑(θ, ϕ). (1.35)

The total spin zero (singlet) scattering channel ts(θ, ϕ) is given by

ts(θ, ϕ) = 2t↑↓(θ, ϕ)− t↑↑(θ, ϕ). (1.36)

For a finite momentum transfer ϕ ̸= 0 and to a simple first approximation, the

singlet and triplet scattering amplitudes can be written as

ts(θ, ϕ) ≃ ts(θ, 0)

tt(θ, ϕ) ≃ tt(θ, 0) cosϕ. (1.37)

Equivalently, we have

N(0)t↑↑(θ, ϕ) ≃
∑
l

(As
l + Aa

l )Pl(cos θ) cosϕ

N(0)t↑↓(θ, ϕ) ≃
∑
l

1

2
[(As

l − 3Aa
l ) + (As

l + Aa
l ) cosϕ]Pl(cos θ), (1.38)

where the quasiparticle scattering amplitudes can be determined entirely by the

Landau parameters.

The concepts introduced in this section will get referred to repeatedly through-

out this thesis especially in chapter II where I calculate the quasiparticle scattering

amplitudes for the strongly correlated ultra cold Fermi gas.
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1.2 Transport properties

In this section, the standard Fermi-liquid theory approach in studying the

transport properties of a correlated Fermi liquid is introduced. To be more specific,

the calculations of the various transport lifetimes and transport coefficients are

reviewed. As a brief introduction as this section is, only the key steps and the

important results are presented. The complete derivation is rather tedious and it

is not the purpose of this thesis to introduce the Landau theory in great details.

The reader may refer to the books [1, 2] for the complete picture.

1.2.1 Landau Kinetic Equation

The study of the quasiparticle transport properties involves the study of the

behavior of a nonequilibrium and inhomogeneous Fermi liquid. The quasiparticle

distribution function npσ(r, t) varies with both position and time. The space and

time evolution of the quasiparticle distribution function is governed by the Landau

kinetic equation:

∂npσ(r, t)

∂t
+∇pεpσ(r, t) ·∇rnpσ(r, t)−∇rεpσ(r, t) ·∇pnpσ(r, t) = I [np′σ′ ] , (1.39)

where I [np′σ′ ] is the quasiparticle collision integral, which indicates the net rate

of increase in the occupation of state pσ caused by quasiparticle collisions. The

collision integral can be evaluated as

I1 [np′σ′ ] =
1

V 2

∑
p2σ2

∑
p3σ3
p4σ4

′W (12; 34)δp1+p2,p3+p4δσ1+σ2, σ3+σ4δ(ε1 + ε2 − ε3 − ε4)

× [n3n4(1− n1)(1− n2)− n1n2(1− n3)(1− n4)] , (1.40)

where the prime sign on the second sum means summing over distinguishable

final states, and the quantity W (12; 34) is the transition probability for a two

14



quasiparticle scattering process on the Fermi surface. The spin averaged transition

probability W (θ, ϕ) is defined by

∑
σ2σ3σ4

′W (12; 34) =
1

2
W↑↑(θ, ϕ) +W↑↓(θ, ϕ) = 2W (θ, ϕ), (1.41)

where the angles (θ, ϕ) are the same angles introduced when discussing the quasi-

particle scattering amplitudes, in fact the transition probabilities are directly re-

lated to the scattering amplitudes through the following relations,

W↑↑(θ, ϕ) =
2π

~
|t↑↑(θ, ϕ)|2, (1.42a)

W↑↓(θ, ϕ) =
2π

~
|t↑↓(θ, ϕ)|2. (1.42b)

Therefore, the transition probabilities can be determined from the Landau pa-

rameters, and the collision integral depends directly on the Landau parameters as

well.

A particle kinetic equation and a spin kinetic equation can be derived from the

Landau kinetic equation, Eq. (1.39), to characterize the space and time evolution

of the particle density np(r, t) and the spin density σp(r, t), respectively. The

particle kinetic equation is associated with the study of the thermal conduction

and the viscosity of the system, while the spin kinetic equation becomes useful in

understanding the spin diffusion.

1.2.2 Spin Diffusion

The calculations of the spin diffusion coefficient D and the spin diffusion life-

time τD involve solving the spin kinetic equation in the presence of a small gradient

in the spin density perturbation ∇ (σi(r, t)− σ0
i (r, t)). The spin diffusion assumes

the Fick form

jσi
(r, t) = −D∇

(
σi(r, t)− σ0

i (r, t)
)
, (1.43)
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where jσi
denotes the spin current polarized in the direction of the ith spin com-

ponent. At low temperatures, D is solved to be

D =
1

3
v2f (1 + F a

0 )τD. (1.44)

The spin diffusion lifetime τD is closely related to the quasiparticle collision rate

I [np′σ′ ]. A characteristic quasiparticle relaxation time is defined from the collision

integral by

τ ≡ 8π4~6

m∗3⟨W ⟩ (kBT )
2 , (1.45)

where ⟨W ⟩ is the angle averaged transition probability given by

⟨W ⟩ ≡
∫
dΩ

4π

W (θ, ϕ)

cos(θ/2)
. (1.46)

The spin diffusion lifetime τD turns out to be proportional to the characteristic

relaxation time τ through a complex quantity λD:

τD
τ

=
1

6
+

4λD

π2

∑
νodd

2ν + 1

ν2(ν + 1)2 [ν(ν + 1)− 2λD]
, (1.47)

where λD is given by

λD = 1− 1

⟨W ⟩

∫
dΩ

4π

W↑↓(θ, ϕ)(1− cos θ)(1− cosϕ)

2cos(θ/2)
. (1.48)

The above results are quite textbook, and the detailed derivations can be found

in the Fermi-liquid theory book [1].

1.2.3 Viscosity

The viscosity interested in this thesis is the first viscosity (or shear viscosity),

and the calculations of the viscosity coefficient η and the viscous lifetime τη are
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related with the solution of the particle kinetic equation. The low temperature

first viscosity is found to be

η =
1

5
npfvfτη, (1.49)

where a similar proportionality relation exists between τη and τ as in the case of

the spin diffusion,

τη
τ

=
1

6
+

4λη
π2

∑
νodd

2ν + 1

ν2(ν + 1)2 [ν(ν + 1)− 2λη]
, (1.50)

and λη is given by

λη =
1

⟨W ⟩

∫
dΩ

4π

W (θ, ϕ)

cos(θ/2)

(
1− 3sin4(θ/2)sin2ϕ

)
. (1.51)

1.2.4 Thermal Conduction

To study thermal conduction of the system, one needs to solve the particle

kinetic equation subject to a small temperature gradient ∇T . The thermal con-

ductivity K is defined through the following relation:

jT = −K∇T, (1.52)

where jT is the thermal current. The low temperature thermal conductivity K is

evaluated to be

K =
1

3
cV v

2
fτK, (1.53)

where the thermal conducting lifetime τK is proportional to τ ,

τK
τ

=
12− π2

2π2
+

12λK

π2

∑
νeven

2ν + 1

ν2(ν + 1)2 [ν(ν + 1)− 2λK]
. (1.54)
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The quantity λK is given by

λK =
1

⟨W ⟩

∫
dΩ

4π

W (θ, ϕ)

cos(θ/2)
(1 + 2 cos θ) . (1.55)

For a normal Fermi liquid, the various transport properties introduced above

can all be expressed in terms of the transition probability function W (θ, ϕ), which

in turn is determined by the Landau parameters, therefore, it is enough to know the

Landau parameters of the real Fermi liquid to understand its transport properties.
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CHAPTER II

Transport Phenomena in Ultracold Fermi Gases

with Superfluid Fluctuations

2.1 Introduction

In this chapter, I present my study on the transport phenomena of ultracold

Fermi gases above the superfluid transition temperature Tc. Ever since the first

experimental realization of Bose-Einstein condensation (BEC) in a Bose gas in

1995 [5–7], ultracold atomic gases have drawn a lot of attentions in the physics

community and there has been an enormous amount of experimental and theo-

retical work carried out to study ultracold atomic physics [8, 9]. In addition to

Bose gases, there are as well cold Fermi gases, with an interaction strength that

can be tuned by the proximity of a Feshbach resonance [10, 11]. At resonance,

the Fermi gas is said to be at unitarity with an infinitely large scattering length

as, therefore the system becomes scale invariant and obeys universal thermody-

namic relations [12]. The superfluid transition temperature of an ultracold Fermi

gas decreases exponentially with decreasing interaction strength in the weakly at-

tracting limit [9], Tc ≈ 0.28TFe
π/2kF as , where kF is the Fermi wave vector defined

as kF = pf/~. At unitarity, the Fermi gas is strongly correlated, so one expects a

big boost in Tc due to the increasing pairing gap approaching unitarity and thus a
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significantly larger critical region above Tc compared to a nonunitary dilute Fermi

gas with attractive interactions (BCS regime). The superfluid lambda transition

which was once difficult to observe in a dilute Fermi gas has also been experimen-

tally realized recently in a unitary Fermi gas [13]. Comparing to the relatively

clear picture of the thermodynamics of strongly interacting Fermi gases [8, 9], the

transport properties of such systems have yet to be fully understood. A string

theory calculation has suggested the existence of a universal scale invariant lower

bound in the viscosity of strongly interacting quantum liquids [14]. The conjec-

tured quantum limited viscosity has since been explored in depth using different

theoretical models [15–17], and such a lower bound has also been argued to exist

in the spin diffusion coefficient [18]. Therefore, it is quite tentative to believe that

such scale invariant universality exists in the general transport properties as it

does in the thermodynamics of the strongly interacting Fermi gas. What’s more,

transport measurements on the spin diffusion coefficient and the viscosity coeffi-

cient in strongly interacting Fermi gases [19–21] have also shown that both the

spin diffusion coefficient and the viscosity/entropy ratio saturate to some mini-

mum values at temperatures very close to the superfluid transition temperature

Tc. However, whether the measured minimums in the transport properties truly

indicate a universal quantum limited lower bound in the transport properties still

needs further clarification, and the idea of universal quantum limited transport in

strongly interacting Fermi gases remains debatable.

Motivated by the remaining challenges in the understanding of the transport

properties in ultracold unitary Fermi gases, in this work, I develop a new theoret-

ical model using Landau Fermi-liquid theory and beyond to study the transport

phenomena in an ultracold Fermi gas with strong attractive interactions close to

the unitary limit. In particular, I calculate the various transport lifetimes and the

corresponding transport coefficients of the ultracold Fermi gas. Most importantly,
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I reveal superfluid fluctuations (sometimes referred to as the Cooper instibility)

in the transport lifetimes of the unitary Fermi gas above Tc. The quasiparticle

scattering amplitudes near the Fermi surface are essential in calculating the trans-

port lifetimes according to Landau Fermi-liquid theory [1] as shown in Chapter

I. At temperatures close to Tc, the scattering amplitudes are greatly affected by

the formation of Cooper pairs that causes superfluid fluctuations in the system.

The superfluid fluctuations dominate the quasiparticle scattering amplitudes right

above Tc, and the exact form of their contributions to the scattering amplitudes

are computed in section 2.2. The calculations of the low temperature transport

lifetimes and transport coefficients follow the steps of Landau Fermi-liquid theory

by evaluating the total quasiparticle scattering probability, and the results are

adopted from section 1.2. The total scattering probability contains both a con-

tribution from the normal Fermi-liquid scattering channel given in sections 1.1.3

and 1.2.1, and a contribution from the superfluid fluctuations. The Landau pa-

rameters needed in calculating the scattering amplitudes are computed in section

2.3 using the local induced interaction model [22, 23]. Further, in section 2.4, the

leading order finite temperature corrections to the transport lifetimes and trans-

port coefficients are added to complete the calculations of the transport properties

of the strongly correlated Fermi gas. Section 2.5 shows the results of the transport

calculations, where I have compared the calculated spin diffusion coefficient and

viscosity/entropy ratio with their respective experimental findings in Ref. [19]

and Ref. [20, 21], along with the discussions on the results. This work has been

published in the journal Physical Review B [24].

2.2 Superfluid Fluctuations in the Scattering Amplitude

Superfluid fluctuations in the transport lifetimes of a unitary Fermi gas are

investigated through calculating the quasiparticle scattering amplitudes of the gas
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near Tc in a similar fashion as an earlier study on zero-sound attenuation in liq-

uid 3He [25]. As the temperature approaches Tc, the virtual formation of Cooper

pairs starts to dominate the quasiparticle scattering process. Singularities in the

scattering amplitudes are found for small total momentum quasiparticle scatter-

ing, leading to diverging scattering amplitudes at Tc for zero total momentum

quasiparticle scattering. Here I consider only the s-wave (spin singlet) pairing

mechanism for the Cooper pairs, thus the exact calculation of superfluid fluctu-

ations in the scattering amplitudes is performed by evaluating the temperature

vertex function of particle-particle type in the spin singlet channel using regular

quantum field theory methods. The integral equation for the temperature vertex

function is given by summing over the various “ladder diagrams” of the vertex

function [4],

Ts(p1, p2; p3, p4) = T̃s(p1, p2; p3, p4)−
T

2(2π)3

∑
ωn

∫
T̃s(p1, p2; k, q − k)

× G (q − k)G (k)Ts(k, q − k; p3, p4)d
3k (2.1)

where T̃s is the temperature particle-particle irreducible vertex function, G is the

exact temperature Green’s function, ωn = (2n+1)πT are the “odd” Matsubara fre-

quencies for fermions. Here we have introduced the four-momentum pi ≡ (pi, ωi)

to denote the momenta pi and frequencies ωi of the incident and scattered quasi-

particles in the Fourier transformed momentum space, and q ≡ (q, ω0) stands for

the total momentum q and total frequency ω0 of the incident quasiparticles, where

q = p1+p2 and ω0 = ω1+ω2. For small total momentum scattering (|q| ≪ kF ) and

when only quasiparticles near the Fermi surface are considered in the scattering

processes, |pi| = kF for i = 1, · · · , 4, Ts depends only on the total four-momentum

q, i.e. Ts(p1, p2; p3, p4) = Ts(q). In the diagram technique of quantum field the-

ory, the energy is measured from the chemical potential, ξ(p) = ε0p − µ, thus the
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total frequency ω0 is approximately zero for quasiparticle scattering at the Fermi

surface. Integrate out the second term on the right side of Eq. (2.1), we have in

the small q limit with ω0 = 0 the temperature vertex function,

Ts(q, 0) =
1

m∗pf
4π2~3

[
ln Tc

T
− 1

6

(
vf |q|
2~ωD

)2
− 7ζ(3)

3π2

(
vf |q|
4kBT

)2] , (2.2)

where the superfluid transition temperature Tc is given by

kB Tc =
2γ~ωD

π
e−4π2~3/m∗pf |T̃s|, (2.3)

lnγ is the Euler’s constant and ~ωD = 0.244E0
F is the cutoff frequency [26].

Quasiparticles with energies deviating from the Fermi energy by a value beyond

~ωD are neglected in the interaction. Here we have set T̃s = Γ̃s, where Γ̃s is the

zero temperature irreducible particle-particle vertex function, which is equivalent

to the spin singlet normal Fermi-liquid scattering amplitude ts(θ, ϕ) given by Eqs.

(1.36) and (1.38). The full temperature vertex function Ts(q, 0) is equal to the

superfluid fluctuation dominated spin singlet quasiparticle scattering amplitude.

As shown by Eq. (2.2), the scattering amplitude is indeed divergent at Tc for zero

total momentum q. The detailed derivation of Eq. (2.2) from Eq. (2.1) is given

in Appendix A.

In order to calculate the transport lifetimes and transport coefficients, the

spin averaged transition probability W (θ, ϕ) is needed as discussed in section 1.2.

In the presence of the superfluid fluctuations at temperatures right above Tc,

the transition probability W (θ, ϕ) contains both a superfluid fluctuations part

Wf(θ, ϕ), and a normal Fermi-liquid scattering part Wn(θ, ϕ), with

W (θ, ϕ) = Wf(θ, ϕ) +Wn(θ, ϕ). (2.4)
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The superfluid fluctuations are phase space limited as Cooper pairs pairing breaks

down when the total momentum of the pair exceeds a certain value |qmax|, hence

quasiparticle scattering processes with a total momentum greater than |qmax| is

denoted by Wn(θ, ϕ), which is equivalent to the normal Fermi-liquid transition

probability derived from Eqs. (1.41) and (1.42),

Wn(θ, ϕ) =
2π

~

(
1

2
|t↑↓|2 + |t↑↑|2

)
, (2.5)

where t↑↓ and t↑↑ take the normal Fermi-liquid expression given by Eq. (1.38).

Quasiparticle scattering processes with a total momentum less than |qmax| is de-

noted by the superfluid fluctuations term Wf(θ, ϕ), which can be expressed in

terms of the singlet (ts) and triplet (tt) quasiparticle scattering amplitudes in the

same fashion as the normal transition probability derived from Eqs. (1.35), (1.36),

(1.41) and (1.42),

Wf(θ, ϕ) =
2π

~

(
1

2

∣∣∣ts + tt
2

∣∣∣2 + |tt|2
)
, (2.6)

where ts = Ts(q, 0) is the singlet scattering amplitude from the superfluid fluc-

tuations and the triplet scattering amplitude is the normal Fermi-liquid triplet

scattering amplitude, because only the singlet pairing channel is considered in the

superfluid fluctuations. The phase space averaged transition probability in Eq.

(1.46) could then be written as

⟨W ⟩ =

∫ |qmax|

0

dΩ

4π

Wf(θ, ϕ)

cos(θ/2)
+

∫ 2 pf

|qmax|

dΩ

4π

Wn(θ, ϕ)

cos(θ/2)

= ⟨W ⟩fluctuations + ⟨W ⟩normal, (2.7)

where ⟨W ⟩fluctuations and ⟨W ⟩normal stand for the phase space averaged superfluid

fluctuation and normal Fermi-liquid transition probabilities, respectively. The crit-

ical momentum |qmax| is determined by evaluating the zero temperature particle-
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particle vertex function [4],

Γs(q) = Γ̃s(q)−
i

2(2π)4

∫
Γ̃s(q)G(q − k)G(k)Γs(q)d

4k, (2.8)

where G is the zero temperature Green’s function. Standard quantum field theory

analysis [4] gives for small q the vertex function

Γs(q, ω0) = −4π2~3

m∗pf

iϖ

ω0 − iϖ + i
(
v2f |q|2/6~ϖ

) , (2.9)

where ϖ = 2ωDe
−4π2~3/m∗pf |Γ̃s|. The maximum momentum of a Cooper pair can

be determined from vf |qmax| =
√
6~ϖ by assuring that Γs(q, ω0) has a pole in the

upper half plane of ω0.

So far, I have determined the exact form of the quasiparticle scattering ampli-

tude from the superfluid fluctuations in Eq. (2.2). The full quasiparticle scattering

probability is expressed by Eq. (2.7). The Landau parameters are needed to e-

valuate these quantities, and I proceed to give the calculations of the Landau

parameters in next section.

2.3 Local Induced Interaction Model

2.3.1 Description of The Model

The Landau parameters are calculated using the local induced interaction mod-

el. The induced interaction model was first introduced in the 1970’s [27] to de-

scribe the quasiparticle interaction of liquid 3He. The more general momentum

dependent scattering amplitude model was developed in the 1980’s [28–30]. Such

a theory splits the quasiparticle interaction into two spices: the direct and the

induced, as shown in Fig. 2.1. The induced term comes from the part of the in-

teractions induced through the exchange of the collective excitations, whereas the
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Figure 2.1: Diagrammatic representation of the integral equations for the Landau
parameters F and the scattering amplitudes a. (a) represents the
equation for Landau parameters decomposed into direct and induced
terms; (b) sums all the reducible diagrams. It represents the equation
relating F to the scattering amplitudes a.

direct term is the Fourier transform of a model dependent effective quasiparticle

potential. The generalized expressions of the Landau parameters were derived di-

agrammatically by Ainsworth and Bedell [30]. In the local limit of a Fermi liquid,

the quasiparticle interaction is independent of the momentum [22], thus Landau

parameters F
s(a)
l with l > 0 are all zero. Therefore, the forward scattering sum

rule Eq. (1.34) is reduced to a simple summation of two terms,

As
0 + Aa

0 = 0. (2.10)

Consequently, the spin triplet quasiparticle scattering amplitude given by Eqs.

(1.35) and (1.38) for a normal Fermi liquid vanishes in the local limit, which

means tt = t↑↑(θ, ϕ) = 0 in the local limit. The spin singlet quasiparticle scattering

amplitude ts(θ, ϕ) for a normal Fermi liquid then reduces, according to Eq. (1.38)
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and Eq. (2.10) in the local limit, to

ts(θ, ϕ) = 2t↑↓(θ, ϕ) =
(As

0 − 3Aa
0)

N(0)
= − 4Aa

0

N(0)
. (2.11)

In the local model, the set of equations for the Landau parameters F
s(a)
0 is

reduced to [23, 31]

F s
0 = Ds

0 +
1

2
F s
0A

s
0 +

3

2
F a
0A

a
0 (2.12)

F a
0 = Da

0 +
1

2
F s
0A

s
0 −

1

2
F a
0A

a
0, (2.13)

where D
s(a)
0 are the spin symmetric and antisymmetric direct interaction terms

generated by the effective quasiparticle potential, and they are fully antisym-

metrized so that D
↑↑(↓↓)
0 = 0, where the arrows denote the spins of the interacting

quasiparticles. According to Ainsworth and Bedell [30], Ds
0 =

N(0)
2

(D↑↑
0 +D↑↓

0 ) =

2
π
kFas and D

a
0 = +N(0)

2
(D↑↑

0 −D↑↓
0 ) = − 2

π
kFas, where as is the quasiparticle s-wave

scattering length. Together with the local limit forward scattering sum rule Eq.

(2.10), I derive the expression for the scattering length as as a function of F a
0 from

the local induced interaction model Eqs. (2.12) and (2.13),

−1

kFas
=

8

π

(1 + F a
0 )(1 + 2F a

0 )

F a
0 + 3F a

0 (1 + 2F a
0 )

2
. (2.14)

This relation is depicted in Fig. 2.2. The quasiparticle interaction strength of a

Fermi gas is characterized by the s-wave scattering length as. On the BCS side

of the BCS-BEC crossover[32] in which I study the transport phenomena in this

work, the s-wave scattering length of the Fermi gas is always negative and it goes

to negative infinity at unitarity. Therefore, F a
0 of a unitary Fermi gas approaches

positive infinity in the local model according to Fig. 2.2. Utilizing the local

induced interaction model, I am able to calculate the Landau parameters F
s(a)
0

for Fermi gases with arbitrary quasiparticle interaction strengths. These Landau
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Figure 2.2: The Landau parameter F a
0 versus −(kFas)

−1 curve.

parameters are then used to determine the quasiparticle scattering amplitudes in

the calculations of the transport lifetimes and transport coefficients in section 2.4.

2.3.2 Universal Thermodynamics

Despite its simple structure and easy mathematics, the local induced interac-

tion model does a good job in explaining the universal thermodynamics of the

unitary Fermi gas. In a Galilean invariant system, the mass renormalization dis-

appears for a local Fermi liquid, i.e. m∗ = m. This is true since F s
1 = 0 in the

local limit and Eq. (1.22) justifies the above statement. Using the local forward

scattering sum rule Eq. (2.10), the Landau parameter F s
0 saturates to −0.5 at

unitarity from the local model. Hence, the quasiparticle mass and the Landau

parameter F s
0 are both independent of the quasiparticle density n, which makes it

simple to analyze the various thermodynamic quantities of the unitary Fermi gas.

I can derive the relation between the zero temperature chemical potential µ(n, 0)
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and the Fermi energy E0
F ≡ p2f/2m of an ideal Fermi gas from the zero temper-

ature compressibility of the normal Fermi gas given in Eq. (1.25) by integrating

out both µ and n,

dµ =
1 + F s

0

N(0)
dn =

2EF (1 + F s
0 )

3n
dn

⇒ µ(n, 0) = (1 + F s
0 )

m

m∗E
0
F , (2.15)

where the ideal gas Fermi energy E0
F is related to the real gas Fermi energy EF

through EF = m
m∗E

0
F . The direct proportionality between the chemical potential

and the Fermi energy resembles a similar universal relation µ = (1+β)E0
F , existing

in the unitary Fermi gases [9], where µ stands for the exact zero temperature

chemical potential of the unitary Fermi gas with superfluid condensations and β

is the true zero temperature Berstch parameter and is denoted by ξ in [13]. The

quantity 1+F s
0 relates to a number ξn, which is the hypothetical zero temperature

limit of the Berstch parameter extrapolated from the normal Fermi-liquid chemical

potential [13, 33], through the relation (1 + F s
0 ) = m∗

m
ξn. In the absence of the

mass renormalization, 1 + F s
0 is equivalent to ξn and differs from the true zero

temperature Berstch parameter ξ for not considering the superfluid condensation

energy. The local induced interaction model gives the value of 1 + F s
0 = 0.5 in

the unitary limit, which is close to the result ξn = 0.54 from the Monte Carlo

calculations for the unitary Fermi gases [33, 34].

I also study the leading order temperature dependence of several thermody-

namic quantities using basic thermodynamic analysis. In the absence of spin

polarization and mass renormalization, the chemical potential of a normal Fermi

gas is given, according to Landau Fermi-liquid theory [1], as

µ(n, T ) ≡ µ(n, 0)

[
1− π2(1 + F s

0 )

12

(
T

Ts

)2
]
, (2.16)
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where I have introduced the temperature scale Ts ≡ µ(n,0)
kB

, and Ts reduces to the

Fermi temperature T 0
F for an ideal Fermi gas. The chemical potential therefore

scales the same in temperature as the ideal Fermi gas apart from a renormalization

in the temperature scale. The total entropy is given according to Eq. (1.23) by

S

NkB

=
π2(1 + F s

0 )

2

T

Ts
. (2.17)

Further, the temperature dependence of the compressibility K (n, T ) can be de-

rived from the definition of the compressibility, K = 1
n2

∂n
∂µ
, and it is given by

K (n, T ) = K (n, 0)

[
1 +

π2(1 + F s
0 )

12

(
T

Ts

)2
]−1

, (2.18)

where the zero temperature compressibility K (n, 0) given by Eq. (1.25) can be

reexpressed in terms of n and EF ,

K (n, 0) =
3

2nEF

1

1 + F s
0

. (2.19)

The compressibility function can also be expressed as

K = − 1

V

(
∂V

∂P

)
T

=
1

n

(
∂n

∂P

)
T

, (2.20)

thus the temperature dependence of the pressure P (n, T ) is obtained by solving

the above equation,

dP =
2EF (1 + F s

0 )

3

[
1 +

π2(1 + F s
0 )

12

(
T

Ts

)2
]
dn

⇒ P (n, T ) = P (n, 0)

[
1 +

5π2(1 + F s
0 )

12

(
T

Ts

)2
]
, (2.21)
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where the zero temperature pressure P (n, 0) is given by

P (n, 0) =
2

5
(1 + F s

0 )nEF . (2.22)

All the thermodynamic quantities calculated above involve universal functions

of the Fermi energy EF and the ratio T/Ts, as expected from a unitary Fermi

gas [12]. The analogy between the unitary Fermi gas and the ideal Fermi gas is

remarked here. Consider the unitary Fermi gas undergoing an adiabatic process

(i.e. no entropy generation), the entropy function given in Eq. (2.17) implies that

the ratio T/Ts remains unchanged throughout the whole process. The product

Pn−5/3 is obtained from Eq. (2.21) as

Pn−5/3 =
2(1 + F s

0 )

5

~2 (3π2)
2/3

2m∗

[
1 +

5π2(1 + F s
0 )

12

(
T

Ts

)2
]
. (2.23)

Therefore, during a reversible adiabatic process, Pn−5/3 = const, for the unitary

Fermi gas, typical of noninteracting atomic gases.

2.3.3 BCS-BEC Crossover

In addition to the thermodynamic quantities calculated above, the local in-

duced interaction model provides meaningful analysis to the physics of BCS-BEC

crossover as well. An effective s-wave scattering amplitude ã0 could be defined as

[4]

Γ̃s

2
=

4π~2 ã0
m∗ . (2.24)

In the local limit, Γ̃s, which is equivalent to the singlet normal Fermi-liquid scat-

tering amplitude ts(θ, ϕ), is given by Eq. (2.11),

Γ̃s = ts(θ, ϕ) =
As

0 − 3Aa
0

N(0)
= − 4Aa

0

N(0)
. (2.25)
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Analogous to the two-body scattering problem in quantum mechanics [35], I can

write down the s-wave phase shift

δ0 = kF ã0 =
π

8
(As

0 − 3Aa
0) = −π

2
Aa

0. (2.26)

Using the local induced interaction model result F a
0 → +∞ therefore Aa

0 = 1 at

unitarity, the s-wave phase shift δ0 is evaluated to give δ0 = −π
2
on the BCS side of

the BCS-BEC crossover. On the BEC side of the crossover, however, the scattering

length as takes the opposite limit as it approaches positive infinity at unitarity.

As a result, F s
0 → +∞ in the local induced interaction model at the crossover

[31], which means δ0 =
π
2
on the BEC side of the crossover. Based on Levinson’s

theorem [35], the increase in the phase shift by π indicates the appearance of a

bound state on the BEC side of the BCS-BEC crossover, in agreement with the

physics of the BCS-BEC crossover as fermion pairs start to form bounded dimers

crossing over to the BEC side. A rough estimate of the molecular binding energy

on the BEC side is presented based on the formula

Eb =
−~2

mã20
≈ −0.8EF . (2.27)

The superfluid transition temperature Tc from the BCS side can be estimated

using Eq. (2.3). In the local limit, Eq. (2.3) reduces to

Tc = 0.28T 0
F e

−1/|Aa
0 |. (2.28)

Using F a
0 → ∞ in the unitary limit of the BCS Fermi gas from the local model, the

above expression gives Tc = 0.102T 0
F . The local model predicts a Tc value relatively

close to the experimentally measured value of Tc = 0.167T 0
F for the unitary Fermi

gas [13]. In the later calculations, I have introduced a scaling factor L = 1.64 in
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the exponential term of Tc, e
−1/|Aa

0 | → Le−1/|Aa
0 |, to artificially lift Tc at unitarity

from the local model prediction to its experimental value.

2.4 Transport Lifetimes and Coefficients

The study of the transport phenomena in the strongly correlated Fermi gas in

this work involves the calculation of the various transport lifetimes and transport

coefficients. To be more specific, I calculate the transport lifetimes associated

with the spin diffusion τD, the viscosity τη and the thermal conduction τK, as well

as the related transport coefficients, the spin diffusion coefficient D, the viscosity

coefficient η and the thermal conductivity K at low temperatures. The low tem-

perature behaviors of the transport properties for the strongly correlated Fermi

gas can still be described by Laudau Fermi-liquid theory as shown in section 1.2,

except for the superfluid fluctuations effect introduced in section 2.2 when the

temperature is very close to Tc from above.

In this section, I integrate the superfluid fluctuations into the normal Fermi-

liquid formulas provided in section 1.2 to study the low temperature transport

properties of the strongly correlated Fermi gas. I also add the leading order finite

temperature corrections [36–40] to the transport lifetimes and transport coeffi-

cients in the attempt to characterize the transport phenomena at the intermediate

temperature regime. The Landau parameters needed to calculate the quasipar-

ticle scattering amplitudes are evaluated based on the local induced interaction

model from section 2.3. The high temperature portion of the transport properties

are sketched qualitatively to give a full temperature profile for the transport phe-

nomena, so that the comparison between the theory and the experiments can be

made.
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2.4.1 Scattering Amplitudes in the Local Limit

In the local limit, the spin triplet normal Fermi-liquid scattering amplitude

vanishes, tt = t↑↑(θ, ϕ) = 0, as mentioned in section 2.3.1. The spin singlet normal

Fermi-liquid scattering amplitude ts(θ, ϕ) is given by Eq. (2.11). Therefore, the

normal Fermi-liquid transition probability defined in Eq. (2.5) reduces to

Wn(θ, ϕ) =
1

2
W↑↓(θ, ϕ) =

1

2

2π

~

∣∣∣−2Aa
0

N(0)

∣∣∣2. (2.29)

The transition probability from the superfluid fluctuations Wf(θ, ϕ) defined in Eq.

(2.6) reduces to

Wf(θ, ϕ) =
1

2

2π

~

∣∣∣Ts(q, 0)

2

∣∣∣2. (2.30)

Performing the integrals in Eq. (2.7) in the above local limit, I have the phase

space averaged transition probabilities,

⟨W ⟩normal =
2π

~
2

|N(0)|2
· 2(1−

√
6π

4γ

Tc
TF

)|Aa
0|2 (2.31)

⟨W ⟩fluctuation =
2π

~
2

|N(0)|2

×


√
6πTc

4γTF

ln T
Tc

[
ln T

Tc
+
(√

6πTc

4γTF

)2(
11.2 + 0.28

(
TF

Tc

)2)]

+

tan−1

(√(√
6πTc

4γTF

)2(
11.2 + 0.28

(
TF

Tc

)2)
/
√
ln T

Tc

)
(
ln T

Tc

)3/2√
11.2 + 0.28

(
TF

Tc

)2
 ,
(2.32)
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where the critical momentum qmax has been expressed in terms of Tc,

vf |qmax| =
√
6~ϖ =

√
6π

γ
kBTc, (2.33)

and the critical momentum translates to the scattering angle θ in the integrals of

Eq. (2.7) through |q| = 2pf sin θ/2. The total phase spaced averaged transition

probability ⟨W ⟩ follows from Eq. (2.7) directly. The characteristic relaxation

time τ is then determined from Eq. (1.45) with the superfluid fluctuations effect

included through ⟨W ⟩. In the end, the various transport lifetimes and transport

coefficients can be calculated from the characteristic relaxation time τ .

2.4.2 Spin Diffusion

I start off the calculation of the transport properties with the spin diffusion

lifetimes τD. The zero temperature spin diffusion lifetime is approximated from

Eq. (1.47), which I denote with τ 0D here,

τ 0D
τ

=
1

6
+

4λD

π2

3

4(2− 2λD)
, (2.34)

where it is enough to keep only the first term in the summation since the high-

er terms decrease rapidly. The factor λD is estimated from Eq. (1.48) without

considering the superfluid fluctuations in the scattering amplitudes. In the local

limit, the normal Fermi-liquid transition probability Wn(θ, ϕ) becomes angle inde-

pendent as shown in Eq. (2.29), and λD turns out to be a constant, λD = −1/3,

irrelevant of the Landau parameters. The zero temperature spin diffusion lifetime

τ 0D is then a simple fraction of the relaxation time τ ,

τ 0D ≈ 0.129 τ =
0.129× 16

~|N(0)|2⟨W ⟩
~

kBTF

(
TF

T

)2

, (2.35)
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where ⟨W ⟩ is evaluated from the local induced interaction model as in section

2.4.1. The leading order finite temperature correction to τ 0D is computed in the

local limit [36] in Appendix B,

1

τD
− 1

τ 0D
= −3

2
πζ(3)

kBTF

~

(
T

TF

)3

×
[
−2.95(Aa

0)
3 + 1.564(Aa

0)
2 + 1.278Aa

0F
a
0

]
. (2.36)

The full expression of τD for the low to intermediate temperatures is estimated by

solving Eq. (2.36),

τD =
~

kBTF

(
TF

T

)2( ~|N(0)|2

0.129× 16
⟨W ⟩ − 3

2
πζ(3)

×
[
−2.95(Aa

0)
3 + 1.564(Aa

0)
2 + 1.278Aa

0F
a
0

] T
TF

)−1

(2.37)

Additionally, the spin diffusion coefficient D is calculated from τD using Eq. (1.44)

at the low to intermediate temperatures to compare with the experiment [19].

The classical high temperature limit (T ≫ TF ) of the spin diffusion coefficient is

sketched qualitatively to present a better comparison between the theory and the

experiment. The characteristic relaxation time τ scales at high temperatures as

[41]

τ ∝ ~
kBTF

(
T

TF

)1/2

, T ≫ TF . (2.38)

The spin diffusion lifetime τD assumes the same temperature dependence at high

temperatures, the numerical factor in front is extrapolated from the experimental

data [19] to give

τD ≈ 5.84
~

kBTF

(
T

TF

)1/2

, T ≫ TF . (2.39)
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The spin diffusion coefficient is then expressed as

D =


1
3
v2f (1 + F a

0 )τD, T ≪ TF ,

kBT
m
τD = 5.84 ~

m

(
T
TF

)3/2
, T ≫ TF ,

(2.40)

where τD is given by Eq. (2.37) at low temperatures and by Eq. (2.39) at high

temperatures. Eq. (2.40) concludes the spin diffusion properties of the strongly

correlated Fermi gas with superfluid fluctuations.

2.4.3 Viscosity and Viscosity/Entropy

The computation of the viscous lifetime τη and the viscosity coefficient η follows

the same procedure as the spin diffusion case. The zero temperature viscous

lifetime τ 0η is approximated from Eq. (1.50)

τ 0η
τ

=
1

6
+

4λη
π2

3

4(2− 2λη)
, (2.41)

where λη is evaluated in the same local normal Fermi-liquid limit as λD, λη = 1/5.

Similar to τ 0D, the quantity τ 0η is given by

τ 0η ≈ 0.205 τ =
0.205× 16

~|N(0)|2⟨W ⟩
~

kBTF

(
TF

T

)2

. (2.42)

The leading order finite temperature correction to τ 0η is given as [36]

1

τη
− 1

τ 0η
= −3πζ(3)

kBTF

~

(
T

TF

)3

×
[
0.202(Aa

0)
3 + 0.164(Aa

0)
2
]
. (2.43)
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The full expression of τη in the low to intermediate temperature regime is deter-

mined from the above equation to be

τη =
~

kBTF

(
TF

T

)2( ~|N(0)|2

0.205× 16
⟨W ⟩ − 3πζ(3)

×
[
0.202(Aa

0)
3 + 0.164(Aa

0)
2
] T
TF

)−1

. (2.44)

The low temperature viscosity coefficient η is then determined from τη according

to Eq. (1.49). The high temperature limit of τη is fitted from the experimental

measurement of the viscosity coefficient [21]

τη ≈ 3.4
~

kBTF

(
T

TF

)1/2

, T ≫ TF . (2.45)

Therefore, the complete viscosity coefficient over the entire temperature regime is

given as

η =


1
5
npfvfτη, T ≪ TF ,

nkBTτη = 3.4n~
(

T
TF

)3/2
, T ≫ TF ,

(2.46)

where τη is given by Eq. (2.44) at low temperatures and by Eq. (2.45) at high tem-

peratures. Eq. (2.46) concludes the viscous properties of the strongly correlated

Fermi gas with superfluid fluctuations.

The ratio of viscosity coefficient over entropy density, η/s, is also calculated

here to see whether the universal quantum limited lower bound proposed by string

theory [14] truly exists in the transport properties of a unitary Fermi gas. To

obtain the ratio η/s, I need to calculate the entropy density s in both the low

and high temperature limit. The low temperature entropy density is given by

Eq. (1.23) from Landau Fermi-liquid theory, and can be rewritten in terms of the
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temperature ratio T
TF

as

s =
π2

2
nkB

(
T

TF

)
, T ≪ TF . (2.47)

A finite temperature correction term is also included in the calculation of the low

temperature entropy density [1],

∆s = − 1

20
π4nkBB

s

(
T

Tf

)3

ln

(
T

Tc

)
(2.48)

where

Bs = N(0)bs = −1

2

[
(As

0)
2

(
1− π2

12
As

0

)
+ 3(Aa

0)
2

(
1− π2

12
Aa

0

)]
. (2.49)

The full entropy density in the low temperature limit is therefore

s =
π2

2
nkB

(
T

TF

)[
1− π2

10
Bs

(
T

Tf

)2

ln

(
T

Tc

)]
, T ≪ TF . (2.50)

In the high temperature limit, the total entropy S assumes that of a classical

Fermi gas based on regular statistical mechanics analysis [42],

S = NkB

{
5

2
− ln

(
nλ3

g

)}
, T ≫ TF , (2.51)

where λ = h/ (2πmkBT )
1/2 is the thermal wave length, and g = 2 for the two

component Fermi gases. In the local limit, the mass renormalization disappears,

i.e. m∗ = m, as discussed in section 2.3.2, so the high temperature total entropy

in Eq. (2.51) can be reexpressed to give the entropy density,

s = nkB

{
5

2
− ln

(
4

3π1/2

)
+

3

2
ln

(
T

TF

)}
, T ≫ TF . (2.52)
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With both the viscosity coefficient and the entropy density fully determined, the

ratio of η/s is readily calculated and the result will be presented in section 2.5.

2.4.4 Thermal Conduction

The evaluation of the thermal conductivity lifetime τK and the thermal con-

ductivity K is the same as the previous two transport phenomena. I focus only on

the low temperature behavior of the thermal conduction as there is a lack of exper-

imental data regarding the thermal conductivity for comparison, hence it suffices

to do such to serve the purpose of this work, which is studying the low temper-

ature transport phenomena of the strongly correlated Fermi gas from theoretical

perspectives.

The zero temperature thermal conductivity lifetime τ 0K is estimated from Eq.

(1.54),

τK
τ

=
12− π2

2π2
+
λK

π2

5

3 (6− 2λK)
, (2.53)

and λK = 1/3 for a local Fermi liquid. Again, I have τK in terms of the relaxation

time τ as

τ 0K ≈ 0.119 τ =
0.119× 16

~|N(0)|2⟨W ⟩
~

kBTF

(
TF

T

)2

. (2.54)

The leading order finite temperature correction to τ 0K is calculated to be [36]

1

τK
− 1

τ 0K
= − 45

2π
ζ(3)

kBTF

~

(
T

TF

)3

×
[
−2.09(Aa

0)
3 + 2.696(Aa

0)
2 +

(
1.647 +

0.549

1 + 2F a
0

)
Aa

0F
a
0

]
.

(2.55)

The full low to intermediate temperature thermal conductivity lifetime is deter-
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mined from the above equation,

τK =
~

kBTF

(
TF

T

)2{ ~|N(0)|2

0.119× 16
⟨W ⟩ − 45

2π
ζ(3)

×
[
−2.09(Aa

0)
3 + 2.696(Aa

0)
2 +

(
1.647 +

0.549

1 + 2F a
0

)
Aa

0F
a
0

]
T

TF

}−1

.

(2.56)

The low to intermediate temperature thermal conductivity K is given by Eq.

(1.53), K = 1
3
cV v

2
fτK, where τK is shown in Eq. (2.56).

2.5 Results and Discussion

In this section, I plot the various transport properties calculated in the previous

sections with respect to temperature. The thermal conductivity lifetime τK is

plotted in its low to intermediate temperature limit, based on which several special

features of my theoretical model are explained. The spin diffusion coefficient D

and the ratio of viscosity coefficient over entropy density η/s are plotted in the

entire temperature range to compare with the experimental data.

2.5.1 Thermal conductivity Lifetime

Since there is a lack of experimental data on the thermal conduction of strongly

interacting Fermi gases for me to compare with the calculated thermal conductiv-

ity lifetime and thermal conductivity, I present just the low temperature analysis

of the thermal conductivity lifetime τK based on Eq. (2.56). The thermal conduc-

tivity lifetime τK is plotted with respect to the temperature ratio T/TF from low

to intermediate temperatures. Several different values of F a
0 are chosen to evaluate

τK, and the results are depicted in Fig. 2.3.

In the local induced interaction model, the Landau parameter F a
0 is directly
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Figure 2.3: Calculated thermal conductivity lifetime τK vs temperature. τK is
plotted in the low temperature limit with different values of F a

0 .

related to the interacting strength of the ultra cold Fermi gas through Eq. (2.14)

and shown by Fig. 2.2, so each sub-figure in Fig. 2.3 actually shows the low

temperature behavior of τK of an ultra cold Fermi gas with a particular interaction

strength. Although the shapes of the τK curves vary with their corresponding

values of F a
0 , several common features are shared among them. Every τK curve in

the figure has a tendency to go up when the temperature is low and decreasing,

which is characteristic for a normal Fermi liquid where the quasiparticle lifetime τ

goes as 1/T 2 at low temperatures. Meanwhile, a sharp drop in the magnitude of the

lifetime τK is spotted in all four sub-figures of τK when the temperature approaches

the superfluid transition temperature Tc from above. This special feature in the

transport lifetime τK is unexpected from a normal Fermi liquid, and it is precisely

due to the superfluid fluctuations taking place in the strongly interacting ultra

cold Fermi gas when the temperature is very close to Tc. This phenomena is
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easily understood by looking at the form of the thermal conductivity lifetime τK

given in Eq. (2.56). The ⟨W ⟩ term in the denominator of τK starts to diverge

when the superfluid fluctuations begin to dominate the quasiparticle scattering

amplitudes approaching Tc, therefore the magnitude of τK drops rapidly near Tc

and vanishes at Tc. When the temperature is extended to some intermediate value,

the lifetime τK tends to increase as the temperature increases because of the finite

temperature correction to τK. However, when the temperature gets higher, the

finite temperature correction term given in Eq. (2.55) becomes comparable to the

zero temperature value 1/τ 0K rendering the relative smallness of this correction

term being unjustified, which in turn introduces an artificial singularity to the

lifetime τK at some finite temperature. Therefore, the rapid upturn in the tail of

the τK curve for the case of F a
0 = 1.3 in Fig. 2.3 is unphysical and indicative of this

artificial singularity. The relatively flat region in the intermediate temperatures of

τK is interpreted as a result of the competition between the normal Fermi-liquid

1/T 2 decay in τK and the finite temperature correction upturn in τK.

The Landau parameter F a
0 affects the shape of the thermal conductivity lifetime

τK through the superfluid transition temperature Tc given by Eq. (2.28). Since

Tc increases as F a
0 increases, the superfluid fluctuations effect kicks in at higher

temperatures for higher values of F a
0 , which translates to a lower peak height in

the τK curve at low temperatures as indicated by Fig. 2.3. The theory fails to

capture the correct behavior of τK when F a
0 becomes too large, but it succeeds in

revealing the superfluid fluctuations above Tc through τK, regardless of the choice

of F a
0 .

2.5.2 Spin Diffusion Coefficient and Lifetime

The analysis to the spin diffusion lifetime τD is slightly different from what I

did in the thermal conductivity lifetime τK. There exists a similar artificial sin-
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Figure 2.4: Calculated spin diffusion lifetime τD vs temperature. The low temper-
ature expansion of τD is plotted with different values of F a

0 .

gularity in τD as in τK when the temperature increases to a point T ∗ where the

finite temperature correction term becomes comparable to 1/τ 0D, according to Eq.

(2.37). Since this singularity is an artifact of overextending the correction term in

temperature and causes unphysical upturns in the transport lifetimes at intermedi-

ate temperatures, I shall remove this undesired mathematical effect by expanding

τD in powers of the ratio T/TF and keeping terms up to the fourth powers of T/TF

in Eq. (2.37). The low temperature feature of τD is well approximated by the

expansion for temperatures T ≪ T ∗. Hereafter, I use this expansion to describe

the low to intermediate temperature behavior of τD. The resulting plot of τD with

respect to temperature for several different values of F a
0 is shown in Fig. 2.4. The

general features of the τD curves are very similar to those of τK, except that in

the case of τD the unphysical upturns are now removed from the tails of these τD

curves. Once again, the superfluid fluctuations affect greatly the behavior of τD
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Figure 2.5: Spin diffusion coefficient D vs temperature. The black solid curve is
the low temperature expansion of D at F a

0 = 1.7; the dashed line is
the classical limit of D; the blue curve represents the sum of the two
limits; the red dots with error bars are the experimental data [19].

at temperatures right above Tc, causing drastic drops in the τD curves.

The spin diffusion coefficientD is plotted in both the low and high temperature

limits according to Eq. (2.40). By choosing F a
0 = 1.7, I am able to present a good

match between the calculated and the measured spin diffusion coefficient [19], as

depicted in Fig. 2.5. The use of the low temperature expansion of τD is justified

since the low temperature portion (roughly at T < 0.5TF ) of the experimental

data I am trying to describe falls below T ∗ (T ∗ ≈ 0.65TF for F a
0 = 1.7). The

superfluid transition occurs at Tc ≈ 0.167TF in such a unitary Fermi gas [13].

Based on the calculations, the spin diffusion coefficient is suggested to experience

a drastic drop when the temperature approaches Tc from above, and behaves like

a normal Fermi liquid going as 1/T 2 for Tc < T ≪ TF , when the temperature

moves away from Tc. A naive picture is drawn to explain the role of the superfluid

fluctuations in the spin diffusion. The spin diffusion coefficient D is defined as the
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response of the Fermi system to a perturbation (spin gradient) in generating a net

spin current according to Eq. (1.44). The superfluid fluctuations take place when

up and down fermions start to pair up and move in the same direction. The Fermi

system therefore generates little net spin current when subject to a spin gradient.

One then ends up with a very small spin diffusion coefficient.

Since the theory in this work is built under the assumption of a uniform Fermi

gas, therefore instead of introducing a scaling factor to account for the trap effect

[18], I make an approximation in treating the trapped Fermi gas used in the

experiment as a uniform one with an effective average density. The F a
0 = 1.7 is

interpreted as the effective Landau parameter for the trapped gas. Although I

am unable to make F a
0 → +∞ as it should be for a unitary Fermi gas according

to the local induced interaction model, a Fermi system with interaction strength

kFas ≈ −3.3 suggested by F a
0 = 1.7 is still considered as strongly interacting. In

addition, the local model is constructed under zero temperature, therefore it is

possible that F a
0 becomes temperature dependent and the theory deviates from its

zero temperature version when temperature increases.

As the spin diffusion coefficient saturates to some finite valueD ≈ 6.4 ~/m near

Tc in the experiment [19], it is interpreted as the evidence of the universal quantum

limited lower bound for the spin diffusion coefficient analogous to the conjectured

quantum limited viscosity in unitary Fermi gases [14]. However, as seen in Fig.

2.5, the alleged universal quantum limit in the low temperature portion of the

spin diffusion coefficient may well be explained by the local minimum found in

my theory by an interplay between Fermi liquid effects that want the transport

coefficients to diverge, as T → 0, and the superfluid fluctuations that want to drive

them to zero at Tc, as T → Tc, from above. The new theoretical model developed

in this work brings new insights to the understanding of the transport properties

of the unitary Fermi gas by taking the superfluid fluctuations into consideration.
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Figure 2.6: The ratio of viscosity coefficient over entropy density η/s vs temper-
ature. The ratio η/s is evaluated at F a

0 = 100, i.e. the unitary limit
where F a

0 → +∞ according to the local model. The black solid curve
is the low temperature limit of the ratio η/s; the dashed curve is the
high temperature limit of this ratio; the red curve represents the single
function that captures both the low and high temperature behaviors
of this ratio; the horizontal blue line on the bottom indicates the uni-
versal quantum limited lower bound of η/s = ~/4πkB conjectured in
Ref. [14]. The inset figure shows the experimental data for the η/s
ratio [21].

2.5.3 Viscosity over Entropy Density

To compare the calculations of the viscosity with the experimental findings

on the viscosity properties [21], the ratio of the viscosity coefficient over entropy

density η/s is plotted against the temperature in both the low and high temper-

ature limits, as depicted in Fig. 2.6. This time, I am able to push F a
0 to infinity

and achieve true unitarity in the Fermi gas based on the local induced interaction

model. The inset in Fig. 2.6 shows the plot of the measured ratio η/s with respect

to the energy ratio E/EF . The ratio E/EF could be translated to the ratio T/TF
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Figure 2.7: The energy of a strongly interacting Fermi gas vs temperature [43].
The red curve shows E(T ) as determined from the fit with a heat
capacity jump in Ref. [44]. The blue dashed curve shows E(T ) as
determined from the fit with continuous heat capacity.

as in Fig. 2.7 from Ref. [43]. An energy ratio of E/EF = 0.6 corresponds roughly

to a temperature ratio of T/TF = 0.17, therefore the low temperature portions of

the calculated and the measured ratio of η/s are plotted in the same temperature

window.

A similar local minimum is found in the calculated ratio of η/s shown as the

red curve in Fig. 2.6. This local minimum has a height, η/s ≈ 0.3 ~/kB in rough

agreement with the experimental saturation value of η/s for a nearly perfect Fermi

gas [20, 21] in the inset of Fig. 2.6, which is not too far from the conjectured

quantum limited lower bound [14], η/s ≈ 0.08 ~/kB. However, the minimum

found in the ratio η/s is once again the result of the same interplay between the

superfluid fluctuations and the normal Fermi-liquid effects as discussed in the case

of the spin diffusion coefficient according to my theory. Therefore, I find the idea

of universal quantum limited transport in the unitary Fermi gas not convincing

based on the transport calculations presented in this work.
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2.5.4 The s− p Approximation

I have introduced the local approximation for the Fermi liquid description of

the cold atom Fermi gases and used the local version of the induced interaction

to calculate the Fermi-liquid parameters. This has been done since this provides

simple analytic results that provide qualitative and reasonably good quantitative

results for the Fermi-liquid parameter F s
0 and the thermodynamic scaling temper-

ature Ts as well as Tc. In earlier publications [31, 45], the momentum dependent

induced interaction is used which generated Fermi liquid parameters with l > 0.

In the unitary limit the induced interaction gives a small mass correction, about

15% above the bare mass, and it gives an F s
0 = −0.6. These numbers are indepen-

dent of the density at unitarity so the thermodynamic scaling is just like what I

found for the local model but with a smaller value for Ts. I also found that when

I use the s-p approximation [1, 45] to construct the scattering amplitude from the

Landau parameters I get better fits for some of the calculated properties. These

include, Tc and Eb, where Tc ≈ 0.14TF and Eb ≈ −0.3EF . Clearly, I can get

better numerical results going beyond the local model but it would not give me

qualitatively new insights into some of the properties of this cold atom system. In

particular this would not qualitatively change the nature of the strong superfluid

fluctuation effects in the transport coefficients just above Tc.

2.6 Summary

To summarize, I have developed a complete formula for calculating the trans-

port lifetimes and transport coefficients above Tc of an ultracold Fermi gas with

arbitrary quasiparticle interaction strength through control of F a
0 . The superfluid

fluctuations above Tc in the cold Fermi gas are revealed through the calculation

of the quasiparticle scattering amplitude near Tc from above. Sudden decreases
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in the transport lifetimes as well as the transport coefficients closely above Tc are

found as the evidence of the superfluid fluctuations. Upon choosing a proper val-

ue of F a
0 = 1.7, I am able to describe the experimental data of the spin diffusion

coefficient using my theory. The calculated ratio of the viscosity coefficient over

the entropy density η/s is compared with the experiment as well. When F a
0 is

pushed to infinity indicating the unitary limit, the local minimum found in the

theoretical ratio agrees roughly with the minimum measured in the experiment.

Unfortunately, the proposed quantum universality in the transport of the unitary

Fermi gas is not confirmed by the theory developed in this work. Further work

could be done by using the s−p approximation with the induced interaction model

for calculating the Landau parameters.
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CHAPTER III

Quantum Spin Transport Through a Novel F/N

Junction

3.1 Introduction

The second part of this thesis involves the study of the spin dynamics and

transport in an F/N junction, one of the most basic spintronic devices. With the

development of microelectronic devices based on electric charge reaching to its full

capacity in the foreseeable future as the size of device features approaches the di-

mension of atoms, investigators have been eager to seek device applications based

on electron spin, which has led to the emergence of a new research field called

spintronics [46]. The central theme of spintronics involves active manipulation of

the spin degree of freedom in solid-state systems, which generally requires the gen-

eration and control of nonequilibrium spin. Over the past two decades, extensive

studies on spintronics have been carried out in various solid-state systems [47].

Among the many interesting spintronic systems, the F/N junction is considered

to be one of the simplest and most basic, where nonequilibrium spin polariza-

tion could be generated through electrical spin injection [48, 49]. A considerable

amount of work has been done studying the spin transport from the ferromagnetic

metal to a normal metal in the classical diffusion dominated transport regime [47].
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In this work, I focus on investigating the spin transport through the F/N junc-

tion under electrical spin injection in the low temperature regime, where the spin

diffusion is dominated by spin precession rather than collision in the classical d-

iffusion dominated transport regime as in chapter II. The relative importance of

the two mechanisms has been studied both in weak ferromagnetic systems and

nonequilibrium paramagnetic systems through calculating the effective spin diffu-

sion coefficient [50]. Here, I focus on studying the propagation of spin waves and

transport of magnetization through the interface of the F/N junction. To be more

specific, I calculate the possible transverse spin wave modes in the ferromagnetic

metal side and the spin-polarized nonequilibrium normal metal side of the F/N

junction using Laudau Fermi-liquid theory. The derivation of the various spin

wave modes are presented in section 3.2, and the results are shown in section 3.3.

I then propose a proper set of boundary conditions at the junction interface, un-

der which the spin waves can successfully propagate from the ferromagnet side of

the F/N junction to the normal metal side. Such a phenomena could in principle

be tested by a transmission conduction electron spin resonance CESR experiment

performed on the F/N junction, and likely experimental results are discussed as

well in section 3.3.2. Potential device applications based on this novel spin trans-

port feature of the F/N junction are proposed in section 3.3.3. This work has been

published in the journal Physical Review B [51].

3.2 Derivation of Spin Wave Modes

Under electrical spin injection, net magnetization is driven from the ferromag-

net into the normal metal region of the F/N junction by a spin-polarized charge

current flowing across the F/N junction, as shown in Fig. 3.1(a). For a long

enough relaxation time, T1, of the polarized spin, this would lead to a steady

state in the normal metal region of the F/N junction with nonequilibrium mag-
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Figure 3.1: Pedagogical illustration of electrical spin injection into the F/N junc-
tion [47]. (a) Schematic experimental setup; (b) Distribution of the
equilibrium and nonequilibrium magnetization along z direction (the
direction of the charge current).

netization δM , depicted in Fig. 3.1(b), which I will, from here on, refer to as

the spin-polarized quasiequilibrium (QEQ) state in the weak polarization limit

[52], i.e., δM ≪ 1. Therefore, in the steady state, the F/N junction could be

thought of as a composition of spin-polarized equilibrium (ferromegnet side) and

quasiequilibrium (normal metal side) system. I study the transverse spin wave

modes that may arise in these systems, when a small transverse spin perturbation

is introduced to the steady state.

Using Landau Fermi-liquid theory, spin waves for a paramagnetic Fermi liquid

in the presence of a constant external magnetic field have been well understood by

solving the spin kinetic equation [1, 53]. These spin wave modes are the well known

Silin modes [54] for polarized Fermi liquids. A recent work has extended the study

of spin waves to QEQ spin systems [52], where new gapless spin wave modes were

found in a spin-polarized QEQ Fermi liquid in the absence of an external magnetic

field, similar to the case of a weak ferromagnetic system. Following the same recipe

as Ref. [52], I start with the study of the spin wave modes for the QEQ state of

the normal metal region of the F/N junction in section 3.2.1.
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3.2.1 Quasiequilibrium Fermi Liquid

Assuming the QEQ Fermi liquid having a total particle density, n = n↑ + n↓,

and a small magnetization (per unit volume), σ = n↑ − n↓, where n↑, n↓ are the

total densities of ↑, ↓ spin fermions and σ is polarized in an arbitrary direction,

with n = nQEQ and σ = σQEQ in the steady state, the kinetic equation for the spin

density can be derived from the general Landau kinetic equation, Eq. 1.39, as [1]

∂σp

∂t
+

∂

∂ri

(
∂εp
∂pi

σp +
∂hp

∂pi
np

)
+

∂

∂pi

(
−∂εp
∂ri

σp − ∂hp

∂ri
np

)
= −2

~
σp × hp +

(
∂σp

∂t

)
collision

, (3.1)

where hp = 2
V

∑
p′ fa

pp′σp′ is the effective field defined by Eq. (1.19) taking

into account only the internal field in the absence of an external magnetic field,

fa
pp′ denotes the spin antisymmetric Landau Fermi-liquid interaction, εp is the

quasiparticle energy and σp is the quasiparticle spin density defined as σp ≡

−∂n0
p

∂εp
σ

N(0)
, where n0

p is the ground state quasiparticle density distribution function

(Fermi distribution function). The detailed definitions of the above quantities

can be found in chapter I of this thesis, where Landau Fermi-liquid theory is

reviewed. The Lorentz force term appearing in the kinetic equations of charged

Fermi systems [2] vanishes here as there is no external field. According to Landau

Fermi-liquid theory, the spin current is given by

jσ,i(r, t) = 2

∫
d3p

(2π~)3

[
∂εp
∂pi

σp +
∂hp

∂pi
np

]
, (3.2)

which represents the current in the ith spatial direction of the σ spin polarization.

When a charge current, J, is running across the F/N junction in the steady state,

I can define in the QEQ Fermi liquid an average drift velocity of electrons, VQEQ

0 ,
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as

J = −enQEQV
QEQ

0 . (3.3)

Therefore, the steady state quasiparticle velocity in the QEQ state could be ap-

proximated as

vQEQ

pi = V QEQ

0i + v0pi =
∂εp
∂pi

, (3.4)

where v0pi is the i
th component of the isotropic equilibrium quasiparticle velocity

for the Fermi liquid. Substitute the QEQ quasiparticle velocity vQEQ

pi into Eq. (3.2)

and follow the derivations in Appendix C, I have the QEQ spin current as

jQEQ

σ,i (r, t) = V QEQ

0i σ(1 + F a
0 ) + 2

∫
d3p

(2π~)3
v0piσp(1 +

F a
1

3
). (3.5)

The first term on the right side of Eq. (3.5) is denoted as the drift spin current as

it is caused by the electron drift,

jdriftσ,i (r, t) = V QEQ

0i σ(1 + F a
0 ), (3.6)

and the second term is then interpreted as the regular Fermi-liquid diffusive spin

current [1],

jdiffσ,i(r, t) = 2

∫
d3p

(2π~)3
v0piσp(1 +

F a
1

3
). (3.7)

In the steady state, the diffusive spin current jdiffσ,i is given by the Fick form of spin

diffusion as Eq. (1.43), jdiffσ,i = −D∇iσ
QEQ, where D is the collision dominated

Fermi-liquid spin diffusion coefficient given by Eq. (1.44) in Landau Fermi-liquid

theory. Here, I shall point out that in a normal metal with periodic ion potentials,

the collision integral I[np′σ′ ] in Eq. (1.39) which determines the spin diffusion

contains in principle both quasiparitcle scattering off impurity and quasiparticle

scattering off each other, whereas only the later scattering mechanism is considered
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in the derivation of the spin diffusion formula in chapter I. The decomposition

of the spin current into a drift term and a diffusive term is consistent with the

treatment of an earlier study on the electrical spin injection into semiconductors

[55].

Let us choose the steady state polarization of the QEQ system to be in the z

direction, in which case the small transverse spin distortion, δσ, lies in the xy-

plane and could be decomposed as, δσ = δσx i + δσy j. The complex variable σ±

is then defined as

σ± = δσx ± iδσy, (3.8)

to track the dynamics of this small transverse spin distortion. Under such a small

transverse spin distortion, a transverse spin current is jdiff±σ,i (r, t) generated in the

QEQ system through spin diffusion, and this complex spin current is given as

jdiff±σ,i (r, t) = 2

∫
d3p

(2π~)3
v0piσ

±
p (1 +

F a
1

3
), (3.9)

where σ±
p ≡ −∂n0

p

∂εp
σ±

N(0)
measures the complex density of the transverse spin distor-

tion. The space and time evolution of the transverse spin distortion is governed by

the linearized spin conservation law derived from linearizing and summing both

sides of Eq. (3.1) over the momentum p,

∂σ±(r, t)

∂t
+

∂

∂ri
jdiff±σ,i (r, t) +

∂

∂ri
V QEQ

0i (1 + F a
0 )σ

±(r, t) = 0, (3.10)

where, here and through out this chapter, I have assumed a very large spin relax-

ation time T1, therefore the spin relaxation term is not included. The linearized

equation of motion for the transverse diffusive spin current takes a more complex
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form as

∂jdiff±σ,i (r, t)

∂t
+

1

3
(1 + F a

0 )(1 +
F a
1

3
)v2f

∂

∂ri
σ±(r, t)

+ (1 +
F a
1

3
)(V QEQ

0k

∂

∂rk
)jdiff±σ,i (r, t)

= ±i2
~
(fa

0 − fa
1

3
)jdiff±σ,i (r, t)σQEQ

− (1 +
F a
1

3
)jdiff±σ,i (r, t)/τD, (3.11)

where an extra spatial gradient term on the spin current is present on the left side

of Eq. (3.11) due to the effect of the drift charge current compared to the regular

Fermi-liquid result.

Eqs. (3.10) and (3.11) constitute the hydrodynamic equations for the com-

plex transverse spin distortion which are derived in detail in Appendix C. After

expanding, σ±(r, t) and jdiff±σ,i (r, t), in their respective Fourier series as:

σ±(r, t) =

∫
d3q dω σ±(q, ω)ei(q·r−ωt), (3.12)

jdiff±σ,i (r, t) =

∫
d3q dω jdiff±σ,i (q, ω)ei(q·r−ωt), (3.13)

the Fourier transformed hydrodynamic equations lead to a single equation for the

dispersion relation,

ω2 +

[
ω±
1 − (1 + F a

0 + 1 +
F a
1

3
)(VQEQ

0 · q)
]
ω

− i(1 + F a
0 )ω

±
1 (V

QEQ

0 · q)− c2sq
2

+ (1 + F a
0 )(1 +

F a
1

3
)|VQEQ

0 · q|2 = 0. (3.14)
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The constant term ω±
1 in the above equation is given by

ω±
1 = i

[
(1 +

F a
1

3
)/τD ∓ i

2

~
(fa

0 − fa
1

3
)σQEQ

]
, (3.15)

and c2s is interpreted as the spin wave velocity,

c2s =
1

3
(1 + F a

0 )(1 +
F a
1

3
)v2f , (3.16)

similar to the sound velocity with regard to the collective excitations arising from

Fermi systems subject to number density distortions [1]. Eq. (3.14) is solved in

the long wavelength, small q, limit, where I keep only terms of order q2 and below

in the solutions ω(q)±. The dispersion relations of the modes found in the QEQ

system are given as

ω±
0 (q) = (1 + F a

0 )(V
QEQ

0 · q)− iD±
effq

2, (3.17a)

ω±
1 (q) = −ω±

1 + (1 +
F a
1

3
)(VQEQ

0 · q) + iD±
effq

2, (3.17b)

where the term D±
eff is interpreted as the effective spin diffusion coefficient and

given by

D±
eff =

ic2s
ω±
1

=
1
3
(1 + F a

0 )(1 +
Fa
1

3
)v2f

(1 +
Fa
1

3
)/τD ∓ i2~(f

a
0 − fa

1

3
)σQEQ

, (3.18)

where the term (1+
Fa
1

3
)/τD could be interpreted as the collision term, and i2~(f

a
0 −

fa
1

3
)σQEQ as the spin precession term. The meaning of D±

eff becomes clearer when

Eq. (3.11) is rearranged under the steady state condition, ∂jdiff±σ,i (r, t)/∂t = 0,

jdiff±σ,i (r, t) = −D±
eff

∂

∂ri
σ±(r, t)− D±

eff

v2f (1 + F a
0 )/3

(V QEQ

0k

∂

∂rk
)jdiff±σ,i (r, t). (3.19)

For small q, the second term on the right side of Eq. (3.19) is an order of q higher

than the first term, I can thus drop the last term in Eq. (3.19) and recover the
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familiar Fick form for the spin current,

jdiff±σ,i (r, t) = −D±
eff

∂

∂ri
σ±(r, t), (3.20)

where D±
eff clearly serves as the role of the effective spin diffusion coefficient.

The spin precession term, i2~(f
a
0 − fa

1

3
)σQEQ, in the denominator of D±

eff in Eq.

(3.18), often referred to as the Leggett-Rice effect [56, 57], is solely a consequence

of the interactions between quasiparticles; it would cease to exist had I treated the

electronic system in the normal metal as a free Fermi gas using the simple electron

band structure model, i.e., fa
0 = fa

1 = 0. By making the Landau parameters F a
l go

to zero, I have effectively shut off the quasiparticle interactions in the QEQ sys-

tem, then the effective spin diffusion coefficient reduces to the collision dominated

Fermi-liquid spin diffusion coefficient, D = 1
3
v2fτD, in which case the spin diffusion

lifetime τD derived from the collision integral I[np′σ′ ] is largely determined by im-

purity scattering in the material rather than by quasiparticle scattering caused by

inter-particle interactions. The complete picture of the competition between the

collision effect and the spin precession effect in the effective spin diffusion coeffi-

cient over a wide temperature range was obtained from the spin echo experiment

in liquid 3He [58], and was also studied theoretically in the spin polarized Fermi

liquids [50].

In the low temperature limit, I take the spin diffusion lifetime τD → ∞, since

the characteristic relaxation time τ varies as T−2 according to Eq. (1.45) in a clean

Fermi liquid where the impurity scattering is negligible, therefore, the collision

term, (1+
Fa
1

3
)/τD → 0, becomes negligible in D±

eff compared to the spin precession

term, leading to a purely imaginary effective spin diffusion coefficient:

D±
eff = ± ic2s

2
~(f

a
0 − fa

1

3
)σQEQ

. (3.21)
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Finally, by plugging Eq. (3.21) into Eq. (3.14), the dispersion relations of the

modes for the QEQ system in the low temperature precession dominated regime

can be expressed as

ω±
0 (q) = (1 + F a

0 )(V
QEQ

0 · q)± c2sq
2

2
~(f

a
0 − fa

1

3
)σQEQ

, (3.22a)

ω±
1 (q) =(1 +

F a
1

3
)(VQEQ

0 · q)∓ c2sq
2

2
~(f

a
0 − fa

1

3
)σQEQ

∓ 2

~
(fa

0 − fa
1

3
)σQEQ. (3.22b)

Since both dispersion relations of the modes contain only real terms, for small

enough q, I have found the transverse spin wave modes that survive from Landau

damping [1] and can propagate through the QEQ system, which serve as collective

excitations of the QEQ system.

3.2.2 Ferromagnetic Fermi Liquid

In this section, I proceed to derive the spin wave modes in the ferromagnetic

Fermi liquid using the same method as in the QEQ system. I consider here a

weak ferromagnetic Fermi liquid for the ferromagnet region of the F/N junction,

where the spin dynamics could be studied in the language of Landau Fermi-liquid

theory [59] in a similar fashion as the QEQ system. I should use F̄ a
l and f̄a

l

for the Landau parameters in the ferromagnetic metal side of the F/N junction

to distinguish them with the Landau parameters used in the QEQ system. The

derivation of the spin wave modes starts from the same spin kinetic equation, Eq.

(3.1), with the various Fermi-liquid quantities being replaced by their values in

the ferromagnetic state. In the precession dominated regime, the transverse spin

wave modes in the ferromagnet region of the F/N junction turn out to be nearly

identical to the ones found in the normal metal region of the F/N junction, i.e.,
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the QEQ Fermi liquid,

ω±
0 (q) = (1 + F̄ a

0 )(V
FM

0 · q)∓ c̄2sq
2

2
~(f̄

a
0 − f̄a

1

3
)σFM

, (3.23a)

ω±
1 (q) =(1 +

F̄ a
1

3
)(VFM

0 · q)± c̄2sq
2

2
~(f̄

a
0 − f̄a

1

3
)σFM

∓ 2

~
(f̄a

0 − f̄a
1

3
)σFM, (3.23b)

except for the definition of the spin wave velocity,

c̄2s =
1

3
|1 + F̄ a

0 |(1 +
F̄ a
1

3
)v̄2f , (3.24)

since, (1 + F̄ a
0 ) < 0, for a ferromagnetic Fermi liquid, v̄f is the Fermi velocity of

the electrons in the ferromagnet, σFM is the equilibrium spin polarization in the

ferromagnet, and VFM

0 is the drift velocity of electrons in the ferromagnet, which

is related to the charge current through,

J = −enFMV
FM

0 , (3.25)

with nFM being the equilibrium carrier density in the ferromagnet. Again, for small

q, the transverse spin wave modes represented by Eq. (3.23) are the propagating

modes in the ferromagnet region of the F/N junction.

3.2.3 Boundary Conditions

So far, I have established the propagating transverse spin wave modes in the

ferromagnet region and the normal metal region of the F/N junction, respectively.

Naturally, one would want to look for proper boundary conditions to make the

spin wave modes propagate through the interface of the F/N junction, as it could

greatly increase the functionality of the F/N junction as a spintronic device. To
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simplify the analysis while keeping the underlying physics unchanged, I thereby

treat the F/N junction as an effectively one dimensional structure, where only the

spatial variation in the z direction of the spin density is non-zero as shown in Fig.

3.1.

In describing the steady state of the F/N junction under electrical spin injec-

tion, we have adopted the boundary conditions analogous to earlier studies on spin

injection into metals [48] and semiconductors [55], where the total spin current is

continuous at the interface in the absence of surface spin relaxation,

jFM

σ,z(z, t) = jQEQ

σ,z (z, t) for z = 0, (3.26)

where jFM
σ,z(z, t) stands for the spin current in the ferromagnet region of the F/N

junction, and jQEQ
σ,z (z, t) stands for the spin current in the normal metal QEQ region

of the F/N junction.

Contrary to the steady state spin polarization, I assume hard boundary con-

ditions on the oscillations of the small transverse spin distortion,

∂σ±
FM

∂z
= 0 for z = −L1 and 0, (3.27a)

∂σ±
QEQ

∂z
= 0 for z = 0 and L2, (3.27b)

where σ±
FM and σ±

QEQ stand for the complex transverse spin distortions in the ferro-

magnet and the QEQ system, respectively. According to the boundary conditions

given in Eq. (3.27), the transverse diffusive spin current arising from the transverse

spin distortion vanishes at the surfaces,

jdiff±σ,z (z, t) = −D±
eff

∂σ±

∂z
= 0 for z = 0,−L1 and L2, (3.28)

where, L1 and L2, are the widths of the ferromagnet region and the normal metal
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region of the F/N junction, respectively. Under the conditions of Eq. (3.27a), a

series of standing wave modes with wave numbers, qz = nπ/L1, could be excited

for the transverse spin waves in the ferromagnet region of the F/N junction. These

standing wave modes should appear as sidebands on the electron spin-resonance

line analogous to the spin wave excitations in nonferromagnetic metals in trans-

mission CESR experiments [60, 61], which I will discuss to some extent in section

3.3.2 of this thesis. Under spin wave excitation, transverse spin oscillations are

transmitted from the left edge of the ferromagnet region to the interface of the

F/N junction through the propagation of the standing wave modes, resulting in

the accumulation of oscillating transverse spin signals at the interface. Recalling

that I have required the total spin current to be continuous as Eq. (3.26), as well

as the vanishing of the diffusive spin current in Eq. (3.28), jdiff±σ,z (z, t) = 0, at the

interface, the drift spin current must then be continuous at the interface,

jdrift±FM,σ,z(z, t) = jdrift±QEQ,σ,z(z, t) for z = 0. (3.29)

Since the drift spin current is related to the electron drift velocity and the spin

density through Eq. (3.6), it then leads to the following relations,

V FM

0z σ
±
FM(1 + F̄ a

0 ) = V QEQ

0z σ±
QEQ(1 + F a

0 ) for z = 0, (3.30)

where I have assumed that the electron drift velocity is pointing towards the z

direction in both the ferromanetic and the QEQ systems. Therefore, the transverse

spin signals in the ferromagnet side of the interface are driven into the normal

metal region by the external electric potential in the form of a continuous drift

spin current. Consequently, propagating transverse spin wave modes are excited

in the normal metal region of the F/N junction once the transverse spin distortion

is driven into the normal metal region. Under the conditions of Eq. (3.27b),
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similar standing wave modes with wave numbers, qz = nπ/L2, could be excited

in the normal metal region of the F/N junction as well, which makes it possible

for the transmission CESR experiment to pick up the spin signals coming out

of the normal metal side of the F/N junction. Therefore, Eq. (3.26) and Eq.

(3.27) constitute the boundary conditions under which the spin wave modes can

effectively propagate across the F/N junction.

In real systems where interface roughness is inevitable, spin-flip scattering may

arise inside the contact of the F/N junction due to spin-orbit coupling or magnetic

impurities. The effect of the spin non-conserving scattering is investigated in

Ref. [62], where a mismatch is created between the spin currents on the left

and right hand sides of the interface. Subject to the different natures of the

contact and the materials making the F/N junction, the polarization of the spin

current injected into the normal metal region of the F/N junction can be either

larger or smaller than that of the spin current on the ferromagnet side of the

junction, jFM
σ,z(0, t) ≶ jQEQ

σ,z (0, t). In some cases, the direction of the polarization

of the spin current can even be flipped across the interface, which is somewhat

counterintuitive. To give account for the spin non-conserving scattering at the

interface, I introduce a proportionality factor α on the left hand side of Eq. (3.30),

αV FM

0z σ
±
FM(1 + F̄ a

0 ) = V QEQ

0z σ±
QEQ(1 + F a

0 ) for z = 0, (3.31)

where α can be both positive and negative. Therefore, as long as α is non-zero, an

appreciable amount of transverse spin signals is still driven into the normal metal

region of the F/N junction, and the transverse spin wave modes can still be excited

in the normal metal region of the junction and propagate through the interface.

Finally, I claim that as long as efficient spin injection is achieved in the F/N

junction, the qualitative spin transport features of the junction stay unchanged
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despite the presence of the interface roughness. The dispersions of the spin wave

modes also remain the same as they are intrinsic modes of the materials forming

the F/N junction under electrical spin injection.

3.3 Results and Discussion

In this section, I plot the dispersions of the spin wave modes found in the pre-

vious sections for several chosen sets of the Landau parameters. A transmission

CESR experiment is proposed in the F/N junction to detect the proposed propa-

gation of spin wave modes across the F/N junction. Potential device applications

based on this spin transport phenomena is speculated in the end.

3.3.1 Spin wave modes

Aside from the collective modes developed in the previous sections for both

QEQ and ferromagnetic systems, there are also a continuum of particle-hole (p-h)

excitations in these systems. In spin polarized Fermi systems such as the weak

ferromagnetic and the QEQ systems studied in this thesis, the p-h excitation

involves spin flips, and the associated excitation energy could be calculated as

~ωp-h = εp+q,σ−εpσ′ , where the quasiparticles and quasiholes participating in such

excitations are all restricted near the Fermi surface. Therefore, the dispersions of

the p-h excitations for the QEQ system are given as [52]

ω±
p-h(q) = ∓2

~
σQEQfa

0 + q · vp, (3.32)

where, vp = VQEQ

0 + v0
p, is the steady state quasiparticle velocity given by Eq.

(3.4) for the QEQ system, and |v0
p| = vf . The dispersions of the p-h excitations
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for the ferromagnetic systems are given by [63]

ω±
p-h(q) = ∓2

~
σFMf̄a

0 + q · v̄p, (3.33)

where, analogous to the QEQ system, v̄p = VFM

0 + v̄0
p, is the steady state quasi-

particle velocity for the ferromagnetic system, and |v̄0
p| = v̄f . For a given q in the

QEQ system, with the freedom of choosing vp over the entire Fermi surface, the

dispersions of the p-h excitations in Eq. (3.32) form a continuum, bounded by the

maximum and minimum values of q · vp. The same argument can be applied to

the ferromagnetic system, and a similar p-h continuum exists in the ferromagnetic

system as well.

The dispersions of the spin wave modes for both the QEQ and the ferromag-

netic systems together with their respective p-h continuums are plotted in the low

temperature precession dominated regime in Fig. 3.2. Here, I have chosen q, VQEQ

0

and VFM

0 to be in the z direction in showing the dispersion relations of the spin

wave modes, as I consider the F/N junction an effectively one dimensional system.

A spin polarization of 10%, σ/n = 10%, has been chosen for both systems for the

plot. Only the upper branches ω+(q) of the spin wave modes are shown in the

plot, as the physics is the same for the two branches in Eqs. (3.22) and (3.23),

except for the direction of the spin precession.

To evaluate the spin wave dispersion relations for the QEQ system on the nor-

mal metal region of the F/N junction, I use the set of Landau parameters F a
0 and

F a
1 suitable for the simple metal aluminum derived from Ref. [64]. The Landau

parameters used for evaluating the dispersion relations in the ferromagnetic sys-

tem are obtained from an earlier study on the weak ferromagnetic heavy fermion

material MnSi [63].

In a typical electrical spin injection experiment on the F/N junction [49] com-
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Figure 3.2: Dispersion relations of the spin wave modes and p-h continuums of
the QEQ system and Ferromagnetic system. (a) QEQ system with
F a
0 = −0.235, F a

1 = −0.18, V QEQ

0 = 0; (b) QEQ system with F a
0 =

−0.235, F a
1 = −0.18, V QEQ

0 /vf = 10%; (c) Ferromagnetic system with
F̄ a
0 = −1.16, F̄ a

1 = −0.84, V FM
0 = 0; (d) Ferromagnetic system with

F̄ a
0 = −1.16, F̄ a

1 = −0.84, V FM
0 /v̄f = 10%.
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posed of simple metals, nickel and iron on the ferromagnet side, and aluminum on

the normal metal side, the electron drift velocity V0 is negligible compared with

the Fermi velocity vf for a small driven current of order 10 ∼ 100mA, however

V0 can be appreciable with respect to the Fermi velocity when a heavy fermion

material with a big effective mass is used on either side of the F/N junction, since

the Fermi velocity, vf = pf/m
∗, is reduced due to the big effective mass. In fact,

for an F/N junction with a cross section of 1µm × 1µm and a driven current of

1A during the electrical spin injection experiment, one could have a drift velocity

as close as 10% of the Fermi velocity, V0/vf ≈ 10%, if the effective mass m∗ of the

heavy fermion material is of order 102 ∼ 103me and the electron density is that of

a typical metal [65], n ≈ 1023cm−3. Hence, the spin wave dispersions for both the

zero drift velocity case (simple metal F/N junctions) and the 10% drift velocity

case (heavy fermion material F/N junctions) are shown in Fig. 3.2.

As is shown in Fig. 3.2(a) and 3.2(b), there exists a gapless mode as well as

a gapped spin wave mode in the QEQ system despite the absence of an external

magnetic field. This is because the accumulation of the nonequilibrium spin po-

larization in the QEQ system has effectively broken the spin symmetry in what

would be originally a paramagnetic system, which makes it possible for the ex-

istence of the gapless spin wave mode — the gapless Nambu-Goldstone mode in

systems with spontaneous continuous symmetry breakings. Although the disper-

sion relation of the gapless spin wave mode in the QEQ system is very similar

to the gapless Nambu-Goldstone mode of the ferromagnetic system shown in Fig.

3.2(c) and 3.2(d), their respective origins are fundamentally different as has been

discussed in detail in Ref. [52]. In a ferromagnetic system, the equilibrium mag-

netization in the ground state arises from the intrinsic Hamiltonian that describes

the system, whereas the spin symmetry in the QEQ system is broken by imposing

a nonequilibrium spin polarization on top of a paramagnetic ground state through
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constant spin injections.

An intuitive picture is drawn to account for the rising of the gapless and gapped

spin wave modes in both the QEQ and the ferromagnetic systems. The gapless

spin wave modes in both systems are related to the uniform precessional mode

of the spin polarization. This is understood through the following argument. If

I take q = 0, the spatial dependence of the transverse spin distortion disappears

according to Eq. (3.12). Therefore, each individual spin of the system is polarized

in the same direction, hence no uniform precession of the individual spins around

the internal field will take place, and this corresponds to the case ω(0) = 0,

which resembles a gapless energy spectrum for the uniform spin precessional mode.

Consequently, the gapped spin wave modes must be related to the precessional

mode of the spin current, as the two spin wave modes are the solutions to the

coupled hydrodynamic equations of the spin polarization, Eq. (3.10), and the spin

current, Eq. (3.11). The gapped modes are collective excitations of the system

which involve energy consuming spin flip processes, and could also be interpreted

as the Higgs amplitude mode in a weak ferromagnet [63].

For a small enough q, the dispersion curves of the spin wave modes are outside

the p-h continuums (shaded areas in Fig. 3.2), therefore the collective excitations

become propagating spin wave modes without getting Landau damped. It has to

be pointed out that although the gapless modes seem to survive entirely from the

p-h continuum, the calculation is only accurate in the small q limit. Corrections

to the dispersion relations as well as the p-h continuums at a larger q need to be

evaluated through calculating the complete spin response function of the system,

which is beyond the scope of this thesis.

The electron drift velocity V0 does not change dramatically the dispersion

relations of the spin wave modes found in the F/N junction. It merely introduces

an additional linear q term to the dispersion relations, as can be seen, for example,
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Figure 3.3: An illustrative description of a transmission CESR experiment setup
[66].

in Eq. (3.22) of the low temperature spin wave dispersions for the QEQ system.

The dispersion relations become anisotropic because of this linear term, which is

quite understandable since the system itself is not isotropic by nature when it has

a global flow of electrons drifting towards a particular direction. For a 10% drift

velocity with respect to the Fermi velocity, the spin wave dispersions as well as

the p-h continuums of both the QEQ and the ferromagnetic systems are tilted

counterclockwise by a small angle compared to their zero drift velocity results

shown in Fig. 3.2. However, the electron drift current does play a crucial rule in

setting up the boundary conditions in section 3.2.3 for the propagation of the spin

wave modes across the F/N junction.

3.3.2 Transmission CESR experiment

The transmission CESR experiment has long been used in investigating the spin

wave excitations in paramagnetic metals [60, 61]. A simple illustrative description

of the experimental setup of the sample cavity in a transmission CESR experiment

is provided in Fig. 3.3, where, by coupling a microwave power to one side of the

metal sample (the transmission cavity), the spin wave modes are excited in the

sample and spin signals are transmitted through the sample to be detected by the
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receiver on the other side (the reception cavity). For paramagnetic systems, an

external magnetic field H0 has to be applied to the sample in order to excite spin

waves.

When the frequency of the incident microwave power matches the frequency of

the intrinsic standing spin wave modes of the sample, i.e., ω = ω(q) with q = nπ/L,

where ω(q) is the spin wave dispersion of the sample and L is the width of the

sample, the system is under spin resonance with standing spin wave modes being

excited in the sample and there appears a peak in the intensity of the transmitted

spin signals being collected by the receiver. A typical set of transmitted spin

signal data from the transmission CESR experiment would contain multiple peaks

over a range of frequency as shown in Fig. 3.4 [61]. These peaks are known as

the spin resonance lines, and the central peak (n = 0) in the spin-wave signals

is the Dysonian line [67] for the usual electron spin resonance (ESR), where the

frequency of the incident microwave power is equivalent to the Larmor frequency,

ω0 = γH0.

Here, I propose a transmission CESR experiment on the F/N junction under

electrical spin injection to probe the spin wave modes calculated in section 3.2,

and to test the proposal of propagating spin wave modes across the F/N junction.

According to the derivations in section 3.2, spin wave modes can be excited in

the QEQ system without the introduction of an external magnetic field, which is

the major difference between the QEQ state and the equilibrium paramagnetic

state. Since the F/N junction contains a QEQ system on one side and a ferromag-

netic system on the other, instead of applying an external magnetic field to the

sample and sweeping through a range of the external magnetic fields during the

measurement of a typical transmission CESR experiment on paramagnetic sys-

tems, I propose not to apply any external magnetic field to the sample, but vary

the frequency of the incident microwave power, such that the idea of the QEQ
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Figure 3.4: Typical spin-wave signals as a function of applied dc magnetic field
[61]. (a) The n = 0 mode (usual CESR) and the n = 1 mode. (b) The
first four spin-wave modes beyond the usual CESR.
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state could be tested. Under the boundary conditions introduced in section 3.2.3,

electron spin resonance is achieved in the F/N junction when standing spin wave

modes are excited on both sides of the F/N junction. In the absence of an external

magnetic field, to achieve electron spin resonance, the frequency of the incident

microwave power must satisfy the following condition,

ω = ωFM(q1) = ωQEQ(q2), (3.34)

where, q1 = n1π/L1 and q2 = n2π/L2, are the respective wave vectors of the

standing wave modes in the ferromagnetic system and the QEQ system, ωFM(q)

and ωQEQ(q) stand for the spin wave dispersions of the ferromagnetic system and

the QEQ system presented in Eq. (3.23) and Eq. (3.22), respectively. The spin

signals measured from the transmission CESR experiment are expected to contain

a series of spin resonance lines located at the frequencies derived from Eq. (3.34).

Each spin resonance line represents the excitation of a standing spin wave mode

on both sides of the F/N junction, the frequency of which is characterized by

a distinctive pair of wave vectors (n1π/L1, n2π/L2). The positions of the spin

resonance lines depend on the experimental parameters such as the values of the

Landau parameters of the metals forming the F/N junction, the respective widths

of the two regions of the F/N junction, the degree of spin polarizations in the two

regions of the F/N junction and the magnitude of the driving charge current for

the electrical spin injection.

For the particular MnSi/Al junction featured in Fig. 3.2, the frequencies of

the spin wave modes in the small q limit can be estimated. The frequencies of

the gapless spin wave modes for both systems in Fig. 3.2 vary over a range of fre-

quencies starting from zero depending on the value of q, whereas the frequencies

of the gapped modes stay relatively unchanged for small q. For a rough estima-
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tion, I find on the heavy fermion ferromagnet (MnSi) side of the F/N junction,

ν0 ∈ (0Hz, 1012 Hz) for the frequency of the gapless mode and ν1 ∼ 1013 Hz for

the frequency of the gapped mode, while, ν0 ∈ (0Hz, 1014Hz) and ν1 ∼ 1014 Hz,

on the normal metal (Al) side. The frequency of the gapped mode in Al is much

higher than that of both spin wave modes in MnSi, so the simultaneous excitation

of the gapped mode in Al and either of the spin wave modes in MnSi by a single

microwave power is impossible in principle. Therefore, under electron spin reso-

nance, both the gapless and the gapped modes could be excited in MnSi, whereas

only the gapless mode is excited in Al. A proper width of the sample could be

chosen, L ∼ 1µm, so that the wave vectors, q = nπ/L ∼ 106m−1, of the standing

spin wave modes are much smaller than the Fermi wave vector, kF ∼ 1010m−1,

and it guarantees that we are working in the long wave length limit, q ≪ kF , where

the spin waves survive from Landau damping and become propagating modes.

3.3.3 Potential Applications

According to the study on the spin transport phenomena of the F/N junction

under electrical spin injection in this thesis, propagating spin wave modes could be

excited in the normal metal side of the F/N junction without applying an external

magnetic field on it, therefore the nonequilibrium nature of the spin polarization

in the normal metal is protected, which is crucial for spintronic devices. Spin wave

modes excited in the ferromagnetic side of the F/N junction are also proposed to

be able to propagate across the interface of the junction and travel through the

normal metal side of the F/N junction. This unique spin transport feature of the

F/N junction makes it possible to speculate about potential device applications,

in addition to whatever device applications the F/N junction may already have as

a basic spintronic device [47].

Since radio frequency signals with certain frequencies can effectively tunnel
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through the F/N junction when spin resonance is achieved and propagating spin

waves are excited in the system, the F/N junction can be thought of as a frequency

selective signal transmitter. More importantly, one can dynamically control the

spin resonance conditions of the F/N junction by varying the relevant parameters

of the F/N junction. As a result, one can effectively turn the transmitter on and

off for a microwave signal with a particular frequency by moving the F/N junction

towards and away from the spin resonance. The F/N junction then serves as a

novel switch like device in terms of its ability in transmitting microwave signals.

The easiest and most practical way to control the switch is varying the drift

current through changing the electric bias potential applied to the F/N junction

during electrical spin injection. However, as mentioned previously, the effect of

the electron drift velocity is rather negligible in an F/N junction composed of

simple metals, I need the F/N junction made of heavy fermion materials in order

to utilize this control mechanism. Other control mechanisms such as dynamically

controlling the spin polarization in the F/N junction are also worth exploring. It

is also possible to realize multiple resonance conditions through changing a single

or multiple parameters of the F/N junction, therefore the F/N junction could

be turned into a more functional transmitter with one or more controlling dials,

which could be tuned to make the device transmit microwave signals with desired

frequencies.

3.4 Summary

To summarize, I have studied in this work the spin transport and spin dy-

namics in the F/N junction under electrical spin injection in the low temperature

(precession dominated) regime using Landau Fermi liquid theory. In particular, I

calculate the transverse spin wave modes on both sides of the F/N junction. The

normal metal region of the F/N junction is treated as a QEQ system with nonequi-
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librium spin polarization. I find both a gapless and a gapped spin wave mode in

the QEQ system similar to a weak ferromagnetic system, which makes the QEQ

system fundamentally different from an equilibrium paramagnetic system. Proba-

ble propagation of the spin wave modes through the F/N interface is proposed and

a transmission CESR experiment on the F/N junction is suggested to test such a

proposal. If the proposal is valid, one will see multiple spin resonance lines in the

transmitted spin signals from the transmission CESR experiment similar to the

result of a transmission CESR experiment on paramagnetic metals. In the end,

potential device applications are speculated for the F/N junction, and I suggest

that a novel switch like device as well as a functional microwave signal transmitter

could be made out of the F/N junction with a couple of control mechanisms being

mentioned as well.
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CHAPTER IV

Conclusion

To conclude, this thesis is composed of two separate pieces of work both fo-

cusing on the study of the transport phenomena in correlated quantum liquids. I

develop the theoretical models in both parts of the thesis using the language of

Landau Fermi-liquid theory.

In the first half of this thesis, I study the transport properties of a strongly in-

teracting ultracold Fermi gas. In particular, I have developed a complete formula

for calculating the transport lifetimes and transport coefficients above Tc of an ul-

tracold Fermi gas with arbitrary quasiparticle interaction strength through control

of the Landau parameter F a
0 . This work provides new insights to the understand-

ing of the low temperature transport properties of the strongly interacting Fermi

gases, in which the superfluid fluctuation effects are integrated into the calcula-

tions of the transport lifetimes and transport coefficients. This is beyond Landau

Fermi-liquid theory. The calculated spin diffusion coefficient D and ratio of the

viscosity coefficient over entropy density η/s are in reasonable agreement with

their respective experimental findings in a unitary Fermi gas. The theory devel-

oped in this part of the thesis poses new challenges to the conjectured universal

quantum transport in the unitary Fermi gases, as I argue that the minimums found

in the quantum regimes (temperatures close to Tc) of the transport coefficients are
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local minimums, and they are the results of an interplay between the superfluid

fluctuation effects and the normal Fermi-liquid effects in my theory.

In the second half of this thesis, I provide a systematic Fermi-liquid study of the

spin transport and dynamics in the F/N junction under electrical spin injection.

In particular, I calculate the transverse spin wave modes on both sides of the

F/N junction in the low temperature (precession dominated) regime. A QEQ

state is assumed in the paramagnetic region of the F/N junction, from which a

gapless and a gapped spin wave modes are established in the normal metal region

of the F/N junction without applying an external magnetic field. Under a proper

set of boundary conditions, these spin wave modes are proposed to propagate

through the interface of the F/N junction, which can in principle be detected in a

transmission CESR experiment. This novel spin transport feature could open up

potential device applications out of the F/N junction, such as a novel switch, and

a functional microwave signal transmitter.

Through the course of completing this thesis, I have mastered the applica-

tion of Landau Fermi-liquid theory in the areas of quasiparticle transport studies

and thermodynamics analyses of various correlated quantum liquids. I have also

developed a decent skill in tackling quantum field theory computations.
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APPENDIX A

The Cooper instability

The Cooper instability is the instability of the ground state of a noninteracting

Fermi system with respect to arbitrary weak attraction between particles, which

corresponds to the superfluid fluctuations studied in this thesis. The Cooper insta-

bility is related to the singularities in the particle-particle channel vertex function

Γαβ,γδ(p1, p2; p3, p4) for small total four-momentum q = p1 + p2, at absolute zero.

In the spin singlet channel, the zero temperature vertex function Γs(q) is given by

Eq. (2.9) in standard quantum field theory [4]. The superfluid fluctuations above

Tc is characterized by the singularities in the temperature particle-particle vertex

function Tαβ,γδ(p1, p2; p3, p4), where in this thesis only the spin singlet tempera-

ture vertex function Ts(q) is considered. For simplicity, I have set the constants

kB and ~ equal to 1 in the following derivations.

The spin singlet temperature vertex function Ts(q) is generated from the di-

agram shown in Fig. A.1, which then leads to the integral equation Eq. (2.1) in

section 2.2,

Ts(p1, p2; p3, p4) = T̃s(p1, p2; p3, p4)−
T

2(2π)3

∑
ωn

∫
T̃s(p1, p2; k, q − k)

× G (q − k)G (k)Ts(k, q − k; p3, p4)d
3k. (A.1)
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p1 p3

p2 p4

= +

k

Ts T̃s T̃s Ts

q − k

p1 p3

p2 p4

Figure A.1: Diagram for the temperature vertex function Ts. The bubbles repre-
sent the irreducible and fully reducible particle-particle vertex func-
tion, the solid lines stand for the fermion Green’s functions.

The temperature Green’s function G takes the form

G (k) =
1

iωn − ξ(k)
, and G (q − k) =

1

i(ω0 − ωn)− ξ(q− k)
, (A.2)

near the Fermi surface, where |k| ≈ pf and |q− k| ≈ pf . The energies in the

diagram technique of quantum field theory are defined with respect to the chemical

potential µ:

ξ(k) = ε0k − µ ≈ vf (|k| − pf ), (A.3a)

ξ(q− k) ≈ vf (|k| − pf )− vk · q, (A.3b)

where vk =
∂ε0k
∂k

is the quasiparticle velocity, and ε0k is the ground state quasipar-

ticle energy introduced in chapter I of this thesis. I can rewrite Eq. (A.1) after

substituting out the Green’s functions,

Ts(q) = T̃s(q)−
T

2(2π)3

∫
d3kT̃s(q)Ts(q)

×
∑
ωn

1

iωn − ξ(k)
· 1

i(ω0 − ωn)− ξ(q− k)
. (A.4)

The Matsubara frequency summation can be evaluated according to the fol-
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lowing formula [68],

∑
ωn

h(ωn) =
∑
zk

Res [h(−iz)g(z)]
∣∣∣
z=zk

, (A.5)

where the function h(ωn) ≡ h(−iz) contains poles at z = zk, and g(z) is a complex

auxiliary function defined as

g(z) =


β

eβz−1
, bosons,

β
eβz+1

, fermions.
(A.6)

where β = 1/T . Therefore, the summation in Eq. (A.4) is equivalent to a Mat-

subara frequency summation with

h(−iz) = 1

z − ξ(k)
· −1

z − [iω0 − ξ(q− k)]
, (A.7)

the residual of which is evaluated at z equals ξ(k) and iω0−ξ(q−k). The fermion

g(z) function is chosen for the summation since it is summed over the “odd”

frequencies for fermions, ωn = (2n + 1)πT . The Matsubara summation in Eq.

(A.4) is then carried out to be

∑
ωn

h(ωn) =
g (ξ(k))− g (iω0 − ξ(q− k))

iω0 − ξ(k)− ξ(q− k)
. (A.8)

In the limit ω0 = 0, Eq. (A.8) is further reduced to

∑
ωn

h(ωn) =
β

iω0 − ξ(k)− ξ(q− k)
·
(

1

eβξ(k) + 1
− 1

e−βξ(q−k) + 1

)
. (A.9)

In the model under discussion, the quasiparticle interactions are only defined

in a narrow shell at the Fermi surface, hence a cutoff energy ωD is imposed on the
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integral in Eq. (A.4):

|ξ(k)| < ωD, |ξ(q− k)| < ωD. (A.10)

Therefore, the integral in momentum k in Eq. (A.4) is replaced by the integral in

energy ξ, neglecting changes of order vf |q| and ω0 in the limits of integration,

∫
d3k →

∫ ωD

−ωD

m∗pfdξ

∫ 1

−1

2πdx, (A.11)

where x = cos θ, and θ is the angle between vk and q, hence vk · q = vf |q| x.

Using the definitions of the energies in Eq. (A.3), the integral equation of the

temperature vertex function Eq. (A.4) is simplified to

Ts(q) = T̃s(q)−
m∗pf
2(2π)2

T̃s(q)Ts(q)

∫ ωD

−ωD

dξ

×
∫ 1

−1

dx

iω0 − 2ξ + vk · q
·
(

1

eβξ + 1
− 1

e−β(ξ−vk·q) + 1

)
. (A.12)

In the limit of zero ω0,

1

iω0 − 2ξ + vk · q
=

P

vk · q− 2ξ
− iπδ(vk · q− 2ξ), (A.13)

where P denotes the operation of taking the principal value of an integral. Thus,

the integral in Eq. (A.12) becomes

∫ ωD

−ωD

dξ

∫ 1

−1

dx
P

vk · q− 2ξ
·
(

1

eβξ + 1
− 1

e−β(ξ−vk·q) + 1

)
. (A.14)

The above integral can be further simplified to

∫ ωD

−ωD

dξ

∫ 1

0

dx
P

2ξ − vk · q
·
(
tanh

βξ

2
+ tanh

β(ξ − vk · q)
2

)
. (A.15)
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Substituting vk · q with vf |q|x, integral (A.15) is calculated to be

2 ln

(
2γωD

πT

)
− 1

3

(
vf |q|
2ωD

)2

− 14ζ(3)

3π2

(
vf |q|
4T

)2

(A.16)

Replacing the integral in Eq. (A.12) by its result in expression (A.16), I establish

a simple equation for the temperature vertex function Ts(|q|, 0):

Ts(q, 0) = T̃s −
m∗pf
(2π)2

T̃sTs(q, 0)

×

[
ln

(
2γωD

πT

)
− 1

3

(
vf |q|
2ωD

)2

− 14ζ(3)

3π2

(
vf |q|
4T

)2
]
. (A.17)

For an attractive interaction, T̃s < 0, therefore, the result of the temperature

vertex function Eq. (2.2) is recovered with Tc defined by Eq. (2.3),

Ts(q, 0) =
1

m∗pf
4π2

[
ln Tc

T
− 1

6

(
vf |q|
2ωD

)2
− 7ζ(3)

3π2

(
vf |q|
4T

)2] . (A.18)
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APPENDIX B

Finite temperature corrections

I use the formulas derived in Ref. [36] to compute the finite temperature

corrections to the various transport lifetimes. According to Ref. [36], the finite

temperature corrections to the transport coefficients are given by

1

DT 2
−
(

1

DT 2

)
T=0

= −18πζ(3)
m∗4

p6f

k3B/~
1 + F a

0

(
III∑
i=I

γDi Ξ
D
i

)
T (B.1)

for the spin-diffusion coefficient,

1

ηT 2
−
(

1

ηT 2

)
T=0

= −90π3ζ(3)
m∗2

p7f
~2k2B (γηIIΞ

η
II)

T

TF
(B.2)

for the coefficient of viscosity and

1

KT
−
(

1

KT

)
T=0

= −810
ζ(5)

π

m∗3

p7f
~2kB

(
II∑
i=I

γKi ΞK
i

)
T (B.3)

for the thermal conductivity. Here ζ(n) are the Riemann ζ function of order n.
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The Ξ functions are defined through quantities Ξs,a and Ξ̃s,a:

Ξs,a =

∫ 2π

0

dϕ

2π
(1− cosϕ)

{
|αs,a(0, ϕ)|2

+

∫ 1

0

ds

[
|αs,a(0, ϕ)|2 − |αs,a(s, ϕ)|2

s2
+ |αs,a(s, ϕ)|2

]}
(B.4)

and

Ξ̃s,a =

∫ 2π

0

dϕ

2π

{
|αs,a(0, ϕ)|2 +

∫ 1

0

ds

[
|αs,a(0, ϕ)|2 − |αs,a(s, ϕ)|2

s2

]}
, (B.5)

where αs,a(s, ϕ) ≡ αs,a
0 (s)+2αs,a

1 (s) cosϕ, αs,a
0 (s) =

F s,a
0 +As,a

1 s2

1+(F s,a
0 +As,a

1 s2)χ(s)
and αs,a

1 (s) =

F s,a
1 (1−s2)

2{1+ 1
2
F s,a
1 [(1−s2)χ(s)−1/3]} with χ(s) = 1− 1

2
s ln [(s+ 1)/(s− 1)]. The Ξ functions in

Eqs. (B.1), (B.2) and (B.3) are given by the relations:

ΞD
I = 2Ξa, ΞD

II = 2Ξ̃a, ΞD
III = Ξ̃s + Ξ̃a; (B.6)

Ξη
II = Ξ̃s + 3Ξ̃a; (B.7)

ΞK
I = Ξs + 3Ξa, ΞK

II = Ξη
II = Ξ̃s + 3Ξ̃a. (B.8)

In the local limit, the Ξs,a and Ξ̃s,a functions are shown to be

Ξs = (As
0)

2(1− 1

4
π2As

0) + F s
0A

s
0, (B.9)

Ξa = (Aa
0)

2(1− 1

4
π2Aa

0) + F a
0A

a
0, (B.10)

Ξ̃s = (As
0)

2(1 +
1

4
π2As

0), Ξ̃a = (Aa
0)

2(1 +
1

4
π2Aa

0). (B.11)
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The γ functions are defined as

γDI = 1− π2

6

ζ(3)− 1

ζ(3)

(
τQP

τ0

)
+ 0.0297

(
τQP

τ0

)2

= 0.639,

γDII = 0.0161

(
τQP

τ0

)2

= 0.04,

γDIII = 0.0416

(
τQP

τ0

)2

= 0.103 (B.12)

for the spin-diffusion coefficient where τQP/τ0 ≡ 2
π2 τ/τD = 2/(0.129π2) according

to Eq. (2.34),

γηII = 0.042

(
τQP

τ0

)2

= 0.041 (B.13)

for the coefficient of viscosity where τQP/τ0 ≡ 2
π2 τ/τη = 2/(0.205π2) according to

Eq. (2.41), and

γKI = 1− 0.328

(
τQP

τ0

)
+ 0.037

(
τQP

τ0

)2

= 0.549,

γKII = 0.043

(
τQP

τ0

)2

= 0.125 (B.14)

for the thermal conductivity where τQP/τ0 ≡ 2
π2 τ/τK = 2/(0.119π2) according to

Eq. (2.53). The finite temperature corrections to the transport lifetimes can be

generated from Eqs. (B.1), (B.2) and (B.3),

1

τD
− 1

τ 0D
= −3

2
πζ(3)

kBTF

~

(
T

TF

)3
(

III∑
i=I

γDi Ξ
D
i

)

= −3

2
πζ(3)

kBTF

~

(
T

TF

)3

×
[
−2.95(Aa

0)
3 + 1.564(Aa

0)
2 + 1.278Aa

0F
a
0

]
(B.15)
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for the spin-diffusion lifetime,

1

τη
− 1

τ 0η
= −3πζ(3)

kBTF

~

(
T

TF

)3

(γηIIΞ
η
II)

= −3πζ(3)
kBTF

~

(
T

TF

)3

×
[
0.202(Aa

0)
3 + 0.164(Aa

0)
2
]

(B.16)

for the viscosity lifetime and

1

τK
− 1

τ 0K
= − 45

2π
ζ(3)

kBTF

~

(
T

TF

)3
(

II∑
i=I

γKi ΞK
i

)

= − 45

2π
ζ(3)

kBTF

~

(
T

TF

)3

×
[
−2.09(Aa

0)
3 + 2.696(Aa

0)
2 +

(
1.647 +

0.549

1 + 2F a
0

)
Aa

0F
a
0

]
(B.17)

for the thermal-conductivity lifetime. Therefore, Eqs. (B.15), (B.16) and (B.17)

resemble Eqs. (2.36), (2.43) and (2.55) in section 2.4.
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APPENDIX C

Spin hydrodynamic equations

To derive the hydrodynamic equations, Eqs. (3.10) and (3.11) given in section

3.2.1, for the complex spin distortions, I start from the spin kinetic equation Eq.

(3.1) given in section 3.2.1:

∂σp

∂t
+

∂

∂ri

(
∂εp
∂pi

σp +
∂hp

∂pi
np

)
+

∂

∂pi

(
−∂εp
∂ri

σp − ∂hp

∂ri
np

)
= −2

~
σp × hp +

(
∂σp

∂t

)
collision

. (C.1)

The spin conservation law is derived by integrating Eq. (C.1) over momentum,

2

∫
d3p

(2π~)3
× Eq. (C.1)

⇒ ∂σ

∂t
+

∂

∂ri
jσ,i(r, t) = −4

~

∫
d3p

(2π~)3
σp × hp = γσ ×HHH , (C.2)

where the total spin current jσ,i(r, t) is given by Eq. (3.2), and the total spin

polarization is given by σ = 2
∫

d3p
(2π~)3σp. The collision term vanishes on the

right hand side of Eq. (C.1) after the integral since total spin is conserved during

collisions. Using the definition of the quasiparticle velocity in Eq. (3.4), the total
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spin current is shown to be

jσ,i(r, t) = 2

∫
d3p

(2π~)3

(
∂εp
∂pi

σp +
∂hp

∂pi
np

)
= 2

∫
d3p

(2π~)3
∂εp
∂pi

(
σp − ∂np

∂εp
hp

)
= 2

∫
d3p

(2π~)3
(
V0i + v0pi

)(
σp − ∂np

∂εp
hp

)
= V0iσ − 2V0i

∫
d3p

(2π~)3
∂np

∂εp
hp + 2

∫
d3p

(2π~)3
v0piσp(1 +

F a
1

3
)

= V0iσ − 2V0i

∫
d3p

(2π~)3
∂np

∂εp

(
h0
p + 2

∫
d3p′

(2π~)3
fa
pp′σp′

)
+2

∫
d3p

(2π~)3
v0piσp(1 +

F a
1

3
)

= V0iσ(1 + F a
0 )− V0i

γ~HHH
2

N(0) + 2

∫
d3p

(2π~)3
v0piσp(1 +

F a
1

3
), (C.3)

which becomes identical to Eq. (3.5) in section 3.2.1 in the absence of an external

magnetic field HHH = 0. The procession of the total spin around the external field

also vanishes in such cases and Eq. (C.2) reduces to

∂σ(r, t)

∂t
+

∂

∂ri
jdiffσ,i(r, t) +

∂

∂ri
V0i(1 + F a

0 )σ(r, t) = 0. (C.4)

Linearizing Eq. (C.4) in σ, I recover the spin hydrodynamic equation, Eq. (3.10)

in section 3.2.1.

To derive the equation of motion for the spin current, Eq. (C.1) is rewritten

to keep only terms up to second order in ∇, δn or σp,

∂σp

∂t
+
∂εp
∂pi

∂

∂ri

(
σp −

∂n0
p

∂ε0p
hp

)
= −2

~
σp × hp +

(
∂σp

∂t

)
collision

. (C.5)

Here, I am only interested in the diffusive part of the spin current since the drift

part behaves essentially the same as the total spin polarization. By multiplying
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the term 2
∫

d3p
(2π~)3v

0
pi(1 +

Fa
1

3
) to both sides of Eq. (C.5), I have

2

∫
d3p

(2π~)3
v0pi(1 +

F a
1

3
)× Eq. (C.5)

⇒
∂jdiffσ,i(r, t)

∂t
+ (1 +

F a
1

3
) 2

∫
d3p

(2π~)3
v0pi

∂εp
∂pk

∂

∂rk

(
σp −

∂n0
p

∂ε0p
hp

)
=

(
∂jdiffσ,i

∂t

)
precession

+

(
∂jdiffσ,i

∂t

)
collision

, (C.6)

where

(
∂jdiffσ,i

∂t

)
precession

= −2

~
(1 +

F a
1

3
) 2

∫
d3p

(2π~)3
v0pi (σp × hp)

= γjdiffσ,i ×HHH − 2

~
(1 +

F a
1

3
) 2

∫
d3p

(2π~)3
v0pi

(
σp × 2

∫
d3p′

(2π~)3
fa
pp′σp′

)
.

(C.7)

By keeping only the l = 0, 1 terms in the Legendre expansions of σp, I can write

σp = σ0 + σ1 cos θ, and the second term on the right hand side of Eq. (C.7)

becomes

−2

~
(1 +

F a
1

3
) 2

∫
d3p

(2π~)3
v0piσp × 2

∫
d3p′

(2π~)3
∑
l

fa
l Pl(cos⟨p,p′⟩)σp′

= −2

~
(1 +

F a
1

3
) 2

∫
d3p

(2π~)3
v0pi (σ0 + σ1 cos θ)

×2

∫
d3p′

(2π~)3
∑
l

fa
l

4π

2l + 1

l∑
m=−l

Y m
l (θ′, ϕ′)∗Y m

l (θ, ϕ) (σ0 + σ1 cos θ
′)

= −2

~
(1 +

F a
1

3
) 2

∫
d3p

(2π~)3
v0piσ0 × 2

∫
d3p′

(2π~)3
fa
1

3
σ1 cos θ

−2

~
(1 +

F a
1

3
) 2

∫
d3p

(2π~)3
v0piσ1 cos θ × 2

∫
d3p′

(2π~)3
fa
0σ0

= −2

~
(fa

0 − fa
1

3
)(1 +

F a
1

3
) 2

∫
d3p

(2π~)3
v0piσ1 cos θ × 2

∫
d3p′

(2π~)3
σ0

= −2

~
(fa

0 − fa
1

3
)
(
jdiffσ,i × σ

)
. (C.8)
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Therefore, the precession term reduces to

(
∂jdiffσ,i

∂t

)
precession

= −2

~
(fa

0 − fa
1

3
)
(
jdiffσ,i × σ

)
+ γjdiffσ,i ×HHH . (C.9)

The collision term on the right hand side of Eq. (C.6) is

(
∂jdiffσ,i

∂t

)
collision

= (1 +
F a
1

3
) 2

∫
d3p

(2π~)3
v0pi

(
∂σp

∂t

)
collision

, (C.10)

where the collision term inside the integral is estimated using the relaxation time

approximation. The relaxation time τD is defined as

(
∂σp

∂t

)
collision

= −σ̄p(r, t)

τD
. (C.11)

σ̄p(r, t) is the deviation of the spin density from its local equilibrium. Using the

definitions of the quasiparticle distribution function npσ in Eq. (1.13) and the

quasiparticle energy εpσ in Eq. (1.16), the local equilibrium distribution function

is defined as

n0
pσ(ε

l.e.
pσ) =

1

e(ε
l.e.
pσ−µ)/kBT + 1

, (C.12)

where εl.e.pσ is the local quasiparticle energy. The true equilibrium distribution

function is defined as

n0
pσ(ε

0
pσ) =

1

e(ε
0
pσ−µ)/kBT + 1

, (C.13)

where ε0pσ is the equilibrium quasiparticle energy. The deviation σ̄p(r, t) is calcu-
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lated as

σ̄p(r, t) =
1

2

∑
σ

(
npσ(ε

l.e.
pσ)− n0

pσ(ε
l.e.
pσ)
)
τσσ

=
1

2

∑
σ

[(
npσ(ε

l.e.
pσ)− n0

pσ(ε
0
pσ)
)
−
(
n0
pσ(ε

l.e.
pσ)− n0

pσ(ε
0
pσ)
)]

τσσ

= σp(r, t)−
∂n0

p

∂ε0p
hp(r, t). (C.14)

Plugging Eqs. (C.11) and (C.14) into Eq. (C.10), I end up with

(
∂jdiffσ,i

∂t

)
collision

= −(1 +
F a
1

3
) 2

∫
d3p

(2π~)3
v0pi

(
σp −

∂n0
p

∂ε0p
hp

)
/τD

= −(1 +
F a
1

3
)
jdiffσ,i

τD
. (C.15)

The second term on the left hand side of Eq. (C.6) is evaluated with the quasi-

particle velocity vpi defined by Eq. (3.4),

(1 +
F a
1

3
) 2

∫
d3p

(2π~)3
v0pi
(
V0k + v0pk

) ∂

∂rk

(
σp −

∂n0
p

∂ε0p
hp

)
= (1 +

F a
1

3
)

(
V0k

∂

∂rk

)
jdiffσ,i(r, t) +

v2f
3
(1 + F a

0 )(1 +
F a
1

3
)
∂

∂ri

(
σ − γ~

2

N(0)HHH

1 + F a
0

)
.

(C.16)

Putting together Eqs. (C.6), (C.9), (C.15) and (C.16), I have the equation of

motion for the diffusive spin current in the absence of the external magnetic field

HHH = 0:

∂jdiffσ,i(r, t)

∂t
+

1

3
(1 + F a

0 )(1 +
F a
1

3
)v2f

∂

∂ri
σ(r, t) + (1 +

F a
1

3
)

(
V0k

∂

∂rk

)
jdiffσ,i(r, t)

= −2

~
(fa

0 − fa
1

3
)jdiffσ,i(r, t)× σ(r, t)− (1 +

F a
1

3
)jdiffσ,i(r, t)/τD, (C.17)

Linearizing the above equation in σ, I recover the spin hydrodynamic equation
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Eq. (3.11) in section 3.2.1.
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