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Kasy (2014) considers a triangular system of equations characterized by the
following assumptions:

Assumption 1 (Triangular System).

Y = g(X,U)

X = h(Z, V ) (1)

where X,Y, Z are random variables taking their values in R, the unobservables
U, V have their support in an arbitrary measurable space of unrestricted dimen-
sionality, and

Z ⊥ (U, V ). (2)

Assumption 2 (Continuous treatment).
The treatment X is continuously distributed in R conditional on Z.

Assumption 3 (First stage monotonic in instrument).
The first stage relationship h(z, v) is strictly increasing in z for all v.

Assumption 4 (Continuous instrument).
The instrument Z is continuously distributed in R, with support [zl, zu]. The

first stage relationship h is continuous in z for all z and almost all v, and
P (X ≤ x|Z = z) is continuous in z for all x.

Under these assumptions, the following definitions are introduced:

Definition 1 (Potential outcomes).
We denote by

Y x = g(x, U)

Xz = h(z, V ). (3)
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Furthermore, we define

Zx =

 h−1(x, V ) if h(zl, V ) ≤ x ≤ h(zu, V )
−∞ if x < h(zl, V )
∞ if h(zu, V ) < x.

(4)

It is claimed in the statement and proof of Kasy (2014), theorem 1, that
under these assumptions

P (Y ≤ y|X = x, Z = z) = P (Y x ≤ y|X = x, Z = z)

= P (Y x ≤ y|Zx = z, Z = z)

= P (Y x ≤ y|Zx = z).

This assertion is wrong, the following theorem 1 states a corrected version.
For theorem 1 to hold, we need to additionally impose the following regularity
conditions.

Assumption 5 (Regularity conditions).
There exist 0 < cl < cu < ∞, such that cl ≤ ∂zh(z, v) ≤ cu for all z and v.

Further, V can be decomposed as V = (V1, V2), where V2 is scalar and absolutely
continuous given (Z, V1) with bounded conditional density, and ∂v2h(z, v1, v2) ≥
c > 0 for all z and v = (v1, v2).

Theorem 1. Under assumptions 1 through 5,

P (Y ≤ y|X = x, Z = z) = E[λ · 1(Y x ≤ y)|Zx = z] (5)

where

λ =
E[∂zh(z, V )|Xz = x]

∂zh(z, V )
=

[
∂zh(z, V )

]−1
E[∂zh(z, V )]−1|Zx = z]

. (6)

The proof of theorem 1 and of the following two corollaries can be found in
section 2 below.

Theorem 1 immediately implies the following two corollaries. Corollary 1
considers the control function approach of Imbens and Newey (2009), using
the control function V ∗ = F (X|Z). Corollary 1 provides a representation as a
weighted average for the estimand for the average structural function proposed
by Imbens and Newey (2009).

Corollary 2 establishes that the claims of Kasy (2014) do hold, once the
assumption of one-dimensional first stage heterogeneity V is imposed.

Corollary 1. Let V ∗ = F (X|Z), and assume supp(V ∗|X = x) = [0, 1]. Then∫ 1

0

E
[
Y |X = x, V ∗ = v∗

]
dv∗ =

∫ ∞
−∞

E[λ · Y x|Zx = z]dFZx(z).

Corollary 2. If dim(V ) = 1 (ie., V = V2) and h is strictly monotonic in V ,
then

P (Y ≤ y|X = x, Z = z) = E[1(Y x ≤ y)|Zx = z]. (7)
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1 Discussion

1. The key step which fails in the original derivation of Kasy (2014) is the
asserted equality

P (Y x ≤ y|X = x, Z = z) = P (Y x ≤ y|Zx = z, Z = z).

The conditioning event on both sides is the same, that is

(X = x, Z = z) = (Zx = z, Z = z).

If this conditioning event had a positive probability, as would be the case
for discrete random variables, the asserted equality would indeed hold. As
we are dealing with the continuous case, however, this event has probabil-
ity 0. Conditional expectations (probabilities) given events of probability
0 are only well defined relative to a given σ-algebra. Since the σ-algebra
generated by the random variables (X,Z) and the σ-algebra generated by
the random variables (Zx, Z) are different, equality of conditional distri-
butions need not hold in general.

2. As implied by corollary 2, the assertions of Kasy (2014) do hold under the
assumption imposed by Imbens and Newey (2009), that first stage het-
erogeneity V is one-dimensional and enters h monotonically. Despite the
failure of its central theorem to hold, Kasy (2014) might thus be thought
of as providing alternative estimation procedures, based on reweighting
rather than based on regression with controls, which are valid under the
assumptions of Imbens and Newey (2009).

3. It was shown in Kasy (2011) that control function approaches such as the
one of Imbens and Newey (2009) yield the required conditional indepen-
dence of potential outcomes and treatment only if first-stage heterogeneity
is one-dimensional. Theorem 1 implies that in general we cannot recover
the distribution of potential outcomes Y x from the observed conditional
distributions of Y given X and Z, unless the weights λ are constant and
equal to 1. This in turn is only the case if there is no heterogeneity
in ∂zh(z, V ) given Zx. This suggests that the argument of Kasy (2011)
generalizes, and that reweighting approaches can yield (unconditional) in-
dependence of potential outcomes and treatment again only if first-stage
heterogeneity is one-dimensional.

4. Based on the result of theorem 1 in this note, it appears that it would
be impossible to recover structural objects such as the average structural
function without imposing restrictions on heterogeneity. Three general
strategies have been pursued in the literature which rely on such restric-
tions:

(a) Restricting heterogeneity V of the first stage relationship to be one-
dimensional, as in Imbens and Newey (2009), Florens et al. (2008),
or Hoderlein and Sasaki (2015).
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(b) Restricting heterogeneity U in the structural equation of interest
to be one-dimensional, as in Newey and Powell (2003) or Horowitz
(2011).

(c) Restricting heterogeneity in both equations to be finite dimensional
in conjunction with additional structure. A special case is for in-
stance studied in Hoderlein et al. (2015), where the model under
consideration takes the form

Y = B0 +B1X +B′2W,

X = A0 +A′1Z +A′2W,

where the dB2
+ dA1

+ dA2
+ 3 dimensional vector of unobserved

random coefficients (A,B) is independent of dW + dZ dimensional
vector of exogenous variables (Z,W ), but not of the two endogenous
variables (Y,X). The random coefficients specification is probably the
most generic specification to model complex heterogeneity; compared
to the model laid out in assumption 1, this model imposes linearity
in random coefficients.

In this class of models, Hoderlein et al. (2015) show formally that
nonidentification generically prevails. To make models comparable,
in the special case of this model where A2 = B2 = 0, Z scalar and
A1 > 0, Hoderlein et al. (2015) show formally that the distribution
of Y x is not point identified, and hence additional assumptions are
required to achieve point identification. One such assumption is the
independence of A1 from B, which opens up a way for constructive
identification of fB , and hence fY x . However, for this argument,
monotonicity is not required to hold. Hoderlein et al. (2015) show
that this argument generalizes to the case of vector valued Z and
exogenous variables W, provided that one element of the vector A1 is
independent of B, which is trivially satisfied, if one element of A1 is
not random. These results seem to suggest that introducing nonlinear
terms may be possible, but at the expense of introducing stronger
independence conditions, or, perhaps, alternative assumptions like
monotonicity.
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2 Proofs

Proof of theorem 1:
This proof is structured as follows. We first consider the right hand side of
equation (5), and show that for random variables φ such that (φ, V ) ⊥ Z, we
get

E[φ|Zx = z] =
E [φ · ∂zh(z, V )|Xz = x]

E [∂zh(z, V )|Xz = x]
. (8)

We then turn to the left hand side, and show, for ψ such that (ψ, V ) ⊥ Z,

E[ψ|X = x, Z = z] = E[ψ|Xz = x].

The claim of the theorem then follows once we consider ψ = 1(Y x ≤ y) and
φ = λ · 1(Y x ≤ y).

Consider some non-negative random variable φ, defined on the same proba-
bility space as V and Z, such that (φ, V ) ⊥ Z and 0 < E[|φ|] <∞. Since

∂zE[φ · 1(Zx ≤ z)] = ∂z

∫ z

−∞
E[φ|Zx = z′] · fZx(z′)dz′

= E[φ|Zx = z] · fZx(z)

and

∂zE[1(Zx ≤ z)] = ∂z

∫ z

−∞
fZx(z′)dz′

= fZx(z),

we can write

E[φ|Zx = z] =
∂zE[φ · 1(Zx ≤ z)]
∂zE[1(Zx ≤ z)]

.

Next, note that Zx ≤ z if and only if Xz = h(z, V ) ≥ x (this holds by
monotonicity of h). We get

fZx(z) = ∂zE[1(Zx ≤ z)]
= ∂zE[1(Xz ≥ x)]

= −∂zFXz (x)

= E [∂zh(z, V )|Xz = x] · fXz (x).

These equalities hold (i) by definition of the pdf fZx(z), (ii) by the equality
1(Zx ≤ z) = 1(Xz ≥ x) (due to monotonicity of h), and (iii) by equation (D1)
in Chernozhukov et al. 2015 (see also Hoderlein and Mammen 2007). This last
step requires the regularity conditions of assumption 5.

Now consider the probability measure Pφ, defined by Pφ = (φ/E[φ]) · P ,
that is the probability measure with density (φ/E[φ]) relative to P , and let Eφ
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be the expectation operator with respect to Pφ. Applying the same reasoning
as before to this new measure yields

1

E[φ]
· ∂zE[φ · 1(Zx ≤ z)] = ∂zE

φ[1(Zx ≤ z)]

= ∂zE
φ[1(Xz ≥ x)]

= −∂zFφXz (x)

= Eφ [∂zh(z, V )|Xz = x] · fφXz (x)

=
1

E[φ]
· E [φ · ∂zh(z, V )|Xz = x] · fXz (x).

The claim of equation (8) follows from what we have shown so far. This proves
our first assertion, and also implies the equality of the two definitions of λ (set
φ = 1/∂z(z, V )) given in the statement of the theorem.

Let us now turn to the left hand side of the equality asserted in the theorem.
Consider some random variable ψ, again defined on the same probability space as
V and Z, such that (ψ, V ) ⊥ Z and E[|ψ|] <∞. Using statistical independence
of Z and (ψ, V ), we get

E[ψ|X = x, Z = z] = E[ψ|h(z, V ) = x, Z = z]

= E[ψ|h(z, V ) = x] = E[ψ|Xz = x].

Setting ψ = 1(Y x ≤ y) and φ = λ · 1(Y x ≤ y) concludes the proof. �

Proof of corollary 1:
This follows immediately from∫ 1

0

E
[
Y |X = x, V ∗ = v∗

]
dv∗ =

∫ ∞
−∞

E[Y |X = x, Z = z]dFZx(z),

cf. Kasy (2014), proof of theorem 2. �

Proof of corollary 2: Under this condition, V is pinned down by Zx = z,
so that λ ≡ 1 given Zx = z. �
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