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The triangular model is a very popular way to capture endogeneity. In this model, an
outcome is determined by an endogenous regressor, which in turn is caused by an instrument
in a first stage. In this paper, we study the triangular model with random coefficients and
exogenous regressors in both equations. We establish a profound non-identification result:
the joint distribution of the random coefficients is not identified, implying that counterfactual
outcomes are also not identified in general. This result continues to hold, if we confine
ourselves to the joint distribution of coefficients in the outcome equation or any marginal,
except the one on the endogenous regressor. Identification continues to fail, even if we focus
on means of random coefficients (implying that IV is generally biased), or let the instrument
enter the first stage in a monotonic fashion. Based on this insight, we derive bounds on the
joint distribution of random parameters, and suggest an additional restriction that allows to
point identify the distribution of random coefficients in the outcome equation. We extend this
framework to cover the case where the regressors and instruments have limited support, and
analyze semi- and nonparametric sample counterpart estimators in finite and large samples.
Finally, we give an application of the framework to consumer demand.

Keywords: Random Coefficients, Endogeneity, Nonparametric, Identification, Radon Transform, De-
mand.

1. Introduction

The difference between causal effects and mere correlations is of crucial importance in microeconomics
and is at the heart of the endogeneity issue. For instance, in consumer demand this type of difference
arises naturally if unobservables like preferences over goods consumed today are correlated with factors
like risk aversion that drive the level of overall total expenditure today. Heterogeneity is another common
feature of microeconometric applications, meaning that causal effects vary widely across individuals.
Staying in the consumer demand example, a small price change may result in a significant change in
the behavior of some individuals while others leave their behavior largely unchanged. For many policy
relevant questions, it is precisely this difference that is of interest. How causal effects in a heterogeneous
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population differ from a model that neither takes heterogeneity nor endogeneity into account is therefore
a question of great importance.

A very convenient tool to analyze this type of question is a linear correlated random coefficients model,
as it embodies the notions of complex heterogeneity and endogeneity in a succinct, theory consistent
way. In this model, the observable determinants of a scalar continuous outcome Y are related to this
outcome by a structure that is linear in random coefficients B. Across the population, some of these
determinants are correlated with the random coefficients, while others are not. We denote the correlated
(endogenous), resp., uncorrelated (exogenous), covariates by X , resp. W , For simplicity, we assume the
former to be scalar. Since we are motivated by consumer demand applications, we will assume that X
and W are continuously distributed; to fix ideas, think of total expenditure and prices.

The class of correlated random coefficient models (CRCs) we consider is then given by:

Y = B0 +B1X +B′2W,

where B = (B0,B1,B′2)
′ is the vector of random coefficients. There are now basically two ways to deal

with the endogeneity in the random coefficients. The first is by use of excluded exogenous variables
Z that do not affect the outcome or the random coefficients directly, but which are correlated with X .
The second is by use of panel data, or repeated cross sections. Examples for the first solution include
Wooldridge (1997), Heckman and Vytlacil (1998), Florens et al (2008), Hoderlein, Klemelä, Mammen
(2010), Masten (2013), and Masten and Torgovitsky (2014). All of these approaches employ instruments
Z, and explicitly model the relationship between X and Z. The second route has been explored by,
among many others, Chamberlain (1982, 1992), Arellano and Bonhomme (2013), and d’Haultfoeuille,
Hoderlein and Sasaki (2013). Our approach falls into the former group, which itself is a subcategory of
the greater category of triangular models, where the outcome depends on endogenous regressors which
then in turn depend on variables Z that are excluded from the outcome equation, see, e.g., Imbens and
Newey (2009), or Chesher (2003).

What distinguishes our paper from any of the previous contributions, with the notable exception of
Masten (2013), is that we allow for several sources of unobserved heterogeneity in the relation between
X and Z, and we do neither assume monotonicity of the first stage in a scalar heterogeneous factor,
nor monotonicity in an instrumental variable Z. In fact, we specify the relationship between X and a
vector (Z′,W ′)′, henceforth called the first stage, fully coherently with the outcome equation as random
coefficient model as well, i.e., the model is

Y = B0 +B1X +B′2W,

X = A0 +A′1Z +A′2W,
(1)

where Z,A1 ∈ RL, W,A2,B2 ∈ RS, while the other quantities are scalar random variables. The vari-
ables Y,X ,Z,W are observed, A = (A0,A′1,A

′
2)
′, B = (B0,B1,B′2)

′ are unobserved random coefficients.
As Kasy (2011) pointed out, in such a setup the random coefficients specification cannot simply be re-
duced to a scalar reduced form (“control function”) heterogeneity factor in the first stage equation. As
a consequence, we have to take this specification explicitly into account. We focus on high dimensional
unobserved heterogeneity, since we believe it to be the most important feature of reality in many ap-
plications, while we accept linearity in random parameters as a reasonable first-order approximation on
individual level. Compare this with the classical control function literature that allows for a nonlinear
relation between X and the instruments, at the expense of being only able to include a scalar unobserved
factor only. Moreover, we include exogenous covariates W that appear in the first stage and the outcome
equation - again fully consistently - through added terms B′2W and A′2W as well.

We shall always impose the following two basic assumptions. First, we assume that the random vector
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(A′,B′)′ has a continuous Lebesgue density fAB. This continuity assumption will be maintained through-
out the paper. While some of the theory could be extended to cover mass points with positive probability
(i.e., “types”), in line with the literature on random coefficient models (e.g., Hoderlein et al. (2010), Gau-
tier and Kitamura (2013), Masten (2014)), we confine ourselves to this setup. Second, as key identifying
restriction we will assume full independence of instruments and exogenous covariates:

Assumption 1 (Independence). (Z′,W ′)′ and (A′,B′)′ are independent.

This assumption presents a natural strengthening of the common moment conditions found in the fixed
coefficients linear model. This strengthening is necessary, because we allow for several sources of unob-
served heterogeneity, and is again in line with the literature, in particular, any of the above references. In
as far as we show nonidentification, the results would of course continue to hold under weaker form of
independence.

Main Contributions. When studying this model in detail, we first uncover profound limitations in our
ability to identify the object of interest, the density of the random coefficients, from the joint distribution
of the observables. Consider the special case where X ,Z and Y are scalar, and W is dropped from the
model. Then we show by counterexample that the joint distribution of (A,B) is not identified, even if
we focus on the subclass with smooth densities of compact support. This non-identification result also
continues to hold, if we consider the case where Z exerts a monotonic influence on X , i.e., A1 > 0 almost
surely. Intuitively, the counterexample arises because it is impossible to map the three dimensional
distribution of observables into the four dimensional distribution of parameters. More precisely, we
show that there is a one-to-one mapping between the conditional characteristic function (ccf) of the data,
and the characteristic function of the random coefficients on a three dimensional manifold only, and we
construct several four dimensional densities that are compatible with this aspect of the characteristic
function. Moreover, the counterexample allows to trace back the source of non-identification to the
distribution of B0; indeed, not even the mean of B0 is point identified. Borrowing from the counterfactual
notation of the treatment effects literature, this means that we cannot identify the distribution of Yx =
B0+B1x, for any x, in the absence of further assumptions This implies that we cannot identify analogs of
the quantile treatment effect, i.e., qYx(α)−qYx−1(α), where qS(τ) is the τ-th quantile of a random variable
S.

In the extended model including covariates W , non-identification extends to the marginal distribution
(and indeed the mean) of B2. Beyond the fact that these distributions are of interest in their own right
- think of B2 in consumer demand for instance as the price effect - it also implies that none of the
“marginal joint” distributions are identified. It is thus impossible to obtain the covariances between
random parameters, say, between price and income effect (i.e., Cov(B1,B2)). It is also impossible to
identify the distribution of important economic quantities that are functionals of these joint distributions,
e.g., the distribution of welfare effects in consumer demand which, even in the linear model, is a function
of both B1 and B2 (Hausman (1981)).

These striking results suggest that we need to impose additional assumptions to identify the joint distri-
bution of random coefficients in the outcome equation fB, and most marginals. We propose and discuss
what we consider to be a natural assumption, namely that at least one random coefficient in the first
stage equation is independent of the random coefficients in the outcome equation, an assumption that we
justify in a consumer demand setup. For applications where this assumption is not considered plausible,
we derive bounds. Under this assumption, which actually includes the case where there is one fixed
coefficient, we obtain a constructive point identification result that allows to represent the density of ran-
dom coefficients in the outcome equation as an explicit functional of the distribution of the data, which
may be used to construct a nonparametric sample counterparts estimator similar to that in Hoderlein et
al. (2010), see the supplementary material.
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However, the focus of the estimation part is to devise an estimator that incorporates the lessons learned
from both the non-identification result, as well as the constructive identification result, in a parametric
setup that is more relevant for applications. As was already mentioned, this paper is at least in parts moti-
vated by applications in consumer demand. In this setup, and indeed many others, endogenous regressors
like prices and income (and instruments like tax or wage rates) can be thought of as approximately con-
tinuous, but they only vary on a bounded support. We consider thus in particular this latter issue. We
show that the model is not identified by the means introduced before, and argue that this case requires the
use of extrapolation strategies. We propose two such strategies, namely a parametric functional form and
analiticity of the density of fB. Since it is of particular relevance for applications, we focus in particular
on the former, and we show how to construct an semi-parametric estimator that embodies the constructive
nonparametric identification results, while at the same time being feasible in relatively high dimensional
settings that arise frequently in applications. We also investigate the behavior of this estimators in large
samples, and show that it achieves a parametric rate of convergence. Further, we analyze the behaviour
of the linear instrumental variables estimator for the means of the random coefficients in the outcome
equation. Finally, an application and a Monte Carlo study illustrate the performance of the proposed
methodology.

Literature. Our model is closely related to index models with random coefficients. In particular, as
already discussed, it is related to the work on the linear model in Beran and Hall (1992), Beran, Hall and
Feuerverger (1996), Hoderlein et al. (2010), and Gautier and Hoderlein (2013). It also falls into the wider
class of models analyzed in Fox and Gandhi (2009) and Lewbel and Pendakur (2013), who both analyze
nonlinear random coefficient models, but the latter does not allow for endogeneity. The identification
part is related to the innovative work in Masten (2013), who analyzes a fully simultaneous linear random
coefficient system, which nests our model. There are several differences, though. Masten (2013) focuses
on identification of the marginal distribution of B1, and he does not establish non-identification of the
entire distribution of B or A, nor of subsets thereof. Further, Masten (2013) does not provide conditions
under which the rest of the model is identified1.

Matzkin (2012) discusses the identification of the marginal distribution in a simultaneous equation model
under additional constraints that make the model non-nested from ours. Chesher and Rosen (2013)
discuss nonparametric identification in a general class of IV models that nests ours and achieve partial
identification. Our approach in contrast adds structure and achieves point identification.

Since we have an explicit form for the first stage, it is instructive to compare it to triangular models, where
Y is a function of X , and X is a function of Z. Most of the time, the outcome equation is left more general
than a random coefficient models, at the expense of identifying (only) the average structural function, see
Imbens and Newey (2009), and Kasy (2013), or some local average structural derivatives, see Hoderlein
and Mammen (2009), also called local average response by Chamberlain (1982). The only random
coefficients approaches we are aware of is the independent work of Masten and Torgovitsky (2013), who
focus at the average random coefficient in a linear correlated random coefficient model with continuous
outcome, and Hoderlein and Sherman (2011), who consider the same model with binary outcomes. All
of these approaches, except the one proposed in Kasy (2013) employ control function residuals, and
hence at least implicitly restrict the first stage heterogeneity to come from a scalar unobservable.

Finally, our motivation is partly driven by consumer demand, where heterogeneity plays an important
role. Other than the large body of work reviewed above we would like to mention the recent work by

1In independent work presented at the Cowles foundation’s econometric conference 2015, Masten presented a general non-
identification result for the joint fAB. This result, however, is not based on a model specific counterexample, and does hence
not allow to identify the extend and source of nonidentification, in particular, it does not show that the marginals of B0 and
B2 are not identified.
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Hausman and Newey (2013), Blundell, Kristensen and Matzkin (2013), see Matzkin (2007) and Lewbel
(1999) for a review of earlier work.

Structure of the Paper. In Section 2.1, we provide a generic counterexample which shows that the joint
distribution of A and B is not identified, and indeed we trace the lack of identification all the way back to
EB0. In Section 2.2 we show that the arguments extend to exogenous covariates. Further, we compute
explicitely the linear IV parameter and show that it is biased for the mean of B. In Section 3.1, we
establish constructive identification of the marginal distribution of B under fully-supported instruments
Z and exogenous regressors W in case of an additional independence assumption. An important extension
relevant to applied work is discussed in Section 3.3: we consider the case of limited support of Z and W ,
and provide conditions that ensure identification. Without our additional assumption which allows for
point identification, in Section 3.2 we provide bounds for the distribution function of B. The identification
results lead to a semiparametric minimum-contrast estimator, the large sample properties of which are
studied in Section 4. The finite sample properties of the estimator are studied through a Monte Carlo
study in Section 5. Finally, we apply our estimator for the random coefficients to British consumer data,
before an outlook concludes. Proofs are deferred to the appendix, while a supplement contains additional
technical arguments.

2. Nonidentification of the distribution of the intercept B0 and the slope B2

Since the model in its general form (1) is quite involved, in order to study identification we proceed in
several steps, illustrating issues in simpler models to keep them more transparent and then introducing
extensions as they arise. In particular, we frequently use the simplest version of the model, which is
given by

Y = B0 +B1X ,

X = A0 +A1Z,
(2)

where Y,X ,Z are observed random scalars, and A = (A0,A1)
′, B = (B0,B1)

′ are unobserved random
coefficients. When analyzing the triangular RC model (2), it will often be convenient to pass to the
reduced form model by inserting the second equation into the first one. This leads to

Y =C0 +C1Z,

X = A0 +A1Z.
(3)

where C = (C0,C1), C0 = B0 +B1A0 and C1 = B1A1. In order to study the link between the distribution
of (A,B) and (A,C) we introduce the mapping τ(a0,a1,b0,b1) :=

(
a0,a1,b0 +b1a0,b1a1

)
. Note that the

restriction of τ to the domain {a1 6= 0} represents an invertible mapping to this set2. Indeed, we have
τ−1(a0,a1,c0,c1) =

(
a0,a1,c0− c1a0/a1,c1/a1

)
. It follows that (A,C) has a Lebesgue density fA,C as

well and that

fA,C(a,c) = fA,B
(
τ
−1(a,c)

)
/|a1| , and fA,B(a,b) = fA,C

(
τ(a,b)

)
· |a1| , (4)

with Jacobian determinants 1/a1, and a1, respectively.

2Recall that (A,B) has a Lebesgue density fA,B so that {A1 = 0} is a null set.
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2.1. Nonidentification of distribution of the intercept B0

To illustrate the main issue, we first consider the basic model (2) and then show that the argument extends
to model (1). Our results do not rely on support conditions or pathological counterexamples; indeed, den-
sities can be extremely well behaved (e.g., analytic), and the results continue to hold. Moreover, they
hold even if A1 is confined to be positive almost surely, and hence establish that it is not the case that
monotonicity in the instrument is a sufficient condition for identification in the triangular RC model. Our
(non-)identification argument is nonparametric, meaning that it may be possible to achieve identifica-
tion through a fully parametric model, however, such results would rely exclusively on the parametric
assumptions imposed, and would break down in case of a misspecified model.

To understand the source of nonidentification, let us first return to the basic model (2) and recall argu-
ments in Masten (2013), who establishes identification of the density of B1 in a setup that nests model (2).
In case of fully supported Z, from (3) one can identify the joint distribution of (C1,A1), and hence also
the distribution of B1 = C1/A1. For B0 however, the argument fails since the distribution of B0 cannot
be recovered from that of (C0,A0), as C0 = B0 +B1A0, and neither can the distribution of counterfactual
outcomes Yx = B0 +B1x, for all x, be identified (an this extends to B2).

In the following, we will show this formally by counterexample, involving the reduced form (3). Let ψA,C
denote the characteristic function of (A′,C′). By Assumption 1 we can relate the identified conditional
characteristic function of (X ,Y ) given Z = z to ψA,C via

ψX ,Y |Z(t1, t2|z) := E
(

exp(it1X + it2Y )|Z = z
)

= E exp
(
it1(A0 +A1z)+ it2(C0 +C1z)

)
= ψA,C(t1, t1z, t2, t2z),

(5)

where z ∈ supp Z. The following lemma shows that this is actually all the information on (A′,C′) con-
tained in the distribution of (X ,Y,Z).

Lemma 2.1. Let (A′,C′)′ and (Ã′,C̃′)′ be random vectors, independent of the exogenous variable Z which
has a fixed distribution. Let (Y,X ,Z) and (X̃ ,Ỹ ,Z) be corresponding observed random variables from
the model (3). If the characteristic functions ψA,C and ψ Ã,C̃ of (A′,C′)′ and (Ã′,C̃′)′ coincide on the set

S =
{
(t1, t1z, t2, t2z) , t1, t2 ∈ R, z ∈ supp Z

}
⊆ R4,

then the joint distributions of the observed variables (X ,Y,Z) and (X̃ ,Ỹ ,Z) will be equal.

As is explained below, this lemma is the basic building block of the following theorem, which shows
that - in the absence of additional assumptions - the information provided by (X ,Y,Z) does not suffice to
identify neither the mean of B0 nor, as a consequence, fB0 .

Theorem 1. Consider the triangular model (2) under Assumption 1. Suppose that all infinitely differen-
tiable densities with compact support are admitted as joint density of (A0,A1,B0,B1)

′. Then, the mean
of B0 cannot be identified from the distribution of the observations (X ,Y,Z), even if Z is allowed to have
full support.

This theorem states that we may trace back the source of nonidentification to the marginal of B0. This
is an important quantity in a random coefficients world, because it captures the heterogeneous baseline
level of Y, implying that we cannot identify the distribution of Yx = B0 +B1x, for any x, in the absence
of further assumptions. This implies that we cannot identify analogs of the quantile treatment effect, i.e.,
qYx(α)− qYx−1(α), and not knowing fB0 precludes any welfare analysis that is based on the level of Y .
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Figure 1: Bivariate marginal density of (A0,C1) in the counterexample to identification. Left: Marginal under joint
density G, Middle: the function r from the counterexample, Right: Marginal under joint density G+ r.

For example, if Y was income we could determine the distribution of treatment effects on income, but
not whether the treatment has an effect on people that have a low level of income prior to treatment.

Since it is thus crucial to understand the limits of identification in this model, we now give a heuristics for
the main steps involved in this result, while we defer the full formal construction to the Appendix, Section
A.1. The basic intuition is that something three dimensional, i.e., the joint density of Y,X ,Z cannot be
used to identify something four dimensional, i.e., the joint density of (A,C) in general. Specifically, the
set S in Lemma 2.1 is lower dimensional (in our example, it has three dimensions), and corresponds
exactly to the set on which there is a one-to-one mapping between the object defined on this set, in our
case aspects of the joint characteristic function of (A,C) and fY XZ.

More formally, start out by noticing that for the polynomial Q(u0,u1,v0,v1) = u0v1− u1v0 , we have
that

S ⊂ {(u0,u1,v0,v1) ∈ R4 : Q
(
− i(u0,u1,v0,v1)

)
= 0}. (6)

Here, i is the imaginary unit with i2 =−1, which we insert for a reason which will become clear imme-
diately. Note that since Q is of degree two, we have Q

(
− i(u0,u1,v0,v1)

)
=−Q(u0,u1,v0,v1).

Now, for a smooth function G1 on R4 we let

r(a0,a1,c0,c1) =
[
∂a0 ∂c1−∂a1 ∂c0G1

]
(a0,a1,c0,c1) =:

[
Q
(
∂a0 ,∂a1 ,∂c0 ,∂c1

)
G1
]
(a0,a1,c0,c1).

In Fourier space, differential operators turn into multiplication operators. More precisely, we have the
formula (

F4r
)
(u0,u1,v0,v1) =

(
F4
[
Q
(
∂a0 ,∂a1 ,∂c0 ,∂c1

)
G1
])

=Q
(
− i(u0,u1,v0,v1)

)
(F4G1)(u0,u1,v0,v1),

where Fd denotes the d-dimensional Fourier transform. By (6), this implies that the Fourier transform
of the function r vanishes on the set S , and since 0 ∈S , it follows that 0 =

(
F4r

)
(0) =

∫
r. Therefore,

we may add r to a given density G of (A,C), if G is chosen so that the resulting function remains
non-negative, we obtain a density for (A,C) distinct from G for which, however, the Fourier transform
coincide with that of G on the set S . By Lemma 2.1, based on the observed distribution of (X ,Y,Z), one
cannot discriminate between these densities. By change of variables, we can extend this negative result
to (A,B), so that this joint distribution is not identified as well. Figure 1 illustrates this result. The left
hand side corresponds to the two-dimensional marginals of G (which is a product density). In the center,
the function r from the above argument is plotted. Finally, on the right we see the marginal of (A0,C1)
(and (A1,C0)) under the joint density G+ r for (A,C), the other two-dimensional marginals are equal to
those under G itself.

To show that even the marginal of B0 and even the mean EB0 is not identified, is considerably harder and
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relegated to the appendix. The main step in the nonidentification of EB0 boils down to showing (see (4))
that ∫

R
b0

∫
R3
|a1|r

(
a0,a1,b0 +a1b0,a1b1

)
dadb1 db0 6= 0,

since the difference of the densities is (a multiple of) r. It is accomplished by using arguments from
Fourier analysis, see Appendix, Section A.1.

2.2. Nonidentification of distribution of the slope B2

The results on non-identification extend to the slope B2 in model (1), where for simplicity, we still assume
that there is one excluded instrument Z and add one exogenous covariate W . Parts of the intuition remain
unchanged: It is still generically impossible to map a four dimensional distribution of observables into
a six dimensional distribution of unobservables, as Theorem 8 in the Appendix, Section A.1 shows.
However, it is not just merely counting dimensions. Instead, it is also the nature of the variation that is
important, as the following special case without intercept and equal dimensionality shows:

Theorem 2. Consider the triangular model (1) under Assumption 1, and suppose that L = S = 1. Then,
neither the mean, nor the distribution of B2 can be identified from the distribution of the observables
(X ,Y,Z,W ), even if (Z,W ) has full support, A0 = B0 = 0, and all infinitely differentiable densities of
compact support are admitted as joint density of (A1,A2,B1,B2)

′.

The reason for this surprising finding is that the variation in W does not yield useful additional informa-
tion. To see this, we use again the reduced form version of the general model,

Y =C0 +C1Z +C2W,

X = A0 +A1Z +A2W.

where C = (C0,C1,C2), C0 = B0 +B1A0, C2 = B2 +B1A2 and C1 = B1A1. Note that C2 has the same
structural form as C0, and our restriction translates to A0 = C0 = 0. Now, as in Lemma 2.1, all the
information on the distribution of the random coefficients is contained in the conditional characteristic
function of (X ,Y ) given (Z,W ), and hence

E
(

exp
(
it1X + it2Y

)∣∣Z = z,W = w
)
= E

(
exp
(
i(t1zA1 + t1wA2 + t2zC1 + t2wC2)

))
= ψA1,A2,C1,C2

(t1z, t1w, t2z, t2w),

which identifies ψA1,A2,C1,C2
over

S ′ =
{
(t1z, t1w, t2z, t2w) ∈ R4 : t1, t2 ∈ R, (z,w) ∈ supp(Z,W )

}
,

and contains all the information from the joint distribution of the observations, in the sense analogous
to Lemma 2.1. For the polynomial Q(u1,u2,v1,v2) = u1v2 − u2v1 as used in the proof of Theorem
1, we still have S ′ ⊆ {(u1,u2,v1,v2)

′ ∈ R4 : Q
(
− i(u1,u2,v1,v2)

)
= 0}, i.e., the variation in W is

such that we cannot vary all four coordinates independently. Therefore, the same counterexample as in
Theorem 1 applies, and non-identification prevails. As before, we are able to trace down the source of
non-identification to a marginal distribution, in this case, fB2 .

As mentioned above, this distribution is of interest in its own right (in our application, B2 is the price
effect), and this result also implies that none of the “marginal joint” distributions are identified. It is thus
impossible to obtain the covariances between random parameters, say, between price and income effect
(i.e., Cov(B1,B2)). It is also impossible to identify the distribution of important economic quantities that
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are functionals of these joint distributions, e.g., the distribution of welfare effects in consumer demand
which, even in the linear model, is a function of both B1 and B2 (cf. Hausman (1981)).

2.3. Linear instrumental variables

Having established that it is impossible to point identify most parameters of interest in this model without
further assumptions, a natural question that arises is what standard linear IV identifies and estimates in
this model. In particular, we investigate the possible consistency of linear IV for the means EB j of
the random coefficients in the outcome equation. We consider the model of the previous section, with
one excluded instrument Z and one additional covariate W . We assume the regressors to be centered,
i.e., EZ = EX = EW = 0, otherwise the intercepts A0 and B0 have to be modified appropriately. The
following result details what linear IV identifies and estimates:

Proposition 2.1. Assume that (Y,X ,Z,W ) follow model (1) with Z and W being univariate, for which
we maintain Assumption 1 (exogeneity of Z and W). If the random coefficients and the covariates Z,W
have finite second moments, the covariates are centered, i.e. EZ = EX = EW = 0, and

EA1
(
EZ2EW 2−

(
EZW

)2
) 6= 0,

then linear IV estimates the population parameter

µ IV :=

1 0 0
0 E [Z X ] E [ZW ]
0 E [W X ] E

[
W 2
]
−1  EY

E [Y Z]
E [YW ]

=

 EB0 +E [A0B1]
E[A1B1]/EA1

EB2 +E [A2B1]−E[A1B1]EA2/EA1


Apparently, the linear IV estimate is generally severely biased for all the means of B. The bias is not
signed in general, and depends crucially on correlations of random coefficients across equations. This
emphasizes that it is crucial to consider the structure in its entirety.

3. Identification of fB

After these negative results, it is clear that generically additional identifying assumptions have to be
introduced to achieve point identification, and we propose and discuss the marginal independence of
A1 from the coefficients B as a case in point. Note that this assumption still allows for A0 and B to be
arbitrarily dependent, as well as for A1 and B to be dependent, conditional on A0, but limits the direct
dependence. We show how to achieve constructive point identification under this condition, first in the
benign case where Z has full support (Section 3.1), and then in the case where Z has compact support
(Section 3.3). Though it is not the focus of this paper, we also discuss partial identification in Section
3.2. To provide a concise and transparent exposition, we focus again on the basic model (2), and discuss
the extension to the general model (1) less extensively.

3.1. Identification of fB under full support

In the basic model (2), we first define the support condition formally:

Assumption 2. The exogenous variable Z in model (3) has full support R.
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To understand identification in this setup, we start out by recalling how the marginal density fA of A is
identified. Under Assumption 1, the identified conditional characteristic function of X given Z = z relates
to the characteristic function of the random coefficients A as follows3:

F1
(

fX |Z
)
(t,z) = E

(
exp
(
itX |Z = z

))
= E

(
exp
(
it(A0 +A1z)

))
=
(
F2 fA

)
(t, tz).

Under the full support Assumption 2, and if F2 fA is integrable, we obtain by Fourier inversion that

fA = T
(
F1
(

fX |Z
))

, (7)

where the operator T is defined by(
T g
)
(a0,a1) =

1
(2π)2

∫
R

∫
R
|t| exp

(
− it (a0 +a1z)

)
g(t,z)dt dz, (8)

which is well-defined for functions g(t,z) which satisfy
∫
R
∫
R |t| |g(t,z)|dtdz < ∞, see the Appendix,

Section A.2, for the proof.

After this preliminary step, we turn to the main identification question, i.e., identification of the marginal
density fB of B, which, as the example of Section 2 shows, will require additional structural assumptions.
In particular, we will invoke the following assumption:

Assumption 3 (Independence and moment assumption). Suppose that B = (B0,B1) and A1 are indepen-
dent, and that A−1

1 is absolutely integrable.

This assumption obviously places structure on the dependence between the two random vectors A and B.
We give examples of economic applications where this assumption is plausible. First, in our consumer
demand application, B1 reflects heterogeneity in individuals’ reactions to changes in labor income, and
ultimately, as argued above, the wage rate as exogenous driver of labor income under inelastic labor sup-
ply. Since this rate can be thought of as the price of leisure (i.e., a cost factor), it reflects how heteroge-
neously individuals respond to this cost factor. In contrast, A0 contains expected benefits of consumption
(total expenditure). Since Y as total food expenditure comprises a large part of total expenditure, A0 is
likely correlated with the preferences that cause Y , in particular of course the random parameters B. This
means that it is far less attractive to restrict the dependence between A0 and B than between A1 and B, as
the relative taste for food and the reaction to leisure cost factors are more likely to be independent.

Note, moreover, that Assumption 3 allows for A0 and B to be arbitrarily dependent, as well as for A1
and B to be dependent, conditional on A0, and limits solely the direct dependence. In the example, this
means that the heterogeneous reaction to the cost factors may well be correlated with the heterogeneous
unobservable drivers of food budget choice, conditional on expected benefits involving Y . Also, as we
will see in the next subsection, once we have several cost factors only the marginal effect of one of these
factors need to be independent of B. Finally, we remark that this assumption is stronger than actually
needed for our identification argument; we only need that E

[∣∣A−1
1

∣∣ |B] = E
[∣∣A−1

1

∣∣] , as will be clear
below. In sum, we feel that this assumption is defendable in many applications, however, this should not
take away from the fact that this assumption amounts to placing structure on the unobservables - in the
light of the non-identification results a necessary evil to achieve point identification.

To understand how this assumption allows us to relate the structural object fB to the distribution of
the data, more precisely the conditional characteristic function (ccf) of Y given X and Z, consider the

3As above, we let Fd denote the d-dimensional Fourier transform, and if F1 is applied to a function g ∈ L1(R2), it refers to
Fourier transform w.r.t. the first coordinate when fixing the other coordinate.
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following argument: Under Assumption 1, the ccf of Y given X and Z equals:

F1
(

fY |X ,Z
)
(t|x,z) = E

(
exp(itY )|X = x,Z = z

)
= E

(
exp
(
it(B0 +B1x)

)
|A0 +A1z = x,Z = z

)
= E

(
exp
(
it(B0 +B1x)

)
|A0 +A1z = x

)
,

(9)

where the last equality stems from the fact that (A,B) and Z independent implies that (B0+B1x,A0+A1z)
and Z independent for fixed x,z, and hence that Z and B0 +B1x are independent conditional on A0 +A1z.
It is straightforward to see then that

E
(

exp
(
it(B0 +B1x)

)
|A0 +A1z = x

)
fX |Z(x|z)

=
∫
R3

exp
(
it(b0 +b1x)

)
fB,A0,A1(b,x−a1z,a1)da1 db0 db1.

Using the above two equations, applying the change of variables theorem, and integrating out z, we
obtain: ∫

R
F1
(

fY |X ,Z
)
(t|x,z) fX |Z(x|z)dz

=
∫
R4

exp
(
it(b0 +b1x)

)
fB,A0,A1(b,x−a1z,a1)dzda1 db0 db1

=
∫
R4
|a1|−1 exp

(
it(b0 +b1x)

)
fB,A0,A1(b,a0,a1)da0 da1 db0 db1

= E
(

exp
(
it(B0 +B1x)

)
|A1|−1

)
.

(10)

This is exactly where Assumption 3 comes into play: it allows to seperate out the factor E
[
|A1|−1

]
from

under the expectation, by making it not depend on B. As a minor remark, note also that Assumption 3
justifies the existence of the integral at the beginning of (10). Under the additional Assumption 3, we
thus obtain that ∫

R
F1
(

fY |X ,Z
)
(t|x,z) fX |Z(x|z)dz =

(
F2 fB

)
(t, tx)E|A1|−1. (11)

As in (7), applying the operator T now yields the density fB, and we get the following constructive point
identification result:

Theorem 3. In the triangular model (2), let Assumptions 1, 2 and 3, be true and assume that F2 fB is
integrable.

(i) Then the marginal density fB(b0,b1) of B is identified by

fB(b0,b1) = T
(∫

R
F1
(

fY |X ,Z
)
(t|x,z) fX |Z(x|z)dz

)
(b0,b1)

(
E|A1|−1)−1

, (12)

where T , see (8), is applied w.r.t. the variables (t,x), and for every x ∈ R, we have that

E|A1|−1 =
∫
R

fX |Z(x|z)dz. (13)

(ii) If, in addition, the smoothness Assumption 10 in Appendix A.2 is satisfied, we also have that

fB(b0,b1) =
1

(2π)2

∫
R

∫
R
|t| exp(−itb0)ψX ,Y |Z(−tb1, t|z)dt dz

(
E|A1|−1)−1

. (14)

Remark. The theorem shows that under additional assumptions, in particular Assumption 3, the joint
density of B is identified because we can write it as an explicit functional of the distribution of the data.
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An extension of the result in part (i) to the extended model with bounded support will be used to construct
a semi-parametric sample counterparts estimator that encorporates the insights from this identification
section. Part (ii) of the theorem shows that identification can also be achieved by considering the (iden-
tified) conditional characteristic function of (Y,X) given Z, which relates to the characteristic function
of the reduced form coefficients as in (5). This result can be used to construct a nonparametric sample
counterpart estimator akin to Hoderlein et al. (2010), see the supplementary appendix. �
Remark. Recall that, if all of A and B are independent, there is no endogeneity. In this case,

F1
(

fY |X ,Z
)
(t|x,z) =E

(
exp
(
it(B0 +B1x)

)
|A0 +A1z = x

)
=E
(

exp(it(B0 +B1x))
)
= F1

(
fY |X

)
(t|x)

does not depend on z. Thus, the conditional distribution of Y given X = x,Z = z does not depend on
Z = z as well, and, as a consequence, Y is independent of Z |X . This provides a good basis for a
test of exogeneity in our setup: If the estimated characteristic function depends on Z in a significant
fashion (omission of variables test), we conclude that exogeneity is rejected. Furthermore, note that
in the exogenous case where A and B are independent, F1

(
fY |X ,Z

)
= F1

(
fY |X
)

does not depend on Z.
Therefore, observing (13) (see Appendix) and (11) reduces (12) to fB = T1

(
F1
(

fY |X
))

, just as in (7). �

Now we turn to the extended model (1). The support assumption needs to be modified in an obvious
way.

Assumption 4. In model (1), the exogenous vector (Z′,W ′)′ has full support RL+S.

Next, in addition to the maintained assumption of instrument independence, we again need to place
additional conditions on the dependence structure of the random coefficient vector. As it turns out,
relatively speaking, these conditions are much less restrictive than in the simple model. We only need B
to be independent of one of the slope coefficients, it can be arbitrarily correlated with all others as well
as the intercept. To state this formally, for a vector z = (z1, . . . ,zL)

′ ∈ RL we write z−1 = (z2, . . . ,zL)
′, so

that Z = (Z1,Z′−1)
′ and A1 = (A1,1,A′1,−1)

′. The modified additional independence assumption is then:

Assumption 5 (Independence and moment assumption). Suppose that B and A1,1 are independent, and
that A−1

1,1 is integrable.

The interpretation of this assumption is similar in spirit to the above, with the caveat that only one
the random coefficients has to be independent, and A1,−1 may be arbitrarily related to B. Note that
this is automatically satisfied, if one of the coefficients is non-random. Moreover, we remark that full
independence is again stronger than necessary, and we in fact only require a conditional expectation to
not depend on B.

To state our main result, we define the operator TK by(
TKg
)
(s,x) =

1
(2π)K+1

∫
R1+K
|t|K exp

(
− it (s+ x′v)

)
g(t,v)dt dv, s ∈ R, x ∈ RK ,

where g satisfies
∫
R1+K |t|K |g(t,v)|dt dv < ∞. Our constructive identification result is then as follows:

Theorem 4. Under Assumptions 1, 4 and 5 in the triangular model (1), if F2+S fB is integrable, the
marginal density fB(b) of B is identified as

fB(b) =C · TS+1

(∫
RL

F1
(

fY |X ,Z,W
)
(t|x,z,w) fX |Z,W (x|z,w) fZ−1(z−1) dz

)
(b),
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where TS+1 is applied w.r.t. the variables (t,
(
x,w′)

)′, and where for every w ∈ RS, z−1 ∈ RL−1, x ∈ R,

C−1 := E|A1,1|−1 =
∫
R

fX |Z,W (x|z,w)dz1. (15)

This result may be seen as natural extension of the result in the special case without W , and a one
dimensional Z. In particular, the change of variables step involves only one variable, and it is precisely
this one variable whose coefficient appears then in the denominator. Otherwise, the basic structure is
largely identical.

Remark. A natural conjecture is that assumption 3 is sufficient to make IV consistent. However, the limit
only simplifies to

µ IV,ind =

 EB0 +E [B1A0]
EB1

EB2 +Cov(A2,B1)


Thus, IV will become consistent for the mean of the coefficient of the endogenous regressor X , but will
generally remain biased for the means of the coefficients of the exogenous regressor W and the intercept.
In the application we deal with bivariate W , and in the supplementary material show that the above
analysis extends to this situation. Importantly, however, if the coefficient on W in the first stage equation
is non-random, IV is also consistent for EB2. The inconsistency thus hinges on both equations having
random coefficients.

3.2. Partial Identification

Going back to the simple model (2), if we drop Assumption 3, then our results in Section 2 show in par-
ticular nonidentification of the marginal distribution of B0, while the marginal distribution of B1 remains
identified.

It is, however, possible to derive bounds on the distribution function of B0, and hence also on the joint
distribution function of (B0,B1). To this end, if we follow the argument starting in (9) leading to (10)
with eitY replaced by 1Y≤t , we obtain∫

R
E
(
1Y≤t |X = x,Z = z

)
fX |Z(x|z)dz = E

(
1B0+B1x≤t |A1|−1

)
.

In case 0 ∈ supp X , this yields the identification of

F(t) :=
∫
R

E
(
1Y≤t |X = 0,Z = z

)
fX |Z(0|z)dz = E

(
1B0≤t |A1|−1

)
. (16)

The right hand side can be used to bound the distribution function FB0(t) of B0 in terms of F(t) under
additional assumptions.

Proposition 3.1. In model (2) with 0 ∈ supp X, define the identified function F(t) as in (16).
(i) If 0 < cA1 ≤ A1 ≤CA1 a.s., then cA1 F(t)≤ FB0(t)≤CA1 F(t) for all t ∈ R.
(ii) If E(|A1|−p)< ∞ for some p > 1, then(

F(t)p/E(|A1|−p)
)1/(p−1) ≤ FB0(t), t ∈ R.

(iii) If E(|A1|p)< ∞ for some p > 1, then

FB0(t)≤
(
F(t)

)p/(p+1) (E(|A1|p)
)1/(p+1)

, t ∈ R.
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Note that (i) arises as the limit case for p→∞ from (ii) and (iii). The bounds in the proposition are based
on the Hölder’s inequality, applied to |A1|−1 and 1B0≤t . Equality only occurs in Hölder’s inequality if
(powers of) these random variables are linearly dependent, which cannot happen if A1 has a Lebesgue
density. In the limit case where |A1|−1 tends to a binary variable, linearly dependent with 1B0≤t , however,
it may arise.

Given bounds Fl,B0(t) ≤ FB0(t) ≤ Fu,B0(t), from the Fréchet-Hoeffding bounds we obtain bounds on the
joint distribution function FB0,B1(t0, t1) as follows:

max
(
Fl,B0(t0)+FB1(t1)−1,0

)
≤max

(
FB0(t0)+FB1(t1)−1,0

)
≤ FB0,B1(t0, t1)

≤min
(
FB0(t0),FB1(t1)

)
≤min

(
Fu,B0(t0),FB1(t1)

)
.

3.3. Identification under limited support

In applications, it is not plausible that continuous regressors may vary over the whole real line. In this
section, we hence extend our approach to deal with the situation where Z has compact support. The
first important observation is that we can not - in general - follow the approach which led to Theorem 3.
Indeed, in this case, the identifying relation (9) holds (only) for z ∈ supp Z. If A0 has infinite support, we
cannot integrate out z in (10) over the whole of R in order to get rid of A0. There are two possible routes
that follow from this observation: the first is to limit the support of A in conjunction with assuming func-
tional form structure on B; the second is to invoke assumptions that allow to extrapolate from supp Z.4

Both strategies have their merits and problems, and both strategies have precedents in the econometric
literature. We will now discuss them in turn.

Support Restrictions. As it turns out, restricting the support of the random coefficients in the first stage
equation allows to use arguments from the previous subsection. To see this, consider the extended model
(1), but for simplicity we assume to have a univariate Z (so L = 1). However, we allow for the exogenous
covariates W to be multivariate. Formally, our support restriction will be as follows:

Assumption 6. There exist pairs (x,w′) ∈ supp(X ,W ) for which

supp
(x−A0−A′2w

A1

)
⊆ supp

(
Z|W = w

)
=: SZ,w (17)

To understand this assumption, let Z have bounded support in the sense that supp
(
Z|W = w

)
= [zl,zu].

Moreover, assume that w is such that supp(A0 +A′2w,A1)⊂ [al,au]× [a1,l,a1,u], where a1,l > 0, i.e., for
any w the support of A is contained in the same rectangle. For an x ∈ [au,au+a1,uzu], it then holds that

supp
(
(x−A0−A′2w)/A1

)
⊂
[
(x−au)/a1,u,(x−al)/a1,l

]
.

To obtain supp
(
(x−A0−A′2w)/A1

)
⊂ supp(Z|W = w) for such an x, we require that zl ≤ (x−au)/a1,u

and (x−al)/a1,l ≤ zu. Thus, for all x∈ supp(X |W =w) with a1,uzl +au≤ x≤ a1,lzu+al, (17) is satisfied.
Hence, since

supp(X |W = w)⊂
[
al +min

(
a1,lzl,a1,uzl

)
,au +max

(
a1,uzu,a1,lzu

)]
,

4As will become evident below, restricting the support of B will not suffice to in general to obtain point identification, even if
the support of A is restricted. In order to extrapolate, one can either assume functional form structure, or one may assume
analytic continuation structure. In the latter case, one can also obtain the result without support restrictions on the random
coefficients, which is why we follow this strategy in the second approach.
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if the support of Z|W = w is sufficiently large as compared to that of (A0+A′2w,A1), (17) will be satisfied
for an interval of x values. As such, the limited variation in Z allows to still apprehend all values of A,
which is the core effect of the support restriction.

Theorem 5. Consider the triangular model (1) in case of a univariate Z. Impose the Assumptions 1 and
5. Then, for all t ∈ R and all (x,w′) ∈ supp(X ,W ) which satisfy (17), the following holds(

F fB
)
(t, tx, tw) =

(
E|A1|−1)−1

∫
SZ,w

F1
(

fY |X ,Z,W
)
(t|x,z,w) fX |Z,W (x|z,w)dz. (18)

Setting t = 0 yields in particular that

E|A1|−1 =
∫

SZ,w

fX |Z,W (x|z,w)dz (19)

Discussion of Theorem 5. While identification of
(
F fB

)
(t, tx, tw) for all t and for (x,w) varying in

an open set does not suffice to identify fB fully nonparametrically, it will typically suffice to identify a
parametric model, such as the parameters of the normal distribution. Therefore, (18) can (and will be
used below) to construct a minimum-distance parametric estimator. Note, moreover, that equation (18)
has to hold for every x,w, which satisfies the support restrictions. This means that we may use weighted
averages, but also that we can check the specification and search for areas where the support conditions
holds and the result is hence invariant.

Based on Theorem 5, one could also use analytic continuation arguments to identify fB in a class of
models with bounded support (and hence with analytic characteristic function). However, it turns out
that the support restriction (17) is not necessary for this purpose, and we follow this second approach in
greater generality below. �

Analytic Continuation. While parts of the previous subsection already involved extrapolation arguments
in a parametric form combined with support constraints on the density of random coefficients, we will
now turn to a strategy that allows for quite general nonparametric identification of fB, even with com-
pactly supported Z and without the (potentially restrictive) support restriction (17) on the random coeffi-
cients, by using analytic continuation arguments.

We still need to assume that the random coefficients do not have heavy tails, as made precise in the
following assumption.

Assumption 7. In model (3), all the absolute moments of A1 and C1 = B1A1 are finite and satisfy

lim
k→∞

dk

k!
(
E|A1|k +E|C1|k

)
= 0 ,

for all fixed d ∈ (0,∞).

This assumption is in particular satisfied if A1 and B1 have compact support.

Theorem 6. We consider the triangular model (2) under the Assumptions 1, 3, and 7 and Assumption
10 (see Appendix A.2). If the support of Z contains an open interval, and if F2 fB is integrable, then the
density fB of (B0,B1) is identified.

This identification result is more abstract than in Theorem 3, since no explicit inversion formula is ob-
tained. Nevertheless, it can be used to construct a nonparametric estimator. In the technical supplement
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to this paper we outline and analyze such an estimator. Moreover, we remark that an identification result
under limited support in model (1), based on analytic continuation, can be obtained similarly.

4. Semiparametric estimation

Next we discuss how the insights obtained from the identification results translate into estimation ap-
proaches and estimation theory.

Since simple parametric estimation, e.g. assuming that fAB is the multivariate normal distribution, runs
into the problem that the estimator relies on elements which are not nonparametrically identified, we do
not recommend this route. Instead, we show how to use the identification results to construct root-n-
consistent semiparametric estimators. We think of these types of estimators as being most relevant for
applications. In addition, because of the greater relevance of the limited support case for applications,
we concentrate on this case. In supplementary material, we also discuss nonparametric estimation, both
for full and limited support. While arguably less relevant in practice, we think of this topic as important
as it illustrates how the insights from identification are reflected in the structure of a sample counterpart
estimator, and how the various parts affect the behavior of the estimation problem.

In order to keep the technical arguments as transparent and simple as possible, we develop asymptotic
theory only in the simple triangular model (2), but also show how the estimators may be extended to
include exogenous covariates W . Throughout, we shall maintain the basic Assumptions 1 and 3.

Our semiparametric estimator will rely on the identification results in Theorem 5. We start with the
estimation of the scaling factor E|A1|−1. Let us specialize the compact support assumption used in this
section as follows.

Assumption 8. Assume that Z has support [−1,1], and has a density fZ with fZ(z)≥ cZ for all z ∈ [−1,1]
for some cZ > 0.

Note that the interval [−1,1] is chosen for convenience. Moreover, the lower bound on the density of fZ

is no major restriction; its existence may be justified by considering a subset of the support of Z.

We additionally require the support restriction (17) for an interval I ⊆ suppX , i.e. that

supp
(x−A0

A1

)
⊆ supp Z = [−1,1] ∀x ∈ I . (20)

>From Theorem 5, for all x ∈ I, E|A1|−1 =
∫ 1
−1 fX |Z(x|z)dz. For the given interval I choose a bounded

weight function v : R→ (0,∞) with suppv ⊆ I and
∫

I v = 1. Observe that

E|A1|−1 =
∫

I
v(x)

∫ 1

−1
fX |Z(x|z)dzdx,

which motivates the following Priestley-Chao-type estimator

âI,n =
n−1

∑
j=1

v(X( j))
(
Z( j+1)−Z( j)

)
, (21)

where we denote by (X( j),Y( j),Z( j)), j = 1, . . . ,n, the sample sorted according to Z(1) < · · ·< Z(n).

For the following result, we need an additional regularity condition, in particular an assumption on the
boundedness and smoothness of the density fA. This Assumption 11 is deferred to the Appendix, Section
B, for brevity of exposition; we will do likewise in the subsequent theorem.
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Proposition 4.1. Given Assumptions 8 and 11, for an interval I ⊆ suppX for which (20) is satisfied, we
have that

E
(
âI;n−E|A1|−1)2

= O
(
n−1).

This result establishes that the squared distance between the estimator of the scaling constant and the
true parameter decreases at the parametric rate.

Next, we construct an estimator for the marginal density of fB in a parametric model
{

fB,θ : θ ∈ Θ
}

.
Note that we do not assume a parametric model for all random coefficients, i.e., fAB, but only for fB - our
model is thus semiparametric. There are several reasons for such a semiparametric approach in contrast
to a fully parametric one: First, we are robust against possible misspecifications in the parametric form
of the distribution of (A,B0) as well as of (A0,A1). Second and more importantly, a fully parametric
specification would rely on and hence require identification of the joint distribution of (A,B) (given the
additional Assumption 3). Our identification results do not establish this, and in fact we conjecture that
such extended identification is not possible.

To proceed, given the nonparametric estimator for the scaling constant E|A1|−1, we now want to estimate
the density of random coefficients semi-parametrically in the case of bounded Z. To this end, suppose
that the interval I ⊆ suppX satisfies (20), and further that Assumption 8 is satisfied. By (18),∫ 1

−1

∫
exp(ity)

∫
I

fY,X |Z(y,x|z)dxdydz = E|A1|−1 ·
∫

I
(F fB)(t, tx)dx. (22)

Note that this equation holds even in the absence of any functional form assumption. Suppose that
fB = fB,θ 0 belongs to the parametric family of models

{
fB,θ : θ ∈Θ

}
, where Θ⊂Rd is a d-dimensional

bounded cuboid. The procedure we propose is now as follows: We estimate the left hand side of (22)
nonparametrically by

Φ̂n(t, I) :=
n−1

∑
j=1

exp(itY( j))1I(X( j)) ·
(
Z( j+1)−Z( j)

)
,

and compare it with the right hand side that features a parametric specification, fB,θ . This comparison
defines an appropriate contrast (or distance) that we use to estimate θ 0. For θ ∈Θ and t ∈ R we let

Φ(θ , t, I) :=
∫

I
(F fB,θ )(t, tx)dx .

To define the contrast, let ν be a probability measure on R, and let I1, . . . , Iq be finitely many (distinct)
intervals which satisfy (20). For bounded functions Φ1(t, I j) and Φ2(t, I j), t ∈ R, j = 1, . . . ,q, we set

‖Φ1(·)−Φ2(·)‖2
ν ;q :=

1
q

q

∑
j=1

∫
R

∣∣Φ1(t, I j)−Φ2(t, I j)
∣∣2 dν(t), (23)

and note that ‖ · ‖ν ;q defines a seminorm. Let âI;n be a
√

n-consistent estimator for E|A1|−1, as given
in Proposition 4.1. Taking into account (22), we choose our estimator as a minimizer in θ of the func-
tional

θ 7→ ‖Φ̂n(·)− âI;n · Φ(θ , ·)‖2
ν ;q. (24)

In order to reduce technicalities, we use the method of discrete approximation for M-estimators. More
specifically, for some constant b > 0, define the grid

Θn := Θ∩Gb,n, Gb,n :=
{

jbn−1/2 : j ∈ Z
}d

,

and choose θ̂ n as a (any) minimizer of (24) over the grid Θn. The grid and hence the estimator depend
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on the parameter b which adds additional flexibility, however, the result below is true for any fixed b > 0,
and we therefore suppress the b in the notation of the estimator θ̂ n and the statement of the theorem.

Two main ingredients are required so that θ̂ n achieves the parametric rate. First, the empirical version
Φ̂n(t, I) converges in an appropriate sense to the asymptotic one E|A1|−1 Φ(θ 0, t, I) at the parametric
rate. Second, the asymptotic contrast between distinct parameters needs to be of the same order as the
Euclidean distance between those parameters, in the sense of the following assumption.

Assumption 9. There exist intervals I1, . . . , Iq satisfying (20) and a probability measure ν , such that(
E|A1|−1)−1 cΘ,0

∥∥θ −θ
′∥∥2 ≤ ‖Φ(θ , ·)−Φ(θ ′, ·)‖2

ν ;q ≤
(
E|A1|−1)−1 cΘ,1

∥∥θ −θ
′∥∥2

for all θ ,θ ′ ∈Θ with some uniform constants cΘ, j, j = 0,1.

Note that the scaling constant
(
E|A1|−1

)−1 could be included in the cΘ, j, j = 0,1, but the above notation
will be convenient in the proof of the theorem below.

Example (Bivariate normal distribution). While the above assumption is reasonable, showing it for spe-
cific parametric models may be quite involved. In the technical supplement Section E, we give a fully
rigorous proof of the validity of Assumption 9 in the most important special case, i.e., a bivariate normal
distribution, with two distinct values of t and three disjoint intervals I j. In practice, other choices of
the weighting measure are more convenient. If we choose dν(t) to be centered Gaussian with standard
deviation s, then after dropping terms not depending on the parameters as well as constant factors, we
need to minimize

M(µ,Σ)

=
q

∑
p=1

(
âI,n

∫
Ip

∫
Ip

ϕ
(
0; µ1(x2− x1),

(
(1,x1)Σ(1,x1)

′+(1,x2)Σ(1,x2)
′−2)−1)dx1 dx2

−2
n−1

∑
j=1

∫
Ip

ϕ
(
0;Y( j)−µ0−µ1x,

(
(1,x)Σ(1,x)′−2)−1)1Ip(X( j)) ·

(
Z( j+1)−Z( j)

)
dx
)
.

(25)

�

Here, âI,n be the estimator of the scale constant based on the full interval I, the Ip partition I, and
ϕ(t;η ,τ2) the density of N(η ,τ2).

Under the above assumption, and again a regularity condition (Assumption 12) to be found in the ap-
pendix, we obtain:

Theorem 7. Suppose that the marginal density fB = fB,θ 0 belongs to the parametric model
{

fB,θ : θ ∈
Θ
}

, where Θ ⊂ Rd is a d-dimensional bounded cuboid. Given Assumptions 1, 3, 8, 9 and 12, the
estimator θ̂ n satisfies ∥∥θ̂ n−θ 0

∥∥ = OP(n−1/2).

This result establishes that our semiparametric estimator indeed achieves the parametric rate. As such,
we may be cautiously optimistic that the estimator performs reasonably well in datasets of the size
commonly found in applications.

Finally, we briefly discuss how to extend the estimator to model (1) which includes exogenous covariates
W . We maintain the identification Assumption 5, and restrict ourselves to univariate W and Z. Moreover,
we assume that the support SZ,w = IZ of Z given W = w is a compact interval, independent of w (the
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conditional distribution itself may depend on w), and that the support of W is the compact interval IW .
Further, impose the support restriction (17) for a rectangle IX × IW ⊆ supp(X ,W ), i.e.

supp
(x−A0−wA2

A1

)
⊆ supp

(
Z|W = w

)
= IZ , ∀ (x,w)′ ∈ IX × IW . (26)

In addition, for the joint density of (Z,W ) we assume that fZ,W (z,w)≥ c > 0 for all z ∈ [−1,1], w ∈ IW ,
for some c> 0. Recall that from Theorem 5, for all (x,w)′ ∈ IX×IW , and E|A1|−1 =

∫ 1
−1 fX |Z,W (x|z,w)dz.

Choosing a bounded weight function v :R2→ (0,∞) with suppv ⊆ IX× IW and
∫

v= 1, we hence deduce
that

E|A1|−1 =
∫

IX×IW
v(x,w)

∫ 1

−1
fX |Z,W (x|z,w)dzdxdw.

To generalize the weights Z( j+1)−Z( j) from the scenario without W , we recommand to use the following
Priestly-Chao type weights

λ j,PC = Area
{
(z,w) ∈ IZ× IW :

∣∣(z,w)− (Z j,Wj)
∣∣≤ ∣∣(z,w)− (Zk,Wk)

∣∣ , ∀k = 1, . . . ,n
}
,

j = 1, . . . ,n, where Area denotes the Lebesgue area. Actually, in the univariate situation without W , this
corresponds to the weights λ j,PC =

(
Z( j+1)−Z( j−1)

)
/2, which gives the same results asymptotically as

Z( j+1)−Z( j) as chosen previously. In the multivariate situation it is hard to compute the λ j,PC analytically.
However, it is straightforward to approximate them using Monte Carlo: for given N ∈ N (we use N =
200 in the simulation section), generate i.i.d. U1, . . . ,Un·N , uniform on IZ × IW , and take λ j,PC as the
proportion of all of those U1, . . . ,UN·n closest to (Z j,Wj), multiplied by Area(IZ × IW ). This requires
N ·n2 comparisons. The resulting estimator of the scaling constant is

âIX×IW ,n =
n

∑
j=1

v
(
X j,Wj

)
λ j,PC. (27)

The contrast is then constructed as before, see the supplement for further details. We only give the
formula for B ∼ N(µ,Σ) multivariate normal, which is used in the simulations and application. Given
intervals I1,X , . . . , Ip,X ⊂ IX and I1,W , . . . , Iq,W ⊂ IW and an s > 0, we need to minimize

M(µ,Σ) =
p

∑
k=1

q

∑
l=1

(
ân

∫
Ik,X×Ik,X

∫
Il,W×Il,W

ϕ
(
0; µ1(x2− x1)+µ2(w2−w1),

(
(1,x1,w1)Σ(1,x1,w1)

′

+(1,x2,w2)Σ(1,x2,w2)
′−2)−1)dx1 dx2 dw1 dw2

−2
n

∑
j=1

∫
Ik,X

∫
Il,W

ϕ
(
0;Yj−µ0−µ1x−µ2w,

(
(1,x,w)Σ(1,x,w)′−2)−1)

1Ik,X (X j)1Il,W (Wj)λ j,PC dxdw
)
,

where ân = âIX×IW ,n.

5. Simulation Study

We investigate the finite-sample performance of the semiparametric estimators of Section 4 in a simula-
tion study.
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n Bias Std MSE Total SE Rel. Error
5 ·102 0.0013 0.027 7.3 ·10−4 0.36 0.033
1 ·103 8 ·10−4 0.018 3.5 ·10−4 0.35 0.023
5 ·103 1 ·10−4 0.008 0.7 ·10−4 0.36 0.010
10 ·103 0.5 ·10−4 0.006 0.36 ·10−4 0.36 0.007
20 ·103 0.2 ·10−4 0.004 0.18 ·10−4 0.36 0.005
50 ·103 0.1 ·10−4 0.002 0.07 ·10−4 0.36 0.003

Table 1: Statistics for the scaling constant

5.1. Simulation in the model (2)

Data generating process.

• A1 independent of (A0,B0,B1)

• A1 ∼ 0.5 ·Beta(2,2)+1, where Beta(α,β ) is the beta-distribution with parameters α and β ,

• A0 ∼U(0,3), and

(B0,B1)
′ ∼ N

(
µ,Σ

)
, µ = (5,2)′, Σ =

(
4 1.4

1.4 1

)
,

• The joint dependence of (A0,B0,B1) is given by a Gaussian copula with parameters ρB0,A0
=

ρB1,A0
= 0.9 (and of course ρB0,B1

= 0.7).

• Z ∼ 12 ·Beta(0.5,0.5).

For this data-generating process, the maximal interval that satisfies (20) is I = [3,12], see the example
following (20). The proportion of X-values that falls into I is about 44,3% (large-scale simulation), thus
the effective sample size is 0.443 times the actual sample size when using the full interval I.

Estimation of the scaling constant. First, we consider the estimator of the scaling constant E|A1|−1

from the first-stage equation X = A0 +A1 Z. Simulating directly a sample of size n = 108 for A1 and
estimating E|A1|−1 by the mean of the inverses gives ≈ 0.8065. The results for the estimator (21) for
various sample sizes, where v is taken as uniform weight 1/9 over the interval I, are presented in Table
(1). One can, in particular, see the parametric rate of convergence quite clearly.

Estimating the parametric model. Next, we consider estimation of the parameters of the normal dis-
tribution of (B0,B1). In the contrast function (23), we choose the weighting measure dν(t) to be centered
Gaussian with standard deviation s = 0.1, resulting in M(µ,Σ) as given in (25). We partition the interval
I into q = 10 successive equal-length subintervals Ip, p = 1, . . . ,10. The integrals are computed numeri-
cally using the function adaptIntegrate contained in the R-library cubature. For illustration, we first
consider a single sample of size 5000. If we directly compute the correlation between the B j’s and X , we
find about 0.125 for both j = 0,1, so that there is some endogeneity in the model. A simple least-squares
fit of X on Y gives the coefficients b̂0 = 3.4 and b̂0 = 2.3, so that in particular the mean of the intercept
is estimated incorrectly, which is in line with our theory.
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A 5-dimensional grid search on a large grid is evidently computationally infeasible, at least in repeated
simulations. Therefore, we first compute an IV-fit using the R-library AER and the function ivreg. For
the sample above, the estimates for the coefficients are given by b̂0 = 5.91 and b̂1 = 1.98. Since from
Section 2.3, b̂1 = 1.98 is consistent for µB1

, we take µ̂B1
= b̂1 = 1.98.

In a next step, we fix the values of the means as those of the IV fit, and minimize the criterion (25) with
respect to the parameters of Σ by using the numerical routine nlm, an implementation of the Nelder-Mead
algorithm. Here, the covariance matrix is parametrized by using its Cholesky decomposition. As starting
values for the variances we take the rescaled fit for the estimated coefficients in the IV-regression, except
for the covariance which is set to zero. In the present sample, this is diag(3.77,0.04). In particular in the
variance of B1, this is way of the true value. In terms of standard deviations and correlation, the resulting
estimates are σ̂B0 = 2.02 (true = 2), σ̂B1 = 0.97 (true = 1) and ρ̂B0,B1

= 0.66 (true = 0.7).

Finally, we fix the above estimates of σ̂B j , j = 0,1, ρ̂B0,B1
and µ̂B1

, and determine the estimate of µB0
by

using a grid search of criterion (25). Here, we use a grid of width 0.1 from b̂0−1 to b̂0+1. The resulting
estimate in this sample is 5.01.

Repeatedly performing this algorithm for various sample sizes, we obtain the results in Tables 2 and
3. The estimates of all parameters are quite reasonable. The MSE for estimating µ0 is much higher
than for µ1, which is in line with our theory, which shows that also identification of µ0 is much harder
(and weaker) than of µ1. The estimates of the parameters of the covariance matrix are also acceptable,
although σ0 and ρ appear to have a small bias.

N Mean Bias Std MSE Total SE Rel. Error
2000 µ0 5.058 0.058 0.482 0.235 471 0.097

µ1 1.999 -0.001 0.053 0.003 6 0.026
5000 µ0 5.017 0.017 0.334 0.112 560 0.067

µ1 1.999 -0.001 0.035 0.001 6 0.017
10000 µ0 4.993 -0.007 0.229 0.053 526 0.046

µ1 2.000 0.000 0.024 0.001 6 0.012
20000 µ0 5.001 0.001 0.163 0.027 532 0.033

µ1 2.000 0.000 0.016 0.000 5 0.008

Table 2: Statistics for the coefficients µ0 and µ1

N Mean Bias Std MSE Total SE Rel. Error
2000 σ0 2.048 0.048 0.034 0.003 0.030 7

σ1 1.009 0.009 0.131 0.017 0.131 34
ρ 0.647 -0.053 0.156 0.027 0.236 54

5000 σ0 2.047 0.047 0.025 0.003 0.027 14
σ1 0.998 -0.002 0.093 0.009 0.093 43
ρ 0.650 -0.050 0.142 0.023 0.215 114

10000 σ0 2.049 0.049 0.013 0.003 0.026 26
σ1 1.002 0.002 0.071 0.005 0.071 50
ρ 0.664 -0.036 0.009 0.001 0.053 14

20000 σ0 2.050 0.050 0.012 0.003 0.026 53
σ1 0.996 -0.004 0.063 0.004 0.063 79
ρ 0.662 -0.038 0.048 0.004 0.088 75

Table 3: Statistics for the coefficients σ0,σ1 and ρ
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5.2. Simulation in the extended model (1)

Data generating process and estimates of scaling constant.

• A1 independent of (A0,A2,B′),

• A1 ∼ 0.5 ·Beta(2,2)+1,

• A0 ∼U(0,3), and A2 ∼ 0.2 ·Beta(2,2).

B =

B0
B1
B2

∼ N
(
µ,Σ

)
, µ = (5,2,3)′, Σ =

 4 0.8 0.9
0.8 1 0.9
0.9 0.9 2.25

 ,

• The joint dependence of (A0,A2,B′) is given by a Gaussian copula with correlation parameters
ρB0,A0

= ρB2,A2
= 0.7, ρB1,A0

= ρB2,A0
= ρB0,A2

= ρB1,A2
= 0.5 and ρA0,A2

= 0.2 (and of course
ρB0,B1

= 0.4, ρB0,B2
= 0.3, ρB1,B2

= 0.6).

• Z ∼ 15 ·Beta(0.9,0.9), W ∼ 10 ·Beta(0.7,0.7), and their dependence is determined by a Gaussian
copula with correlation ρZ,W = 0.7.

For this data-generating process, the support condition (26) is satisfied for IX = [5,15] and IW = [0,10].
The proportion of X-values that falls into IX is about 54% (large-scale simulation, IW is the full support
of W ).

We use the simulated Priestly-Chao weights as proposed in Section 4 for N = 200 (an increase to N = 500
did not improve the succeeding estimates, as we demonstrate in Table 4 on the scaling constant). Though
computationally intensive, note that these need to be computed only once, and can be used both for
estimation of the scaling constant as well as for computing the semiparametric estimator. Computing the
weights once for n = 20000 take ≈ 3 min on a CORE I7 computer.

Table 4 contains the simulations results for the estimator of the scale constant including the W .

Mean Std. Dev Abs. Bias MSE Mean Sq. Bias Total SE Rel. Error
n = 2000, N = 200 0.812 0.017 0.014 0.001 0.00032 1.24 0.031
n = 5000, N = 200 0.809 0.011 0.009 0.000 0.00014 1.34 0.020
n = 10000, N = 200 0.808 0.008 0.006 0.000 0.00007 1.31 0.014
n = 20000, N = 200 0.807 0.006 0.004 0.000 0.00003 1.23 0.010
n = 2000, N = 500 0.812 0.017 0.014 0.001 0.00034 1.27 0.031
n = 5000, N = 500 0.809 0.012 0.009 0.000 0.00014 1.36 0.020
n = 10000, N = 500 0.808 0.008 0.006 0.000 0.00006 1.27 0.014
n = 20000, N = 500 0.807 0.006 0.004 0.000 0.00003 1.23 0.010

Table 4: Statistics for the scaling constant

Estimating the parametric model. In order to investigate the endogeneity in the model, we first simulate
a very large sample of size 107, and compute correlations of X with the coefficients B j, j = 0,1,2, which
are all about 0.1. The OLS estimates are strongly biased, while IV-estimates give b̂0 = 5.44, b̂1 = 2.00
and b̂2 = 3.03. Thus, the bias in b̂0 is clearly visible, while the bias in b̂2 is small due to small variation
in A2, but significant (standard deviation estimated at 2 · 10−7). Nevertheless, we can only expect to
improve upon b̂2 in very large samples.
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Now, the further estimation algorithm for the coefficient µ and Σ is completely analogous to that in the
previous subsection, we only perform a grid search w.r.t. both µ0 and µ2. The results for sample sizes
n = 2000 and n = 10000 are contained in Tables 5 - 6. Here we use N = 200, increasing this to N = 500
does not change the results much. The estimates of the parameters of the covariance matrix are slightly
biased, but still reasonable.

Mean Std. Dev Mean Abs. Bias MSE Mean Sq. Bias Total SE Rel. Error
mu0 5.0885 0.8323 0.6728 1.393335 0.700582 2787 0.236
mu1 1.9993 0.1053 0.0838 0.022176 0.011088 44 0.074
mu2 3.0067 0.2584 0.2109 0.133556 0.066800 267 0.122
sig0 2.2003 0.1362 0.2159 0.077237 0.058677 154 0.139
sig1 1.0999 0.2592 0.2233 0.144339 0.077160 289 0.380
sig2 1.3695 0.5532 0.4622 0.629084 0.323064 1258 0.529
rho01 0.3754 0.2999 0.2016 0.180478 0.090542 361 1.062
rho02 0.3338 0.1680 0.1158 0.057624 0.029383 115 0.800
rho12 0.4931 0.2790 0.1546 0.167135 0.089283 334 0.681

Table 5: Statistics for sample size n = 2000

Mean Std. Dev Mean Abs. Bias MSE Mean Sq. Bias Total SE Rel. Error
mu0 5.0369 0.4826 0.3971 0.467200 0.234279 4672 0.137
mu1 1.9990 0.0483 0.0387 0.004670 0.002335 47 0.034
mu2 2.9964 0.1681 0.1415 0.056520 0.028267 565 0.079
sig0 2.1849 0.0701 0.1853 0.044016 0.039104 440 0.105
sig1 1.0243 0.1436 0.1200 0.041826 0.021208 418 0.205
sig2 1.3634 0.3025 0.2745 0.201634 0.110150 2016 0.299
rho01 0.3959 0.1401 0.1075 0.039272 0.019644 393 0.495
rho02 0.3832 0.0519 0.0882 0.012302 0.009613 123 0.370
rho12 0.6064 0.0747 0.0545 0.011193 0.005617 112 0.176

Table 6: Statistics for sample size n = 10000

6. Application

6.1. Motivation: Consumer Demand

Both heterogeneity and endogeneity play an important role in classical consumer demand. The most
popular class of parametric demand systems is the almost ideal (AI) class, pioneered by Deaton and
Muellbauer (1980). In the AI model, instead of quantities budget shares are being considered, and
they are being explained by log prices and log total expenditure5. The model is linear in log prices
and a term that involves log total expenditure linearly, but divided by a price index that depends on
parameters of the utility function. In applications, one frequent shortcut is that the price index is replaced
by an actual price index, another is that homogeneity of degree zero is imposed, which means that all
prices and total expenditure are relative to a price index. This step has the beneficial side effect that it
removes general inflation as well. A popular extension in this model allows for quadratic terms in total

5The use of total expenditure as wealth concept is standard practise in the demand literature and, assuming the existence of
preferences, is satisfied under an assumption of separability of the labor supply from the consumer demand decision, see
Lewbel (1999).
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expenditure (QUAIDS, Banks, Blundell and Lewbel (1997)). However, we focus on the budget share
for food at home (BSF), which, due at least in parts to satiation effects, is often documented to decline
steadily across the total expenditure range. This motivates our individual level specification BSFi =
b0i +b1i ln(TotExpi)+b2i ln(Food pricei), where TotExpi and Food pricei are the variables as described
above. To relate it to the population model, we allow now for the intercept b0i to be a deterministic
function of observable demographic variables Wi and a time variable Ti as well, and for all coeffcients bi

to in addition vary across the populations, leading the overall model

BSFi = B0i +B1i ln(TotExpi)+B2i ln(Food pricei)+b3W1i +b4W2i +b5Ti,

As mentioned above, frequently endogeneity of total expenditure is being suspected (see Blundell,
Pashardes and Weber (1995), Lewbel (1999)), in parts because food expenditure accounts for a large
fraction of total expenditure. Consequently, an IV approach is advocated. In our setup, this equation
takes the form

ln(TotExpi) = A0i +A1i ln(Incomei)+A2i ln(Food pricei)+a3W1i +a4W2i +a5Ti,

and the standard argument for the validity of income as an IV is that for the type of households we
consider (two person households, no children), labor supply is rather inelastic and variations in labor
income are hence largely a function of variations in the wage rate, which is plausibly exogenous. Note
that we include the price of food as exogenous regressor, as variations in this variable cover some of the
exogenous variation in food expenditure, which in turn account for some of the endogeneity in total ex-
penditure. We control again for observable household characteristics through the principal components,
and include a time trend.

6.2. The Data: The British Family Expenditure Survey

The FES reports a yearly cross section of labor income, expenditures, demographic composition, and
other characteristics of about 7,000 households. We use the years 1994-2000, but exclude the respective
Christmas periods as they contain too much irregular behavior. As is standard in the demand system
literature, we focus on the subpopulation of two person households where both are adults, at least one is
working, and the head of household is a white collar worker. This is to reduce the impact of measurement
error; see Lewbel (1999) for a discussion.

We form several expenditure categories, but focus on the food at home category. This category contains
all food expenditure spent for consumption at home; it is broad since more detailed accounts suffer
from infrequent purchases (the recording period is 14 days) and are thus often underreported. Food
consumption accounts for roughly 20% of total expenditure. Results actually displayed were generated
by considering consumption of food versus nonfood items. We removed outliers by excluding the upper
and lower 2.5% of the population in the three groups. We form food budget shares by dividing the
expenditures for all food items by total expenditures, as is standard in consumer demand.

To obtain the respective own relative prices, we normalize price by dividing by the general price index
excluding food (i.e., we consider the price of food vs. the price of all nondurable goods except food).
We also divide total expenditure by the price index. As already mentioned, we use labor income as an
instrument. Labor income is constructed as in the household below average income study (HBAI), i.e., it
is roughly defined as labor income after taxes and transfers. We include the remaining household covari-
ates as regressors. Specifically, we use principal components to reduce the vector of remaining household
characteristics to a few orthogonal, approximately continuous components, mainly because we require
continuous covariates for estimation. Since we already condition on a lot of household information by
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using the specific subgroup, we only use two principal components, denoted W1i and W2i. While this is
arguably ad hoc, we perform some robustness checks like alternating the component or adding several
others, and the results do not change appreciably. Finally, we also use a monthly time trend, denoted Ti.
The following table provides some descriptive statistics of the data:

Min. 1st Qu. Median Mean 3rd Qu. Max. St. Dev.
Food share 0.0023 0.1419 0.1982 0.2154 0.2741 0.7840 0.1020

lnFood prices -0.1170 -0.0049 0.0125 0.0173 0.0408 0.1748 0.1492
lnExpenditures 3.2940 4.6290 5.2810 5.2050 5.8040 6.9270 0.1280

lnIncome 3.5040 4.7350 5.3490 5.2960 5.8790 6.9310 0.7771
PC1 -1.8810 -0.9552 0.1081 0.0038 0.8620 2.0030 0.9885
PC2 -2.9070 -0.7878 -0.1426 0.0174 0.9447 2.2540 0.9991

6.3. Details of the Econometric Implementation

We outline now our estimation strategy. The model we are estimating is as displayed in Section 6.1.
We first use the IVREG function of the AER package in R to run the regression above, then subtract
the terms involving the deterministic coefficients, i.e., we form B̃SF i = BSFi−

[
b̂3W1i + b̂4W2i + b̂5Ti

]
,

and ˜ln(TotExpi) = ln(TotExpi)− [â3W1i + â4W2i + â5Ti] , where the hats denote IV estimates. This is
justified, because as we have shown above, IV produces consistent estimates for a fixed coefficient,
provided the first stage coefficients on the same variables are not random. We therefore arrive at the
following specification:

B̃SF i = B0i +B1i ln(TotExpi)+B2i ln(Food pricei),

˜ln(TotExpi) = A0i +A1i ln(Incomei)+A2i ln(Food pricei).

This model is apparently of our extended type, with Xi = ln(TotExpi) , Zi = ln(Incomei) , and W0i =
ln(Food pricei).

As interval of Xi used for estimation we take [4.4,6.0]. To optimize the criterion function, we separate the
parameter space into two parts, we first optimize over the covariances by fixing the means and applying
a gradient-based algorithm, then optimize over the means by searching over a grid. These alternating
steps were iterated up to three times to ensure convergence, using the new means and covariances as
starting values. However, there was no change in the optimal parameters after the first iteration, up to
computation error. Our IV starting values are presented in the next table. Recall that these values, in
particular the estimator for EB2, may be biased. Indeed, that is what we will find out in our final results
below. To find the minimizer of our objective function, we use the NLM function of the R package with
these initial specifications: p: initial value diag{.6, .02, .02}, gradtol: minimum value of scaled gradient
10−9, steptol: minimum allowable relative step length. 10−9. In our application, the results appear to be

Estimate Std. Error t-value Pr(> |t|)
E(B0) 0.6330 0.0072 87.3871 < 2.2 ·10−16***
E(B1) -0.0998 0.0014 -72.1405 < 2.2 ·10−16***
E(B2) -0.0842 0.0283 -2.9716 0.0028**

Table 7: IV coefficients. Significance codes: ***, 0.001; **, 0.01.
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somewhat sensitive to the choice of these values, but only in as much as a wrong choice will either lead to
explosive results that are obviously unreasonable, or cause the optimizer to stall after zero iterations.

The next step in the optimization is to recompute the means by minimizing the objective function over
the mean parameter. This time we simply search over 25-point grids covering the interval

[ÊB j−5∗ |ÊB j|, ÊB j +5∗ |ÊB j|]

where ÊB j denotes either the estimate of the mean computed in the previous iteration or the IV estimates
in the very first iteration. Finally, we repeat the iteration up to three times, again without any appreciable
change up to numerical error.

6.4. Results

To analyze our main results, we display them in two different ways. First, we show a series of graphs
individual mean and variance parameter estimates with associated bootstrapped distribution statistics;
second, we show the resulting densities. The point estimates for the mean parameters are given in the
table below:

Point Estimate Mean Median Std. Dev. .275 Quantile .975 Quantile
E(B0) 0.6331 0.6338 0.6334 0.0199 0.5975 0.6706
E(B1) -0.0999 -0.1002 -0.0998 0.0037 -0.1075 -0.0934
E(B2) -0.2598 -0.2546 -0.2593 0.1102 -0.4235 -0.0103

As we see, the estimates for the mean are generally precisely estimated. The mean coefficients are of a
very sensible magnitude. Given that log Total Expenditure varies roughly between 3 and 6, with every
near tripling of income we observe a decrease in the food demand budget share by 10 percentage points,
say, from 27 to 17 percent. Also, since prices are measured in relative units, a relative price of 1.07
corresponds approximately to a log price of 0.07. Thus, an increase in the relative price of 7%, from 1
to 1.07 corresponds roughly to a decrease of the food budget share by 1.7 percent, say, the budget share
drops in response from 25.8 to 24.1 percent. Since 95% of the prices are between -0.07 and 0.07, this
means that the budget share of a person with average price semi-elasticity is not strongly affected by the
historical changes in the relative price found in our data.

The comparison between the IV starting values and the final values of the mean coefficients is quite
informative, and generally confirms with theory: Corresponding to the fact that the IV estimate of EB1 is
known to be unbiased while the one for EB2 is not, we find very little movement in the former coefficient
(recall that we are optimizing over a grid), while the second nearly triples. In fact, price effects are
only of a sizeable magnitude after applying our procedure, lending credibility to our approach and also
emphasizing the role of the bias, if unobserved heterogeneity is not appropriately modelled. The variance
parameters are generally less precisely estimated, in particular, there seem to more mass in the tails of
the bootstrap distribution. There is not a lot of evidence of covariance between the random slopes. The
variance is sizeable relative to the magnitude of the mean effects, implying that the average effects mask
profound heterogeneity.

To interpret this type of heterogeneity, it is advantageous to display the resulting random coefficients
density. We focus on the results concerning the slope parameters, and show a 2D plot of the marginal
density of the two slope coefficients B1 and B2 in Figure 2, which is to be interpreted as a geographical
map involving lines of similar altitude, and a 3d plot of the same density in Figure 3.
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Figure 2: Marginal distribution of the slope on log total expenditures (B1) and log food prices (B2) length of X
interval is 1.6.
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Figure 3: Marginal distribution of the slope on log total expenditures (B1) and log food prices (B2), 3 D plot.
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Point Estimate Standard Error
Var(B0) 0.4712 0.0641
Var(B1) 0.0153 0.0225
Var(B2) 0.0180 0.0066

Cov(B0,B1) -0.0850 0.1050
Cov(B0,B2) -0.0297 0.0276
Cov(B1,B2) 0.0053 0.0064

As is obvious, most of the individuals reduce their budget share of food as total expenditure and prices
increase. There is pronounced heterogeneity when it comes to degree of reduction. Indeed, especially
with total expenditures, some individuals even respond with increases in their budget share, however,
only very light ones. One open question is whether this effect is due to the parametric nature of our
approach and whether there truly are parts of the population with positive income effects. We leave
this question, which involves a more nonparametric approach, for future research. However, given the
pronounced uncertainty associated with the variance parameters, we feel that it is questionable whether
there are any individuals whose marginal total expenditure effects are positive and sizeable (say, beyond
0.1). Having said that, we believe that it is entirely possible that some individuals have small positive
effects, in particular those at the lower end of the total expenditure distribution (recall that total expendi-
ture and preferences may well be correlated). In general, however, the result along the total expenditure
dimension are very plausible, including the magnitude of such effects.

This is the more true for price effects. Note that virtually the entire population responds to a food price
increase with a decrease in the budget share of this good. While some individuals reduce their food
demand only very lightly, as is evident by values of the semi-elasticity of - 0.1, which translate into
below 1% reductions in budget shares for a 7% increase in price, others respond much more strongly
with a large fraction of the population having values of around -0.4, corresponding to a 3-4% reduction
for the same relative price change. This suggests that between the 25% least and most reactive individuals
there is roughly a four fold difference in the strength of their price effects. All of these results have strong
implications for welfare analysis, as the welfare effects are largely built on both coefficients.

Finally, the last figure shows the same joint density, but for a different value of the interval width. The
results are somewhat, but not overly, sensitive to the choice of this parameter; qualitatively they remain
preserved. Unsurprisingly, we find the stronger changes in B2 dimension, reflecting perhaps the fact that
the price variation is not very plentyful, and hence the estimates are less reliable.

In sum, the application reveals that our method is able to remove biases stemming from the omission
of unobserved heterogeneity. It is also able to capture the heterogeneity in a, as we feel, concise and
practical fashion. Since the purpose of this application is more illustrative, we refer the interested reader
to the authors’ website for more details of the application.

7. Conclusion

This paper analyzed the triangular model with random coefficients in the first stage and the outcome
equation. We show that in this class of models, the joint distribution of parameters, as well as impor-
tant marginal densities are generically not point identified, even if the instruments enter monotonically.
Based on these results, we provide additional restrictions that ensure point identification of the marginal
distribution of parameters in the outcome equation. These restrictions are for instance satisfied, if one of
the coefficients in the first stage equation is nonrandom. We establish that even in the presence of these
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Figure 4: Marginal distribution of the slope on log total expenditures (B1) and log food prices (B2) length of X
interval is 1.7.
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restrictions, standard linear IV does not produce consistent estimates of the average effects. This moti-
vates our search for a (semi)parametric estimator that is relevant for applications, and incorporates the
conclusions we draw from the (non-)identification results. An alternative strategy is to follow a partial
identification approach. While this paper briefly discusses such an approach, it leaves further details for
future research.
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A. Identification / Nonidentification: Proofs

A.1. Proofs for Section 2

Proof of Lemma 2.1. Since the distribution of Z is fixed, it suffices that the conditional distributions of (Y,X)|Z = z
and (Ỹ , X̃)|Z = z coincide for all z ∈ supp Z, or, equivalently, that the conditional characteristic functions coincide,
which immediately follows from (5) and the assumption in the lemma.

Proof of Theorem 1. In model (2) with reduced form (3), we denote by u = (u0,u1)
′ (respectively v =

(v0,v1)
′) the coordinates corresponding to A = (A0,A1)

′ (respectively C = (C0,C1)
′) in Fourier space. Further,

we write (u,v) and (a,c), a = (a0,a1)
′, c = (c0,c1)

′, instead of (u′,v′)′ or (a′,c′)′.

Step 1. In the first step, we construct two appropriate joint densities of (A,C), whose characteristic functions
coincide on the set S in Lemma 2.1.

We introduce the density on the line

gβ (s) = α β · exp
(
1/(β 2s2−1)

)
1(−1,1)(β s) , s ∈ R , (28)

where α > 0 is a normalizing constant and β > 0 is the scale parameter. Note that gβ is supported on [−1/β ,1/β ]
and differentiable infinitely often on the whole real line. Consider the product density

Gβ (a,c) =
1

∏
j=0

gβ (a j)gβ (c j), (a,c) ∈ R4,

which is supported on [−1/β ,1/β ]4 and differentiable infinitely often.

Consider the non-constant polynomial Q(u,v) = u0v1−u1v0, (u,v) ∈ R4, and recall that for the set S in Lemma
2.1,

S ⊆ {(u,v) ∈ R4 : Q
(
− i(u,v)

)
= 0}.

Set
r(a,c) =

[(
∂a0 ∂c1 −∂a1 ∂c0

)
G1
]
(a,c) =:

[
Q
(
∂a0 ,∂a1 ,∂c0 ,∂c1

)
G1
]
(a,c)

Since the Fourier transform turns differentiation into multiplication, we obtain

(F4r)(u,v) = Q
(
− i(u,v)

)
(F4G1)(u,v), (u,v) ∈ R4,

which vanishes on S . We therefore set

f̃ j(u,v) = G1/2(u,v) + (−1) j
γ · r(u,v) , j = 1,2, (u,v) ∈ R4,

where the constant γ > 0 is (and can be) chosen such that f̃ j are non-negative functions. These are differentiable
infinitely often, their support is included in [−2,2]4, and their Fourier transforms turn out to be(

F4 f̃ j
)
(u,v) =

(
F4G1/2

)
(u,v)+(−1) j

γ ·Q
(
− i(u,v)

)(
F4G1

)
(u,v) . (29)

Since Q(0) = 0 the functions f̃ j integrate to one so that they are (two distinct) probability densities.
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Step 2. The second step consists of a simple translation, which allows to relate to the density of (A,B).

Define the shifted densities f j(a,c) = f̃ j
(
(a,c)− (0,3,0,0)

)
, so that(

F4 f j
)
(u,v) = exp(3iu1)

(
F4 f̃ j

)
(u,v) . (30)

and ∫
R4

1(−∞,1](a1) f j(a,c)dadc = 0 .

Suppose that (A,C) and (Ã,C̃) have the densities f1 and f2, respectively. Then their characteristic functions coin-
cide on the set S , and hence the joint densities of the observed variables also coincide by Lemma 2.1. Furthermore,
both A1 > 1 and Ã1 > 1 a.s., and by the change of variables formula (4) the corresponding (distinct) densities fA,B
and fÃ,B̃ will also be differentiable infinite often and of compact support.

At this stage, we have already shown non-identifiability of the joint distribution of (A,B) in the class of distributions
with infinitely differentiable densities with compact support.

It remains to show that ∫
R4

b0
(

fA,B(a,b)− fÃ,B̃(a,b)
)

dadb 6= 0.

Step 3. As an intermediate step, we show the general formula

fB(b) =
−i

(2π)2

∫
R2

exp(−iv0b0)
∂ψA,C

∂u1
(−v0b1,−v1b1,v0,v1)dv . (31)

for the joint density fB of B, if ∫
R4

1(−∞,0](a1) fA,C(a,c)dadc = 0 , (32)

and if ∫
R2

sup
u∈R2

∣∣∂u1 ψA,C
(
u,v
)∣∣dv < ∞ . (33)

To show (31), choose a bivariate kernel function K which is absolutely-integrable, bounded by 1, satisfies K(0) = 1
(e.g. an appropriately scaled normal density) and has an absolutely-integrable Fourier transform. Then from (4),
using (32) we get that

fB(b) =
∫

fA,B(a,b)da =
∫

fA,C
(
τ(a,b)

)
|a1|da = lim

δ↓0

∫
K(aδ ) fA,C

(
τ(a,b)

)
a1 da . (34)

For any δ > 0 we compute, by Fourier inversion and Fubini’s theorem, that∫
K(aδ ) fA,C

(
τ(a,b)

)
a1 da

= (2π)−4
∫

K(aδ )
∫∫

exp
(
− iτ(a,b)′ (u,v)

)
ψA,C(u,v)a1 dudvda

= (2π)−4
∫

K(aδ )
∫

exp(−iv0b0)
∫

exp
(
− ia0(u0 + v0b1)

)
·a1 exp

(
− ia1(u1 + v1b1)

)
ψA,C(u,v)dudvda

= i(2π)−4
∫∫

exp(−iv0b0)
(∫

K(aδ )exp
(
− ia0u0

)(
∂u1 exp

(
− ia1u1

))
da
)

·ψA,C(u0− v0b1,u1− v1b1,v)dudv

= −i(2π)−4
∫∫

exp(−iv0b0)δ
−3(

∂u1F2K
)
(−u/δ )ψA,C(u0− v0b1,u1− v1b1,v)dudv

= −i(2π)−4
∫

exp(−iv0b0)
∫ (

F2K
)
(−u)

(
∂u1ψA,C

)
(δ u0− v0b1,δ u1− v1b1,v)dudv ,
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by integration by parts in the last step, where we used∫
K(aδ )exp

(
− ia0u0

)(
∂u1 exp

(
− ia1u1

))
da

=∂u1

(∫
K(aδ )exp

(
− ia0u0

)
exp
(
− ia1u1

)
da
)

=∂u1

((
F2K(·δ )

)
(−u)

)
= ∂u1

(
(F2K)(−u/δ )

)
/δ

2

=−
(
∂u1(F2K)

)
(−u/δ )/δ

3.

Plugging this into (34) and letting δ → 0 and using dominated convergence, which is justified by (33), gives (31).

Step 4. We now apply (31) to (A,C) and (Ã,C̃) having densities f1 and f2, and where the characteristic functions
are determined by (30) and (29). We have already checked (32) for f j. As for (33), consider for example the term
|u0v1∂u1(F4G1)(u,v)|. Let h = F1g1, an integrable function; then, since G1 is a product density, we have

|u0v1∂u1(F4G1)(u,v)|= |u0h(u0)| |h′(u1)||h(v0)v1 h(v1)|.

To bound h′(u1), relate this to the Fourier transform of the absolutely-integrable function s 7→ sg1(s) so that h′ is
bounded. To bound u0h(u0), relate this to the Fourier transform of g′1, which is also integrable, so that u0h(u0) is
bounded, and also integrable (and thus also v1 h(v1)), as desired.

Next,
ψ Ã,C̃(u,v)−ψA,C(u,v) = 2γ exp(3iu1)Q

(
− i(u,v)

)(
F4G1

)
(u,v).

Since ∂u1Q
(
− i(u,v)

)
= iv0, taking the derivative w.r.t. u1 gives

∂u1

(
ψ Ã,C̃(u,v)−ψA,C(u,v)

)
=2γ Q

(
− i(u,v)

)(
3i exp(3iu1)

(
F4G1

)
(u,v)+ exp(3iu1)∂u1

(
F4G1

)
(u,v)

)
+2 i v0 γ exp(3iu1)

(
F4G1

)
(u,v), (u,v) ∈ R4.

Since
Q
(
− i(−v0b1,−v1b1,v0,v1)

)
= 0,

applying (31) yields

fB(b0,b1)− fB̃(b0,b1) =
−2 iγ

(2π)2

∫
R2

v0 exp(−iv0b0)exp(−3iv1b1)
(
F4G1

)
(−v0b1,−v1b1,v)dv. (35)

Step 5. In the final step, we show that∫
R

b0

∫
R

(
fB(b0,b1)− fB̃(b0,b1)

)
db1db0 6= 0.

As above set h = F1g1, then since G1 is a product density and g1 and hence h are symmetric, we can rewrite the
integral in (35) as the product

D(b0,b1) =
∫
R

exp(−iv0b0)h(v0)v0 h(v0b1)dv0

∫
R

exp(−3iv1b1)h(v1b1)h(v1)dv1 .

Using the Plancherel isometry, we evaluate the integral on the right as

E(b1) =
∫
R

exp(−3iv1b1)h(v1)h(v1b1)dv1

= 2π

∫
R

(
F−1

1
(

exp(−3ib1·)h(·)
))

(t)
(
F−1

1
(
h(·b1)

))
(t)dt

= 2π

∫
R

g1(t + 3b1)g1(t/b1)/|b1|dt

= 2π

∫
R

g1(ub1 + 3b1)g1(u)du.

Let us discuss the function E(b1). Since g1 is a bounded density, E is bounded by the maximal value of g1 times
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2π . Further, since g1 has support [−1,1], g1(ub1+ 3b1) has support−3+[−1/b1,1/b1]. Therefore, E has compact
support contained in [−1/2,1/2], and in particular is integrable. Further, E ≥ 0 and in a neighborhood of zero,
E > 0.

Now, since ∣∣exp(−iv0b0)h(v0)v0 h(v0b1)E(b1)
∣∣≤ ∣∣h(v0)v0 E(b1)

∣∣,
which is integrable, we may change the order of integration to obtain

F(b0) :=
∫
R

D(b0,b1)db1 =
∫
R

exp(−iv0b0)h(v0)v0

(∫
R

h(v0b1) E(b1)db1

)
dv0

= 2π
(
F−1F̃

)
(b0),

where
F̃(v0) = h(v0)v0

∫
R

h(v0b1) E(b1)db1.

We obtain ∫
R

b0

(∫
R

D(b0,b1)db1

)
db0 =

∫
R

b0F(b0)db0 = (−i)
d

dv0

(
FF

)
(0)

= 2π(−i)
d

dv0
F̃(0) = 2π(−i)

∫
R

E(b1)db1 6= 0,

since h(0) = 1 and h′ is bounded, which concludes the proof.

Theorem 8. Consider the triangular model (1) under Assumption 1, and suppose that L = S = 1. Then,
the mean of B2 can not be identified from the distribution of the observations (X ,Y,Z,W ), even if (Z,W )
has full support, if all infinitely differentiable densities with compact support are admitted as the joint
density of (A0,A1,A2,B0,B1,B2)

′.

Proof of Theorem 2. By replacing A0 by A2 and C0 by C2, from the counterexample of Theorem 1, there exist two
distinct infinitely differentiable densities f j, j = 1,2 with compact support in [1,∞)×R3, for which F4( f2− f1)
vanishes on the set {(u1,u2,v1,v2)

′ ∈ R4 : Q(−i(u1,u2,v1,v2)
′) = 0}, and for which∫

R
b2

∫
R2

∫
∞

1
a1
(

f1− f2
)
(a1,a2,a1b1,b2 +b1a2)da1da2db1db2 6= 0. (36)

Now, consider the two densities

fA,C; j(a,c) = g1(a0)g1(c0) f j(a1,a2,c1,c2)

for (A,C), A = (A0,A1,A2)
′ and C = (C0,C1,C2)

′, and where g1 is defined in (28). The corresponding densities of
(A,B) are given by

fA,B; j(a,b) = a1 g1(a0)g1(b0 +b1a0) f j(a1,a2,b1a1,b2 +b1a2),

with marginal densities of B2

fB2; j(b2) =
∫
R5

fA,B; j(a,b)dadb0 db1

=
∫
R5

a1 f j(a1,a2,b1a1,b2 +b1a2)
[∫

R
g1(a0)

(∫
R

g1(b0 +b1a0)db0

)
da0

]
da1 da2 db1

=
∫
R3

a1 f j(a1,a2,a1b1,b2 +b1a2)da1 da2 db1

so that ∫
R

b2
(

fB2;1− fB2;2
)
(b2)db2 6= 0

by (36). It remains to show that both densities lead to the same distribution of the observed random variables
(Y,X ,Z,W ). Since (Z,W ) are exogenous, as in Lemma 2.1 it suffices to show that the conditional characteristic
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function of (Y,X) given W = w,Z = z coincide for all w,z ∈ R. Indeed,

E
(

exp
(
it1X + it2Y

)∣∣Z = z,W = w
)
= ψA,C(t1, t1z, t1w, t2, t2z, t2w),

and, setting h = F1g1,(
ψA,C;2−ψA,C;1

)
(t1, t1z, t1w, t2, t2z, t2w) = h(t1)h(t2)

(
F4( f2− f1)

)
(t1z, t1w, t2z, t2w) = 0

since Q
(
− i(t1z, t1w, t2z, t2w)

)
= 0.

Proof of Proposition 2.1. Let V =
(
EY,EY Z,EYW

)′ and

M = E
(
1,Z,W

)′(1,X ,W
)
=

1 0 0
0 EZX EZW
0 EWX EW 2

 ,

so that µ IV = M−1 V . Using exogeneity and normalization, we immediately compute

V =

 EB0 +EB1X
EB1XZ +EB2EZW
EB1XW +EB2EW 2

 (37)

Further,

EB1X = EB1A0,

EB1XZ = EA1B1 EZ2 +EB1A2 EZW,

EB1XW = EA1B1 EZW +EB1A2EW 2.

(38)

Similarly, for the entries of the matrix M we compute

EXZ = EA1EZ2 +EA2EZW,

EXW = EA1EZW.
(39)

Inserting (39) into M we compute

detM = EA1
(
EZ2EW 2−

(
EZW

)2)
,

so that M is invertible and a straightforward computation using (37) - (39) leads to the formula for µ IV .

A.2. Proofs for Section 3

Proof of (7). Observe that

fA(a0,a1) =
1

(2π)2

∫
R2

exp
(
− i(a0u0 +a1u1)

)(
F2 fA

)
(u0,u1)du0 du1

=
1

(2π)2

∫
R2
|t| exp

(
− it (a0 +a1z)

)(
F2 fA

)
(t, tz)dt dz

=
1

(2π)2

∫
R2
|t| exp

(
− it (a0 +a1z)

)
F1
(

fX |Z
)
(t,z)dt dz,

that is, (7).
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The following smoothness assumption is needed in the second part of Theorem 3 to justify interchanging the orders
of integration.

Assumption 10. ∫
R3
|t|
∣∣∣∫

R3
exp
(
it(b0 +b1x)

)
fB,A0,A1(b,x−a1z,a1)da1 db0 db1

∣∣∣dzdtdx < ∞.

Proof of Theorem 3. (i) We provide the missing details for the proof of the first part of Theorem 3. By simple
change of variables, for fixed z,

fB,A0+A1z,A1(b,x,a1) = fB,A0,A1(b,x−a1z,a1),

so that
fB,A0+A1z(b,x) =

∫
R

fB,A0,A1(b,x−a1z,a1)da1

and therefore

E
(

exp
(
it(B0 +B1x)|A0 +A1z = x

))
fA0+A1z(x)

=
∫
R3

exp
(
it(b0 +b1x)

)
fB,A0,A1(b,x−a1z,a1)da1 db0 db1.

Moreover, by exogeneity of Z,
fA0+A1z(x) = fX |Z(x|z),

so that by (9) and the above two displays,∫
R

F1
(

fY |X ,Z
)
(t|x,z) fX |Z(x|z)dz =

∫
R4

exp
(
it(b0 +b1x)

)
fB,A0,A1(b,x−a1z,a1)dzda1 db0 db1. (40)

The computation in (10) and Assumption 3 then lead to (11). As in the above proof of (7), applying the operator T
now yields the density fB, and we get the reconstruction formula (12).

The expression (13) for E|A1|−1 is obtained by setting t = 0 in (11).

(ii) By (40), Assumption 10 is equivalent to∫
R3
|t|
∣∣F1

(
fY |X ,Z

)
(t|x,z)

∣∣ fX |Z(x|z)dzdtdx < ∞.

By inserting the definition of T and changing the order of integration, we obtain

T
(∫

R
F1
(

fY |X ,Z
)
(t|x,z) fX |Z(x|z)dz

)
(b0,b1)

=
1

(2π)2

∫
R

∫
R
|t|e−itb0

(∫
R

F1
(

fY |X ,Z
)
(t|x,z)e−itb1x fX |Z(x|z)dx

)
dt dz.

Using

ψX ,Y |Z(t1, t2|z) =
∫
R

F1
(

fY |X ,Z
)
(t2|x,z)eit1x fX |Z(x|z)dx.

yields (12).

Proof of Theorem 4. First we observe that by Assumption 2, the support of X is also R. Now, we start by showing
that for the characteristic function of B,(

F2+S fB
)
(t, tx, tw) E

∣∣A1,1
∣∣−1

= E
(

exp
(
it(B0 +B1x+B′2w)

))
E
∣∣A1,1

∣∣−1

=
∫
RL

F1
(

fY |X ,Z,W
)
(t|x,z,w) fX |Z,W (x|z,w) fZ−1(z−1) dz.

(41)
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To this end, using the exogeneity Assumption 2 we compute that

F1
(

fY |X ,Z,W
)
(t|x,z,w) =E

(
exp
(
it(B0 +B1X +B′2W )

)
|X = x,Z = z,W = w

)
=E
(

exp
(
it(B0 +B1x+B′2w)

)
|A0 +A′1z+A′2w = x

)
.

(42)

Since

fB,A0+A′1z+A′2w,A1,A2
(b,x,a1,a2) = fB,A0,A1,A2(b,x−a′1z−a′2w,a1,a2),

fA0+A′1z+A′2w(x) = fX |Z,W (x|z,w),

we obtain that

F1
(

fY |X ,Z,W
)
(t|x,z,w) fX |Z,W (x|z,w)

=
∫
R2+2S+L

exp
(
it(b0 +b1x+b′2w)

)
fB,A(b,x−a′1z−a′2w,a1,a2)da1 da2 db.

(43)

Integrating out z1 gives∫
R

F1
(

fY |X ,Z,W
)
(t|x,z,w) fX |Z,W (x|z,w)dz1

=
∫
R3+2S+L

exp
(
it(b0 +b1x+b′2w)

)
fB,A(b,x−a′1z−a′2w,a1,a2)dz1 da1 da2 db

=
∫
R3+2S+L

|a1,1|−1 exp
(
it(b0 +b1x+b′2w)

)
fB,A(b,a)dadb

= E
(

exp
(
it(B0 +B1x+B2w)

) 1
|A1,1|

)
= E

(
exp
(
it(B0 +B1x+B2w)

))
E
∣∣A1,1

∣∣−1
.

(44)

using a change of variables and Assumption 5 in the last step. Averaging over the values of Z−1 then gives (41),
and applying the operator TS+1, by proceeding as in the proof of (7) we obtain (14). Finally, taking t = 0 in (44),
we see that for any x,z−1,w, (15) holds true.

Proof of Proposition 3.1. (i). We have 1B0≤t C−1
A1
≤ 1B0≤t |A1|−1 ≤ 1B0≤t c−1

A1
. Taking expected values, observing

(16) and solving for FB0(t) gives (i).
(ii). From the Hölder inequality, we obtain

F(t) = E
(

1B0≤t |A1|−1
)
≤
(

E
(
|A1|−p))1/p (

FB0(t)
)(p−1)/p

.

Solving for FB0(t) gives (ii).
(iii). Set r = (p+1)/p, so that p = 1/(r−1). Apply the Hölder inequality with exponents r and s = r/(r−1) to
obtain

FB0(t) = E
((

1B0≤t |A1|−1)1/r |A1|1/r))
≤
(
F(t)

)1/r E
(
|A1|s/r)1/s

=
(
F(t)

)p/(p+1) E
(
|A1|p

)1/(p+1)
.

Proof of Theorem 5. For a given x ∈ suppX consider the random variable Ax,w = (x−A0−A′2w)/A1. By a change
of variables,

fAx,A1,A2,B(z,a1,a2,b) = |a1| fA0,A1,A2,B(x−a1z−a′2w,a1,a2,b).

Therefore, from (43) we obtain that

F1
(

fY |X ,Z,W
)
(t|x,z,w) fX |Z,W (x|z,w)

=
∫
R3+2S

exp
(
it(b0 +b1x+b′2w)

)
|a1|−1 fAx,A1,A2,B(z,a1,a2,b)da1 da2 db.
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Under the support assumption (17), it suffices to integrate out z over the support of the conditional distribution of
Z|W = w to obtain (18).

Proof of Theorem 6. First, we require the following lemma, which does not involve the model itself but only a set
of random coefficients.

Lemma A.1. Let (A′,B′)′, A′ = (A0,A1), B′ = (B0,B1) be a four-dimensional random vector with continuous
Lebesgue density, which satisfies Assumptions 3 and 10, and for which F2 fB is integrable. Set C0 = B0 +B1A0,
C1 = B1A1 and C′ = (C0,C1), and let ψA,C denote the characteristic function of (A′,C′)′. Then

fB(b0,b1) =
1

(2π)2

∫
R

∫
R

exp(−itb0)ψA,C(−tb1,−tzb1, t, tz) |t|dt dz
(
E|A1|−1)−1

. (45)

Proof. Choose any Z with full support, and independent of (A′,B′)′, and form model (2) (that is, define Y,X
according to (2)). Then the assumptions of Theorem 3, (ii), are satisfied, and we obtain (12). Using the equality
(5) immediately gives (45).

The following lemma is based on analytic continuation.

Lemma A.2. Under Assumption 7, for any fixed t and b1 the function

Φ : z 7→ ψA,C(−tb1,−tb1z, t, tz),

is uniquely determined by its restriction to a non-empty interval.

Proof of Lemma A.2: Suppose that A,C and Ã,C̃ are two-dimensional random vectors both of which satisfy As-
sumption 7. Suppose that for fixed t and b1 the functions

Φ0 : z 7→ ψA,C(−tb1,−tb1z, t, tz), Φ1 : z 7→ ψ Ã,C̃(−tb1,−tb1z, t, tz)

coincide on the non-void interval I. Let Φ := Φ0−Φ1 and ψ = ψA,C−ψ Ã,C̃, we need to show that Φ vanishes
identically.

First we show that the function Φ can be represented by its Taylor series around the center z0 of I. The residual
term Rk(z) of the kth Taylor polynomial of Φ obeys the bound

|Rk(z)| ≤
1

(k+1)!
|z− z0|k+1∥∥Φ

(k+1)∥∥
∞
,

where we write Φ(k) for the kth derivative of Φ. We deduce that

Φ
(k+1)(z) =

k+1

∑
l=0

(
k+1

l

)
(−tb1)

ltk+1−l ∂ k+1ψ

(∂a1)l(∂c1)k+1−l (−tb1,−tb1z, t, tz) .

Since ∣∣∣ ∂ k+1ψ

(∂a1)l(∂c1)k+1−l (−tb1,−tb1z, t, tz)
∣∣∣≤ E|A1|l |C1|k+1−l +E|Ã1|l |C̃1|k+1−l ,

it follows by binomial expansion that

|Φ(k+1)(z)| ≤
k+1

∑
l=0

(
k+1

l

)
|tb1|l |t|k+1−l

(
E|A1|l |C1|k+1−l ++E|Ã1|l |C̃1|k+1−l

)
= |t|k+1

(
E
(
|b1A1|+ |C1|

)k+1
+E

(
|b1Ã1|+ |C̃1|

)k+1
)

≤ 2k+1|tb1|k+1(E|A1|k+1 +E|Ã1|k+1)+2k+1|t|k+1(E|C1|k+1 +E|C̃1|k+1) .
By Assumption 7 we conclude that

lim
k→∞

Rk(z) = 0 ,
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for all z ∈ R, which yields pointwise convergence of the Taylor series to Φ on the whole real line.

The function Φ vanishes on I, thus on some non-void open interval around z0. Therefore all derivatives of Φ at z0
equal zero so that the Taylor series of Φ around z0 converges to zero everywhere. Combining this with the above
paragraph we conclude that Φ≡ 0 and, hence, Φ0 = Φ1 throughout. This completes the proof of the lemma. �

Proof of Theorem 6 continued.

>From (5), for any fixed t and b1 we identify the function

Φ : z 7→ ψA,C(−tb1,−tb1z, t, tz) = ψX ,Y |Z(−tb1, t;z)

over the support SZ . From Lemma A.2, we hence identify ψA,C(−tb1,−tb1z, t, tz) for all z, and therefore, we
identify the function

g(b0,b1) =
1

(2π)2

∫∫
exp(−itb0)ψA,C(−tb1,−tzb1, t, tz) |t|dt dz .

Since by Corollary 45,

fB = g/
∫

g,

we identify fB.

B. Semiparametric estimation: Technical assumptions, results and proofs

Lemma B.1. Let Γ(x) denote the gamma function. For any κ ≥ 2 and n≥ 2, we have under Assumption 8 that

E
n−1

∑
j=1

(
Z( j+1)−Z( j)

)κ ≤ n(n−1)−κ c−κ

Z κ Γ(κ),

max
{

E(1−Z(n))
κ ,E(Z(1)+1)κ

}
≤ κc−κ

Z n−κ
Γ(κ) .

The proof is defered to the technical supplement.

Assumption 11. There exists a CA > 0 such that

sup
x∈I,z∈[−1,1]

∫
R

fA0,A1

(
x−a1z,a1

)
da1 ≤ CA,

as well as
sup
x∈I

∣∣∣∫
R

[
fA0,A1

(
x−a1z,a1

)
− fA0,A1

(
x−a1w,a1

)]
da1

∣∣∣ ≤ CA|z−w| z,w ∈ [−1,1].

Assumption 12.

sup
x∈I

∫
R3

∣∣ fA0,A1,B
(
x−a1z,a1,b

)
− fA0,A1,B

(
x−a1w,a1,b

)]
da1 db

∣∣∣ ≤ CA|z−w| z,w ∈ [−1,1].

Proof of Proposition 4.1. For brevity, in this proof let

sc := E|A1|−1 =
∫

I
v(x)

∫ 1

−1
fX |Z(x|z)dzdx,

Let σZ denote the σ -algebra generated by the Zi, i = 1, . . . ,n. Then

E
(
âI,n− sc

)2
= E Var

(
âI,n|σZ

)
+E

[
E
(
âI,n|σZ

)
− sc

]2
. (46)
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Since the X( j) are independent conditional on σZ , we have

Var
(
âI,n|σZ

)
≤

n−1

∑
j=1

E
(

v2(X( j))
)
|σZ

)(
Z( j+1)−Z( j)

)2

≤C2
v

n−1

∑
j=1

(
Z( j+1)−Z( j)

)2
,

where Cv is a bound for v. >From Lemma B.1,

EVar
(
âI,n|σZ

)
≤ 2C2

v c−2
Z n(n−1)−2. (47)

Further, we have that

E
(
âI,n|σZ

)
=
∫

I

∫ 1

−1
v(x) f̃ (x,z)dzdx,

f̃ (x,z) =
n−1

∑
j=1

fX |Z
(
x|Z( j)

)
1[Z( j),Z( j+1))

(z).

Using the Cauchy-Schwarz inequality twice, we estimate

E
[
E
(
âI,n|σZ

)
− sc

]2
≤2E

n−1

∑
j=1

∫
I

∫ Z( j+1)

Z( j)

[
fX |Z
(
x|z
)
− fX |Z

(
x|Z( j)

)]2 dzv(x)dx

+2E
(∫

I

∫ Z(1)

−1
f 2
X |Z
(
x|z
)

dzv(x)dx+
∫

I

∫ 1

Z(n)
f 2
X |Z
(
x|z
)

dzv(x)dx
)
.

For the second term, using Assumption 11 and Lemma B.1, we estimate

E
∫

I

∫ Z(1)

−1
f 2
X |Z
(
x|z
)

dzv(x)dx+E
∫

I

∫ 1

Z(n)
f 2
X |Z
(
x|z
)

dzv(x)dx

≤C2
A E
(
Z(1)+1+1−Z(n)

)
≤ 2C2

A c−1
Z n−1.

For the first term, we observe that for x ∈ [Z( j),Z( j+1)), again by Assumption 11,

∣∣ fX |Z
(
x|z
)
− fX |Z

(
x|Z( j)

)∣∣≤ ∣∣∫
R

(
fA0,A1(x− za1,a1)− fA0,A1(x−Z( j)a1,a1)

)
da1
∣∣

≤CA
∣∣z−Z( j)

∣∣
so that using Lemma B.1,

E
n−1

∑
j=1

∫
I

v(x)
∫ Z( j+1)

Z( j)

[
fX |Z
(
x|z
)
− fX |Z

(
x|Z( j)

)]2 dzdx

≤E
n−1

∑
j=1

(
Z( j+1)−Z( j)

)3 C2
A/3 ≤ 2C2

A c−3
Z n(n−1)−3.

Together with (47) and (46) this gives the statement of the proposition.

Proof of Theorem 7. By θ n we denote an element of Θn closest to the true θ 0 (with respect to the Euclidean
distance). The definition and the geometric structure of Θn yield that

‖θ 0−θ n‖2 ≤ d b2 n−1 . (48)
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Given ε > 0, we need to find M > 0 such that

P
[
‖θ̂ n−θ 0‖> M/

√
n
]
≤ ε,

for all (sufficiently large) n ∈ N. We choose M̃ > 0 so large that

P
[
‖θ̂ n−θ 0‖> M/

√
n
]

≤ P
[
‖θ̂ n−θ 0‖> M/

√
n,
∣∣âI;n−E|A1|−1∣∣≤ M̃/

√
n
]
+P
[∣∣âI;n−E|A1|−1∣∣> M̃/

√
n
]

≤ P
[
‖θ̂ n−θ 0‖> M/

√
n,
∣∣âI;n−E|A1|−1∣∣≤ M̃/

√
n
]
+ ε/2

for all n. Let
CΘ = sup

θ∈Θ

‖Φ(θ , ·)‖ν ;q,

for which 0 <CΘ < ∞, and for the rest of the proof let sc = E|A1|−1. Then

P
[
‖θ̂ n−θ 0‖> M/

√
n,
∣∣âI;n− sc

∣∣≤ M̃/
√

n
]

≤P
[
∃θ ′ ∈Θn : ‖θ ′−θ 0‖> M/

√
n , ‖Φ̂n(·)− âI;n Φ(θ ′, ·)‖ν ;q ≤ ‖Φ̂n(·)− âI;n Φ(θ n, ·)‖ν ;q,∣∣âI;n− sc

∣∣≤ M̃/
√

n
]

≤P
[
∃θ ′ ∈Θn : ‖θ ′−θ 0‖> M/

√
n , ‖Φ̂n(·)− sc Φ(θ ′, ·)‖ν ;q

≤ ‖Φ̂n(·)− sc Φ(θ n, ·)‖ν ;q +2CΘM̃/
√

n
]

≤ ∑
θ
′∈Θn

1(M/
√

n,∞)(‖θ ′−θ 0‖)P
[
‖Φ̂n(·)− sc Φ(θ ′, ·)‖ν ;q ≤ ‖Φ̂n(·)− sc Φ(θ n, ·)‖ν ;q +2CΘM̃/

√
n
]

by the triangle inequality. Now,

‖Φ̂n(·)− sc Φ(θ ′, ·)‖ν ;q ≤ ‖Φ̂n(·)− sc Φ(θ n, ·)‖ν ;q +2CΘM̃/
√

n

implies ∣∣∣‖Φ̂n(·)−EΦ̂n(·)‖ν ;q−‖EΦ̂n(·)− sc Φ(θ ′, ·)‖ν ;q

∣∣∣
≤‖Φ̂n(·)−EΦ̂n(·)‖ν ;q +‖EΦ̂n(·)− sc Φ(θ n, ·)‖ν ;q +2CΘM̃/

√
n

and hence

max
(
‖EΦ̂n(·)− sc Φ(θ ′, ·)‖ν ;q−‖EΦ̂n(·)− sc Φ(θ n, ·)‖ν ;q−2CΘM̃/

√
n,0
)

≤2‖Φ̂n(·)−EΦ̂n(·)‖ν ;q.

Therefore

P
[
‖θ̂ n−θ 0‖> M/

√
n,
∣∣âI;n− sc

∣∣≤ M̃/
√

n
]

≤ ∑
θ
′∈Θn

1(M/
√

n,∞)(‖θ ′−θ 0‖)P
[
‖Φ̂n(·)−EΦ̂n(·)‖ν ;q ≥

1
2

max
(
‖EΦ̂n(·)− sc Φ(θ ′, ·)‖ν ;q−‖EΦ̂n(·)− sc Φ(θ n, ·)‖ν ;q−2CΘM̃/

√
n,0
)]

≤2κ
∑

θ
′∈Θn

1(M/
√

n,∞)(‖θ ′−θ 0‖)E‖Φ̂n(·)−EΦ̂n(·)‖κ
ν ;q (49)

max
(
‖EΦ̂n(·)− sc Φ(θ ′, ·)‖ν ;q−‖EΦ̂n(·)− sc Φ(θ n, ·)‖ν ;q−2CΘM̃/

√
n,0
)−κ

for some fixed integer κ ≥ 2 (to be specified later) by the Markov inequality. Below we show the estimates

E‖Φ̂n(·)−EΦ̂n(·)‖κ
ν ;q = O(n−κ/2), (50)
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‖EΦ̂n(·)− sc Φ(θ ′, ·)‖ν ;q−‖EΦ̂n(·)− sc Φ(θ n, ·)‖ν ;q−2CΘM̃/
√

n

≥c1/2
Θ,0‖θ 0−θ

′‖ −
(
c1/2

Θ,1

√
db+2CΘM̃

)
n−1/2 − O(1/n) ,

(51)

If we set
α =

[
c1/2

Θ,0 M−
(
c1/2

Θ,1

√
db+2CΘM̃+1

)]
,

then α → ∞ as M→ ∞, and for large n and ‖θ −θ
′‖> M/

√
n, from (51)∣∣∣‖EΦ̂n(·)− sc Φ(θ ′, ·)‖ν ;q−‖EΦ̂n(·)− sc Φ(θ n, ·)‖ν ;q−2CΘM̃/

√
n
∣∣∣≥ α/

√
n.

On the other hand, (51) is also bounded from below by

c1/2
Θ,0‖θ n−θ

′‖−
(
c1/2

Θ,1 + c1/2
Θ,0)
√

db+2CΘM̃
)
n−1/2 − O(1/n)

≥ c1/2
Θ,0bn−1/2J(θ ′) −

(
c1/2

Θ,1 + c1/2
Θ,0)
√

db+2CΘM̃
)
n−1/2 − O(1/n) ,

for some integer J(θ ′) ≥ 0 where the preimages J−1({ j}) contain at most 2(2 j + 1)d−1 elements for all integer
j ≥ 0. Therefore, from (49), (50) and the above estimates,

P
[
‖θ̂ n−θ 0‖> M/

√
n,
∣∣âI;n− sc

∣∣≤ M̃/
√

n
]

≤∑
j≥0

(2 j+1)d−1 ·O
(
n−κ/2)

(
max

{
αn−1/2,c1/2

Θ,0bn−1/2 j −
(
c1/2

Θ,1 + c1/2
Θ,0)
√

db+2CΘM̃
)
n−1/2 − O(1/n)

})−κ

=O(1) ·∑
j≥0

(
max

{
α,c1/2

Θ,0b j −
(
c1/2

Θ,1 + c1/2
Θ,0)
√

db+2CΘM̃
)
− O(n−1/2)

})−κ · (2 j+1)d−1 ,

where the constants contained in O(·) depend on neither α nor n. We choose κ > d. Then, by the dominated
convergence theorem, we deduce that the above expression tends to zero as α ↑ ∞ (or M ↑ ∞) – uniformly with
respect to n.

It remains to prove (50) and (51). Using the simple inequality (a+b)κ ≤ 2κ(aκ +bκ), a,b > 0, κ ∈N, we estimate

E
∥∥Φ̂n(·)−EΦ̂n(·)

∥∥κ

ν ;q ≤
1
q

q

∑
p=1

∫
R

∣∣Φ̂n(t, Ip)−EΦ̂n(t, Ip)
∣∣κ dν(t)

≤ 2κ

q

q

∑
p=1

∫
R

(∣∣Φ̂n(t, Ip)−E
(
Φ̂n(t, Ip)|σZ

)∣∣κ + ∣∣E(Φ̂n(t, Ip)|σZ
)
−EΦ̂n(t, Ip)

∣∣κ)dν(t) ,

(52)

We have that

E
(
Φ̂n(t, Ip) | σZ

)
=

n−1

∑
j=1

E
(

exp(itY( j))1Ip(X( j))
∣∣σZ

)
·
(
Z( j+1)−Z( j)

)
=

n−1

∑
j=1

(
Z( j+1)−Z( j)

) ∫∫
exp(ity′)1Ip(x

′) fY,X |Z(y
′,x′|Z( j))dy′ dx′

=
n−1

∑
j=1

∫ Z( j+1)

z=Z( j)

∫∫
exp(ity′)1Ip(x

′) fY,X |Z(y
′,x′|Z( j))dy′ dx′ dz . (53)

For all t ∈ R, s > 0, from the Hoeffding inequality,

P
[∣∣Φ̂n(t, Ip)−E(Φ̂n(t, Ip) | σZ)

∣∣> s | σZ
]
≤ 4exp

{
− 1

8
s2/
(n−1

∑
j=1

(Z( j+1)−Z( j))
2
)}

,
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Therefore

E
(∣∣Φ̂n(t, Ip)−E(Φ̂n(t, Ip) | σZ)

∣∣κ | σZ
)
≤ 4

∫
s>0

exp
{
− 1

8
s2/κ/

(n−1

∑
j=1

(Z( j+1)−Z( j))
2
)}

ds

≤ 2κ
√

8
κ

Γ(κ/2) ·
(n−1

∑
j=1

(Z( j+1)−Z( j))
2
)κ/2

≤ 2κ
√

8
κ

Γ(κ/2) · (n−1)κ/2−1 ·
n−1

∑
j=1

(Z( j+1)−Z( j))
κ ,

again by Hölder’s inequality. Taking the expectation on both sides of the above inequality and using Lemma B.1
yields uniformly in t that

E
∣∣Φ̂n(t, Ip)−E(Φ̂n(t, Ip) | σZ)

∣∣κ = O(n−κ/2) . (54)

To proceed, first observe that∣∣EΦ̂n(t, Ip)− scΦ(θ 0, t, Ip)
∣∣κ ≤ E

∣∣E(Φ̂n(t, Ip) | σZ)− scΦ(θ 0, t, Ip)
∣∣κ , κ ∈ N. (55)

Therefore

E
∣∣E(Φ̂n(t, Ip) | σZ)−EΦ̂n(t, Ip)

∣∣κ ≤ 22κ E
∣∣E(Φ̂n(t, Ip) | σZ)− scΦ(θ 0, t, Ip)

∣∣κ . (56)

To estimate the right side, note that

fY,X |Z(y,x|z) =
∫∫

fA,B(x−a1z,a1,y− c1x,c1)da1 dc1 ,

so that, by Assumption 12, we have for all z,z′ ∈ suppZ,∫ ∫
I

∣∣ fY,X |Z(y,x|z)− fY,X |Z(y,x|z′)
∣∣dxdy≤CA · |z− z′| .

Applying this to (53) and (22) yields that

∣∣E(Φ̂n(t, Ip) | σZ)−a1Φ(θ 0, t, Ip)
∣∣ ≤ 2CA

n−1

∑
j=1

(
Z( j+1)−Z( j)

)2
+ |Z(1)+1|+ |Z(n)−1| , (57)

holds true almost surely. Therefore, using Lemma B.1, we get that

E
∣∣E(Φ̂n(t, Ip) | σZ)−EΦ̂n(t, Ip)

∣∣κ
≤ 22κ E

(
2CA

n−1

∑
j=1

(
Z( j+1)−Z( j)

)2
+ |Z(1)+1|+ |Z(n)−1|

)κ

≤2Cκ
A 6κ E

[∣∣∣n−1

∑
j=1

(
Z( j+1)−Z( j)

)2
]κ

+E|Z(1)+1|κ +E|Z(n)−1|κ

≤2Cκ
A 6κ (n−1)κ−1 E

n−1

∑
j=1

(
Z( j+1)−Z( j)

)2κ
+E|Z(1)+1|κ +E|Z(n)−1|κ

=O(n−κ) .

(58)

Together with (54) and (52) this implies (50).

To obtain (51), from (54), (57) and Lemma B.1 we get that uniformly in t,∣∣EΦ̂n(t, I)− scΦ(θ 0, t, Ip)
∣∣≤ E

∣∣E(Φ̂(t, I) | σZ)− scΦ(θ 0, t, Ip)
∣∣= O(1/n) .
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Therefore,

‖EΦ̂n(·)− sc Φ(θ ′, ·)‖ν ;q−‖EΦ̂n(·)− sc Φ(θ n, ·)‖ν ;q

≥sc ‖Φ(θ 0, ·)−Φ(θ ′, ·)‖ν ;q− sc ‖Φ(θ 0, ·)−Φ(θ n, ·)‖ν ;q−O(1/n)

≥c1/2
Θ,0‖θ 0−θ

′‖ − c1/2
Θ,1

√
dbn−1/2 − O(1/n) ,

by (48) and Assumption 9. This completes the proof of the theorem.


