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Abstract

Monotonicity in a scalar unobservable is a crucial identifying assumption for an important class of

nonparametric structural models accommodating unobserved heterogeneity. Tests for this monotonic-

ity have previously been unavailable. This paper proposes and analyzes tests for scalar monotonicity

using panel data for structures with and without time-varying unobservables, either partially or fully

nonseparable between observables and unobservables. Our nonparametric tests are computationally

straightforward, have well behaved limiting distributions under the null, are consistent against pre-

cisely specified alternatives, and have standard local power properties. We provide straightforward

bootstrap methods for inference. Some Monte Carlo experiments show that, for empirically relevant

sample sizes, these reasonably control the level of the test, and that our tests have useful power. We

apply our tests to study asset returns and demand for ready-to-eat cereals.
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1 Introduction

Suppose an observable scalar Y is structurally generated as

Y = g(X,A), (1.1)

where g is an unknown function, X is an observable d × 1 vector, and A is an unobservable attribute

vector. An important example occurs when Y represents the quantity of a good demanded by a consumer,

X represents income and prices, and A represents a consumer’s fixed taste parameter, as in Stigler and

Becker (1977). Alternatively, Y can represent the quantity produced by a firm, X cost and demand

shifters, and A a firm’s fixed technology parameter.

Across economic models, unobservables can enter in many different ways. As a consequence, g is

generally not point identified. However, when A is a scalar and g(x, ·) is strictly monotone for all x ∈ X ,

the support of X (“monotonicity in a scalar unobservable” or just “scalar monotonicity”), g does become

identified. This is an important consequence of the “structural function and distribution” framework

considered by Matzkin (2003, 2007) and others (in our exposition, we follow in particular Altonji and

Matzkin (2005, section 4), henceforth AM). Such a monotonicity assumption has played a key role

in an important strand of flexible structural modeling, beginning with Roehrig (1988) and developed

extensively by Matzkin (e.g., Matzkin, 2003, 2007) and Chesher (2003). Scalar monotonicity has gained

increasing currency, because it allows one to link heterogeneity in unobservables to regression quantiles.

Recent studies relying on monotonicity are those of Imbens and Newey (2009), Evdokimov (2010), and

Komunjer and Santos (2010). Monotonicity has also been assumed in structural auction models to ensure

a symmetric Bayesian Nash equilibrium strategy (e.g., Guerre et al., 2000) and to nonparametrically

identify certain distributional structures with endogenous participation and unobserved heterogeneity

(e.g., Guerre et al., 2009).

As Hoderlein (2011) notes, monotonicity is a strong assumption in general. Further, monotonicity is

crucial in this context, as key identification results fail when scalar monotonicity is violated, leading to

meaningless estimates and illegitimate inferences. It is thus important to have tests for this. To the best

of our knowledge, no tests for monotonicity in scalar unobservables are currently available. Accordingly,

our goal here is to propose and analyze some straightforward methods for testing scalar monotonicity. We

emphasize even for this scalar case, a direct test for the scalar monotonicity in (1.1) seems impossible under

the standard identification conditions detailed in Proposition A.1 in the appendix. Since the functional

form in (1.1) is assumed to be unknown, it is not restrictive to assume that A is uniformly distributed

on I ≡ [0, 1] . For simplicity, we consider the classical strictly exogenous case where X is independent

of A (X ⊥ A). Suppose that the conditional cumulative distribution function (CDF) F (·|x) of Y given

X = x is strictly monotone for each x ∈ X . Let q (x, τ) ≡ F−1 (τ |x) denote the τth conditional quantile

function of Y given X = x. Then the observables Y and X have an equivalent quantile representation

Y = q (X,U) (1.2)

where U is uniformly distributed on I and U ⊥ X. By construction, q (x, ·) is strictly monotone for each

x ∈ X . As a result, the observations on (Y,X) generated from (1.1) are observationally equivalent to
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those generated from (1.2), and there is no way to test whether the structural function g (x, ·) is strictly

monotone for each x ∈ X .

Although it may be possible to construct tests for monotonicity in the strictly exogenous case using

a single cross section of observations, any such test must necessarily be indirect, since the conditional

distribution function of Y given X generally yields a representation Y = q(X,U), where U is independent

of X and q(X, ·) is strictly monotone. We emphasize that this representation has no necessary structural

content unless the structural relation is indeed monotone in the scalar unobservable. This indirectness can

have serious adverse consequences for the power of such tests against many alternatives. This motivates

us to consider the test of scalar monotonicity by relying on exogenous variations coming from repeated

observations of a single individual.

For clarity, and to maintain a manageable scope for the analysis here, we focus on the classical

strictly exogenous case, where X is independent of A (X ⊥ A). In particular, we will consider structures

monotonic in Ai with separable time-varying unobservable εit,

Yit = g(Xit, Ai) + εit, (1.3)

as well as fully general nonseparable structures with time-varying unobservable εit,

Yit = g(Xit, εit, Ai), (1.4)

where i = 1, ..., N, and t = 1, ..., T. Here, we use A to denote the time-invariant unobservable, emphasizing

that the unobservables are fixed attributes, conforming with notation of Hoderlein (2011), Hoderlein and

Mammen (2007), and Hoderlein and White (2009). Evdokimov (2010) considers the former structure,

discussing its relevance to studying heterogeneous treatment effects, such as the effects of union mem-

bership on wages and the effects of wages on consumption. The latter can be used, among other things,

to study price effects on consumer demand as well as nonlinear/nonparametric factor effects on asset

returns in the presence of unobserved heterogeneity. The fully nonseparable structures are quite general;

their only significant vulnerabilities to misspecification are failures of monotonicity or exogeneity. As we

shall argue, having many time periods enables us to test for monotonicity in the presence of additional

unobservables. Intuitively, the exogenous variation provided by multiple time periods help us recover the

scalar time-invariant unobservable Ai, which is generally needed in the presence of time-varying unob-

servable εit in (1.3) or (1.4). Due to the need for the recovery of Ai, our asymptotic theory requires that

the number of time periods T pass to infinity at sufficiently fast rate. On the other hand, we will also

remark that in the special case where εit is absent from (1.3), there is no need to recover Ai so that just

two time periods suffices to proceed directly. In a companion paper (Hoderlein et al., 2012), we study

the endogenous case, where a conditional form of exogeneity (X ⊥ A | Z, for given covariates Z) permits

recovery of effects of interest in (1.1) without the need for repeated observations for a single individual,

and with no added time varying unobservable εit. Beyond the hypothesis at hand, the two approaches

have no overlap.

As mentioned, other than regularity conditions, the only other major structural assumption we rely on

is exogeneity in the sense that we assume that εit ⊥ Ai|Xit, which is similar to Evdokimov (2010), and, in

particular, that Ai ⊥ Xit. Two remarks are in order: First, we can relax the latter assumption. Our test
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uses the comparison between at least two time periods, say, t and t+ 1. We could replace the assumption

that Ai ⊥ Xit and Ai ⊥ Xi,t+1, by assuming that Ai ⊥ Xit|Xi,t−1, ..., Xi0 or Ai ⊥ Xi,t+1|Xi,t−1, ..., Xi0,

as in Altonji and Matzkin (2005). This would allow for correlation between Ai and Xit that run through

past levels of the process {Xit, t ≥ 0}. Since this would amount to additional conditioning, for brevity of

exposition we do not elaborate on this further. Second, in some applications monotonicity is accepted, and

we may hence use the test statistic to assess other parts of the specification, in particular the exogeneity

assumption. Alternatively, it may be used to test both properties, monotonicity and exogeneity, jointly.

To draw unequivocal conclusions about whether monotonicity alone or exogeneity alone is violated, one

may be willing to impose prior knowledge. This is of course common in all areas of Econometrics; indeed,

any t-, or F -test in the linear model is only valid under the maintained assumptions of linearity and

exogeneity - a rejection of a null could always also be due to misspecification of this assumption. In

this paper, we will hence consider our test largely as specification test for scalar monotonicity under

the maintained assumption of exogeneity, however, we will interpret the rejections we obtain in one

application as, in least in parts, possibly generated by failure of exogeneity as well.1

The structure of this paper is as follows: Section 2 presents a monotonicity test for structures of the

forms (1.1), (1.3) and (1.4) but with a focus on (1.3). We first introduce and analyze a monotonicity

test for structures with time-varying unobservables of the forms (1.3). The test is fully nonparametric,

but here we require T to be large, so as to average out the influence of the εit’s. The test statistic is

asymptotically a mixture of chi-squares under the null, is consistent against a precisely characterized set

of alternatives, and can detect local alternatives with rate O(N−1/2). Since the test is not asymptotically

pivotal, we also propose an effective nonparametric bootstrap method to obtain p-values for our test and

justify its asymptotic validity. Interestingly, the test and bootstrap method that work for the “partially

nonseparable” case also work for the “fully nonseparable” case in (1.4). We also propose a test for the

structure in (1.1) and remark that in the absence of time-varying unobservable, a fully nonparametric

test can be constructed for T as small as 2. The test statistic is asymptotically normal under the null,

is consistent against a precisely characterized set of alternatives, and can detect local alternatives at the

usual nonparametric rate.

Although it would be appealing to have a procedure that works with fixed T rather than large T,

the presence of multiple unobservables Ai and εit permits recovery only of the distributions and not

the actual values of the unobservables, as in Evdokimov (2010). These distributions cannot reliably be

exploited to construct tests with power; for example, the leading identical distribution case obviously

yields distribution-based tests with power equal to level. By taking T large, however, we can average out

the εit’s, making possible recovery of the actual values of the Ai’s. This yields tests with power generally.

Even though this rules out a number of applications with very short T , there are of course numerous

application areas where large T is common, for example, in industrial organization, marketing, finance,

and consumer demand. And, as our simulation studies show, values for T realistic in practice deliver

reliable inference.

Section 3 reports the results of some Monte Carlo experiments designed to study the level and power

1Alternatively, one may use a nonparametric test for exogeneity (not dependent on the monotonicity assumption), as in

Blundell and Horowitz (2007), in a first stage to isolate the monotonicity hypothesis.
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properties of the tests. We find that our tests perform reasonably well for (N,T ) = 20, 40, and 60

for the structures in (1.3) and (1.4). Section 4 uses our tests to study asset returns and demand for

ready-to-eat cereals, and Section 5 concludes. The Mathematical Appendix contains formal proofs of our

results, together with supplementary results supporting the discussion of the main text. In particular,

the appendix reviews and extends available results on representation with scalar unobservables, providing

the necessary foundations for our tests.

2 Testing monotonicity in unobservable time-invariant attributes

In this section we first motivate our test statistic for the structure in (1.3), present a set of assumptions,

and report the asymptotic distributions of our test statistic under the null hypothesis of monotonicity

and a sequence of Pitman local alternatives. Then we propose a bootstrap method for our test and justify

its asymptotic validity. Finally we discuss tests for monotonicity in (1.1) and (1.4).

2.1 Test statistic

For notational simplicity, we suppress the individual index and write (Yt, Xt, A, εt) for (Yit, Xit, Ai, εit) .

We consider the following partially nonseparable structure

Yt = g(Xt, A) + εt, (2.1)

where t = 1, ..., T, A is an individual’s time-invariant attribute, and εt is a time varying idiosyncratic error

term. Because the structure is partly but not fully nonseparable in unobservables, we call it “partially

nonseparable”.

Evdokimov (2010, E) studies such a structure extensively. Beyond the already discussed examples in

finance, demand or industrial organization, E (2010) gives many salient examples and provides identifi-

cation and estimation results. An important further example arises in finance, where Yt is the return of

an asset in period t, Xt represents market and other factors driving returns, A is alpha, the firm-specific

return-generating attribute, and εt is an idiosyncratic shock. This nonlinear asset return factor structure

permits arbitrary interaction between alpha and the systematic factors driving returns; it may thus be

useful not only for better understanding asset returns but also for improving portfolio allocation. Just

as for AM, a main goal for E is the identification of g. As E shows, for fixed T ≥ 2, one can use

deconvolution to extract the distribution of Mt ≡ g(Xt, A) given Xt.

Let Ft( · | x) denote the conditional CDF of Mt given Xt = x. Exogeneity (Xt ⊥ A) and the time-

invariance of A jointly ensure that Ft is time invariant. AM and Imbens and Newey (2009), among

others, assume scalar monotonicity for all x ∈ X (scalar monotonicity a.s.). Under this monotonicity

assumption, we have Mt = g(Xt, A) = F−1(A | Xt), t = 1, 2, ... (see Proposition A.1), which implies our

null hypothesis

H0 : F (Mt | Xt) = A for all t = 1, 2, ... a.s. (2.2)

We call (2.2) full identification a.s. When exogeneity or scalar monotonicity a.s. fails, we generally have

P [Ft(Mt | Xt) = Fs(Ms | Xs)] < 1 for some t 6= s. (2.3)
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Proposition A.2 of the appendix formally states and proves (2.2) and its converse, with a brief discussion

of the mild additional conditions required for the converse.

Without εt, Yt = Mt and we can compare Ft(Yt | Xt) to Fs(Ys | Xs) for t 6= s. In the presence of εt,

ideally we would like to compare Ft(Mt | Xt) to Fs(Ms | Xs) for t 6= s; both equal A given identification.

However, since εt is unobservable, so is Mt = Yt − εt. Thus, identifying A itself and directly comparing

Ft(Mt | Xt) to Fs(Ms | Xs) is not possible.

Nevertheless, applying E’s approach does permit a comparison of the conditional distributions of Mt

given Xt. That is, we can compare Ft to Fs for t 6= s. But this comparison yields tests with power equal

to level when {Yt, Xt} is identically distributed (ID), a leading case. Also, using E’s results for inference

based on estimators of F1−F2 (say) is hindered by the fact that so far there is no asymptotic distribution

theory available for his estimators; only convergence rates are available. Another consideration is that E’s

approach relies crucially on the additive separability of εt; presently, there are no methods analogous to

E’s approach that would permit a treatment of the fully nonseparable case. Consequently, constructing

a general monotonicity test with εt and fixed T is currently not a viable option.

On the other hand, straightforward specification testing is possible when T is large. For convenience,

we assume that {Xt, εt} is ID. Let non-negative weight functions wτ , τ = 1, ..., T , be defined on X . Given

sufficient moments, we use wτ to define Ỹτ = Ỹτt ≡ E[Ytwτ (Xt) | A]; the equality holds by ID. Then

Ỹτ = E [g(Xt, A)wτ (Xt)|A] + E [εtwτ (Xt)|A]

=

∫
g(x,A)wτ (x) dF (x) + E [εtwτ (Xt)]

≡ ḡτ (A) + ε̃τ , (2.4)

where the second line holds given exogeneity (Xt ⊥ A) and the further condition εt ⊥ A | wτ (Xt). In

particular, these conditions ensure that ε̃τ ≡ E[εtwτ (Xt)] is a constant. Assuming that εt ⊥ A | wτ (Xt)

allows dependence between εt and Xt as well as εt and A. An alternative sufficient (but not necessary)

condition giving Ỹτ = ḡτ (A) + ε̃τ is εt ⊥ A | Xt. Together with Xt ⊥ A, this implies (and is implied by)

(Xt, εt) ⊥ A.
For example, let X1 be a subset of X with 0 < p1 ≡ P [Xt ∈ X1] < 1, let X2 ≡ X\X1, and take

w1(x) = 1{x ∈ X1}/p1 and w2(x) = 1{x ∈ X2}/(1−p1). In this case, εt ⊥ A | w1(Xt) and εt ⊥ A | w2(Xt)

are equivalent.

Strict monotonicity a.s. of g(Xt, ·) directly ensures that b → ḡτ (b) is strictly monotone in b. By

Proposition A.1 (with X absent), it follows that A = ḡ−1τ (Ỹτ − ε̃τ ) is the percentile of Ỹτ − ε̃τ in its

distribution. But since ε̃τ is a constant, this percentile is also that of Ỹτ in its distribution, say F̃τ ,

defined by

F̃τ (y) ≡ P [Ỹτ ≤ y].

Thus, A is identified as

A = ḡ−1τ (Ỹτ − ε̃τ ) = F̃τ (Ỹτ ). (2.5)

In the finance context, where A is the firm’s alpha, this has a natural interpretation: With w1(x) = 1,

this says that alpha is the firm’s percentile in the distribution of unconditional expected firm-specific
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returns. An interesting question here is whether F̃1 is degenerate, in which case there is no firm-specific

heterogeneity. In view of the fact that (2.5) holds for all τ = 1, ..., T , it motivates a specification test

based on

H̃0 : F̃τ (Ỹτ ) = F̃ς(Ỹς) for all (τ, ς) with τ 6= ς.

When T and N are large, we can consistently estimate Ỹτi and F̃τ , τ = 1, 2, ..., yielding ÂNT,τ,i ≡
F̂NT,τ (ȲT,τ,i), where

ȲT,τ,i ≡ T−1
T∑
t=1

Yitwτ (Xit), and F̂NT,τ (y) ≡ N−1
N∑
j=1

1{ȲT,τ,j ≤ y}, τ = 1, 2, ...

Under strict monotonicity, the estimators ÂNT,τ,i are consistent for Ai as N,T → ∞; otherwise,

they differ under suitably strong monotonicity failures. Proposition A.3 provides a precise formal state-

ment of the latter claim. An interesting situation arises here, as failures of strict monotonicity (hence

identification of g) rendered undetectable by the weighted averaging (because ḡ1 and ḡ2 are nevertheless

strictly monotone) are in fact cases where A is identified, regardless of the non-monotonicity of g(x, ·).
Identification of A is often of interest in its own right, for example in modeling asset returns.

Here, the exogeneity assumptions Xt ⊥ A and εt ⊥ A | wτ (Xt), τ = 1, 2, ..., permit inference on

monotonicity of ḡτ . Further, as we discuss preceding Proposition A.4 in the appendix, dropping these

conditions introduces multiple generic sources of non-monotonicity: rejecting H̃0 may then be due to

non-monotonicity of either E[g(Xt, A) wτ (Xt) | A] or E[εt wτ (Xt) | A], or both. When E[εt wτ (Xt) | A]

is non-constant in A, as generally holds when either Xt ⊥ A or εt ⊥ A | wτ (Xt) fail, it is generically

non-monotonic. Non-monotonicity of E[g(Xt, A) wτ (Xt) | A] can arise either from the non-monotonicity

of g or from the failure of exogeneity, Xt ⊥ A. The appendix contains further discussion.

These statistics now permit specification tests based on the following test statistic

D̂NT ≡
T −1∑
τ=1

T∑
ς=τ+1

N∑
i=1

(ÂNT,τ,i − ÂNT,ς,i)2.

2.2 Assumptions

To study the asymptotic properties of D̂NT under H̃0, we write ‖Z‖2+γ ≡ {E |Z|
2+γ }1/(2+γ) and impose

the following assumptions:

Assumption A.0 Yit is structurally generated according to Yit = g(Xit, Ai) + εit, where Xit ⊥ Ai and

εit ⊥ Ai | wτ (Xit), τ = 1, 2, ..., T .
Assumption A.1 (i) Let Zit ≡ (εit, X

′
it)
′ and Zi ≡ {Zi1, Zi2, ...}. The sequence {(Zi, Ai)} is IID. (ii)

For each i, {(Xit, εit)} is strictly stationary and strong mixing with mixing coefficient α (·) satisfying∑∞
s=1 α (s)

γ/(2+γ)
<∞ for some γ > 0.

Assumption A.2 Let T ∈ N. For τ = 1, 2, ..., T , wτ : X → R+ is a measurable function such that for

some C <∞, ‖g (Xit, Bi) wτ (Xit)‖2+γ < C and ‖εit wτ (Xit)‖2+γ < C.

Assumption A.3 (i) For τ = 1, 2, ..., T , the CDF F̃τ of Ỹτ,i ≡ E [Yitwτ (Xit) | Ai] admits a PDF f̃τ

that is uniformly bounded on its support. (ii) For τ = 1, 2, ..., T and sufficiently large T, the CDF F̃Tτ
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of ȲT,τ,i admits a PDF f̃Tτ that is continuous on its support, and gτ is continuous, where gτ (Ai) ≡
E[g(Xit, Ai)wτ (Xit) | Ai].

Assumption A.4 Let ξi ≡ (Ỹ1,i, ..., ỸT ,i)
′ and ψ (u, ξj) ≡

∑T −1
τ=1

∑T
ς=τ+1[1{Ỹτ,j ≤ uτ} − F̃τ (uτ ) −

1{Ỹς,j ≤ uς} + F̃ς(uς)] where u = (u1, ..., uT )′. Let ψ̃ (u, v) ≡
∫
ψ (ξ, u)ψ (ξ, v) F̃ (dξ) where F̃ denotes

the CDF of ξi. The non-zero eigenvalues λj , j = 1, 2, ..., for ψ̃ (u, v) satisfy
∑∞
j=1 |λj | <∞.

Assumption A.5 As N →∞, T/N →∞.

Assumption A.0 specify the data generating process. Given the exogeneity assumptions Xit ⊥ Ai

and εit ⊥ Ai | wτ (Xit), τ = 1, ..., T , strict monotonicity of g in its second argument implies H̃0, as

discussed above. A sufficient condition for these assumption is (Xit, εit) ⊥ Ai, which strengthens the

contemporaneous uncorrelatedness requirement in classical random effects panel data models. Assump-

tion A.1 rules out cross-section dependence across individuals and nonstationarity across time. We can

relax strict stationarity at the cost of more complicated notation. Assumption A.2 imposes some moment

conditions. Assumption A.3(i) is weak. Assumption A.4 is used to establish the asymptotic distribution

of a certain degenerate second-order U -statistic. The summability condition is required in order to apply

the result in Chen and White (1998). Assumption A.5 imposes conditions on (N,T ) that greatly facilitate

the asymptotic analysis. As we show below, however, suitable bootstrap methods deliver reliable finite

sample inference even when T is not much different from N.

2.3 Asymptotic distributions

Define the bias term

BNT ≡ N−2
T −1∑
τ=1

T∑
ς=τ+1

N∑
i=1

N∑
j 6=i

[1{ȲT,τ,j ≤ Ỹτ,i} − F̃Tτ (Ỹτ,i)− 1{ȲT,ς,j ≤ Ỹς,i}+ F̃Tς(Ỹς,i)]
2,

where F̃Tτ denotes the CDF of Ỹτ,i for τ = 1, 2, ..., T . We can now describe the asymptotic distribution

of D̂NT under H̃0 as N →∞.

Theorem 2.1 Suppose Assumptions A.0-A.5 hold. Then under H̃0 : F̃τ (Ỹτ,i) = F̃ς(Ỹς,i) for τ, ς =

1, 2, ..., T , D̂NT −BNT
d→
∑∞
j=1 λj(Z2

j − 1), where {Zj} is a sequence of IID N (0, 1) random variables,

and {λj} is as defined in Assumption A.4.

Remark 1. The proof shows that D̂NT is asymptotically equivalent to an infeasible test statistic (D̃NT )

based on the unobservable Ỹτ,i’s. After centering with DNT , D̃NT can be written as a second-order

degenerate U -statistic. That is, D̃NT −BNT = H̄n + oP (1) , where

H̄N ≡
2

N

∑
1≤i<j≤N

ψ̃(ξi, ξj)

and ψ̃ (u, v) ≡
∫
ψ (ξ, u)ψ (ξ, v) F̃ (dξ) . Note that ψ̃ is a symmetric function such that E

[
ψ̃ (ξi, v)

]
= 0

and E[ψ̃ (ξ1, ξ2)
2
] < ∞. Let Ξ denote the support of ξi and L2(Ξ, F̃ ) the space of all square-integrable
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functions on Ξ with respect to F̃ . Define Tψ̃ : L2(Ξ, F̃ )→ L2(Ξ, F̃ ) as Tψ̃φ (u) ≡ E
[
ψ̃(ξ1, u)φ (ξ1)

]
for all

φ ∈ L2(Ξ, F̃ ). Then Tψ̃ is a compact self-adjoint linear operator with eigenvalues {λj} and eigenfunctions

{ϕj} satisfying
∫
ψ̃(u, v)ϕj (v) dF̃ (v) = λjϕj (u) ,

∫
ϕj (v) dF̃ (v) = 0, and

∫
ϕj (v)ϕl (v) dF̃ (v) = δjl,

where δjl = 1 {j = l} . We can represent the kernel ψ̃ as

ψ̃ (u, v) =

∞∑
j=1

λjϕj (u)ϕj (v) for all u, v ∈ Ξ,

where the convergence of the infinite series has to be understood in the L2-sense, that is,

E

[
ψ̃ (ξ1, ξ2)−

L∑
l=1

λlϕl (ξ1)ϕl (ξ2)

]2
→ 0 as L→∞.

This ensures that H̄N can be approximated by H̄(L)
N , which denotes the U -statistic based on the underlying

sample and the kernel ψ̃(L) (ξ1, ξ2) =
∑L
l=1 λlϕl (ξ1)ϕl (ξ2) . Noting that

H̄(L)
N =

L∑
l=1

λL

( 1√
N

N∑
i=1

ϕl (ξi)

)2

− 1

N

N∑
i=1

ϕl (ξi)
2

 ,
its limiting distribution can be obtained by an application of a central limit theorem (CLT) and a law

of large numbers (LLN) to the inner sums: H̄(L)
N

d→
∑∞
l=1 λl

(
Z2
l − 1

)
. See Serfling (1980, pp. 194-

199), Chen and White (1999, Proposition 5.2), and Leucht and Neumann (2011, Theorem 2.1) for more

discussions.

Remark 2. To implement the test, we consistently estimate BNT with

B̂NT ≡ N−2
T −1∑
τ=1

T∑
ς=τ+1

N∑
i=1

N∑
j 6=i

[1{ȲT,τ,j ≤ ȲT,τ,i} − F̂NT,τ (ȲT,τ,i)− 1{ȲT,ς,j ≤ ȲT,ς,i}+ F̂NT,ς(ȲT,ς,i)]
2.

Under Lemma B.1 in the Appendix, it is straightforward to show that B̂NT − BNT = oP (1) . Then we

have

JNT ≡ D̂NT − B̂NT
d→
∞∑
j=1

λj
(
Z2
j − 1

)
under H̃0.

As the limiting distribution depends on nuisance parameters {λj} that in turn depend on the unknown

distributions of Ỹτ,i for τ = 1, 2, ..., T . To obtain the critical values or p-values for our asymptotic test, one

can rely on either a resampling method or the above asymptotic distribution result. Leucht and Neumann

(2011) study both methods for the case where the kernel function ψ̃ is known up to a finite dimensional

parameter. In different but relevant contexts, Escanciano and Jacho-Chávez (2010) propose a numerical

approximation of the critical values of Cramér-von Mises (CvM) tests by estimating eigenvalues for the

associated kernel functions, whereas Chen and Fan (1999) propose to approximate the critical values of

a test by either a conditional Monte-Carlo approach or a bootstrap method. In our case, note that the

kernel function ψ̃ depends on the infinite dimensional parameter F̃ and the test statistic JNT depends

on both the cross section dimension N and the time dimension T. We are not sure how well the finite
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sample distribution of our test statistic can be approximated by its asymptotic distribution for different

combinations of N and T. For this reason, we are in favor of the bootstrap approximation to the finite

sample distribution of our test statistic. We will propose a bootstrap method to obtain the bootstrap

p-values and justify its asymptotic validity.

Note that our JNT test can detect any failure of full identification a.s., whether due to failure of strict

monotonicity, failure of exogeneity, or both. But the test itself does not reveal the source of failure, see

the Introduction for more discussions.

To examine the asymptotic local power of the JNT test, we consider the sequence of Pitman local

alternatives

H̃1 (γN ) : F̃τ (Ỹτ,i)− F̃ς(Ỹς,i) = γNδN,τ,ς(Ỹτ,i, Ỹς,i) for 1 ≤ τ 6= ς ≤ T ,

where γN → 0 as N → ∞ and the δN,τ,ς ’s are continuous functions. The following theorem establishes

the asymptotic local power of the JNT test.

Theorem 2.2 Suppose Assumptions A.0-A.5 hold. Suppose that µ ≡ limN→∞
∑T −1
τ=1

∑T
ς=τ+1E[δN,τ,ς(Ỹτ,i,

Ỹς,i)]
2 <∞. Then under H̃1

(
N−1/2

)
where N−1/2 denotes the rate at which the Pitman local alternatives

converge to zero, JNT
d→
∑∞
j=1 λj (Z2

j − 1) + µ.

Remark 3. Theorem 2.2 shows that the JNT test detects local alternatives converging to the null at rate

N−1/2. Intuitively, the time dimension mainly serves to average out the variation in εit to help recover

the time-invariant unobservable Ai. The power of our test only comes from the variation of pairwise

difference of F̃τ (Ỹτ,i), τ = 1, 2, ..., T . This explains why the rate at which the Pitman local alternatives

converge to zero depends only the cross sectional dimension N.

The next theorem establishes the consistency of the test.

Theorem 2.3 Suppose Assumptions A.0-A.5 hold. Then under H̃1 ≡ H̃1 (1) , N−1JNT = µ + oP (1) ,

where µ ≡
∑T −1
τ=1

∑T
ς=τ+1E[F̃τ (Ỹτ,i) − F̃ς(Ỹς,i)]

2, so that P (JNT > cN ) → 1 under H̃1 for any non-

stochastic sequence cN = o (N) .

Remark 4. Clearly, our JNT test relies heavily on the assumption that T/N →∞ as N →∞. However,

this is just a convenient assumption for ease of asymptotic analysis; we don’t need it to literally hold in

practice. As our simulations below show, the bootstrap version of our test gives good performance in

empirically relevant cases where T can be either smaller or larger than N .

Remark 5. With large T and N , it is possible to propose alternative monotonicity tests for g (x, ·) . One

approach is to obtain a consistent estimator ÂNT,i of Ai for each i under the null and test monotonicity

using nonparametric regression of Yit on (Xit, ÂNT,i). To estimate Ai, let ȲT,i ≡ T−1
∑T
t=1 Yit and

F̂NT (y) ≡ N−1
∑N
j=1 1{ȲT,j ≤ y}. Then ÂNT,i ≡ F̂NT (ȲT,i) is consistent for Ai. We conjecture that one

can extend existing nonparametric tests of regression monotonicity with a scalar observable regressor to

multivariate regression, testing monotonicity in a single (estimated) regressor, ÂNT,i. In particular, the

test of Ghosal et al. (2000) seems promising in this direction, but the asymptotic theory is nonstandard.

Alternatively, with separability, we can consider estimating Mit ≡ gi (Xit) ≡ g (Xit, Ai) by time series
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regression of Yit on Xit for each i. Let M̂it ≡ ĝi (Xit) denote the estimator. It seems feasible to base a

test on the null restriction F (Mit|Xit) = F (Mis|Xis) ∀ t, s = 1, . . . , T, but with M̂it used in place of

Mit in constructing the test statistic. The rate at which such a test is able to detect local alternatives

will certainly depend on N, T, and a properly chosen bandwidth sequence. Deriving the asymptotic

distribution of such a test statistic is challenging and is left for future research.

2.4 A bootstrap version of the test

As remarked earlier, the asymptotic distribution of JNT depends on the sequence of eigenvalues {λj} ,
which is difficult to estimate accurately in practice. Further, our asymptotic theory relies on T/N →∞
as N → ∞, which may appear too strong for some applications. Nevertheless, we can circumvent both

issues using a suitable bootstrap method. Specifically, we propose the following procedure to obtain

bootstrap p-values for the JNT test:

1. For i = 1, ..., N, set ÂNT,i ≡ F̂NT (ȲT,i), where ȲT,i ≡ T−1
∑T
t=1 Yit, and F̂NT (·) ≡ N−1

∑N
i=1 1{ȲT,i

≤ ·}.

2. For i = 1, ..., N and t = 1, ..., T, estimate g(Xit, ÂNT,i) using the local linear regression of Yit

on (Xit, ÂNT,i) and by imposing the monotonicity of g (x, a) in a (details given below). Let

ĝ(Xit, ÂNT,i) denote this estimate. Let ε̂it ≡ Yit − ĝ(Xit, ÂNT,i).

3. For i = 1, ..., N and t = 1, ..., T, randomly draw (ε∗it, X
∗
it) from {(ε̂js, Xjs) , j = 1, ..., N, s = 1, ..., T}

with replacement. Generate Y ∗it according to Y ∗it = ĝ(X∗it, A
∗
i ) + ε∗it, where A∗i ’s are IID U (0, 1) and

are independent of {(ε∗it, X∗it)} .

4. Compute the bootstrap test statistic J∗NT in the same way as JNT using {(X∗it, Y ∗it) , 1 ≤ i ≤ N,

1 ≤ t ≤ T}.

5. Repeat steps 3 and 4 B times to obtain B bootstrap test statistics {J∗NT,j}Bj=1. Calculate the

bootstrap p-values p∗ ≡ B−1
∑B
j=1 1{J∗NT,j ≥ JNT } and reject H̃0 if p∗is smaller than the prescribed

level of significance.

We make several remarks. First, we obtain the estimate ÂNT,i of Ai without using any weight func-

tions. Lemma B.2(i) in the appendix establishes the uniform convergence rate of ÂNT,i to Ai under H̃0.

Second, we generate A∗i independently of (ε∗it, X
∗
it), which ensures the exogeneity condition automatically.

Note also that we do not take into account the potential serial dependence structure of (ε∗it, X
∗
it) along

the time dimension as it does not play any role in the first order asymptotics of our test statistic. By

construction, (A∗i , ε
∗
it, X

∗
it) is IID along the individual dimension for any fixed t. Third, we impose the

null hypothesis of monotonicity in Step 2. There exists a vast literature on the problem of estimating

a monotone regression function. See, e.g., Dette, Neumeyer, and Pilz (2006, DNP) and the references

therein. DNP consider kernel estimation of a monotone regression function that is a function of a sin-

gle variable. Compared to other approaches, theirs has the great advantage of simplicity, as it does

not require constrained optimization; further, it is asymptotically equivalent to the unconstrained kernel
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estimate. Here we modify their procedure to allow another variable (Xit here) to enter the regression

function non-monotonically. This procedure has three steps:

Step 1. Let n be a large integer such that n → ∞ as N → ∞. For i = 1, ..., N, t = 1, ..., T,

and j = 1, ..., n, compute the conventional local linear estimate g̃ (Xit, j/n) of g (Xit, j/n) by using the

product of Gaussian kernels (k) and bandwidth (h = (h1, ..., hd, hd+1)
′
) chosen according to Silverman’s

rule of thumb.

Step 2. For i = 1, ..., N and t = 1, ..., T, obtain the estimate ĝ−1 (Xit, a) = (nb)−1
∑n
j=1

∫ a
−∞

k
(
b−1[g̃ (Xit, j/n)− ã]

)
dã, which estimates the inverse function g−1 (Xit, ·) at a, where the inverse is

taken with respect to the second argument of g for fixed Xit.

Step 3. Compute the estimate ĝ(Xit, ÂNT,i) = inf{a : ĝ−1 (Xit, a) ≥ ÂNT,i}.

Under conditions similar to those of DNP, we can show that ĝ(x, a) is asymptotically equivalent to

g̃(x, a), although only the former is guaranteed to be monotone in its second argument. Lemma B.2(ii)

in the appendix establishes the uniform consistency of ĝ under H̃0.

We also remark that the above bootstrap testing procedure is computationally expensive as one has to

generate the bootstrap observations {Y ∗it} through the constrained estimate ĝ and the latter is obtained

via the unconstrained estimate g̃. To generate each bootstrap sample for {Y ∗it} , g̃ has to be evaluated

at N × T × n points, which can be huge for moderate sizes of N, T, and n. But the advantage is that

we can justify the asymptotic validity of this bootstrap procedure and demonstrate that it delivers very

accurate levels for our test in finite samples for a variety of data generating processes.

To show that the bootstrap statistic J∗NT can be used to approximate the asymptotic null distribution

of JNT , we follow Li et al. (2003), Su and White (2010), and Su and Ullah (2013) and rely on the notion

of convergence in distribution in probability, which generalizes the usual convergence in distribution to

allow for conditional (random) distribution functions. As Li et al. (2003) remark, one can also describe

the weak convergence in probability of the bootstrap test statistic using the dual bounded Lipschitz

metric on probability measures as in Giné and Zinn (1990, Section 3), but their definition is easier to

understand. The following theorem establishes the asymptotic validity of the above bootstrap procedure.

Theorem 2.4 Suppose Assumptions A.0-A5 hold. Suppose that either the support of Xit or the supports

of wτ , τ = 1, 2, ..., τ are compact. Suppose that N−1/2
√

logN = o (hd+1) , b/hd+1 → 0, and nb → ∞
as N → ∞. Then under H̃0, J

∗
NT

d∗→
∑∞
j=1 λj(Z2

j − 1) where d∗ denotes convergence in distribution in

probability, {Zj} and {λj} are as defined in Assumption A.4.

Theorem 2.4 shows that the bootstrap provides an asymptotic valid approximation to the limit null

distribution of JNT . Because we only establish the consistency of ĝ under the null, we need to impose the

null hypothesis here. Similarly, Li et al. (2003) also imposes the null hypothesis in order to study their

bootstrap validity. We conjecture that under the local alternatives, our bootstrap statistic also converges

to
∑∞
j=1 λj(Z2

j − 1) in distribution in probability, but the proof will become much more involved. Under

the global alternative, it is hard to study the asymptotic distribution of J∗NT . But one can show that

J∗NT is bounded in probability whereas JNT is divergent to infinity. Consequently, our bootstrap test has

power to detect all global alternatives.
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2.5 Extensions and alternative specifications

In this subsection we discuss another two models. One is a special case of the model in (2.1) and the

other extends the model in (2.1) from a partially nonseparable structure to a fully nonseparable structure.

Again, for succinctness in notation, we continue to suppress the i subscript.

2.5.1 Panel structure without time-varying unobservables

If εt is absent from (2.1), we obtain the following model without the time-varying unobservable

Yt = g(Xt, A), t = 1, ..., T. (2.6)

In this case, using the notation in 2.1, Mt = Yt and (2.2) becomes

H0 : F (Yt | Xt) = A a.s. for all t = 1, 2, ..., T. (2.7)

When exogeneity or scalar monotonicity a.s. fails, we generally have

P [Ft(Yt | Xt) = Fs(Ys | Xs)] < 1 for some t 6= s. (2.8)

Here, Ft( · | x) denote the conditional CDF of Yt given Xt = x and it is time-invariant under the null

and thus can be rewritten as F ( · | x).

In section 2.1, due to the presence of εt, Mt is not observable and one has to average out the time-

variation in εt in order to recover the time-invariant attribute A. For that reason, we need T → ∞
sufficiently fast as N → ∞. In stark contrast, here we directly observe Yt and can construct a test

statistic for (2.7) based on suitable estimates of Ft for T as small as 2.

Testing the null hypothesis (2.7) is similar to testing the equality of two regressions in the case of

T = 2, i.e., H∗0 : r1 (Z1) = r2 (Z2) a.s., where rt (Zt) = E [Yt | Zt] for some dependent variable Yt and

conditioning variables Zt. A natural test statistic for this is Dn =
∑n
i=1[r̂1(Zi1) − r̂2(Zi2)]2, where for

t = 1, 2, r̂t(Zit) is a nonparametric estimate of rt (Zit) based on observations {Yit,Zit}ni=1 . If Z1 is a

subvector of Z2, one has a statistic similar to that of Aı̈t-Sahalia et al. (2001) for testing nonparametric

significance. Alternatively, let Uit = Yit − rt (Zit) . Then testing H∗0 can also be regarded as testing for

poolability of panel data as studied in Lavergne (2001): rt (Zit) = r (Zit) a.s. for some function r (·) and

for t = 1, 2. Let εit = Yit − r (Zit) denote the restricted error term. As in Lavergne and Vuong (2000),

Lavergne’s test statistic builds on the observation that E [εitE [εit | Zit] a (Zit)] is zero under the null and

strictly positive under the alternative for some nonnegative weight function a (·) . Here, we adopt the first

approach and measure the departure of Ft(Yt | Xt) from Fs(Ys | Xs) using

DNT ≡
T−1∑
t=1

T∑
s=t+1

N∑
i=1

(F̂Nt(Yit | Xit)− F̂Ns(Yis | Xis))
2.

where F̂Nt’s are suitable estimates of Ft.

In the early version of the paper, we proposed to obtain the estimates F̂Nt’s by using the method

of local polynomial regression. Under a set of regularity conditions, we showed that after appropriate
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normalization, DNT is asymptotically normally distributed under the null hypothesis and a sequence of

Pitman local alternatives. We also established the consistency of the test. To save space, we do not

report the results here.

2.5.2 Fully Nonseparable Structures

We now consider a fully nonseparable structure of the form

Yt = g(Xt, εt, A), t = 1, 2, ...

This structure has been analyzed by Hoderlein and White (2012) under exogeneity assumptions alterna-

tive to the strict exogeneity considered here and without imposing monotonicity in unobservables. We

first discuss specification testing; we then briefly provide further discussion of identification.

The key step in treating this case is to view (Xt, εt) here as corresponding to Xt in the partially

nonseparable case. Thus, we impose the exogeneity condition (Xt, εt) ⊥ A, and the monotonicity condi-

tion becomes that g(x, e, ·) is strictly monotone. The only difference is that because εt is unobservable,

we cannot directly construct weights using εt; instead, the weights are functions only of Xt. As above,

let {Xt, εt} be ID, and let non-negative weight functions wτ , τ = 1, ..., T , be defined on X , such that

E[wτ (Xt)] = 1. Let Ỹτ = Ỹτt ≡ E[Yt wτ (Xt) | A]. Then for

Ỹτ = E[g(Xt, εt, A) wτ (Xt) | A] =

∫
g(x, e,A) wτ (x) dF (x, e) ≡ ḡτ (A),

where τ = 1, ..., T , and the second equality in each line holds given (Xt, εt) ⊥ A.
The development of the previous section applies immediately, with the obvious modifications, so that

F̃τ (Ỹτ ) = A for all τ = 1, ..., T given strict monotonicity. Thus, we again test

H̃0 : F̃τ (Ỹτ ) = F̃ς(Ỹς) for all (τ, ς) with τ 6= ς.

The statistics and tests are identical. Propositions A.3 and A.4 apply with (Xt, εt) replacing Xt, so we

do not repeat our previous discussion. The only real difference from the partially separable case is that

here the test may lack power against certain alternatives that can only be revealed by using weights

that depend on εt. The bootstrap method in Section 2.4 also works here provided (Xt, εt) ⊥ A. To see

why, letting ḡ (Xt, A) ≡ E (Yt|Xt, A) = E [g(Xt, εt, A)|Xt, A] , we can write Yt = ḡ (Xt, A) + εt, where

εt ≡ Yt − ḡ (Xt, A) and ḡ (x, ·) is monotone for all x provided g(x, ε, ·) is monotone for all (x, ε) . This

ensures that we can generate the bootstrap analog of Yt using estimates of ḡ for the fully nonseparable

case.

To close this subsection, we briefly discuss identification. If indeed g(x, e, ·) is strictly monotone

and (Xt, εt) ⊥ A, then, as we have just seen, A is identified as, e.g., A = F̃ (Ỹ ), with Ỹ = Ỹt ≡
E(Yt | A) and F̃ the CDF of Ỹ . Thus, A can be consistently estimated when T → ∞; in this sense, A

is known asymptotically. One can then identify g using the results of Appendix A, treating Xt and A as

the observables, with εt the sole scalar unobservable. Specifically, with g(x, ·, a) strictly monotone and

(Xt, A) ⊥ εt, Proposition A.1 identifies g(x, ·, a) and e. These identifications may be useful for testing

whether or not the structural function is partially nonseparable. Further, they may be helpful in refining
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estimation for the partially nonseparable case treated by E. As these topics are well beyond the scope of

the present study, we leave them for future research.

3 Monte Carlo simulations

In this section we conduct Monte Carlo experiments to evaluate the finite sample performance of our tests.

We consider both the partially and fully nonseparable cases in the presence of time-varying unobservables.

3.1 Data generating processes

We first consider the following six data generating processes (DGPs):

DGP 1. Yit = 1 +Xit +Ai + εit,

DGP 2. Yit = 1 +Xit,1 −X2
it,2 +Ai + εit,

DGP 3. Yit = 1 +Xit,1 −X2
it,2 +Ai +

√
0.1 + 0.2X2

it,1 + 0.2X2
it,2εit,

DGP 4. Yit = 1 +Xit + (1 + δXit)Ai + εit,

DGP 5. Yit = 1 + (1 + δAi)Xit,1 − (1 + δAi)X
2
it,2 +Ai + εit,

DGP 6. Yit = 1 + (1 + δAi)Xit,1 − (1 + δAi)X
2
it,2 +Ai +

√
0.1 + 0.2X2

it,1 + 0.2X2
it,2εit,

where i = 1, ..., N, t = 1, ..., T, Ai is IID U (0, 1) , Xit is IID N (0, 1) and independent of Aj for each

i, j, t in DGPs 1 and 4 and similarly for X1it and X2it in DGPs 2-3 and 5-6 where X1it and X2it are also

mutually independent, εit is IID N (0, 1) across both i and t in DGPs 1 and 4, and an AR(1) process

(εit = 0.5εit−1 + εit) in DGPs 2-3 and 5-6 where εit is IID N (0, 1) across both i and t. In addition, εit

is independent of (Xjs, Aj) DGPs 1 and 4 and (X1js, X2js, Aj) in DGPs 2-3 and 5-6) for all i, t, j, s. For

DGPs 2-3 and 5-6, we write Xit = (Xit,1, Xit,2)′.

We make several remarks on the DGPs. First, we use δ to control the degree of violation of mono-

tonicity in Ai in DGPs 4-6. When δ = 0, these DGPs reduce to DGPs 1-3, respectively. In the simulation

below we simply set δ = 1 in these DGPs where the non-monotoncity of the structural function in Ai

is introduced mainly through the interaction between Ai and Xit (or functions of Xit). Apparently, we

use DGPs 1-3 and 4-6 to study the finite sample level and power properties of our test, respectively.

Second, the structures in DGPs 1, 2, 4, and 5 are partially nonseparable so that it is possible to write

Yit = g (Xit, Ai) + εit for some measurable function g, whereas those in DGPs 3 and 6 are fully non-

separable: Yit = g (Xit, εit, Ai). Third, Xit in DGPs 1 and 4 contain only one regressor whereas Xit

in DGPs 2-3 and 5-6 contain two regressors. Fourth, DGPs 1-3 specify linear or nonlinear models with

homoskedastic or conditional heteroskedastic errors that are typically used in practice. DGPs 2 and 4

allow for serial correlation in the time varying unobservable (error term), whereas DGPs 3 and 6 allow

for both serial correlation and conditional heteroskedasticity.

To examine whether our test has power against endogeneity, we consider the following two DGPs:

DGP 7. Yit = 1 +Xit +Ai + εit,

DGP 8. Yit = 1 +Xit + (1 +Xit)Ai +
√

0.1 + 0.5X2
itεit,

where for i = 1, ..., N, t = 1, ..., T, εit is generated as in DGP 2, Ai is IID U (0, 1) , Xit = −A2
i + 0.5ηit,

and ηit is IID N (0, 1) and mutually independent of Ai and εit. Apparently, exogeneity is not satisfied in
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DGP 7 and neither exogeneity nor monotonicity is satisfied in DGP 8.

3.2 Implementation

To construct our test statistic, we need to choose the weight functions wτ (·), τ = 1, 2, ..., T . When the

dimension d of Xit is one, we generate wτ simply by evenly partitioning the support X of Xit into T
parts. Specifically, for fixed T , let q̃0 = −∞ and q̃T =∞, and let q̃τ denote the sample τ/T -quantile of

{Xit, 1 ≤ i ≤ N, 1 ≤ t ≤ T} for 1 ≤ τ ≤ T − 1.2 Then let

wτ (Xit) = 1 {q̃τ−1 ≤ Xit ≤ q̃τ} , τ = 1, 2, ..., T .

Under Assumption A.2(i) we can show that the sample quantiles estimate their population analog at the

rate (NT )
−1/2

, so this estimation error plays an asymptotically negligible role in our analysis. When d >

1, there are various flexible ways to define the weight function. In this paper, we perform the weighting as

follows: we first calculate (Xit,k−X̄k)2 for the k-th regressor where X̄k denote the sample mean of {Xit,k}
for k = 1, 2, ..., d, then sum them over k to get a one dimensional object

∑d
k=1(Xit,k−X̄k)2; then we use the

equal-quantile-partition weights based on this sum. The idea is to ensure ȲT,τ,i ≡ T−1
∑T
t=1 Yitwτ (Xit)

has roughly equal number of effective observations across τ.

To conduct the bootstrap test, we need to choose the kernel function, the bandwidth sequence h =

(h1, ..., hd, hd+1)′, tuning parameters b and n. To obtain g̃ and its monotone version ĝ, we choose the

kernel function as the product Gaussian kernel, and the bandwidth sequences according to Silverman’s

rule of thumb, namely, hl = 1.06sln
−1/((d+1)+4), where sl denotes the sample standard deviation of Xit,l

for l = 1, ..., d, and sd+1 is the sample standard deviation of the estimated regressor ÂNT,i. For b and n,

we follow DNP and set b = h2d+1 and n = 40 to save computation time. Our simulation indicates that

our test is robust to the choice of n. For example, n = 25 ∼ 100 yields similar level and power properties.

Below we consider eight combinations of (N,T ) by setting N, T = 20, 40, and 60. To see whether our

test is robust to the choice of T , we consider five values for T , namely, 2, 4, 6, 8, and 10. For each case

we use 250 replications and consider 200 bootstrap resamples in each replication.

3.3 Test results

Tables 1-2 report the empirical rejection frequencies for the bootstrap-based JNT test at the 5% and

10% nominal levels for DGPs 1-3 and 4-8, respectively. Table 1 reports the level properties of our test

for strict monotonicity when the exogeneity condition is satisfied. Table 2 reports the power of our test

against non-monotonicity when the exogeneity condition is satisfied in DGPs 4-6, against endogeneity

when monotonicity is satisfied in DGP 7, or against both endogeneity and non-monotonicity in DGP 8.

We summarize some important findings from Tables 1-2. First, the choice of T has some impact

on both the level and power of our test but the pattern is not clear. For example, in terms of level,

2This specification creates no problem for the justification of the bootstrap asymptotic validity when Xit has compact

support. If Xit has infinite support, in theory we need q̃0 = c1NT and q̃T = c2NT so that c1NT and c2NT are either

bounded or pass to the negative and positive infinity, respectively, at a slow rate. In the simulations and applications, we

simply set q̃0 = −∞ and q̃T =∞.
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Table 1: Finite sample rejection frequency for DGPs 1-3

DGP N T 5% test 10% test

T =2 T =4 T =6 T =8 T =10 T =2 T =4 T =6 T =8 T =10
1 20 20 0.048 0.056 0.060 0.048 0.056 0.120 0.132 0.164 0.124 0.124

20 40 0.040 0.032 0.032 0.052 0.056 0.072 0.096 0.104 0.132 0.100

20 60 0.020 0.020 0.024 0.016 0.028 0.044 0.028 0.044 0.048 0.044

40 20 0.040 0.028 0.028 0.028 0.028 0.100 0.076 0.064 0.076 0.072

40 40 0.036 0.028 0.036 0.028 0.032 0.048 0.048 0.064 0.052 0.052

40 60 0.024 0.016 0.032 0.024 0.024 0.032 0.040 0.056 0.040 0.032

60 20 0.028 0.032 0.028 0.036 0.032 0.084 0.092 0.104 0.076 0.120

60 40 0.032 0.028 0.032 0.036 0.036 0.076 0.036 0.040 0.044 0.068

2 20 20 0.024 0.028 0.044 0.060 0.084 0.052 0.084 0.108 0.144 0.120

20 40 0.012 0.024 0.036 0.064 0.088 0.040 0.056 0.092 0.124 0.152

20 60 0.028 0.072 0.076 0.084 0.076 0.088 0.104 0.144 0.144 0.152

40 20 0.044 0.048 0.060 0.060 0.076 0.076 0.100 0.104 0.120 0.124

40 40 0.024 0.020 0.040 0.060 0.072 0.060 0.052 0.092 0.120 0.136

40 60 0.012 0.024 0.044 0.064 0.072 0.040 0.068 0.096 0.144 0.152

60 20 0.028 0.036 0.028 0.024 0.048 0.060 0.048 0.060 0.100 0.108

60 40 0.016 0.016 0.052 0.048 0.076 0.048 0.044 0.088 0.120 0.116

3 20 20 0.008 0.020 0.040 0.048 0.064 0.040 0.068 0.088 0.104 0.108

20 40 0.012 0.024 0.032 0.056 0.060 0.048 0.080 0.068 0.124 0.128

20 60 0.024 0.068 0.068 0.076 0.068 0.092 0.112 0.140 0.144 0.152

40 20 0.020 0.044 0.052 0.056 0.060 0.060 0.068 0.080 0.092 0.124

40 40 0.020 0.012 0.024 0.040 0.048 0.036 0.056 0.068 0.084 0.116

40 60 0.012 0.032 0.068 0.080 0.076 0.036 0.060 0.100 0.152 0.148

60 20 0.016 0.032 0.012 0.016 0.036 0.036 0.052 0.044 0.064 0.072

60 40 0.020 0.016 0.036 0.040 0.048 0.036 0.060 0.072 0.080 0.096
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Table 2: Finite sample rejection frequency for DGPs 4-8

DGP N T 5% test 10% test

T =2 T =4 T =6 T =8 T =10 T =2 T =4 T =6 T =8 T =10
4 20 20 0.192 0.228 0.100 0.064 0.028 0.276 0.368 0.220 0.116 0.064

20 40 0.228 0.388 0.336 0.136 0.084 0.368 0.568 0.500 0.304 0.184

20 60 0.312 0.604 0.584 0.524 0.336 0.452 0.764 0.728 0.640 0.532

40 20 0.240 0.284 0.144 0.068 0.020 0.376 0.428 0.244 0.136 0.064

40 40 0.408 0.700 0.544 0.380 0.220 0.564 0.804 0.704 0.544 0.332

40 60 0.568 0.908 0.888 0.832 0.700 0.736 0.964 0.960 0.920 0.840

60 20 0.304 0.424 0.216 0.060 0.024 0.460 0.552 0.340 0.168 0.072

60 40 0.548 0.844 0.736 0.556 0.360 0.688 0.920 0.840 0.700 0.534

5 20 20 0.096 0.096 0.072 0.084 0.088 0.208 0.176 0.124 0.164 0.152

20 40 0.184 0.148 0.172 0.172 0.152 0.304 0.252 0.276 0.288 0.268

20 60 0.324 0.312 0.236 0.180 0.156 0.472 0.428 0.392 0.332 0.292

40 20 0.108 0.112 0.096 0.100 0.092 0.232 0.208 0.168 0.192 0.180

40 40 0.228 0.244 0.200 0.168 0.156 0.388 0.392 0.320 0.296 0.256

40 60 0.432 0.372 0.312 0.260 0.208 0.596 0.556 0.452 0.368 0.324

60 20 0.140 0.080 0.080 0.100 0.108 0.220 0.192 0.152 0.176 0.164

60 40 0.300 0.308 0.268 0.192 0.192 0.460 0.444 0.400 0.316 0.284

6 20 20 0.112 0.120 0.140 0.104 0.104 0.252 0.220 0.208 0.200 0.156

20 40 0.252 0.276 0.248 0.252 0.192 0.360 0.400 0.364 0.360 0.344

20 60 0.456 0.480 0.356 0.284 0.228 0.580 0.604 0.532 0.484 0.404

40 20 0.156 0.188 0.112 0.128 0.120 0.260 0.284 0.204 0.232 0.184

40 40 0.300 0.424 0.312 0.252 0.232 0.476 0.620 0.488 0.424 0.336

40 60 0.568 0.680 0.600 0.488 0.336 0.728 0.832 0.728 0.640 0.480

60 20 0.172 0.184 0.136 0.124 0.096 0.288 0.288 0.236 0.204 0.180

60 40 0.416 0.496 0.464 0.336 0.264 0.544 0.656 0.648 0.488 0.432

7 20 20 0.052 0.348 0.632 0.748 0.816 0.092 0.476 0.752 0.880 0.904

20 40 0.016 0.248 0.452 0.688 0.776 0.080 0.348 0.608 0.780 0.888

20 60 0.012 0.180 0.478 0.660 0.786 0.036 0.306 0.618 0.778 0.876

40 20 0.060 0.584 0.876 0.936 0.964 0.140 0.744 0.936 0.968 0.992

40 40 0.024 0.400 0.804 0.936 0.976 0.060 0.596 0.872 0.968 0.984

40 60 0.024 0.240 0.704 0.904 0.952 0.024 0.368 0.816 0.960 0.984

60 20 0.120 0.732 0.956 0.992 0.996 0.224 0.840 0.988 1.000 1.000

60 40 0.032 0.416 0.856 0.968 0.992 0.064 0.544 0.920 0.976 0.992

8 20 20 0.132 0.232 0.368 0.528 0.556 0.208 0.348 0.496 0.660 0.692

20 40 0.496 0.592 0.680 0.736 0.816 0.588 0.712 0.772 0.824 0.876

20 60 0.628 0.820 0.884 0.912 0.940 0.756 0.892 0.924 0.944 0.984

40 20 0.196 0.300 0.584 0.684 0.752 0.276 0.404 0.664 0.800 0.868

40 40 0.640 0.776 0.840 0.900 0.924 0.704 0.820 0.912 0.924 0.952

40 60 0.884 0.936 0.988 0.988 0.996 0.924 0.964 0.996 0.996 0.996

60 20 0.236 0.324 0.628 0.860 0.904 0.328 0.440 0.716 0.908 0.948

60 40 0.756 0.844 0.928 0.968 0.976 0.832 0.880 0.972 0.980 0.988
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we find that a small value of T (e.g., T = 2) tends to yield a moderately undersized test whereas a

large value of T (e.g., T = 10) tends to result in a slightly oversized test for some DGPs (e.g., DGP

2). In terms of power, for DGP 4 an intermediate value of T (e.g., T = 4, 6) tends to yield greater

power than a large or small value of T , whereas in DGPs 7-8 a large value of T would deliver a greater

power than a small value of T . Secondly, overally speaking, the level of our test is satisfactory despite

the undersized issue for some DGPs and some choices of T . In particular, for DGP 1 the test tends

to be moderately undersized for a variety of choices of T when T is large, giving a conservative test.

Third, our test has power against non-monotoncity alone, endogeneity alone, or both non-monotonicity

and endogeneity. The power usually increases as either N or T increases; exception occurs when only

endogeneity is present in DGP 7. Fourth, noticeably our test tends to have a larger power in DGPs 7-8

when exogeneity is violated or both exogeneity and monotonicity is violated and than in DGPs 4-6 when

only monotonicity is violated. Nevertheless, we have to admit that this is not necessarily the general

phenomenon as the power of our test fully depends on the degree of violation of either monotonicity, or

exogeneity, or both, and there does not exist any metric to measure the degree of violation for either

monotonicity or exogeneity.

4 Two applications

In this section we apply the methods to put forward here to two applications, one from finance and one

from consumer demand. They are meant to illustrate the power of our test to detect model deviations

from exogeneity and scalar monotonicity. We have selected these two examples, because they are in a

sense polar cases: In the finance literature, since Fama and French’s (1993) seminal contribution, the

emphasis is on reduced form explanation. Exogeneity is taken as given; our test hence examines whether

there is a single firm-specific “fourth factor” that impacts the firm’s valuation. Commonly, such a factor

would be associated with the firms’s quality or reputation. Maintaining the assumption of exogeneity,

our test becomes a test of scalar monotonicity.

In contrast, in consumer demand, the models are more structural, and exogeneity is viewed as implau-

sible. Nevertheless, since the seminal work of Berry et al. (1995), monotonicity in a scalar unobservable

is commonly assumed. Typically, the unobservable is an unobserved product characteristic, most often

associated with quality. A recent reference that discusses nonparametric identification with scalar mono-

tonicity is Berry and Haile (2010). Maintaining scalar monotonicity, our test becomes a test of exogeneity

of the own price, otherwise we interpret it as a joint specification test for both hypotheses.

4.1 An application from finance

A major advance in understanding asset return behavior is the Fama and French (1993, FF) factor model

of asset returns, which can be written

Yit = αi + β′iXt + ηit, (4.1)

where Yit is the excess return of asset i in period t (net returns minus the T-Bill return); Xt =

(RMRFt, SMBt, HMLt)
′ is a vector of returns factors, where RMRFt is the period t excess return
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on a value-weighted aggregate market proxy portfolio, and SMBt and HMLt are period t returns on

value-weighted, zero-investment factor-mimicking portfolios for size and book-to-market equity, respec-

tively, ηit is an exogenous shock, αi is the asset’s idiosyncratic return (“alpha”), and the elements of βi

are risk premia associated with the corresponding risk factors. In the original Fama and French (1993)

framework, small and high book-to-market equity are compensations for higher risk. In this paper, we

follow Daniel and Titman (1997), and merely take these factors as primitives.

An extension of this model permits time-varying risk premia, βit :

Yit = αi + β′itXt + ηit. (4.2)

See, for example, Harvey (1989), Ferson and Harvey (1991, 1993), Jagannathan and Wang (1996), and

Ghysels (1998) for discussion of the importance of time-varying risk premia. Here, we apply our mono-

tonicity test to stock returns following a nonparametric version of the time-varying Fama-French model,

Yit = g(Xt, εit, Ai), (4.3)

where εit corresponds to (ηit, β
′
it)
′ and Ai corresponds to αi. Our theory allows, but does not require,

Xt to also vary with i. The exogeneity condition is that (Xt, εit) ⊥ Ai. This is plausible if we think of

Ai (⇔ αi) as a persistent attribute specific to firm i, say, its firm culture, while market factors Xt are

unrelated to the firm’s attributes, and we view εit (⇔ (ηit, β
′
it)) as transitory shocks like changes in firm

management and in investor risk preferences that drive risk premia. The other regularity conditions of

our theory also plausibly apply to the stock returns data we describe below, so we interpret our test as

a test for strict monotonicity in Ai.

Although the monotonicity property is straightforward, it is important to understand the possible

reasons for rejection in the present context. One possibility is that a single Ai interacts with shocks,

risk factors, and risk preferences determining risk premia in possibly complicated ways. Another is that

there are multiple firm-specific factors influencing asset returns. If either possibility holds, then eq.(4.2)

is not a correct description of the data generating process, so that linear FF models with time-varying

risk premia are misspecified, and there is no single persistent factor that captures the firm’s attributes in

a way that allows attaching a single permanent quality factor to their returns.

4.1.1 Data

Our factor data come from French’s webpage3 and are merged with data from Yahoo! finance. We

obtained weekly stock price data for N = 50 companies randomly chosen from the S&P 500; a list of the

firms analyzed is available upon request. We limit ourselves to fifty firms to ensure that T > N , while

keeping computation costs manageable.

The data span a period of T = 610 weeks between 7/17/1998 and 3/26/2010. Note that when querying

Yahoo’s “weekly” data, the listed date is for the beginning of the trading week (usually a Monday), but

3We obtained weekly Fama-French factor data from Ken French’s website: http://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data library.html. The precise definitions of the factors can also be found here:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html
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Table 3: Summary statistics for the financial return data

Variables Min Max Mean Median Std dev IQR Skew Kurt

Subperiod 1 (N = 50, T = 472)

Firm’s excess rate of return (Y ) -80.773 241.538 0.260 0.155 5.909 5.288 3.188 129.208

Excess market return (RMRF ) -13.740 9.180 0.056 0.160 2.444 2.775 -0.549 6.552

Small minus big (SMB) -9.330 6.430 0.083 0.120 1.553 1.705 -0.585 8.743

High minus low (HML) -6.830 9.700 0.110 0.140 1.512 1.500 0.525 7.897

Subperiod 2 (N = 50, T = 138)

Firm’s excess rate of return (Y ) -48.407 110.506 0.219 0.057 7.201 6.568 0.752 16.833

Excess market return (RMRF ) -18.400 13.020 -0.030 0.040 3.895 4.170 -0.447 6.941

Small minus big (SMB) -3.400 3.680 0.095 -0.040 1.331 1.620 0.056 3.128

High minus low (HML) -6.850 7.630 0.036 -0.145 2.051 1.700 0.253 5.670

Note: All data are weekly, not annualized.

the reported price is that week’s closing price (usually a Friday). The data from French’s webpage reports

a week’s last trading day’s data, and labels that observation with the date of that week’s last trading day.

To ameliorate the problem of structural change due to the financial crisis of 2007–2008, we divide the

whole period into two subperiods: 7/17/1998 - 8/7/2007 and 8/13/1997-3/26/2010. We choose August

7, 2007 as the separating point because the active phase of the crisis, which manifested as a liquidity

crisis, can be dated from August 7, 2007, when BNP Paribas terminated withdrawals from three hedge

funds citing “a complete evaporation of liquidity”.

For each firm i in each subperiod, we calculate the returns in period t as Yit = [(Pit/Pi,t−1)−1]−RFt,
where Pit is the closing price (adjusted for splits and dividends) and RFt is the risk free return, also

obtained from French’s webpage. Table 3 reports some summary statistics on the dependent variable

(Yit) and three factors RMRFt, SMBt, and HMLt. Apparently the returns and factors behave quite

differently over the two subperiods.

4.1.2 Test results

To apply our test procedure to the data described above, we follow the exact implementation procedure

detailed in Section 3.2. The test statistic is computed just as in the simulations, following exactly the

same steps there.

The results are summarized in Table 4. In all instances, we soundly reject the strict monotonicity

hypothesis at 1% level. This implies that there is no single persistent factor that captures firm differences

in a way that corresponds to alpha. This calls into question the linear time-varying FF model and

suggests that additional effort might be profitably directed toward gaining a better understanding of the

relation between firms’ stock returns, firm characteristics, market factors, and investor risk preferences.

This also resolves a puzzle: why do countless studies find statistically significant non-zero alphas if the

market is in fact efficient? These results suggest a compelling reason: the linear FF model, even with

time-varying risk premia, is not an accurate description of the underlying risks of a stock, including firm

specific effects. Our procedure permits a more stringent test of this aspect of market efficiency.

Note, however, that even with the failure of monotonicity, useful information about risk premia may

21



Table 4: p-values for monotonicity test - asset returns

Bootstrap replications Subperiod N T p-values
T = 2 T = 4 T = 6 T = 8 T = 10

500 1 50 472 0.002 < 0.002 < 0.002 < 0.002 < 0.002
500 2 50 138 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002

still be recovered from nonparametric specifications of the sort used here. Although monotonicity failure

rules out identifying alpha, the further exogeneity condition Xt ⊥ (Ai, εit) permits recovery of expected

risk premia, such as E[Dkg(x, εit, Ai)], where Dk ≡ ∂/∂xk, even in the absence of strict monotonicity, as

implied by results of AM. Certain quantile effects may also be of interest; these are identified by results

of Hoderlein and Mammen (2007).

4.2 An application from consumer demand

In contrast to finance, in consumer demand exogeneity is a frequently criticized assumption, for instance

due to simultaneity (the firms base their price-setting behavior on expected demand, but demand depends

on prices), or due to omitted characteristics of the product. However, it is often argued that this endo-

geneity is due to a product-specific factor that may in fact enter monotonically (Berry, Levinsohn, Pakes

(1992); Berry and Haile (2010)). Hence, for the rest of this section, we maintain the assumption that

exogeneity is as least as questionable as scalar monotonicity. In what follows, we look at five individual

goods. For the purpose of testing, we ignore the additional restriction that they form a demand system,

and always look at the binary decision to buy or not to buy a good, assuming separability in the utility of

this choice from all other goods. This assumption ensures that the nonparametric aggregate relationship

retains the monotonicity in unobservables, if the original binary decision had a monotonically (in applied

work typically additive) unobserved factor. Note that our general nonseparable approach is ideally suited

to this problem: as we are considering an aggregate consumption relationship, we face, in general, a

highly nonlinear relationship, even if we assume linearity of the individual binary decisions within the

indicator.

4.2.1 Data

The data are supermarket scanner data collected by Information Resources, Inc. (IRI). The scanner data

consist of variables measuring price, quantity, and promotional variables for the full range of available

RTE cereal products on a weekly basis, for three years beginning January 2005 and ending December 2007,

so that T = 156. To reduce computational burden, we pick T = 50, which roughly corresponds to 2005,

but have obtained the same results for different time periods. The data have a panel structure, where

the cross-section dimension is a particular supermarket retail chain operating in a particular geographic

market. For example, San Diego is represented by three major chains; these are three distinct cross-

section units. The cross-section dimension is N = 50 supermarket-city pairs. We analyze the top-selling

product for each of the five manufacturers.
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Table 5: p-values for endogeneity test - RTE cereal

Product N T p-values
T = 2 T = 4 T = 6 T = 8 T = 10

G MILLS CHEERIOS 15OZ 50 50 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002
KELLOGG FROSTED FLAKES 20OZ 50 50 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002
POST HNY BNCHS OATS REG 16OZ 50 50 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002
QUAKER LIFE REGULAR 21OZ 50 50 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002
STR BDS RAISIN BRAN 20OZ 50 50 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002

Although there are some differences, IRI’s definition of a geographic market is roughly equivalent

to the Census Bureau’s metropolitan statistical area (MSA) or combined metropolitan statistical area

(CMSA). This is convenient for merging income or demographics data with the scanner data. Here, we

merge income data from the Bureau of Labor Statistics (BLS). Specifically, we obtain average weekly

wage data for each geographic market from the BLS’s Quarterly Census of Employment and Wages

(QCEW) database. Wage data are collected quarterly, so although the scanner data contains data at a

weekly frequency, the QCEW wage data is only updated quarterly. Although we could merge additional

demographic information from the Census Bureau, due to the nonparametric setup, we focus only on

those explanatory variables that have the strongest impact in Megerdichian’s (2009) parametric study.

4.2.2 Results

In implementing the test, we have applied specifications nearly identical to those of the finance application.

The dependent variable is quantity-weighted market share and the explanatory variables are: own price;

promotions (an intensity index ranging between zero and one); and weekly wage. See Megerdichian (2009)

for details about the data and construction of variables. Table 5 gives the test results using 500 bootstrap

replications:

As is obvious from these results, exogeneity is widely rejected. For all products the p-values are

virtually zero. Note again that the results are always for the binary buy - don’t buy decision, where

the structural relation retains monotonicity, if it is was present in the individual level specification, as

is commonly assumed. We can safely conclude that the current exogenous monotonic specification is

rejected. If we follow the IO literature, we conclude that endogeneity is indeed the issue the demand and

IO literatures believe it to be. However, it may well be that there monotonicity in a scalar unobservable

is questionable. The results do not change in any appreciable way if we include price of the closest

neighbor in product characteristic space and the quantity-weighted average price of all 150 cereals as

additional regressors. In summary, our test statistic illustrates that a simple, exogenous demand model

with monotonicity in a scalar unobservable is not a good description of actual behavior, because it does

not properly address confounding effects and the simultaneity structure typical in this literature.

23



5 Conclusion

Monotonicity in a scalar unobservable is a crucial identifying assumption for an important class of non-

parametric structural specifications accommodating unobserved heterogeneity. Tests for this monotonic-

ity have previously been unavailable. Here we propose and analyze tests for scalar monotonicity using

panel data for structures with time-varying unobservables, either partially or fully nonseparable between

observables and unobservables. Our nonparametric tests are computationally straightforward, have well

behaved limiting distributions under the null, are consistent against relevant and precisely specified al-

ternatives, and have standard local power properties. We provide straightforward bootstrap methods for

inference. Monte Carlo experiments show that these reasonably control the level of the test, and that our

tests have useful power. We apply our tests to study asset returns and demand for ready-to-eat cereals.

For clarity, and to maintain a manageable scope for the present analysis, we focus throughout on

the strictly exogenous case. Allowing endogeneity (e.g., dependence between Xt and A) is an important

extension, as this supports a wider scope for specification testing. In a companion paper (Hoderlein et al.

(2012)), we allow endogeneity by imposing a conditional form of exogeneity, where, e.g., Xt is independent

of A, given control variables, Zt (Xt ⊥ A | Zt). The analysis of this case is rather more involved. In

addition, we abstract from panel dynamics. It is interesting is to examine whether and how tests for scalar

monotonicity can be conducted in dynamic panel structures. Finally, there is a considerable variety of

opportunities for applying these tests and their further extensions.
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Mathematical Appendix

A Representation and Identification with Scalar Unobservables

Here, we review and extend available results on representation with scalar unobservables, providing

suitable foundations for our tests. We begin with a version of an identification result of AM, their

theorem 4.1, for the strictly exogenous case. We let U[0, 1] denote the uniform distribution on I ≡ [0, 1] .

Proposition A.1 Let X be a random d× 1 vector, let A be a random scalar distributed as U[0, 1], and

suppose that X ⊥ A. Let g : Rd × I → R be a measurable function, and suppose that Y = g(X,A). Let

F (y | x) ≡ P [Y ≤ y | X = x]. Then for given x ∈ X ≡ supp(X),

F (y | x) = g−1(x, y) for all y ∈ Y ≡ supp(Y ) (A.1)

if and only if g(x, ·) is strictly increasing.

Proof. For all (x, y) ∈ X × Y, we have

F (y | x) ≡ P [Y ≤ y | X = x] = P [g(X,A) ≤ y | X = x]

= P [g(x,A) ≤ y] =

∫ 1

0

1{g(x, a) ≤ y} da

= λ{g−1x (−∞, y]},

where λ denotes Lebesgue measure and g−1x (−∞, y] is the preimage in I of the half-ray (−∞, y] under

g(x, ·). The second line uses X ⊥ A and A ∼ U[0, 1].

Let x be given. If g(x, ·) is strictly increasing, g−1x (−∞, y] = (0, g−1(x, y)] and F (y | x) = g−1(x, y)

for all y. By our convention, this also covers g(x, ·) strictly decreasing.

Now suppose that g(x, ·) is not strictly increasing. First, suppose that g(x, ·) is invertible, and also

suppose F (y | x) = g−1(x, y) for all y. The monotonicity of F (· | x) and the invertibility of g−1(x, ·) imply

that g−1(x, ·) is strictly increasing. But this implies that g(x, ·) is strictly increasing, a contradiction, so

F (y | x) 6= g−1(x, y) for some y.

Finally, if g(x, ·) is not invertible, then g−1(x, ·) is a correspondence, not a function. But F (· | x) is a

function, so F (y | x) = g−1(x, y) cannot hold for all y ∈ Y.

Remark. When g(x, ·) is invertible, g−1(x, ·) represents the inverse function such that a = g−1(x, y) if

and only if y = g(x, a). More generally, g−1(x, ·) represents the correspondence defined by g−1x (−∞, y],

the preimage in I of the half-ray (−∞, y] under g(x, ·). Also, we adopt the convention suggested by AM

that if g(x, ·) is strictly decreasing, then we replace g(x, ·) with −g(x, ·). The key property is thus that

g(x, ·) is strictly monotone. Let a = F (y | x); if eq.(A.1) holds, then F (· | x) is invertible and g is

identified as g(x, a) = F−1(a | x). Because F−1(· | x) is the conditional quantile function, we call this

full identification via conditional quantiles at x or, for brevity, full identification.

The conditions in the above proposition are simpler than those of AM’s theorem 4.1, as we consider

only the exogenous case in this paper. Also, we show that strict monotonicity of g(x, ·) is necessary
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for full identification, not just sufficient. In addition, as we showed in the early version of the paper,

representing Y using a scalar A in Proposition A.1 is much less restrictive than it might seem.

For any Borel set G of Rd we define Pt[G] ≡ P [Xt ∈ G], t = 1, ..., T. For any Borel set H of ×Tt=1Rd,
we define P1,...,T [H] ≡ P [(X1, ..., XT ) ∈ H]. The requirement imposed in (ii) below that the product

measure P1P2 · · ·PT is absolutely continuous (�) with respect to the joint measure P1,...,T ensures that

sets with positive P1P2 · · ·PT measure have positive P1,...,T measure. This rules out extreme forms of

dependence (e.g., X1 = X2 a.s.). In (ii), we also require that P [Yt = h(A)] < 1 for all measurable h,

t = 1, ..., T. This rules out the trivial case in which Y1 = · · · = YT a.s.

Proposition A.2 Suppose that Yt = g (Xt, A) and A is a random scalar distributed as U[0, 1]. Let the

Xt’s have common minimal support X .
(i) Suppose (a) g(Xt, ·) is strictly increasing a.s., t = 1, ..., T ; and (b) Xt ⊥ A, t = 1, ..., T. Then

A = F (Yt | Xt) a.s., t = 1, ..., T.

(ii) Suppose that X contains at least two points, that P1P2 · · ·PT � P1,...,T , and that P [Yt = h(A)] < 1

for all measurable h, t = 1, · · · , T. Suppose either (i.a) or (i.b) does not hold. Then P [F1(Y1 | X1) = · · ·
= FT (YT | XT )] < 1.

Proof. (i) follows from Proposition A.1. For (ii) , we give the proof for T = 2 as the proof for T > 2

is similar.

(ii.1) First suppose that strict monotonicity a.s. (i.e., (a)) holds, but (b) fails, so that (X1, X2) 6⊥ A.
Then A = g−1(X1, Y1) = g−1(X2, Y2). Then for all (x, y) ∈ X × Y and t = 1, 2,

Ft(y | x) ≡ P [Yt ≤ y | Xt = x] = P [g(Xt, A) ≤ y | Xt = x]

=

∫ 1

0

1{g(x, a) ≤ y} dF̄t(a | x)

≡ µt[g−1x (−∞, y] | x], (A.2)

where F̄t(· | x) denotes the conditional CDF of A given Xt = x. It follows that

F1(Y1 | X1) = µ1[(0, A] | X1] =

∫ A

0

dF̄1(a | X1),

F2(Y2 | X2) = µ2[(0, A] | X2] =

∫ A

0

dF̄2(a | X2).

Letting F̄1,2(a | x1, x2) define the conditional CDF of A given X1 = x1, X2 = x2, we have

P [F1(Y1 | X1) = F2(Y2 | X2)] = P [ µ1[(0, A] | X1] = µ2[(0, A] | X2] ]

= 1− P [ µ1[(0, A] | X1] 6= µ2[(0, A] | X2] ]

= 1−
∫
X×X

[

∫ 1

0

1{µ1[(0, a] | x1] 6= µ2[(0, a] | x2]} dF̄1,2(a | x1, x2)] dF (x1, x2).

where F (x1, x2) denotes the CDF of X1 and X2. The desired result follows if the integral in the expression

above is positive.
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To simplify notation, write µA(x1, x2) ≡
∫ 1

0
1{µ1[(0, a] | x1] 6= µ2[(0, a] | x2]} dF̄1,2(a | x1, x2). Then∫

X×X

∫ 1

0

1{µ1[(0, a] | x1] 6= µ2[(0, a] | x2]} dF̄1,2(a | x1, x2) dF (x1, x2)

=

∫
µA(x1, x2) dP1,2(x1, x2).

The desired result follows from corollary 4.10 of Bartle (1966) (i.e., for integrable f ≥ 0,
∫
f dµ = 0 iff

f = 0 µ− a.e.), provided µA(x1, x2) is positive on a set of positive P1,2−measure.

To show this, let Xt ≡ {x ∈ X : µt[ · | x] 6= λ(·)} and X ct ≡ X\Xt. By assumption, P1[X1] > 0 or

P2[X2] > 0. Without loss of generality, take P2[X2] > 0; then 0 ≤ P1[X1] ≤ 1. Two cases exhaust the

possibilities: either P1[X1] = P2[X2] = 1 or not. First, suppose not; we take P1[X c1 ] > 0. This covers the

cases 0 ≤ P1[X1] < 1 and 0 < P2[X2] ≤ 1. Then µA(x1, x2) > 0 on X c1 × X2. (If not, x2 6∈ X2.) Because

P1P2 � P1,2, P1P2(X c1 ×X2) = P1(X c1 ) P2(X2) > 0 implies P1,2(X c1 ×X2) > 0, as was to be shown.

The remaining case is P1[X1] = 1 and P2[X2] = 1, i.e. X1 = X2 = X . Suppose
∫
µA(x1, x2)

dP1,2(x1, x2) = 0. Then by Bartle (1966, corollary 4.10), µA(x1, x2) = 0 P1,2−a.e., which further implies

µ1[(0, a] | x1] = µ2[(0, a] | x2] for almost all a, x1, and x2. Since X contains at least two points, this can

only hold if there exists µ0, say, such that µ1[(0, a] | x1] = µ2[(0, a] | x2] = µ0[(0, a]], for almost all a,

x1, and x2. If µ0 = λ, this is a contradiction. If µ0 6= λ, a further monotone transformation of A can be

applied without loss of generality to ensure µ0 = λ. But this is again a contradiction. Thus,
∫
µA(x1, x2)

dP1,2(x1, x2) > 0.

(ii.2) Now suppose that (a) fails. Since

P [F1(Y1 | X1) = F2(Y2 | X2)] = 1− P [F1(Y1 | X1) 6= F2(Y2 | X2)],

the desired result follows if P [F1(Y1 | X1) 6= F2(Y2 | X2)] > 0. By (A.2), we have

Ft(Yt | Xt) = µt{g−1Xt
(−∞, Yt] | Xt} = µt{g−1Xt

(−∞, g(Xt, A)] | Xt}

≡ ct(Xt, A) ≡ Ct.

Since (a) fails, there exists a set X0 ⊂ X with P1[X0] > 0 or P2[X0] > 0 such that when Xt ∈ X0, g(Xt, ·)
is not strictly monotone. When Pt[X0] > 0, P [Ct = A | Xt ∈ X0] is defined, and we have

0 ≤ P [Ct = A | Xt ∈ X0] < 1.

When Pt[X c0 ] > 0, P [Ct = A | Xt ∈ X c0 ] is defined, and we have P [Ct = A | Xt ∈ X c0 ] = 1.

Without loss of generality, take P2[X0] > 0; then 0 ≤ P1[X0] ≤ 1. Two cases exhaust the possibilities:

either P1[X0] = P2[X0] = 1 or not. First, suppose not; we take P1[X c0 ] > 0. This covers the cases

0 ≤ P1[X0] < 1 and 0 < P2[X0] ≤ 1. We have

P [F (Y1 | X1) 6= F (Y2 | X2)] = P [C1 6= C2]

≥ P [(C1 6= C2) ∩ (X1 ∈ X c0 ) ∩ (X2 ∈ X0)]

= P [(C1 = A) ∩ (A 6= C2) ∩ (X1 ∈ X c0 ) ∩ (X2 ∈ X0)].
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Now

P1P2[(C1 = A) ∩ (A 6= C2) ∩ (X1 ∈ X c0 ) ∩ (X2 ∈ X0)]

= P1[(C1 = A) ∩ (X1 ∈ X c0 )] P2[(A 6= C2) ∩ (X2 ∈ X0)]

= P1[X c0 ] P2[X0] (1− P2[A = C2 | X2 ∈ X0]) > 0,

as P1[X c0 ] > 0, P2[X0] > 0, and P [A = C2 | X2 ∈ X0] < 1. Because P1P2�P1,2, it follows that

P [(C1 = A) ∩ (X1 ∈ X c0 ) ∩ (A 6= C2) ∩ (X2 ∈ X0)] > 0. Thus, P [F (Y1 | X1) 6= F (Y2 | X2)] > 0, as was to

be shown.

The remaining case is P1[X0] = 1 and P2[X0] = 1, i.e., X0 = X . Again, we must show P [C1 6= C2] > 0.

Suppose not. Then for almost all a, x1, and x2, we have c1(x1, a) = c2(x2, a). Because X0 = X contains

at least two values, this can hold only if c1(x1, a) = c2(x2, a) = c0(a), say, for all (x1, x2, a) ∈ X × X ×A,
A ≡ supp(A). This can hold only if: (i) Xt ⊥ A, t = 1, 2; and, because for each x ∈ X , g(x, ·) is not

strictly monotone, (ii) g(x, a) = g0(a), say, for all (x, a) ∈ X ×A, i.e., P [Yt = g0(A)] = 1, t = 1, 2. But

this contradicts our assumption that there is no such g0. Thus, P [C1 6= C2] > 0, as was to be shown.

For the next result, let FX denote the CDF of the random variable X, and let R+ ≡ [0,∞). Part (i)

shows that strict monotonicity of g(x, ·) is preserved by weighted averaging over x. Part (ii) shows that

strict monotonicity of the weighted average can also occur when departures from strict monotonicity of

g(x, ·) are sufficiently mild. Together, results (ii.1) and (ii.2) show that when one weighting function

places zero weight on the region where strict monotonicity of g(x, ·) fails, there is another weighting

function that can detect sufficient departures from strict monotonicity.

Proposition A.3 Let g : Rd× I→ R be measurable, let X be a random element of Rd, and suppose that

E[g(X, a)] <∞ for all a ∈ I. Let w : X → R+ be a bounded measurable function with
∫
w(x) dFX(x) = 1.

(i) If g(X, ·) is strictly increasing a.s., then ḡw(·) is strictly increasing, where ḡw(·) ≡
∫
g(x, ·)

w(x)dFX(x).

(ii) If g(X, ·) is not strictly increasing a.s., there exists a set X ∗, P [X ∈ X ∗] > 0, such that for each

x ∈ X ∗, g(x, ·) is not strictly increasing. Let X ∗w ≡ X ∗ ∩ Xw, where Xw ≡ {x ∈ X : w(x) > 0}.
(1) Suppose P [X ∈ X ∗w] > 0. Then ḡw(·) is not strictly increasing if and only if there exist 0 ≤ a∗1 <

a∗2 ≤ 1 such that ∫
[g(x, a∗2)− g(x, a∗1)] w(x) 1{x ∈ X ∗w} dFX(x)

≤ −
∫

[g(x, a∗2)− g(x, a∗1)] w(x) 1{x 6∈ X ∗w} dFX(x).

(2) Suppose P [X ∈ X ∗w] = 0. Then ḡw(·) is strictly increasing. Further, P [X ∈ Xw] < 1 so P [X 6∈
X ∗w] > 0, and, with X̃w ≡ X\Xw and X̃ ∗w ≡ X ∗ ∩ X̃w, we have P [X ∈ X̃ ∗w] > 0. Then there exists a

bounded measurable function w̃ : X → R+with
∫
w̃(x) dFX(x) = 1 and X̃w = Xw̃ ≡ {x ∈ X : w̃(x) > 0}.

Let ḡw̃(·) ≡
∫
g(x, ·) w̃(x) dFX(x). Then ḡw̃(·) is not strictly increasing if and only if there exist 0 ≤ a∗1 <
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a∗2 ≤ 1 such that ∫
[g(x, a∗2)− g(x, a∗1)] w̃(x) 1{x ∈ X̃ ∗w} dFX(x)

≤ −
∫

[g(x, a∗2)− g(x, a∗1)] w̃(x) 1{x 6∈ X̃ ∗w} dFX(x).

Proof. (i) Under the conditions given, |
∫
g(x, a) w(x) dFX(x)| <∞ for all a ∈ I. If g(X, ·) is strictly

increasing a.s., then for all 0 ≤ a1 < a2 ≤ 1,

ḡw(a2)− ḡw(a1) =

∫
[g(x, a2)− g(x, a1)] w(x) dFX(x) > 0,

where the inequality follows from corollary 4.10 of Bartle (1966) as [g(x, a2) − g(x, a1)] w(x) is positive

on a set of positive measure.

(ii)(1) By assumption, g(X, ·) is not strictly increasing a.s., so there exists X ∗, P [X ∈ X ∗] > 0,

such that for each x ∈ X ∗, g(x, ·) is not strictly increasing. Further, with X ∗w ≡ X ∗ ∩ Xw, we assume

P [X ∈ X ∗w] > 0. Then for the given 0 ≤ a∗1 < a∗2 ≤ 1,

ḡw(a∗2)− ḡw(a∗1) =

∫
[g(x, a∗2)− g(x, a∗1)] w(x) dFX(x)

=

∫
[g(x, a∗2)− g(x, a∗1)] w(x) 1{x ∈ X ∗w} dFX(x)

+

∫
[g(x, a∗2)− g(x, a∗1)] w(x) 1{x 6∈ X ∗w} dFX(x) ≤ 0,

where the final inequality follows from the assumed properties of g. This implies that ḡw is not strictly

increasing. Conversely, if there exist no such a∗1, a
∗
2, then for all 0 ≤ a1 < a2 ≤ 1, ḡw(a2) − ḡw(a1) > 0,

so ḡw is strictly increasing. (2) If P [X ∈ X ∗w] = 0, then the argument of part (i) gives that ḡw is strictly

increasing. Further, pw ≡ P [X ∈ Xw] < 1, as otherwise it must be that P [X ∈ X ∗] = 0, violating our

assumption. Then 1 − pw = P [X 6∈ Xw] > 0, and we can let w̃(x) ≡ 1{x : x ∈ X̃w}/(1 − pw). This

choice for w̃ is measurable, bounded, and
∫
w̃(x) dFX(x) = 1, ensuring that ḡw̃ is well defined, that

X̃w = Xw̃ ≡ {x ∈ X : w̃(x) > 0}, and that P [X ∈ X̃ ∗w] > 0. For the given 0 ≤ a∗1 < a∗2 ≤ 1, the argument

of part (1) now applies to give that ḡw̃ is not strictly increasing. The converse argument is also identical

to part (1).

For succinctness in what follows, we continue to suppress the i subscript and write Yt = g (Xt, A)+εt.

Assume that {Xt, εt} is identically distributed (ID). Provided the necessary moments exist, we have

Ỹτ ≡ E(Yt wτ (Xt) | A) = ḡτ (A) + ε̄τ (A),

where now ḡτ (A) ≡ E[g(Xt, A) wτ (Xt) | A] and ε̄τ (A) ≡ E[εt wτ (Xt) | A]. We let F̃τ denote the CDF of

Ỹτ . Note that for simplicity, we defined ḡτ in the text in a manner that incorporated Xt ⊥ A (see (2.4));

here ḡτ explicitly does not rely on this.

In part (i) of the next result, we assume Xt ⊥ A and εt ⊥ A | wτ (Xt) for all τ ∈ {1, ..., T }, ensuring

that ε̃τ = ε̄τ (A) is constant. We define the function γ̄τ : I→ I as

γ̄τ (a) ≡ P [ḡτ (A) ≤ ḡτ (a)], a ∈ I.
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This quantifies the departure of ḡτ from monotonicity. When ḡτ is strictly monotone, γ̄τ (a) = a. Oth-

erwise, γ̄τ exhibits variations reflecting those of ḡτ . Part (i) of the next result shows that a test of H̃0

has power if and only if there exists τ∗ such that λ[a : γ̄1(a) = γ̄τ∗(a)] < 1, where λ denotes Lebesgue

measure. This holds with T = 2 when ḡ1 is strictly monotone and ḡ2 is not strictly monotone on a set

of positive λ−measure. Equivalently, the test has no power if and only if all the γ̄τ ’s coincide, except

possibly on a set of λ−measure zero. This occurs when all ḡτ ’s are strictly monotone. It also occurs

when g(x, ·) does not depend on x, a case ruled out in Proposition A.2. Other examples exist, but these

are exceptional; we conjecture that they are shy. Shyness is the function space analog of being a subset

of a set of Lebesgue measure zero; see Corbae et al. (2009, pp. 545-547).

In part (ii), we drop the requirements that Xt ⊥ A and εt ⊥ A | wτ (Xt). Now we write

Ỹτ = g̃τ (A) ≡ ḡτ (A) + ε̄τ (A),

and we define the functions γ̃τ : I→ I as

γ̃τ (a) ≡ P [g̃τ (A) ≤ g̃τ (a)], b ∈ I.

Here, γ̃τ measures the departure of g̃τ from monotonicity. Non-monotonicity may come from ḡτ , from

ε̄τ , or both.

Thus, maintaining Xt ⊥ A and εt ⊥ A | wτ (Xt) enables study of the monotonicity of the ḡτ ’s in

isolation. Dropping this introduces generic non-monotonicity into g̃τ , as ε̄τ is then no longer constant

and is thus generically non-monotonic. (Recall the shyness of monotone functions.) Further, the failure

of Xt ⊥ A generally introduces non-monotonicity into ḡτ . For example, take wτ (Xt) = 1, and suppose

that g(Xt, A) = Xt + A and that Xt 6⊥ A holds because Xt = −A2 + ηt, where ηt ⊥ A. (This choice is

illustrative, as the relation between Xt and A is generically non-monotonic.) Then

ḡτ (A) ≡ E[g(Xt, A) wτ (Xt) | A] = E(Xt +A | A) = E(−A2 + ηt +A | A)

= A(1−A) + E(ηt).

Thus, although g(x, ·) is monotone for each x, ḡτ is not monotone. Of course, if we instead have Xt =

A+ ηt, then ḡτ (A) = 2A+E(ηt), so the failure of Xt ⊥ A is not guaranteed to induce non-monotonicity

in ḡτ . Such cases are exceptional, however. Moreover, when Xt 6⊥ A, the role of wτ (Xt) in defining ḡτ (A)

further reinforces its generic non-monotonicity.

Proposition A.4 Suppose Yt = g (Xt, A) + εt and {Xt, εt} is ID. For T ≥ 2, let wτ : X → R+,

τ = 1, ..., T be as in Proposition A.3. Suppose that E[g(Xt, a)] <∞ for each a ∈ I and that E(εt) <∞.
(i) Suppose Xt ⊥ A and εt ⊥ A | wτ (Xt), τ = 1, ..., T . Then P [F̃1(Ỹ1) = · · · = F̃T (ỸT )] = 1 if and

only if λ[a : γ̄1(a) = γ̄τ (a)] = 1 for all τ.

(ii) P [F̃1(Ỹ1) = · · · = F̃T (ỸT )] = 1 if and only if λ[a : γ̃1(a) = γ̃τ (a)] = 1 for all τ.

Proof. (i) We have P [F̃1(Ỹ1) = · · · = F̃T (ỸT )] = P [∩Tτ=2{F̃1(Ỹ1) = F̃τ (Ỹτ )}], so the implication rule

gives 1−P [F̃1(Ỹ1) = · · · = F̃T (ỸT )] ≤
∑T
τ=2 P [F̃1(Ỹ1) 6= F̃τ (Ỹτ )]. The first result follows by showing that

λ[a : γ̄1(a) = γ̄τ (a)] = 1 implies P [F̃1(Ỹ1) 6= F̃τ (Ỹτ )] = 0, so that P [F̃1(Ỹ1) = · · · = F̃T (ỸT )] = 1. Now

P [F̃1(Ỹ1) = F̃τ (Ỹτ )] =

∫ 1

0

1{F̃1(ḡ1(a) + ε̃1) = F̃τ (ḡτ (a) + ε̃τ )} da.

30



Given Xt ⊥ A and εt ⊥ A | wτ (Xt), ε̃τ is constant. It follows that F̃τ (ḡτ (a) + ε̃τ ) = P [ḡτ (A) + ε̃τ ≤
ḡτ (a) + ε̃τ ] = γ̄τ (a). Thus, for all τ,

P [F̃1(Ỹ1) = F̃τ (Ỹτ )] =

∫ 1

0

1{γ̄1(a) = γ̄τ (a)} da = λ[a : γ̄1(a) = γ̄τ (a)] = 1,

where the final equality holds by assumption. It follows that P [F̃1(Ỹ1) = F̃τ (Ỹτ )] = 1, so P [F̃1(Ỹ1) 6=
F̃τ (Ỹτ )] = 0, as was to be shown.

For the converse, suppose λ[a : γ̄1(a) = γ̄τ∗(a)] < 1. We have

P [F̃1(Ỹ1) = · · · = F̃T (ỸT )] = 1− P [∪Tτ=2{F̃1(Ỹ1) 6= F̃τ (Ỹτ )}].

Now

P [∪Tτ=2{F̃1(Ỹ1) 6= F̃τ (Ỹτ )}] ≥ P [F̃1(Ỹ1) 6= F̃τ∗(Ỹτ∗)] = 1− λ[a : γ̄1(a) = γ̄τ∗(a)].

But λ[a : γ̄1(a) = γ̄τ∗(a)] < 1, so 1− λ[a : γ̄1(a) = γ̄τ∗(a)] > 0, implying P [F̃1(Ỹ1) = · · · = F̃T (ỸT )] < 1.

(ii) Identical to (i), replacing γ̄τ with γ̃τ and dropping ε̃τ .

B Proofs of the main results in Section 2

Recall F̃τ and F̃Tτ denote the CDF of Ỹτ,i and ȲT,τ,i, respectively; and f̃τ denotes the PDF of Ỹτ,i Let

f̃Tτ denote the PDF of ȲT,τ,i.To prove the main results in section 2, we first prove the following lemma.

Lemma B.1 Suppose Assumptions A.0, A.1(ii), A.2, and A.3(i) hold. Then for τ = 1, 2, ..., T , (i)

E(ȲT,τ,i− Ỹτ,i)2 = O
(
T−1

)
; (ii) E|F̃Tτ (Ỹτ,i)− F̃τ (Ỹτ,i)| = O

(
T−1/2

)
; and (iii) supy |F̃Tτ (y)− F̃τ (y)| =

O
(
T−1/2

)
.

Proof. Noting that Ỹτ,i = E [Yitwτ (Xit) |Ai] = E [g (Xit, Ai)wτ (Xit) |Ai] + E [εitwτ (Xit) |Ai] ≡
gτ (Ai)+ετ (Ai) , we have ȲT,τ,i−Ỹτ,i = T−1

∑T
t=1 [g (Xit, Ai)wτ (Xit)− gτ (Ai)] +T−1

∑T
t=1[εitwτ (Xit)−

ετ (Ai)] ≡ αNT1 + αNT2, say. Let ζi,t ≡ g (Xit, Ai)wτ (Xit) − gτ (Ai) . Then E [αNT1] = 0, and

E
[
α2
NT1

]
= T−1E [ζi,t]

2
+ 2T−1

∑T
s=1Cov(ζi,1, ζi,1+s) = O

(
T−1

)
as
∑T
s=1Cov (ζi,1, ζi,1+s) ≤ ‖ζi,1‖22+γ∑∞

s=1 α (s)
γ/(2+γ)

<∞ by the Davydov inequality and Assumptions A.1(ii) and A.2. Similarly, E
[
α2
NT2

]
=

OP
(
T−1

)
. Thus (i) follows.

For (ii), we have

E
∣∣∣F̃Tτ (Ỹτ,i)− F̃τ (Ỹτ,i)

∣∣∣ =

∫ ∣∣∣F̃τ (y)− F̃Tτ (y)
∣∣∣ f̃τ (y) dy

=

∫ ∣∣∣E [1{Ỹτ,i ≤ y} − 1{ȲT,τ,i ≤ y}
]∣∣∣ f̃τ (y) dy

≤
∫
E
∣∣∣1{Ỹτ,i − y ≤ 0} − 1{Ỹτ,i − y ≤ Ỹτ,i − ȲT,τ,i}

∣∣∣ f̃τ (y) dy

≤
∫
E
[
1{|y − Ỹτ,i| ≤ |Ỹτ,i − ȲT,τ,i|}

]
f̃τ (y) dy

= E
[
F̃τ

(
Ỹτ,i + |Ỹτ,i − ȲT,τ,i|

)
− F̃τ

(
Ỹτ,i − |Ỹτ,i − ȲT,τ,i|

)]
= 2E

[
f̃τ (cτ,i)|Ỹτ,i − ȲT,τ,i|

]
≤ C

[
E(Ỹτ,i − ȲT,τ,i)2

]1/2
= O(T−1/2),
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where the first and second inequalities follow from the triangle inequality and the fact |1 {z < 0} −
1 {z < a} | ≤ 1 {|z| < |a|} , respectively; the third equality holds by the Fubini theorem; the next inequal-

ity holds by the mean value theorem, where cτ,i lies between Ỹτ,i− |Ỹτ,i− ȲT,τ,i| and Ỹτ,i + |Ỹτ,i− ȲT,τ,i|;
the last inequality follows from Assumption A.3(i) and the Jensen inequality; and the last equality follows

from (i).

Noting that (i) implies that |Ỹτ,i− ȲT,τ,i| ≤MT−1/2 for sufficiently large constant M with probability

approaching 1 as T →∞. Then by Assumption A.3(i)

sup
y
|F̃Tτ (y)− F̃τ (y)| = sup

y

∣∣∣E [1{Ỹτ,i ≤ y} − 1{ȲT,τ,i ≤ y}
]∣∣∣

≤ sup
y
E
[
1{|y − Ỹτ,i| ≤ |Ỹτ,i − ȲT,τ,i|}

]
= O

(
T−1/2

)
.

Proof of Theorems 2.1 and 2.2

We only prove Theorem 2.2 as the proof of Theorem 2.1 is a special case. For notational simplicity, we

only prove the case where T = 2. Let F̄NT,τ (y) ≡ 1
N

∑N
i=1 1{Ỹτ,i ≤ y} and D̃NT ≡

∑N
i=1[F̂NT,1(Ỹ1,i) −

F̂NT,2(Ỹ2,i)]
2. We prove Theorem 2.2 by showing that (i) D̂NT − D̃NT = oP (1) ; (ii) D̃NT −BNT − µ

d→∑∞
j=1 λj(Z2

j − 1) = oP (1) ; and (iii) B̂NT −BNT = oP (1) under H̃1

(
N−1/2

)
.

For (i) , noting that a2 − b2 = (a− b)2 + 2 (a− b) b, we have

D̂NT − D̃NT =

N∑
i=1

[
F̂NT,1(ȲT,1,i)− F̂NT,1(Ỹ1,i)− F̂NT,2(ȲT,2,i) + F̂NT,2(Ỹ2,i)

]2
+2

N∑
i=1

[
F̂NT,1(ȲT,1,i)− F̂NT,1(Ỹ1,i)− F̂NT,2(ȲT,2,i) + F̂NT,2(Ỹ2,i)

]
×
[
F̂NT,1(Ỹ1,i)− F̂NT,2(Ỹ2,i)

]
≡ ϑ̂NT1 + 2ϑ̂NT2, say.

By the Cr inequality,

ϑ̂NT1 ≤ 2

2∑
τ=1

N∑
i=1

 1

N

N∑
j=1

[
1{ȲT,τ,j ≤ ȲT,τ,i} − 1{ȲT,τ,j ≤ Ỹτ,i}

]2

≤ 4

2∑
τ=1

N∑
i=1

 1

N

N∑
j=1

[
1{ȲT,τ,j ≤ ȲT,τ,i} − F̃Tτ

(
ȲT,τ,i

)
− 1{ȲT,τ,j ≤ Ỹτ,i}+ F̃Tτ (Ỹτ,i)

]2

+4

2∑
τ=1

N∑
i=1

[
F̃Tτ

(
ȲT,τ,i

)
− F̃Tτ (Ỹτ,i)

]2
.

The first term in the last expression is oP (1) because by the stochastic equicontinuity (SE) of the empirical

process

ηNT (·) ≡ N−1/2
N∑
j=1

[1{ȲT,τ,j ≤ ·} − F̃Tτ (·)] (B.1)
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and Lemma B.1(i), N−1/2
∑N
j=1[1{ȲT,τ,j ≤ ȲT,τ,i} − F̃Tτ (ȲT,τ,i) − 1{ȲT,τ,j ≤ Ỹτ,i} + F̃Tτ (Ỹτ,i)] =

oP (1) uniformly in i. The second term is oP (1) because by Lemma B.1(ii) and Assumption A.5,∑N
i=1[F̃Tτ

(
ȲT,τ,i

)
−F̃Tτ (Ỹτ,i)]

2 =
∑N
i=1 f̃Tτ (Ỹ ∗τ,i)

2(ȲT,τ,i− Ỹτ,i)2 ≤ C
∑N
i=1(ȲT,τ,i− Ỹτ,i)2 = OP

(
NT−1

)
= oP (1) , provided f̃Tτ is uniformly bounded for sufficiently large T , where Ỹ ∗τ,i lies between Ỹτ,i and

ȲT,τ,i. By the moment calculations and Chebyshev inequality, ȲT,τ,i − Ỹτ,i = oP (1) under Assumptions

A.1(ii) and A.2. This implies that as T → ∞, the limiting distribution and support of ȲT,τ,i will coin-

cide with those of Ỹτ,i. By the continuity of gτ in Assumption A.3(ii), the support of Ỹτ,i is compact.

This implies that for sufficiently large T, with probability approaching one the support of ȲT,τ,i is also

compact, so that f̃Tτ is uniformly continuous on this support and must be bounded.

Let β1τ,ij = 1{ȲT,τ,j ≤ ȲT,τ,i}− F̃Tτ
(
ȲT,τ,i

)
−1{ȲT,τ,j ≤ Ỹτ,i}+ F̃Tτ (Ỹτ,i) and β2τ,i = F̃Tτ

(
ȲT,τ,i

)
−

F̃Tτ (Ỹτ,i) for τ = 1, 2 and i, j = 1, ..., N. Let β3,ij = 1{ȲT,1,j ≤ Ỹ1,i} − F̃T1(Ỹ1,i) − 1{ȲT,2,j ≤ Ỹ2,i} +

F̃T2(Ỹ2,i), and β4,i = F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i). Analogously to the proof of Lemma B.1 and by the triangle

and Cr inequalities, we can show that uniformly in i, j = 1, ..., N,

E|β1τ,ij | ≤ E|1{ȲT,τ,j ≤ ȲT,τ,i} − 1{ȲT,τ,j ≤ Ỹτ,i}|+ E|F̃Tτ
(
ȲT,τ,i

)
− F̃Tτ (Ỹτ,i)| = O(T−1/2), (B.2)

and

E
(
β2
4,i

)
≤ 4

2∑
τ=1

E{[F̃Tτ (Ỹτ,i)− F̃τ (Ỹτ,i)]
2}+ 2E{[F̃1(Ỹ1,i)− F̃2(Ỹ2,i)]

2}

= O
(
T−1 +N−1

)
under H̃1(N−1/2). (B.3)

Now decompose ϑ̂NT2 as follows

ϑ̂NT2 = N−2
N∑
i=1

N∑
j=1

N∑
k=1

(β11,ij − β12,ij + β21,i − β22,i) (β3,ik − β4,i)

= N−2
N∑
i=1

N∑
j=1

N∑
k=1

(β11,ij − β12,ij)β3,ik +N−1
N∑
i=1

N∑
k=1

(β21,i − β22,i)β3,ik

−N−1
N∑
i=1

N∑
j=1

(β11,ij − β12,ij)β4,i −
N∑
i=1

(β21,i − β22,i)β4,i

≡ ϑ̂NT2,1 + ϑ̂NT2,2 − ϑ̂NT2,3 − ϑ̂NT2,4, say.

Let ϑ̂NT2,1τ = N−2
∑N
i=1

∑N
j=1

∑N
k=1 β1τ,ijβ3,ik for τ = 1, 2. It is easy to show that ϑ̂NT2,1τ = θNT2,1τ +

oP (1) under H̃1

(
N−1/2

)
, where θNT2,1τ = N−2

∑N
i=1

∑N
j 6=i
∑N
k 6=j,i β1τ,ijβ3,ik.Note that E (θNT2,1τ ) = 0,

and

E[θ2NT2,1τ ] = N−4
N∑
i=1

N∑
j 6=i

N∑
k 6=j,i

N∑
i′=1

N∑
j′ 6=i′

N∑
k 6=j′,i′

E [β1τ,ijβ3,ikβ1τ,i′j′β3,i′k′ ] .

If there are five or six distinct indices among {i, j, k, i′, j′, k′} , then the corresponding terms in the above

summation drop out. For all other cases, it is straightforward to bound |E[β1τ,ijβ3,ikβ1τ,i′j′ β3,i′k′ ]| by a

proportion of E|β1τ,ij | = O
(
T−1/2

)
by the uniform boundedness of β1τ,ij and β3,ik and (B.2). It follows

that E[θ2NT2,1τ ] = O
(
T−1/2 +N−1

)
and ϑ̂NT2,1τ = oP (1) . Then ϑ̂NT2,1 = ϑ̂NT2,11 − ϑ̂NT2,12 = oP (1) .

Similarly, we can show that ϑ̂NT2,2 = oP (1) .
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Let ϑ̂NT2,3τ = N−1
∑N
i=1

∑N
j=1 β1τ,ijβ4,i for τ = 1, 2. Then we can show that ϑ̂NT2,3τ = θNT2,3τ +

OP (N−1/2) under H̃1(N−1/2), where θNT2,3τ = N−1
∑N
i=1

∑N
j 6=i β1τ,ijβ4,i. Note that E [θNT2,3τ ] = 0 and

E[θ2NT2,3τ ] = N−2
N∑
i=1

N∑
i′ 6=i

N∑
j 6=i,i′

E [β1τ,ijβ4,iβ1τ,i′jβ4,i′ ]

+N−2
N∑
i=1

N∑
j 6=i

E
[
β1τ,ijβ4,iβ1τ,jiβ4,j + (β1τ,ijβ4,i)

2
]
.

It is straightforward to show that the last term is O
(
T−1/2

)
under H̃1

(
N−1/2

)
. We can bound the first

term by

N−2
N∑
i=1

N∑
i′ 6=i

N∑
j 6=i,i′

[
E(β2

1τ,ijβ
2
1τ,i′j)

]1/2 [
E(β2

4,i)E(β2
4,i′)

]1/2
≤ 81/2N sup

i,j
{E |β1τ,ij |}1/2E(β2

4,1) = O (N)O(T−1/4)O
(
T−1 +N−1

)
= o (1) .

It follows that θNT2,3τ = oP (1) and ϑ̂NT2,3τ = ϑ̂NT2,31 − ϑ̂NT2,32 = oP (1) . Similarly,

E|ϑ̂NT2,4| ≤
N∑
i=1

E |(β21,i − β22,i)β4,i| ≤ N
{
E (β21,i − β22,i)2

}1/2 {
E
(
β2
4,i

)}1/2
= N O(T−1/2)O(T−1/2 +N−1/2) = o (1) .

Consequently ϑ̂NT2,4 = oP (1) . Thus, ϑ̂NT2 = oP (1) .

For (ii) , we decompose D̃NT as follows:

D̃NT =

N∑
i=1

[
F̂NT,1(Ỹ1,i)− F̂NT,2(Ỹ2,i)

]2
=

N∑
i=1

[
F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)

]2
+

N∑
i=1

[
F̂NT,1(Ỹ1,i)− F̃T1(Ỹ1,i)− F̂NT,2(Ỹ2,i) + F̃T2(Ỹ2,i)

]2
+2

N∑
i=1

[
F̂NT,1(Ỹ1,i)− F̃T1(Ỹ1,i)− F̂NT,2(Ỹ2,i) + F̃T2(Ỹ2,i)

] [
F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)

]
≡ D̃NT1 + D̃NT2 + 2D̃NT3, say.

We further decompose D̃NT1 as follows:

D̃NT1 =

N∑
i=1

[
F̃1(Ỹ1,i)− F̃2(Ỹ2,i)

]2
+

N∑
i=1

[
F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)− F̃1(Ỹ1,i) + F̃2(Ỹ2,i)

]2
+2

N∑
i=1

[
F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)− F̃1(Ỹ1,i) + F̃2(Ỹ2,i)

] [
F̃1(Ỹ1,i)− F̃2(Ỹ2,i)

]
≡ D̃NT1,1 + D̃NT1,2 + 2D̃NT1,3.
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By the weak law of large numbers, D̃NT1,1
P→ µ under H̃1

(
N−1/2

)
. By the Cr inequality and Lemma

B.1(ii) , D̃NT1,2 ≤ 2
∑2
τ=1

∑N
i=1

[
F̃Tτ (Ỹτ,i)− F̃τ (Ỹτ,i)

]2
= OP

(
NT−1

)
= oP (1) . Then |D̃NT1,3| ≤

{D̃NT1,1}1/2{D̃NT1,2}1/2 = oP (1) by Cauchy-Schwarz inequality.

Now, let ξi ≡ (ȲT,1,i, ȲT,2,i, Ỹ1,i, Ỹ2,i)
′ and ψT (ξi, ξj) ≡ 1{ȲT,1,j ≤ Ỹ1,i} − F̃T1(Ỹ1,i) − 1{ȲT,2,j ≤

Ỹ2,i}+ F̃T2(Ỹ2,i). Then we can decompose D̃NT2 as follows

D̃NT2 = N−2
N∑
i=1

 N∑
j=1

ψT (ξi, ξj)

2

= N−2
N∑
i=1

N∑
j 6=i

N∑
k 6=j,i

ψT (ξi, ξj)ψT (ξi, ξk) +N−2
N∑
i=1

N∑
j 6=i

ψT (ξi, ξj)
2

+2N−2
N∑
i=1

N∑
j 6=i

ψT (ξi, ξi)ψT (ξi, ξj) +N−2
N∑
i=1

ψT (ξi, ξi)
2

≡ VNT +BNT + 2RNT1 +RNT2, say.

Let ψ̄T (ξi, ξj , ξk) ≡ [ψT (ξi, ξj)ψT (ξi, ξk) + ψT (ξj , ξi)ψT (ξj , ξk) + ψT (ξk, ξi)ψT (ξk, ξj)]/3. Then

VNT = 6N−2
∑

1≤i<j<k≤N

ψ̄ (ξi, ξj , ξk) =
(N − 1) (N − 2)

N
V̄NT ,

where V̄NT ≡ 6
N(N−1)(N−2)

∑
1≤i<j<k≤N ψ̄T (ξi, ξj , ξk) . By the Hoeffding decomposition (e.g., Lee (1990,

p. 26)), V̄NT = 3H
(2)
NT +H

(3)
NT , where

H
(2)
NT ≡ 2

N (N − 1)

∑
1≤i<j≤N

ψ̄2T (ξi, ξj) ,

H
(3)
NT ≡ 6

N (N − 1) (N − 2)

∑
1≤i<j<k≤N

ψ̄3T (ξi, ξj , ξk) ,

ψ̄2T (ξi, ξj) ≡
∫
ψ̄T (ξi, ξj , ξ) F̃ (dξ) = 1

3

∫
ψT (ξ, ξi)ψT (ξ, ξj) F̃ (dξ) , ψ̄3T (ξi, ξj , ξk) ≡ ψ̄T (ξi, ξj , ξk) −

ψ̄2T (ξi, ξj)− ψ̄2T (ξi, ξk) −ψ̄2T (ξj , ξk) , and F̃ denotes the CDF of ξi. It is standard to show that H
(3)
NT =

OP
(
N−3/2

)
. Thus, Thus,

VNT =
(N − 1) (N − 2)

N

[
3H

(2)
NT +H

(3)
NT

]
=
N − 2

N

[
3 (N − 1)H

(2)
NT +OP

(
N−1/2

)]
= {1 + o (1)}HNT +OP

(
N−1/2

)
,

where HNT ≡ 2
N

∑
1≤i<j≤N

∫
ψT (ξ, ξi)ψT (ξ, ξj) F̃ (dξ) is a second order degenerate U -statistic whose

kernel function is T -dependent. Let ζi ≡ (Ỹ1,i, Ỹ2,i)
′ and ψ (u, ζj) ≡ 1{Ỹ1,j ≤ u1} − F̃1(u1) − 1{Ỹ2,j ≤

u2}+ F̃2(u2) where u = (u1, u2)′. Let H̄N ≡ 2
N

∑
1≤i<j≤N

∫
ψ (ζ, ζi)ψ (ζ, ξj) F̃ζ (dζ) where F̃ζ denote the
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CDF of ζi. Note that

HNT − H̄N =
2

N

∑
1≤i<j≤N

∫
[ψT (ξ, ξi)ψT (ξ, ξj)− ψ (ζ, ζi)ψ (ζ, ξj)] F̃ (dξ)

=
2

N

∑
1≤i<j≤N

∫
[ψT (ξ, ξi)− ψ (ζ, ζi)]ψT (ζ, ξj) F̃ (dξ)

+
2

N

∑
1≤i<j≤N

∫
ψ (ξ, ξi) [ψT (ζ, ζj)− ψ (ζ, ξj)]F̃ (dξ)

≡ HNT,1 +HNT,2, say.

Using Lemma B.1, we can readily show that E
(
H2
NT,s

)
= O(T−1/2 + N−1/2) under H̃1(N−1/2) for

both s = 1, 2. It follows that HNT = H̄N + oP (1) by Chebyshev inequality. By Serfling (1980,

p.194) or Proposition 5.2 of Chen and White (1998), H̄N
d→
∑∞
j=1 λj(Z2

j − 1) where {Zj} is a se-

quence of IID N (0, 1) random variables, and {λj} is the sequence of nonzero eigenvalues for K (u, v) ≡∫
ψ (ζ, u)ψ (ζ, v) F̃ζ (dζ) . Next, noting that E

(
R2
NT1

)
= O(N−1) and E |RNT2| = O(N−1), we have

RNT1 = OP
(
N−1/2

)
and RNT2 = OP

(
N−1

)
by Chebyshev and Markov inequalities. Consequently

D̃NT2 −BNT
d→
∑∞
j=1 λj

(
Z2
j − 1

)
.

For D̃NT3, we have

D̃NT3 =

N∑
i=1

[
F̂NT,1(Ỹ1,i)− F̃T1(Ỹ1,i)− F̂NT,2(Ỹ2,i) + F̃T2(Ỹ2,i)

] [
F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)

]
= N−1

N∑
i=1

N∑
j 6=i

ψ (ξi, ξj)
[
F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)

]
+N−1

N∑
i=1

ψ (ξi, ξi)
[
F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)

]
≡ D̃NT3,1 + D̃NT32.

By triangle inequality and Lemma B.1(ii) , under H̃1

(
N−1/2

)
we have

E|D̃NT32| ≤ 2N−1
N∑
i=1

E|F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)|

≤ 2N−1

{
2∑

τ=1

N∑
i=1

{E|F̃Tτ (Ỹτ,i)− F̃τ (Ỹτ,i)|+
N∑
i=1

E|F̃1(Ỹ1,i)− F̃2(Ỹ2,i)|

}
= O

(
T−1/2 +N−1/2

)
.

Thus D̃NT32 = OP
(
T−1/2 + T−1/2

)
by Markov inequality. Letting χ (ξi, ξj) = ψ (ξi, ξj) [F̃T1(Ỹ1,i) −

F̃T2(Ỹ2,i)], then D̃NT3,1 = N−1
∑N
i=1

∑N
j 6=i χ (ξi, ξj) . By the Hölder and Cr inequalities,

E
(
D̃2
NT3,1

)
= N−2

N∑
i=1

N∑
i′=1

N∑
j 6=i,i′

E [χ (ξi, ξj)χ (ξi′ , ξj)]

≤ N−1
N∑
i=1

N∑
j 6=i

E
[
ψ (ξi, ξj)

2
[F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)]

2
]

≤ 2N−1
N∑
i=1

N∑
j 6=i

E

{[
1{ȲT,1,j ≤ Ỹ1,i} − 1{ỸT,2,j ≤ Ỹ2,i}

]2
[F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)]

2

}
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+2N−1
N∑
i=1

N∑
j 6=i

E

{[
F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)

]4}
≡ 2EDN1 + 2EDN2, say.

For EDN1, we have

EDN1 ≤ N−1
N∑
i=1

N∑
j 6=i

E
[
|1{ȲT,1,j ≤ Ỹ1,i} − 1{ȲT,2,j ≤ Ỹ2,i}|[F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)]

2
]

= N−1
N∑
i=1

N∑
j 6=i

E
[
|1{F̃T1(ỸT,1,j) ≤ F̃T1(Ỹ1,i)} − 1{F̃T2(ȲT,2,j) ≤ F̃T2(Ỹ2,i)}|[F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)]

2
]

≤ N−1
N∑
i=1

N∑
j 6=i

E
[
1{|F̃T1(ỸT,1,j)− F̃T1(Ỹ1,i)| ≤ |αNT |}[F̃T1(Ỹ1,i)− F̃T2(Ỹ2,i)]

2
]

→ 0,

where αNT = F̃T1(ỸT,1,j) − F̃T2(ȲT,2,j) − F̃T1(Ỹ1,i) + F̃T2(Ỹ2,i) = OP (N−1/2 + T−1/2); the third line

follows from the fact that |1{z ≤ 0} − 1{z ≤ a}| ≤ 1{|z| ≤ |a|}; and the last line follows from the

dominated convergence theorem (DCT) and the fact that N E[F̃T1(Ỹ1,i) − F̃T2(Ỹ2,i)]
2 = O (1) under

H̃1

(
N−1/2

)
. Consequently, D̃NT3,1 = oP (1) by the Chebyshev inequality. Similarly, by the DCT and

the fact that NE[F̃T1(Ỹ1,i) − F̃T2(Ỹ2,i)]
2 = O (1) under H̃1

(
N−1/2

)
, we have EDN2 = o (1) . It follows

that D̃NT3 = oP (1) .

Lastly, it is straightforward to prove (iii). �

Proof of Theorem 2.3

Again, we focus on the case T = 2. Using the notation in the proof of Theorem 2.2, it is easy to show

that N−1(D̂NT − D̃NT ) = oP (1) under H̃1 (1) . Further, N−1D̃NT = N−1
∑N
i=1

[
F̃1(Ỹ1,i)− F̃2(Ỹ2,i)

]2
+

oP (1) = µ + oP (1) , and N−1B̂NT = OP
(
N−1

)
. Consequently, N−1JNT = N−1(D̂NT − B̂NT ) =

N−1(D̂NT − D̃NT ) +N−1D̃NT −N−1B̂NT = µ+ oP (1) , and the conclusion follows. �

To prove Theorem 2.4, we prove the following lemma first.

Lemma B.2 Suppose the conditions in Theorem 2.4 hold. Then

(i) max1≤i≤N |ÂNT,i −Ai| = OP (N−1/2
√

logN);

(ii) sup(x,a)∈X̃×I |ĝ (x, a)− g (x, a)| = OP (‖h‖p+1
+ (NTh!)−1/2

√
log(NT ) + N−1/2

√
logN + b2 +

(nb)−1) = oP (1) , where h! = Πd+1
l=1 hl and X̃ denotes the intersection of the support X and the uniform

of the supports of wτ (·) .

Proof. Let F̃ and F̃T denote the CDF of Ỹi and ȲT,i, respectively, where Ỹi ≡ E(Yit|Ai) and

ȲT,i = T−1
∑T
t=1 Yit. To prove (i) , we first decompose ÂNT,i −Ai as follows

ÂNT,i −Ai =
1

N

N∑
j=1

1
{
ȲT,j ≤ ȲT,i

}
−Ai =

1

N1

N∑
j=1,j 6=i

1
{
ȲT,j ≤ ȲT,i

}
−Ai +O

(
N−1

)
=

1

N1

N∑
j=1,j 6=i

[
1
{
Ỹj ≤ Ỹi

}
−Ai

]
+

1

N1

N∑
j=1,j 6=i

[
1
{
ȲT,j ≤ Ỹi

}
− 1

{
Ỹj ≤ Ỹi

}]
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+
1

N1

N∑
j=1,j 6=i

[
1
{
ȲT,j ≤ ȲT,i

}
− 1

{
ȲT,j ≤ Ỹi

}]
+O

(
N−1

)
≡ S1i + S2i + S3i +O

(
N−1

)
,

where N1 = N − 1. Noting that E (S1i) = E[F̃ (Ỹi) − Ai] = 0 and Var(S1i) = O
(
N−1

)
, we have

S1i = O
(
N−1/2

)
. By Boole’s and Bernstein’s inequalities (e.g., Serfling (1980, p. 95)), for any ε > 0

P

(
max

1≤i≤N
|S1i| ≥ εN−1/21

√
logN1

)
≤ NP

(
|S1i| ≥ N−1/2 logNε

)
≤ 2N exp

(
− ε

2N1 logN1

2N1 + 2
3N1ε

)
= 2 exp

(
− ε

2N1 logN1

2N1 + 2
3N1ε

+ logN

)
→ 0 for sufficiently large ε.

It follows that max1≤i≤N |S1i| = OP (N−1/2
√

logN). For S2i, we have

S2i =
1

N1

N∑
j=1,j 6=i

[
1{ȲT,j ≤ Ỹi} − F̃T (Ỹi) + 1{Ỹj ≤ Ỹi}+ F̃ (Ỹi)

]
−
[
F̃T (Ỹi)− F̃ (Ỹi)

]
≡ S2i,1 − S2i,2, say.

Analogous to the study of S1i, we can show that max1≤i≤N |S2i,1| = OP (N−1/2
√

logN). As in the

proof of Lemma B.1(iii), we can show that max1≤i≤N |S2i,2| ≤ supy

∣∣∣F̃T (y)− F̃ (y)
∣∣∣ = OP (T−1/2). Thus

max1≤i≤N |S2i| = OP (N−1/2
√

logN + T−1/2) = OP (N−1/2
√

logN). For S3i, we have

S3i =
1

N1

N∑
j=1,j 6=i

[
1{ȲT,j ≤ ȲT,i} − F̃T (ȲT,i)− 1{ȲT,j ≤ Ỹi}+ F̃T (Ỹi)

]
−
[
F̃T (ȲT,i)− F̃T (Ỹi)

]
≡ S3i,1 − S3i,2, say.

Analogous to the study of S1i, we can show that max1≤i≤N |S3i,1| = OP (N−1/2
√

logN). In addi-

tion, by Boole’s and Bernstein’s inequalities, max1≤i≤N |S3i,2| ≤ supy

∣∣∣f̃T (y)
∣∣∣max1≤i≤N |ȲT,i − Ỹi| =

OP (T−1/2
√

logN). Thus max1≤i≤N |S3i| = OP (N−1/2
√

logN). Consequently, max1≤i≤N |ÂNT,i −Ai| =
OP (N−1/2

√
logN).

For (ii) , we only give a sketchy proof. Recall ĝ−1 (x, a) ≡ (nb)−1
∑n
j=1

∫ a
−∞ k

(
b−1[g̃ (x, j/n)− ã]

)
dã.

Let g−1n (x, a) be defined as ĝ−1 (x, a) with g̃ (x, j/n) being replaced by g (x, j/n) , i.e., g−1n (x, a) ≡
(nb)−1

∑n
j=1

∫ a
−∞ k

(
b−1[g (x, j/n)− ã]

)
dã. Following the proofs of Lemmas 2.1 and 2.2 in Dette et al.

(2006), we can show that

g−1n (x, a) = g−1 (x, a) +OP
(
b2 + (nb)−1

)
and gn (x, a) = g (x, a) +OP

(
b2 + (nb)−1

)
(B.4)

uniformly in (x, a) ∈ X̃ ×I. By the uniform consistency result for local polynomial estimate with generated

regressors (c.f., Mammen et al. (2012, Theorem 2) and Su and Ullah (2006, Lemmas A.2-A.5) for the

cases of nonparametrically generated regressors) and the result in part (i) , we have

g̃ (x, a) = g (x, a) +OP

[
‖h‖p+1

+ (NTh!)−1/2
√

log(NT ) +N−1/2
√

logN
]

(B.5)

where the first two terms in the last expression are present even if we observe Ai, and the third term

signals the cost of replacing Ai by Âi. Using (B.5) and similar arguments as used in the proofs of Theorems
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3.1 and 3.2 in Dette et al. (2006) in conjunction with Boole’s and Bernstein’s inequality, we can show

that

ĝ (x, a)− gJ (x, a) = O
(
‖h‖p+1

+ (NTh!)−1/2
√

log(NT ) +N−1/2
√

logN
)

(B.6)

uniformly in (x, a) ∈ X̃ × I. Combining (B.4) and (B.6) yields the desired result.

Proof of Theorem 2.4

Let P ∗ denote the probability distribution induced by the bootstrap resampling, with expectation

and variance operators given by E∗ (·) and Var∗ (·), respectively. In addition, we use OP∗ (·) and oP∗ (·)
to denote the probability orders of magnitude according to the bootstrap-induced probability law; e.g.,

aNT = oP∗ (1) denotes that P ∗ (|aNT | ≥ ε) = oP (1) for any positive ε > 0. Note that aNT = oP (1)

implies that aNT = oP∗ (1) . We use WNT to denote the original sample.

Recall that Y ∗it = ĝ(X∗it, A
∗
i ) + ε∗it, where the monotonicity of ĝ in its second argument is imposed and

A∗i is independent of (X∗it, ε
∗
it) conditional on WNT . By construction, both monotonicity and exogeneity

are satisfied in the bootstrap world. The bootstrap analogue of Ỹτ,i = E[Yitwτ (Xit)|Ai] is now given by

Ỹ ∗τ,i ≡ E∗ [ĝ(X∗it, A
∗
i )wτ (X∗it)|A∗i ] + E∗[ε∗itwτ (X∗it)|A∗i ]

=
1

NT

N∑
j=1

T∑
s=1

ĝ(Xjs, A
∗
i )wτ (Xjs) +

1

NT

N∑
j=1

T∑
s=1

ε̂jswτ (Xjs)

≡ ḡ∗τ (A∗i ) + ε̄∗τ . (B.7)

Since wτ is nonnegative, ḡ∗τ preserves the monotonicity of ĝ in its second argument.

As in the proof of Theorem 2.2, we only prove the case where T = 2. For τ = 1, 2, let Ȳ ∗T,τ,i, F̄
∗
NT,τ (·) ,

F̂ ∗NT,τ (·), Â∗NT,τ,i, D̂∗NT , and D̃∗NT denote the bootstrap analogue of ȲT,τ,i, F̄NT,τ (·) , F̂NT,τ (·), ÂNT,τ,i,
D̂NT , and D̃NT , respectively. That is, Ȳ ∗T,τ,i ≡ T−1

∑T
t=1 Y

∗
itwτ (Xit), F̄

∗
NT,τ (·) ≡ 1

N

∑N
i=1 1{Ỹ ∗τ,i ≤ ·},

F̂ ∗NT,τ (·) ≡ N−1
∑N
j=1 1{Ȳ ∗T,τ,j ≤ ·}, Â∗NT,τ,i ≡ F̂ ∗NT,τ (Ȳ ∗T,τ,i), D̂

∗
NT ≡

∑N
i=1(Â∗NT,1,i − Â∗NT,2,i)2, and

D̃∗NT ≡
∑N
i=1[F̂ ∗NT,1(Ỹ ∗1,i) − F̂ ∗NT,2(Ỹ ∗2,i)]

2. Let F̃ ∗Tτ and f̃∗Tτ denote the CDF and PDF of Ȳ ∗T,τ,i given

WNT , respectively. We prove Theorem 2.4 by showing that (i) D̂∗NT−D̃∗NT = oP∗ (1) ; (ii) D̄∗NT−B∗NT
d∗→∑∞

j=1 λj(Z2
j − 1); and (iii) B∗NT − B̂∗NT = oP∗ (1) .

Noting that Ȳ ∗T,τ,i − Ỹ ∗τ,i = T−1
∑T
t=1 ε

∗
itwτ (Xit), we can readily show that

E∗(Ȳ ∗T,τ,i − Ỹ ∗τ,i)2 = OP (1/T ) and sup
y
|F̃ ∗Tτ (y)− F̃ ∗τ (y)| = OP∗(T

−1/2). (B.8)

We can follow the proof of part (i) in the proof of Theorem Theorem 2.2 closely and show (i) analogously,

now using (B.8) in place of Lemma B.1.
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Now, we show (ii) . We decompose D̃∗NT as follows

D̃∗NT =

N∑
i=1

[
F̃ ∗T1(Ỹ ∗1,i)− F̃ ∗T2(Ỹ ∗2,i)

]2
+

N∑
i=1

[
F̂ ∗NT,1(Ỹ ∗1,i)− F̃ ∗T1(Ỹ ∗1,i)− F̂ ∗NT,2(Ỹ ∗2,i) + F̃ ∗T2(Ỹ ∗2,i)

]2
+2

N∑
i=1

[
F̂ ∗NT,1(Ỹ ∗1,i)− F̃ ∗T1(Ỹ ∗1,i)− F̂ ∗NT,2(Ỹ ∗2,i) + F̃ ∗T2(Ỹ ∗2,i

] [
F̃ ∗T1(Ỹ ∗1,i)− F̃ ∗T2(Ỹ ∗2,i

]
≡ D̃∗NT1 + D̃∗NT2 + 2D̃∗NT3, say.

Noting that ḡ∗τ in (B.7) is strictly monotone a.s.−P ∗, F̃ ∗1 (Ỹ ∗1,i) = A∗i = F̃ ∗2 (Ỹ ∗2,i). It follows by (B.8) that

D̃∗NT1 =

N∑
i=1

[
F̃ ∗T1(Ỹ ∗1,i)− F̃ ∗1 (Ỹ ∗1,i)− F̃ ∗T2(Ỹ ∗2,i) + F̃ ∗2 (Ỹ ∗2,i)

]2
≤ 2

2∑
τ=1

N∑
i=1

[
F̃ ∗Tτ (Ỹ ∗τ,i)− F̃ ∗τ (Ỹ ∗τ,i)

]2
= OP∗ (N/T ) = oP∗ (1) .

Let ξ∗i ≡ (Ȳ ∗T,1,i, Ȳ
∗
T,2,i, Ỹ

∗
1,i, Ỹ

∗
2,i)
′ and ψ∗T

(
ξ∗i , ξ

∗
j

)
≡ 1{Ȳ ∗T,1,j ≤ Ỹ ∗1,i} − F̃T1(Ỹ ∗1,i)− 1{Ȳ ∗T,2,j ≤ Ỹ ∗2,i}+

F̃T2(Ỹ ∗2,i). Then

D̃∗NT2 =

N∑
i=1

[
F̂ ∗NT,1(Ỹ ∗1,i)− F̃ ∗T1(Ỹ ∗1,i)− F̂ ∗NT,2(Ỹ ∗2,i) + F̃T2(Ỹ ∗2,i)

]2
= N−2

N∑
i=1

 N∑
j=1

ψ∗
(
ξ∗i , ξ

∗
j

)2

.

We can decompose D̃∗NT2 as follows

D̃∗NT2 = N−2
N∑
i=1

N∑
j 6=i

N∑
k 6=j,i

ψ∗T
(
ξ∗i , ξ

∗
j

)
ψ∗T (ξ∗i , ξ

∗
k) +N−2

N∑
i=1

N∑
j 6=i

ψ∗T
(
ξ∗i , ξ

∗
j

)2
+2N−2

N∑
i=1

N∑
j 6=i

ψ∗T (ξ∗i , ξ
∗
i )ψ∗T

(
ξ∗i , ξ

∗
j

)
+N−2

N∑
i=1

ψ∗ (ξ∗i , ξ
∗
i )

2 ≡ V ∗NT +B∗NT + 2R∗NT1 +R∗NT2.

Noting that E∗(R∗2NT1) = O(N−1) and E∗ |R∗NT2| = O(N−1), we have R∗NT1 = OP
(
N−1/2

)
and R∗NT2 =

OP
(
N−1

)
by Chebyshev and Markov inequalities. Let ζ∗i = (Ỹ ∗1,i, Ỹ

∗
2,i)
′ and ψ∗

(
u, ξ∗j

)
≡ 1{Ỹ ∗1,j ≤

u1} − F̃1(u1) − 1{Ỹ ∗2,j ≤ u2} + F̃2(u2) with u = (u1, u2)′. For V ∗NT , using arguments analogous to those

used in the study of VNT , we can readily show that V ∗NT = {1 + oP∗ (1)} H̄∗NT +OP∗
(
N−1/2

)
, where

H̄∗NT ≡
2

N

∑
1≤i<j≤N

∫
ψ∗ (ζ, ζ∗i )ψ∗

(
ζ, ζ∗j

)
F̃ ∗ζ (dξ)

is a second order degenerate U -statistic and F̃ ∗ζ denotes the CDF of ζ∗i = (Ỹ ∗1,i, Ỹ
∗
2,i)
′. By Proposition 5.2

of Chen and White (1998), H̄∗NT
d∗→
∑∞
j=1 λ

∗
j (Z2

j − 1) where {Zj} is a sequence of IID N (0, 1) random

variables, and
{
λ∗j
}

is the sequence of nonzero eigenvalues for plimT→∞K∗T (u, v) where K∗T (u, v) =
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∫
ψ∗ (ζ, u)ψ∗ (ζ, v) F̃ ∗ζ (dζ) . To show that

{
λ∗j
}

coincide with {λj} so that H̄∗NT has the same limiting

distribution as the asymptotic distribution of H̄N , it suffices to show that K∗T (u, v) = KT (u, v) + oP (1)

uniformly in (u, v) . The last desired result is true provided F̃ ∗τ → F̃τ for τ = 1, 2.

Recall that F̃τ is the CDF of Ỹτ,i = E [g (Xit, Ai)wτ (Xit) |Ai] +E [εitwτ (Xit)] = ḡτ (Ai) + ε̄τ and F̃ ∗τ

is the CDF of Ỹ ∗τ,i = E∗ [ĝ(X∗it, A
∗
i )wτ (X∗it)|A∗i ] +E∗[ε∗itwτ (X∗it)|A∗i ] = ḡ∗τ (A∗i ) + ε̄∗τ conditional on WNT .

Noting that A∗i and Ai are both U (0, 1) and ε̄τ is a constant, it suffices to show that for τ = 1, 2 : (1)

ε̄∗τ = ε̄τ + oP (1) and (2) ḡ∗τ (a) = ḡτ (a) + oP (1) uniformly in a. (1) follows because by the LLN, Lemmas

B.2(i)-(ii) , and the continuity of ĝ (·, ·) , we have

ε̄∗τ =
1

NT

N∑
j=1

T∑
s=1

[
Yjs − ĝ(Xjs, ÂNT,j)

]
wτ (Xjs)

=
1

NT

N∑
j=1

T∑
s=1

εjswτ (Xjs) +
1

NT

N∑
j=1

T∑
s=1

[g(Xjs, Aj)− ĝ(Xjs, Aj)]wτ (Xjs)

+
1

NT

N∑
j=1

T∑
s=1

[
ĝ(Xjs, Aj)− ĝ(Xjs, ÂNT,j)

]
wτ (Xjs)

= ε̄τ + oP (1) + oP (1) = ε̄τ + oP (1) .

For (2) , we have

ḡ∗τ (a)− ḡτ (a) =
1

NT

N∑
j=1

T∑
s=1

ĝ(Xjs, a)wτ (Xjs)− E [g (Xit, a)wτ (Xit)]

=
1

NT

N∑
j=1

T∑
s=1

{g(Xjs, a)wτ (Xjs)− E [g (Xjs, a)wτ (Xjs)]}

+
1

NT

N∑
j=1

T∑
s=1

[ĝ(Xjs, a)− g(Xjs, a)]wτ (Xjs)

≡ G1 (a) +G2 (a) , say.

The pointwise convergence of G1 (a) to 0 follows from the LLN. The uniform convergence follows by a sim-

ple application of Bernstein inequality. ForG2 (a) , we have supa∈I |G2 (a)| ≤ sup(x,a)∈X̃×I |ĝ(x, a)− g(x, a)|
× 1
NT

∑N
j=1

∑T
s=1 wτ (Xjs) = oP (1)E [wτ (Xjs)] = oP (1) . (1) and (2) imply that Ỹ ∗τ,i have the same lim-

iting distribution as Ỹτ,i and thus K∗T (u, v) = KT (u, v) + oP (1) . Consequently, λ∗j ’s coincide with λj ’s

and D̃∗NT2 −B∗NT
d→
∑∞
j=1 λj

(
Z2
j − 1

)
.

The proof of (iii) is straightforward and thus omitted. �
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