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Abstract

In this paper, we propose and implement an estimator for price elasticities

in demand models that makes use of Panel data. Our underlying demand

model is nonparametric, and accommodates general distributions of product-

specific unobservables which can lead to endogeneity of price. Our approach

allows these unobservables to vary over time while, at the same time, not

requiring the availability of instruments which are orthogonal to these un-

observables. Monte Carlo simulations demonstrate that our estimator works

remarkably well, even with modest sample sizes. We provide an illustrative

application to estimating the cross-price elasticity matrix for carbonated soft

drinks.

Keywords: demand elasticities, nonparametric estimation.

1 Introduction

The estimation of demand models occupies a large part of the empirical litera-

ture in industrial organization. Demand models are estimated in order to obtain

∗We thank Khai Chiong for research assistance.
†Stefan Hoderlein: Boston College, Department of Economics, 140 Commonwealth Ave, Chest-

nut Hill, MA 02467, USA, email: stefan hoderlein@yahoo.com.
‡Matthew Shum, Caltech, Division of Humanities and Social Sciences, MC 228-77, 1288 E.

California Blvd., Pasadena, CA 91125, USA. email: mshum@caltech.edu.

1



values for the various own- and cross-price elasticities among a set of goods. In

turn, these elasticities are crucial inputs into many policy evaluations of interest,

including merger analysis (Nevo (2000)) and the welfare measurements of new goods

(Hausman (1997), Petrin (2002)).

In this paper, we propose an estimator for price elasticities in demand models.

Since our goal is to estimate demand elasticities in as flexible a manner as possible,

we avoid making parametric restrictions on the underlying demand model, letting

it be an arbitrary function of observed variables as well as unobserved variables.

We emphasize in particular that we place no restrictions on individual level hetero-

geneity, as well as objects like unobserved product characteristics. The main insight

in our approach is that demand elasticities are derivatives of the (log-) demand

functions; we take a cue from recent developments in the econometrics of nonlinear,

nonseparable models, which has shown that (average) derivatives of these models

can be identified and estimated, even when the full underlying model is not. Hence,

we dispense with estimating the underlying demand model, but rather focus on

estimating its average derivatives.

As we mentioned above, the empirical literature on demand estimation is volu-

minous. There is a large literature on the use of flexible functional forms for the

estimation of demand systems; perhaps the most well-known instances of these are

the Translog (Jorgenson et. al. (1982)) and Almost Ideal Demand System (Deaton

and Muellbauer (1980)) specifications. More recently, a large number of papers in

empirical industrial organization has explored the estimation of aggregate demand

models based on discrete choice models of individual behavior (Berry (1994), Berry,

Levinsohn, Pakes (1995; hereafter “BLP”)). At the same time, there are also recent

papers exploring the nonparametric identification of these models (eg. Berry and

Haile (2008), Chiappori and Komunjer (2009)) but these papers have not explored

estimation. As far as we are aware, this is one of the first papers to consider estima-

tion of demand elasticities from a fully nonparametric demand system. At the same

time, our estimators for these demand elasticities are very easy to compute, in one

form involving little more than regression techniques, and are readily implementable

using standard statistical or econometric software packages. We are also among the

first to apply tools from the recent literature on nonlinear panel data models to a

2



demand estimation setting.

Methodologically, as alluded to above, our estimator is related to literature on

nonlinear models in which the observed and unobserved variables do not enter in

a separable manner, and where they are correlated with the observables. This

literature dates back to work by Chamberlain (1982), and interest was recently re-

vived by important papers of Altonji and Matzkin (2005) and Graham and Powell

(2012). Our estimation strategy follows, in particular, the paper of Chernozhukov,

Fernandez-Val, Hoderlein, Holzmann and Newey (2013, CFHHN)), who consider

the estimation of average derivatives of a general nonseparable panel data model,

in which the observed variables can be arbitrarily correlated with time-varying un-

observed components (thus generalizing the notion of “fixed effects” in linear panel

models. Importantly, a benefit of adapting this nonlinear panel approach to demand

estimation is that it does not require the availability of instruments for endogenous

prices, as is needed in most other econometric demand models.

There are several features of the CFHHN framework which make it particu-

larly natural for estimation in a demand context. Compared to other panel data

models, CFHHN allow several unobserved components to enter the model in an arbi-

trary fashion; in contrast, both Chamberlain (1982) and Graham and Powell (2012)

assume a linear correlated random coefficients structure, which rules out demand

models (such as BLP) in which the market level model is obtained as an aggregate

of individual-level multivariate choice models. Altonji and Matzkin (2005; AM) con-

sider a nonseparable model whose general structure is compatible with an individual

level multivariate choice model. However, AM’s framework cannot allow for arbi-

trary correlation between the unobserved product characteristics and the observed

characteristics in this setup.1 Moreover, both AM and Hoderlein and White (2012;

HW) assume that the correlated unobservable is time invariant, but the CFHHN

approach we follow allows for time-varying correlated unobservables. On the down-

side, however, this approach only allows us to estimate demand elasticities for a

certain subpopulation of markets – namely, the markets for which the observables

(including prices) change only little between two time periods. (Taking a cue from

1More specifically, AM need to impose restrictions on the time dependence of these quantities;

an example of such a restriction would be that the current observables are independent of the

unobserved characteristics, conditional on past observables.
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the program evaluation literature, we will refer to these markets as a subpopulation

of “stayers”.)

Finally, this paper also contributes to the small but growing literature on panel

data analysis of multinomial choice models. This includes Hausman (1996), Nevo

(2001), Moon, Shum and Weidner (2010), and Pakes and Porter (2013). One differ-

ence of the present paper relative to these others lies in how the dimensions of the

panel are defined. In the above papers, the “cross-sectional” units are products, and

the “time periods” can be either markets or explicit time periods. In this paper,

however, the cross-sectional unit is a market which is assumed to be observed across

different time periods. The reason we use this definition here is because we are in-

terested in estimating the whole matrix of cross-product elasticities, and this cannot

be done if we were to treat each product as a separate cross-sectional observation.

In the next section we introduce the model and describe our estimator. Section

3 presents Monte Carlo simulation results, and Section 4 contains an empirical

application. Section 5 concludes.

2 Model and Estimator

Our environment is one in which the researcher has data on quantities (or market

shares), prices, and product characteristics. We consider a panel setting, in which

the quantities sold and prices for each product are observed for a small number

of periods, and across many geographic markets. That is, the two dimensions in

our panel are time and geographic markets, with time being the “short” dimension,

and the number of markets being the “long” dimension. For what follows then, we

will just assume that the number of periods T = 2, while the number of markets

M →∞, i.e. we consider a population of markets.

Specifically, consider a given product market, consisting of J products (indexed

by j = 1, . . . , J), along with corresponding J-vectors Y , P and X ≡ (X1, . . . , XK)

denoting, respectively, the log-quantities, prices and K characteristics for the prod-

ucts. The panel data {Ymt, Pmt, Xmt} are observed, for two time periods t = 1, 2 and

a large number of markets m = 1, . . . ,M . We consider a general demand system
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linking prices and characteristics of the products to the quantity of the product sold:

Ymt = φ(Pmt, Xmt, Vmt) t = 1, 2; m = 1, . . . ,M. (1)

In the above, Y , X, and P are observed, while the vector V is unobserved. One

could consider Vt to contain objects such as a classical fixed effect or time invariant

random coefficients, but also a time varying variables which may contain correlated

time varying unobservables like product specific charactersitics, but also traditional

exogenous shocks. It is important to notice that the correlated unobservables can

vary across both markets m and time periods t. We want to emphasize here that in

theory there is no restriction to the dimensionality of the unobservable; there may

be arbitrarily many such variables. Also, as we will see below, these unobservables

may be arbitrarily correlated with the observables.

In what follows, we will typically omit the m subscript for convenience; that is,

we now discuss identification of the cross-price elasticities of demand population of

markets. To do so, we introduce the following notation: Let ∂p denote the J × J
Jacobian matrix of the φ(· · · ) function with respect to the vector P . Let ∆ denote

the time-difference of a variable between periods t = 1 and t = 2, e.g., ∆X =

X2 − X1. Throughout, we assume that P is continuously distributed. The main

identifying assumption in CFHHN (2012) is the following:

Assumption A1 Vt is conditionally stationary:

FV1|∆X=0,X1,∆P=0,P1 = FV2|∆X=0,X2,∆P=0,P2 .

This assumption restricts the vector valued Vt process to have a stationary marginal

distribution; this means that the period-specific vector of shock is always drawn

from the same distribution. This allows for many correlated product characteristics

across markets to change arbitrarily over time, as long as their conditional distri-

bution would stay the same across time. However, it allows for the unconditional

distribution to change across time. If for instance marketing campaigns are being

combined with price changes across time, this can be well accommodated in our

model.2 On the other hand, this assumption essentially rules out major period-

2This assumption relaxes the setup in HW, which assumed correlated market- and product

specific variables to be time-invariant. Such an assumption may be considered restrictive, especially

as there may be unobserved variables (such as advertising campaigns) which vary over time, and

can be chosen by firms in conjunction with their pricing decisions.
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specific aggregate shocks, but allows for time series correlation in the idiosyncratic

shocks. It is best satisfied, if the two periods are close by, so that the macroeconomic

environment is comparable.

The second set of assumptions are differentiability assumptions:

Assumption A2 P ∈ P where P is an open convex set, and for each (x, v) ∈
X × V , φ(·, x, v) is twice continuously differentiable on P with bounded derivatives

up to order two.

This assumption requires the structural function φ to be differentiable. More-

over, we assume that there is positive density around zero changes, i.e., there is a

substantial part of the population that experience zero or very small price changes

across time, and - by the differentiability assumption - responds smoothly to those.

To state the main result, we define the local average response (LAR) of the φ(· · · )
function. Letting ∆ , the LAR is

E [∂pφ(P1, X1, V1)|∆P = 0,∆X = 0, p1, X1] .

Obviously, the LAR here corresponds to the matrix of cross-price semi-elasticities

of the demand system φ(· · · ), averaged over all unobserved components conditional

on (∆P = 0,∆X = 0, P1, X1). (By analogy with the program evaluation literature,

the subpopulation of markets for which (∆P = 0,∆X = 0, P1, X1) are “stayers”

for which prices and characteristics in the second period remained the same as in

the first period.) The corresponding matrix of cross-price elasticities, then, can be

obtained by multiplying through by the vector of prices in the first period:

E [∂pφ(P1, X1, V1)|∆P = 0,∆X = 0, p1, X1]⊗ P ′1.

Under the previous assumptions,3 CFHHN (2013) show the identification of the

LAR matrix:

Proposition 1. (CFHHN (2013)): The LAR is equivalent to a derivative of the first-

differenced regression of ∆Y on (∆P, P1):

E [∂pφ(P1, X1, V1)|∆P = 0,∆X = 0, P1, X1] = ∂∆PE [∆Y |∆P,∆X,P1, X1] |∆P=0.

3See CFHHN (2013) for details. There are some additional technical assumptions underlying

the results, but we do not list them here for convenience.
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Discussion of Proposition 1. Obviously, the quantity of the right-hand side is

estimable straight from the data, as it involves only the observed variables Y and P .

The left hand side object is the structural object of interest: Let ξ1 denote time and

market specific correlated product characteristics, a subvector of the vector V1 = v1

in period 1. Then, ∂Pφ(p1, x1, v1) defines the structural elasticity for a person or

market characterized by a certain set of (possibly time varying) preferences who

experiencies a certain market environment in period 1, including a subvector ξ1 that

described the market specific product characteristic in this period 1, when faced

with prices P1 = p1 and characterized by other observable covariates X1 = x. We

obtain the average of these structural elasticities for the subpopulation which faces

the same price and and other variables (including observed time varying product

characteristics as part of Xt, time invariant product characteristics can simply be

omitted as time invariant variables automatically satisfy the stationarity property),

but for which prices and these other variables do not change dramatically between

the periods. For typical applications in industrial organization, this can be a large

subsample, especially in mature product markets were prices and product charac-

teristics are not very volatile across time, where price variation across markets is

more prominent than price variation over time.4

We provide an informal sketch of the proof for this result, but refer to CFHHN

and HW for the general result. Consider the special case in which there are no

X variables, and where there is only a single good (J = 1). Then, we can write

∆Y = φ(P1 + ∆P, V2) − φ(P1, V1). Using a linearization of φ(P1 + ∆P, V2) around

P1, and considering small price changes ∆P, we get that by A2

∆Y ∼= φ(P1, V2) + ∆P · ∂pφ(P1, V2)− φ(P1, V1)

Now, A1 implies that E[φ(P1, V2)|∆P, P1]− E[φ(P1, V1)|∆P, P1] = 0, so that

E[∆Y |∆P, P1] ∼= ∆P · E[∂pφ(P1, V2)|∆P, P1]

= ∆P · E[∂pφ(P1, V1)|∆P, P1]

implying that ∂
∂∆P

E[∆Y |∆P, P1] ∼= E[∂pφ(P1, V1)|∆P, P1] for ∆P small. �

4Moreover, under additional conditions, the proposition above can be extended to identify the

average elasticities across the whole population, but we do not elaborate on this here, see CFHHN

and HW for details.
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Example: random-coefficients logit demand Next, we illustrate the scope

of our nonparametric estimator by considering a flexible multinomial choice model

similar to the random-coefficients logit model of Berry, Levinsohn, and Pakes (1995).

This is also the example used in our Monte Carlo experiments below. Consider a

market for J products. We observe the aggregate market shares Sjt, for products

j = 1, . . . , J across markets m = 1, . . . ,M and time periods t = 1, . . . , T . The

market share function for product j in market m and period t takes the form

Sjmt =

∫
exp(−αpjmt +Xj

mtβ + ξjmt + ηjmt)

1 +
∑J

j′=1 exp(αpj
′

mt +Xj′

mtβ + ξj
′

mt + ηj
′

mt)
dG(α, β; θm). (2)

Here, the price coefficient α and the taste parameter β vary across individual con-

sumers according to the distribution G, with market specific parameter θm, say the

mean and variance. In principle, we can let this distribution vary with time, but we

desist from this greater generality here as it is not matched in the literature.

Applying the notation in Eq. (1) to Eq. (2) above, the time-varying corre-

lated effects Vmt (which we allow to vary arbitrarily across markets, and which

generalize the classical notion of fixed effects) contains both the time-invariant

but market-specific preference distribution parameters θm, as well as the prefer-

ence shocks
{
ηjmt, j = 1, . . . , J

}
and unobserved product characteristics ξ1

mt, . . . , ξ
J
m,

both of which can move market shares across time periods.5 �

2.1 Estimation

The identification results above imply that ∂∆PE [∆Y |∆P,∆X,P1, X1] |∆P=0 is the

reduced form object of interest which is to be estimated. HW propose an estimator

for this quantity in which the conditional expectation on the RHS of the statement of

the proposition is estimated by a local quadratic regression. Accordingly, the partial

derivative of this conditional expectation can be computed from the coefficients of

the local quadratic regression. Details of this regression procedure are provided in

the next section. HW also derive the asymptotic theory for the estimated average

partial derivatives; since the limiting distributions involve components which are

5Note also that our model, in Eq. (1), allows for interactions betweenXj and ξjt, thus addressing

on important critique in this literature (cf. Gandhi, Kim, Petrin (2011)).
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tedious and difficult to compute, we approximate the standard errors in the estimates

using bootstrap resampling.

3 Monte Carlo experiments

In order to gauge the small-sample performance of our estimator, and also consider

other design aspects in the implementation of our estimator, we perform a Monte

Carlo exercise based on the simple multinomial logit demand model, as in Eq. (2).

We assume that J = 2, so there are only two available products (in addition to

outside good). Then the market shares are given by (for j = 1, 2):

Sjmt =
exp(−αpjmt + ξjmt + ηjmt)

1 +
∑2

j′=1 exp(αpj
′

mt + ξj
′

mt + ηj
′

mt)
. (3)

There are M markets (indexed by m), and two time periods (t = 1, 2).

In the first set of experiments, we assume that the fixed effects are time-invariant;

specifically, the fixed effects are generated by ξj=1
m ∼ U [0.5, 1.5] and ξj=2

m ∼ U [1, 2].

The idiosyncratic shocks are generated as ηjmt ∼ N(0, 0.5), i.i.d. across (j,m, t).

Prices are generated in several steps. Define yjmt = ξjm + νjmt, with νjmt ∼ N(0, σ2).

Then define the prices

pjmt =

{
yjmt if yjmt > 0

0.1 otherwise.

So, on average across markets and over time, good 1 is more expensive than good 2.

The model parameters are set as α = −1, σ = 0.5. In the exercises below, we

consider dataset size of J = 2, T = 2, M = (100, 500, 1000) for each replication, and

consider 100 replications for each exercise.

In Table 1 we report the results for the average elasticities. Proposition 1 implies

that we can estimate an average cross-price elasticity for product j with respect to

a price change in product i by the expression

εi,j,t=1 ≡ E
{
pi ∗ E

[
∆Y j|∆p1 = 0,∆p2 = 0, p1

t=1 = p̄1, p2
t=1 = p̄2

]}
.

We approximated the above by:

ε̃i,j,t=1 ≈
1

M

M∑
m=1

pim,t=1 ·
(
E
[
∆Y i

m|∆p1 = 0,∆p2 = 0, p1
m,t=1, p

2
m,t=1

])
.
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For the estimates reported in Table 1, we use a local quadratic regression (as pro-

posed in HW (2012)) for estimating the conditional expectation E[∆Y j|∆p1 =

0,∆p2 = 0, p1
t=1 = p̄1, p2

t=1 = p̄2] in the above expression. Specifically, we com-

puted a local quadratic regression of ∆Y j = Y j
m,t=2 − Y j

m,t=1 on a constant and

linear and quadratic terms in the components (∆p1
m,∆p

2
m), (p1

m,t=1, p
2
m,t=1) using

kernel weights equal to

wm = K

(
∆p1

m

h1

)
K

(
∆p2

m

h1

)
K

(
p1
m,t=1 − p̄1

h2

)
K

(
p1
m,t=2 − p̄2

h2

)
. (4)

We used a standard Gaussian kernel K(x) = (π)−0.5 exp(−0.5 ∗ X2). We also ex-

plored different values for the bandwidths (h1, h2). In Table 1, we report the average

cross-price elasticities for each of the four pairs of products (i, j), with i, j ∈ {1, 2}.
As we would expect, the own-price elasticities ε1,1 and ε2,2 are negative in sign be-

cause, in the logit model, the two products are substitutes; correspondingly, the

cross-price elasticities ε1,2 and ε2,1 are positive in sign, and smaller in magnitude

than the own-price elasticities.

In Table 1, we also report the root-mean-squared error (RMSE) between the

estimated elasticities and the true values for the elasticities. For the true values of

the elasticities, we note that in the multinomial logit model, the formula for the

average cross-price elasticity for product j with respect to a price change in product

i (i, j ∈ {1, 2}):

ε̃i,j,t=1 = Ep1,p2pi ∗ E
[
α ∗ (1− Sjm,1)|∆p1 = 0,∆p2 = 0, p1

t=1 = p̄1, p2
t=1 = p̄2

]
where the partial mean E

[
α ∗ pim,1 ∗ (1− Sim,1)|∆p1 = 0,∆p2 = 0, p1

m,t=1 = p̄1, p2
m,t=1 = p̄2

]
was, again, computed using a local quadratic regression of α ∗ pim,1 ∗ (1 − Sim,1) on

a constant and (∆p1
m,∆p

2
m, p

1
m,t=1, p

2
m,t=1) using kernel weights as in (4) above. In

the results reported below, for each set of exercises we used the same bandwidth

(h1, h2) in computing both the estimates of the average elasticities, as well as com-

puting their true counterparts. We see that, uniformly across different sample sizes,

the root-mean-squared errors are small, indicating that our elasticity estimates are

quite accurate. There is a mild deterioration in accuracy in the smallest sample

size (M = 100); but even in this case, we see that the average elasticity estimator

performs very well for bandwidths of h = 0.5, 1.0.
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In Table 2 we consider a second specification, in which the fixed-effects ~ξmt =

(ξ1
mt, ξ

2
mt) are allowed to be time-varying, corresponding to the main specification

put forward in this paper and analyzed in CFHHN (2013). Note that in this spec-

ification, there are no time-invariant observables at all. The stationarity condition

(Assumption A1) in this case becomes

F~ξm,1
(·|~pm,1, ~pm,2) = F~ξm,2

(·|~pm,1, ~pm,2).

That is, the distribution of ~ξm,t, conditional on both period’s prices ~pm,1, ~pm,2, is

invariant for t = 1, 2.

In the simulation, we generate the prices in several steps. Define y1
mt ∼ N (1, σ2)

and y2
mt ∼ N (1.5, σ2). Then define the prices

pjmt =

{
yjmt if yjmt > 0

0.1 otherwise.

Then we generate the fixed effects as

ξ1
m,t = 0.5 ∗ (p1

m,1 + p1
m,2) + z1

m,t; z1
m,t ∼ N (0, 1)

and

ξ2
m,t = 0.5 ∗ (p2

m,1 + p2
m,2) + z2

m,t; z2
m,t ∼ N (0, 1).

Thereupon, the design of the Monte Carlo experiment proceeds as in the case de-

scribed previously. The results are reported in Table 2. Not unexpectedly, we see

that the RMSE in these specifications are typically at least one order of magnitude

higher than in the corresponding results in Table 1. Also, there is a more marked

deterioration in performance for the smallest sample size (M = 100), especially for

the bandwidth of h = 0.25, which was the smallest which we considered. How-

ever, even with such a small sample size, the RMSE stays remarkably small when

the bandwidth is increased (to h = 0.5, 1.0). One lesson from these Monte Carlos

appears to be that we should not use very small bandwidths.
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4 Empirical application

4.1 Data description

We consider an application to scanner data from the carbonated soft drink market.

The data are drawn from the IRI Marketing Dataset, which is a large-scale scanner

panel data set which is ongoing since 2000, see Bronnenberg, Kruger, and Mela

(2008) for a description. This dataset contains weekly-level sales and prices for all

soft drinks for a large sample of 1025 stores across the United States. Using this

dataset, each cross-sectional unit is a store, while each time period is a week. We

consider two weeks of data, corresponding to the two consecutive weeks beginning

from July 16-22 and July 23-29, 2001.6

We aggregate up to the six largest brands: (i) Coke; (ii) Pepsi; (iii) Sprite –

regular and diet; (iv) Mountain Dew – regular and citrus-flavored; (v) Diet Coke;

(vi) Diet Pepsi. Of these six beverages, the Coca-Cola company produces Coke,

Diet Coke, and Sprite, whereas PepsiCo produces Pepsi, Diet Pepsi, and Mountain

Dew. The estimated matrix of cross-price elasticities is presented in Table 3. In

these results, the various bandwidths used in the local quadratic regression were

set proportional to the standard deviations of the variables; for the proportionality

constant we tried both 1.0 and 0.75.

4.2 Computational details for estimation

As discussed above, the identification result in CFHHN (2013) and HW (2012) has

the advantage that it is constructive, in the sense that it lends itself to straight-

forward sample counterparts estimation. In particular, following HW (2012), we

employ local polynomial estimators (more precisely, locally quadratic) estimators to

estimate the derivative of the mean regression7. More specifically, we use a standard

Gaussian Kernel. Instead of choosing a separate bandwidth for every regressor, we

choose the bandwidth to be proportional to a baseline bandwidth times the stan-

6For previous empirical work on the carbonated soft drinks market, see Gasmi, Laffont, and

Vuong (1992) and Dube (2004).
7The (standard) convergence behavior, including asymptotic normality at a nonparametric rate

(recall that we are working with the subpopulation for which ∆P = 0) is established in HW (2012).
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dard deviation of the respective regressor, and instead of choosing a single value for

the bandwidth, we have experimented with various bandwidths to see whether the

results are robust, at least in a qualitative sense. Since we consider estimating a

derivative of a regression function, there is no clear guidance on how to do this in a

data driven way, and we have thus opted to present results for several values of the

bandwidth.

4.3 Empirical results

Overall, we see that the estimates of the cross-price elasticities are generally less

precisely estimated than the own-price elasticities. However, the point estimates

indicate that some products are substitutes, while others are complements and, in

addition, that signs of the cross-price elasticity matrix is not always symmetric.

Note in this respect that there is no need for symmetry to hold, even if individual

rationality were to hold, as the equations are market level aggregates over unob-

served heterogeneity. For instance, focusing on the h = 1.0∗σ results (the top panel

of Table 3), we see that the demand for Pepsi responds positively to a price rise in

Coke (cross-price elasticity is 1.2406); however, the demand for Coke responds nega-

tively to price increases in Pepsi (cross-price elasticity is -0.5628). Results like these

suggest a broader range of own- and cross-price elasticities than would be allowed for

in typical discrete-choice models, and support the case for nonparametric regression.

For instance, in logit-based multinomial models, substitution between all products

is imposed from the outset as a parametric restriction, and this assumption seems

to be violated for some beverages.

5 Conclusions

In this paper we have proposed a new estimator for the matrix of cross-price elastic-

ities in demand models, utilizing panel data in product-level quantities and prices

observed across a large number of markets in a small number of time periods. We

allow the underlying demand model to be nonparametric, and allow the product-

specific unobservables to be arbitrarily complex an enter in arbitrary nonlinear fash-

ion. Monte Carlo simulations demonstrate that our estimator works remarkably

13



well, even with modest sample sizes. An illustrative empirical application to the

carbonated soft drink market reveals some patterns of both complementarity and

substitutability across different soft drink products, which suggest that a typically

logit-based approach (which imposes substitution across all products) may be too

restrictive for this market.
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(h1, h2) ε1,1,t=1 ε1,2,t=1 ε2,1,t=1 ε2,2,t=1

M=100

(1.0, 1.0) avg.a estimate -0.6760 0.4969 0.3233 -0.9894

RMSEb 0.0121 0.0115 0.0133 0.0098

(0.5, 0.5) avg. estimate -0.6643 0.5034 0.3010 -1.0182

RMSE 0.0303 0.0317 0.0333 0.0308

(0.25, 0.25) avg. estimate -0.6407 0.5104 0.2489 -1.0448

RMSE 0.2414 0.2739 0.1842 0.2561

M=500

(1.0, 1.0) avg. estimate -0.6807 0.4923 0.3352 -0.9863

RMSE 0.0029 0.0027 0.0028 0.0026

(0.5, 0.5) avg. estimate -0.6813 0.4753 0.3193 -0.9957

RMSE 0.0055 0.0067 0.0057 0.0056

(0.25, 0.25) avg. estimate -0.6903 0.4603 0.2979 -1.0050

RMSE 0.0376 0.0373 0.0409 0.0308

M=1000

(1.0, 1.0) avg. estimate -0.6746 0.5138 0.3276 -1.0021

RMSE 0.0013 0.0013 0.0013 0.0015

(0.5, 0.5) avg. estimate -0.6822 0.4993 0.3227 -1.0152

RMSE 0.0028 0.0028 0.0030 0.0029

(0.25, 0.25) avg. estimate -0.7035 0.4939 0.3160 -1.0394

RMSE 0.0169 0.0184 0.0179 0.0175

E~Pt=1

~Pt=1 ∗ E
[
∂~p logSt=1|∆~P = 0, ~Pt=1

]
a: averaged across 100 Monte Carlo replications
b: taken across 100 Monte Carlo replications

Table 1: Monte Carlo Results: Average Elasticities
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(h1, h2) ε̃1,1,t=1 ε̃1,2,t=1 ε̃2,1,t=1 ε̃2,2,t=1

M=100

(1.0, 1.0) avg. estimate -0.7473 0.6375 0.3381 -0.8575

RMSE 0.0661 0.0678 0.0368 0.0387

(0.5, 0.5) avg. estimate -0.7536 0.5956 0.3354 -0.8404

RMSE 0.1568 0.1730 0.0729 0.0950

(0.25, 0.25) avg. estimate -0.8131 0.4068 0.2953 -0.7842

RMSE 0.8994 0.9890 0.3745 0.4599

M=500

(1.0, 1.0) avg. estimate -0.6896 0.6379 0.3112 -0.8457

RMSE 0.0133 0.0131 0.0047 0.0049

(0.5, 0.5) avg. estimate -0.6948 0.6202 0.3117 -0.8360

RMSE 0.0310 0.0285 0.0111 0.0133

(0.25, 0.25) avg. estimate -0.6578 0.6200 0.2897 -0.8218

RMSE 0.1936 0.2595 0.0672 0.0971

M=1000

(1.0, 1.0) avg. estimate -0.7005 0.6376 0.3206 -0.8617

RMSE 0.0074 0.0075 0.0028 0.0026

(0.5, 0.5) avg. estimate -0.6935 0.6443 0.3194 -0.8626

RMSE 0.0181 0.0158 0.0066 0.0052

(0.25, 0.25) avg. estimate -0.6724 0.7039 0.3226 -0.8931

RMSE 0.0968 0.0875 0.0358 0.0394

E~Pt=1

~Pt=1 ∗ E
[
∂~p logSt=1|∆~P = 0, ~Pt=1

]
a: averaged across 100 Monte Carlo replications
b: taken across 100 Monte Carlo replications

Table 2: Monte Carlo Results: Average Elasticities, with “time-varying” fixed effects
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Coke Pepsi Sprite MDew DCoke DPepsi

Coke -1.0830 -0.5628 1.8413 0.5399 -0.1575 -0.2852
(0.1791) (0.2062) (0.2448) (0.1071) (0.2341) (0.1606)

Pepsi 1.2406 -0.5740 -1.4945 -0.1959 -1.5974 0.6834
(0.2464) (0.2645) (0.2649) (0.1530) (0.2869) (0.1634)

Sprite -0.4123 -0.1491 -1.6711 1.6983 0.1389 -0.8239
(0.3281) (0.3893) (0.4385) (0.2616) (0.3934) (0.2535)

MDew -1.0440 2.0596 0.3331 -0.7966 -1.6627 1.2473
(0.4439) (0.4637) (0.5120) (0.2480) (0.5942) (0.3157)

DCoke -0.2532 -1.2477 2.1616 -0.0683 -0.5688 -0.4286
(0.2269) (0.2359) (0.2368) (0.1377) (0.2542) (0.1553)

DPepsi 1.5480 0.5649 0.7368 -1.0669 -1.8764 -0.5909
(0.4366) (0.4667) (0.4894) (0.3510) (0.5352) (0.2752)

Bandwidth: h1, h2 = 1.0 ∗ σ

Coke -1.1517 -0.8629 2.0175 0.6848 0.3724 -0.5123
(0.2077) (0.2449) (0.2770) (0.1326) (0.2703) (0.1818)

Pepsi 1.7444 -0.6680 -1.3743 -0.2956 -2.2893 0.7207
(0.3035) (0.3126) (0.3261) (0.1928) (0.3414) (0.1960)

Sprite 0.2026 0.1586 -2.5461 0.7669 0.3615 -0.8426
(0.4255) (0.4604) (0.5452) (0.2893) (0.5141) (0.3313)

MDew -0.3363 2.7415 -0.3518 -0.7147 -1.0706 0.5454
(0.5497) (0.5497) (0.6662) (0.3114) (0.9168) (0.3678)

DCoke -0.4702 -1.5552 2.4967 0.0321 -0.2299 -0.4458
(0.2807) (0.2921) (0.2994) (0.1666) (0.3014) (0.1826)

DPepsi 1.7962 0.1132 1.7968 -0.0917 -2.4599 -1.0308
(0.5426) (0.5878) (0.6446) (0.4134) (0.7112) (0.3632)

Bandwidth: h1, h2 = 0.75 ∗ σ

Elasticity of demand for row brand, with respect to price change in column brand.

Bootstrapped standard errors in parentheses.

Table 3: Matrix of Cross-price elasticities
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