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Abstract

In this paper, we suggest and analyze a new class of specification tests for random

coefficient models. These tests allow to assess the validity of central structural features of

the model, in particular linearity in coefficients and generalizations of this notion like a

known nonlinear functional relationship. They also allow to test for degeneracy of the dis-

tribution of a random coefficient, i.e., whether a coefficient is fixed or random, including

whether an associated variable can be omitted altogether. Our tests are nonparamet-

ric in nature, and use sieve estimators of the characteristic function. We analyze their

power against both global and local alternatives in large samples and through a Monte

Carlo simulation study. Finally, we apply our framework to analyze the specification in a

heterogeneous random coefficients consumer demand model.
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1 Introduction

Heterogeneity of individual agents is now widely believed to be an important - if not the

most important - source of unobserved variation in a typical microeconometric application.

Increasingly, the focus of econometrics shifts towards explicitly modeling this central feature

of the model through random parameters, as opposed to searching for fixed parameters that

summarize only, say, the mean effect. However, as always when additional features are being

introduced, this step increases the risk of model misspecification and therefore introducing

bias. This suggests to use all the information available in the data to assess the validity of the

chosen specification through a test before performing the main analysis. A second important

feature of a specification test is that we may be able to find a restricted model that is easier

to implement than the unrestricted one. This feature is particularly important in models of

complex heterogeneity, which are generically only weakly identified and therefore estimable

only under great difficulties.

This papers proposes a family of nonparametric specification tests in models with complex

heterogeneity. We focus on the important class of random coefficient models, i.e., models in

which there is a finite (db dimensional) vector of continuously distributed and heterogeneous

parameters B ∈ Rdb , and a known structural function g which relates these coefficients and a dx

dimensional vector of observable explanatory variables X to a continuous dependent variable

Y , i.e.,

Y = g(X,B). (1.1)

Throughout this paper, we assume that X is independent of B (however, as we discuss

below, this does not preclude extensions where some variables in the system are endogenous).

The leading example in this class of models is the linear random coefficient model, where

g(X,B) = X ′B, but we also propose specification tests in models where g is nonlinear. Indeed,

in extensions we also consider the case where Y is binary, and/or where Y is a vector.

The simple linear model with independent random coefficients is well suited to illustrate our

contribution and to explain the most important features of such a nonparametric specification

test. This model is known to be exactly point identified in the sense that there is a one-to-one

mapping from the conditional probability density function of the observable variables, fY |X

to the density of random coefficients fB such that the true density of random coefficients is

associated with exactly one density of observables (see, e.g., Beran et al. [1996] and Hoderlein

et al. [2010]). However, despite the one-to-one mapping between population density of the data

and density of random coefficients, the model imposes structure that can be used to assess

the validity of the model. For instance, in the very same model, the conditional expectation is

linear, i.e., E[Y |X] = b0+b1X1+...+bkXk, where bj = E[Bj]. This means that a standard linear

2



model specification test for quadratic terms in X, or, somewhat more elaborate, nonparametric

specification tests involving a nonparametric regression as alternative could be used to test the

specification. Similarly, in this model the conditional skedastic function is at most quadratic

in X, so any evidence of higher order terms can be taken as rejection of this linear random

coefficients specification, too. However, both of these tests do not use the entire distribution of

the data, and hence do not allow us to discern between the truth and certain alternatives.

In contrast, our test will be based on the characteristic function of the data, i.e., we use

the entire distribution of the data to assess the validity of the specification. In the example

of the linear model, we compare the distance between a series least squares estimator of the

unrestricted characteristic function E[exp(itY )|X], and an estimator of the restricted one, which

is E[exp(it(X ′B))|X] =
∫

exp(it(X ′b))fB(b)db, where the probability density function fB of the

random coefficients B is replaced by a sieve minimum distance estimator under the hypothesis

of linearity. More specifically, using the notation ε(X, t) = E[exp(itY )− exp(it(X ′B))|X], our

test is based on the observation that under the null hypothesis of linearity, ε(x, t) = 0 holds,

for all (x, t), or equivalently, ∫
E
[
|ε(X, t)|2

]
$(t)dt = 0,

for any strictly positive weighting function $. Our test statistic is then given by the sample

counterpart

Sn ≡ n−1

n∑
j=1

∫
|ε̂n(Xj, t)|2$(t)dt,

where ε̂n denotes an estimator of ε as described above. We reject the null hypothesis of linearity

if the statistic Sn becomes too large.

This test uses evidently the entire distribution of the data to assess the validity of the spec-

ification. It therefore implicitly uses all available comparisons between the restricted and the

unrestricted model, not just the ones between, say a linear conditional mean and a nonpara-

metric conditional mean. Moreover, it does not even require that these conditional means (or

higher order moments) exist. To see that our test uses the information contained in the condi-

tional moments, consider again the linear random coefficients model. Using a series expansion

of the exponential function, ε(X, t) = 0 is equivalent to

∞∑
l=0

(it)l
{
E[Y l|X]− E[(X ′B)l|X]

}
/(l!) = 0,

provided all moments exist. This equation holds true, if and only if, for every coefficient l ≥ 1 :

E[Y l|X] = E[(X ′B)l|X],

i.e., there is equality of all of these conditional moments. This implies, in particular, the first

and second conditional moment equation E[Y |X] = X ′E[B] and E[Y 2|X] = X ′E[BB′]X. As

3



such, our test exploits potential discrepancies in any of the conditional moments, and works

even if some or all of them do not exist.

Our test is consistent against a misspecification of model (1.1) in the sense that, under the

alternative, there exists no vector of random coefficients B satisfying the model equation (1.1)

for a known function g. Indeed, such a misspecification leads to a deviation of the unrestricted

from the restricted conditional characteristic function. Moreover, our test is also consistent

against certain specific other alternatives, e.g., if the null is the linear random coefficient model

and the alternative is a higher order polynomial with random parameters.

However, we can also use the same testing principle to analyze whether or not a parameter is

nonrandom, which usually allows for a
√
n consistent estimator for this parameter, and whether

it has in addition mean zero which implies that we may omit the respective variable altogether.

This is important, because from a nonparametric identification perspective random coefficient

models are weakly identified (i.e., stem from the resolution of an ill posed inverse problem), a

feature that substantially complicates nonparametric estimation1. If we think of a parametric

model as an approximation to a more complex nonparametric model, this is likely also going to

affect the finite sample behavior of any parametric estimator. As such it is desirable to reduce

the number of dimensions of random parameters as much as possible, and our test may serve

as guidance in this process.

Finally, it is important to note that our method also applies to other point identified random

coefficient models such as models that are linear in parameters, but where X is replaced by

a elementwise transformation of the covariates (i.e., Xj is replaced by hj(Xj) with unknown

hj. See Gautier and Hoderlein [2015] for the formal argument that establishes identification).

The reason is that the mean regression in these models is still of an additive structure, i.e.,

in particular it does preclude interaction terms among the variables that feature across all

moments.

Extensions. While setting up the basic framework is a contribution in itself, a key insight

in this paper is that testing is possible even if the density of random coefficients is not point

identified under the null hypothesis. This is important, because many structural models are

not linear in an index. As such, it is either clear that they are not point identified in general

and at best set identified (see Hoderlein et al. [2014], for such an example), or identification

is unknown. To give an example of such a model, consider a stylized version of the workhorse

QUAIDS model of consumer demand (Banks et al. [1997]), where demand for a good Y is

defined through:

Y = B0 +B1X +B2X
2,

1In a nonparametric sense, there is a stronger curse of dimensionality associated with random coefficient

models than with nonparametric density estimation problems (see, e.g., Hoderlein et al. [2010]).
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where Bj denotes parameters, and X log total expenditure. For reasons outlined in Masten

[2015], the joint density of random parameters B0, B1, B2 is not point identified in general. Our

strategy is now to solve a functional minimization problem that minimizes a similar distance as

outlined above between restricted and unrestricted model, and allows us to obtain one element

in this set as minimizer. If the distance between the restricted model and the unrestricted

model is larger than zero, we conclude that we can reject the null that the model is, in our

example, a heterogeneous QUAIDS. However, if the distance is not significantly different from

zero, there still may be other non-QUAIDS models which achieve zero distance, and which we

therefore cannot distinguish from the heterogeneous QUAIDS model. As such, in the partially

identified case we do not have power against all possible alternatives, and our test becomes

conservative.

Interestingly, even if our model is not identified under the null hypothesis, such as in the case

of the random coefficients QUAIDS model, our test still has power against certain alternatives,

e.g., any higher polynomial random coefficient model. Again, since our test compares all condi-

tional moments, ε(X, t) = 0 for all t implies that the cubic model Y = B̃0+XB̃1+X2B̃2+X3B̃3

with random coefficients (B̃0, B̃1, B̃2, B̃3) or any other higher polynomial model is misspecified.

In this sense, our test has power even in situations where neither the null nor the alternative

models are identified.

The second extension is that our testing principle extends to systems of equations, i.e.,

situations in which the endogenous variable is not a scalar, but a vector, by replacing the

scalar conditional characteristic function with a vector valued one, i.e., E [exp(it′Y )|X = x] .

For instance, one may reformulate the triangular random coefficients model of Hoderlein et al.

[2014], where Y1 = A0 + A1Y2, Y2 = B2 +B3X as

Y1 = B0 +B1X,

Y2 = B2 +B3X,

with B = (B0, B1, B2, B3) ⊥ X, and then either use the minimum distance principle outlined

above, or, under the additional assumptions in Hoderlein et al. [2014], their estimator for the

restricted model.

Finally, we may extend the approach outlined in this paper to binary or discrete dependent

variables, provided we have a special regressor Z, as in Lewbel [2000]. In this case, we replace

the density of the data with the marginal probability with respect to the special regressor;

otherwise, most of the above reasoning remains virtually unchanged.

Related Literature. As already mentioned, this paper draws upon several literatures. The

first is nonparametric random coefficients models, a recently quite active line of work, including

work on the linear model (Beran and Hall [1992], Beran et al. [1996], and Hoderlein et al. [2010]),
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the binary choice model (Ichimura and Thompson [1998] and Gautier and Kitamura [2013]),

and the treatment effects model (Gautier and Hoderlein [2015]). Related is also the wider

class of models analyzed in Fox and Gandhi [2009] and Lewbel and Pendakur [2013], who both

analyze nonlinear random coefficient models, Masten [2015] and Matzkin [2012], who both

discuss identification of random coefficients in a simultaneous equation model, Hoderlein et al.

[2014] who analyze a triangular random coefficients model, and Dunker et al. [2013] and Fox

and Lazzati [2012] who analyze games.

As far as we know, the general type of specification tests we propose in this paper is new

to the literature. In linear semiparameteric random coefficient models, Beran [1993] proposes a

minimum distance estimator for the unknown distributional parameter of the random coefficient

distribution. Within this framework of a parametric joint random coefficients’ distribution,

Beran also proposes goodness of fit testing procedures. Also in a parametric setup where the

unknown random coefficient distribution follows a parametric model, Swamy [1970] establishes

a test for equivalence of random coefficient across individuals, i.e., a test for degeneracy of

the random coefficient vector. We emphasize that with our testing methodology, despite less

restrictive distributional assumptions, we are able to test degeneracy of a subvector of B while

others are kept as random. Another test in linear parametric random coefficient models was

proposed by Andrews [2001], namely a test for degeneracy of some random coefficients. In

contrast, our nonparametric testing procedure is based on detecting differences in conditional

characteristic function representation and, as we illustrate below, we do not obtain boundary

problems as in Andrews [2001].

In this paper, we use sieve estimators for the unknown distributional elements. In the

econometrics literature, sieve methodology was recently used to construct Wald statistics (see

Chen and Pouzo [2015]) or nonparametric specification tests (see Breunig [2015b]), and, in

nonparametric instrumental regression, tests based on series estimators have been proposed

by Horowitz [2012] and Breunig [2015a]. Moreover, in the nonparametric IV model, tests

for parametric specification have been proposed by Horowitz [2006] and Horowitz and Lee

[2009], while Blundell and Horowitz [2007] proposes a test of exogeneity. Santos [2012] develops

hypothesis tests which are robust to a failure of identification. More generally, there is a large

literature on model specification tests based on nonparametric regression estimators in L2

distance starting with Härdle and Mammen [1993]. Specification tests in nonseparable were

proposed by Hoderlein et al. [2011] and Lewbel et al. [2015]. None of these tests is applicable

to specification testing in random coefficient models.

Finally, our motivation is partly driven by consumer demand, where heterogeneity plays an

important role. Other than the large body of work reviewed above we would like to mention

the recent work by Hausman and Newey [2013], Blundell et al. [2010], see Lewbel [1999] for a
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review of earlier work.

Overview of Paper. In the second section, we introduce our test formally, and discuss its

large sample properties in the baseline scenario. We distinguish between general specification

tests, and subcases where we can separate additively a part of the model which contains only

covariates and fixed coefficients from the remainder. In the third section, we focus on the exten-

sions discussed above. The finite sample behavior is investigated through a Monte Carlo study

in the fourth section. Finally, we apply all concepts to analyze the validity of a heterogeneous

QUAIDS (Banks et al. [1997]) model which is the leading parametric specification in consumer

demand.

2 The Test Statistic and its Asymptotic Properties

2.1 Examples of Testable Hypotheses

In the wider class of models encompassed by (1.1), we consider two different types of hypotheses

tests. First, we provide a general test for the hypothesis that the structural relation of the

covariates and random coefficients to the outcome coincides with a known function g. We thus

consider the hypothesis 2

Hmod : Y = g(X,B) for some random parameters B.

The alternative hypothesis is given by P
(
Y 6= g(X,B) for all random parameters B

)
> 0.

An important example is testing the hypothesis of linearity; that is, whether with probability

one

Hlin : Y = X ′B,

in which case the distribution of B is identified. Another example is a quadratic form of the

function g in each component of the vector of covariates X, i.e., we want to assess the null

hypothesis Hquad : Y = B0 + X ′B1 + (X2)′B2 for some B = (B0, B1, B2), where a squared

vector is understood element-wise. Note that in the former example fB is point identified,

while in the latter example it is only partially identified. This fact will generally result in a

lack of power against certain alternatives.

The second type of hypotheses our test allows to consider is whether a subvector of B, say,

B2, is deterministic (or, equivalently, has a degenerate distribution). I.e., we want to consider

the following hypothesis

Hdeg : B2 = b2 for all B = (B0, B1, B2) satisfying (1.1).

2Equalities involving random variables are understood as equalities with probability one, even if we do not

say so explicitly.
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While this type of hypothesis could be considered in the most general model, motivated by

the linear (or polynomial) model we will confine ourselves to functions G that have a partially

linear structure, such that

Hpart-lin : Y = B0 +X ′1B1 + g2(X,B2), for some random parameters B = (B0, B1, B2),

for a known function g2 holds true. In the two main cases outlined above, this covers the

following examples of hypotheses: First, in a linear model, i.e., Y = B0 + X ′1B1 + X ′2B2, it

allows to test whether the coefficient on X2 is deterministic. Put reversely, we may test the

null

Hdeg-lin : Y = B0 +X ′1B1 +X ′2b2,

against the alternative that B2 is random.

A second example arises if, in the quadratic model, we want to test a specification with

deterministic second order terms, i.e.

Hdeg-quad : Y = B0 +X ′1B1 + (X2
2 )′b2,

against the alternative that B2 is random. In either case, the alternative is given by P
(
B2 6=

b2 for some B satisfying (1.1)
)
> 0.

2.2 The Test Statistic

Our test statistic is based on the L2 distance between an unrestricted conditional characteristic

function and a restricted one. We show below that each null hypothesis is then equivalent to

ε(X, t) = 0 for all t, (2.1)

where ε : Rdx+1 → C is a complex valued, measurable function. Our testing procedure is hence

based on the L2 distance of ε to zero. Equation (2.1) is equivalent to∫
E
[∣∣ε(X, t)∣∣2]$(t)dt = 0,

for some strictly positive weighting function $ with
∫
$(t)dt <∞. In the following examples,

we provide explicit forms for the function ε. The analysis is based on the assumption of inde-

pendence of covariates X and random coefficients B. See also the discussion after Assumption

1 below.

Example 1 (Testing functional form restrictions). The null hypothesis Hmod is equivalent to

the following equation involving conditional characteristic functions

E[exp(itY )|X] = E[exp(itg(X,B))|X],
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for each t ∈ R, a known function g, and some random parameters B. Hence, equation (2.1)

holds true with

ε(X, t) = E[exp(itY )− exp(itg(X,B))|X]. (2.2)

As already mentioned, if the function g is nonlinear the probability density function (p.d.f.) of

the random coefficients B, denoted by fB, does not need to be point identified. On the other

hand, if g is the inner product of its entries, then (2.1) holds true with

ε(X, t) = E[exp(itY )− exp(itX ′B)|X],

and in this case the distribution of B is identified (see, e.g., Hoderlein et al. [2010]). While

our test, based on the function ε, is in general consistent against a failure of the null hypothesis

Hmod, it is also consistent against certain alternative models such as higher order polynomials.

To illustrate this, we consider the random coefficient QUAIDS model, which we also study

in our application. Under the maintained hypothesis we have Y = B̃0 + B̃1X + B̃2X
2 for

random coefficients B̃0, B̃1, and B̃2 (also independent of X). In this case, the conditional first

and second moment equation implied by equation (2.2) yield E[B̃2] = 0 and V ar(B̃2) = 0,

respectively. We conclude B̃2 = 0.

Example 2 (Testing degeneracy). Under a partially linear structure Hpart-lin, the null hypothesis

Hdeg implies the equality of conditional characteristic functions , i.e.,

E[exp(itY )|X] = E[exp(it(B0 +X ′1B1))|X1] exp(itg2(X, b2)), (2.3)

for each t ∈ R. Therefore, equation (2.1) holds with

ε(X, t) = E[exp(itY )|X]− E[exp(it(B0 +X ′1B1))|X1] exp(itg2(X, b2)).

We assume throughout the paper that the parameter b2 is identified through equation (2.3).

Our test, based on the function ε, has power against a failure of Hdeg if the function g2 is

an elementwise transformation of each component of the vector X2 (see Gautier and Hoderlein

[2015]). Moreover, we also see that our test has power in the random coefficient QUAIDS model.

Under the maintained hypothesis we have Y = B̃0 + B̃1X + B̃2X
2 for random coefficients B̃0,

B̃1, and B̃2 (also independent of X). In this case, the conditional first and second moment

equation implied by equation (2.3) yield E[B̃2] = b2 and E[B̃2
2 ] = b2

2, respectively. We conclude

that B̃2 has to be degenerate with B̃2 = b2. Similarly, our test is able to reject any higher order

polynomials with random parameters in the nonlinear part.

As already mentioned, we use the fact that equation (2.1) is equivalent to∫
E
[∣∣ε(X, t)∣∣2]$(t)dt = 0,
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for some strictly positive weighting function $. Our test statistic is given by the sample

counterpart to this expression, which is

Sn ≡ n−1

n∑
j=1

∫ ∣∣ε̂n(Xj, t)
∣∣2$(t)dt,

where ε̂n is a consistent estimator of ε. Below, we show that the statistic Sn is asymptotically

normally distributed after standardization. As the test is one sided, we reject the null hypothesis

at level α when the standardized version of Sn is larger than the (1− α)–quantile of N (0, 1).

We consider a series estimator for the conditional characteristic function of Y given X, i.e.,

ϕ(x, t) ≡ E[exp(itY )|X = x]. To do so, let us introduce a vector of basis functions denoted by

pm(·) = (p1(·), . . . , pm(·))′ for some integer m ≥ 1. Further, let Xm ≡
(
pm(X1), . . . , pm(Xn)

)′
and Yn(t) =

(
exp(itY1), . . . , exp(itYn)

)
. We replace ϕ by the series least squares estimator

ϕ̂n(x, t) ≡ pmn(x)
(
X′mn

Xmn

)−1
X′mn

Yn(t),

where the integer mn increases with sample size n. We compare this unrestricted conditional

expectation estimator to a restricted one which depends on the hypothesis under consideration.

Example 3 (Testing functional form restrictions). Let us introduce the integral transform

(Fgf)(X, t) ≡
∫

exp(itg(X, b))f(b)db, which coincides with the Fourier transform evaluated at

tX, if g is linear.3 If g is nonlinear, then the random coefficient’s p.d.f. fB does not need to

be identified through ϕ = Fgf . We estimate the function ε by

ε̂n(Xj, t) = ϕ̂n(Xj, t)− (Fgf̂Bn)(Xj, t),

where the estimator f̂Bn is a sieve minimum distance estimator given by

f̂Bn ∈ arg min
f∈Bn

{ n∑
j=1

∫
|ϕ̂n(Xj, t)− (Fgf)(Xj, t)|2$(t)dt

}
(2.4)

and Bn =
{
φ(·) =

∑kn
l=1 βlql(·)

}
is a linear sieve space of dimension kn <∞ with basis functions

{ql}l≥1. Here, kn and mn increase with sample size n. As we see below, we require that mn

increases faster than kn. Next, using the notation Fn(t) =
(
(Fgqkn)(X1, t), . . . , (Fgqkn)(Xn, t)

)′
,

the minimum norm estimator of fB given in (2.4) coincides with f̂Bn(·) = qkn(·)′β̂n where

β̂n =
(∫

Fn(t)′Fn(t)$(t)dt
)− ∫

Fn(t)′Φn(t)$(t)dt

and Φn(t) =
(
ϕ̂n(X1, t), . . . , ϕ̂n(Xn, t)

)′
. The exponent − denotes the Moore–Penrose gener-

alized inverse. As a byproduct, we thus extent the minimum distance estimation principle of

Beran and Millar [1994] to nonlinear random coefficient models and the sieve methodology.

3The Fourier transform is given by (Fφ)(t) ≡
∫

exp(itz)φ(z)dz for a function φ ∈ L1(Rd) while its inverse is

(F−1φ̃)(z) ≡ (2π)−d
∫

exp(−itz)φ̃(t)dt.
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Example 4 (Testing degeneracy). Under the partially linear structure Hpart-lin and hypothesis

Hdeg, Assumption 1 implies

E[Y |X] = b0 +X ′1b1 + g2(X, b2), (2.5)

where b0 ≡ E[B0] and b1 ≡ E[B1]. Let b̂2n denote the nonlinear least squares estimator of b2.

We denote pkn(·) = (p1(·), . . . , pkn(·))′ and X1n ≡
(
pkn(X11), . . . , pkn(X1n)

)′
which is a n × kn

matrix. Consequently, we estimate the function ε by

ε̂n(Xj, t) = ϕ̂n(Xj, t)− pkn(X1j)
′(X′1nX1n

)−1
X′1nUn exp

(
itg2(Xj, b̂2n)

)
,

where Un =
(

exp(it(Y1 − g2(X1, b̂2n))), . . . , exp(it(Yn − g2(Xn, b̂2n)))
)′

.

2.3 The Asymptotic Distribution of the Statistic under the Null

Hypothesis

As a consequence of the previous considerations, we distinguish between two main hypotheses,

i.e., functional form restrictions and degeneracy of some random coefficients. Both types of

tests require certain common assumptions, and we start out this section with a subsection

where we discuss the assumptions we require in both cases. Thereafter, we analyze each of the

two types of tests in a separate subsection, and provide additional assumptions to obtain the

test’s asymptotic distribution under each null hypothesis.

2.3.1 General Assumptions for Inference

Assumption 1. The random vector X is independent of B.

Assumption 1 is crucial for the construction of our test statistic. Full independence is

commonly assumed in the random coefficients literature (see, for instance, Beran [1993], Beran

et al. [1996], Hoderlein et al. [2010], or any of the random coefficient references mentioned in the

introduction). It is worth noting that this assumption can be relaxed by assuming independence

of X and B conditional on additional variables that are available to the econometrician, allowing

for instance for a control function solution to endogeneity as in Hoderlein and Sherman [2015],

or simply controlling for observables in the spirit of the unconfoundedness assumption in the

treatment effects literature. Further, X denotes the support of X.

Assumption 2. (i) We observe a sample ((Y1, X1), . . . , (Yn, Xn)) of independent and identically

distributed (i.i.d.) copies of (Y,X). (ii) There exists a strictly positive and nonincreasing

sequence (λn)n≥1 such that, uniformly in n, the smallest eigenvalue of λ−1
n E[pmn(X)pmn(X)′] is

bounded away from zero. (iii) There exists a constant C ≥ 1 and a sequence of positive integers

(mn)n≥1 satisfying supx∈X ‖pmn(x)‖2 6 Cmn with m2
n log n = o(nλn).
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Assumption 2 (ii)−(iii) restricts the magnitude of the approximating functions {pl}l≥1 and

imposes nonsingularity of their second moment matrix. Assumption 2 (iii) holds, for instance,

for polynomial splines, Fourier series and wavelet bases. Moreover, this assumption ensures

that the smallest eigenvalue of E[pmn(X)pmn(X)′] is not too small relative to the dimension

mn. In Assumption 2 (ii), we assume that the eigenvalues of the matrix E[pmn(X)pmn(X)′]

may tend to zero at the rate λn which was recently also assumed by Chen and Christensen

[2015]. On the other hand, the sequence (λn)n≥1 is bounded away from zero if {pl}l≥ forms an

orthonormal basis on the compact support of X and the p.d.f. of X is bounded away from zero

(cf. Proposition 2.1 of Belloni et al. [2015]). The next result provides sufficient condition for

Assumption 2 (ii) to hold even if the sequence of eigenvalues (λn)n≥1 tends to zero.

Proposition 5. Assume that {pl}l≥1 forms an orthonormal basis on X with respect to a measure

ν. Let (λn)n≥1 be a sequence that tends to zero. Suppose that, for some constant 0 < c < 1, for

all n ≥ 1 and any vector an ∈ Rmn the inequality∫
(a′npmn(x))2

1 {f(x) < λn}ν(dx) ≤ c

∫
(a′npmn(x))2ν(dx) (2.6)

holds, where f = dFX/dν. Then, Assumption 2 (ii) is satisfied.

Condition (2.6) is violated, for instance, if dFX/dν vanishes on some subset A of the support

of ν with ν(A) > 0. Estimation of conditional expectations with respect to X is more difficult

when the marginal p.d.f. fX is close to zero on the support X . In this case, the rate of

convergence will slow down relative to λn (see Lemma 2.4 in Chen and Christensen [2015] in

case of series estimation). As we see from Proposition 2.6, λn plays the role of a truncation

parameter used in kernel estimation of conditional densities to ensure that the denominator is

bounded away from zero.

To derive our test’s asymptotic distribution, we standardize Sn by subtracting the mean

and dividing through a variance which we introduce in the following. Let V ≡ (Y,X), and

denote by δ a complex valued function which is the difference of exp(itY ) and the restricted

conditional characteristic function, i.e., δ(V, t) = exp(itY )− (FgfB)(X, t) in case of Hmod, and

δ(V, t) = exp(itY )−E[exp(it(B0 +X ′1B1))|X1] exp(itg2(X, b2)) in case of Hdeg. Moreover, note

that
∫
E
[
δ(V, t)

∣∣X]$(t)dt = 0 holds.

Definition 6. Denote by Pn = E[pmn(X)pmn(X)′], and define

µmn ≡
∫
E
[
|δ(V, t)|2pmn(X)′P−1

n pmn(X)
]
$(t)dt and

ςmn ≡
(∫ ∫ ∥∥∥P−1/2

n E
[
δ(V, s)δ(V, t)pmn(X) pmn(X)′

]
P−1/2
n

∥∥∥2

F
$(s)$(t)dsdt

)1/2

.
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Here, we use the notation φ for the complex conjugate of a function φ, and ‖ · ‖F to denote

the Frobenius norm.

Assumption 3. There exists some constant C > 0 such that E
[
|
∫
δ(V, t)$(t)dt|2

∣∣X] ≥ C.

Assumption 3 ensures that the conditional variance of
∫
δ(V, t)$(t)dt is uniformly bounded

away from zero. Assumptions of this type are commonly required to obtain asymptotic nor-

mality of series estimators (see Assumption 4 of Newey [1997] or Theorem 4.2 of Belloni et al.

[2015]). As we show in the appendix, Assumption 3 implies ςmn ≥ C
√
mn.

2.3.2 Testing Functional Form Restrictions

We now present conditions that are sufficient to provide the test’s asymptotic distribution under

the null hypothesis Hmod. To do so, let us introduce the norm ‖φ‖$ =
( ∫

E|φ(X, t)|2$(dt)
)1/2

and the linear sieve space Φn ≡
{
φ : φ(·) =

∑mn

j=1 βjpl(·)
}

. Moreover, ‖ · ‖ and ‖ · ‖∞,

respectively, denote the Euclidean norm and the supremum norm. Let us introduce An =∫
E[(Fgqkn)(X, t)(Fgqkn)(X, t)′]$(t)dt and its emprical analog Ân = (n−1

∫
Fn(t)′Fn(t)$(t)dt)−

(see also Example 3).

Assumption 4. (i) For any p.d.f. fB satisfying ϕ = FgfB there exists ΠknfB ∈ Bn such

that n‖Fg(ΠknfB − fB)‖2
$ = o(

√
mn). (ii) There exists Πmnϕ ∈ Φn such that n‖Πmnϕ −

ϕ‖2
$ = o(

√
mn) and ‖Πmnϕ − ϕ‖∞ = O(1). (iii) It holds kn = o(

√
mn). (iv) It holds A−n =

O(1) and P
(
rank(An) = rank(Ân)

)
= 1 + o(1). (v) There exists a constant C > 0 such that∑

l≥1

( ∫
Rdb

φ(b)ql(b)db
)2 ≤ C

∫
Rdb

φ2(b)db for all square integrable functions φ.

Assumption 4 (i) is a requirement on the sieve approximation error for all functions fB that

belong to the identified set Ig ≡
{
f : f is a p.d.f. with ϕ = Fgf

}
. This condition ensures that

the bias for estimating any fB in the identified set Ig is asymptotically negligible. Assumption

4 (ii) determines the sieve approximation error for the function ϕ. Consider the linear case

and let ‖F(ΠknfB − fB)‖$ = O(k
−s/dx
n ) for some constant s > 0, then Assumptions 4 (i) and

(iii) are satisfied if mn ∼ nζ and kn ∼ nκ where dx(1− ζ/2)/(2s) < κ < ζ/2.4 We thus require

ζ > 2dx/(2s+dx), so s has to increase with dimension dx, which reflects a curse of dimensionality.

In this case, Assumption 4 (ii) automatically holds if ‖Πmnϕ− ϕ‖$ = O(m
−s/dx
n ) and we may

choose κ to balance variance and bias, i.e., κ = dx/(2s + dx).
5 For further discussion and

examples of sieve bases, we refer to Chen [2007]. Assumption 4 (iv) ensures that the sequence

of generalized inverse matrices is bounded and imposes a rank condition. This condition is

4We use the notation an ∼ bn for cbn ≤ an ≤ Cbn given two constant c, C > 0 and all n ≥ 1.
5This choice of kn corresponds indeed to the optimal smoothing parameter choice in nonparametric random

coefficient model if s = r+ (dx − 1)/2 where r corresponds to the smoothness of fB (see Hoderlein et al. [2010]

in case of kernel density estimation).
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sufficient and necessary for convergence in probability of generalized inverses of random matrices

with fixed dimension (see Andrews [1987] for generalized Wald tests). Assumption 4 (v) is

satisfied if {ql}l≥1 forms a Riesz basis in L2(Rdb) ≡
{
φ :
∫
Rdb

φ2(s)ds <∞
}

. The following

result establishes asymptotic normality of our standardized test statistic.

Theorem 7. Let Assumptions 1–4 hold with δ(V, t) = exp(itY ) − (FgfB)(X, t). Then, under

Hmod we obtain

(
√

2ςmn)−1
(
nSn − µmn

) d→ N (0, 1).

Remark 8 (Estimation of Critical Values). The asymptotic results of the previous theorem

depends on unknown population quantities. As we see in the following, the critical values can

be easily estimated. We define δn(V, t) = exp(itY )− (Fgf̂Bn)(X, t), and

σn(s, t) =
(
δn(V1, s)δn(V1, t), . . . , δn(Vn, s)δn(Vn, t))

)′
.

We replace µmn and ςmn, respectively, by the estimators

µ̂mn =

∫
tr
((

X′nXn

)−1/2
X′n diag(σn(t, t)) Xn

(
X′nXn

)−1/2
)
$(t)dt

and

ς̂mn =

(∫ ∫ ∥∥∥(X′nXn

)−1/2
X′n diag(σn(s, t)) Xn

(
X′nXn

)−1/2
∥∥∥2

F
$(s)$(t)dsdt

)1/2

.

Proposition 9. Under the conditions of Theorem 7, we obtain

ςmn ς̂
−1
mn

= 1 + op(1) and µ̂mn = µmn + op(
√
mn).

The asymptotic distribution of our standardized test statistic remains unchanged if we

replace µmn and ςmn by estimators introduced in the last remark. This is summarized in

following corollary, which follows immediately from Theorem 7 and Proposition 9.

Corollary 10. Under the conditions of Theorem 7, we obtain

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

) d→ N (0, 1).

An alternative way to obtain critical values is the bootstrap which, for testing nonlinear

functionals in nonparametric instrumental regression, was considered by Chen and Pouzo [2015].

In our situation, the critical values can be easily estimated and the finite sample properties of

our testing procedure are promising, thus we do not elaborate bootstrap procedures here. In

the following example, we illustrate our sieve minimum distance approach for estimating fB in

the case of linearity of g.
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Example 11 (Linear Case). Let g be linear and recall that in this case the integral transform Fg
coincides with the Fourier transform F . For the sieve space Bn, we consider as basis functions

Hermite functions given by

ql(x) =
(−1)l√
2ll!
√
π

exp(x2/2)
dl

dxl
exp(−x2).

These functions form an orthonormal basis of L2(R). Hermite functions are also eigenfunctions

of the Fourier transform with

(Fql)(·) =
√

2π (−i)−lql(·).

Let us introduce the notation q̃l(·) ≡ (−i)−lql(·) and Xn(t) =
(
q̃kn(tX1)′, . . . , q̃kn(tXn)′

)′
. Thus,

the estimator of fB given in (2.4) simplifies to f̂Bn(·) = qkn(·)′β̂n where

β̂n = min
β∈Rkn

n∑
j=1

∫ ∣∣ϕ̂n(Xj, t)− q̃kn(tXj)
′β
∣∣2$(t)dt. (2.7)

An explicit solution of (2.7) is given by

β̂n =
(∫

Xn(t)′Xn(t)$(t)dt
)− ∫

Xn(t)′Φn(t)$(t)dt

where Φn(t) =
(
ϕ̂n(X1, t), . . . , ϕ̂n(Xn, t)

)′
. We emphasize that under the previous assumptions,

the matrix
∫

Xn(t)′Xn(t)$(t)dt will be nonsingular with probability approaching one.

2.3.3 Testing Degeneracy

In the following, dx1 and dx2 denote the dimensions of X1 and X2, respectively. We introduce the

function h(·, t) = E[exp(it(Y − g2(X, b2))|X1 = ·] and a linear sieve space Hn ≡
{
φ : φ(x1) =∑kn

j=1 βjpl(x1) for x1 ∈ Rdx1
}

. The series least squares estimator of h is denoted by ĥn(·) =

pkn(·)′
(
X′1nX1n

)−1
X′1nUn where Un =

(
exp(it(Y1−g2(X1, b̂2n))), . . . , exp(it(Yn−g2(Xn, b̂2n)))

)′
.

Further, let g̃(x, t, b) ≡ exp(itg2(x, b)). Below we denote the vector of partial derivatives of g̃

with respect to b by g̃b.

Assumption 5. (i) The hypothesis Hpart-lin holds. (ii) There exists Πknh ∈ Hn such that

n‖Πknh− h‖2
$ = o

(√
mn

)
. (iii) The parameter b2 is identified in equation (2.5) and belongs to

the interior of a compact parameter space B ⊂ Rdb2 . (iv) The function g̃ is partially differen-

tiable with respect to b and
∫
E supb2∈B ‖g̃b(X, t, b2)‖2$(t)dt <∞. (v) It holds kn = o(

√
mn).

Assumption 5 (ii) determines the required asymptotic behavior of the sieve approximation

bias for estimating h. This condition ensures that the bias for estimating the function h is

asymptotically negligible but does not require undersmoothing of the estimator ĥn. To see
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this, let ‖Πknh − h‖$ = O(k
−s/dx1
n ) for some constant s > 0. Assumptions 5 (ii) and (v)

are satisfied if mn ∼ nζ and kn ∼ nκ where dx1(1 − ζ/2)/(2s) < κ < ζ/2. We thus require

ζ > 2dx1/(2s+ dx1) and we may choose κ to balance variance and bias, i.e., κ = dx1/(2s+ dx1).

In this case, Assumption 4 (ii) automatically holds if ‖Πmnϕ−ϕ‖$ = O(m
−s/dx
n ) and 2dx1 ≥ dx.

If g2 is linear, Assumption 5 (iv) holds true if E‖X‖2 <∞ and
∫
t2$(t)dt <∞.

Theorem 12. Let Assumptions 1–3, 4 (ii), and 5 hold, with δ(V, t) = exp(itY )−h(X1, t)g̃(X, t, b2).

Then, under Hdeg we obtain

(
√

2ςmn)−1
(
nSn − µmn

) d→ N (0, 1).

The critical values can be estimated as in Remark 8 but where now δn(V, t) = exp(itY ) −
ĥn(X1, t) exp(itg2(X, b̂2n)). The following result shows that, by doing so, the asymptotic dis-

tribution of our standardized test statistic remains unchanged. This corollary follows directly

from Theorem 12 and the proof of Proposition 9; hence we omit its proof.

Corollary 13. Under the conditions of Theorem 12 it holds

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

) d→ N (0, 1).

Remark 14 (Comparison to Andrews [2001]). It is instructive to compare our setup and results

to Andrews [2001], who considers the random coefficient model:

Y = B0 +B1X1 + (b2 + τB̃2)X2,

where E[B0 ·B1|X] = 0, B1 is independent of B̃2, and E[B1|X] = E[B̃2|X] = 0. In this model,

degeneracy of the second random coefficient is equivalent to τ = 0 and degeneracy fails if τ > 0.

So under Hdeg the parameter τ is on the boundary of the maintained hypothesis with τ ∈ [0,∞).

In contrast, we rely in this paper on independence of B to X under the maintained hy-

pothesis. In this case, the hypothesis of degeneracy is equivalent to a conditional characteristic

function equation as explained in Example 2 and which is not possible given the assumptions of

Andrews [2001]. This is why in our framework we automatically avoid the boundary problem

that is apparent in Andrews [2001].

2.4 Consistency against a fixed alternative

In the following, we establish consistency of our test when the difference of restricted and

unrestricted conditional characteristic functions does not vanish, i.e., when

P
(∫
|ε(X, t)|2$(t)dt 6= 0

)
> 0. (2.8)
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In case of testing functional form restrictions, this is equivalent to a failure of the null hypoth-

esis Hmod. A deviation of conditional characteristic functions can be also caused by alternative

models with a different structural function (see Example 1). We only discuss the global power

for testing functional form restrictions here, but the results for testing degeneracy follow analo-

gously (of course, in this case we have to be more restrictive about the shape of g2 as discussed in

Example 2). The next proposition shows that our test for testing functional form restrictions

has the ability to reject a deviation of restricted and unrestricted conditional characteristic

functions with probability one as the sample size grows to infinity.

Proposition 15. Let Assumptions 1–4 be satisfied. Consider a sequence (γn)n≥1 satisfying

γn = o(nς−1
mn

). Then, under (2.8) we have

P
(

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

)
> γn

)
= 1 + o(1).

2.5 Asymptotic distribution under local alternatives

We now study the power of our testing procedure against a sequence of linear local alternatives

that tends to zero as the sample size tends to infinity. First, we consider deviations form

the hypothesis of known functional form restriction. Under Hmod, the identified set in the

nonseparable model (1.1) is given by Ig =
{
f : f is a p.d.f. with ϕ = Fgf

}
. We consider the

following sequence of local alternatives

ϕ = Fg
(
fB + ∆

√
ςmn/n

)
, (2.9)

for some function ∆ ∈ L1(Rdb) ∩ L2(Rdb). Here, while fB ∈ I, we assume that fB + ∆
√
ςmn/n

does not belong to the identified set I. Equation (2.9) can be written equivalently as

E[exp(itY )|X] = E[exp(itg(X,B))|X] +

∫
exp(itg(X, s))∆(s)ds

√
ςmn/n.

The next result establishes asymptotic normality under (2.9) of the standardized test statis-

tic Sn for testing functional form restrictions.

Proposition 16. Let the assumptions of Theorem 7 be satisfied. Then, under (2.9) we obtain

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

) d→ N
(

2−1/2‖Fg∆‖2
$, 1
)
.

As we see from Proposition 16, our test can detect linear alternatives at the rate
√
ςmn/n.

We now study deviations form the hypothesis of degeneracy under the maintained hypothesis

Hlin. Under the maintained hypothesis of linearity, any deviance in conditional characteristic

functions is equivalent to a failure of a degeneracy of the random coefficients B2. Let us denote
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Bdeg ≡ (B1, b2) with associated p.d.f. fBdeg
. We consider the following sequence of linear local

alternatives

fB(·) = fBdeg
(·) + ∆(·)

√
ςmn/n, (2.10)

for some density function ∆ ∈ L1(Rdb) ∩ L2(Rdb) which is not degenerate at b2. Applying the

Fourier transform to equation (2.10) yields

E[exp(itX ′B)|X] = E[exp(it(B0 +X ′1B1))|X] exp(itX ′2b2) +

∫
exp(itX ′s)∆(s)ds

√
ςmn/n.

The next result establishes asymptotic normality under (2.10) for the standardized test statis-

tic Sn for testing degeneracy. This corollary follows by similar arguments used to establish

Proposition 16 and hence we omit the proof.

Corollary 17. Let the assumptions of Theorem 12 be satisfied. Then, under (2.10) we obtain

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

) d→ N
(

2−1/2‖F∆‖2
$, 1
)
.

3 Extensions

In this section, we show that our testing procedures can be extended to two different models.

First, we consider the class of heterogeneous binary response models. Second, we discuss an

extension of linear random coefficient models to system of equations. In both cases, we again

discuss testing functional form restrictions and testing degeneracy of some random coefficients

separately.

3.1 Binary Response Models

We consider the binary response model

Y = 1{g(X,B) < Z}, (3.1)

where, besides the dependent variable Y and covariates X, a special regressor Z is observed as

well. In the following, we assume that (X,Z) is independent of B. In contrast to the previous

section, the test in the binary response model is based on the difference of a partial derivative

of the conditional success probability P (Y = 1|X,Z) and a restricted transformation of the

p.d.f. fB.

Testing functional form restrictions. In the binary response model (3.1), observe that

P [Y = 1|X = x, Z = z] =

∫
1 {z > g(x, b)} fB(b)db

=

∫ z

−∞

∫
Px,s

fB(b)dν(b)ds,
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where ν is the Lebesgue measure on the lower dimensional hyperplane Px,s = {b : g(x, b) = s}.
Consequently, it holds

ψ(x, z) ≡ ∂zP [Y = 1|X = x, Z = z] =

∫
Px,z

fB(b)dν(b).

Again by considering conditional characteristic functions, the null hypothesis Hmod is equivalent

to E[exp
(
itY
)
|X] = E[exp

(
itg(X,B)

)
|X] for some random coefficient B. By using the above

integral representation of ψ we equivalently obtain
(
Fψ(X, ·)

)
(t) = (FgfB)(t,X) (recall the

definition of the integral transform (Fgf)(X, t) ≡
∫

exp(itg(X, b))f(b)db). Due to technical

reason, we invert the Fourier transform and conclude that equation (2.1) holds true with

ε(X, z) = ψ(X, z)−
(
F−1[(FgfB)(X, ·)]

)
(z).

In the case of a linear g, the random coefficient density fB is thus identified through the Radon

transform, see also Gautier and Hoderlein [2015].

To estimate the function ε, we replace ψ by a series least squares estimator. Let us introduce

the matrix Wn =
(
pmn(X1, Z1), . . . , pmn(Xn, Zn)

)′
where the basis function pl, l ≥ 1, are

assumed to be differentiable with respect to the (dx + 1)–th entry. We estimate ψ by

ψ̂n(x, z) = ∂zpmn(x, z)′
(
W′

nWn

)−1
Yn,

where Yn = (Y1, . . . , Yn)′. Consequently, we replace the function ε by

ε̂n(Xj, z) = ψ̂n(Xj, z)− (F−1[(Fgf̂Bn)(Xj, ·)])(z),

where f̂Bn is the sieve minimum distance estimator given by

f̂Bn ∈ arg min
f∈Bn

{ n∑
j=1

∫
|ψ̂n(Xj, z)− (F−1[(Fgf)(Xj, ·)])(z)|2$(z)dz

}
and Bn =

{
φ(·) =

∑kn
l=1 βlql(·)

}
. Our test statistic is Sn = n−1

∑n
j=1

∫
|ε̂n(Xj, z)|2$(z)dz

where, in this section, $ is an integrable weighting function on the support of Z.

We introduce an mn dimensional linear sieve space Ψn ≡
{
φ : φ(x, z) =

∑mn

j=1 βjpl(x, z)
}

.

Let pmn(X,Z) be a tensor-product of vectors of basis functions pmn1
(X) and pmn2

(Z) for integers

mn1 andmn2 withmn = mn1·mn2 . We assume that ∂zpmn2
(z) = (p0(z), 2p1(z), . . . ,mn2pmn2−1(z))′.

Further, let τl denote the squared integer that is associated with ∂zpl. In Definition 6, pl(X) has

to be replaced by τlpl(X,Z). LetBn =
∫
E[(F−1[(Fgqkn)(X, ·)](z)(F−1[(Fgqkn)(X, ·)](z)′]$(z)dz,

which is denoted by B̂n when the expectation is replaced by the sample mean.

Assumption 6. (i) The random vector (X,Z) is independent of B. (ii) For any p.d.f. fB

satisfying Fψ = FgfB there exists ΠknfB ∈ Ψn such that n‖ψ − F−1FgΠknfB‖2
$ = o(

√
mn).

(iii) There exists Πmnψ ∈ Ψn such that n‖Πmnψ−ψ‖2
$ = o(

√
mn). (iv) It holds B−n = O(1) and

P
(
rank(Bn) = rank(B̂n)

)
= 1+o(1). (v) It holds kn = o(

√
mn) and m2

n(log n)
∑mn

l=1 τl = o(nλn).
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Assumption 6 is similar to Assumption 4. Note that due to the partial derivatives of the

basis functions we need to be more restrictive about the dimension parameter mn, which is

captured in Assumption 6 (iv). The following result establishes the asymptotic distribution of

our test statistic under Hmod in the binary response model (3.1).

Proposition 18. Let Assumptions 2, 3, and 6 hold with δ(Y,X,Z) = Y−
∫
1{Z > X ′b}fB(b)db.

Then, under Hmod we have

(
√

2ςmn)−1
(
nSn − µmn

) d→ N (0, 1).

The critical values can be estimated as in Remark 8 but where now δn(Y,X,Z) = Y −∫
1{Z ≥ X ′b}f̂Bn(b)db.

Testing degeneracy. To keep the presentation simple, we only consider the linear case in

the following. Under Hlin, the binary response model (3.1) simplifies to

Y = 1{X ′B < Z}. (3.2)

The null hypothesis Hdeg can thus be written as∫
exp

(
itz
)
ψ(X, z)dz =

∫
exp

(
itz
)
ψ(X1, z −X ′2b2)dz.

By nonsingularity of the Fourier transform, we conclude that Hdeg is equivalent to equation

(2.1) where

ε(X, z) = ψ(X, z)− ψ(X1, z −X ′2b2).

If ψ only depends on X1, we consider the estimator ψ̂1n(x1, z) = ∂zpkn(x1, z)
′(W′

n1Wn1

)−1
Yn,

where Wn1 =
(
pkn(X11, Z1), . . . , pkn(X1n, Zn)

)′
. We propose a minimum distance estimator of

b2 given by

b̂2n = argminβ∈B

n∑
j=1

∫ ∣∣∣ψ̂n(Xj, t)− ψ̂1n(X1j, t− β′X2)
∣∣∣2$(t)dt. (3.3)

Consequently, we estimate the function ε by ε̂n(Xj, z) = ψ̂n(Xj, z)− ψ̂1n(X1j, z − b̂2nX2j).

Proposition 19. Let Assumptions 2, 3, 6 (i), (iii), (v) with δ(Y,X,Z) = Y −P (Y = 1|X1, Z−
X ′2b2) hold true. Assume that n

∫
E|(Πknψ)(X1, z)−ψ(X1, z)|2$(z)dz = o(

√
mn). Then, under

Hdeg we have

(
√

2ςmn)−1
(
nSn − µmn

) d→ N (0, 1).

The critical values can be estimated as in Remark 8 by replacing P (Y = 1|X1, Z − X ′2b2)

by a series least squares estimator.
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3.2 Application to Systems of Equations

In this subsection, we apply our testing procedure to systems of equations, i.e., situations in

which the endogenous variable is not a scalar, but a vector. For simplicity, we consider in the

following only the bivariate case. Formally, we consider the model

Y = g(X,B), (3.4)

for some function g and Y ∈ R2. Again the vector of random coefficients B = (B0, B1, B2, B3)

is assumed to be independent of the covariates X.

Testing functional form restrictions. Null hypothesis Hmod is equivalent to equation (2.1)

with

ε(X, t) = E[exp(it′Y )− exp(it′g(X,B))|X]

for some t ∈ R2. Our test of Hmod is now based on Sn ≡ n−1
∑n

j=1

∫ ∣∣ε̂n(Xj, t)
∣∣2$(t)dt where

ε̂n is the estimator of ε introduced in Example 3 but with a multivariate index t and $ being

a weighting function on R2. Under a slight modification of assumptions required for Theorem

7, asymptotic normality of the standardized test statistic Sn follows under Hmod.

Testing degeneracy. In the partially linear case (i.e., Hpart-lin holds), the random coefficient

model (3.4) simplifies to

Y1 = B0 +B′11X1 +B′12X2

Y2 = B2 +B′31X1 + g2(X2, B32).

This model is identified if B32 is degenerate (see Hoderlein et al. [2014]). A test for degeneracy

of Hdeg : B32 = b, for some non-stochastic vector b, uses only the second equation, i.e.,

E[exp(itY2)|X] = E[exp(it(B2 +B′31X1))|X1] exp(itg(X32, b)).

We can consequently use the testing methodology developed in Section 2.3.3.

4 Monte Carlo Experiments

In this section, we study the finite-sample performance of our test by presenting the results of

a Monte Carlo simulation. The experiments use a sample size of 500 and there are 1000 Monte

Carlo replications in each experiment. As throughout the paper, we structure this section again

in a part related to testing functional form restrictions, and a part related to testing degeneracy.
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4.1 Testing Functional Form Restrictions

In each experiment, we generate realizations of regressors X from X ∼ N (0, 2) and random

coefficients B = (B1, B2)′ from B ∼ N (0, A) where

A =

(
1 1/2

1/2 1

)
.

We simulate a random intercept B0 ⊥ (B1, B2) according to the standard normal distribution.

Realizations of the dependent variable Y are generated either by the linear model

Y = ηB0 +XB1, (4.1)

the quadratic model

Y = ηB0 +XB1 +X2B2, (4.2)

or the nonlinear model

Y = ηB0 +XB1 +
√
|X|B2, (4.3)

where the constant η is either
√

0.5 or 1. Note that the random coefficient density fB is neither

point identified in model (4.2) nor in model (4.3). However, recall that even if the model is

not point identified under the maintained hypothesis, our testing procedure may still be able

to detect certain failures of the null hypothesis, in particular if they arise from differences in

conditional moments. Consider, for example, a test of linearity of the heterogeneous QUAIDS

model (4.2), where the first two conditional moments yield E[B2] = 0 and 2Cov(B0, B2) +

2xCov(B1, B2) + x2 V ar(B2) = 0, for all x. Consequently, P
( ∫
|ε(X, t)|2$(t)dt 6= 0

)
> 0 if

and only if P (B2 6= 0) > 0. We also observe in the finite sample experiment that our testing

procedure is able to detect such deviations.

The test is implemented using Hermite functions, and uses the standardization described in

Remark 8. When (4.1) is the true model, we estimate the random coefficient density as described

in Example 11, where we make use of the fact that the hermite functions are eigenfunctions of

the Fourier transform. If (4.2) is the true model, the integral transform Fg is computed using

numerical integration. In both cases, the weighting function $ coincides with the standard

normal p.d.f.. If (4.1) is the correct model, we use kn = 4 (= 3 + 2) Hermite functions to

estimate the density of the bivariate random coefficients (B0, B1) and let mn = 9. If (4.2)

is the correct model, we have an additional dimension which accounts for the nonlinear part.

Here, the choice of Hermite basis functions is kn = 7 (= 3 + 2 · 2) with mn = 12 if η =
√

0.5

and kn = 9 (= 3 + 2 · 3) with mn = 16 if η = 1. We thus increase the dimension parameters

kn and mn as the noise level η becomes larger, i.e., the model becomes more complex. Note

that mn could be any integer larger than const. × k2
n that is smaller than n1/2 (up to logs).
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Null Model Alt. Model η Empirical Rejection probabilities at level

Hmod True DGP 0.010 0.050 0.100

(4.1) 0.5 0.003 0.027 0.076

(4.2) 0.008 0.034 0.072

(4.1) (4.2) 0.698 0.911 0.958

(4.1) (4.3) 0.178 0.491 0.683

(4.2) (4.1) 0.714 0.928 0.980

(4.2) (4.3) 0.864 0.982 0.994

(4.1) 1 0.007 0.047 0.127

(4.2) 0.007 0.058 0.154

(4.1) (4.2) 0.491 0.804 0.907

(4.1) (4.3) 0.102 0.368 0.615

(4.2) (4.1) 0.557 0.875 0.970

(4.2) (4.3) 0.558 0.905 0.978

Table 1: Rows 1,2,7,8 depict the empirical rejection probabilities if Hmod holds true, the rows

3–6 and 9–12 show the finite sample power of our tests against various alternatives. The first

column states the null model while the second shows the alternative model and is left empty if

the null model is the correct model. Column 3 specifies the noise level of the data generating

process. Columns 4–6 depict the empirical rejection probabilities for different nominal levels.

In practice, we let kn such that it minimizes the value of the test statistic. I.e., if s(kn,mn)

denotes the value of the test statistic, a guideline for parameter choice in practice is given by

the minimum-maximum principle min1≤kn<n1/4 maxk2n<mn<n1/2 {s(kn,mn)}.
The empirical rejection probabilities of our tests are shown in Table 1 at nominal levels

0.010, 0.050, and 0.100. We also note that the models are normalized and hence, the null and

alternative have the same variance. The differences between the nominal and empirical rejection

probabilities are small under the correct functional form restrictions, as is obvious from rows 1,

2, 7, and 8. Comparing the empirical rejections probabilities in rows 3–6 and 9–12, we see our

tests become less powerful as the parameter η increases, as was to be expected. On the other

hand, we observe from this table that our tests have power to detect nonlinear alternatives

even in cases where the model under the maintained hypothesis is not identified. This is in

line with our observation that these alternatives imply deviations between the restricted and

unrestricted characteristic functions. Comparing rows 3, 9 with 4, 10 in Table 1, we observe

that our test rejects the quadratic model (4.2) more often than the nonlinear model (4.3). From
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rows 5, 11 and 6, 12 we see that our test rejects the nonlinear model (4.3) slightly more often

than the linear model (4.1).

We have also tried different data generating processes, such as a cubic polynomial with

random coefficients. In this case, our test of linearity led to empirical rejection probabilities

which were close to one for all nominal levels considered and hence these results are not reported

here. Regarding consistency, we also conducted experiments with larger sample sizes. In

particular, we saw that the slight tendency of our test statistic to under-reject for small η,

see in Table 1 in rows 1 and 2, diminishes as we increase the sample size to n = 1000. Not

surprisingly, when n = 1000 also the empirical rejection probabilities in rows 3–6 and 9–12

increase.

4.2 Testing Degeneracy

In each experiment, we generate realizations of X from X ∼ N (0, A) and random coefficients

B = (B1, B2)′ from B ∼ N (0, Aρ), where

A =

(
1 .5

.5 1

)
and Aρ =

(
2 ρ

ρ 2

)
,

for some constant ρ > 0, which varies in the experiments. Further, we generate the dependent

variable Y as

Y = B0 +B1X1 +X2,

if the null hypothesis Hdeg holds. For the alternative, we generate the dependent variable Y

using

Y = B0 +B1X1 + ηB2X2,

for some constant η > 0, which varies in the simulations below.

The test is implemented as described in Example 4 with B–splines, and uses the stan-

dardization described in Remark 8 with δn(V, t) = exp(itY ) − ĥn(X1, t) exp(itg2(X, b̂2n)). To

estimate the restricted conditional characteristic function, we use B–splines of order 2 with

one knot (hence, kn = 4), and for the unrestricted one a tensor-product of this B–spline ba-

sis functions and a quadratic polynomial (hence, mn = 12). In practice, we may employ the

minimum-maximum principle for parameter choice, as described in the previous subsection.

The empirical rejection probabilities for testing degeneracy are shown in Table 2 at nominal

levels 0.010, 0.050, and 0.100. Again we normalize the models to ensure that the null and

alternative have the same variance. The differences between the nominal and empirical rejection

probabilities are small under fixed coefficient for X2, as is obvious from rows 1 and 5. From

Table 2, we also see from rows 2–4 or 6–8 that our test rejects the alternative model more
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Alt. Model Empirical Rejection probabilities at level

η ρ 0.010 0.050 0.100

1 0.003 0.048 0.110

0.75 0.033 0.177 0.352

1 0.142 0.479 0.837

1.25 0.378 0.738 0.876

1.5 0.003 0.050 0.105

0.75 0.118 0.396 0.643

1 0.367 0.741 0.837

1.25 0.627 0.904 0.967

Table 2: Rows 1 and 5 depict the empirical rejection probabilities under degeneracy of the

coefficient of X2, the rows 2–4 and 6–8 show the finite sample power of our tests against

various alternatives. Column 1 depicts the value of η in the correct model and is empty if the

null model is correct. Column 2 specifies covariance of B1 and B2. Columns 4–6 depict the

empirical rejection probabilities for different nominal levels.

often for a larger variance of B2, as we expect. Moreover, the empirical rejection probabilities

increase as the covariance of B1 and B2 becomes larger, as we see by comparing rows 2–4 with

6–8.

5 Application

5.1 Motivation: Consumer Demand

Heterogeneity plays an important role in classical consumer demand. The most popular class of

parametric demand systems is the almost ideal (AI) class, pioneered by Deaton and Muellbauer

[1980]. In the AI model, instead of quantities budget shares are being considered and they are

being explained by log prices and log total expenditure6. The model is linear in log prices and

a term that involves log total expenditure linearly but which is divided by a price index that

depends on parameters of the utility function. In applications, one frequent shortcut is that the

price index is replaced by an actual price index, another is that homogeneity of degree zero is

6The use of total expenditure as wealth concept is standard practice in the demand literature and, assuming

the existence of preferences, is satisfied under an assumption of separability of the labor supply from the

consumer demand decision, see Lewbel [1999].
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imposed, which means that all prices and total expenditure are relative to a price index. This

step has the beneficial side effect that it removes general inflation as well.

A popular extension in this model allows for quadratic terms in total expenditure (QUAIDS,

Banks et al. [1997]). Since we focus in this paper on the budget share for food at home (BSF ),

which, due at least in parts to satiation effects, is often documented to decline steadily across

the total expenditure range, we want to assess whether quadratic terms are really necessary.

Note that prices enter the quadratic term in a nonlinear fashion, however, due to the fact that

we have very limited price variation, we can treat the nonlinear expression involving prices as

a constant. This justifies the use of real total expenditure as regressor, even in the quadratic

term. In other words, we thus consider an Engel curve QUAIDS model. Moreover, we want to

allow for preference heterogeneity, and hence consider a heterogeneous population model:

BSFi = B0i +B1i log(TotExpi) +B2i

(
log(TotExpi)

)2
+ b4W1i + b5W2i. (5.1)

Unobserved heterogeneity is reflected in the three random coefficients B0i, B1i and B2i. This

additive specification can be thought of as letting the mean of the random intercept B0i depend

on covariates. To account for observed heterogeneity in preferences, we include in addition

household covariates as regressors. Specifically, we use principal components to reduce the

vector of remaining household characteristics to a few orthogonal, approximately continuous

components. We only use two principal components, denoted W1i and W2i. While including

these additional controls in this form is arguably ad hoc, we perform some robustness checks like

alternating the component or adding several others, and the results do not change appreciably.

We implement the test statistics as described in the Monte Carlo section. For testing

degeneracy, we estimate the estimate the conditional characteristic functions as described in

Example 4. For testing functional form restrictions, our test is implemented as described in

Example 3, where in the linear case we employ the estimation procedure in Example 11. In

both cases, we choose the dimension parameters kn and mn by the minimum-maximum principle

explained in the Monte Carlo section.

5.2 The Data: The British Family Expenditure Survey

The FES reports a yearly cross section of labor income, expenditures, demographic composition,

and other characteristics of about 7,000 households. We use years 2008 and 2009. As is standard

in the demand system literature, we focus on the subpopulation of two person households where

both are adults, at least one is working, and the head of household is a white collar worker.

This is to reduce the impact of measurement error; see Lewbel [1999] for a discussion. We thus

have a sample of size 543, which is similar to the one considered in the Monte Carlo section.
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We form several expenditure categories, but focus on the food at home category. This

category contains all food expenditure spent for consumption at home; it is broad since more

detailed accounts suffer from infrequent purchases (the recording period is 14 days) and are

thus often underreported. Food consumption accounts for roughly 20% of total expenditure.

Results actually displayed were generated by considering consumption of food versus nonfood

items. We removed outliers by excluding the upper and lower 2.5% of the population in the

three groups. We form food budget shares by dividing the expenditures for all food items by

total expenditures, as is standard in consumer demand. The following table provides summary

statistics of the economically important variables:

Min. 1st Qu. Median Mean 3rd Qu. Max. St. Dev.

Food share 0.008 0.137 0.178 0.188 0.232 0.591 0.075

log(TotExp) 4.207 5.534 5.788 5.782 6.066 6.927 0.448

5.3 Results

For testing degeneracy of the coefficient B2, we estimate the coefficient under Hdeg, i.e., we

assume that this coefficient is fixed. The ordinary least squares estimate is−0.009 with standard

error 0.008. This significant role of nonlinearity is also picked up by our procedure. Table 3

shows the different values of the test statistics and p-values at nominal level 0.05. As we see

from Table 3, our test fails to reject the model (5.1) with degenerate B2i but rejects the linear

random coefficient model where B2i = 0. Unsurprisingly, we also fail to reject the random

coefficient QUAIDS model. The dimension parameters kn and mn are chosen via the proposed

minimum-maximum principle. It is interesting to note that we chose higher order basis functions

to account for the random coefficient of the quadratic term. This also supports the hypothesis

that the marginal p.d.f. B2 is close to the Dirac measure.

Null Hypothesis linear RC quadratic RC RC with fixed coeff. on
quadratic term in TotExp

value of test 2.1289 1.4200 0.6551

p-values 0.0166 0.0778 0.2562

Table 3: Values of the tests with p-values when null hypothesis is either a linear random coef-

ficient model (i.e., B2i = 0 in (5.1)), a quadratic random coefficient model (i.e., random B2i

in (5.1)), or a random coefficient model with degenerate coefficient on the quadratic term (i.e.,

B2i = b2 in (5.1) for some fixed b2).
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The analysis thus far assumes that total expenditure is exogenous. However, in consumer

demand it is commonly thought that log total expenditure is endogenous and is hence instru-

mented for, typically by labor income, say Z, see Lewbel [1999]. One might thus argue that

we reject our hypotheses not due to a failure to functional form restrictions, but because of a

violation of exogeneity of total expenditure. Therefore, we follow Imbens and Newey [2009],

and model the endogeneity through a structural heterogeneous equation that relates total ex-

penditure X to the instrument labor income Z, i.e.,

X = ψ(Z,U),

where U denotes a scalar unobservable. Following Imbens and Newey [2009], we assume that the

instrument Z is exogenous, i.e., we assume Z ⊥ (B,U), implying X ⊥ B|U , and we assume that

the function ψ is strictly monotonic in U. Finally, we employ the common normalization that

U |Z is uniformly distributed on the unit interval [0, 1]. Then, the disturbance U is identified

through the conditional cumulative distribution function of X given Z, i.e.,

U = FX|Z(X|Z).

Since X ⊥ B|U , we then simply modify our testing procedure by additionally conditioning

on controls U . In the consumer demand literature, this control function approach was also

considered by Hoderlein [2011]. However, since the theory is outside of the scope of this paper,

we do not adjust for estimation error in this variable depending on the smoothness assumptions

one is willing to impose in this step, which may lead to a higher variance.

The results of this modification are summarized in Table 4. As we see from this table, the

Null Hypothesis linear RC quadratic RC RC with fixed coeff. on
quadratic term in TotExp

value of test 2.0661 1.3978 0.2304

p–values 0.0194 0.0810 0.4089

Table 4: Values of the test statistics with p–values, when additionaly corrected for endogeneity.

value of the modified test statistics are smaller, once we introduce the instrument Z in a control

function approach. This possibly indicates that there is some endogeneity bias in the first case;

however, our main conclusions remain unchanged: We soundly reject the linear RC model, and

fail to reject Hdeg and Hmod.

6 Conclusion

This paper develops nonparametric specification testing for random coefficient models. We

employ a sieve strategy to obtain tests for both the functional form of the structural equation,
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e.g., for linearity in random parameters, as well as for the important question of whether or

not a parameter can be omitted. While the former can be used to distinguish between various

models, including such models where the density of random coefficients is not necessarily point

identified, the latter types of test reduce the dimensionality of the random coefficients density.

From a nonparametric perspective, this is an important task, because random coefficient models

are known to suffer from very slow rates of convergence, see Hoderlein et al. [2010]. We establish

the large sample behavior of our test statistics, and show that our tests work well in a finite

sample experiment, and allow to obtain reasonable results in a consumer demand application.

Mathematical Appendix

Throughout the proofs, we will use C > 0 to denote a generic finite constant that may be

different in different uses. We use the notation an . bn to denote an ≤ Cbn for all n ≥ 1.

Further, for ease of notation we write
∑

j for
∑n

j=1. Recall that ‖·‖ denotes the usual Euclidean

norm, while for a matrix A, ‖A‖ is the operator norm. Further, ‖φ‖X ≡
√
E(φ2(X)) and〈

φ, ψ
〉
X
≡ E[φ(X)ψ(X)]. Recall the notation Pn = E[pmn(X)pmn(X)′].

Proofs of Section 2.

Proof of Proposition 5. Let us denote f = dFX

dν
. For some constant 0 < c < 1, for all

n ≥ 1, and any an ∈ Rmn we have

‖an‖2 =

∫
(a′n pmn(x))2

1{f(x) ≥ λn}ν(dx) +

∫
(a′n pmn(x))2

1{f(x) < λn}ν(dx)

≤ λ−1
n

∫
(a′n pmn(x))2f(x)ν(dx) + c

∫
(a′n pmn(x))2ν(dx).

Consequently,

CλnImn ≤ Pn

where Imn denotes the mn ×mn dimensional identity matrix.

By Assumption 2, the eigenvalues of λ−1
n Pn are bounded away from zero and hence, it may

be assumed that Pn = λnImn . Otherwise, consider a linear transformation of pmn of the form

p̃mn ≡ (Pn/λn)−1/2pmn where supx∈X ‖p̃mn(x)‖ ≤ Cmn using that the smallest eigenvalue of

(Pn/λn)−1/2 is bounded away from zero uniformly in n.

Lemma 6.1. It holds ςmn ≥ C
√
mn.
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Proof. Without loss of generality it may be assumed that
∫
$(t)dt = 1. By the definition of

ςmn we conclude

ς2
mn
≥ λ−2

n

mn∑
l=1

∫ ∫ ∣∣∣E[δ(V, s)δ(V, t)p2
l (X)

]∣∣∣2$(s)$(t)dsdt

≥ λ−2
n

mn∑
l=1

(
E
[
|
∫
δ(V, t)$(t)dt|2p2

l (X)
])2

(by Jensen’s inequality)

≥ Cλ−2
n

mn∑
l=1

(
E[p2

l (X)]
)2

(by Assumption 3)

= Cmn.

In the following, we make use of the notations P̂n = n−1
∑

j pmn(Xj)pmn(Xj)
′ and γ̂n(t) ≡

(nP̂n)−1
∑

j exp(itYj)pmn(Xj). Let Ân = n−1
∑

j

∫
(Fgqkn)(Xj, t)(Fgq′kn)(Xj, t)$(t)dt and An =

E
[ ∫

(Fgqkn)(X, t)(Fgq′kn)(X, t)$(t)dt
]
. Recall β̂n = (nÂn)−

∑
j

∫
(Fgqkn)(Xj, t)ϕ̂n(Xj, t)$(t)dt

and let βn = A−n
∫
E[(Fgqkn)(X, t)ϕ(X, t)]$(t)dt.

Proof of Theorem 7. We make use of the decomposition

nSn =
∑
j

∫ ∣∣ε̂n(Xj, t)
∣∣2$(t)dt

=
∑
j

∫ ∣∣pmn(Xj)
′ γ̂n(t)−Πmnϕ(Xj, t)

∣∣2$(t)dt

+ 2
∑
j

∫ (
pmn(Xj)

′ γ̂n(t)−Πmnϕ(Xj, t)
)(
Πmnϕ(Xj, t)− (Fgf̂Bn)(Xj, t)

)
$(t)dt

+
∑
j

∫ ∣∣Πmnϕ(Xj, t)− (Fgf̂Bn)(Xj, t)
∣∣2$(t)dt

=In + 2 IIn + IIIn (say).
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Consider In. We conclude

In = n

∫ (
γ̂n(t)−

〈
ϕ(·, t), pmn

〉
X

)′
P̂n

(
γ̂n(t)−

〈
ϕ(·, t), pmn

〉
X

)
$(t)dt

= n−1

∫ (∑
j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

)′
P̂−1
n

×
(∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

)
$(t)dt

= λ−1
n

∫ ∥∥n−1/2
∑
j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

∥∥2
$(t)dt

+ n−1

∫ (∑
j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

)′(
P̂−1
n − λ−1

n In
)

×
(∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

)
$(t)dt

= B1n +B2n (say).

Since (Πmnϕ(X, t) − ϕ(X, t))pmn(X) is a centered random variable for all t it is easily seen

that B1n = λ−1
n

∫ ∥∥n−1/2
∑

j

(
exp(itYj)− ϕ(Xj, t)

)
pmn(Xj)

∥∥2
$(t)dt+ op(1). Thus, Lemma 6.2

yields (
√

2ςmn)−1
(
B1n − µmn

) d→ N (0, 1). To show that B2n = op(
√
mn) note that

‖P̂−1
n − λ−1

n In‖ ≤ λ−1
n ‖(P̂n/λn)−1‖‖In − P̂n/λn‖ = Op

(√
(mn log n)/(nλ2

n)
)

by Lemma 6.2 of Belloni et al. [2015]. Further, from E[(exp(itY ) − Πmnϕ(X, t))pl(X)] = 0,

1 ≤ l ≤ mn, we deduce

n−1

∫
E
∥∥∥∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

∥∥∥2

$(t)dt

.
∫
$(t)dtE‖pmn(X)‖2 + sup

x∈X
‖pmn(x)‖2

mn∑
l=1

∫ 〈
ϕ(·, t), pl

〉2

X
$(t)dtE[p2

l (X)]

. mnλn. (6.1)

The result follows due to condition m2
n log n = o(nλn). Thereby, it is sufficient to prove IIn +

IIIn = op(
√
mn). Consider IIIn. We observe

IIIn .
∑
j

∫ ∣∣Fg(f̂Bn −ΠknfB)(Xj, t)
∣∣2$(t)dt+

∑
j

∫ ∣∣(FgΠknfB)(Xj, t)−Πmnϕ(Xj, t)
∣∣2$(t)dt,

where
∑

j

∫ ∣∣(FgΠknfB)(Xj, t)−Πmnϕ(Xj, t)
∣∣2$(t)dt = op(

√
mn) and∑

j

∫ ∣∣Fg(f̂Bn −ΠknfB)(Xj, t)
∣∣2$(t)dt = (β̂n − βn)′

∑
j

∫
(Fgqkn)(Xj, t)(Fgqkn)(Xj, t)

′$(t)dt(β̂n − βn)

= n(β̂n − βn)′Ân(β̂n − βn).
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Let us introduce the vector β̃n = (nÂ−n )
∑

j

∫
(Fgqkn)(Xj, t)ϕ(Xj, t)$(t)dt. Using the property

of Moore-Penrose inverses that Ân = ÂnÂ
−
n Ân, we conclude

n(β̂n − βn)′Ân(β̂n − βn) . n(β̂n − β̃n)′Ân(β̂n − β̃n) + n(β̃n − βn)′Ân(β̃n − βn)

.
∥∥∥n−1/2

∑
j

∫
(Fgqkn)(Xj, t)

(
ϕ̂n(Xj, t)− ϕ(Xj, t)

)
$(t)dt

∥∥∥2

‖Â−n ‖

+
∥∥∥n−1/2

∑
j

∫
(Fgqkn)(Xj, t)ϕ(Xj, t)$(t)dt

∥∥∥2

‖Â−n − A−‖2‖Ân‖

+
∥∥∥n−1/2

∑
j

∫ (
(Fgqkn)(Xj, t)ϕ(Xj, t)− E

[
(Fgqkn)(X, t)ϕ(X, t)

])
$(t)dt

∥∥∥2

‖A−n ‖2‖Ân‖

From Lemma 6.3 we have ‖Â−n − A−n ‖ = Op

(√
(log n)kn/n

)
. By Assumption 4 (v) it holds

‖A−n ‖ = O(1) and thus, ‖Â−n ‖ ≤ ‖Â−n − A−n ‖ + ‖A−n ‖ = Op(1). Thereby, it is sufficient to

consider∥∥∥n−1/2
∑
j

∫
(Fgqkn)(Xj, t)(ϕ̂n(Xj, t)− ϕ(Xj, t)$(t)dt

∥∥∥2

. ‖n−1/2
∑
j

∫
(Fgqkn)(Xj, t)pmn(Xj)

′(γ̂n(t)−
〈
ϕ(·, t), pmn

〉
X

)
$(t)dt

∥∥∥2

+ ‖n−1/2
∑
j

∫
(Fgqkn)(Xj, t)

(
Πmnϕ(Xj, t)− ϕ(Xj, t)

)
$(t)dt

∥∥∥2

. n‖
∫
E
[
(Fgqkn)(X, t)pmn(X)′

](
γ̂n(t)−

〈
ϕ(·, t), pmn

〉
X

)
$(t)dt

∥∥∥2

+ n‖
∫
E
[
(Fgqkn)(X, t)

(
Πmnϕ(X, t)− ϕ(X, t)

)]
$(t)dt

∥∥∥2

+Op(kn)

= Op

(
kn + n‖Πmnϕ− ϕ‖2

$

)
which can be seen as follows. Let

〈
·, ·
〉
$

denote the inner product induced by the norm ‖ · ‖$.

We calculate

‖
∫
E
[
(Fgqkn)(X, t)

(
Πmnϕ(X, t)− ϕ(X, t)

)]
$(t)dt

∥∥∥2

=
kn∑
l=1

〈
Fgql, Πmnϕ− ϕ

〉2

$

=
kn∑
l=1

(∫
ql(b)E

[(
F∗g (Πmnϕ− ϕ)

)
(X, b)

]
db
)2

.
∫ (

E
[(
F∗g (Πmnϕ− ϕ)

)
(X, b)

])2

db

. ‖Πmnϕ− ϕ‖2
$

where F∗g is the adjoint operator of Fg given by (F∗gφ)(b) =
∫
E[exp(itg(X, b))φ(X, t)]$(t)dt.

Consequently, we have n(β̂n − βn)′Ân(β̂n − βn) = Op

(
kn + n‖Πmnϕ − ϕ‖2

$

)
= op(

√
mn) and,
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in particular, IIIn = op(
√
mn). Consider IIn. From above we infer n‖β̂n − βn‖2 = Op

(
kn +

n‖Πmnϕ− ϕ‖2
$

)
by employing that Â−n is stochastically bounded. Thereby, we obtain

|IIn|2 .
∣∣ ∫ ∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

′〈ϕ(·, t)− (FgΠknfB)(·, t), pmn

〉
X
$(t)dt

∣∣∣2
+
∣∣ ∫ ∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

′〈(Fg(ΠknfB − f̂Bn)(·, t), pmn

〉
X
$(t)dt

∣∣∣2 + op(mn)

. n

∫
E
∣∣Πmnϕ(X, t)− (ΠmnFgΠknfB)(X, t)

∣∣2$(t)dt

+ n

∫
E
∥∥( exp(itY )−Πmnϕ(X, t)

)
(ΠmnFgqkn)(X, t)

∥∥2
$(t)dt ‖β̂n − βn‖2 + op(mn)

= Op

(
n‖Fg(ΠknfB − fB)‖2

$ + kn(kn + n‖Πmnϕ− ϕ‖2
$)
)

+ op(mn)

= op(mn)

where we used that ‖Πmnϕ − ϕ‖∞ = O(1) and
∑kn

l=1 ‖ΠmnFgql‖2
$ = O(kn), which completes

the proof.

We require the following notation. Let us introduce the covariance matrix estimator Σ̂mn(s, t) =

n−1
∑

j pmn(Xj)pmn(Xj)
′δn(Vj, s)δn(Vj, t) where δn(Vj, s) = exp(itY ) − (Fgf̂Bn)(X, t). Fur-

ther, we define δ̃n(V, t) = exp(itY ) − (FgΠknfB)(X, t) and introduce the matrix Σ̃mn(s, t) =

n−1
∑

j pmn(Xj)pmn(Xj)
′δ̃n(Vj, s)δ̃n(Vj, t).

Proof of Proposition 9. To keep the presentation of the proof simple, we do not consider

estimation of Pn in ς̂mn and µ̂mn . We make use of the relationship

δn(·, s)δn(·, t)− δ̃n(·, s)δ̃n(·, t) =δ̃n(·, s)
(
(Fgf̂Bn)(·, t)− (FgΠknfB)(·, t)

)
+ δn(·, t)

(
(Fgf̂Bn)(·, s)− (FgΠknfB)(·, s)

)
.

Observe∫ ∫
‖Σ̂mn(s, t)− Σ̃mn(s, t)‖2

F$(s)ds$(t)dt

.
∫ ∫ ∥∥∥n−1

∑
j

pmn(Xj)pmn(Xj)
′δ̃n(Vj, s)

(
(Fgf̂Bn)(Xj, t)− (FgΠknfB)(Xj, t)

)∥∥∥2

F
$(s)ds$(t)dt

+

∫ ∫ ∥∥∥n−1
∑
j

pmn(Xj)pmn(Xj)
′ δn(Vj, t)

(
(Fgf̂Bn)(Xj, s)− (FgΠknfB)(Xj, s)

)∥∥∥2

F
$(s)ds$(t)dt

= In + IIn (say).
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We conclude

In ≤
∫ ∫ ∥∥∥ 1

n

∑
j

δ̃n(Vj, s)pmn(Xj)pmn(Xj)
′(Fgpkn)(Xj, t)

′(β̂n − βn)
∥∥∥2

F
$(s)ds$(t)dt

≤
∫ ∫ ∥∥∥E[ δ̃n(V, s)pmn(X)pmn(X)′(Fgqkn)(X, t)′](β̂n − βn)

∥∥∥2

F
$(s)ds$(t)dt+ op(1)

≤ ‖β̂n − βn‖2

×Op

( mn∑
j,l=1

kn∑
l′=1

∫ ∫ (
E[(ϕ(X, s)− (FgΠknfB)(X, s))(Fgql′)(X, t)pj(X)pl(X)]

)2

$(s)ds$(t)dt
)

≤ ‖β̂n − βn‖2

×Op

( mn∑
l=1

kn∑
l′=1

∫ ∫
E
∣∣(ϕ(X, s)− (FgΠknfB)(X, s))(Fgql′)(X, t)pl(X)

∣∣2$(s)ds$(t)dt
)

= Op

(
mnk

2
n/n+mnkn‖Πmnϕ− ϕ‖2

$

)
= op(1).

Here, we used ‖β̂n − βn‖2 = Op(kn/n + ‖Πmnϕ − ϕ‖2
$) which can be seen as in the proof of

Theorem 7. Since In = op(1) we conclude

IIn .
∫ ∫ ∥∥∥(β̂n − βn)′E[(Fgqkn)(X, s)pmn(X)pmn(X)′(Fgqkn)(X, t)′](β̂n − βn)

∥∥∥2

F
$(s)ds$(t)dt+ op(1)

≤ ‖β̂n − βn‖4

mn∑
j,l=1

∫ ∫
E[‖(Fgqkn)(X, s)‖‖(Fgqkn)(X, t)‖|pj(X)pl(X)|]2$(s)ds$(t)dt+ op(1)

≤ Cm2
n‖β̂n − βn‖4

(∫
E‖(Fgqkn)(X, t)‖2$(t)dt

)2

+ op(1)

= Op

(
m2
nkn/n

2 +m2
n‖Πmnϕ− ϕ‖4

$

)
= op(1).

by using kn = o(
√
mn). Finally, it is to see that ς2

mn
−
∫ ∫
‖Σ̃mn(s, t)‖2$(s)ds$(t)dt = op(1),

which proves ςmn ς̂
−1
mn

= 1+op(1). In particular, convergence of the trace of Σ̂mn(t, t) to the trace

of Σmn(t, t) follows by using |µ̂mn−µmn|2 ≤ mn

∫
‖Σ̂mn(t, t)−Σmn(t, t)‖2

F$(t)dt = op(mn).

Proof of Theorem 12. We make use of the decomposition

nSn =
∑
j

∫ ∣∣pmn(Xj)
′(γ̂n(t)−

〈
ϕ(·, t)pmn

〉
X

)∣∣2$(t)dt

+ 2
∑
j

∫ (
pmn(Xj)

′(γ̂n(t)−
〈
ϕ(·, t), pmn

〉
X

))
×
(
Πmnϕ(Xj, t)− ĥn(X1j, t)g̃(Xj, t, b̂2n)

)
$(t)dt

+
∑
j

∫ ∣∣Πmnϕ(Xj, t)− ĥn(X1j, t)g̃(Xj, t, b̂2n)
∣∣2$(t)dt

=In + 2 IIn + IIIn (say)
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where we used
〈
h(·, t)g̃(·, t, b2), pmn

〉
X

=
〈
ϕ(·, t), pmn

〉
X

. Consider In. As in the proof of

Theorem 7 we have

In = nλ−1
n

∫ ∥∥∥n−1/2
∑
j

(
exp(itYj)− h(X1j, t)g̃(Xj, t, b2)

)
pmn(Xj)

∥∥∥2

$(t)dt+ op(
√
mn).

Thus, Lemma 6.2 yields (
√

2ςmn)−1
(
In−µmn

) d→ N (0, 1). Consider IIIn. Since |g̃(Xj, t, b)| ≤ 1

for all b we evaluate

IIIn .
∑
j

∫ ∣∣Πmnϕ(Xj, t)− ϕ(Xj, t)
∣∣2$(t)dt

+
∑
j

∫ ∣∣h(X1j, t)− ĥn(X1j, t)
∣∣2$(t)dt

+
∑
j

∫
|ĥn(X1j, t)|2

∣∣g̃(Xj, t, b2)− g̃(Xj, t, b̂2n)
∣∣2$(t)dt.

It holds
∫
‖ĥn(·, t)−Πknh(·, t)‖2

X1
$(t)dt = Op(kn/n) as we see in the following. We have

λn

∫
‖ĥn(·, t)−Πknh(·, t)‖2

X1
$(t)dt

≤ λn
∥∥(∑

j

pkn(Xj)pkn(Xj)
′)−1∥∥ ∫ ∥∥∑

j

(
Πknh(X1j, t)−exp

(
it(Yj−g2(Xj, b̂2n))

))
pkn(X1j)

∥∥2
$(t)dt

.
∫ ∥∥n−1

∑
j

(
Πknh(X1j, t)− exp

(
it(Yj − g2(Xj, b2))

))
pkn(X1j)

∥∥2
$(t)dt

+ ‖b̂2n − b2‖2

kn∑
l=1

∫ ∥∥n−1
∑
j

exp(itYj)g̃b(Xj, t, b̃2n)pl(X1j)
∥∥2
$(t)dt+ op(1),

by a Taylor series expansion, where b̃2n is between b̂2n and b2. As in relation (6.1), from

E[
(
Πknh(X, t)− exp(it(Y − g2(X, b2))

)
pkn(X)] = 0 we deduce∫

E
∥∥n−1

∑
j

(
Πknh(X1j, t)− exp(it(Yj − g2(Xj, b2))

)
pkn(Xj)

∥∥2
$(t)dt = O(n−1knλn).

Further, since
∫
E supb2

∥∥g̃b(X, t, b2)
∥∥2
$(t)dt ≤ C we have

E
( kn∑
l=1

∫ ∥∥n−1
∑
j

exp(itYj)g̃b(Xj, t, b̃2n)pl(Xj)
∥∥2
$(t)dt

)1/2

≤ E
[
‖pkn(X)‖

(∫ ∥∥g̃b(X, t, b̃2n)
∥∥2
$(t)dt

)1/2]
≤
(
E‖pkn(X)‖2

)1/2
(∫

E sup
b2∈B

∥∥g̃b(X, t, b2)
∥∥2
$(t)dt

)1/2

= O
(√

λnkn
)
.
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This establishes the rate for the estimator ĥn. In light of condition n‖Πknh− h‖2
$ = o

(√
mn

)
and since n‖b2 − b̂2n‖2 = Op(1) and kn = o(

√
mn) we conclude IIIn = op(

√
mn). It remains to

show IIn = op(
√
mn), which follows by

|IIn| .
∣∣ ∫ ∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

′〈Πmnϕ(·, t)−Πknh(·, t)g̃(·, t, b2), pmn

〉
X
$(t)dt

∣∣∣
+
∣∣ ∫ ∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

′〈Πknh(·, t)g̃(·, t, b2)− ĥn(·, t)g̃(·, t, b̂2n), pmn

〉
X
$(t)dt

∣∣∣
+ op(

√
mn)

= Op(
√
n‖Πknh− h‖$) + op(

√
mn)

+Op

((
kn

∫
E sup

b2∈B

∥∥ mn∑
l=1

pl(X)
〈
g̃b(·, t, b2)p′kn , pl

〉
X

∥∥2
$(t)dt

)1/2)
= op(

√
mn),

using that
∫
E supb2∈B

∥∥∑mn

l=1 pl(X)
〈
g̃b(·, t, b2)p′kn , pl

〉
X

∥∥2
$(t)dt ≤

∑kn
l=1E[p2

l (X)] = O(kn),

which proves the result.

Proof of Proposition 15. For the proof it is sufficient to show Sn ≥ C‖ε‖2
$ + op(1). The

proof of Theorem 7 together with the basic inequality (a− b)2 ≥ a2 − b2 implies that

Sn = λ−1
n

mn∑
l=1

∫ ∣∣∣n−1
∑
j

δ(Vj, t)pl(Xj)
∣∣∣2$(t)dt+ op(1)

&
mn∑
l=1

∫ ∣∣E[δ(V, t)pl(X)]
∣∣2$(t)dt+ op(1)

& C
(
‖ε‖2

$/2− ‖Πmnε− ε‖2
$

)
+ op(1)

& ‖ε‖2
$ + op(1),

by using that (λn)n≥1 is a nonincreasing sequence.

Proof of Proposition 16. Following the proof Theorem 7, it is easily seen that

nSn =λ−1
n

mn∑
l=1

∫ ∣∣∣n−1/2
∑
j

δ(Vj, t)pl(Xj)
∣∣∣2$(t)dt

+
∑
j

∫ ∣∣(FgΠknfB)(Xj, t)−Πmnϕ(Xj, t)
∣∣2$(t)dt+ op(

√
mn).

Further, under the sequence of local alternatives (2.9), we calculate∑
j

∫ ∣∣(FgΠknfB)(Xj, t)−Πmnϕ(Xj, t)
∣∣2$(t)dt = n‖FgfB − ϕ‖2

$ + op(
√
mn)

= ς−1
mn
‖Fg∆‖2

$ + op(
√
mn),

which proves the result.
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Proofs of Section 3.

In the following, we make use of the notation α̂n ≡ (nR̂n)−1
∑

j Yjpmn(Xj, Zj) where R̂n =

n−1
∑

j pmn(Xj, Zj)pmn(Xj, Zj)
′. The Kronecker product for matrices is denoted by ⊗.

Proof of Proposition 18. We make use of the decomposition

nSn =
∑
j

∫ ∣∣∣∂zpmn(Xj, z)
′(α̂n − E[1{Z > g(X,B)}pmn(X,Z)]

∣∣∣2$(z)dz

+ 2
∑
j

∫
∂zpmn(Xj, z)

′
(
α̂n − E[1{Z > g(X,B)}pmn(X,Z)]

)
×
(
∂zpmn(Xj, z)

′E[1{Z > g(X,B)}pmn(X,Z)]−
(
F−1[(Fgf̂Bn)(Xj, ·)]

)
(z)
)
$(z)dz

+
∑
j

∫ ∣∣∂zpmn(Xj, z)
′E[1{Z > g(X,B)}pmn(X,Z)]−

(
F−1[(Fgf̂Bn)(Xj, ·)]

)
(z)
∣∣2$(z)dz

=In + 2IIn + IIIn (say).

Consider In. For all l ≥ 1, the derivative of a basis function pl is given by lpl−1. Since pl forms

an orthonormal basis in L2
$(R) is holds

In =
n

λn

(
β̂mn − E[1{Z > g(X,B)}pmn(X,Z)]

)′(
Im1n ⊗ Tn

)(
β̂mn − E[1{Z > g(X,B)}pmn(X,Z)]

)
+ op(

√
mn)

where Tn is a m2n ×m2n diagonal matrix with l–th diagonal element is given by (l − 1)2. It

holds

In = λ−1
n

mn∑
l=1

τl

∣∣∣n−1/2
∑
j

(
Yj −

∫
1{Zj > g2(Xj, b)}fB(b)db

)
pl(Xj, Zj)

∣∣∣2 + op(1).

Thus, Lemma 6.2 yields (
√

2ςmn)−1
(
In − µmn

) d→ N (0, 1). Consider IIIn. We have

IIIn .
∑
j

∫ ∣∣∣(Πmnψ)(Xj, z)− ψ(Xj, z)
∣∣∣2$(z)dz +

∑
j

∫ ∣∣∣(F−1[(Fg(f̂Bn − fB))(Xj, ·)]
)
(z)
∣∣∣2$(z)dz

=An1 + An2.

We have An1 = Op

(
n‖Πmnψ − ψ‖2

$

)
= op(

√
mn) and

An2 .
∑
j

∫ ∣∣(F−1[(Fg(f̂Bn −ΠknfB))(Xj, ·)]
)
(z)
∣∣2$(z)dz

+
∑
j

∫ ∣∣(F−1[(Fg(ΠknfB − fB))(Xj, ·)]
)
(z)
∣∣2$(z)dz,
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where the second summand on the right hand is of the order op(
√
mn). Further,∑

j

∫ ∣∣(F−1[(Fg(f̂Bn −ΠknfB))(Xj, ·)]
)
(z)
∣∣2$(z)dz

= (β̂n − βn)′
∑
j

∫ (
F−1[(Fgqkn)(Xj, ·)]

)
(z)
(
F−1[(Fgqkn)(Xj, ·)]

)
(z)′$(z)dz(β̂n − βn)

and thus, following the proof of Theorem 7 we obtain An2 = op(
√
mn). Similarly as in the proof

of Theorem 7 it can be seen that IIn = op(
√
mn), which completes the proof.

Proof of Proposition 19. We decompose our test statistic as

nSn =
∑
j

∫ ∣∣∣∂zpmn(Xj, z)
′
(
α̂n − E[Y pmn(X,Z)]

)∣∣∣2$(z)dz

+ 2
∑
j

∫ (
∂zpmn(Xj, z)

′α̂n − (Πmnψ)(Xj, z)
)(

(Πmnψ)(Xj, z)− ψ̂1n(X1j, z −X ′2j b̂2n)
)
$(z)dz

+
∑
j

∫ ∣∣∣(Πmnψ)(Xj, z)− ψ̂1n(X1j, z −X ′2j b̂2n)
∣∣∣2$(z)dz

=In + 2IIn + IIIn (say).

Consider In. As in the proof of Proposition 18 we obtain

In = λ−1
n

mn∑
l=1

τl

∣∣∣n−1/2
∑
j

(
Yj −

∫
1{Zj ≥ X ′1b1 +X ′2b2}fB1(b1)db1

)
pl(Xj, Zj)

∣∣∣2 + op(1),

and thus, Lemma 6.2 yields (
√

2ςmn)−1
(
In − µmn

) d→ N (0, 1). We evaluate for IIIn as follows

IIIn .
∑
j

∫ ∣∣∣(Πmnψ)(Xj, z)− ψ(Xj, z)
∣∣∣2$(z)dz

+
∑
j

∫ ∣∣∣ψ(X1j, z −X ′2jb2)− ψ̂n(Xj, z)
∣∣∣2$(z)dz

+
∑
j

∫ ∣∣∣ψ̂n(Xj, z)− ψ̂1n(X1j, z −X ′2j b̂2n)
∣∣∣2$(z)dz

The definition of the estimator b̂2 in (3.3) yields∑
j

∫ ∣∣∣ψ̂n(Xj, z)− ψ̂1n(X1j, z −X ′2j b̂2n)
∣∣∣2$(z)dz

≤
∑
j

∫ ∣∣∣ψ̂n(Xj, z)− ψ̂1n(X1j, z −X ′2jb2)
∣∣∣2$(z)dz

.
∑
j

∫ ∣∣∣ψ̂n(Xj, z)− ψ(Xj, z)
∣∣∣2$(z)dz

+
∑
j

∫ ∣∣∣ψ̂1n(X1j, z −X ′2jb2)− ψ(X1j, z −X ′2jb2)
∣∣∣2$(z)dz

= op(
√
mn).
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It thus follows IIIn = op(
√
mn). Similarly as in the proof of Theorem 12 it can be shown that

IIn = op(
√
mn).

Technical Appendix.

Lemma 6.2. Let Assumptions 1–3 hold true. Then

(
√

2ςmn)−1
(
λ−1
n

mn∑
l=1

∫ ∣∣∣n−1/2
∑
j

δ(Vj, t)pl(Xj)
∣∣∣2$(t)dt− µmn

)
d→ N (0, 1).

Proof. Let us denote the real and imaginary parts of δ(V, t)pl(X) by δRl (V, t) = Re
(
δ(V, t)

)
pl(X)

and δIl (V, t) = Im
(
δ(V, t)

)
pl(X), respectively. We have

mn∑
l=1

∫ ∣∣∣(λnn)−1/2
∑
j

δ(Vj, t)pl(Xj)
∣∣∣2$(t)dt

=
mn∑
l=1

∫ ∥∥∥(λnn)−1/2
∑
j

(
δRl (Vj, t), δ

I
l (Vj, t)

)′∥∥∥2

$(t)dt

=(λnn)−1

mn∑
l=1

∑
j

∫ ∥∥∥(δRl (Vj, t), δ
I
l (Vj, t)

)′∥∥∥2

$(t)dt

+ (λnn)−1

mn∑
l=1

∑
j 6=j′

∫ (
δRl (Vj, t)δ

R
l (Vj′ , t) + δIl (Vj, t)δ

I
l (Vj′ , t)

)
$(t)dt

=In + IIn (say).

We observe

E|In − µmn|2 = V ar
(

(λnn)−1

mn∑
l=1

∑
j

∫ ∣∣∣δ(Vj, t)pl(Xj)
∣∣∣2$(t)dt

)
≤ λ−2

n n−1E
[ ∫ ∣∣δ(V, t)∣∣4$(t)dt

( mn∑
l=1

p2
l (X)

)2]
≤ C sup

x∈X
‖pmn(x)‖2λ−2

n n−1

mn∑
l=1

E[p2
l (X)] = O(m2

nn
−1λ−1

n ) = o(1)

using that
∫

supv |δ(v, t)|4$(t)dt is bounded. Consider IIn. Let us introduce the Martingale

difference array Qnj =
√

2(ςmnn)−1
∑mn

l=1

∑j−1
j′=1

∫ (
δRl (Vj, t)δ

R
l (Vj′ , t) + δIl (Vj, t)δ

I
l (Vj′ , t)

)
$(t)dt

for j = 2, . . . , n, and zero otherwise. Further,

(
√

2ςmn)−1IIn =
√

2(ςmnn)−1
∑
j<j′

mn∑
l=1

∫ (
δRl (Vj, t)δ

R
l (Vj′ , t)+δ

I
l (Vj, t)δ

I
l (Vj′ , t)

)
$(t)dt =

∑
j

Qnj.

It remains to show that
∑

j Qnj
d→ N (0, 1), which follows by Lemma A.3 of Breunig [2015b]

by using the following computations. To show
∑∞

j=1E|Qnj|2 ≤ 1 observe that∑
j 6=j′

∫ (
δIl (Vj, t)δ

R
l (Vj′ , t)− δRl (Vj, t)δ

I
l (Vj′ , t)

)
$(t)dt = 0
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and E[X1jX1j′ ] = 0 for j 6= j′. Thus, for j = 2, . . . , n we have

E|Qnj|2 =
2(j − 1)

n2ς2
mn

E
∣∣∣ mn∑
l=1

∫
δl(V1, t)δl(V2, t)$(t)dt

∣∣∣2
=

2(j − 1)

n2ς2
mn

mn∑
l,l′=1

∫ ∫
E
[
δl(V, s)δl′(V, t)

]
E
[
δl(V, s)δl′(V, t)

]
$(s)ds$(t)dt

=
2(j − 1)

n2ς2
mn

mn∑
l,l′=1

∫ ∫ ∣∣∣E[δl(V, s)δl′(V, t)]∣∣∣2$(s)ds$(t)dt

=
2(j − 1)

n2

by the definition of ςmn and thus
∑

j E|Qnj|2 = 1− 1/n.

Recall Ân = n−1
∫

Fn(t)′Fn(t)$(t)dt and An =
∫
E
[
(Fgpkn)(X, t)(Fgpkn)(X, t)′

]
$(t)dt.

Lemma 6.3. Under the conditions of Theorem 7 it holds

Â−n = A−n +Op

(√
(log n)kn/n

)
.

Proof. On the set Ω ≡
{
‖A−n ‖‖Ân − An‖ < 1/4, rank(An) = rank(Ân)

}
, it holds R(Ân) ∩

R(An)⊥ = {0} by Corollary 3.1 of Chen et al. [1996], where R denotes the range of a mapping.

Consequently, by using properties of the Moore-Penrose pseudoinverse it holds on the set Ω:

Â−n − A−n =− Â−n (Ân − An)A−n + Â−n (Â−n )′(Ân − An)′(Ikn − AnA−n )

+ (Ikn − ÂnÂ−n )(Ân − An)′(A−n )′A−n ,

see derivation of equation (3.19) in Theorem 3.10 on page 345 of Nashed [2014]. Applying the

operator norm and using the fact that Ikn−AnA−n and Ikn− ÂnÂ−n as projections have operator

norm bounded by one, we obtain

‖Â−n − A−n ‖1Ω =
(
‖Â−n ‖‖Ân − An‖‖A−n ‖+ ‖Â−n ‖2‖Ân − An‖+ ‖A−n ‖2‖Ân − An‖

)
1Ω

≤ 3 ‖Ân − An‖max
{
‖A−n ‖2, ‖Â−n ‖2

1Ω

}
.

By Theorem 3.2 of Chen et al. [1996] it holds ‖Â−n ‖1Ω ≤ 3‖A−n ‖ = O(1). Consequently, Lemma

6.2 of Belloni et al. [2015] yields ‖Â−n −A−n ‖1Ω = Op

(√
kn(log n)/n

)
. The assertion follows by

1Ω = 1 with probability approaching one.
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