
Persistent link: http://hdl.handle.net/2345/bc-ir:104948

This work is posted on eScholarship@BC,
Boston College University Libraries.

Boston College Working Papers in Economics, 2015

Originally posted on: http://ideas.repec.org/p/boc/bocoec/899.html

Testing for monotonicity in
unobservables under unconfoundedness

Authors: Stefan Hoderlein, Liangjun Su, Halbert White,
Thomas Tao Yang

http://hdl.handle.net/2345/bc-ir:104948
http://escholarship.bc.edu


Testing for Monotonicity in Unobservables under

Unconfoundedness∗

Stefan Hoderlein, Liangjun Su, Halbert White, and Thomas Tao Yang

 Department of Economics, Boston College
 School of Economics, Singapore Management University

 Department of Economics, University of California, San Diego

October 23, 2015

Abstract

Monotonicity in a scalar unobservable is a common assumption when modeling heterogeneity in

structural models. Among other things, it allows one to recover the underlying structural function

from certain conditional quantiles of observables. Nevertheless, monotonicity is a strong assumption

and in some economic applications unlikely to hold, e.g., random coefficient models. Its failure can have

substantive adverse consequences, in particular inconsistency of any estimator that is based on it. Having

a test for this hypothesis is hence desirable. This paper provides such a test for cross-section data. We

show how to exploit an exclusion restriction together with a conditional independence assumption, which

in the binary treatment literature is commonly called unconfoundedness, to construct a test. Our statistic

is asymptotically normal under local alternatives and consistent against global alternatives. Monte Carlo

experiments show that a suitable bootstrap procedure yields tests with reasonable level behavior and

useful power. We apply our test to study the role of unobserved ability in determining Black-White wage

differences and to study whether Engel curves are monotonically driven by a scalar unobservable.

JEL Classification: C12, C14, C21, C26

Keywords: Control variables, Conditional exogeneity, Endogenous variables, Monotonicity, Nonpara-

metrics, Nonseparable, Specification test, Unobserved heterogeneity

1 Introduction

Global identification of structural features of interest generically involves exclusion restrictions (i.e., that

certain variables do not affect the dependent variable of interest) and some form of exogeneity condition

(i.e., that certain variables are stochastically orthogonal to — e.g., independent of — unobservable drivers of

the dependent variable, possibly conditioned on other observables). These assumptions permit identification
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of such important structural features as average marginal effects or various average effects of treatment.

Seminal examples are the local average treatment effects (LATE) of Imbens and Angrist (1994), the marginal

treatment effects (MTE) of Heckman and Vytlacil (1999, 2005), or the control function model of Imbens and

Newey (2009, IN hereafter), to name just a few.

In addition, there may be nonparametric restrictions placed on the structural function of interest, such

as separability between observable and unobservable drivers of the dependent variable (“structural separa-

bility”), or, more generally, the assumption that the dependent variable depends monotonically on a scalar

unobservable (“scalar monotonicity”). Although these assumptions need not to be necessary to identify

and estimate average effects of interest, when they do hold, they permit recovery of the structural function

itself. This line of work dates back to Roehrig (1988). It has received a lot of attention recently; see Altonji

and Matzkin (2005, AM hereafter), IN, Torgovitsky (2011), and d’Haultfoeuille and Février (2012), among

others.

Monotonicity of a structural function in one important - yet unobservable - factor is an assumption widely

invoked in economics. For instance, it is often postulated in labor economics that ability affects wages in

a monotonic fashion: Other things equal, the higher the individual’s ability, the higher her resulting wage.

Similarly, monotonicity in unobservables has frequently been invoked in industrial organization, e.g., in the

literature on production functions (see, e.g., Olley and Pakes 1996) and the literature on auctions, where

bids are monotonic functions of a scalar unobserved private valuation.

Given the wide use of monotonicity in economics and econometrics, a test for monotonicity seems desir-

able, not least because it has been repeatedly criticized; see, e.g., Hoderlein and Mammen (2007) or Kasy

(2011). Alternatives have been suggested in the case of triangular systems (Hoderlein et al. 2014), and in

the treatment effects setup (Huber and Mellace 2014). Nevertheless, to the best of our knowledge, generally

applicable specification tests for monotonicity in unobservables are lacking in econometrics and statistics

despite the enormous literature on nonparametric specification tests. Most closely related are specification

tests in the treatment effect framework, see in particular Kitagawa (2013), but these are for a binary en-

dogenous variable. Less closely related are tests for monotonicity in observable determinants; see, e.g., Birke

and Dette (2007) and Delgado and Escanciano (2012). These latter tests are very different in structure, and

generally compare a monotonized estimator with an unrestricted one. In addition, there are also tests on

the structure in unobservables: Hoderlein and Mammen (2009), Lu and White (2014) and Su et al. (2015)

propose convenient nonparametric tests for structural separability, but they cannot handle monotonicity.

Su, Hoderlein, and White (2014, SHW hereafter) do provide a test for scalar monotonicity under a strict

exogeneity assumption for large dimensional panel data models, which allows for several structural errors,

but its applicability is limited by the panel data requirement.1 Thus, our main goal and contribution here

is to provide a new generally applicable test designed specifically to detect the failure of scalar monotonicity

in a scalar unobservable in cross section data.

Under the null hypothesis of monotonicity of a structural function in a scalar unobservable and a con-

1See also Ghanem (2014) for related work on identification of these models.
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ditional exogeneity assumption, we derive a testable implication that is used to construct our test statistic.

We derive the asymptotic distribution of our test statistic under a sequence of Pitman local alternatives and

prove its global consistency. Simulations indicate that the empirical level of our test behaves reasonably

well and it has good power against non-monotonicity. The conditional exogeneity assumption holds in many

important examples, including control function treatments of exogeneity, unconfoundedness assumptions as

in the treatment effects literature, and generalizations of the classical proxy assumption. Note that our test

does not rely on the assumption of unconditional exogeneity, and hence also works in a situation where

regressors are endogenous, as long as instruments are available.

To illustrate our test, we apply our test to study the black-white earnings gap and to study consumer

demand. For the former, we test the specification proposed by Neal and Johnson (1996), who include

unobserved ability,  as scalar monotonic factor, and the armed forces qualification test (AFQT) as a control

variable. We fail to reject the null, providing support for Neal and Johnson’s (1996) specification. That our

test has power to reject monotonicity is illustrated by an analysis of Engel curves, where a scalar monotone

unobservable is implausible (see Hoderlein, 2011). In a control function setup virtually identical to that

analyzed in IN, we find that indeed the null of a scalar monotone unobservable as a description of unobserved

preference heterogeneity is rejected. This suggests a demand analysis that allows for heterogeneity in a more

structural fashion.

The remainder of this paper is organized as follows. In Section 2, we discuss relevant aspects of the

literature on nonparametric structural estimation with scalar monotonicity, motivate our testing approach,

and discuss identification under monotonicity. Based on these results, we discuss the heuristics for our test

in Section 3, turning to the formal asymptotics of our estimators and tests in Sections 4 and 5. A Monte

Carlo study is given in Section 6, and in Section 7 we present our two applications. Section 8 concludes. The

proofs of all results are relegated to the appendix. Further technical details are contained in supplementary

material which can be found online.

2 Scalar monotonicity and test motivation

The appeal of monotonicity stems at least in part from the fact that it permits one to specify structural

functions that allow for complicated interaction patterns between observables and unobservables without

losing tractability. Indeed, monotonicity combined with other appropriate assumptions allows one to recover

the unknown structural function from the regression quantiles. When we talk about structural models, we

mean that there are random vectors   and  and scalar random variable  with supports Y, X  Z and
A and only the former three being directly observable, which admit a structural relationship in the sense
that there exists a measurable function  : X ×A→ R such that  is structurally determined as

 = ()

Note that we permit, but do not require,  and  to be continuously distributed; either or both may have a

finite or countable discrete distribution for now. As in SHW, we are interested in testing the following null
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hypothesis

H0 :  ( ·) is strictly monotone for each  ∈ X . (2.1)

Without loss of generality, we further restrict our attention to the case where  ( ·) is strictly increasing
for each  ∈ X under the null; otherwise, one can always consider − ( ·) if  ( ·) is strictly decreasing.
As SHW note,  always has a quantile representation given . If  is independent of  and  is

monotone in , it allows the recovery of  Specifically, let (·|) and −1( |) denotes the conditional
cumulative distribution function (CDF) and conditional  -th quantile of  given  =  respectively. Then,

the strict monotonicity of ( ·), combined with full independence of  and  (strict exogeneity of ) and

a normalization, allows the recovery of  as ( ) = −1(|) for all ( )
Apparently, scalar monotonicity for a structural function is a strong assumption. As Hoderlein and

Mammen (2007) argue, some of its implications in certain applications, such as consumer demand, may

be unpalatable. In particular, monotonicity implies that the conditional rank order of individuals must be

preserved under interventions to  For example, under independence, if individual  attains the conditional

median food consumption −1(05|) then he would remain at the conditional median for all other values
of 

The generic existence of the regression quantile representation, however, makes it impossible to test for

monotonicity without further information. One source of such information is that provided by panel data,

as exploited by SHW, who use the discrete variation provided by time and consider several unobservables

in the structural model. Here, we follow a different strategy, using additional cross-section information. In

particular, we assume there is random vector  that is excluded from the structural function, and conditional

on which  is independent of  (for this, we use the shorthand  ⊥  | ). There are many models in
economics that admit such a representation, as we list in the following:

First, conditional independence is a very common notion in the treatment effect literature, and is often

called “unconfoundedness” (e.g., Wooldridge, 2010), or “conditionally exogeneity” (e.g., AM) with respect

to  given  For example,  could be randomly assigned given  i.e., the intensity of a treatment, say an

income supplement or a dose of a treatment, is randomly assigned, conditional on having certain socioeco-

nomic characteristics , but unconditionally there may exist correlation between  and the unobservables,

because certain socioeconomic groups may be treated preferentially.

Another important classical example is when  is a valid proxy for  In this case, we have no omitted

variable bias, because controlling for  removes the correlation - whatever is left over of  is not correlated.

This extends the classical notion of proxy to nonseparable models.

But this type of structure does not just arise in exogenous settings. A similar conditional exogeneity

assumption is also the key to the control function approach. In particular,  could be the unobservable in

a first-stage equation that relates  to an instrument . For instance, the first stage could be

 = Ψ( )

where  ⊥ () and Ψ is strictly monotonic in , with  being appropriately estimated, as in IN.
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Our test is based on the fact that, under mild assumptions, the availability of  enables one to construct

multiple consistent estimators of  If scalar monotonicity holds, then these estimators will be close to one

another; otherwise, they will diverge.

We now state the assumptions we impose on the structural model introduced above in a formal sense.

The structural model satisfies:

Assumption A.1 For all  ∈ X  ( ·) is strictly increasing in its last argument.

As mentioned above, we also require additional (excluded) variable , such that:

Assumption A.2  ⊥  |  where  is not measurable with respect to the sigma-field generated by 

By requiring  not to be solely a function of  we permit important flexibility for recovering objects of

interest. See, for example, Hoderlein and Mammen (2007, 2009) and IN. White and Lu (2011) explicitly

discuss structures ensuring A.2 where  is not a function of 

Finally, we also impose an invertibility condition on the conditional CDF of  given () :

Assumption A.3 Let (·| ) denote the conditional CDF of  given () = ( )  For each ( ) in

X ×Z (·| ) is invertible.

With these assumptions and the normalization condition  = (∗ ) ∀ for some reference point ∗
(see eq. (2.4) in Matzkin (2003)),  becomes comparable across observations. The main result that we build

our test upon is then

Proposition 2.1 Suppose that Assumptions A.1-A.3 hold. Then with the normalization  = (∗ ) ∀

( ) = −1(( | ∗ ) |  ) ∀ (  ) ∈ A×X ×Z (2.2)

 = −1(( |  ) | ∗ ) ∀ ∈ Z (2.3)

The main implication of this proposition is that −1(( | )|∗ ) has to be invariant with respect
to the changes in  In the following, we will make use of this fact and propose a test statistic for testing the

null hypothesis in (2.1).

3 Heuristics of estimation and specification testing

3.1 Estimation through sample counterparts

Proposition 2.1 provides the basis for convenient estimators complementary to those proposed by AM. Be-

cause this result ensures that( ) = −1((|∗ )| ) for given ∗ and any  one can estimate( )
as ̂( ) = ̂−1(̂(|∗ )| ) for any choice of  where ̂ and ̂−1 are any convenient estimators of 

and −1 respectively. (One might, but need not, obtain ̂−1 from ̂ by inversion or vice-versa.) Estimators
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dependent on  may exhibit undesirable variability; averaging over multiple ’s may provide more reliable

results. Such estimators have the form

̂( ) =

Z
̂−1(̂( | ∗ ) |  )()

where  is a user-chosen distribution function supported on Z0 ⊆ Z e.g., the uniform distribution. In the

next section we examine the properties of ̂( ) constructed using -th order local polynomial estimators

̂ and ̂−1 using a bandwidth .

Similarly, one can estimate  as ̂ = ̂−1(̂( | )|∗ )) for given ∗ and any choice of  Averaging
over multiple ’s gives estimators of the form

̂ =

Z
̂−1(̂( |  ) | ∗ )) ()

Alternative estimators of  can be obtained by inverting ̂() yielding

̃ = ̂−1 ( ) ≡ inf { : ̂( ) ≥  } 

Parallel to the situation for ̂  regardless of misspecification, ̂ and ̃ are generally consistent for

pseudo-true values

∗ ≡
Z

−1(( |  ) | ∗ )) ()


†
 ≡ ∗−1 ( ) ≡ inf { : ∗( ) ≥  } 

where ∗ denotes the probability limit of ̂  Under the correct specification of both Assumptions A1 and

A2, ∗ = 
†
 = 

3.2 Specification testing

Proposition 2.1 motivates constructing specification tests by comparing various estimators of  as there are

multiple consistent estimators of  under correct specification. Under Assumptions A.1-A.3, the failure of

these estimators to coincide asymptotically signals non-monotonicity. Below we will study the asymptotic

properties of the test statistic

̂ ≡ 
X
=1

(̂1 − ̂2)
2 ( )

= 
X
=1

½Z
̂−1

³
̂ (| ) |∗ 

´
∆ ()

¾2
 (3.1)

where  ≡  is a suitable bandwidth;  is the dimension of ; ̂ ≡
R
̂−1(̂( |  ) | ∗ )) ()

 = 1 2; ̂ and ̂−1 are based on a sample of observations {  }=1 distributed identically to ();

 ≡  ( ) and  (· ·) is a nonnegative weight function with support on a compact subset X0 × Y0 of
X × Y The weight  downweights observations for which ̂( |  ) is close to either 0 or 1, so that

−1 can not be accurately estimated. For example, one can set  ( ) = 1 {0 ≤  ≤ 1−0} ×
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1 {0 ≤  ≤ 1−0 } in case  = 1 where, 1 {·} denotes the usual indicator function, and, e.g., 0

denotes the 0th sample quantile of {}=1  We take 0 = 00125 in our simulations below.
Finally, ∆ () ≡ 1 ()−2 () denotes the contrast between two CDFs. We require that 1 and 2 be

distinct CDFs having supports Z1 and Z2 respectively, each a subset of a compact subset Z0 of Z These
supports can be disjoint, and the most important thing is that we want the contrast ∆ to be quite different

from a zero function. Since they are chosen by the users, it is not restrictive to focus on the case of known

’s. Different choices for ∆ focus the power of the test in different directions, but as long as they put some

positive weight on any fixed interval they will generally exhibit some power against global alternatives. But

it is extremely challenging, if possible at all, to consider the optimal choice of the contrast ∆ see Remark

5.5 in Section 5.2. In the Monte Carlo simulations, we experiment with the uniform and re-scaled beta(2,2)

distributions for 1 and 2 (see Section 6.1 for details), but we also discuss the results with different choices

of 1 and 2 in footnote 6 in Section 6.2.

As we show below,  a standardized version of ̂ is asymptotically standard normal under the correct

specification of both Assumptions A1 and A2. If  is incompatible with this distribution, we have evi-

dence against the correct specification, which suggests the failure of the monotonicity hypothesis under the

maintained conditional exogeneity assumption. As we also show, this test has power against Pitman local

alternatives converging to zero at rate −12−2 and is consistent against the class of global alternatives

that violate the null of monotonicity. Despite having a standard normal asymptotic null distribution, 

requires the use of bootstrap to compute useful critical values or  -values, which is standard practice in

econometrics.

In a companion paper, SHW provide a test for scalar monotonicity under the assumption of strict exo-

geneity for large dimensional panel data models. The basic model they consider is

 =  ( ) +   = 1    = 1  

where  denotes an individual’s unobserved time-invariant attribute,  is a time-varying idiosyncratic

error term, and they assume that the regressor  is independent of  ( ⊥ ). Let  (·|) denote the
conditional CDF of  ≡  ( ) given  =  Exogeneity ( ⊥ ) and the time-invariance of 

jointly ensure that  is time invariant and can be written as  . Under the assumption that  is strictly

increasing in its second argument, we have  = −1( | ) which yields the following implied null

hypothesis

HSHW1
0 :  ( | ) =  a.s. for all  = 1 2  (3.2)

The above null hypothesis motivates SHW to consider a test statistic based on the comparison of ( | )

and ( | ) for all  6=  Nevertheless, a direct comparison is infeasible because  is not observable.

Let  ()   = 1 T  be non-negative weight functions. Let ̃ = ̃ ≡ [ () | ] under the

assumption that ( ) are identically distributed over . Let ̃ () ≡  [̃ ≤ ] Under the maintained

exogeneity ( ⊥ ), SHW show that ̃ (̃) =  and the monotonicity of  in its second argument
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implies the following testable null hypothesis

HSHW2
0 : ̃ (̃) = ̃(̃) a.s. for all (  ) with  6= 

SHW construct a test statistic based on the squared distance between consistent estimates of ̃ (̃) and

̃(̃) under the assumption that  →∞ as  →∞ Even though both SHW and we study the test of

monotonicity, there are several major differences between the two papers. First, SHW’s test only works for

panel data and our test works for cross sectional data. Second, SHW assumes strict exogeneity ( ⊥ )

whereas we assume conditional exogeneity (see Assumption A.2 above). Third, the unobservable term 

can be recovered through certain unconditional CDFs in SHW while it can be recovered only through certain

conditional CDF and its inverse function (see eq. (2.3) in Proposition 2.1). As a result, SHW’s test is based

on the comparison of different estimates of unconditional CDFs under different weighting scheme whereas

our test is based on the estimation of certain conditional CDFs and their inverse functions. Fourth, SHW’s

test statistic is not asymptotically pivotal and its asymptotic null distribution is a mixture 2 while our test

statistic is asymptotically standard normal under the null.

Like many other nonparametric tests in the literature (e.g., Chiappori et al. 2015, SHW 2014, Lewbel et

al. 2015), we can only test for some implied hypothesis under certain maintained conditions. Once we reject

the null, we need to be careful about the interpretation of our test. The rejection may be due to either the

failure of the null hypothesis or the violation of the maintained hypothesis.

4 Asymptotics for estimation and inference

4.1 Local polynomial estimators

Throughout, we rely on local polynomial regression to estimate various unknown population objects. Let

 ≡ (0 0)0 = (1  )0 be a ×1 vector,  ≡ +  where  is ×1 and  is ×1 Let j ≡ (1  )0
be a  × 1 vector of non-negative integers. Following Masry (1996), we adopt the notation:  ≡ Π

=1

 

j! ≡Π
=1! |j| ≡

P
=1  and

P
0≤||≤ ≡

P
=0

P
1=0

· · ·P
=0

1+···+=


We first describe the -th order local polynomial estimator ̂ (| ) of  (| )  The subscript  = 

is a bandwidth parameter. Let  ≡ ( 0
 

0
)
0
so that  −  = (( − )0 ( − )0)0 Given observations

{( )   = 1  } ̂ (| ) can be obtained as the minimizing intercept term in the following

minimization problem

min


−1
X
=1

⎡⎣1 { ≤ }−
X

0≤||≤
0 (( − ) )

⎤⎦2 ( − )  (4.1)

where β stacks the  ’s (0 ≤ |j| ≤ ) in lexicographic order (with 0 indexed by 0 ≡ (0  0) in the

first position, the element with index (0 0  1) next, etc.) and  (·) ≡  (·)  with  (·) a symmetric
probability density function (PDF) on R.

Let  ≡ ( +  − 1)!(!( − 1)!) be the number of distinct -tuples j with |j| =  In the above

estimation problem, this denotes the number of distinct th order partial derivatives of (|) with respect
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to  Let  ≡
P

=0 Let  (·) be a stacking function such that  (( − )) denotes an  × 1
vector that stacks (( − ) )  0 ≤ |j| ≤  in lexicographic order (e.g.,  () = (1 

0)0 when  = 1). Let

 () ≡  ()  Then ̂ (|) = 01β̂ (|) where

β̂ (|) = [S ()]
−1 −1

X
=1

 ( − ) ( − ) 1 { ≤ }  (4.2)

S () ≡ −1
X
=1

 ( − ) ( − ) ( − )0  (4.3)

and 1 ≡ (1 0  0)0 is an  × 1 vector with 1 in the first position and zeros elsewhere.
We also use -th order local polynomial estimation to estimate −1 ( |)  the th conditional quantile

function of  given  = We denote this ̂−1 ( |). Let  () ≡ (−1{ ≤ 0}) be the “check” function.
We obtain ̂−1 ( |) as the minimizing intercept term in the weighted quantile estimation problem

min


−1
X
=1



⎛⎝ −
X

0≤||≤
0 (( − ) )



⎞⎠ ( − )  (4.4)

where α stacks the  ’s (0 ≤ |j| ≤ ) in lexicographic order. Alternatively, one can invert ̂ (·|) to obtain
an estimator of −1 (·|)  as in Cai (2002) and Li and Racine (2008). We do not pursue this here.
In the next subsection, we study the asymptotic properties of the estimators ̂  ̂  and ̃ defined

above, constructed using the local polynomial estimators ̂ and ̂−1 just defined.

4.2 Asymptotic properties of ̂ ( )  ̂  and ̃

Let  () and  (|) denote the joint PDF of  and the conditional PDF of  given  =  respectively.

Let U ≡ X ×Z and U0 ≡ X0 ×Z0 Let Y denote the support of  and Y0 ≡ [ ̄] for finite real numbers 
̄ We use the following assumptions.

Assumption C.1 Let  ≡ ( 0
  

0
)
0
  = 1 2  be independently and identically distributed (IID)

random variables that have the same distribution as ( 0  0)0

Assumption C.2 ()  () is continuous in  ∈ U , and  (|) is continuous in ( ) ∈ Y × U .
() There exist 1 2 ∈ (0∞) such that 1 ≤ inf∈U0  () ≤ sup∈U0  () ≤ 2 and 1 ≤ inf()∈Y0×U0

 (|) ≤ sup()∈Y0×U0  (|) ≤ 2

Assumption C.3 () There exist   ̄ ∈ (0 1) such that  ≤ inf∈U0 (|) ≤ sup∈U0  (̄|) ≤ ̄ and

 ≤ inf∈Z0 
¡
|∗ ¢ ≤ sup∈Z0  (̄|∗ ) ≤ ̄ 

()  (·|) is equicontinuous: ∀  0 ∃  0 : | − ̃|   ⇒ sup∈U0 |(|) − (̃|)|   For each

 ∈ Y0 ( | ·) is Lipschitz continuous on U0 and has all partial derivatives up to order + 1,  ∈ N
() Let j (|) ≡ |j| (|) 11 For each  ∈ Y0  ( | ·) with |j| = +1 is uniformly

bounded and Lipschitz continuous on U0 : for all  ̃ ∈ U0, | ( | ) −  ( | ̃) | ≤ 3|| − ̃|| for
some 3 ∈ (0∞) where k·k is the Euclidean norm.
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() For each  ∈ U0 and for all  ̃ ∈ Y0 | ( | )− (̃ | ) | ≤ 4 |− ̃| for some 4 ∈ (0∞)
where |j| = + 1

Assumption C.4 () The kernel  : R → R+ is a continuous, bounded, and symmetric PDF.

() → kk2+1 () is integrable on R with respect to the Lebesgue measure.

() Let K() ≡ () for all j with 0 ≤ |j| ≤ 2+1 For some finite constants   1 and 2 either

 (·) is compactly supported such that  () = 0 for kk    and |K()−K(̃)| ≤ 2 k− ̃k for any
 ̃ ∈ R and for all j with 0 ≤ |j| ≤ 2 + 1; or (·) is differentiable, kK () k ≤ 1 and for some

  1 |K () | ≤ 1 kk− for all kk   and for all j with 0 ≤ |j| ≤ 2+ 1

Assumption C.5 The distribution function  () admits a PDF  () continuous on Z0

Assumption C.6 As  → ∞  → 0 +1−2 → 0 and 2(+1)+ → 0 ∈ [0 ∞) There exists some
∗  0 such that 1−

∗
+2 →∞

The IID requirement of Assumption C.1 is standard in cross-section studies. Nevertheless, the asymptotic

theory developed here can be readily extended to weakly dependent time series. Assumption C.2 is standard

for nonparametric local polynomial estimation of conditional mean and density. If  has compact support

U and  () is bounded away from zero on U , it is possible to choose U0 = U  Assumptions C.3-C.4 ensure
the uniform consistency for our local polynomial estimators, based on results of Masry (1996) and Hansen

(2008). Assumption C.5 is imposed by implicitly assuming that  is continuously distributed, simplifying

the analysis. Assumption C.6 appropriately restricts the choices of bandwidth sequence and the order of

local polynomial regressions; see the remark after Assumption C.7 below.

To proceed, arrange the  -tuples as a sequence in lexicographical order, so that (1) ≡ (0 0  ) is
the first element and () ≡ ( 0  0) is the last, and let −1 be the mapping inverse to  Define the

 × matrix S and the  ×+1 matrix B respectively by

S ≡

⎡⎢⎢⎢⎢⎣
M00 M01  M0

M10 M11  M1

...
...

. . .
...

M0 M1  M

⎤⎥⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎢⎣
M0+1

M1+1

...

M+1

⎤⎥⎥⎥⎥⎦ , (4.5)

where M are  × matrices whose ( ) element is ()+() In addition, we arrange 
j (|) j!

with |j| = + 1 as an +1 × 1 vector, G+1 (|)  in lexicographical order.
Let A = { : ∗( ) =   ∈ X0  ∈ Y0} The asymptotic behavior of ̂ ( ) follows:

Theorem 4.1 Suppose Assumptions C.1-C.6 hold. Let ∗ ∈ X0 and ( ) ∈ X0 ×A  Then

√
 (̂ ( )−∗ ( )− ( ;

∗)) → N
¡
0 2 ( ;

∗)
¢


where

 ( ;
∗) ≡ +101S−1 B

Z ∙
G+1 (|∗ )

 (−1 ((|∗ )| ) | ) +G
−1
+1 ((|∗ )| )

¸
() (4.6)

2 ( ;
∗) ≡ 1

Z
(|∗ ) [1−(|∗ )] ()2
 (−1 ((|∗ )| ) | )2

∙
1

 (∗ )
+

1

 ( )

¸
 (4.7)
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and 1 ≡
R
01S−1  (̃ ̃) (̃ ̃ − ̄)0 S−1 1 (̃ ̃)  (̃ ̃ − ̄)  (̃ ̃ ̄)  In addition,

sup
()∈X0×A

|̂ ( )−∗ ( ) | =  (
−12−2

p
log+ +1) (4.8)

Note that the result in Theorem 4.1 does not impose correct specification. When this holds, we can

replace ∗ with  To obtain ̂ ( )  we estimate both  (·|∗ ) and −1(·| ). Above, we use the
same bandwidth and kernel for both, yielding nice expressions for  ( ;

∗) and 2 ( ;
∗)  Both the

first-stage estimator ̂( | ∗ ) and the second-stage estimator ̂−1( | ) with  = ̂( | ∗ )
contribute to the asymptotic bias and variance. The terms involving

G+1(|∗)
(−1((|∗)|)|) in  ( ;

∗)

and 1
(∗) in 

2
 ( ;

∗) are due to the first stage estimation, whereas those involvingG−1+1 ((|∗ )| )
in  ( ;

∗) and 1
() in 2 ( ;

∗) are due to the second stage estimation.

Define ∗ and 
†
 in the obvious manner. Theorem 4.1 implies the following result for ̂

Corollary 4.2 Suppose Assumptions C.1-C.6 hold. Then conditional on ( ) ∈ X0 ×Y0
√
 [̂−

∗ − (
∗ ;)]

→ N
¡
0 2 (

∗ ;)
¢
 Further, for  such that ( ) ∈ X0 × Y0 ̂ −∗ =

 (
−12−2

√
log+ +1) uniformly in 

The asymptotic properties of ̃ follow from the next theorem.

Theorem 4.3 Suppose Assumptions C.1-C.6 hold. Then for any ( ) ∈ X0×Y0 ̂−1 ( )
→ ∗−1 ( ) and√


¡
̂−1 ( )−∗−1 ( )−−1 ( ;

∗)
¢ → N

¡
0 2−1 ( ;

∗)
¢
 where −1 ( ;

∗) ≡ −¡
∗−1 ( ) ;∗

¢
∗

¡
∗−1 ( )

¢
 2−1 ( ;

∗) ≡ 2
¡
∗−1 ( ) ;∗

¢

£
∗

¡
∗−1 ( )

¢¤2


and ∗ ( ) ≡
R (|∗)

(−1((|∗)|)|)()

When correct specification holds, we can show that ∗ ( ) =
R (|∗)

(()|)() =  ( )  by

Proposition 2.1, the fact that  ( )  = (|∗ ) ( ( ) | )  and that R  () = 1 Further,

Theorem 4.3 implies that conditional on ( ) ∈ X0 × Y0
√
 (̃ − 

†
 −−1( ;

∗)) →
N
¡
0 2−1 ( ;

∗)
¢


5 Asymptotics for specification testing

In this section, we study the asymptotic behavior of the test statistic in (3.1).

5.1 Asymptotic null distribution

To state the next result, we write  ≡ (0  0)0, and we introduce the following notation:

 ( ;) ≡ −1
X
=1

 ( − ) (−1 ( |) |) ( − ) ( − )0  (5.1)

1 ( ;) ≡ 01S̄ () ( − ) ( − ) 
¡
−1 ( |∗ ) |∗ ¢ 

2 ( ;) ≡ 01̄ ( ;) ( − ) ( − ) 

0 (; ) ≡ 1 ( ; ) 1̄ () + 2 ( ;
∗ )

¡
 −−1 ( |)

¢
 and

 ( ) ≡ 

∙Z Z
0 (1 ; ) 0 (1  ; ̄) ∆ () ∆ (̄)1

¸
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where S̄ () ≡  [S ()]  ̄ ( ;) ≡  [ ( ;)]    ≡  (| )  1̄ () ≡ 1{ ≤ }
− (|)  and  () ≡  − 1{ ≤ 0} The asymptotic bias and variance are respectively

B ≡ −2
X
=1

X
=1

∙Z
0 ( ; ) ∆ ()

¸2
 and 2 = 2

2[ (12)
2
] (5.2)

To establish the asymptotic properties of ̂ we add the following condition on the bandwidth.

Assumption C.7 As →∞ 2 →∞ and 32 (log)2 →∞

Assumptions C.6 and C.7 imply that a higher order local polynomial (i.e.,  ≥ 2) may be required in
the case where  or  is large in order to ensure that  + 1 − 2  0 and 2 (+ 1) +   max(2 

+2  32) By choosing  ∝ −1[2(+1)+ ] it suffices to set  = 1 if  ≤ 3 and  = 1.
2  ≥ 2 would

be required as long as  ≥ 2. Intuitively, the use of higher order local polynomials helps to remove the
asymptotic bias of nonparametric estimates.

We establish the asymptotic null distribution of the ̂ test statistic as follows:

Theorem 5.1 Suppose Assumptions A.2-A.3, C.1-C.4, C.6, and C.7 hold. Suppose that Assumption C.5

hold with  replaced by 1 and 2 Then under Assumption A.1, we have ̂ − B → N
¡
0 2

¢
 where

2 ≡ lim→∞ 2.

Remark 5.1. The key to obtaining the asymptotic bias and variance of the test statistic ̂ is 0(;

) The first term, 1 ( ; ) 1̄ ()  in the definition of 0 reflects the influence of the first-stage

estimator ̂( |  ) whereas the second term 2 ( ;
∗ )( − −1 ( |)) embodies the

effect of the second-stage estimator ̂−1( | ∗ )) evaluated at  = ̂( |  ) A careful analysis of

B indicates that both terms contribute to the asymptotic bias of ̂ to the order of  (1)  On the other

hand, a detailed study of 2 shows that they contribute asymmetrically to the asymptotic variance: the

asymptotic variance of ̂ is mainly determined by the second-stage estimator, whereas the role played by

the first-stage estimator is asymptotically negligible.

To implement, we need consistent estimates of the asymptotic bias and variance. Let

̂0 (; )

≡ 1

̂

h
01S ( )

−1
 ( −  − ) ( −  − ) 1̂ ()

+01S (
∗ )−1  ( − ∗  − ) ( − ∗  − )̂( − ̂−1 (̂ |))

i


where ̂ ≡ ̂(̂−1 (̂|∗ ) |∗ ) with ̂(|∗ ) being a consistent estimator of (|∗ ) and 1̂ () ≡
1 { ≤ }− ̂ (|)  We propose to estimate B and 2 respectively by

B̂ = −2
X
=1

X
=1

∙Z
̂0 ( ; ) ∆ ()

¸2
 and

̂2 =
2

2

X
=1

X
=1

"
1



X
=1

Z
̂0 (; ) ∆ ()

Z
̂0 ( ; ̄) ∆ (̄)

#2


2 In our two empirical applications,  = 2 and  = 1 So we consider the local linear estimation ( = 1).
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It is not hard to show B̂ − B =  (1) and ̂2 − 2 =  (1)  Then we can compare

 ≡
³
̂ − B̂

´


q
̂2 (5.3)

to the critical value  the upper  percentile from the N(0 1) distribution, as the test is one-sided; we

reject the null when   

5.2 Asymptotic local power and consistency

To study the local power of the  test, we consider the following sequence of Pitman local alternatives

H1 () :  =  ( ) +  ( )  (5.4)

where  is nonnegative such that  → 0 as  → ∞  ( ·) is strictly increasing for each  ∈ X , but
 ( ·) ≡  ( ·) +  ( ·) is not strictly increasing for  in a nontrivial subset of X0. Apparently,
{ 1 ≤  ≤ } becomes a triangular array process. Let  (| ) and  (| ) denote the conditional
CDF and PDF of  given ( ) = ( )  respectively.

3 Let −1 (·| ) denote the inverse function of
 (·| )  For notational simplicity, we continue to use  to denote  ( ) and  (| ) and  (| )
to denote the conditional CDF and PDF of  given ( ) = ( )  Let | (·|) and | (·|) denote
the conditional CDF and PDF if  given  =  respectively.

We add the following assumption.

Assumption A.4 | (·|) is a continuous function for each  ∈ Z;  ( ·) is a continuously differentiable
function for each  ∈ X ;  ( ·) is a continuous function for each  ∈ X 

The following theorem lays down the foundation for the asymptotic local power analysis of our test.

Theorem 5.2 Suppose that Assumptions A.1-A.4 hold. Then

−1 ((| )|∗ ) = −1 ( (| ) |∗ ) + Θ
†
 (; )

for all (  ) ∈ Y0×X0×Z0 such that 
¡
−1 ( (| ) |∗ ) |∗ ¢  0 where Θ†(; ) is defined in

(B.7).

Remark 5.2. By Proposition 2.1,  = −1(( |  ) | ∗ ) under the normalization  = (∗ ) ∀
This fact, in conjunction with Theorem 5.2, indicatesZ

−1 ((| )|∗ ))∆ ()

=

Z £
−1 ( (| ) |∗ )−−1 ( (| ) |∗ )

¤
∆ () + 

Z
Θ† (; ) ∆ ()

=

Z
 ( )

Z 1

0

 ( +  ( ) | )

 (−1 ( ( +  ( ) | ) |∗ ) |∗ )∆ ()

+

Z
Θ† ( +  ( ) ; ) ∆ ()

= Θ (; )  (5.5)

3With a little bit more complicated notation, one could also allow {(  )} to be a triangular array.
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where the first equality follows from Theorem 5.2 and the fact that
R
∆ () = 0; the second equality follows

from the chain rule, and the fact that  ()− (0) = ( − 0)
R 1
0
0 (0 +  ( − 0))  (by Taylor expansion

with an integral remainder, here prime denotes derivative) and −1 ()  = 1
£
0
¡
−1 ()

¢¤
for any con-

tinuously differentiable function  () ; andΘ (; ) ≡
R
[ ( )

R 1
0

(+()|)
(−1((+()|)|∗)|∗)

+Θ†( +  ( ) ; )]∆ ()  Ignoring terms of smaller order, we have

Θ (; ) ≈
Z ∙

 ( )
 (| )

 (|∗ ) +Θ
†
(; )

¸
∆ () =

Z
Θ†(; )∆ ()  (5.6)

To see why the last equality holds, note that under Assumption A.2,  =  ( ) has the conditional CDF

satisfying  (| ) =  [ () ≤ | =   = ] = |
¡
−1 ( ) |¢  It follows that  (| ) =

|
¡
−1 ( ) |¢ −1()  Under the normalization rule  (∗ ) =  ∀ we have −1 (∗ ) =  ∀

and

 (| )

 (|∗ ) =
|

¡
−1 ( ) |

¢ −1()


| (−1 (∗ ) |) =
−1 ( )


(5.7)

which is free of . Nevertheless, without knowing the functional form  (· ·), it is difficult to derive the
explicit formula for Θ† in general.

The following theorem studies the asymptotic local power property of our test.

Theorem 5.3 Suppose that Assumptions A.1-A.4, C.1, C.4, C.6, and C.7 hold. Suppose that Assumptions

C.2 and C.3 hold with  (|) and  (|) replaced by  (|) and  (|) and Assumption C.5 hold with
 replaced by 1 and 2 Suppose Θ0 ≡ lim→∞[Θ(;  )

2 ( )] exists. Then under H1 ()

with  = −12−2 
→ N (Θ0  1) 

Remark 5.3. Theorem 5.3 implies that the  test has non-trivial power against Pitman local alternatives

that converge to the null at rate −12−2 provided 0  Θ0 ∞ The asymptotic local power function of

the test is given by 1−Φ ( − Θ0)  where Φ is the standard normal CDF. Unfortunately, we are unable

to characterize primitive conditions under which the limit Θ0 is strictly positive, ensuring the non-trivial

power of our test. In the supplementary Appendix E.2, we consider a simple example where

 ( ) =
¡
1 + 012



¢
 and  ( ) = 

− 

where the PDFs of  and  have supports X = [ ̄] and A = (−∞ ̄] respectively, where   0

̄  0 and ̄  0 It is possible that  = −∞ ̄ =∞, and ̄ =∞ in which case we have X = A = R.

Note that  ( ·) is strictly increasing for all  ∈ R and the normalization  (∗ ) =  ∀ is achieved at
∗ = 0 In addition, we assume that for sufficiently large positive number 

 ( ≤ −| = ) = 
¡
− 

¢
 (5.8)

where  (· ·) is continuously differentiable with respect to its first argument (as a CDF), a non-constant
function of  and lim↓0  ( )→ 0 Essentially, the condition in (5.8) requires that | (|) decay at the
exponential rate as → −∞ In this case we can show that

Θ† (; ) =
∙



 ()

− 
() +  (; ) +  (1)

¸
1 {  0}+

∙


 ()

− 
() +  (1)

¸
1 { ≤ 0}  (5.9)
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where  () = 1 + 012  (; ) =
−1(0)2( 

()
0) 

()

|( 
() |)  1 (resp. 2) is the derivative of  (· ·) (resp.

 (· ·)) with respect to its first (reps. second) argument,  and  are some functions defined via the use of

the implicit function theorem in Appendix F.2, and 2

³


()  0
´
 0 In this case, we have

Θ0 = 

(∙Z
(; )∆ ()

¸2
 ( )

)
 (5.10)

which is positive for properly chosen ∆ () and  (· ·) provided that 1 (0 ) |
³


()

¯̄̄

´
is not invariant

with respect to .

Remark 5.4. On the other hand, we do find that our test does not have power against some particular

sequence of local alternatives. To see this, we consider a simple sequence of local alternatives where

 ( ) = −1 + +  ( ) = 

and we assume that the PDF of  has support (−∞∞)  In this case,  ( ) = −1 +  +  is strictly

increasing in  for all  and the normalization (∗ ) =  ∀ is achieved at ∗ = 1 In addition,  ( ) =

−1++ +  is strictly increasing in  for all   −1 and strictly decreasing in  for all   −1
But the region where  ( ·) is not strictly increasing keeps shrinking as  ↓ 0 and eventually it becomes
a strictly increasing function for all  on the real line as →∞. It is easy to verify that under Assumption
A.2,

 (| ) = | ( + 1− |) 
−1 ( | ) = − 1 + −1| ( |) 

 (| ) = |

µ
 + 1− 

1 + 
|
¶
 () + ̄|

µ
 + 1− 

1 + 
|
¶
̄ () 

−1 ( | ) = − 1 + (1 + )
h
−1| ( |)  () + −1| (1−  |) ̄ ()

i


where ̄| = 1 − |   () = 1 {1 +   0}  and ̄ () = 1 {1 +   0}  Noting that  (∗) = 1

and −1 ( (| ) |∗ ) =  by repeated applications of Taylor expansions we can show that

−1 ( (| ) |∗ ) = ∗ − 1 + (1 + 
∗)−1| ( (| ) |)

≈  +  +

£
1− 2| (|)

¤
̄ ()

| (|)
where we ignore terms that are  ()  Noting that for any   0  (̄ ()  ) ≤  (  − 1


)→ 0 we

can conclude that the last term in the last displayed expression is  ()  Then Θ0 = {[R ∆ ()]
2 ( )}

= 0 in this case, and our test does not have power to detect local alternatives of the form  ( ) =

−1 +  +  +  for  ∝ −12−2 A close examination of the above derivation suggests that

higher order Taylor expansions should be called upon and the dominant term in −1 ( (| ) |∗ )−
−1 ( (| ) |∗ ) that is not a constant function of  will be of probability order 

¡
2
¢
, implying

that our test has power against such type of local alternative that converges to the null at the much slower

rate: −14−4.
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Remark 5.5. To maximize the asymptotic local power, one may consider choosing ∆ to maximize Θ0 

where both Θ0 and  depend on ∆ implicitly. Noting 2 is the limit of 
2

= 22[ (12)

2] with

 (1 2) ≡ 
£R R

0 (1 1; ) 0 (1 2; ̄) ∆ () ∆ (̄) (1 1)
¤
 the ∆ function enters 2 fourfold.

Similarly, it enters Θ0 twofold. The local power function is distinct from what we have commonly seen in the

literature (e.g., Tripathi and Kitamura, 2003; Su and White, 2014), and we are not aware of any variational

analysis that can help us optimize the local asymptotic power over ∆ In addition, since the above local

power function depends on the particular local alternative through Θ which is generally unobserved, one

should consider a weighted average local power following the spirit of Andrews and Ploberger (1994) in the

parametric literature. But this further complicates the issue to a great deal and goes beyond the scope of

this paper.

On the other hand, as the associate editor kindly indicates, one can consider improving the power

performance of our test by studying a sup-type statistic of the form sup∆∈Ξ  (∆)  where Ξ = {1 −2 :

both 1 and 2 are CDFs defined on R with continuous PDFs} and we have made the dependence
of  on ∆ explicit. Without any restriction on the size of Ξ it seems impossible to consider the above

optimization problem. Nevertheless, if Ξ contains only a finite number of elements, our asymptotic analysis

can be extended to this case straightforwardly. We do not consider this option because our test based on

a single choice of ∆ is already computationally expensive. Instead, in the simulations we will consider the

effect of different choices of ∆ on the size and power of our test.

The following theorem shows that the test is consistent for the class of global alternatives:

H1 : 1 ≡ 

(∙Z
−1((1|1 ) | ∗ ))∆ ()

¸2
 (1 1)

)
 0

Theorem 5.4 Suppose Assumptions C.1-C.4, C.6, and C.7 hold. Suppose that Assumption C.5 hold with

 replaced by 1 and 2 Then under H1  (  ) → 1 for any nonstochastic sequence  = ( ).

5.3 A bootstrap version of the test

It is well known that nonparametric tests based on their asymptotic normal null distributions may perform

poorly in finite samples, and Monte Carlo experiments show this to be true here as well. Thus, we suggest

to use a bootstrap method to obtain bootstrap  -values.

LetW ≡ {}=1 Following Su and White (2008), we draw bootstrap resamples {∗   ∗  ∗ }=1 based
on the following smoothed local bootstrap procedure:

1. For  = 1   obtain a preliminary estimate of  as ̂ = (̂1+̂2)2 where ̂ =
R
̂−1(̂(|

 )|∗ ))()

2. Draw a bootstrap sample {∗ }=1 from the smoothed kernel density ̃ () = −1
P

=1  ( − ),

where  () = − ()   (·) is the standard normal PDF in the case where  is scalar valued
and becomes the product of univariate standard normal PDF otherwise, and   0 is a bandwidth

parameter.
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3. For  = 1   given ∗  draw ∗ and ∗ independently from the smoothed conditional density

̃| (|∗ ) =
P

=1  ( − ) ( − ∗ ) 
P

=1  ( − ∗ ) and ̃| (|∗ ) =
P

=1 (̂−
) ( − ∗ ) 

P
=1  ( − ∗ )  respectively, where   and  are given bandwidths.

4. For  = 1   compute the bootstrap version of  as 
∗
 = (̂1 (

∗
  

∗
 ) + ̂2 (

∗
  

∗
 ))2

5. Compute a bootstrap statistic  ∗ in the same way as  with W∗ ≡ { ∗ = (∗0  
∗
  

∗0
 )

0}=1
replacing W.

6. Repeat Steps 2-5  times to obtain bootstrap test statistics { ∗}
=1 Calculate the bootstrap  -

values  ∗ ≡ −1

P

=1 1{ ∗ ≥ } and reject the null hypothesis if  ∗ is smaller than the prescribed
nominal level of significance.

Clearly, we impose conditional exogeneity (∗ and 
∗
 are independent given 

∗
 ) in the bootstrap world

in Step 3. The null hypothesis of monotonicity is implicitly imposed in Step 4.

A full formal analysis of this procedure is lengthy and well beyond our scope here. Nevertheless, the

supplemental appendix sketches the main ideas needed to show that this bootstrap method is asymptotically

valid under suitable conditions, that is,

()  ( ∗ ≤ |W)→ Φ () for all  ∈ R and ()  (  ∗)→ 1 under H1 (5.11)

where ∗ is the -level bootstrap critical value based on  bootstrap resamples, i.e., 
∗
 is the 1− quantile

of the empirical distribution of { ∗}
=1

5.4 Asymptotics with nonparametrically generated regressors

In the control function approach literature, the control variable  is often not directly observed. Let 

denote the endogenous regressor and  the instrument. Following Newey et al. (1999), a seminal reference

in the control function literature, we suppose that   and  satisfy

 = 0 () +  (5.12)

where () takes value inQ×Ω   is a ×1 random vector such that  = − (|) and  kk2 ∞

This implies that 0 () = (|) ≡ (01 ()   0 ())0  In the application below, we generalize the
specification to  = Ψ(), and Ψ strictly monotonic in  but for brevity of exposition we focus on the

additive  case here.

We use  to denote the dimension of  and assume that 0 : R → R  = 1   , are measurable

functions. Moreover, we consider the ̃-th order local polynomial estimator of 0 :

̂ () = 01̃S̃̃ ()
−1

−1
X
=1

̃̃ ( −)̃̃ ( −) (5.13)

where 1̃ S̃̃ ()  ̃̃ ( −) are defined similarly as before, ̃̃ (·) ≡ ̃(·̃)̃ ̃ (·) is a PDF on R 
and = (1   )

0
and  = 1   are IID copy of and Let ̂ () = (̂1 ()   ̂ ())

0 For
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notational simplicity, we use the same bandwidth ̃ for each element in . We now consider the asymptotics

of our test with the generated : ̂ ≡ − ̂ ().

Let R denote a class of functions from R → R  and 0 (·) ∈ R. Let k·kR be a generic pseudo-

norm on R Given two vector functions   a bracket [ ] is set of vector functions  ∈ R such

that  ≤  ≤  for all 1 ≤  ≤   An -bracket with respect to k·kR is a bracket [ ] with

k − kR ≤  kkR  ∞ kkR  ∞ The covering number with bracketing [·] (R k·kR) is the
minimal number of -bracket with respect to k·kR needed to cover R We let k·k2 and k·k∞ denote the 2

and sup-norms, respectively: kk2 ≡ {
R P

=1 
2
 ()  ()}12 and kk∞ ≡ sup∈Ω max1≤≤ | ()| 

where  denotes the probability measure associated with  We typically require that R should not be too

complex, e.g., log[·] (R k·k∞)  − for some   2 and for all   0 See van der Vaart and Wellner

(1996) for examples of classes of functions satisfying such a requirement. The functional space 

 (Ω)

given in the following definition is one of them with  = .

Definition. Let   0   0 and Ω be a finite union of convex and bounded subsets of R  Let



 (Ω) denote a class of smooth functions such that for any smooth function  : Ω → R in it, we have

kk∞ ≤  where kk∞ ≡ max||≤
sup

∈Ω

¯̄
 ()

¯̄
+ max

||=
sup
 6=0

|()−(0)|
k−0k−  and  be the largest

integer smaller than 

Assumption C.8 (i) Ω is a finite union of convex and bounded subsets of R with non-empty interior.

 ∈ 

 (Ω) for  = 1      12 and  ≥ ̃+ 1

(ii) The conditional distribution of  given  exhibits a conditional density | (|) that is continu-
ously differentiable in  and continuous in  | (·|) is bounded almost surely on X0

In addition, we add the following technical assumption:

Assumption C.9 As  → ∞  → 0 k̂ − 0k∞ =  (
−1412−4 ∧ 

2+
2− )  ̃2(̃+1) → 0 and

̃→ 0.

The rate restrictions on ̂ in Assumption C.9 are essentially the same as those in Mammen et al. (2012,

MRS hereafter); see the discussion in Appendix F.1. The condition on k̂ − 0k∞ requires that ̂ con-

verge faster than −1412−4 for two reasons: one is that ̂ appears in the kernel function  (·) whose
Taylor expansion results in the appearance of −1 and the other is that we are aiming at controlling the

remainder term in the difference between ̃−1 ( |) and ̂−1 ( |) (resp. ̃ (|) and ̂ (|)) at the
rate  ((

 )−12) (not  (
−12) as for parametric estimation in the second stage). It also requires

that k̂ − 0k1−
1
2 ∞ =  (

1+2) which could be restrictive with respect to the smoothness of  In

view of the fact that  =  for the functional space we are interested in, the smaller  is or the

larger  is, the more likely for this rate restriction on ̂ −  to hold. In general, we need a smoother

class of functions (larger ) for larger value of  in order for the above condition to hold, reflecting

the curse of dimensionality issue (c.f. Ai and Chen 2003).  ̃2(̃+1) → 0 is imposed to ensure the

bias term associated with the estimation of  is asymptotically negligible. ̃ =  () is imposed to ob-

tain the asymptotic linear expansion as in the first case of Proposition 1 in MRS and to simplify the
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proofs in various places. Consider the case where  = 2  = 1 and  = 2 which resembles our

second application below. By choosing  = 1 ̃ = 2  ∝ −1[2(+1)+ ] = −16 and ̃ ∝  log () 

we have the standard convergence result k̂ − 0k∞ =  (̃
3 + −12̃−1(log)12) Then the rate condi-

tion on k̂ − 0k∞ in Assumption C.9 would be met provided   12 or equivalently   4 Alterna-

tively, if we choose  = ̃ = 2  ∝ −1[2(+1)+ ] = −18 and ̃ ∝  log ()  we can also check that

k̂ − 0k∞ =  (̃
3 + −12̃−1(log)12) =  (

−1412−4 ∧ 
2+
2− ) provided   1 or equivalently

  2 One can readily check the other conditions in Assumptions C.6 and C.9 are also met in either case.

To simplify notation, let θ be the vector that stacks
√
( − 

!
−1 ( |)) for 0 ≤ |j| ≤  in

lexicographic order. Let  () ≡
¡
 0
 ( −  ())

0¢0
  (;) ≡  ( ()− ), ̌ (·) ≡  (·) 

̌ () ≡  (( ()− ))  and  ∗ () = −
P
0≤||≤

1
!

−1 ( |) ( ()− )  Note that  ∗ (0) ≡
 − β ( ;)  where β ( ;) is the th-order Taylor expansion of −1 ( | (0)) around . Note that we

have suppressed the dependence of ̌ () and  ∗ () on  for notational simplicity.

In terms of θ the minimization problem in (4.4) can now be rewritten as

min


X
=1

∙


µ
 ∗ (0)− 0 (0;)

θ√


¶
−  (

∗
 (0))

¸
̌ (0)  (5.14)

as  (
∗
 (0)) is not a function of θ and ̌ (0) =  ( (0)− ). The problem with generated

regressors can be similarly rewritten as

min


X
=1

∙


µ
 ∗ (̂)− 0 (̂;)

θ√


¶
−  (

∗
 (̂))

¸
̌ (̂)  (5.15)

Denote the minimizer in (5.15) as θ̃ Then we can recover the estimate for −1 ( |) by ̃−1 ( |) via:
̃−1 ( |) ≡ −1 ( |) + 1√


01θ̃

Proposition 5.5 Suppose Assumptions C.1-C.4, C.6, and C.8-C.9 hold. Then ̃−1 ( |) − ̂−1 ( |) =
Υ1 (  ) {1 +  (1)}+  (

−12−2) uniformly over (  ) ∈ T × U0 where

Υ1 (  ) = −−1
X
=1

01̄ ( ;)
−1

−̌ ( 0 ())Ψ1 (  )

̌ ( 0 ()) ≡
R
R ((t  

0
)

0)  ((t  
0
)

0) t  t≡ (1   )   = (̄ ()− 0 ()−
) and ̄ and Ψ1 are defined in equations (D.14) and (D.17) respectively.

Consider the local polynomial regression estimate of  (|) with the generated ̂:

min


1



X
=1

⎡⎣1{ ≤ }−
X

0≤||≤
β0 (( (̂)− ))

⎤⎦2 ( (̂)− )  (5.16)

Denote the solution as β̃ (|)  Let ̃ (|) ≡ 01β̃ (|)  Recall that the corresponding solution to the
original problem (4.1) with observed  is denoted as β̂ (|) and that ̂ (|) = 01β̂ (|) 
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Proposition 5.6 Suppose Assumptions C.1-C.4, C.6, and C.8-C.9 hold. Then ̃ (|) − ̂ (|) =
Υ2 ( ) {1 +  (1)}+  (

−12−2) uniformly over ( ) ∈ R× U0

Υ2 ( ) = −−1
X
=1

 (|)
0

Ã
0


!
[01S ()

−1
−̌ ( 0 ())]Ψ2 () 

̌ (0 ()) ≡
R
R  ((t  

0
)

0) ((t  
0
)

0) t  0 is a ×1 vector of zeros, and Ψ2 is defined
in equation (D.18).

Remark 5.6. It is trivial to show that the dominant term in ̃−1 ( |)−̂−1 ( |) or ̃ (|)− ̂ (|)
is of the order 

¡
−12−2

¢
if  ≥   From the proof of Theorem 5.3, we see that the asymptotic

distribution of the test statistic with observed  under the local alternative depends on the interactions of

the dominating terms in the linear representations of ̃−1 ( |))−−1 ( |) and ̃ (|)− (|) When
 is nonparametrically generated as above, a careful examination of the proof of Theorem 5.3 suggests that

the interaction between Υ1 (  ) and Υ2 ( ) and the interactions between these two terms and the

dominant terms in the aforementioned linear representations are asymptotically negligible for the asymptotic

distribution of our test statistic due to the smooth integrating operator over ∆ () in the definition of the

test statistic. As a result, the asymptotic distribution of our test statistic under the null or local alternative

with nonparametrically generated  will be the same as the case with observed 

6 Estimation and specification testing in finite samples

In this section, we conduct simulations to evaluate the finite-sample performance of our estimators and tests.

We first consider the estimation of the response and then examine the behavior of the  test.

6.1 Estimation of the response

We begin by considering the following two DGPs:

DGP 1:  = (05 + 01
2
 )

DGP 2:  = 
¡
1 + 012



¢


where  = 1    = 05 + 1  = 025 + − 0252 + 2 and 1 2 and  are each IID N (0 1)

and mutually independent. Clearly,  ( ) = (05 + 012) in DGP 1 and = 
¡
1 + 012

¢
in DGP 2.

In either DGP,  ( ·) is strictly monotone for each  but does not satisfy the normalization condition

 ( ) =  for all  ∈ A where  ' 0116 is the population median of 
4

To illustrate how the normalization condition is met with ∗ =  we redefine the unobservable

heterogeneity  and the functional form of  For DGP 1, let ∗ = 1 and 
∗ ( ∗) = 1(05+01

2)∗

for some nonzero value 1 To ensure 
∗ ( 

∗) = 1(05 + 01
2
)

∗ = ∗ for all ∗ ∈ A∗ where A∗ is
the support of 1 we can solve for 1 to obtain 1 = 1

¡
05 + 012

¢
= 19946. For DGP 2, similarly,

we let ∗ = 2 2 = 1
¡
1 + 012

¢
= 09987 For notational simplicity, we continue to use  ( ) and

 to denote 
∗ ( ) and ∗  respectively.

4For DGP 1,  ( ) =  for all  at  = ∗ = ±√5.
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To estimate the response  ( )  we need to choose the local polynomial order  the kernel function

 the bandwidth  and the weight function  Since  =  = 1 it suffices to choose  = 1 to obtain

the local linear estimates ̂ (|∗ ) and ̂−1(̂ (|∗ ) | ) which we use to construct the estimator
̂ ( ) We choose to be the product of univariate standard normal PDFs. To save time in computation,

we choose  using Silverman’s rule of thumb:  = (106
−16 106−16) where, e.g.,  is the sample

standard deviation of {}=1  Note that we use different bandwidth sequences for  and  We consider

two choices for : 1 is the CDF for the uniform distribution on [0  1−0 ], and 2 is a scaled beta(2 2)

distribution on [0  1−0 ], where 0 is the 0-th sample quantile of {}=1 and 0 = 005 For either 1

or 2 we choose  = 30 points for numerical integration.

We evaluate the estimates of  ( ) at prescribed points. We choose 15 equally spaced points on the

interval [−1895 1750] for  where −1895 and 1750 are the 10th and 90th quantiles of , respectively.

For  we choose 15 equally spaced points on the interval [−0718 0718] for DGP 1, where −0718 and 0718
are the 10th and 90th quantiles of (= ∗ ) For DGP 2, we choose 15 equally spaced points on the interval

[−1433 1433], where −1433 and 1433 are the 10th and 90th quantiles of (= ∗ ) in DGP 2. Thus, ( )

will take 15 × 15 = 225 possible values; we let (  ),  = 1  225 denote these values. We obtain the

estimates ̂
( )   = 1 2 of  ( ) at these 225 points, and calculate the corresponding mean absolute

deviations (MADs) and root mean squared errors (RMSEs):


()


=
1

225

225X
=1

¯̄̄
 (  )− ̂

()

()

¯̄̄
 (6.1)


()


=

⎧⎨⎩ 1

225

225X
=1

h
 (  )− ̂

()

()

i2⎫⎬⎭
12

 (6.2)

where, for  = 1  500 ̂
()

() is the estimate of  () in the th replication with weight function

,  = 1 2 For feasibility in computation, we consider two sample sizes in our simulation study, namely,

 = 100 and 400

Table 1 reports the 5th , 50th , and 95th percentiles of
()

and 

()

for the estimates of  ( ) 

together with their means obtained by averaging over 500 replications. We summarize the main findings

from Table 1. First, for different choices of the distributional weights (1 or 2), the MAD or RMSE

performances of the response estimators may be quite different. In particular, we find that the estimators

using the beta weight 2 tend to have smaller MADs and RMSEs. Second, as  quadruples, both the MADs

and RMSEs tend to improve, as expected. Third, also as expected, the MADs and RMSEs improve at a

rate slower than the parametric rate −12

To examine the small sample properties of the our estimates, Figures 1 and 2 displays the Q-Q plots of

standardized ̂
()
1
( ) ( = 1  500) at four different points, namely, ( ) = (−085−031)  (−085 021) 

(045−031) and (045 021)  against the standard normal distribution for  = 100 and 400 in DGPs 1 and
2, respectively. In both figures we first center ̂

()
1
( ) around its sample mean and then divide by its

sample standard deviation over 500 simulations to obtain the normalized estimate. We see that the points
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Table 1: Finite sample performance of the estimates of the response

DGP    

5th 50th 95th mean 5th 50th 95th mean

1 100 Uniform 0.192 0.269 0.405 0.278 0.246 0.348 0.510 0.361

Beta 0.158 0.222 0.323 0.227 0.208 0.296 0.429 0.304

400 Uniform 0.126 0.175 0.249 0.181 0.164 0.234 0.332 0.240

Beta 0.093 0.132 0.181 0.135 0.126 0.182 0.258 0.185

2 100 Uniform 0.262 0.374 0.574 0.391 0.326 0.468 0.706 0.484

Beta 0.208 0.295 0.424 0.303 0.259 0.368 0.536 0.383

400 Uniform 0.169 0.239 0.352 0.249 0.217 0.298 0.435 0.310

Beta 0.120 0.169 0.240 0.173 0.156 0.216 0.311 0.222
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Figure 1: Q-Q plot of ̂
()
1
( )  = 1  500, at various points versus standard normal (DGP 1,  = 100 400)

in the Q-Q plots follow closely along the 45-degree line at all four points for both sample sizes. We find that

the result is similar when we change the evaluation points ( ) or when we use 2 instead of 1

6.2 Specification testing

To examine the finite-sample properties of the specification test, we consider two DGPs:

DGP 3:  = (05 + 01
2
 ) + 20(01 + 

2
2)

DGP 4:  = 
¡
1 + 012



¢
+ 20

01 

where  = 1   and   and  are generated as in DGPs 1-2. Note that when 0 = 0 DGPs 3 and

4 reduce to DGPs 1 and 2, respectively, permitting us to study the level behavior of our test. For other

well-chosen values of 0  ( ) as defined in DGP 3 or 4 is not strictly monotonic in  permitting study

of the test’s power against non-monotone alternatives.
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Figure 2: Q-Q plot of ̂
()
1
( )  = 1  500, at various points versus standard normal (DGP 2,  = 100 400)

To construct the raw test statistic ̂, we first obtain ̂ (| ) and ̂−1(̂ (| ) | ∗ ) by
choosing the order () of the local polynomial regression, the kernel function  and the bandwidth  As

in the estimation of the response, we choose  = 1 and let  be the product of univariate standard normal

PDFs. Since we require undersmoothing for our test, we set  = (2
−15 2−15) where 2 is a

positive scalar that we use to check the sensitivity of our test to the choice of bandwidth. Next, we choose

1 and 2 as above and set  ( ) = 1 {0 ≤  ≤ 1−0} × 1 {0 ≤  ≤ 1−0 }  where,
e.g., 0 is the 0th sample quantile of {}=1 and 0 = 001255 These sample quantiles converge to

their population analogs at the parametric
√
-rate, so they can be replaced by the latter in deriving the

asymptotic theory. By construction, we trim ̂ and ̂−1 in the tails.

In the bootstrap, we set  = 
−16  = 

−16 and  = 
−16 where, e.g.,  denotes the

sample standard deviation of  For computational feasibility, we consider two sample sizes ( = 100 200)

in our simulation study; for each sample size, our “full” bootstrap experiments use 500 replications and

 = 99 bootstrap resamples in each replication. For the reason to choose 99 instead of 100 bootstrap

resamples, see Racine and MacKinnon (2007). We also evaluate our test statistic using the warp-speed

bootstrap of Giacomini et al. (2013). In this procedure, only one bootstrap resample is drawn in each

replication. We use 499 replications for this study. We study the sensitivity of our test to the bandwidth 

by setting  = (2
−15 2−15) for 2 = 09 11 13 15.

Table 2 reports the empirical rejection frequencies for our test at various nominal levels for DGPs 3-4

5We experimented several different weight functions, like scaled beta(1,1) (uniform), beta(2,2), beta(3,3), beta(4,2) etc. for

1 and 2 and found our results are not very sensitive to the choice of 1 and 2 To get reasonable power, however, one

may not choose some 1 and 2 that are too similar, i.e., beta(7,7) and beta(8,8). In practice, we recommend to trim off some

extreme evaluation points and use some density functions with bounded support for 1 and 2 like what we did here.
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Table 2: Finite sample rejection frequency for DGPs 3-4

DGP  0 Warp-speed bootstrap Full bootstrap

1% 5% 10% 1% 5% 10%

 =
¡
09

−15 09−15
¢

3 100 0 0.004 0.064 0.128 0.024 0.080 0.142

1 0.218 0.604 0.746 0.440 0.678 0.766

200 0 0.020 0.048 0.112 0.018 0.070 0.108

1 0.346 0.688 0.878 0.558 0.798 0.886

4 100 0 0.006 0.050 0.100 0.012 0.066 0.124

1 0.330 0.764 0.846 0.572 0.768 0.854

200 0 0.008 0.032 0.072 0.016 0.052 0.094

1 0.326 0.818 0.912 0.598 0.840 0.904

 =
¡
11

−15 11−15
¢

3 100 0 0.020 0.042 0.096 0.016 0.072 0.146

1 0.386 0.562 0.622 0.406 0.524 0.565

200 0 0.036 0.092 0.158 0.009 0.061 0.141

1 0.544 0.704 0.738 0.523 0.613 0.656

4 100 0 0.018 0.034 0.100 0.012 0.056 0.130

1 0.566 0.734 0.798 0.456 0.580 0.642

200 0 0.002 0.034 0.080 0.006 0.056 0.106

1 0.538 0.818 0.866 0.618 0.728 0.772

 =
¡
13

−15 13−15
¢

3 100 0 0.018 0.036 0.106 0.024 0.079 0.116

1 0.376 0.468 0.532 0.368 0.460 0.496

200 0 0.028 0.082 0.130 0.008 0.048 0.106

1 0.504 0.570 0.622 0.477 0.550 0.585

4 100 0 0.012 0.042 0.104 0.010 0.060 0.132

1 0.542 0.676 0.718 0.392 0.498 0.546

200 0 0.002 0.044 0.080 0.004 0.064 0.116

1 0.570 0.778 0.826 0.538 0.634 0.672

 =
¡
15

−15 15−15
¢

3 100 0 0.012 0.038 0.084 0.014 0.058 0.099

1 0.316 0.412 0.442 0.338 0.414 0.462

200 0 0.016 0.054 0.097 0.012 0.042 0.093

1 0.440 0.505 0.521 0.424 0.503 0.531

4 100 0 0.000 0.054 0.091 0.010 0.054 0.111

1 0.476 0.595 0.712 0.458 0.696 0.786

200 0 0.016 0.044 0.082 0.008 0.050 0.107

1 0.569 0.722 0.762 0.673 0.740 0.762
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based on both the warp-speed and full bootstrap. The rows with 0 = 0 report the empirical level of our test;

those with 0 = 1 show empirical power. We summarize the main findings from Table 2. First, the level of

our test is reasonably behaved, and it can be close to the nominal level for sample sizes as small as  = 100

When  increases, the level generally improves somewhat. Second, the power of our test is reasonably good.

It increases as the sample size doubles for both the warp-speed and full bootstrap methods. Third, our test

is not very sensitive to the choice of .

7 Empirical applications

This section illustrates the usefulness of our test with two examples. To show their broad applicability, we

consider two very different applications. The first application analyzes the determinants of the Black-White

earnings gap. The second application comes from classical consumer demand using Engel curves.

7.1 The black-white earnings gap: just ability?

7.1.1 Economic background

The quest for the sources of the apparent differences in economic circumstances between the three major

races in the United States, i.e., Blacks, Hispanics, and Whites, has spurred an extensive and controversial

debate over the last few decades. Starting with the seminal paper by Neal and Johnson (1996, NJ hereafter),

a flourishing literature has emerged that focuses primarily on the sources of the Black-White earnings gap;

obviously, a key concern in this is the potential existence of racial discrimination, i.e., the fact that people

with the exact same ability get differential wages for the same task. See Carneiro, Heckman, and Masterov

(2005, CHM hereafter) for an overview of this literature.

As NJ argue, to obtain a measure of the full effect of discrimination in labor outcomes (e.g., wages)

from a regression, one should not condition on variables that may indirectly channel discrimination, such

as schooling, occupational choice, or years of work experience, as these may mask the full effects. As CHM

aptly put it, the “full force” of discrimination would not be visible. Chalak and White (2011) discuss the

“included variable bias” arising by conditioning on variables indirectly channeling a cause of interest. As

argued convincingly in CHM, however, schooling is no longer a plausible channel of discrimination, given

the extent of affirmative action. Indeed, CHM show that when conditioned just on schooling, the wage gap

increases, rather than decreases, as would be the case if schooling were an indirect channel of discrimination.

Thus, we include years of schooling as a causal factor in our analysis. The structural relation is then

 = (12 )

where  is work-related ability; 1 is years of schooling; 2 is race, a discrete variable taking three values;

and  is the wage an individual receives. As  = (12)
0 and  are plausibly correlated, we seek a

conditioning instrument  such that  is independent of  given .

To find this variable, we go back to the literature. NJ suggest the 1980 AFQT score as a proxy for ability.

Once NJ condition on the AFQT, which we now denote , the maintained hypothesis is that there is no
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relationship between  and , that is,  ⊥  | . This means that whatever is not exactly accounted for
in  by using  does not correlate with race or schooling, in line with NJ. Their finding (corroborated by

the analysis in CHM, with the additional schooling variable) of an absence of a Black (2 = 1) − White
(2 = 0) earnings gap means in our notation that  [(1 1 )|1 ] −  [(1 0 )|1 ] = 0 This

evidence is consistent with the absence of discrimination in the labor market.

Nevertheless, this is not the only testable implication of their hypotheses. We can now test the null

hypothesis that there is indeed only a single unobservable that monotonically drives wages. Accordingly, we

define ability as a scalar factor that drives up wages for all values of  = . As such, scalar monotonicity is

a natural assumption - the more able somebody is, the higher his wage is, ceteris paribus. The fact that we

can apply this logic here hinges on the  variable, AFQT80, which is chosen to ensure unconfoundedness.

The alternative is that there is some more complex mechanism that generates wage outcomes. There are a

number of reasons why there may be a more complex relationship. One is that discrimination acts through

several unobserved channels; another is what CHM have argued, namely, that there are unobserved (in

their data, actually at least partially observed) factors in the early childhood of an individual that have

a large impact on labor market outcomes, and that should be accounted for. With the data at hand, we

cannot separate these two explanations; however, we can shed light on whether a scalar “ability” accounts

for observed outcomes.

7.1.2 The data

Our data come from NJ’s original study, which is based on the National Longitudinal Survey of Youth

(NLSY). The NLSY is a panel data set of 12,686 youths born between 1957 and 1964. This data set provides

us with information on schooling, race, and labor market outcomes. The  variable is the normalized

AFQT80 test score, i.e., the armed forces test in 1980. Individuals already in the labor market have been

excluded. The test score is also year-adjusted and then normalized to have mean 0 and variance 1 as in NJ.

After cleaning the data, we have 3,659 and 3,783 valid observations for the female and male subsamples,

respectively, and following the literature, we analyze men and women separately. Since we are otherwise

using exactly the same data as NJ, we refer to their paper for summary statistics and other data details.

7.1.3 Implementation detail

The details of the testing procedure we implement are largely identical to those for the simulation study of

Section 6.2. The kernel is the product of univariate standard normal PDFs; the order of the local polynomial

is 1. The bandwidth is chosen by cross validation as in Li and Racine (2004). We perform 199 bootstrap

replications.

Table 3: The monotonicity test results for the Black-White earnings data

Male Female

-value 0.965 0.652
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7.1.4 Empirical results

Table 3 report the bootstrap -values for our test. Since the -values are so large, we believe that it is safe

to conclude that the null of scalar monotonicity is not rejected. This is evidence consistent with the correct

specification of the NJ/CHM model. Of course, further research with better data is required to analyze the

importance of early childhood education as CHM suggest, but this is beyond our scope here.

Recall that we maintain conditional exogeneity, Assumption A.2. Without this, the test is a joint test

for Assumptions A.1 and A.2. Under this interpretation, we have no evidence against either A.1 or A.2.

To illustrate the use of a multiple test for misspecification, we also report the results of a pure test of A.2.

By White and Chalak (2010, Prop.2), we can test A.2 by testing  ⊥  |  where  = (  ) with

 ⊥  | () A plausible candidate for  is another proxy for  viewing  as a measurement error.

Here, a natural choice for  is the 1989 AFQT score. To implement, we standardize AFQT89 in the same

way as AFQT80, and we apply the conditional independence test of Huang et al. (2013). Table 4 reports

the results. We fail to reject the null of conditional exogeneity for both males and females, consistent with

our monotonicity test findings.

Table 4: The conditional exogeneity test results for the Black-White earnings data

Male Female

-value 0.54 0.51

7.2 Engel Curves in a Heterogeneous Population

7.2.1 Economic Background

Engel curves are among the oldest objects analyzed by economists. Modern econometric Engel curve analysis

assumes that

 = (12 ) (7.1)

where  is a -vector of budget shares for  continuously-valued consumption goods; 1 is wealth, rep-

resented by (log) total expenditure under the assumption that preferences are time-separable; 2 denotes

observable factors that reflect preference heterogeneity; and  denotes unobservable preference heterogeneity.

Prices are absent here, as Engel curve analysis involves a single cross section only, and prices are assumed

invariant. It is commonly thought that log total expenditure is endogenous6 and is hence instrumented for,

typically by labor income, say  This is justified by the same intertemporal separability assumption.

The model is different from the model considered in Blundell et al. (2014), which also features scalar

heterogeneity, for two reasons: First, they consider price effects (even though they do not estimate them,

and merely use bounds stemming from revealed preference analysis). Second, and more importantly, in their

main specification they do not control for endogeneity, nor do they invoke our exact conditional independence

assumption. As such, our results are not directly applicable. However, if Blundell et al. (2014) were to extend

their analysis to control for endogeneity using a control function approach, our results would indeed have

6Nevertheless, the evidence is not strong; see Blundell, Horowitz, and Parey (2012) or Hoderlein (2011).
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implications for their analysis. If, in a demand setting, monotonicity in the outcome equation is rejected,

approaches like the one put forward in Hoderlein (2011), Dette et al. (2015), or Hoderlein and Stoye (2014)

have to be pursued.

To allow for endogeneity, we follow IN and write the 1 structural equation as

1 = Ψ(2 ) (7.2)

where the unobserved drivers of 1 are denoted . For simplicity, we assume 2 is exogenous. Following

IN, we also assume  is exogenous, so we take (2) ⊥ () implying (12) ⊥  | . With the usual
normalization,  is U [0 1]. Because (2) ⊥ () |(2) is also U [0 1] and  is identified as

 =  (1 | 2) (7.3)

where  denotes the conditional CDF of 1 given (2)  IN’s control function approach thus provides

us with a variable  that satisfies our assumptions. We are now able to test the hypothesis that there

is a single unobservable  in equation (7.1) that enters monotonically. Put differently, due to the tight

relationship between quantiles and nonseparable models with monotonicity, we can test whether in the

conditional -quantile regression of  on  and , the parameter  can be given a structural interpretation.

The alternative is that there is a more complex structure in the unobservables.

An example of a structural model that assumes monotonicity is provided in Blundell et al. (2007), who

assume  = (12) + Nevertheless, to test this specification, equation (7.2) must also be specified as

above, while the IV approach pursued in Blundell et al. (2007) does not require this to be the case. Hence,

our test is only valid, if this part of the model is also correctly specified. It is conceivable (though perhaps

not extremely likely) that the rejection we find below stems from this part of the model.

7.2.2 The Data

For our test, we use the British Family Expenditure Survey (FES) data in exactly the form employed in IN.

The FES reports a yearly cross section of labor income, expenditures, demographic composition, and other

characteristics of about 7,000 households in every year. We use only the cross section for 1995. We focus

on households with two adults, where the adults are married or cohabiting, at least one is working, and

the household head is aged between 20 and 55. We also exclude households with 2 or more children. This

yields a sample with  = 1 655 This will be our operational subpopulation, not least because it is the one

commonly used in the parametric demand system literature; see Lewbel (1999).

The expenditures for all goods are grouped into several categories. The first is related to food consump-

tion and consists of the subcategories food bought, food out (catering), and tobacco. The second and third

categories contain expenditures related to alcohol and catering. The alcohol category is probably mismea-

sured, so we do not employ it as dependent variable. The next group consists of transportation categories:

motoring, fuel expenditures, and fares. Leisure goods and services are the last category. For brevity, we call

these categories Food, Catering, Transportation, and Leisure. We work with these broader categories since
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more detailed accounts suffer from infrequent purchases (recall that the recording period is 14 days) and

are thus often underreported. Together these account for approximately half of total expenditure, leaving

a large fourth residual category. Labor income is as defined in the Household Below Average Income study

(HBAI). Roughly, this is net labor income to the household head after taxes, but including state transfers.

7.2.3 Details of Implementation

To apply the test, we let  be the budget shares of Food, Catering, Transportation, or Leisure in (7.1).7 In

each case, we specify 1 as the logarithm of total expenditure and 2 as the number of kids in a family.

The details of the testing procedure are again largely identical to those implemented in the simulation study

in Section 6.2 and in the previous application. We use a product kernel and select the bandwidth by the

cross validation the same as in the previous application. Again, we performed 199 bootstrap replications.

The major difference is that the instrument  =  (1|2) must be estimated from the data in

the first stage and our theory for nonparametrically generated regressors in Section 5.4 can be extended

to this application with appropriate modifications. First note that using the fitted value of the first step

estimation only changes the signs of the influence terms in Propositions 5.5 and 5.6, because when we

plug in the first step estimator in Lemmas C.10 and C.12 using the fitted value, e.g. equation (D.11),

 (̂) −  (0) =

Ã


̂ ()

!
−
Ã



0 ()

!
=

Ã
0

̂ ()− 0 ()

!
is of the opposite sign than using

residuals as ̂ and the analysis followed is the same as before. Thus, we can continue using the results in

Section 5.4. Second, define  (1) = 1 {1 ≤ 1} and let  = (2)
0. Let  (1|2) =  [ (1) |2].

Observe then that we have

 (1) =  [ (1) |2] +  (1) =  (1|2) +  (1) 

where  [ (1) |2] = 0 Apparently,  =  (1|2) now denotes the cdf (i.e., a mean regression

involving the new dependent variable (1)) instead of the residual as in section 5.4. To implement our

test, we need to replace  =  (1| 2) by its ̃-th order local polynomial estimate ̂ (1| 2) 
Other than the sign change discussed above, we also have to content with the fact that this quantity depends

on 1 However, note that the convergence rate of ̂ (1| 2) to  (1| 2) only depends on the dimension
of the conditioning vector ( 2)

0
due to the monotonicity of the conditional CDF function  (·|2).

In fact, under standard conditions for local polynomial regression (e.g., Boente and Fraiman 1991), we can

establish the following uniform result

sup
1∈R

sup
(2)∈S

°°°̂ (1| 2)−  (1| 2)
°°° = 

³
−12̃−1(log)12 + ̃̃+1

´


where S is a compact set in the domain of (2)  Hence, assumption C.9 continues to hold with ̂ and 

replaced by ̂ and  respectively. From the discussion of Assumption C.9 in Section 5.4, −12̃−1(log)12+

̃̃+1 = (−1412−4 ∧ 
2+
2− ) if we choose  ̃  and ̃ as suggested there (and provided  is small

7We did not consider the budget share for alcohol because there are too many 0 observations (258 out of 1,665) in the data.
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enough). Indeed, we set  = 1 and ̃ = 2, choose the two bandwidth sequences as suggested, and employ a

Gaussian kernel throughout.

7.2.4 Empirical Results

Table 5 summarizes our test results. Two things are noteworthy. First, observe that rather small values of

the test statistic are associated with small  -values. This indicates that the normal approximation is a poor

description of the true finite-sample behavior, a result that is quite familiar in the nonparametric testing

literature. Second, in all four categories analyzed, we soundly reject the null of monotonicity. The rejections

are strongest in Food, Catering, and Transportation, and slightly less pronounced for Leisure. Whereas in

the labor application above it seems conceivable that there is only one major omitted unobservable, i.e.,

ability, our test here suggests that this is not a valid description of the unobservables driving consumer

behavior. This should not be surprising, given that consumer demand is usually thought to be a result

of optimizing a rather complex preference ordering, given a budget set. Still, empirically establishing this

fact, uniformly over a number of expenditure categories, is encouraging evidence of the ability of our test to

produce economically interesting results in real-world applications.

Table 5: The monotonicity test results for the British FES data

Food Catering Transportation Leisure

Test statistic 1659 0752 1235 1634

-value ≤ 0005 0010 ≤ 0005 ≤ 0005

8 Conclusion

This paper provides a test for monotonicity in unobservables for cross-section data. We show how to exploit

the power of an exclusion restriction together with a conditional independence assumption to construct a

test statistic. We analyze the large-sample behavior of our estimators and tests and study their finite-sample

behavior in Monte Carlo experiments. Our experiments show that a suitable bootstrap procedure yields

tests with reasonably well behaved levels. Both theory and experiment show that the test has useful power.

When applied to data, the test exhibits these features. In a labor economics application where monotonicity

in unobserved ability is plausible, we find that the test does not reject. In a consumer demand application,

where monotonicity in a scalar unobserved preference parameter is less plausible, we find that the test clearly

rejects. These two distinct applications also illustrate that our test applies to both observed and unobserved

conditioning instrument cases and works well in both.
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Appendix

A Important notations

In this appendix we summarize some important notations in the main body of the paper.

1 {·} : indicator function;
1̄ () ≡ 1{ ≤ } − (|) 
j ≡ (1  )0  j ≡ Π=1  |j| =

P
=1 

P
0≤||≤ ≡

P
=0

P
1=0

· · ·P
=0

1+···+=
;

 : the unobservable defined in the structural function  with realization  and support A;
A ≡ { : ∗ ( ) =   ∈ X0  ∈ Y0} ;
̂ ̂  ̃  

∗
  

†
 : various terms defined in Section 3.1;

 ̃ : bandwidths used in nonparametric estimation;

 −1 BB  : bias terms defined in Theorems 4.1 and 4.3, and equations (4.5) and (5.2);

B : bias term defined before the proof of Theorem 4.1, B≡ [B] ;

1 :  × 1 vector with 1 in the first position and zeros elsewhere;
  : expectation and expectation in empirical processes, respectively;

 (| )   (| ) : conditional CDF and PDF of  on ( ) = ( )  similarly for (| )   (| ) ;
̂ ≡ 01α̂ ̂

−1
 ≡ 01β̂ : the estimators from equations (4.4) and (4.1), respectively;

̃ ̃
−1
 : analogue of ̂ and ̂−1 in the case of generated regressors, defined in (5.16) and (5.15);

G+1 : a vector that stacks the (+ 1)-th order derivatives of  defined after equation (4.5);

 : CDF and PDF with support on Z;
̂ : statistic defined in equation (3.1) with standardized version ;

 ̃ : kernel functions; Kj () ≡ j ()   (·) ≡ 1 (·)  ̃̃ (·) ≡ 1̃̃
³
·̃
´
 ̌ (·) ≡  (·) ;

 ( ) : structural function;

̂ ( ) ≡ ̂−1(̂ (|∗ ) | ) ̂ ( ) ≡
R
̂−1(̂ (|∗ ) | ) () with probability limit∗ ( ) ;

̂−1 ( ) ≡ inf { : ̂ ( ) ≥  }  ∗−1 ( ) ≡ inf { : ∗ ( ) ≥  } ;
 ≡ (+−1)!

!(−1)!   ≡
P

=0;

[·] : the covering number in empirical processes;

 ̃ : the orders of the kernel;

 : dependent variable defined in Section 5.4 with support Q;
 : structural function between  and , defined in the functional space <;
SS  : technical terms defined in equation (4.3), (4.5), and (5.1) respectively;

S ≡  (S)   ≡  () ;

 ≡ ( 0  0)0   ≡ (0 0)0  U ≡ X ×Z, ̂ ≡ ¡ 0 ̂ ()0
¢0
;

  V : the decomposition of the variance term defined before the proof of Theorem 4.1;

 ≡ ( 0   0)0  W ≡ {}=1 ;
 ∗ () ≡  −

P
0≤||≤

1
!

−1 ( |) ( ()− )

;
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α β : the parameters in equations (4.4) and (4.1), respectively;

θ : the parameter vector that stacks
√
( − 

!
−1 ( |)) for 0 ≤ |j| ≤ ;

1 2 0  : technical terms defined after equation (5.1);

 : some stacking function defined right before equation (4.2),  (·) ≡  (·) ;
 =  ( ) : some weight function; one defined after equation (3.1);

 : independent variable defined in Section 5.4 with support Ω ;

 () ≡ ( − 1{ ≤ 0});
2 

2
−1  

2

: variance terms defined in Theorem 4.1 and 4.3, and equation (5.2);

Φ : PDF and CDF of the standard normal;

 () ≡  − 1{ ≤ 0};
∆ () ≡ 1 ()−2 () 

B Proof of the main results

In this appendix we prove all the main results but Theorem 5.3 in the paper. The proof of Theorem 5.3 is

lengthy and is relegated to the online supplemental material.

Proof of Proposition 2.1. Assumption A.2 ensures that (| ) =  [() ≤ | =  = ] =

 [() ≤ | = ] ∀(  ) By Assumptions A.1-A.3 and setting  = ( ) we have that for all

(  ̃ )

( ) = −1( [() ≤ ( )| = ] |  ) = −1( [ ≤ | = ] |  )
= −1( [(̃ ) ≤ (̃ )| = ] |  ) = −1(((̃ ) | ̃ ) |  )

Now, setting ̃ = ∗ and using the normalization  = (∗ ) gives ( ) = −1(( | ∗ ) |  )
ensuring (2.2). Successively inverting  = −1(( | ∗ ) |  ) for any  gives (2.3). ¥

For the next results, recall that U0 ≡ X0 × Z0  ≡ ( 0
 

0
)
0
  ≡ (0 0)0   () ≡ − ()  and

 () ≡  ()  Let  ≡ (  0)0 and  ≡ ( 0)0  Let S () and  () be as defined in (4.3) and

(5.1), respectively. Define

̄ ( ;) ≡ 1



X
=1

 ( − ) ( − ) ( − β ( ;)) 

 ( ;) ≡ 1



X
=1

 ( − ) ( − )
¡
 −−1 ( |)

¢


B (;) ≡ 1



X
=1

 ( − )( − )∆ () 

V (;) ≡ 1



X
=1

 ( − ) ( − ) 1̄ () 

where  () ≡  − 1{ ≤ 0} ∆ () ≡  (|)− (|)−P1≤|j|≤
1
j!

(j) (|) ( − )
j
 and 1̄ () ≡

1 { ≤ }− (|)  Let  and  denote the th elements of  and .
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To prove Theorem 4.1, we will need lemmas C.1-C.3 in Appendix C. Let S () ≡ [S ()] and

B (;) ≡ [B (;)] In particular, Lemmas C.1 and C.2 establish uniform consistency of β̂ (|) and
̂−1( |) respectively.

Proof of Theorem 4.1. Letting ̂ ≡ ̂(|∗ ) and  ≡ (|∗ ), we have ̂ ( )−∗ ( ) =R
[−1(̂ |  ) − −1( |  )]() +

R
[̂−1(̂ |  )−−1(̂ |  )]() ≡1 ( )+2 ( ) 

say. Note that

−1(̂| )−−1(| ) = ̂ − 

 (−1 (| ) | ) + ̂ (;∗  ) 

where ̂ (;∗  ) ≡ −0(−1(∗ |)|)
(−1(∗|)|)3

(̂ − )
2 and ∗ lies between ̂ and  Noting that ̂ −  is

the first element of β̂ (|)−β (|) with  = (0 0)0  we have that by Lemma C.1(b) and Assumption C.6,
̂ (;∗  ) = 

¡
−1− log+ 2(+1)

¢
= 

¡
−12−2

¢
uniformly in (  ) ∈ A × X0 × Z0 It

follows that for all ( ) ∈ A ×X0
√
1 ( ) =

√


Z
̂ − 

 (−1 (| ) | ) () +  (1)

=
√


Z
01S (

∗ )−1B (;
∗ )

 (−1 (| ) | )  ()

+
√


Z
01S (

∗ )−1V (;
∗ )

 (−1 (| ) | )  () +  (1)

≡ 11 ( ) +12 ( ) +  (1)  say,

where the second line follows from Lemma C.1(a). Noting that B (;) = [ ( − ) ( −
)∆ ()] = +1 ()BG+1 (|) + 

¡
+1

¢
and S () = S () +  (1) uniformly in ( ) ∈ A ×U0

we have

11 ( ) =
√
 +1

Z
01S−1 BG+1 (|∗ )
 (−1 (| ) | )  () {1 +  (1)} (B.1)

and

12 ( ) =
√


Z
01S−1 V (;

∗ )
 (∗ )  (−1 (| ) | ) () {1 +  (1)}

= ̄12 ( ) {1 +  (1)} → N (0 1)  (B.2)

where ̄12 ( ) ≡
q




P
=1

R 01S
−1
 (−∗−)(−∗−)1()

(∗)(−1(|)|)  ()  (B.1) holds true uni-

formly in ( ) ∈ A×X0, 1 ≡ 1
R (1−)()2

(∗)(−1(|)|)2  1 ≡
R
01S−1  (̃ ̃)  (̃ ̃ − ̄)0 S−1 1

× (̃ ̃) (̃ ̃ − ̄)  (̃ ̃ ̄)  and (B.2) follows from straightforward moment calculations and Liapounov’s

central limit theorem.

For 2 noting that
√
(+1 + −12−2) =  (1) under Assumption C.6, by Lemma C.2(c) we

have that uniformly in ( ) ∈ A ×X0
√
2 ( ) =

√


Z
+101S−1 BG−1+1 (̂| ) ()

+
√


Z
01 (̂; )

−1
 (̂; ) () +  (1) 

≡ 21 ( ) +22 ( ) +  (1)  say,
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where  ( ;) ≡ S
¡
−1 ( |) |¢  ()  Using Lemmas C.2 and C.3, we can show that uniformly in

( ) ∈ A ×X0
21 ( ) =

√
 +1

Z
01S−1 BG−1+1 (| ) () +  (1)  (B.3)

and22 ( ) = ̄22 ( )+ (1)  where ̄22 ( ) ≡
R
01 (; )

−1
(; )() Further-

more,

̄22 ( ) =

r




X
=1

Z
01S−1  ( − )( − )

¡
 −−1 (|)

¢
 ( )  (−1 (| ) | )  ()

→ N (0 2) 

where 2 ≡ 1
R (1−)()2

()(−1(|)|)2  The asymptotic normality result follows by the Cramér-Wold

device and the fact that the asymptotic covariance of ̄12 and ̄22 zero. In sum, we have
√
 [̂ ( )

−∗ ( )− ( ;
∗)] → N

¡
0 2 ( ;

∗)
¢
 where  ( ;

∗) and 2 ( ;
∗) are defined in (4.6)

and (4.7), respectively.

Next, it is standard to show that sup()∈X0×A
|12 ( )| =  (

√
log) and sup()∈X0×A

¯̄
̄22 ( )

¯̄
=  (

√
log) Then the uniform convergence result follows. ¥

Proof of Theorem 4.3. By the strict monotonicity of ∗ ( ·) for all  its inverse function ∗−1 ( ·)
exists and is unique. This implies that for any fixed ( ) with  = ∗ ( ) (and thus  = ∗−1 ( ))

there is an  =  ()  0 such that

 =  () = min{∗ ( )−∗ ( − )  ∗ ( + )−∗ ( )}  0 (B.4)

It follows that for sufficiently large 


©¯̄
̂−1 ( )−∗−1 ( )

¯̄
 
ª

= 
©
̂−1 ( )  ∗−1 ( ) +  or ̂−1 ( )  ∗−1 ( )− 

ª
= 

©
∗

¡
 ̂−1 ( )

¢
 ∗

¡
∗−1 ( ) + 

¢
or ∗

¡
 ̂−1 ( )

¢
 ∗

¡
∗−1 ( ) -

¢}
≤ 

©¯̄
∗

¡
 ̂−1 ( )

¢−∗
¡
∗−1 ( )

¢¯̄
 

ª
= 

©¯̄
∗

¡
 ̂−1 ( )

¢− 
¯̄
 

ª
= 

©¯̄
∗

¡
 ̂−1 ( )

¢− ̂

¡
 ̂−1 ( )

¢¯̄
 

ª
≤ 

(
sup
∈A



|̂ ( )−∗ ( ) |  

)
→ 0

where the third line follows from the monotonicity of ∗ ( ·)  the fourth line holds by (B.4), the fifth and
six lines follow from the fact ∗

¡
∗−1 ( )

¢
=  = ̂

¡
 ̂−1 ( )

¢
 and A

 ≡ { : |− | ≤  for

some  ∈ A} and   0

Let Φ () ≡ 
©
122−1−1 ( )

£
̂−1 ( )−∗−1 ( )−−1 ( )

¤ ≤ 
ª
for any  ∈ R Then

Φ () = 
©
̂−1 ( ) ≤ ∗−1 ( ) +  (; )

ª
= 

©
̂

¡
 ̂−1 ( )

¢ ≤ ̂

¡
∗−1 ( ) +  (; )

¢ª
= 

¡
̂

¡
∗−1 ( ) +  (; )

¢ ≥ 
¢
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where  (; ) ≡ −1 ( ) + −12−2−1 (;)  By Lemma C.4(b) and Theorem 4.1,

Φ () ≈ 
©
̂

¡
∗−1 ( )

¢ ≥ −∗ ¡∗−1 ( )
¢
 (; ) + 

ª
= 

©
̂

¡
∗−1 ( )

¢−  + ∗
¡
∗−1 ( )

¢
−1 ( ) ≥

−(−12−2)∗
¡
∗−1 ( )

¢
−1 (;) 

o
= 

n√


£
∗
¡
∗−1 ( )

¢
−1 (;)

¤−1
×
h
̂

¡
∗−1 ( )

¢−  + ∗
¡
∗−1 ( )

¢
−1 ( )

i
≥ −

o
→ 1−Φ (−) = Φ () 

where Φ is the CDF for the standard normal distribution. ¥

Proof of Theorem 5.1. The proof is a special case of that of Theorem 5.3 and omitted. ¥

Proof of Theorem 5.2. By Assumption A2

(| ) =  [() +  () ≤ | =  = ]

=  [ () ≤  −  () | = ]

=  [1 { () ≤ } | = ] + (; )

=  [1 { () ≤ } | =  = ] + (; ) =  (| ) + (; ) 

where (; ) =  {[1 { () ≤  −  ()}− 1 { () ≤ }] | = }  Let  () ≡ inf∈A  ( )

and ̄ () ≡ sup∈A  ( )  By the monotonicity of  ( ·),

 (; ) ≤ 
©£
1
©
 () ≤  −  ()

ª− 1 { () ≤ }¤ | = 
ª

= 
©£
1
©
 ≤ −1

¡
  −  ()

¢ª− 1© ≤ −1 ( )
ª¤ | = 

ª
= |

¡
−1

¡
  −  ()

¢ |¢− |
¡
−1 ( ) |¢

= − ()
Z 1

0


¡
 −  () ; 

¢


where the last equality holds by Taylor expansion of |
¡
−1 ( ·) |¢ around  with an integral remainder,

 (; ) ≡ |
¡
−1 ( ) |¢  = |

¡
−1 ( ) |¢ 1

2(−1())
and 2 ( ) =  ( ) .

Similarly,  (; ) ≥ {[1{ () ≤  − ̄ ()} −1 { () ≤ }]| = } = −̄ ()
R 1
0
( −

̄ () ;  ) It follows that there exists a continuous function † (; ) such that

 ()

Z 1

0


¡
 −  () ; 

¢
 ≤ † (; ) ≤ ̄ ()

Z 1

0

 ( − ̄ () ; ) 

and

(| ) =  (| )− 
†
 (; )  (B.5)

Let ̄† ( ) = sup 
†
 (; ) and †


( ) = inf 

†
 (; )  For any given ( ) ∈ X × Z and

 ∈ (0 1)  the inverse function of (·| ) satisfies

−1 ( | ) = inf
©
 :  (| )− 

†
 (; ) ≥ 

ª
≥ inf

n
 :  (| ) ≥  + 

†

( )

o
= −1

³
 + 

†

( ) | 

´
;
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and similarly −1 ( | ) ≤ inf{ :  (| ) ≥  +̄
†
 ( )} = −1

¡
 + ̄

†
 ( ) | 

¢
 So there exists

a continuous function ⊥ ( ; ) such that 
†

( ) ≤ ⊥ ( ; ) ≤ ̄† ( ) for all  ∈ (0 1) and

−1 ( | ) = −1
¡
 + 

⊥
 ( ; ) | 

¢
= −1 ( | ) + 

⊥
 ( ; )

Z 1

0

1

 (−1 ( + ⊥ ( ; ) | ) | )
 (B.6)

where the second equality holds by Taylor expansion with an integral remainder (see the explanation after

(5.5)).

Combining (B.5) with (B.6) and using the Taylor expansion, we have

−1 ((| )|∗ ) = −1 ((| )|∗ ) + Θ
†
1 (; )

= −1
¡
 (| )− 

†
 (; ) |∗ 

¢
+ Θ

†
1 (; )

= −1 ( (| ) |∗ ) + Θ
†
 (; )

where Θ†1 (; ) = ⊥ ((| );∗ )
R 1
0

1
(−1((|)+⊥ ((|);∗)|∗) |∗) and

Θ†(; ) = Θ†1 (; )− † (; )
Z 1

0

1


³
−1

³
 (| )− 

†
 (; ) |∗ 

´
|∗ 

´
=

£
⊥ ((| );∗ )− † (; )

¤ 1

 (−1 ((| )|∗ ) |∗ ) +  (1)  ¥ (B.7)

Proof of Theorem 5.4. The proof is much simpler than that of Theorem 5.3, so we only sketch the main

steps. Under H1 we can apply Lemmas C.2 and C.1 in turn to obtain

−1− ̂ = −1
X
=1

½Z
−1

³
̂ (| ) |∗ 

´
∆ ()

¾2
 +  (1)

= −1
X
=1

½Z
−1 ( (| ) |∗ ) ∆ ()

¾2
 +  (1) 

The dominant term in the last equality tends to 1  0 in probability; the result follows. ¥

Proof of Proposition 5.5. Define the following empirical process

V (    () ;θ) = −12−2
X
=1



³
 ∗ ()− −12−2θ0 (;)

´
 (;) ̌ ()

= −12−2
X
=1

 (
∗
 ()  θ) (;) ̌ () 

where  (
∗
 ()  θ) ≡ 

¡
 ∗ ()− −12−2θ0 (;)

¢
. Then V (    () ; 0) = −12−2

×P
=1  (

∗
 ()) (;) ̌ ()  Let V (    (̂) ;θ) and V (    (̂) ; 0) denote the corresponding

terms with generated regressors.

In Lemma C.7, we show that V (    (̂) ;θ)−V (    (̂) ; 0)−[V (    (0) ;θ)− V (    (0) ; 0)]
=  (

2) uniformly over (  ) ∈ T × U0 and kθk ≤  for any fixed positive constant  With this in
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hand, we have by Lemma C.8,

θ̃ =−  ( ;)
−1 V (    (̂) ; 0) +  (

2)

uniformly over (  ) ∈ T × U0 Then uniformly over (  ) ∈ T × U0,

θ̃ = − ( ;)−1 {V (    (0) ; 0) + [V (    (̂) ; 0)− V (    (0) ; 0)]
+ {V (    (̂) ; 0)− V (    (0) ; 0)− [V (    (̂) ; 0)− V (    (0) ; 0)]}}
+ (

2)

= − ( ;)−1 −122
X
=1

 (
∗
 (0)) (0;) 

−̌ (0)

−
(
 ( ;)

−1
−122

X
=1

−̌ ( 0 ())Ψ1 (  )

)
{1 +  (1)}+  (

2)

where the second equality holds by Lemmas C.9 and C.10.  (·) is the expectation in empirical processes
and it is the same as the usual  (·) except that inside  (·) ̂ is taken as a constant function. We provide
a specific example in Appendix F.1 to help understand  (·).
In view of the fact that the influence term of

√


h
̂−1 ( |)−−1 ( |)

i
is given by the first component

in the last expression premultiplied by 01 and 01θ̃ =
√


h
̃−1 ( |)−−1 ( |)

i
 we have

̃−1 ( |)− ̂−1 ( |)

= −
(
01 ( ;)

−1
−1

X
=1

−̌ ( 0 ())Ψ1 (  )

)
{1 +  (1)}+  (

−12−2)

= −
(
01̄ ( ;)

−1
−1

X
=1

−̌ ( 0 ())Ψ1 (  )

)
{1 +  (1)}+  (

−12−2)

uniformly over (  ) ∈ T × U0, where the last equality holds by the fact that  ( ;) = ̄ ( ;) +

 (
−12−2 (log)12) and −1

P
=1

−̌ ( 0 ())Ψ1 (  ) =  (
−12−2(log)12)

uniformly over (  ) ∈ T × U0 ¥

Proof of Proposition 5.6. This is a direct result from MRS (Theorem 1). We discuss in Appendix F.1

how those conditions for Theorem 1 in MRS are met here. The remainder term for the linear expansion is


¡
( )−12

¢
 as discussed in Appendix F.1. Then by Theorem 1 in MRS, we have ̃ (|)−̂ (|) =

(|)
0 Λ̂ () + 

¡
( )−12

¢
uniformly over  ∈ U0 where

Λ̂ () ≡ 01S ()
−1



©
−̌ (0) (0;) [ (̂)−  (0)]

ª
 (B.8)

The uniform convergence over  ∈ R similarly follows from Boente and Fraiman (1991) The conclusion then
follows from Lemma C.12 and the finiteness of

(|)
 .¥

C Some technical lemmas

Lemma C.1 Suppose that Assumptions C.1-C.4 and C.6 hold. Let β (|) be a vector that stacks 1j!j (|),
0 ≤ |j| ≤  in lexicographic order. Then with  ≡ −12−2

√
log we have that uniformly in ( ) ∈

R× U0
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(a) β̂ (|)− β (|) = S ()−1 [V (;) +B (;)] + (
2
 +

+1)

(b) β̂ (|)− β (|) =  ( + +1)

Lemma C.2 Suppose that Assumptions C.1-C.4 and C.6 hold. Let T be any compact subset of (0 1)  Then
uniformly in (  ) ∈ T × U0
(a) ̂−1( |)−−1( |) = 01̄ ( ;)

−1
̄ ( ;) + (

2
 + 

+1) + 
¡
−12−2

¢


(b) ̂−1( |) − −1( |) = 01̄ ( ;)
−1

 ( ;) + +101S−1 BG−1+1 ( |) +  (
2
) +  (

+1

+−12−2)
(c) ̂−1( |) − −1( |) = 01 ( ;)

−1
 ( ;) [1 +  (1)] + +101S−1 BG−1+1 ( |) +  (

+1

+−12−2)
where  ( ;) ≡ S

¡
−1 ( |) |¢  () is the limit of ̄ ( ;) ≡  [ ( ;)] 

Lemma C.3 Suppose that Assumptions C.1-C.4 and C.6 hold. Then

sup̃ ∈T 
0 |̃− |≤

sup∈U0
√
 k (̃ ;)−  ( ;)k =  (1).

By Lemmas C.1 and C.3, with probability approaching 1 we have sup()∈A×X0×Z0
√
 |(̂(|

∗ );  )−  ((|∗ ); ) | =  (1) 

Lemma C.4 Suppose that Assumptions C.1-C.6 hold. Then for any  = () we have
(a) ̂(+ |)− ̂(|) = (|) + 

¡
 + −12−2

¢
uniformly in  ∈ U0

(b) ̂ ( + )− ̂ ( ) = ∗ ( )  + 
¡
 + −12−2

¢


where ∗ ( ) ≡
R (|∗)

(−1((|∗)|)|)()

Lemma C.5 Suppose the conditions in Theorem 5.3 hold. Then ̂1 = ̄1+ (1)  where ̄1 = 
P

=1

[
R
01̄ ( ;

∗ )−1 ( ; 
∗ )∆ ()]2We assume the assumptions in Proposition 5.5, 5.6 hold

for Lemma C.6−C.12.

We assume that the conditions in Proposition 5.5-5.6 hold for Lemmas C.6−C.12 below.

Lemma C.6  (̂ ∈ 

 (Ω))→ 1.

Lemma C.7 V (    (̂) ;θ) − V (    (̂) ; 0) − [V (    (0) ;θ)− V (    (0) ; 0)] =  (
2)

uniformly over (  ) ∈ T × U0 and kθk ≤ 

Lemma C.8 θ̃ =  ( ;)
−1 V (    (̂) ; 0) +  (

2) uniformly over (  ) ∈ T × U0

Lemma C.9 kV (    (̂) ;θ)− V (    (0) ;θ)− [V (    (̂) ;θ)− V (    (0) ;θ)]k = 
(2) uniformly over (  ) ∈ T × U0 and kθk ≤ 

Lemma C.10  [V (    (̂) ; 0)− V (    (0) ; 0)] =
½
−122

P
=1

−̌ ( 0 ())Ψ1 (  )

¾
×{1 +  (1)}+  (

2) uniformly over (  ) ∈ T × U0

Lemma C.11  [V (    (̂) ;θ)− V (    (0) ;θ)] −  [V (    (̂) ; 0)− V (    (0) ; 0)] =
 (

2) uniformly over (  ) ∈ T × U0 and kθk ≤ 

Lemma C.12 Λ̂ () = −
½
−1

P
=1

µ
0


¶
01S ()

−1
−̌ ( 0 ())Ψ2 ()

¾
×{1 +  (1)}

+ (
−12−2) uniformly over  ∈ U0
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In this appendix, we first prove the technical lemmas in Appendix C, and then provide proofs of some claims

in the main text. Finally, we make further discussion on the local power property of the proposed test in

the above paper.

D Proofs of the technical lemmas

Proof of Lemma C.1. Since [S ()]
−1 S () =  where  is an  × identity matrix, by (4.2)

we obtain the following standard bias and variance decomposition:

β̂ (|)− β (|) = [S ()]−1V (;) + [S ()]
−1B (;)  (D.1)

By Theorems 2 and 4 in Masry (1996) with some modification to account for the non-compact support of

the kernel function,8

S () = S () + () V (;) =  ()  B (;)−B (;) =  (
+1) (D.2)

where the probability orders hold uniformly in  ∈ U0 By the same argument as used in the proof of Theorem
4.1 of Boente and Fraiman (1991), we can show that the last two results in (D.2) also hold uniformly in

 ∈ R under Assumption C.3. In addition, by the Slutsky lemma,

S ()
−1
=
©
S () +

£
S ()− S ()

¤ª−1
= [S ()]

−1 + ()  (D.3)

It follows that β̂ (|)−β (|) = {S ()−1+ ()}{V (;) +[B (;) + (
+1)]} = S ()−1

×[V (;) +B (;)] + (
2
 + 

+1) =  ( + +1) ¥

Recall that ̂(| ) = 01β̂ (|) where 1 is defined after (4.3). Noting that uniformly in ( ) ∈
R×U0 S () =  ()S+ ()  and B (;) = +1 ()BG+1 (|)+ 

¡
+1

¢
 with ̄ ≡ + +1

we have ̂(|)−(|) = +101S−1 BG+1 (|) +  ()
−1

01S−1 V (;) + (̄)

Proof of Lemma C.2. Noting that  ( ;) − ̄ ( ;) =  () and ̄ ( ;) =  ( + +1) by

the proof of (b) below, (a) follows from Theorem 2.1 of Su and White (2012). To prove (b), write ̄ ( ;) =

 ( ;)+ ( ;)  where ( ;) ≡ 1


P
=1{1

¡
 ≤ −1 ( |)

¢−1( ≤ β( ; )
0)} ( − )

and  ≡  ( − )  Write  ( ;) as [ ( ;)] + { ( ;)−[ ( ;)]}  The first term is

[ ( ;)] = 
©£
(−1 ( |) |)−(β (  )

0
|)

¤
 ( − )

ª
= 

©
(−1 ( |) |)

£
−1 ( |)− β (  )0 

¤
 ( − )

ª {1 +  (1)}
= +1(−1 ( |) |) ()BG−1+1 ( |) {1 +  (1)} 

8The compact support of the kernel function in Masry (1996) can be easily relaxed, following the line of proof in Hansen

(2008, Theorem 4).
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It is easy to show the second term is  (
+1) uniformly in (  ). Thus (b) follows. For (c), it suffices to

show that sup()∈T ×U0 k ( ;)−  ( ;)k =  (
−12−2

√
log+ ) =  (1)  The proof is similar

to but simpler than that of Corollary 2 in Masry (1996) because we only need convergence in probability,

whereas Masry proved almost sure convergence. ¥

If  (|∗ ) ∈ T0 = [  ̄ ] ⊂ (0 1) for ∗ ∈ X0 and all ( ) ∈ A×Z0 by Lemma C.1, ̂(|∗ ) ∈ T 
0

with probability approaching 1 for sufficiently large  where T 
0 ≡ [ −  ̄ + ] ⊂ (0 1) for some   0 Then

the result in Lemma C.2 holds uniformly in (  ) ∈ T 
0 × U0

Proof of Lemma C.3. Let  (̃   ;) = 0 ( (̃ ;)−  ( ;)) where  ∈ R with kk = 1 We

need to show that

sup
̃ ∈T 

0 |̃− |≤

sup
∈U0

| (̃   ;)| =  () with  = −12−2 (D.4)

Let  =  (( − ) )0 ( − )  + = max ( 0) and − = max (− 0)  Noting that
 (̃   ;) =

¡

¢−1P

=1 
£
̃ − 1© ≤ −1 (̃ |)

ª−  + 1
©
 ≤ −1 ( |)

ª¤
 we can analogously

define + (̃   ;) and − (̃   ;) by replacing  in the definition of  (̃   ;) by + and 
−
 respec-

tively. By the Minkowski inequality, (D.4) will hold if sup̃ ∈T 0 |̃− |≤ sup∈U0 |+ (̃   ;)| =  ()

and sup̃ ∈T 
0 |̃− |≤ sup∈U0 |− (̃   ;)| =  ()  We will only show the first part as the other case

is similar.

Let  ≡ −12 By selecting 1 = 
¡
−1

¢
grid points, 1  2      1 with   −  −1 ≤  we can

cover the compact set T 
0 by T = [ −1   ] for  = 1     1 where 0 = − and 1 = ̄+. Similarly, we

can select 2 = 
¡
−−

¢
grid points 1  2 to cover the compact set U0 by U = { : k− k ≤ } 

 = 1  2 Observe that sup̃ ∈T 
0 |̃− |≤ sup∈U0 |+ (̃   ;)| ≤1 +2 where

1 ≡ max
1≤≤2

sup
̃ ∈T 0 |̃− |≤

¯̄
+ (̃   ;)

¯̄
 and

2 ≡ max
1≤≤2

sup
∈U

sup
̃ ∈T 

0 |̃− |≤

¯̄
+ (̃   ;)−+ (̃   ;)

¯̄


Furthermore,

1 ≤ max
1≤≤2

max
1≤≤1

max
1≤≤1

sup
|−|≤

¯̄
+ (   ;)

¯̄
+ max
1≤≤2

max
1≤≤1

sup
̃∈T

sup
∈T

sup
|̃− |≤

sup
|−|≤

¯̄
+ (̃   ;)−+ (   ;)

¯̄
≡ 11 +12 say.

Let  (   ) = +

£
  − 1

©
 ≤ −1 (  |)

ª−  + 1
©
 ≤ −1 (|)

ª¤
 Noting that | (   ) |

≤   [ (   )] = 0 and [ (   )
2
] ≤  as |  − | ≤  we apply the Bernstein

inequality (e.g., Serfling, 1980, p.95) and Assumption C6. to obtain

 (11  0) ≤ 112
12 max

1≤≤2
max

1≤≤1:|−|≤

¡
+ (   ;)  0

¢
≤ 2112

12 exp

µ
− 222

2
0

22 +
2
33

0

¶
= 

³
12

12
´
exp

Ã
−  20

4
¡
−12−2

√
log+ −12−20

¢! =  (1) 

2



where   = 1 2 3 4 are positive constants. Thus 11 =  ()  By the monotonicity of the indicator

and quantile functions and the nonnegativity of + , we can readily show that

12 = max
1≤≤2

max
1≤≤1

|−|≤

sup
̃∈T ∈T
|̃− |≤

¯̄̄̄
¯ 1

X
=1

+ [̃ − 1
©
 ≤ −1 (̃ |)

ª− 

+1
©
 ≤ −1 ( |)

ª
]− +

£
  − 1

©
 ≤ −1 (  |)

ª−  + 1
©
 ≤ −1 (|)

ª¤¯̄̄
≤ max

1≤≤2
1≤≤1

sup
̃∈T

¯̄̄̄
¯ 1

X
=1

+

£
̃ − 1© ≤ −1 (̃ |)

ª−   + 1
©
 ≤ −1 (  |)

ª¤¯̄̄̄¯
+ max
1≤≤2
1≤≤1

sup
∈T

¯̄̄̄
¯ 1

X
=1

+

£
 − 1© ≤ −1 ( |)

ª−  − 1
©
 ≤ −1 (|)

ª¤¯̄̄̄¯
=  (

−12) =  ()

We now study 2 Assumption C.4(iii) implies that for all k1 − 2k ≤  ≤  

| (2)− (1)| ≤ ∗ (1)  (D.5)

where ∗ () = 1 (kk ≤ 2) for some constant  that depends on 1 and 2 in the assumption. For

any  ∈ U, k− k  ≤  It follows from (D.5) that | − | ≤ 
∗

where  ≡  (( − ))

and ∗ ≡ ∗ (( − ))  and¯̄̄̄
¯
µ
 − 



¶
 −

µ
 − 



¶


¯̄̄̄
¯

≤
¯̄̄̄
¯
µ
 − 



¶ ¯̄̄̄¯ | − |+
¯̄̄̄
¯
µ
 − 



¶
−
µ
 − 



¶ ¯̄̄̄¯

≤ (2)
||


∗
 + (2)

||−1
1 (|k|  0) ≤ (

∗
 +)

With this, we can show that for any  ∈ U such that k− k  ≤  we have¯̄
+ − +

¯̄
=
¯̄


0 ( − )−
0 ( − )

¯̄
≤ (

∗
 +)

It follows that

2 = max
1≤≤2

sup
∈U

sup
∈T 

0

sup
̃ |̃− |≤

¯̄
+ (̃   ;)−+ (̃   ;)

¯̄
≤ 2 max

1≤≤2
sup
∈U

¡

¢−1 X

=1

¯̄
+ − +

¯̄
≤  max

1≤≤2

¡

¢−1 X

=1

¡
∗ +

¢
=  () =  ()

Thus we have proved that sup̃ ∈T 0 |̃− |≤ sup∈U0 |+ (̃   ;)| =  ()  ¥

Proof of Lemma C.4. By Lemma C.1,

̂(+ |)− ̂(|) = [(+ |)−(|)]
+01S ()

−1 [B (+ ;)−B (;)]

+01S ()
−1 [V (+ ;)−V (;)] + (

2
 + 

+1)

3



Clearly, the first term on the right hand side of the last expression is (| ) + (); the second term

is (+1) =  (
−12−2) uniformly in  ∈ U0 by the fact that B (;) = +1BG+1 (|)  () +


¡
+1

¢
uniformly in  and S () = S () +  (1), and the continuity of G+1 Analogously to the proof

of Lemma C.3, we can show that V (+ ;)−V (;) =  (
−12−2) uniformly in  ∈ U0 Thus

(a) follows.

To show (b), decompose ̂ ( + )− ̂ ( ) = 1 +2 where

1 ≡
Z h

−1(̂(+ |∗ )| ))−−1(̂(|∗ )| ))
i
()

and

2 ≡
Z h

̂−1(̂(+ |∗ )| ))−−1(̂(+ |∗ )| ))
i
()

−
Z h

̂−1(̂(|∗ )| ))−−1(̂(|∗ )| ))
i
()

For 1 we have

1 =

Z
̂(+ |∗ )− ̂(|∗ )

³
−1

³
̂(|∗ )| 

´
| 

´() + 

³
 + −12−2

´
=

Z
(|∗ )


³
−1

³
̂(|∗ )| 

´
| 

´() + 

³
 + −12−2

´
= ∗ ( )  + 

³
 + −12−2

´


where the first equality follows from the Taylor expansion, the second from (a), and the third from Lemma

C.1. By the proof of Theorem 4.1, we have

2 ≈ +1
Z

01S−1 B
£
G−1+1 ((+ |∗ )|)−G−1+1 ((|∗ )|)

¤
()

+

Z
01[ ((+ |∗ ); )−1  ((+ |∗ ); )

−  ((|∗ ); )−1  ((|∗ ); )]()
≡ 21 +22 say.

It is easy to see that 21 = (+1) =  (
−12−2) by the continuity of  and G−1+1 Next, we write

22 = 221 +222 where

221 =

Z
01 ((+|∗ ); )−1 [ ((+|∗ ); )−  ((|∗ ); )] ()

222 =

Z
01[ ((+|∗ ); )−1 −  ((|∗ ); )−1] ((|∗ ); ) ()

One can readily show that 221 =  (
−12−2) and 222 =  (

−12−2) by standard moment

calculations and the dominated convergence theorem, and (b) follows. ¥

Proof of Lemma C.5. To prove the result, we define ̃1 analogously as ̄1 with   replaced by ̂ :

̃1 = 
P

=1

hR
01̄ (̂ ;

∗ )−1  (̂ ;∗ ) ∆ ()
i2
 It suffices to show (i) ̂1 = ̃1+ (1) 

4



and (ii) ̃1 = ̄1+ (1)  To prove (i), let 1 ( ;) = 01̄ ( ; )
−1 [̄ ( ; )− ( ; )] Then

we have ̂1 − ̃1 = 1 + 22 where

1 ≡ 
X
=1

∙Z
1 (̂ ;

∗ ) ∆ ()
¸2

 and

2 ≡ 
X
=1

Z
1 (̂ ;

∗ ) ∆ ()
Z

01̄ (̂ ;
∗ )−1  (̂ ;∗ ) ∆ ()

As 1 ( ;) = 

¡
+1

¢
uniformly in (  ) ∈ T0×U0 we have 1 =  (

2(+1)) =  (1)  For 2

we get 2 = ̄2+  (1) using Lemmas C.1 and C.3, where ̄2 = 
P

=1

R
1 ( ;

∗ ) ∆ ()
R
01

×̄ ( ;∗ )−1  ( ;∗ ) ∆ (). Standard moment calculations give ̄2 =  (
+1) (

−12

−2) =  (1)  so (i) holds.

Next, we show (ii). Let 2 (̂   ;
∗ ) = 01̄ (̂ ;

∗ )−1  (̂ ;∗ )− 01̄( ;
∗ )−1

× ( ;∗ )  ̄2 (̂   ;∗ ) = 01̄ ( ;
∗ )−1 [ (̂ ;∗ )−  ( ;

∗ )]  and 2 =

2 − ̄2 Then uniformly in  ∈ Z0 and conditional on ̂  ∈ T 
0 

2 (̂   ;
∗ ) = 01

h
̄ ( ;

∗ )−1 − ̄ (̂ ;
∗ )−1

i
 (̂ ;

∗ ) (D.6)

=  (̂  −  ) () = 

¡
( + +1)

¢


Decompose ̃1 − ̄1 as

̃11 + 2̃12 ≡ 
X
=1

∙Z
2 (̂   ;

∗ ) ∆ ()
¸2



+ 2
X
=1

Z
[2 (̂   ;

∗ )] ∆ ()
Z

01̄ ( ;
∗ )−1  ( ;∗ ) ∆ ()

Further decompose ̃11 as̃11 = ̃11 + ̃11 + 2̃11 say, with

̃11 + ̃11 + 2̃11 ≡ 
X
=1

∙Z
̄2 (̂   ;

∗ ) ∆ ()
¸2



+ 
X
=1

∙Z
2 (̂   ;

∗ ) ∆ ()
¸2



+ 2
X
=1

X
=1

Z
̄2 (̂   ;

∗ ) ∆ ()
Z

2 (̂   ;
∗ ) ∆ ()

Fix   0 By the uniform consistency of ̂  for   there exists   0 such that  (supmax1≤≤
|̂  −  | ≥)  2 for sufficiently large  It follows that


³¯̄̄
̃11

¯̄̄
≥ 

´
≤ 

µ¯̄̄
̃11

¯̄̄
≥  sup


max
1≤≤

|̂  −  | ≤

¶
+ 2

and showing ̃11 =  (1) is equivalent to showing that the first term in the last expression is  (1) 

Conditional on sup∈Z0 max1≤≤ |̂  −  | ≤ and   ∈ T0 ⊂ (0 1)  by Lemma C.3

̃11 = 
X
=1

∙Z
01̄ ( ;

∗ )−1 [ (̂ ;∗ )−  ( ;
∗ )] ∆ ()

¸2


≤  sup
≤≤̄  |̃− |≤

sup
∈U0

k (̃ ;)−  ( ;)k2 =  (1) 

5



By (D.6), ̃11 = 2 ((
−1− log+2(+1)) −1− log) =  (

−1−32 (log)2+ 2(+1)−2 log)

=  (1)  By Cauchy-Schwarz (CS hereafter) inequality, ̃11 =  (1)  so ̃11 =  (1) 

Analogously to the determination of the probability order of ̃11 we can show that ̃12 = ̃12+ (1) 

where ̃12 = 
P

=1

R
̄2 (̂   ;

∗ ) ∆ ()
R
01̄ ( ;

∗ )−1 ( ; ∗ )∆ () By the

CS inequality and Lemmas C.1 and C.3, ̃12 =  (1)  Thus ̃12 =  (1)  This completes the proof of

(ii). ¥

Proof of Lemma C.6. The derivation follows from similar arguments as used in Escanciano et al. (2014,

Appendix C). ¥

Proof of Lemma C.7. To show the conclusion, we note that by Lemma C.9

V (    (̂) ;θ)− V (    (0) ;θ)− [V (    (̂) ;θ)− V (    (0) ;θ)] =  (
2)(D.7)

V (    (̂) ; 0)− V (    (0) ; 0)− [V (    (̂) ; 0)− V (    (0) ; 0)] =  (
2)(D.8)

uniformly over (  ) ∈ T × U0 and kθk ≤  By Lemma C.11 and (D.7)-(D.8), we have

V (    (̂) ;θ)− V (    (̂) ; 0)− [V (    (0) ;θ)− V (    (0) ; 0)] =  (
2)

uniformly over (  ) ∈ T × U0 and kθk ≤  ¥

Proof of Lemma C.8. The proof is similar to that of Theorem 1 in Su and White (2012, SW hereafter)

which is built on their Lemmas A.1-A.5. Because we assume IID data, the mixing conditions in that theorem

are automatically satisfied. The bandwidth condition (Assumption A.6 in SW) is essentially our Assumption

C.6. The other conditions of SW can also be verified, and we can set  = 2 in SW. The object of interest

in SW corresponds to our V (    (0) ;θ) We now argue that a similar result holds for V (    (̂) ;θ).
Lemma A.2 in SW shows that V (    (0) ; 0) =  (1) uniformly over (  ) ∈ T ×U0 in our notation.

With this, by equation (D.8) and Lemma C.10, we know V (    (̂) ; 0) =  (1) uniformly over (  ) ∈
T × U0 By Lemmas A.3-A.4 with  = 2 in SW and Lemma C.7 above, we have uniformly over

(  ) ∈ T × U0 and kθk ≤ 

kV (    (̂) ;θ)− V (    (̂) ; 0) +  ( ;)θk =  (
2) (D.9)

By the same argument as used in the proof of Lemma A.5 in SW and the fact that θ̃ is the solution

to problem (5.15), we have
°°°V(    (̂) ; θ̃)°°° = 

¡
2

¢
uniformly over (  ) ∈ T × U0 Note that

θ0V (    (̂) ;θ) is non-decreasing in  for any θ because  is a non-decreasing function and

θ0V (   (̂) ;θ) = −12−2
X
=1



³
 ∗ ()− −12−2θ0 (;)

´
θ0 (;) ̌ () 

 ( ;) is positive definite as  tends to infinity. These results, in conjunction with Lemma C.7, imply

that all conditions in Lemma A.1 in SW are verified, and by (D.9) we have

θ̃ =  ( ;)
−1 V (    (̂) ; 0) +  (

2)

=  ( ;)
−1

−12−2
X
=1

 (
∗
 (̂)) (̂;) ̌ (̂) +  (

2)

uniformly over (  ) ∈ T × U0 ¥
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Proof of Lemma C.9. Let Ṽ (    () ;θ) ≡ −1
P

=1 (
∗
 ()  θ)

0
 (;) ̌ () 

. Then

V (    () ;θ)= 122Ṽ (    () ;θ)  Noting that Ṽ (    () ;θ) has the same structure as  (· ·)
in Lemma 4 in MRS (where (  θ) plays the role of  in MRS), we can apply their result to conclude that

uniformly over (  ) ∈ T × U0 and kθk ≤ °°°Ṽ (    (̂) ;θ)− Ṽ (    (0) ;θ)−

h
Ṽ (    (̂) ;θ)− Ṽ (    (0) ;θ)

i°°° ≡  (Ξ5) 

where by the discussion in Appendix F.1 and Assumption C.9

Ξ5= 

µ
()−12

k̂ − 0k∞


k̂ − 0k−
1
2 ∞

¶
= k̂ − 0k1−

1
2 ∞ 

³
−1()−12

´
=  (

1+2)

³
−1()−12

´
= 

³
( )−12

´


It follows that

kV (    (̂) ;θ)− V (    (0) ;θ)− [V (    (̂) ;θ)− V (    (0) ;θ)]k
= 122

³
( )−12

´
=  (

2)

uniformly over (  ) ∈ T × U0 and kθk ≤ . ¥

Proof of Lemma C.10. For notational simplicity, let  =  (
∗
 (0))   =  (0;)  and  =

̌ (0)  Define ̂ ̂ and ̂ analogously with 0 replaced by ̂ We make the following decomposition

for  [V (    (̂) ; 0)]− [V (    (0) ; 0)]:

 [V (    (̂) ; 0)]− [V (    (0) ; 0)]

= 

(
−12−2

X
=1

h
̂̂̂ − 

i)

= 

(
−12−2

X
=1

h³
̂ − 

´
 + 

³
̂̂ − 

´
+
³
̂ − 

´³
̂̂ − 

´i)
= 

h
12−2

³
̂ − 

´


i
+

h
12−2

³
̂̂ − 

´i
+

h
12−2

³
̂ − 

´³
̂̂ − 

´i
≡ Ξ0 (  ) + Ξ1 (  ) + Ξ2 (  )  say,

where the third equality holds by IID assumption.

First, we study Ξ2 Noting that 
∗
 () does not contain  we can readily show that [̂ − 

| (0)] =  (k̂ − k∞) uniformly over (  ) ∈ T × U0 by Assumptions C.2-C.3. With this, by the

Taylor expansion of ̂̂ −  at  (0) and taking expectation, we can readily show that Ξ2 (  ) =

 (
√
 k̂ − k2∞ ) = 

¡
2

¢
uniformly over (  ) ∈ T × U0 by Assumptions C.4, C.6 and C.9.

Second, we study Ξ1 By the same reasoning as used in the proof of Lemma 2 in Fan et al. (1994),

we have  [ (
∗
 (0))] = 

¡
+1

¢
 With this and following the analysis of Ξ2 we can show that

uniformly over (  ) ∈ T × U0

Ξ1 (  ) = 

³
+1
√
 k̂ − k∞ 

´
= 

³
+1
√
 2 k̂ − k∞ 

´
= 

³
2 k̂ − k∞ 

´
= 

³
2

´

7



by Assumption C.6 and C.9.

To study Ξ0 without loss of generality, we assume for now that  = 1 i.e.,  is a scalar function. The

generalization to multivariate case is straightforward. By the IID assumption we have

Ξ0 (  ) = 

h
12−2 (0;) ̌ (0) [ (

∗
 (̂))−  (

∗
 (0))| (0)]

i
 (D.10)

Note that



³
̂ − |  (0)

´
=  [−1 { ∗ (̂) ≤ 0}+ 1 { ∗ (0) ≤ 0}| (0)] (D.11)

= −
⎛⎝ X
0≤||≤

1

j!
−1 ( |) ( (̂)− )

¯̄̄̄
¯̄ (0)

⎞⎠+ (β ( ;)| (0))

= − (β ( ;)| (0))
⎧⎨⎩ X
0≤||≤

1

j!
−1 ( |) 



 0

¯̄̄̄
¯
=(0)−

⎫⎬⎭ ( (̂)−  (0)) + Ξ3 (  )

=  (β ( ;)| (0))
⎧⎨⎩ X
0≤||≤

1

j!
−1 ( |) 



 0

¯̄̄̄
¯
=(0)−

⎫⎬⎭ (̂ ()− 0 ()) + Ξ3 (  )

≡  (   0 ()) (̂ ()− 0 ()) + Ξ3 (  ) 

where Ξ3 is the residual term from the Taylor expansion which is of the same order as k̂ − k2∞, 


0 denotes

the first order derivative of 


with respect to  (so it is a scalar by assuming  = 1) and the fourth equality

holds by the fact that  (̂) −  (0) =

Ã


 − ̂ ()

!
−
Ã



 − 0 ()

!
=

Ã
0

0 ()− ̂ ()

!
 

is defined as

 (   0 ()) ≡  (β ( ;)| (0))
⎧⎨⎩ X
0≤||≤

1

j!
−1 ( |) 



 0

¯̄̄̄
¯
=(0)−

⎫⎬⎭  (D.12)

Substituting (D.11) into (D.10) yields

Ξ0 (  ) = 

n
12−2 (0;) ̌ (0) [ (   0 ()) (̂ ()− 0 ()) + Ξ3 (  )]

o
= 

h
12−2 (0;) ̌ (0) (   0 ()) (̂ ()− 0 ())

i
+ 

³
2

´
=

Z
Ω

12−2+2
£
̄ (0 () ;) 

− ̌ (0 ()) (   0 ())
¯̄

¤

× (̂ ()− 0 ()) () +  (
2)

≡
Z
Ω

12−2+2 (   0 ()) (̂ ()− 0 ()) () +  (
2) (D.13)

uniformly over (  ) ∈ T ×U0 where ̄ ( () ;) =  ( ( ())− )   ( ()) = ( 0 (−  ())0)0 

the second equality holds by the fact that Ξ3 (  ) = (k̂ − k2∞) and

£¯̄
12−2 (0;) ̌ (0)

¯̄¤
= 

¡
122

¢
and uniformly over (  ) ∈ T × U0 and that 122 k̂ − k2∞ = 

¡
2

¢
by Assumption

C.9, the third equality holds by taking the expectation over , and

 (   0 ()) ≡ 

∙
̄ (0 () ;)

̌ (0 ())


 (   0 ())

¯̄̄̄


¸
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The dominant term in Ξ0 could be analyzed analogously as in the proof of Proposition 1 in MRS. We

decompose ̂ ()− 0 () in the same way as in equation (A.24) in MRS. Following the same lines of proof

as theirs and noting that ̃̃+1 =  (
−12−2) by Assumption C.9, the bias term is asymptotically

negligible uniformly over  ∈ U0 and we can obtain a similar expression as equation (A.26) in MRS:

Ξ0 (  ) = −12−2+2
X
=1

Z
Ω

 (   0 ()) 
0
1̃S̃̃ ()

−1
̃̃ ( −)̃̃ () ()

+ (
2)

≡ Ξ4 (  ) +  (
2)

Let  = (−)̃ Using ̃ =  ()  we have (   0(+ ̃)) =  (   0 ()) {1+(̃)} similarly for
S ()  and S̃̃ () = S̃ () +  (1) 

By the smoothness of  (   0 ()) and |

 (   0 ()) (D.14)

≡ 

∙
̄ (0 () ;)

̌ (0 ())


 (   0 ())

¯̄̄̄
 = 

¸

=

Z
R

⎡⎢⎢⎢⎢⎣
Z
Q


³
( 0 (− 0 ())

0)0
´ 

Ãµ¡
−


¢0

³
−0()−



´0¶0!


| ()

⎤⎥⎥⎥⎥⎦
 (   0 ())| ()

=

Z
R



³¡
 0 (̄ ()− 0 ())

0¢0´ 

Ãµ¡
−


¢0

³
̄()−0()−



´0¶0!


 (   0 ())| ()

= ̌ () (   0 ()) | (|) (1 +  (1)) 

for some ̄ ()  where ̄ () is obtained by the Second Mean Value Theorem for Definite Integrals

and
R
Q | () = 1

9

̌ ( 0 ()) ≡
Z
R



³
(t  

0
)

0´

³
(t  

0
)

0´
t  (D.15)

t≡ (1   ),  = (̄ ()−0 ()−) and ̌ (0 ()) is obtained by the change of variable:

t = ( − )  and the continuity of ̄ () in  It follows that

Ξ4 (  ) ≈ −12−2+2
X
=1

̌ ( 0 ()) (   0 ()) | (|) 
0
1̃S

−1
̃

Z
R

̃ ()̃ () 

≈ −122
X
=1

−̌ ( 0 ()) (   0 ()) | (|) 
0
1̃S

−1
̃

Z
R

̃ ()̃ ()  

≈ −122
X
=1

−̌ ( 0 ())Ψ1 (  ) (D.16)

9The Second Mean Value Theorem for Definite Integrals does not hold for vector functions in general, but it holds here

because each element of 

(0 (−  ())

0)0

contains at most one element of  and each element of  appears only once

in 

(0 (−  ())0)0




9



where  (  ) ≈  (  ) denotes that  (  ) =  (  ) {1 +  (1)} uniformly over (  ) ∈ T × U0 and

Ψ1 (  ) ≡  (   0 ()) | (|) 
0
1̃S

−1
̃

Z
R

̃ ()̃ ()  (D.17)

In sum, we have uniformly over (  ) ∈ T × U0

 [V (    (̂) ; 0)− V (    (0) ; 0)]

=

(
−122

X
=1

−̌ ( 0 ())Ψ1 (  )

)
{1 +  (1)}+  (

2)

This also holds for the multivariate case of . ¥

Proof of Lemma C.11. As in the proof of Lemma C.10, we make the following decomposition

 [V (    (̂) ;θ)]−  [V (    (0) ;θ)]
= 

h
12−2 ( (

∗
 (̂)  θ)−  (

∗
 (0)  θ))

i
+

h
12−2 (

∗
 (0)  θ) (̂̂ − )

i
+

h
12−2 ( (

∗
 (̂)  θ)−  (

∗
 (0)  θ)) (̂̂ − )

i
≡ Ξ0 (  ;θ) + Ξ1 (  ;θ) + Ξ2 (  ;θ)  say.

Apparently, Ξ (  ) = Ξ (  ; 0) for  = 0 1 2

For Ξ2 (  ;θ)  the analysis is almost the same as Ξ2 (  )  The main difference is that now have

 [ (
∗
 (̂)  θ)−  (

∗
 (0)  θ) | (0)] = 

¡k̂ − k∞ + k̂ − k∞ −12−2 kθk ¢ uniformly
over (  ) ∈ T ×U0 because θ0 (̂;) contains  in the denominator associated with ̂. So Ξ2 (  θ) =

¡
2

¢
uniformly over (  ) ∈ T × U0 and kθk ≤  as −12−2 =  (1) by Assumption C.6.

For Ξ1 (  ;θ)  following the analysis of Ξ1 (  ) in the proof of Lemma C.10, we can show that

 [ (
∗
 (0)  θ)] = 

¡
+1 + −12−2 kθk¢ uniformly over (  ) ∈ T ×U0 and kθk ≤  Then

Ξ1 (  ;θ) =  (
2)+

³
−12−2 kθk

√
 k̂ − k∞ 

´
=  (

2)+ (k̂ − k∞ ) =  (
2)

uniformly over (  ) ∈ T × U0 and kθk ≤  where the last equality holds by Assumption C.9.

For Ξ0 (  ;θ)  we have

Ξ0 (  ;θ) = 

n
12−2 (0;) ̌ (0) [ (

∗
 (̂) θ)−  (

∗
 (0) θ)| (0)]

o
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Following the derivation of (D.11), we have

 [ (
∗
 (̂)  θ)−  (

∗
 (0)  θ)| (0)]

= −
⎛⎝ X
0≤||≤

1

j!
−1 ( |) ( (̂)− ) − −12−2θ0 (̂;)

¯̄̄̄
¯̄ (0)

⎞⎠
+

³
β ( ;)− −12−2θ0 (0;)

¯̄̄
 (0)

´
= −

⎛⎝ X
0≤||≤

1

j!

³
||−1 ( |)− −12−2θ

´µ (̂)− 



¶ ¯̄̄̄¯̄ (0)
⎞⎠

+

⎛⎝ X
0≤||≤

1

j!

³
||−1 ( |)− −12−2θ

´µ (0)− 



¶ ¯̄̄̄¯̄ (0)
⎞⎠

= 

⎛⎝ X
0≤||≤

1

j!

³
||−1 ( |)− −12−2θ

´µ (0)− 



¶ ¯̄̄̄¯̄ (0)
⎞⎠

⎧⎨⎩ X
0≤||≤

1

j!

³
||−1−1 ( |)− −12−2−1θ

´ 

0

¯̄̄̄
=

(0)−


⎫⎬⎭ (̂ ()− 0 ()) + Ξ3 (  ;θ) 

≡  (   0 () ;θ) (̂ ()− 0 ()) + Ξ3 (  ;θ) 

where θ denotes the j-th element of θ and Ξ3 (  ;θ) denotes the remainder term in the Taylor expansion.

Then uniformly over (  ) ∈ T × U0 and kθk ≤ 

Ξ0 (  ;θ) = 

h
12−2 (0;)

¡
̌ (0) (   0 () ;θ) (̂ ()− 0 ()) + Ξ3 (  ;θ)

¢i
= 

h
12−2 (0;) ̌ (0) (   0 () ;θ) (̂ ()− 0 ())

i
+  (

2)

where



h¯̄̄
12−2 (0;) ̌ (0)Ξ3 (  ;θ)

¯̄̄i
= 

³
122 k̂ − k2∞ (1 + −12−2−2 kθk)

´
=  (

2)

and −2 in front of kθk arises from the second order derivative. This, in conjunction with (D.13), implies

that

Ξ0 (  ;θ)− Ξ0 (  )
= 

h
12−2 (0;) ̌ (0) [ (   0 () ;θ)−  (   0 ())] (̂ ()− 0 ())

i
+  (

2)

= 

³


h¯̄̄
12−2 (0;) ̌ (0) [ (   0 () ;θ)−  (   0 ())]

¯̄̄i
k̂ − k∞

´
+  (

2)

= 

³
122

³
−12−2−1 kθk

´
k̂ − k∞

´
+  (

2) =  (
2)

uniformly over (  ) ∈ T × U0 and kθk ≤ 

To summarize, we have

 [V (    (̂) ;θ)− V (    (0) ;θ)]−  [V (    (̂) ; 0)− V (    (0) ; 0)] =  (
2)

which holds uniformly over (  ) ∈ T × U0 and kθk ≤  ¥
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Proof of Lemma C.12. Without loss of generality, we assume that  is a scalar function. Following

the same lines of analysis of Ξ0 in the proof of Lemma C.10 (see the derivations of (D.13) to (D.16) in

particular), we have



©
−̌ (0) (0;) [̂ ()− 0 ()]

ª
= −1

X
=1

Z
Ω

−
£
− ̌ (0) (0;)

¯̄
 = 

¤
01̃S̃̃ ()

−1
̃̃ ( −)̃̃ ( −) ()

+ (
−12−2)

=

⎛⎝−1
X
=1

−̌ ( 0 ()) | (|) 
0
1̃S

−1
̃

Z
R

̃ ()̃ () 

⎞⎠ {1 +  (1)}+  (
−12−2)

=

Ã
−1

X
=1

−̌ ( 0 ())Ψ2 ()

!
{1 +  (1)}+  (

−12−2)

uniformly over  ∈ U0 where ̌ ( 0 ()) is defined in equation (D.15), and

Ψ2 () ≡ | (|) 
0
1̃S

−1
̃

Z
R

̃ ()̃ ()  (D.18)

Noting that  (̂)−  (0) =

Ã


 − ̂ ()

!
−
Ã



 − 0 ()

!
=

Ã
0

0 ()− ̂ ()

!
 we have

Λ̂ () ≡ 01S ()
−1



©
−̌ (0) (0;) [ (̂)−  (0)]

ª
= −01S ()−1

(
−̌ (0) (0;)

Ã
0

̂ ()− 0 ()

!)

= −
(
−1

X
=1

Ã
0


!h
01S ()

−1
−̌ ( 0 ())

i
Ψ2 ()

)
{1 +  (1)}

+ (
−12−2)

uniformly over  ∈ U0. It is easy to show that the dominant term in the last expression is  (
−12−2)

¥

E Proofs of some results in the main text

Proof of Theorem 5.3. Note that the results in Lemmas C.1 and C.2 continue to hold when {} is replaced
by {} in the estimation. In this case, both the conditional CDF and PDF of  given ( ) = ( )

become -dependent. Let

̄≡ 
X
=1

{
Z

−1 (̂ (| ) |∗ )∆ ()}2  ( |)≡ ̂−1 ( |)−−1 ( |) 

1 ( ;)≡ 01̄ ( ;)
−1

̄ ( ;)  and 2 ( ;)≡  ( |) − 1 ( ;) 

12



Let   ≡  (| )  and ̂  ≡ ̂ (| )  Noting that 
2 − 2 = (− )2 + 2 (− )  we have

̂ = ̄ + (̂ − ̄)

= ̄ + 
X
=1

½Z h
̂−1 (̂ |∗ )−−1 (̂ |∗ )

i
∆ ()

¾2


+2
X
=1

Z h
̂−1 (̂ |∗ )−−1 (̂ |∗ )

i
∆ ()

Z
−1 (̂ |∗ ) ∆ ()

= ̄ + 
X
=1

∙Z
1 (̂ ;

∗ ) ∆ ()
¸2

 + 
X
=1

∙Z
2 (̂ ;

∗ ) ∆ ()
¸2



+2
X
=1

Z
1 (̂ ;

∗ ) ∆ ()
Z

2 (̂ ;
∗ ) ∆ ()

+2
X
=1

Z
1 (̂ ;

∗ ) ∆ ()
Z

−1 (̂ |∗ ) ∆ ()

+2
X
=1

Z
2 (̂ ;

∗ ) ∆ ()
Z

−1 (̂ |∗ ) ∆ ()

≡ ̄ + ̂1 + ̂2 + 2̂3 + 2̂4 + 2̂5 say. (E.1)

Since it is straightforward to show that B̂ − B =  (1) and ̂2 − 2 =  (1)  it suffices to prove the

theorem by showing that

̂ =  +  (1)  (E.2)

and

 − B → N
¡
Θ0  

2


¢
 (E.3)

where  ≡ 
P

=1

∙R 01S̄()
−1V(;)

(−1 (|∗)|∗) + 01̄ ( ;
∗ )−1  ( ;∗ ) ∆ ()

¸2


We prove (E.2) by showing that

̄ = 
X
=1

"Z
01S̄ ( )

−1
V (; )


¡
−1 ( |∗ ) |∗ 

¢ #2
 + Θ0 +  (1)  (E.4)

̂1 = 
X
=1

∙Z
01̄ ( ;

∗ )−1  ( ;∗ ) ∆ ()
¸2

 +  (1)  (E.5)

̂4 = ̃4 +  (1)  and (E.6)

̂ =  (1) for  = 2 3 5 (E.7)

where ̃4 ≡ 
P

=1

R 01S̄()
−1V(;)

(−1 (|∗)|∗)
01̄ ( ;

∗ )−1  ( ;∗ ) ∆ () To show

(E.4), write

̄ = 
X
=1

∙Z
−1 ( |∗ )∆ ()

¸2


+
X
=1

½Z £
−1 (̂ |∗ )−−1 ( |∗ )

¤
∆ ()

¾2


+2
X
=1

Z
−1 ( |∗ )∆ ()

Z £
−1 (̂ |∗ )−−1 ( |∗ )

¤
∆ ()

≡ ̄1 + ̄2 + 2̄3 say.

13



Under H1 () with  = −12−2 ̄1 = −1
P

=1Θ (; )
2


→ Θ0 by Remark 5.2. Noting

that

−1 (̂ |∗ )−−1 ( |∗ ) = ̂  −  


¡
−1 ( |∗ ) |∗ 

¢ + ̂ ()  (E.8)

where ̂ () = − 0(−1 (∗|∗)|∗)
(−1 (∗|∗)|∗)

3 (̂  −  )
2
 0 (·|∗ ) denotes the derivative of  (·| ∗ ) with

respect to · and ∗ lies between   and ̂  we have that under H1 () 

̄3 = −122
X
=1

Θ (; )

Z £
−1 (̂ |∗ )−−1 ( |∗ )

¤
∆ ()

= −122
X
=1

Θ (; )

Z
̂  −  


¡
−1 ( |∗ ) |∗ 

¢∆ ()
+−122

X
=1

Θ (; )

Z
̂ () ∆ ()

≡ ̄31 + ̄32 say.

Observing that ̂ () = 

¡
−1− log+ 2(+1)

¢
uniformly in  by Lemma C.1(b), we have ̄32 =

122

¡
−1− log+ 2(+1)

¢
=  (1). By Lemma C.1(a), the fact that B (; ) =  (

+1)

uniformly in (  ) ∈ R×X0 ×Z0 and Assumption C.6, we have ̄31 = −122
P

=1 Θ (; )

× R 01S()
−1V(;)

(−1 (|∗)|∗) ∆ ()+ (1) Writing the dominant term in the last expression as a second

order U -statistic plus a smaller order term ( (
−12−2)), it is easy to show that this dominant term is

 (
2+−12−2) =  (1) by Chebyshev inequality. Thus, 3 =  (1) under H1 ()  Using (E.8),

we decompose ̄2 as follows

̄2 = 
X
=1

"Z
̂  −  


¡
−1 ( |∗ ) |∗ 

¢∆ ()#2  + 
X
=1

∙Z
̂ () ∆ ()

¸2


+2
X
=1

Z
̂  −  


¡
−1 ( |∗ ) |∗ 

¢∆ ()Z ̂ () ∆ ()

≡ ̄21 + ̄22 + 2̄23 say.

By Lemmas C.1(a)-(b) and Assumption C.11, we can readily show that

̄21 = 
X
=1

"Z
01S ( )

−1V (; )


¡
−1 ( |∗ ) |∗ 

¢ ∆ ()

#2
 +  (1) =  (1) 

and ̄22 =  (
−2−2 (log)2 + 4(+1)) =  (

−1−32 (log)2 + 4(+1)+ ) =  (1)  Then

̄23 =  (1) by Cauchy-Schwarz inequality. Consequently, (E.4) follows.

By Lemma C.5, (E.5) holds. With (E.5), it is standard to show that ̂1 =  (1)  Using (E.8) we can

decompose ̂4 as

̂4 = 
X
=1

Z
1 (̂ ;

∗ ) ∆ ()
Z

−1 ( |∗ )∆ ()

+
X
=1

Z
1 (̂ ;

∗ ) ∆ ()
Z

̂  −  


¡
−1 ( |∗ ) |∗ 

¢∆ ()
+

X
=1

Z
1 (̂ ;

∗ ) ∆ ()
Z

̂ () ∆ () ≡
3X

=1

̂4 say.
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Using arguments as used in the analysis of ̄31 and ̄32 we can readily show that ̂4 =  (1) for  = 1 3

For ̂42 we can apply Lemmas C.1 and C.2 to obtain ̂42 = ̃4+ (1)  where ̃4 is defined after (E.7).
10

Thus (E.6) follows.

We now show (E.7). By Lemma C.2(a), ̂2 =  [ (
4
)+

¡
2(+1) + −1−

¢
] =  (1)  By the

fact that ̂1 =  (1) and Cauchy-Schwarz inequality, ̂3 =  (1). For ̂5 we have ̂5 =  [ (
2
)+


¡
+1 + −12−2

¢
]  (

−12−2
√
log+ +1) =  (1)  Consequently, (E.2) follows.

To show (E.3), let

1 ( ; ) ≡ 01S̄ ( ) ( −  − ) ( −  − ) 
¡
−1 ( |∗ ) |∗ ¢ 

2 ( ; ) ≡ 01̄ ( ; ) ( −  − ) ( −  − ) 

and 0 (; ) ≡ 1 ( ; ) 1̄ () + 2 ( ;
∗ )

¡
 −−1 ( |)

¢
 Then

01S̄ ( )
−1V (; )


¡
−1 ( |∗ ) |∗ 

¢ + 01̄ ( ;
∗ )−1  ( ;∗ ) =

1



X
=1

0 (; ) 

It follows that  = 
P

=1

£R
−1

P
=1 0 (; ) ∆ ()

¤2
 = −2

P
1=1

P
2=1

P
3=1

(1 

2 3) where  (1 2 3) ≡
R R

0 (1 2 ; ) 0 (1 3 ; ̄) ∆ () ∆ (̄)1  Let  (1  2)

≡  [ (1 1  2)]  and ̄(1  2  3) ≡  (1  2  3)−  (2  3)  Then we can decompose  as

 = 1 + 2 where

1 = −1
X

1=1

X
2=1

 (1 2) and 2 = −2
X

1=1

X
2=1

X
3=1

̄ (1 2 3) 

Consider 2 first. Write 
£
22
¤
= −42

P
16


£
̄ (1 2 3) ̄ (4 5 6)

¤
 Noting that


£
̄ (1  2  3)

¤
= 

£
̄ (1 2  3)

¤
= [̄(1  2 3)] = 0 [̄(1 2  3)̄ (4 5 6)]

= 0 if there are more than three distinct elements in {1     6} With this, it is easy to show that 
£
22
¤
=

(−1−2 + −2−3 + −3−4 ) =  (1)  Hence 2 =  (1) by Chebyshev inequality.

For 1 let  () =
R R R

0 (̃; ) 0 (̃ ; ̄) (̃ ̃) ∆ () ∆ (̄)  (̃)  Then 1 =

−1
P

=1  () +2
−1

P
1≤≤  () ≡ B+V  say, where B and V contribute to

the asymptotic bias and variance of our test statistic, respectively. Note that as V is a second-order degener-
ate  -statistic, we can easily verify that all the conditions of Theorem 1 of Hall (1984) are satisfied and a cen-

tral limit theorem applies to it: V
→ N

¡
0 2

¢
 where 2 = lim→∞ 2 and 

2

= 22 [ (12)]

2
.

¥

Sketch of the Proof of Equation (5.11). Let ̂∗ ̂
−1∗
 and ̂∗ be defined as ̂ ̂

−1
 and ̂ with

W∗ replacing W Define S () ≡ {sup()∈R×U0 |̂ (|) −  (|) | ≤ −12−2(log)12 + +1

sup()∈T ×U0 |̂−1 ( |)−−1 ( |) | ≤ −12−2(log)12++1} where T = [0 1−0] for some small
0 ∈ (0 12)  Then by Lemmas C.1 and C.2, for any   0 there exists a sufficiently large constant  such

that  (S ()) ≤  for sufficiently large  where S () is the complement of S ()  Noting that

 ( ∗ ≤ |W) =  ( ∗ ≤ |W ∩ S ()) (S ()) +  ( ∗ ≤ |W ∩ S ()) (S ())
10Using the expressions for  and V we can write ̃42 as a third order U-statistic. By straightforward moment

conditions, we can verify that [(̃42)2] =  (1)  Despite the asymptotic negligibility of ̃42 we keep it in our asymptotic
analysis, as it will simplify notation in other places.
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and that the second term in the above expression can be made arbitrarily small for sufficiently large  it

suffices to prove () by showing that  ( ∗ ≤ |W ∩ S ())→ Φ () for all  ∈ R. Conditional onW∩S () 
̂ is well defined, and one can follow the proof of Theorem 5.2 and that of Theorem 4.1 in Su and White

(2008) to show that

̂∗ = −1
X
=1

∗ ( ∗ 
∗
 ) + 2

−1
X

1≤≤
∗
¡
 ∗ 

∗


¢
+ ∗ (1)

≡ B∗ + V∗ + ∗ (1) 

where  ∗ denotes probability conditional onW∩S ()  and ∗ is defined analogously to  with  replaced
by ∗ the expectation with respect to  ∗ Noting that V∗ is a second-order U-statistic based on the
triangular process { ∗ } and that the  ∗’s are IID conditional on W one can continue to apply the

CLT of Hall (1984) to V∗ to demonstrate that it is asymptotically N
¡
0 ∗2

¢
conditional on W where

∗2 ≡ 2plim→∞∗[∗ ( ∗1 
∗
2 )
2] The asymptotic bias and variance terms can be estimated analogously

as B̂ and ̂2 in the paper. The asymptotic normality of 
∗
 conditional on W ∩ S () then follows.

For ()  let ̄∗ denote the 1 −  conditional quantile of  ∗ given W i.e.,  (
∗
 ≥ ̄∗|W) = 

By choosing  sufficiently large, the approximation error of ∗ to ̄∗ can be made arbitrarily small and

negligible. By (), ̄∗ →  in probability where  is the 1− quantile of the standard normal distribution.
Then, in view of Theorem 5.1,  diverges to ∞ at the rate   implying that lim→∞  ( ≥ ∗) =

lim→∞  ( ≥ ) = 1 under H1 ¥

F Some other details

F.1 More details on the generated regressors problem

F.1.1 Discussion on the assumptions on the generated regressors problem

We apply the result of Theorem 1 in MRS to study the asymptotic property of our test with some generated

regressors. In this section, we discuss how the conditions required for this theorem are met and how the

result in this theorem works in our paper.

As discussed in MRS, four conditions are required for this theorem, namely, the “Regularity”, “Accuracy”,

“Complexity”, and “Continuity” conditions. We discuss how these conditions are met in this paper in order.

• The “Regularity” condition is about some standard requirements for the kernel, the bandwidth, and
the smoothness of the objective function which are trivially satisfied here. Other than these, it requires

a moment condition that [exp( ||)|] ≤  a.s. for some   0 and   ∞ where  and  are the

covariate and error term in MRS. This means that the error term  needs to have a thinner tail than

exponential. Our error term takes value between 0 and 1 when we estimate a CDF function. So this

moment condition is trivially satisfied here.

• The “Accuracy” condition corresponds to our Assumption C.9, which we will discuss in detail later.

• The “Complexity” condition corresponds to our Assumption C.8, which is about the functional space
of .

• The “Continuity” condition is irrelevant in our paper, because this condition is about model misspec-
ification and we assume we do not have this problem here.
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Now we discuss Assumption C.9 and how we apply the result in MRS in our case. This Assumption is

needed to obtain 
¡
−12−2

¢
for the small order term resulted from the generated regressors. Specifi-

cally, we need the  (
−) term in MRS’s Theorem 1 to be 

¡
−12−2

¢
in our case.

Note that  = min {1 2 3} in MRS, where

1 ≤ 1

2

¡
1− +

¢
+ ( − )min −

1

2
max
1≤≤

¡
 + 

¢
 (F.1)

2 ≤ 2min + ( − )min 

3 ≤ min + ( − )min 

where all notations are as defined in MRS. Strictly speaking, MRS specifies “” instead of “≤” in the above
three relationships. But a careful check of equation (A.2)−(A.6) in their proofs suggests that we can make
the above replacement. In the following six steps, we explain and translate those notations in equation (F.1)

to ours.

1. We use the same bandwidth for each covariate, and have the same convergence rate for each component

of , so + =  ( =  +  in our case) and we can drop out the “min ” and “max” operators in

(F.1);

2. Since we assume the all derivatives of  up to -th are bounded,  = 0 in our case;

3.  =  corresponds to our ;

4.  denotes the convergence rate of the second stage bandwidth:  ∝ −;

5.  denotes the convergence rate of the first-stage nonparametric estimate: k̂ − k∞ ∝ −;

6. In MRS they have 2min (
−2min = 2) in 2 because they use local linear estimator and have

(−2min) = (2) order of bias from their first stage estimation (for details, see their equation A.4,

A.19, A.21 and the proof of Lemma 3 in their appendix). Here we use th order local polynomial

regression and thus have 
¡
+1

¢
bias term and the condition on 2 in our case becomes

2 ≤ (+ 1)  + ( − )  (F.2)

By the analyses in Points 1-6, if we let 1 and 3 take the largest possible value in equation (F.1) (i.e.,

equality holds) and 2 take the largest value in equation (F.2) (i.e., equality holds), then we can translate

−1  −2  and −3 into our notation as:

−1 = −
1
2 (1−+)−(−)

1
2  ∝ −

1
2 −


2
k̂ − k∞


k̂ − k− 1

2 ∞ = 

³
−12−2

´


−2 = −(+1)−(−) ∝ +1
k̂ − k∞


= 

³
−12−2

´


−3 = −−(−) ∝ k̂ − k∞
k̂ − k∞


= 

³
−12−2

´


where the equality in the first equation holds by the condition k̂ − k1− 1
2 ∞ = 

¡
1+2

¢
in Assumption

C.9, the equality in the second equation holds by the condition +1 = (−12−2) in Assumption C.6

and that k̂ − k∞ =  (
2+
2− ) =  () in Assumption C.9, and the last equality holds by the condition

k̂ − k∞ = 
¡
−1412−4

¢
in Assumption C.9. Therefore,

− = −min{123} = max
©
−1  −2  −3

ª
= 

³
−12−2

´
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By Theorem 1 in MRS, the small order term resulted from the generated regressors is 
¡
−12−2

¢
in

our case.

F.1.2 An explanation on 

 in empirical processes is the same as the  in the usual sense, except that it treats every  in the functional

space we are interested in as a constant function. Below is an illustration of how we calculate  Suppose we

observe an IID random sample {()   = 1  }  where  is a scalar and  is  × 1 vector. Suppose
that ̂ () = −1

P
=1K ( − )  where K is some measurable function that might depend on  Then

we calculate  [̂ ()] by treating ̂ as a constant function as follows:

 [̂ ()] =  [ (|) ̂ ()]

=

Z
R

 ( | = ) ̂ () ()

=

Z
R

 ( | = )

⎛⎝−1
X
=1

K ( − )

⎞⎠ ()

= −1
X
=1

Z
R

 ( | = )K ( − ) () 

where the second equality is obtained by taking expectation over , and  denotes the CDF of 

F.2 Discussion on the local power property of the proposed test

In this appendix, we give details in deriving the results in Remark 5.3. Here,  =  ( ) =  +

 ( )  where  =  ( ) =
¡
1 + 012



¢
 and  ( ) = 

− 

It is easy to verify that under Assumption A.2,

 (| ) = 
¡¡
1 + 012

¢
 ≤ | =  = 

¢
= |

µ


 ()
|
¶


−1 ( | ) =  ()−1| ( |) 

−1 ( (| ) |∗ ) = −1|

µ
|

µ


 ()
|
¶
|
¶
=



 ()


where  () = 1 + 012

Now, we derive the (| ) and−1 ( |∗ ) Noting that (|∗ ) =  ( ≤ | = ∗  = ) =

| (|)  we have
−1 ( |∗ ) = −1| ( |) 

We consider two cases: (1)   0 and (2)  ≤ 0 Note that  ( ) =  () + 
−

First, we consider case (1). Noting that

 ( )


=

⎧⎨⎩  ()− 
−  0 if   ln

³

()

´
 ()− 

−  0 if   ln
³

()

´ 

 ( ) is strictly increasing in  when   ln
³

()

´
and strictly decreasing in  when   ln

³

()

´
 In

addition, when  = ln
³

()

´
 we have

 ( ) =  () ln

µ


 ()

¶
+ 

− ln( ()) =  ()

∙
ln

µ


 ()

¶
+ 1

¸
 0 for sufficiently small 
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With these, we can easily argue that for any   

³
 ln

³

()

´´
and   0 the equation ( ) =  has

exactly two solutions, 1 ( ) and 2 ( )  such that 2 ( )  1 ( )  2 ( )  ln
³

()

´
 0

and 1 ( )  ln
³

()

´
, and obtain that

 (| ) =  ( () ≤ | = ) =  (2 ( ) ≤  ≤ 1 ( ) | = )

= | (1 ( ) |)− | (2 ( ) |)  (F.3)

In addition, it is easy to argue that 1 ( ) is bounded above from infinity for any fixed   0 and

  

³
 ln

³

()

´´
and 2 ( )→ −∞ as →∞

We now take a close look at the forms of both solutions. Rewrite the equation  () + 
− =  as

+


 ()
− =



 ()
 (F.4)

By the implicit function theorem, we can write the solution 1 ( ) in terms of

() and


() :

1 ( ) = 

µ


 ()



 ()

¶


where  is a function that is continuously differentiable with respect to its second argument and does not

depend on . By the Taylor expansion, we have

1 ( ) = 

µ


 ()
 0

¶
+ 2

µ


 ()
 0

¶


 ()
+  () (F.5)

where 2 (· ·) denotes the partial derivative of  with respect to its second argument. In addition, (F.4)
implies

1 ( ) =


 ()
− 

 ()
−1()

=


 ()
− 

 ()

−[( 

()
0)+2(


()

0) ()
+()]

=


 ()
− 

 ()

−( 

() 0) +  () (F.6)

Comparing (F.5) with (F.6), we can conclude that 
³


()  0

´
= 

()  implying that

1 ( ) =


 ()
− 

 ()

− 
() +  ()  (F.7)

For the negative solution 2 ( )  the above argument does not work because 2 ( ) → −∞ when

→∞ In this case, we consider the change of variables to solve for (F.4) by setting  =  and rewriting

(F.4) in terms of  :

ln ()+


 ()
=



 ()
 (F.8)

The negative solution 2 ( ) to (F.4) corresponds to a positive solution 2 ( ) to (F.8). But 2 ( )

is now well behaved and converges from the right to 0 as →∞ By the implicit function theorem, we have

2 ( ) = 

µ


 ()



 ()

¶
(F.9)
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where  is a function that is continuously differentiable with respect to its second argument and does not

depend on . By the Taylor expansion,

2 ( ) = 

µ


 ()
 0

¶
+ 2

µ


 ()
 0

¶


 ()
+  () (F.10)

where 2 (· ·) denotes the partial derivative of  with respect to its second argument. Noting that 2 ( ) =
ln (2 ( ))→ −∞ as →∞ implies that 

³


()  0
´
= 0 and 2

³


()  0
´
 0 in (F.10). Consequently,

we have

2 ( ) = ln

µ
2

µ


 ()
 0

¶


 ()
+  ()

¶
(F.11)

where 2

³


()  0
´
 0

Combining (F.3), (F.7) and (F.11), we have

 (| ) = |

µ


 ()
− 

 ()

− 
() +  ()

¯̄̄̄


¶
− |

µ
ln

µ
2

µ


 ()
 0

¶


 ()
+  ()

¶¯̄̄̄


¶
= |

µ


 ()
− 

 ()

− 
() +  ()

¯̄̄̄


¶
− 

µ
2

µ


 ()
 0

¶


 ()
+  ()  

¶
+  ()

= |

µ


 ()

¯̄̄̄


¶
− |

µ


 ()

¯̄̄̄


¶


 ()

− 
() − 1 (0 )2

µ


 ()
 0

¶


 ()
+  () 

where the second equality follows from (5.8) and the last equality follows from Taylor expansions, and 1 (· ·)
is the partial derivative of  with respect to its first element. Therefore, we have for   0 and   0

−1 ( (| ) |∗ )−−1 ( (| ) |∗ )
= −1| ( (| ) |)− 

 ()

= −

⎡⎣ 

 ()

− 
() +

1 (0 )2

³


()  0
´


()

|
³


()

¯̄̄

´ +  (1)

⎤⎦  (F.12)

where the second term in the above square bracket is a non-constant function of  and it will contribute to

the asymptotic local power of our test.

Now, we consider case (2). When  ≤ 0 ()
 =  ()− 

−  0 ∀ ∈ A, and the equation

 () + 
− = 

has a unique positive solution, which we continue to denote as 1 ( )  As in case (1), the result in (F.7)

continues to hold, and we have

 (| ) =  ( () ≤ | = ) =  (−∞ ≤  ≤ 1 ( ) | = )

= | (1 ( ) |)  (F.13)

Then for any  ≤ 0 we have

−1 ( (| ) |∗ )−−1 ( (| ) |∗ ) = 

∙


 ()

− 
() +  (1)

¸
 (F.14)

It follows that for any   

³
 ln

³

()

´´
 we have

Θ† (; ) =
∙
− 

 ()

− 
() +  (; ) +  (1)

¸
1 {  0}+

∙


 ()

− 
() +  (1)

¸
1 { ≤ 0}  (F.15)
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where

 (; ) =
−1 (0 )2

³


()  0
´


()

|
³


()

¯̄̄

´  (F.16)

As  → 0 

³
 ln

³

()

´´
→ −∞ Θ† (; ) in (F.15) is defined for all  ∈ R asymptotically.
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