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THREE ESSAYS IN MICRO-ECONOMETRICS 

 

TAO YANG 

Abstract 

 

My dissertation is composed of three chapters. The first chapter is on the 

asymptotic trimming and rate adaptive inference for heavy-tail distributed 

estimators. The second chapter is about the identification of the Average Treatment 

Effect for a two threshold model. The last chapter is on the identification of the 

parameters of interest in a binary choice model with interactive effects. 
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Chapter 1

Asymptotic Trimming and Rate

Adaptive Inference for Endogenous

Selection Estimates

1.1 Introduction

Some common estimators in econometrics involve heavy-tailed distributions, meaning that

second moments are infinite or do not exist. This is sometimes due to the structure of the

estimator, and sometimes due to the presence of heavy tailed error terms (examples of both

are given below). Heavy tailed estimators tend to be volatile, because of the presence of

large valued observations that appear as outliers. Including or excluding a small number

of these outliers may dramatically change the estimate. Making things even worse, the

unbounded second moment renders inference after estimation extremely diffi cult, i.e., the

standard central limit theorem (CLT) cannot be used.
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One way to overcome the heavy-tails problem is to trim out some of those large values.

However, heavy-tailed estimators are often very sensitive to the exact amount that one

trims. If we trim too much, the estimator may be greatly biased due to the loss of highly

informative observations, while if we trim too little, the estimator will still have high variance

and possibly not be asymptotically normal. Just like the Goldilocks principle, to have the

"best" estimate, we need to trim appropriately. The meaning of "best" in the current

context is two fold: attaining the fastest rate of convergence possible while maintaining

asymptotic normality. In this paper, we propose a general approach to deal with trimming

to achieve this goal. In the application of our approach, an optimal numerical value for the

trimming parameter is determined, not just an optimal rate.

Suppose we want to estimate a quantity µ with an estimator µ̂ that can be represented

as

µ̂ =
1

n

n∑
i=1

WiI
(
−γ′n ≤ Vi ≤ γn

)
+ op

(
n−

1
2

)
, (1.1.1)

where observations are i.i.d., Wi is either observed or is the influence function of the es-

timator, and the second moment of Wi is infinite. To deal with the heavy-tailed Wi, we

trim based on a variable Vi (Vi could be Wi itself) with positive trimming parameters γ′n

and γn, such that the estimator after trimming has finite second moment. To estimate µ

consistently, we employ asymptotic trimming, i.e., the trimming parameters γ′n, γn go to

infinity as n goes to infinity. Let xni denote WiI (−γ′n ≤ Vi ≤ γn) , and let the bias and

variance terms of the estimator be Bn = E (xni)− µ and σ2
n = var(xni) respectively.

Many important estimators in econometrics are in the form of equation (1.1.1). These

include the following.

1. Density weighted estimators. These are estimators that are averages weighted by
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the inverse of the density function of some variables. One well known example is

Hardle and Stoker’s (1989) average derivative estimator, and others are some special

regressor estimators by Lewbel (1998, 2000, 2007). These estimators generally trim

out observations where the weighted density function is close to zero.

2. Propensity score weighted average treatment effect estimation. The denominator of

the average treatment effect (ATE hereafter) estimator in Hahn (1998) is the propen-

sity score of some control variables. The second moment of this estimator is generally

unbounded unless the propensity score is bounded away from zero or one. This then

requires trimming out observations of the propensity score that are too close to zero

or one.

3. Identification at infinity. To estimate the intercept term in a selection model, Heckman

(1990) and Andrews and Schafgans (1998) propose only using those observations for

which the probability of selection is close to one. They therefore trim out observations

based on the probability of selection.

4. Time series models with heavy tails errors. Asymmetry and heavy tails are empir-

ically documented in a wide range of financial, macroeconomic and actuarial time

series, including exchange rate and asset price fluctuations, and in insurance claims

(Mandelbrot 1963, Campbell and Hentschel 1992, Engle and Ng 1993, Embrechts et al

1997, Finkenstadt and Rootzen 2003). Trimming may therefore be needed to stabilize

estimates of time series models with thick tailed data like these.

5. Microeconomic heavy-tailed data. Microeconomic data that have been shown to pos-

sess heavy tails include auction bids (Hill and Shneyerov 2013), birth weights (Cher-

3



nozhukov and Fernandez 2011) and network traffi c (Resnick 1997). Estimators that

entail averaging such data will therefore require trimming.

We show that for estimators in the form of equation (1.1.1) with heavy-tailed Wi, there

exist two cases, which we refer to as the "nice" world and the "ugly" world. We show

that in the "nice" world, there exists a value for the trimming parameters that gives µ̂ the

fastest possible convergence rate (which may be slower than root-n), and for this trimming

the CLT holds and
√

σ2n
n Bn = O (1) .

In contrast to the nice world, in the "ugly" world standard inference (such as t-tests

or z-tests) does not work either because the CLT fails or because the bias term dominates

the limiting distribution when CLT holds. Dominance of the bias term makes standard

confidences intervals potential fail to cover the true value, while the failure of CLT makes

inference extremely diffi cult, e.g., in many case even the existence of an asymptotic distri-

bution may unknown.

It is therefore important to know which world we are in for any given application. We

give a general method to tell if the world is nice or ugly, and in the nice case, show how to

choose the trimming parameters to have the fastest convergence rate (which may be slower

than root-n) while still having the CLT hold.

Our procedure consists first of applying the Lindeberg-Feller central limit theorem (see

Theorem 1.2.1 in Section 1.2.1) for the asymptotic normality of arrays {xni}ni=1. Under some

weak regularity conditions, this CLT says that asymptotic normality holds if and only if the

Lindeberg condition (equation 1.2.1) is satisfied. We first look for the largest possible set

of values of the trimming parameters γ′n and γn for which the Lindeberg condition holds.
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If asymptotic normality holds, then

√
n

(
µ̂− µ− Bn

σn

)
d→ N (0, 1) .

Our procedure next finds the values of the trimming parameters, from previously obtained

set of values for which the Lindeberg condition holds, that minimize the rate of Root Mean

Squared Errors (RMSE) subject to
√

σ2n
n Bn = O (1) and thereby achieve this fastest rate of

convergence.

If this minimizing value of the trimming parameters exists, then we are in the nice world,

and these are optimal values of γ′n and γn for estimation and inference. Otherwise we are

in the ugly world and standard inference is not possible.

This procedure demonstrates the importance of finding the largest possible set of values

for the trimming parameters that can satisfy the Lindeberg condition. The diffi culty in

doing so stems from the fact that the expression of the Lindeberg condition is complicated.

Papers including Bickel (1982), Manski (1984), Robinson (1988), and Hardle and Stoker

(1989) use asymptotic trimming to handle boundary bias in nonparametric estimation,

which is different from the goal here. Another strand of literature, including Hill (1975) and

Csorgo, Haeusler and Mason (1988 a, b) apply asymptotic trimming to averages of series

that are in the non-normal domain of attraction. In the above notation, this literature

assumes that

P (|Wi| > γ) = c1γ
−c2 (1 + o (1)) , (1.1.2)

for some c1 > 0, c2 ∈ (1, 2] . Condition (1.1.2) is the definition of a stable distribution,

implying that for any c > c2, E (|Wi|c) =∞ and the convergence rate of 1
n

∑n
i=1Wi−E (W )

5



is n1−1/c2 . For more about stable distributions, see Samorodnitsky and Taqqu (1997).

Using this approach, Chaudhuri and Hill (2013) do asymptotic trimming for propensity

score weighted ATE estimation and Hill and Renault (2010) do asymptotic trimming for

time series models with heavy-tailed errors. However, the assumption of a stable distribution

is rather restrictive. Moreover, the convergence rate of the estimation of c2 as needed for

selecting trimming parameters is extremely slow, i.e., log (n). In contrast, our approach in

this paper makes no comparable modeling assumption about the tails of Wi.

Some papers address the heavy tails problem by trimming a fixed portion of extreme

observations. For example, in the context of the average treatment effect model, see Potter

(1993), Frolich (2004), Lee, Lessler, and Stuart (2011) and Chaudhuri and Min (2012).

However, fixed trimming like this leads to inconsistency in most cases.

Two related papers to ours are Andrews and Schafgans (1998) and Khan and Tamer

(2010). The former deals with asymptotic trimming for the intercept term in a selection

model, while the latter focuses on trimming of the weighted ATE estimator (Hahn 1998)

and of special regressor binary choice model estimation (Lewbel 2000). Both papers also use

the Lindeberg Feller CLT as the main tool, but they either use suffi cient conditions for the

Lindeberg condition to choose γ′n, γn, or simply assume the Lindeberg condition holds, or

assume specific distributions on unobserved error terms. In contrast, in this paper we deal

with the Lindeberg condition directly. Moreover, we relax assumptions on the distributions

of unobserved error terms.

Another related paper is Khan and Nekipelov (2014), which gets the uniform infer-

ence procedure around the boundary of the regular and irregular identification (whether

endogeneity exists or not) of the endogenous selection model, using the stable distribution

6



approach.

To demonstrate how our approach works, we derive a characterization of the required

Lindeberg condition for a class of estimators that are weighted with inverse density func-

tions. We then apply our method to the special regressor estimator in an endogenous

selection model, which is an example of an inverse density weighted estimator.

For illustration purposes, consider the following simple endogenous selection model (our

later application will be a richer model that includes covariates):

Y = Y ∗D, (1.1.3)

D = I (V − U ≥ 0) , (1.1.4)

where I (·) is the indicator function equalling one when the argument inside is true and zero

otherwise, Y is an observed outcome, D is an observed treatment indicator, and U is an

unobserved confounder which is possibly correlated with the unobserved latent outcome Y ∗.

The goal is estimation of E (Y ∗). In general, identification requires some variable that affects

treatment but not outcomes, which in this example is an observed exogenous continuous

variable V .

An example of the above model could be a wage equation. Let Y ∗ and Y be the true

underlying and observed wage respectively. Some unobserved drive or ability measure U

affects both the decision to work (D) and potential wages (Y ∗). Because of this endogeneity

of U , the observed average wage E (Y ) in general differs from E (Y ∗). The instrument V

here could be − log (non-labor income) , which is assumed to only affects one’s desire to

work but not one’s wage.

Suppose we observe {Yi, Di, vi}ni=1. Then a consistent estimator for E (Y ∗) based on

7



Lewbel (2007) is:

µ̂n =

1
n

∑n
i=1

DiYi
fv(vi)

I (−γ0 ≤ vi ≤ γn)

1
n

∑n
i=1

Di
fv(vi)

I (−γ0 ≤ vi ≤ γn)
, (1.1.5)

where fv is the density function for V, γ0 is a fixed positive number, and γn goes to infinity

as n tends to infinity. DY
fv

and D
fv
corresponds to the W in equation (1.1.1). As we show

later, under weak conditions, the second moments of DYfv and
D
fv
do not exist. The trimming

indicator gives this estimator a bounded second moment, but at the same time makes it

biased. Consistency then requires that γn →∞ as n→∞.

Trimming and inference for this problem might be possible using stable distributions

instead of our methodology, however, the stable distribution condition (1.1.2) is restrictive

and generally unreasonable here.1

To make inference as easy as possible, we prove that the classic bootstrap works in the

nice world, even when the convergence rate here is not the usual root-n. We generalize the

identification, inference, and the trimming procedure in the above example to a semipara-

metric case, where there are additional covariates X and associated parameter vector β,

and to the fully nonparametric case that includes covariates X and no parametric structure

is imposed. We obtain a condition for fv that indicates whether we are in the nice or ugly

world. While we focus on estimation and inference for the nice world, we also consider the

possibility of employing a jackknife procedure to deal with the ugly world case. We conduct

a Monte Carlo analysis to check the small sample properties of our trimming procedure,

1One simple case where DY
fv

in equation (1.1.5) is not distributed as a stable distribution is the following.
Suppose Y ∗ is a constant equalling 1, U = 0, and V is standard normal. Then

lim
γ→∞

p

(
1I (V > 0)

fv (V )
> γ

)/
γ−c = lim

γ→∞

∫ +∞√
2 log γ

exp
(
− v2

2

)
dv

γ−c
= lim
γ→∞

γc−1

c
√
2 log γ

=

{
∞, if c > 1
0, if c ≤ 1 ,

where the second equality holds by L’Hopital’s rule. It is not hard to see that this simple example does not
satisfy the stable distribution condition.
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and we apply our method empirically in a model of the gender wage gap using Malaysian

data. Finally, we outline how our method might be applied to deal with other important

classes of estimators.

The structure of this paper is as follows. In Section 2, we show how to choose trimming

parameters and apply the method to the estimation of an endogenous selection model.

In Section 3, we give a linear representation of our estimator with asymptotic trimming

when fv is nonparametrically estimated. In Section 4, we generalize our method to the

semiparametric and nonparametric case when we have additional covariates. In Section 5,

we check the small sample behavior of our estimator by Monte Carlo simulations. In Section

6, we apply our estimator to investigate the gender wage gap. We conclude in Section 7.

In the Appendix, we discuss possible ways to deal with the ugly world case, and consider

potential extensions. All proofs are in the Appendix.

We use the following notation conventions throughout this paper: upper case letters

denote random variables, lower case letters denote realization; c is some constant that may

vary line by line; ≡ denotes definition; and the binary operator � denotes the same order,

i.e., an � bn means 0 < lim inf
n→∞

an
bn
≤ lim sup

n→∞
an
bn
<∞.

1.2 Trimming and Inference

1.2.1 Rate Adaptive Inference

In this subsection, we discuss the way to choose trimming parameters γ′n and γn for the

estimator µ̂. To attain asymptotic normality, we need to choose trimming parameters such

that the estimator satisfies the following Lindeberg-Feller CLT. To present the theorem

formally, we let σ2
ni ≡var(xni) , though σ2

ni does not vary across i under the current i.i.d.

9



assumption. We let τ2
n ≡ 1

n

n∑
i=1

σ2
ni.

Theorem 1.2.1 (Lindeberg-Feller CLT) Suppose {xni}ni=1 are independent and
maxi=1,...,n{σ2ni}

nτ2n
→

0, then
√
n(µ̂−µ−Bn)

τn

d→ N(0, 1), if and only if, for any ε > 0,

lim
n→∞

1

n

n∑
i=1

E

(
(xni − Exni)2

σ2
ni

I

[
(xni − Exni)2

σ2
ni

> nε

])
= 0. (1.2.1)

Condition
maxi=1,...,n{σ2ni}

nτ2n
→ 0 in above theorem means that no single observation con-

tributes a significant portion in total variance of the estimator. This holds in most econo-

metrics models, such as those with i.i.d. data. Under independence and this weak condition,

the Lindeberg-Feller CLT states that asymptotic normality holds, if and only if equation

(1.2.1) is satisfied. Equation (1.2.1) is the Lindeberg condition. By this theorem, for the

estimator µ̂, we only need to check the Lindeberg condition to see if asymptotic normality

holds or not.

Under the i.i.d. assumption, the Lindeberg condition can be further simplified to

lim
n→∞

E

(
(xni − Exni)2

σ2
ni

I

[
(xni − Exni)2

σ2
ni

> nε

])
= 0.

Define a set for γ′n and γn

Ψ ≡ ∩
ε>0

{(
γ′n, γn

) ∣∣∣∣∣ lim
n→∞

E

(
(xni − Exni)2

σ2
ni

I

[
(xni − Exni)2

σ2
ni

> nε

])
= 0

}
. (1.2.2)

By the Lindeberg-Feller CLT, asymptotic normality holds if and only if we choose trimming

parameters from Ψ.
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Define a set

Γ =

{
γ′n, γn

∣∣∣∣(γ′n, γn) ∈ Ψ and
√

n

σ2
n

Bn = O (1)

}
.

If we choose trimming parameters from set Γ, then we have asymptotic normality and

inference is possible. If Γ is not empty, then we say we are in the nice world. Otherwise

we are in the ugly world: either the CLT fails or the bias term is the dominant term when

CLT holds. In the ugly world, standard t-tests or z-tests cannot give valid inference when

the CLT holds because of the dominance of the bias term and standard t-tests or z-tests

are not available when the CLT doesn’t hold. Moreover, when normality fails, alternative

inference procedures like the bootstrap are often invalid, e.g., see Khan and Nekipelov

(2014). Consequently, inference is diffi cult in the ugly world.

Once we know we are in the nice world, the next step is to choose (γ′n, γn) from Γ to

minimize the rate of RMSE
√
B2
n + σ2

n/n. In this way, we have asymptotic normality and

the fastest convergence rate while inference is possible. The following is a formal definition

of the nice and ugly world.

Definition 1.2.2 Suppose {xni}ni=1 are independent and
maxi=1,...,n{σ2ni}

nτ2n
→ 0. We say we

are in the nice world, if Γ is not empty. Thus, in the "nice" world, we could obtain the

following from some trimming parameters in the set Ψ:

√
n

τ2
n

(µ̂− µ− Bn)
d→ N (0, 1) ,

and
√

n
τ2n
Bn = O (1). Otherwise we say we are in the "ugly" world; for any (γ′n, γn) ∈ Ψ,

we have lim sup
√

n
τ2n
Bn =∞.
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The key to achieve our goal in this paper is to know Ψ. However, the Lindeberg condition

as shown in equation (1.2.1) is complicated and cannot directly be used in practice in most

cases. As a result, to find the boundary between the nice and ugly world, and thereby

maximize the set of models that can achieve standard inference and optimal rates, we need

to find a practical way to characterize the set Ψ. In the next subsection, we find some simple

conditions that are equivalent to the Lindeberg condition for a class of estimators that are

weighted with inverse density functions. We then apply this result to the example of a

special regressor estimator for an endogenous selection model, which uses this weighting.

1.2.2 Lindeberg Condition for Inverse Density Weighted Estimators

Here we study the Lindeberg condition for estimators that are weighted with inverse density

functions. We represent those estimators as

µ̂ =
1

n

n∑
i=1

ς i
fv (vi)

I
(
−γ′n ≤ vi ≤ γn

)
+ op

(
n−

1
2

)
, (1.2.3)

where fv is the density function for V and ς i denotes the rest of the estimator to be weighted.

In the notation of equation (1.1.1), we have Wi = ςi
fv(vi)

and xni = ςi
fv(vi)

I (−γ′n ≤ vi ≤ γn) .

We assume that vi is a scalar. By some calculation, E
(
x2
ni

)
=
∫ γn
−γ′n

E( ς2|V=v)
fv(v) dv.We impose

the following technical assumptions.

Assumption 1 Observations are i.i.d..

Assumption 2 V is continuous with support R. For any γ > 0, inf {fv (v) |v ∈ [−γ, γ]} >

0, and lim
v→±∞

fv (v) = 0.

Assumption 3 (Restriction on fv) fv (v) is continuous. There exists an f̃v (v) , such

12



that f̃v (v) ≥ fv (v) , f̃v (v) �fv (v) , f̃v (v) is monotone decreasing after some large v at both

tails, and
∫
R f̃v (v) dv ≤ cb, where cb is some positive constant.

Assumption 4 E (xni) is uniformly bounded. E
(
ς2
∣∣V = v

)
is uniformly bounded. E

(
ς2
∣∣V = v

)
is either bounded away from 0, or decrease in order to zero like fv in Assumption 3.

Assumption 5 Wi has unbounded second moment if we do not trim at both sides.

Assumption 6 Let ω (v) ≡ E( ς2|V=v)
fv(v) , for some particular cf , c′f ∈ (0, 1) defined in equa-

tion (1.2.5), lim sup
γ→∞

ω((1−cf)v)
ω(v) < 1

1−cf , and lim sup
γ→−∞

ω((1−c′f)v)
ω(v) < 1

1−c′f
.

Assumption 1 could be relaxed to allow heteroskedasticity as long as the conditions in the

Lindeberg-Feller CLT are satisfied. Assumption 2 generally leads to irregular convergence,

which motivates the need for trimming. If fv (v) is monotonically decreasing in the right tail

after some large value, Assumption 3 is automatically satisfied by setting f̃v (v) = fv (v).

f̃v (v) �fv (v)means that f̃v (v) can represent fv (v) in terms of decreasing rate. Assumption

3 rules out some badly behaved density functions, e.g., lim sup
v→∞

fv (v) ≥ c, for some constant

c. Assumptions 4 is mild and is made for theoretical convenience. Assumption 5 defines the

heavy-tails problem. Assumption 6 says ω (v) cannot decrease too fast, and is a mild

restriction in our context. Taking the right hand side as an example, by Assumption

5, we have
∫ γn

0 ω (v) dv → ∞. For functions 1
vc , c > 0, only those with c ≤ 1 will let∫ γn

0 ω (v) dv →∞. ω (v) = 1
v which is excluded by Assumption 6, but other functions with

slightly thicker tails, e.g., ω (v) = 1
v1−ε for any small ε > 0, satisfy Assumption 6. The

intuition is that the condition
∫ γn

0 ω (v) dv →∞ excludes ω (v) decreasing too fast.

The following two theorems give the main results in this section.
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Theorem 1.2.3 (Suffi ciency) Suppose Assumption 1 ∼ 5 hold. If

nf2
v (γn)

∫ γn

0

E
(
ς2
∣∣V = v

)
fv (v)

dv → ∞, if lim
n→∞

∫ 0
−γ′n

E( ς2|V=v)
fv(v) dv∫ γn

0
E( ς2|V=v)
fv(v) dv

= 0,

nf2
v

(
−γ′n

) ∫ 0

−γ′n

E
(
ς2
∣∣V = v

)
fv (v)

dv → ∞, if lim
n→∞

∫ γn
0

E( ς2|V=v)
fv(v) dv∫ 0

−γ′n
E( ς2|V=v)
fv(v) dv

= 0,(1.2.4)

nmin
{
f2
v (γn) , f2

v

(
−γ′n

)} ∫ γn

−γ′n

E
(
ς2
∣∣V = v

)
fv (v)

dv → ∞, otherwise.

then the Lindeberg condition (1.2.1) holds.

Theorem 1.2.4 (Necessity) Let Assumption 1 ∼ 6 hold. Suppose for density function

fv, there exist constants 0 < cf , c
′
f < 1, af , a

′
f > 1, such that

f2
v ((1− cf ) afγ)

∫ afγ
0

1
fv(v)dv

f2
v (γ)

∫ γ
0

1
fv(v)dv

= O (1) , as γ →∞, (1.2.5)

f2
v

((
1− c′f

)
a′fγ

) ∫ 0
a′fγ

1
fv(v)dv

f2
v (γ)

∫ 0
γ

1
fv(v)dv

= O (1) , as γ → −∞.

Then if the Lindeberg condition (1.2.1) holds, either condition (1.2.4) holds or the condition

(1.2.4) can give the fastest rate of γn.
2

Theorem 1.2.3 gives a suffi cient condition for the Lindeberg condition. The regularity

condition (1.2.5) is needed to let the suffi cient condition also be the necessary condition or to

give the fastest rate of trimming parameters. Lemma 1.2.5 shows that virtually all standard

distributions (e.g. Cauchy, student t, exponential, normal) satisfy this condition. Only very

thin tailed distributions like the extreme value distribution fail this regularity condition. It

2The meaning of the fastest rate of γn is as follows. Suppose (−γ′n, γn) from condition (1.2.4) can have
the Lindeberg condition hold.

(
−a′n,iγ′n,i, an,iγn,i

)
is a sub-series where

{
a′n,i

}
or {an,i} goes to infinity,

and
(
−a′n,iγ′n,i, an,iγn,i

)
fails condition (1.2.4). Then

(
−a′n,iγ′n,i, an,iγn,i

)
fails the Lindeberg condition.
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is therefore usually reasonable to impose this fv not too-thin-tailed restriction. Note that

condition (1.2.4) is suffi cient and close to necessary for the Lindeberg condition, and the iff

condition set of trimming parameters to the Lindeberg condition is a slight expansion from

condition (1.2.4). As shown in Section 1.2.4 by Theorem 1.2.9, when we have a little more

structure on ς i we can strengthen the current near iff condition to an actual iff condition,

and can do so under an even more general regularity condition that allows for extremely

thin-tailed distributions.

Lemma 1.2.5 If fv (v) decays in the right tail at the same order as 1
v1+c

, vc1 exp (−vc2) ,

exp (−vc) , v−vc, for any c, c1, c2 > 0, condition (1.2.5) is satisfied. If fv (v) decays in the

right tail at the same order as exp (− exp (vc)) , for any c > 0, then condition (1.2.5) fails.

Some applications only need one sided asymptotic trimming. Suppose we do fixed trim-

ming or no trimming at left hand side, so the trimming indicator becomes I (−γ0 ≤ vi ≤ γn) ,

where γ0 is a fixed positive number or infinity. Following the same line analysis, we get the

following corollary.

Corollary 1.2.6 Under the same assumptions as in Theorem 1.2.3 and 1.2.4, for the es-

timator (1.2.3) with the one-side trimming indicator I (−γ0 ≤ vi ≤ γn) , the suffi cient and

near necessary condition (in the sense of Theorem 1.2.4) to the Lindeberg condition becomes

nf2
v (γn)

∫ γn

−γ0

E
(
ς2
∣∣V = v

)
fv (v)

dv →∞. (1.2.6)

We next apply these results to the special regressor estimator for an endogenous selection

model.
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1.2.3 Identification and Asymptotic Trimming in Selection Models

The seminal papers Heckman (1976, 1979) propose two-step estimators to correct for sample

selection bias. Thereafter, much work has been done on this issue, e.g., Powell (1984),

Heckman (1990), Vella (1992, 1998), Ahn and Powell (1993), Wooldridge (1995), Lee (1994),

Chen (1997), Honore, Kyriazidou and Udry (1997), Li and Wooldridge (2002), Abadie

(2003), Das, Newey, and Vella (2003), Lewbel (2007) and many others. We apply our

approach to the estimator in Lewbel (2007).

The following are our identification assumptions. We only need one-sided asymptotic

trimming for the estimator here, so we weaken Assumption 2 to Assumption 10.

Assumption 7 Observations are i.i.d. across i.

Assumption 8 cov (Y ∗, U) is finite.

Assumption 9 V ⊥ U, E (Y ∗|U, V ) = E (Y ∗|U) , 0 < c ≤ var
(
Y ∗2|U, V

)
≤ E

(
Y ∗2|U, V

)
≤

c <∞ for any U, V.

Assumption 10 V is continuous with support R. There exists a large γ0 > 0, for any

γ > 0, inf {fv (v) |v ∈ [−γ0, γ]} > 0, and lim
v→+∞

fv (v) = 0.

Assumptions 8∼10 are the identification assumptions from Lewbel (2007). In addition

to the standard requirements for V to be valid as an instrument, we need V to be continuous

and have large support, to serve as a so-called special regressor. To keep notation simple,

we let

Λ ≡ DT

(γ − E (Uγ)) fv (v)
Y, Π ≡ DT

(γ − E (Uγ)) fv (v)
, (1.2.7)
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where T ≡ I (−γ0 ≤ vi ≤ γ) , γ0 and γ are two positive numbers, and

Uγ =



γ U > γ

U − γ0 ≤ U ≤ γ

−γ0 U < −γ0

.

The following identification result is from Lewbel (2007).

Lemma 1.2.7 (Identification) Under Assumption 8, 9 and 10, let pD (v) ≡ E (D| v) ,

then

E (Λ) = E (Y ∗)− cov (Y ∗, Uγ)

γ − E (Uγ)
, E (Π) = 1

var (Λ) =
1 + o (1)

(γ − E (Uγ))2

∫ γ

−γ0

E
(
Y ∗2D

∣∣ v)
fv (v)

dv � 1

γ2
n

∫ γn

−γ0

pD (v)

fv (v)
dv.

From Lemma 1.2.7, E (Y ∗) is identified by lim
γ→∞

Λ. To get a consistent estimate, we

only need to let γ go to infinity while γ0 can be a fixed number. The sample counterpart

estimator is as follows:

µ̂n =

1
n

∑n
i=1

DiTni
fv(vi)

Yi
1
n

∑n
i=1

DiTni
fv(vi)

, (1.2.8)

where Tni ≡ I (−γ0 ≤ vi ≤ γn) , γn → ∞, as n → ∞. We divide both the numerator and

denominator by γn − E (Un) , then

µ̂n =

1
n

∑n
i=1

DiTni
(γn−E(Un ))fv(vi)

Yi
1
n

∑n
i=1

DiTni
(γn−E(Un ))fv(vi)

. (1.2.9)

Similarly, we let Λni and Πni denote the numerator and denominator in µ̂n respectively.

Since the denominator in equation (1.2.9) converges to one in probability and the struc-
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tures of the denominator and numerator of µ̂n are similar, we focus on the analysis on the

numerator 1
n

∑n
i=1 Λni. The asymptotics for µ̂n can be derived using the delta method.

If we drop γ0 in Tni, var (Λni) is possibly infinite for any γn. Thus γ0 is necessary to be

included. We denote the bias term and variance term for Λni as

Bn ≡ −
cov (Y ∗, Un)

γn − E (Un)
, σ2

n ≡ var (Λni) .

1.2.4 Rates and Limiting Distribution

The following Lemma confirms the heavy-tail problem of estimator (1.2.8).

Lemma 1.2.8 Under Assumption 3, σ2
n →∞, as γn →∞.

We apply the Lindeberg-Feller CLT for 1
n

∑n
i=1 Λni. The Lindeberg condition for 1

n

∑n
i=1 Λni

is: for any ε > 0,

lim
n→∞

E

(
(Λni − E (Λni))

2

σ2
n

I

[
(Λni − E (Λni))

2

σ2
n

> nε

])
= 0. (1.2.10)

We similarly let Ψ denote trimming parameters that satisfy the Lindeberg condition

Ψ = ∩
ε>0

{
γn

∣∣∣∣∣ lim
n→∞

E

(
(Λni − E (Λni))

2

σ2
n

I

[
(Λni − E (Λni))

2

σ2
n

> nε

])
= 0

}
.

It is straightforward to verify that Λni satisfies all the assumptions given in the previous

subsection. Applying Corollary 1.2.6, we get that the condition

nf2
v (γn)

∫ γn

−γ0

pD (v)

fv (v)
dv →∞, (1.2.11)
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is a suffi cient condition for the Lindeberg condition. By utilizing the specific structure of

the estimator, the following theorem shows that condition (1.2.11) is necessary as well as

suffi cient for the Lindeberg condition, under a more general regularity condition (1.2.12)

which further allows extremely thin-tailed densities as shown by Lemma 1.2.10.

Theorem 1.2.9 Suppose Assumption 3, 35 ∼ 10 hold. Condition (1.2.11) is the suffi cient

condition to the Lindeberg condition (1.2.10). If there exists a differential function m (γ)

where 0 < m (γ) < γ such that

fv (γ −m (γ))

fv (γ)
= O (1) and lim sup

γ→∞

(1−m′ (γ)) fv (γ)

fv (γ −m (γ))
< 1. (1.2.12)

Condition (1.2.11) is also the necessary condition.

Lemma 1.2.10 If fv (v) decays at right tail the same order as 1
v1+c

, vc1 exp (−vc2) , exp (−vc) ,

v−v
c
, exp (− exp (vc)) for any c, c1, c2 > 0, condition (1.2.12) holds.

Based on the iff condition (1.2.11), in the next subsection, we introduce a condition

that tells which world we are in and the optimal convergence condition for the trimming

parameter γn to obtain the fastest possible convergence rate.

1.2.5 Nice or Ugly World and the Optimal Convergence Rate Condition

Under the iff condition

nf2
v (γn)

∫ γn

−γ0

pD (v)

fv (v)
dv →∞, (1.2.13)
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the bias term may be the dominant term, depending on the tail thickness of fv (v) . Note

that √
n

σ2
n

Bn �

√√√√√ nf2
v (γn)

∫ γn
−γ0

pD(v)
fv(v) dv

f2
v (γn)

(∫ γn
−γ0

pD(v)
fv(v) dv

)2 .

To have
√

n
σ2n
Bn = O (1), we need

nf2v (γn)
∫ γn
−γ0

pD(v)

fv(v)
dv

f2v (γn)
(∫ γn
−γ0

pD(v)

fv(v)
dv
)2 = O (1). Therefore, being in the nice

world requires fv (γ)
∫ γ
−γ0

pD(v)
fv(v) dv →∞. Note that pD (v)→ 1, as v →∞, so we only need

fv (γ)

∫ γ

−γ0

1

fv (v)
dv →∞, as γ →∞. (1.2.14)

Condition (1.2.14) is the condition that tells whether we are in the nice or the ugly

world. If it holds, then we are in the nice world, otherwise we are in the ugly world, where

either asymptotic normality fails or the bias term term dominates the distribution when

asymptotic normality holds. We call equation (1.2.14) the tail condition.

The bias and variance tradeoff is similar to that for standard nonparametric estimation:

the larger the γn, the smaller the bias is, but the larger the variance is. A closed form ana-

lytical expression for the minimizing RMSE is not available due to the complicated structure

of the variance term. Nevertheless, the convergence rate of the estimator is either that of

the bias or of the variance, whichever is slower. Therefore we get the fastest convergence

rate by letting the bias term and variance term of the same magnitude, i.e.,
√

n
σ2n
Bn = 1,

which gives 1+o(1)

(γ−E(Uγ))2

∫ γ
−γ0

E(Y ∗2D|v)
fv(v) dv =

cov(Y ∗,Uγ)2

(γ−E(Uγ))2
and also implies asymptotic normality

when we are in the nice world (based on the tail condition). Simplifying this equation and

dropping small order terms, we have

1

n

∫ γ

−γ0

E
(
Y ∗2D

∣∣ v)
fv (v)

dv = cov (Y ∗, U)2 . (1.2.15)
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The γ from this condition might not minimize RMSE, but it does minimize the rate of

RMSE, so we call it the optimal convergence rate condition. We can estimate E
(
Y ∗2D

∣∣ v)
by regressing Y 2D on V . We then also need to estimate cov (Y ∗, U)2, based on the model.

After this, one could implement condition (1.2.15) to get γ. Note that this derivation based

on the optimal convergence rate condition yields an optimal numerical value for γ, not just

a rate.

To summarize, we first need to check the tail condition (1.2.14) to see if we are in the

nice or the ugly world. If we are in the nice world, we choose a trimming parameter value

based on the optimal convergence rate condition (1.2.15) to achieve the fastest convergence

rate.

Below are the derivations of the convergence rate and which world we are in for our

estimator with a given fv. Note that when fv (v) � exp (−v) , fv (γ)
∫ γ
−γ0

pD(v)
fv(v) dv � 1. For

specific density functions, fv (v) � exp (−v) is the boundary of the nice and the ugly world:

for fv with thicker tail, we are in the nice world; for fv with thinner tail, we are in the ugly

world.

Example 1: If fv (v) � 1
v1+c

at the right tail for some c > 0, then the optimal γn from

condition (1.2.13) is that γn � n
1

2+c , and
√

n
σ2n
Bn � 1, Bn � n−

1
2+c ,

√
σ2n
n � n

− 1
2+c .

It is not hard to verify that the tail condition (1.2.14) holds here so we are in the nice

world. Example 1 covers the case when V is distributed as a Cauchy or Student-t (c ≥ 1).

Example 2: If fv (v) � e−vc at the right tail for some 0 < c < 1, then the optimal γn from

condition (1.2.13) is that γn � (log n)
1
c , and

√
n
σ2n
Bn � 1, Bn �

(
1

logn

) 1
c
,

√
σ2n
n �

(
1

logn

) 1
c
.

In the case fv (v) � e−v
c
, c < 1, the tail condition (1.2.14) holds, so we are in the nice

world.
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Example 3: If fv (v) � e−v
c
at the right tail for some c ≥ 1, any γn from iff condition

(1.2.13) will have
√

n
σ2n
Bn →∞.

In the case fv (v) � e−vc , c ≥ 1, the tail condition (1.2.14) fails. It is straightforward to

verify that the dominant term is the bias term for any γn from the iff condition (1.2.13).

1.2.6 Asymptotic Normality and Inference

The following theorem is the main result in this paper. It states that when we are in the

nice world (condition 1.2.14 holds), if we choose the trimming parameter using the optimal

convergence rate condition (1.2.15), then we attain both the fastest possible convergence

rate and asymptotic normality. If we are instead in the ugly world, then it may still be

possible to make some progress by applying bias reduction techniques. We suggest using a

Jackknife for this purpose. See Appendix 1.8 for details.

Theorem 1.2.11 Let Assumption 3, 35, 8, 9, 10 hold. For fv (v) satisfies tail condition

(1.2.14), γn from the optimal convergence rate condition (1.2.15), we have

√
n

σ2
n

[
1

n

∑n

1
Λni − E (Y ∗)− Bn

]
d→ N (0, 1) ,

where
√

n
σ2n
Bn � 1 and the convergence rate is the fastest.

Proof.2 The conclusion follows immediately after the results in Section 1.2.5, by th Lindeberg-

Feller central limit theorem.

The asymptotic distribution of estimator (1.2.8) follows immediately after Theorem

1.2.11.
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Corollary 1.2.12 Suppose all assumptions in Theorem 1.2.11 hold, we have

√
n

var [Λni − E (Y ∗) Πni]
[µ̂n − E (Y ∗)− Bn]

d→ N (0, 1) ,

where
√

n
var[Λni−E(Y ∗)Πni]

Bn � 1 and the convergence rate is the fastest.

Proof.2 Not hard to see that the Lindeberg condition (1.2.10) also works for 1
n

∑n
1 Πni.

The rest of the proof is done by Theorem 1.2.11 and the delta method.

If we estimate the variance with σ̂2
n = 1

n

∑n
i=1 Λ2

ni−
(

1
n

∑n
i=1 Λni

)2
, the following Lemma

shows that σ̂2n
σ2n

p→ 1, so we can estimate σ2
n with above formula. This result is not trivial

because σ2
n →∞ as n→∞ here.

Lemma 1.2.13 Let all assumptions in Theorem 1.2.11 hold, then we have σ̂2n
σ2n

p→ 1.

In the next section, we turn to case when fv (v) is unknown and estimated nonparamet-

rically.

1.3 Estimation with Unknown f

fv is usually unknown. In this section, we discuss the case when fv is estimated nonpara-

metrically.

We consider here the modified estimator (1.2.8) with estimated f̂v,

µ̂n =

1
n

∑n
i=1

DiTni
(γn−E(Un ))f̂v(vi)

Yi

1
n

∑n
i=1

DiTni
(γn−E(Un ))f̂v(vi)

≡
1
n

∑n
i=1 Λ̂ni

1
n

∑n
i=1 Π̂ni

, (1.3.1)

where

Λ̂ni ≡
DiTniYi

(γn − E (Un)) f̂v (vi)
, Π̂ni ≡

DiTni

(γn − E (Un)) f̂v (vi)
,
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f̂v (vi) =
1

n− 1

∑n

j=1

1

h
K

(
vj − vi
h

)
.

K (·) is standard kernel function defined in Assumption 37.

The estimation of fv introduces some new problems: the estimation of fv is in expanding

sets [−γ0, γn]; the estimator now needs a linear representation. As shown in Wooldridge

(2007), Hirano, Imbens, and Ridder (2003), Magnac and Maurin (2007), and many others,

the estimator with estimated fv can have smaller variance than the one using the true fv.

This is also the case here, however, the rate remains the same. For the convenience of

inference, we prove the consistency of the bootstrap when we are in the nice world. Note

that the convergence rate in this model is slower than root-n.

1.3.1 The Consistency of f̂v (v)

To have a point-wise consistent estimate of f̂v (v) , we need the number of observations

around the point v to tend to infinity. We know that fv (γn) � inf
v∈[−γ0,γn]

fv (v) for n large

enough. So if f̂v (γn) is consistent for fv (γn) , the point-wise consistency of f̂v (v) on the

whole interval [−γ0, γn] should hold.

The standard nonparametric analysis (e.g., Li and Racine 2007) gives that

E
[
f̂v (v)

]
= fv (v) +

κq
q!
f (q)
v (v)hq, (1.3.2)

var
[
f̂v (v)

]
=
πfv (v)

nh
, (1.3.3)

where κq ≡
∫
vqK (v) dv, π ≡

∫
K (v)2 dv, and q is the order of Kernel function K. From
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equation (1.3.2) and (1.3.3),

f̂v (v)

fv (v)
= 1 +

κq
q!

f
(q)
v (v)hq

fv (v)
+O

(√
π

nhfv (v)

)
. (1.3.4)

To control the variance term, we need the number of observations used to estimate fv (γn) ,

nhf (γn) to tend to infinity. The bias term could be controlled by using a high order kernel

function with a bandwidth h � n−c, for some c > 0.

The optimal convergence rate condition (1.2.15) and the tail condition (1.2.14) imply

that nfv (γn)→∞. For the consistency of f̂v (v) on [−γ0, γn], we need a little bit stronger

condition than that:

n1−c∗hfv (γn)→∞, (1.3.5)

for some 0 < c∗h < 1. The optimal convergence rate condition remains the same:

1

n

∫ γn

−γ0

E
(
Y ∗2D

∣∣ v)
fv (v)

dv = cov (Y ∗, U)2 . (1.3.6)

However, condition (1.3.5) and (1.3.6) place a more restrictive condition on fv (v):

(∫ γn

−γ0

1

fv (v)
dv

)1−c∗h
fv (γn)→∞, (1.3.7)

for some 0 < c∗h < 1. This is the new and stronger tail condition needed to be in the

nice world with the estimated instead of true density. Condition (1.3.7) rules out fv (v) �

exp (−vc) for c < 1 in example 2. This is because the tail of that fv (v) is too thin to ensure

the consistency of f̂v on the entire expanding sets, if we choose h = n−c for some c > 0.

Assumption 11 (Restriction on fv) For γn chosen from condition (1.3.6), fv(v+h)
fv(v) =
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1 + o (1) , for v ∈ [−γ0, γn] , where h is the bandwidth used in the kernel function, h � n−c,

for some c > 0.

Assumption 11 is for the consistency of f̂v (v) ; intuitively, it says that the density of

those observations used in estimation should be close to the density we estimate. It is not

hard to verify that those fv in Lemma 1.2.10 satisfy Assumption 11, so it is reasonable to

impose this assumption.

Lemma 1.3.1 For γn chosen from condition (1.3.6), under Assumption 11, if h � n−ch,

for some 0 < ch < 1, using Kernel defined in Assumption 37 with q > 1−ch
ch

sup
v∈[−γ0,γn]

∣∣∣f̂v (v)− fv (v)
∣∣∣ = O

((
lnn

nh

) 1
2

)
.

Note that condition (1.3.6) can possibly give γn as fast as n
1
2 , if the tail of fv (v) is thick

enough.Hansen (2008) also obtains the uniform convergence rate of sup
v∈[−γ0,γn]

∣∣∣f̂v (v)− fv (v)
∣∣∣

on expanding set. However, this does not cover our result here, because our γn may go to

infinity faster.

1.3.2 The First-Order Asymptotics

We consider the first-order asymptotics of 1
n

∑n
1 Λ̂ni. To simplify notation, let mni ≡

DiTniYi
γn−E(Un) , then Λni ≡ mni

fv(vi)
, Λ̂ni ≡ mni

f̂v(vi)
.

Observe that

Λ̂ni =
mni

f̂v (vi)
=

mni

fv (vi)
+
mni

(
fv (vi)− f̂v (vi)

)
f2
v (vi)

+
mni

(
fv (vi)− f̂v (vi)

)2

f2
v (vi) f̂v (vi)

, (1.3.8)

where the first two terms on the right hand side are the influence term and could be analyzed
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using standard U-statistics, and the last term is the residual term, which is asymptotically

negligible.

With the uniform convergence of f̂v (v) over the expanding sets, the following theorem

gives the linear representation form, by applying the standard U-statistics (see Powell et

al. 1989) technique on the influence term and showing the residual term is asymptotic

negligible.

Theorem 1.3.2 Suppose fv (v) satisfies condition (1.3.7). Let Assumption 3, 35 v 11, 37

hold. For γn chosen from condition (1.3.6), we set h = n−ch , 0 < ch ≤ c∗h, and q >
1−ch
ch

,

then

1

n

∑n

i=1

(
Λ̂ni − E (Y ∗)− Bn

)
=

1

n

∑n

i=1
(Λni − E (Λni|vi)) + op

(√
σ2
n

n

)
, (1.3.9)

where the influence term is asymptotic normal and achieves the fastest rate of convergence,

and
√

σ2n
n Bn � 1.

By Theorem 1.3.2 and for the same reason as in Corollary 1.2.12, we have the following

Corollary.

Corollary 1.3.3 Suppose all Assumptions in Theorem 1.3.2 hold, then

µ̂n − E (Y ∗)− Bn =
1

n

∑n

i=1
([Λni − E (Y ∗) Πni]− E [Λni − E (Y ∗) Πni|vi]) + op

(√
σ2
n

n

)
,

(1.3.10)

where the influence term is asymptotic normal and achieves the fastest rate of convergence,

and
√

σ2n
n Bn � 1.

Proof.2 It is not hard to see that the Lindeberg condition (1.2.10) also works for 1
n

∑n
1 Π̂ni.
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The rest of the proof is done by Theorem 1.3.2 and the delta method.

The variance here is smaller than that in Corollary 1.2.12 with same degree of trimming,

confirming previous results. However, the convergence rate remains the same.

1.3.3 Bootstrapping the Estimator

Suppose we have data {zi}ni=1 and a statistic % formed from {zi}
n
i=1. The bootstrap ran-

domly generates a series {z∗i }
n
i=1 many times according to the empirical distribution of

original series {zi}ni=1 , and then gets a new statistic %
∗ based on {z∗i }

n
i=1. %

∗ is used to ap-

proximate the distribution of %. The consistency of bootstrap has been discussed intensively

in the literature. For an comprehensive review, see Horowitz (2001) and references therein.

Estimator (1.3.1) with a nonparametric estimated component is essentially a U-statistic.

After some transformation, equation (1.3.8) becomes

1

n

∑n

i=1
Λ̂ni =

1

n

∑n

i=1

2mni

fv (vi)
− 1

n (n− 1)

∑n

i=1

∑n

j=1,j 6=i
Qn (zi, zj)

+
1

n

∑n

i=1

mni

(
fv (vi)− f̂v (vi)

)2

f2
v (vi) f̂v (vi)

, (1.3.11)

where Qn (zi, zj) ≡ 1
2

(
mni
f2v (vi)

+
mnj
f2v (vj)

)
1
hK

(
vj−vi
h

)
, Z denotes all the variables involved.

The bootstrap for U-statistics is first discussed by Bickel and Freedman (1981), which gives

conditions for the bootstrap to work. One condition is that second moment of Qn (zi, zj)

is uniformly bounded which is not the case here. Chen, Linton, and Keilegom (2003) show

bootstrap works for semiparametric estimates when the criterion function is not smooth

but their results are in the regular case (root-n). So we need to show that the bootstrap

works for estimator (1.3.1).
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For notation we let variables with superscript ∗ be the newly generated variables from

the empirical probability density function of {zi}ni=1 with mass
1
n on each zi, i.e., {z

∗
i }
n
i=1

and Λ̂∗ni are the newly generated variables for {zi}
n
i=1 and Λ̂ni respectively.

The theorem below says that the bootstrap technique indeed works for our estimator

here, when we are in the nice world. The proof is tedious, but the idea of the proof is

simple: we follow the standard proof of the consistency of the bootstrap for U-statistics

while showing residual terms asymptotically negligible as in Section 1.3.2.

Theorem 1.3.4 Under the same conditions in Theorem 1.3.2, and the bootstrap series

{z∗i }
n
i=1 are distributed as the empirical probability density function of {zi}

n
i=1 with mass

1
n

on each zi, then

√
n

E
{

[Λni − E (Λni|vi)]2
} [ 1

n

∑n

i=1

(
Λ̂∗ni −

1

n

∑n

i=1
Λ̂ni

)]
d→ N (0, 1) .

1.4 Model with Additional Covariates

In this section, we generalize our identification and estimation to the case when we have

additional covariates X. We first consider the case where we put no structural restrictions

on how covariates affect the outcome, and then consider some parametric restrictions on

the outcome equation. To simplify the already complicated analysis, we assume we know

the joint density function of V and X. The results can readily but tediously be extended to

the case with estimated density function, following the same line analysis as in section 1.3.
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1.4.1 Nonparametric Estimates

The model is now as follows

Y = Y ∗D,

D = I (V − U ≥ 0) ,

where we observe (Y,D, V,X), we do not observe U , and each variable is scalar except that

X is k × 1 vector. The object of interest is E (Y ∗) . For notational convenience, we let

Z = [Y, Y ∗, D, V, U,X] denote all the variables involved here.

We basically maintain the previous assumptions, but now including X.

Assumption 12 V ⊥ U |X, E (Y ∗|U,X, V ) = E (Y ∗|U,X) , 0 < c ≤ var
(
Y ∗2|U,X, V

)
≤

E
(
Y ∗2|U,X, V

)
≤ c <∞, for any U, V,X.

Assumption 13 V is continuous with support R. ∃γ0 > 0,∀γ > 0, inf {fv (v|x) |v ∈ [−γ0, γ]} >

0.

Assumption 14 X lies in a compact set Ωx, and infx∈Ωx fx (x) > cx > 0. fv (v|x+ h) =

fv (v|x) (1 + o(1)), for any h = o (1) .

Assumption 15 (Restriction on f(v|x)) fv (v |x) satisfies Assumption 3 at right tail for

each fixed x.

Assumption 13 is not restrictive, because we assume that X lies in a compact set.
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Identification and the Estimator

For similar reasons as in Lemma 1.2.7,

E
(

DY I (−γ0 ≤ V ≤ γn (X))

(γn (X)− E (Un|X)) f (V |X)

∣∣∣∣X) = E (Y ∗|X)− cov (Y ∗, Un|X)

γn (X)− E (Un|X)
, (1.4.1)

E
(

DI (−γ0 ≤ V ≤ γn (X))

(γn (X)− E (Un|X)) f (V |X)

∣∣∣∣X) = 1.

Then

E

E
(

DY I(−γ0≤V≤γn(X))
(γn(X)−E(Un|X))f(V |X)

∣∣∣X)
E
(

DI(−γ0≤V≤γn(X))
(γn(X)−E(Un|X))f(V |X)

∣∣∣X)
 = E (Y ∗)− E

[
cov (Y ∗, Un|X)

γn (X)− E (Un|X)

]
, (1.4.2)

so E (Y ∗) is identified by letting γn (X) go to infinity for each X.

Let

Λ
(i)
nj ≡

DjT
(i)
nj Yj

fv (vj |xj) (γn (xi)− E (Un|xi))
, Π

(i)
nj ≡

DjT
(i)
nj

fv (vj |xj) (γn (xi)− E (Un|xi))
,

where T (i)
nj = I (−γ0 ≤ vj ≤ γn (xi)) , γn (xi) is the trimming index for xi, then the sample

counterpart estimator for equation (1.4.2) is:

̂̃µn =
1

n

∑n

i=1

Ê
(

Λ
(i)
ni

∣∣∣xi)
Ê
(

Π
(i)
ni

∣∣∣xi) =
1

n

∑n

i=1

 1
n−1

∑
j 6=i Λ

(i)
nj

1
hK

(
xj−xi
h

)
1

n−1

∑
j 6=i Π

(i)
nj

1
hK

(
xj−xi
h

)
 . (1.4.3)

Convergence Rate of the First-step Estimator and Lindeberg Condition.

After defining estimator (1.4.3), we treat xi as a constant and discuss the first-step estimator

1

n− 1

∑
j 6=i

Λ
(i)
nj

1

h
K

(
xj − xi
h

)
,

1

n− 1

∑
j 6=i

Π
(i)
nj

1

h
K

(
xj − xi
h

)
. (1.4.4)
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We similarly define the bias and variance term for the first-step estimator:

B̃n (xi) ≡ −
cov (Y ∗, Un|xi)
γn − E (Un |xi)

, σ̃2
n (xi) ≡ var

(
Λ

(i)
nj

1

h
K

(
xj − xi
h

))
.

It is straightforward to check that

σ̃2
n (xi) =

(1 + o (1))
∫
RK

2 (u) du

h (γn − E (Un |xi))2

∫ γn(xi)

−γ0

E
(
DY ∗2

∣∣xi, v)
f (v|x)

dv.

The variance of the first-step estimator is

n

σ̃2
n (xi)

� h n
σ2
n

,

which is slower than estimator (1.2.8) and (1.3.1).

Similar to Theorem 1.2.9, the following theorem shows that the iff condition of the

Lindeberg condition for the first-step estimator.

Theorem 1.4.1 Suppose Assumption 12 and 15 hold. If

nf2 (γn (xi)|xi)h
∫ γn(xi)

−γ0

pD|xi (v)

f (v|x)
dv →∞, (1.4.5)

where pD|xi (v) ≡ E (D|V = v,X = xi). Then the Lindeberg condition of estimator (1.4.4)

holds. If Lindeberg condition for estimator (1.4.4) holds and f (v|x) satisfies similar regu-

larity condition as in Theorem 1.2.9, then condition (1.4.5) holds.

32



To be in the nice world, similar to Section 1.3.1, in this section, we need fv|x satisfy

(∫ γn(xi)

−γ0

1

f (v|x)
dv

)1−c∗h
fv (γn (xi))→∞, (1.4.6)

for some 0 < c∗h < 1. Once we are in the nice world, similarly, we choose the trimming

parameter from the following optimal convergence rate condition:

∫
RK

2 (u) du

nh

∫ γn(xi)

−γ0

E
(
DY 2

∣∣xi, v)
f (v|xi)

dv = cov (Y ∗, Un|xi)2 , (1.4.7)

which provide the trimming parameter that gives the fastest convergence rate for the first-

step estimator.

Convergence Rate of the Plug-in Second-step Estimator

This portion of the analysis is standard and similar to the one in Section 1.3.2. Note that

the structure of our estimator is essentially as follows:

â

b̂
= −a

b
+
â− a
b
−
a
(
b̂− b

)
b2

−
(â− a)

(
b̂− b

)
bb̂

+
a
(
b̂− b

)2

b2b̂
.

We first show the residual term (last two terms in above expression) is asymptotic negligible,

then apply standard U-statistics technique on the influence term (first three terms in above

expression).

Lemma 1.10.7 in the Appendix shows that the residual term is asymptotically negligible

if we choose the trimming parameter using condition (1.4.7). After showing that the residual

term is asymptotically negligible, we are able to give the first-order asymptotics of estimator

(1.4.3). Since the proof on the influence term is standard and similar to the one in Lewbel
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and Yang (2013), it is omitted.

Theorem 1.4.2 Let all the Assumptions in Lemma 1.10.7 hold here, then

̂̃µn − E (Y ∗)− E
(
B̃n (xi)

)
=

1

n

∑n

i=1

 Λ
(i)
ni

E
(

Π
(i)
ni |xi

) − Π
(i)
niE

(
Λ

(i)
ni |xi

)
[
E
(

Π
(i)
ni |xi

)]2 +
E
(

Λ
(i)
ni |xi

)
E
(

Π
(i)
ni |xi

) − E
E

(
Λ

(i)
ni |xi

)
E
(

Π
(i)
ni |xi

)

+ op

(√
σ2
n

n

)
,

where the influence term is asymptotic normal and achieves the fastest convergence rate,

and
√

σ2n
n E

(
B̃n (xi)

)
� 1

The convergence rate of the two-step estimator here is the same as in Theorem 1.3.2. The

slower convergence rate from the first-step estimator is smoothed out during the second-step

estimation.

1.4.2 Semiparametric Estimates

The Model

We consider now the following semiparametric model,

Y =
(
X ′θ + e

)
D

D = I (V − U > 0) .

where we observe (Y,D, V,X), we do not observe U , and each variable is scalar except that

X is k× 1 vector. The object of interest is the parameter θ, a k× 1 vector. We assume the

moment condition that E (e|X) = 0, so the only source of endogeneity comes from selection

D.
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We maintain assumptions 13∼15 here, and we modify Assumption 12 to accommodate

current model for identification.

Assumption 16 V ⊥ U |X, E (e|X) = 0, E (XX ′) is full rank, and 0 < c ≤ var
(
Y ∗2|U,X, V

)
≤

E
(
Y ∗2|U,X, V

)
≤ c <∞, for any U, V,X.

The Estimator

Following the last subsection, we have

E
(
DX (Y −X ′θ) I (−γ0 ≤ V ≤ γ (X))

(γ (X)− E (Uγ |X)) f (V |X)

)
= −E

[
cov (Xe,U)

γ (X)− E (Uγ |X)

]
, (1.4.8)

E
(

DI (−γ0 ≤ V ≤ γ (X))

(γ (X)− E (Uγ |X)) f (V |X)

∣∣∣∣X) = 1. (1.4.9)

Therefore, we can identify θ by

θ = lim
γ(X)→∞

E
(
DXX ′I (−γ0 ≤ V ≤ γ (X))

(γ (X)− E (Uγ |X)) f (V |X)

)−1

E
(
DXY I (−γ0 ≤ V ≤ γ (X))

(γ (X)− E (Uγ |X)) f (V |X)

)
.

(1.4.10)

The sample counterpart estimator can be

θ̂ =

(
1

n

n∑
i=1

DiT
(i)
ni

(γn (xi)− E (Uγ |xi)) f (vi|xi)
xix
′
i

)−1(
1

n

n∑
i=1

DiT
(i)
ni

(γn (xi)− E (Uγ |xi)) f (vi|xi)
xiyi

)
.

(1.4.11)

For the asymptotic normality of each element in θ, the iff condition for the Lindeberg

condition is the same for each element, since the variance of each component is of the same

structure. Further, one can check that this iff condition is

nf2 (γn (xi)|xi)
∫ γn(xi)

−γ0

pD|xi (v)

f (v|xi)
dv →∞, (1.4.12)
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which is equation (1.4.5) without h.

Since θ is a vector, we choose the optimal convergence rate trimming parameter by

minimizing the weighted RMSE of each component in θ by a non-negative weighting vector

ϑ = (ϑ1, ..., ϑk). The choice of ϑ affects the condition for choosing γn by a small amount.

Because of this small discrepancy, we suggest using ϑ = (1, 0, ..., 0), i.e., putting all weight

on the first term. With this weighting vector, by some simple calculation, we get the optimal

convergence rate condition:

1

n

∫ γn(xi)

−γ0

E
(
De2

∣∣xi, v)
f (v|xi)

dv = cov (e, Un|xi)2 . (1.4.13)

Similarly, for valid inference, we restrict our attention to the nice world where the density

function f (v|x) satisfies the tail condition (1.4.6). Using the Cramer-Wold device, the final

asymptotics of θ̂ is straightforward given what we have before. To save space, these details

are omitted.

A Practical Alternative

Nonparametric estimation of f (V |X) may be problematic in applications where X is mod-

erate or high dimensional. To bypass this diffi culty, one may put more structure on the

model. For example, following Dong and Lewbel (2014), we assume that V is a linear

function of X:

V = X ′α+ η, η ⊥ X,U, E (e|X, η) = E (e|X) , (1.4.14)

and η is the new one-dimensional special regressor. We can first get α̂ by doing linear

regression of V on X and let η̂ = V − X ′α̂. Then fη could be estimated using a one-
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dimensional nonparametric kernel density estimator.

We can identify θ by

θ = lim
γ→∞

E
(
DXX ′I (−γ0 ≤ V ≤ γ)

(γ − E (Uγ)) fη (η)

)−1

E
(
DXY I (−γ0 ≤ V ≤ γ)

(γ − E (Uγ)) fη (η)

)
,

= lim
γ→∞

E
(
DXX ′I (−γ0 ≤ V ≤ γ)

fη (η)

)−1

E
(
DXY I (−γ0 ≤ V ≤ γ)

fη (η)

)
(1.4.15)

where γ−E (Uγ) is canceled out in the second line. The iff condition for θ̂ being asymptot-

ically normal is equation (1.2.11), replacing v with η. To choose the trimming parameter,

similar to the last subsection, we can let the weighting vector be ϑ = (1, 0, ..., 0) . Similarly,

with this ϑ, the optimal convergence rate condition for choosing γn is

1

n

∫ γn

−γ0

E
(
De2

∣∣ η)
fη (η)

dη = cov (e, Un)2 . (1.4.16)

To be in the nice world, we need to restrict fη to satisfy equation (1.3.7) (v replaced by η).

The sample counterpart estimator with f̂ can be

θ̂ =

(
1

n

n∑
i=1

DiTni

f̂η (η̂i)
xix
′
i

)−1(
1

n

n∑
i=1

DiTni

f̂η (η̂i)
xiyi

)
, (1.4.17)

and Tni ≡ I (−γ0 ≤ ηi ≤ γn) . Because η̂ is root-n consistent, the asymptotics of θ̂ will be

not be affected by the preliminary estimation stage of η. Using the Cramer-Wold device,

the final asymptotics of θ̂ is a linear combination of the asymptotics in corollary 1.3.3 under

almost the same conditions. Since the analysis is the same as before, to save space, we do

not list formal results here.
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1.5 Monte Carlo

To assess how our trimming criterion works in small samples, we provide two sets of Monte

Carlo experiments. In the first experiment, all error terms are symmetric, while in the

second experiment, there exists some asymmetry.

We set the number of observations to 200, 1000, and 5000, and the number of replications

to 10000. We want to show that our way of trimming works well in small and in moderate

large samples. We obtain five different estimates: one is our estimator with trimming

parameter that is chosen from the optimal convergence rate condition (denoted as Full Trim

in the table); two others are with halved and doubled that trimming parameter (denoted

as Half Trim and Double Trim); the fourth one is the ordinary least square estimator

without bias correction (denoted as OLS); last one is the Heckman’s two-step estimator

(denoted as Parametric). Heckman’s estimator using MLE is more effi cient than the two-

step estimator when the error terms are normal. However, sometimes the Heckman MLE

is hard to converge, so we choose the more robust two-step estimator as the benchmark.

The set up for the first Monte Carlo experiment is symmetric. We let e1 and e2 be the

standard normal random variables, and set random variable V to the student-t distribution

with the degree of freedom be 1, 3, or 4. The outcome and selection equation are:

Y = (1.5e1 + 1.5e2)D, (1.5.1)

D =I (V − 1.5e2 ≥ 0) . (1.5.2)

The expectation of the true underlying Y ∗ is zero, but one would see spurious negative
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effects without any bias correction. We obtain two sets of estimates: one is obtained with

true fv, and the other one is obtained with f̂v estimated by the Gaussian kernel with

bandwidth from the Silverman’s Rule of Thumb. Note that the student-t distribution with

1 degree of freedom does not have finite variance, so for the latter case, we do not obtain

estimates when V is t(1).

The set up for the second Monte Carlo experiment is asymmetric. We let e3 be the

standard uniform and e4 is distributed as t(4), with V be the same as in the first experiment.

Again, e3, e4, V are independent. The outcome equation and selection equation are as

follows:

Y = [2e3 − 2 |e4|]D, (1.5.3)

D =I (V − 4e3 ≥ 0) . (1.5.4)

The expectation of the true underlying Y ∗ is 0, and Y is asymmetric. Just as in the first

experiment, we consider two different estimates: one with known fv and one with estimated

f̂v. For the same reason as before, we do not consider the case with f̂v when V is distributed

as t(1).

Note that Heckman’s two-step estimator is consistent in the first experiment but is

inconsistent in the second one because e3 and e4 are uniform.

All MC results are displayed in Table 3, 4 and Figure 1.2, 1.3 in the Appendix. We

summarize our results in the tables as follows. First, the Heckman’s two-step estimator is

consistent in experiment one and inconsistent in experiment two. Our proposed estimator

with the full trimming parameter performs reasonably well compared to Heckman’s esti-

39



mator in experiment one. Our estimator performs similarly in both experiments. The OLS

without bias correction shows large bias. Second, our estimator with the full trimming

parameter outperforms those with the halved or doubled trimming parameter in terms of

RMSE. The convergence rate of our estimator is indeed slower than root-n as seen from the

RMSE in different sample sizes. One can also see that the heavier the tail that V has, the

faster the convergence rate is, e.g., V being t(1) gives the fastest convergence rate. Last,

the result with f̂v is similar to the result with true fv.

Figure 1.2 and 1.3 show the results in both experiments when V distributed as t(3). The

first three plots in both figures show the estimated probability density function (PDF) of

our estimates with halved, full and doubled the optimized trimming parameter in different

sample sizes. From the first plot, our estimator with halved trimming parameter shows big

bias and the PDF of the estimates does not cover the true value zero. The third plot shows

that our estimator with the doubled trimming parameter converges to zero very slowly.

Our estimator with the optimized trimming parameter balances the bias and variance very

well, as shown in the second plots. This is seen more clearly by the fourth plot, displaying

our estimators with different degrees of trimming when the number of observations is 5000.

The last two plots compare the PDF of our estimates with the full and doubled trimming

parameter to the normal distribution with the same mean and variance as our estimates.

They show that the PDF of our estimate with the full trimming is very close to normal while

with the doubled trimming parameter, the PDF deviates from the normal distribution. The

one in the second experiment even shows some degree of skewness. This shows that under

trimming may lead to the failure of normality.

All in all, our MC results show that our estimator with the optimized trimming para-
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meter works well in small and moderate large samples. Too small or too large trimming

parameter gives undesirable RMSE. Under trimming may lead to the failure of asymptotic

normality. MC results basically confirm previous theoretical findings.

1.6 Gender Wage Gap

1.6.1 Data

The gender wage gap problem fits right into the endogenous selection problem and has been

studied extensively in the literature. Our analysis uses data from the Second Malaysian

Family Life Survey (MFLS-2). This survey was conducted between August 1988 and Janu-

ary 1989 in Peninsular Malaysia. The MFLS-2 was developed by RAND and the National

Population and Family Development Board of Malaysia. Previous work using this data

set include Blau (1985, 1986), Vijverberg (1987), and Schafgans (1998, 2000). They found

great discrepancies across different ethnicities in Malaysia. To simplify empirical analysis,

we focus on the wage gap for a single ethnicity, specifically, between Malay men and women.

All monetary values are in 1985 prices, at an exchange rate of 2.48 Ringgit (M$). In

line with similar studies, the exogenous variable we use is the non-employment income

for individuals. The sources of non-employment income are unearned income (average

yearly property income of the household in ’00 M$’), house ownership (binomial 0 or 1),

landholding (in ’00 acres’), and other household members’ yearly income (in ’000 M$’).

These wealth variables are assumed to affect individuals’reservation wage and hence thier

decision to work, but are independent of the offered wage. We use minus the log of non-

employment income as the special regressor V , so that V tending to positive infinity (no

non-employment income at all) will force individuals to work. Summarized in Table 1.1,
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Table 1.1: Summary Statistics
Variable Name Male In Male Out Female In Female Out
Hourly Wage 3.26 N.A. 2.00 N.A.

(M$) (3.41) (2.42)
Age 30.17 22.61 28.67 26.80
(years) (5.95) (5.04) (5.73) (6.68)

Education Level 9.63 10.37 9.28 8.39
(years) (3.36) (3.11) (3.91) (4.00)

Unearned Income 5.56 10.21 7.42 11.96
(’00M$) (20.00) (24.69) (25.32) (72.16)

Home Ownership 0.57 0.77 0.55 0.73
(0 or 1) 0.50 (0.42) (0.50) (0.44)
Land 0.66 0.92 0.59 0.97

(’00acres) (6.32) (6.94) (5.67) (7.45)
Others’Income 3.99 6.30 7.31 7.38
(’000M$) (5.87) (6.27) (7.51) (11.13)

Num of Observations 935 327 570 785

the non-employment income for individuals who are in the labor market is much worse

than those who are not, which fits our intuition. Their introduction, however, does pose

possible endogeneity problems arising from their dependence on previous earnings of the

household. Following the literature, we only estimate over a young cohort 20-40, where

non-employment income is more likely to be exogenous. The dependent variable is the

log of the hourly wage rate. Other control variables are sex (0 denotes male and 1 denotes

female), ages, squared ages, and education level (years of schooling). The notation for those

variables is as follows: Y and Y ∗ are the observed log hourly wage rate and underlying log

hourly wage rate respectively; XV denote those non-employment income variables; dS is

the sex dummy; Xc are those control variables excluding sex dummy.

After dropping data with missing information, we have 2617 observations, including 1262

males and 1355 females. The participation rate of males is higher than that of females: 935

males but only 570 females are in the labor market. Mean values and standard errors (in

parentheses) of those variables are summarized in Table 1.1. The first two columns and last
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two columns are the statistics for males and females respectively, where "In" and "Out"

denote inside and outside of the labor market respectively.

From Table 1.1, the hourly wage rate for females is only about 60% of that for males.

Males not in the labor market are on average much younger than those in the labor market,

while for females these two groups on average are about the same age. Males in the labor

market on average are less educated than those who are not, but opposite is true for females.

We run the smoothed maximum score estimator to choose a weight βV for the variables

of non-employment income XV to construct a special regressor V = − log (X ′V βV ). The

maximum score estimator by Manski (1975, 1985) permits general forms of heteroskedas-

ticity, but the convergence rate is cube-root-n and bootstrap is not consistent for inference.

The smoothed maximum score estimator by Horowitz (1992) overcomes these issues; it

converges faster and the bootstrap is consistent, so we use the smoothed maximum score

technique here. We estimate the following model:

D = I
(
β0 − log

(
X ′V βV

)
+X ′cβc − U > 0

)
, (1.6.1)

where β0, βV , βc are constant term, coeffi cients before XV and Xc respectively. During

estimation, we keep ‖βV ‖2 = 1, where ‖·‖ is the Euclidean norm. Following Horowitz

(1992), we minimize

1

n

n∑
i=1

Φ

(
β0 − log (X ′V βV ) +X ′cβc

h

)
,

where Φ is the cumulative density function (CDF) of the standard normal and h = cn−
1
3 , c

is some constant.We vary c from 0.5 to 1.5, and find that the results are not sensitive to the

bandwidth we choose; we use the result from c = 1. The standard errors of our estimates
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are obtained through the bootstrap with 200 replications. We finally get

V = − log

(
0.454
(0.140)

× unearned income+ 0.409
(0.065)

× others’income+ 0.316
(0.089)

× land+ 0.726
(0.164)

× houseown
)
,

where estimated coeffi cients with standard errors in parentheses are all positive significant

as expected.

1.6.2 Oaxaca Decomposition

The gender wage gap can be decomposed into the part that is due to group differences in

the magnitudes of the determinants, and the part that is due to group differences in the

effects of those determinants. The latter difference is more reasonable to describe the wage

gap than the original one, because the first difference can be explained by covariates. The

Oaxaca decomposition (Oaxaca 1973) addresses this issue.

We illustrate the Oaxaca decomposition using our example. We further decompose

(Y ∗, Xc) into (Y ∗m, Xmc) and
(
Y ∗f , Xfc

)
which are the variables for males and females re-

spectively. Suppose the corresponding coeffi cients before Xm, Xf are θm, θf and let · denote

the average of the variable ·, then

Y
∗
m − Y

∗
f = Xmcθm −Xfcθf

=
(
Xmc −Xfc

)
θm +Xfc (θm − θf ) (1.6.2)

=
(
Xmc −Xfc

)
θf +Xmc (θm − θf ) , (1.6.3)

where the first part in equation (1.6.2) and (1.6.3) is the gap attributed by endowment, and

the second part is the gap by coeffi cients. Alternatively, we say the first part is explainable,
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while the second part cannot be explained by what we observe. The second part is what

we consider to be the gender wage gap.

Both equation (1.6.2) and (1.6.3) are possible decompositions. Without loss of generality,

we adopt the one in equation (1.6.3).

1.6.3 Estimation

The outcome equation is model as follows:

Y ∗ = θ0 +X ′cθc + dsθs +X ′cdsθcs + e, (1.6.4)

Y = Y ∗D (1.6.5)

Relating these coeffi cients to the previous section, we have θm =
[
θ0, θ

′
c

]′
, θf =

[
θ0 + θs, (θc + θcs)

′]′ .
We find that estimation of f (V |X) is sensitive to the bandwidth we choose, because the

dimension of X is high. To make our results more robust, we impose more structure and

adopt the simple approach in Section 1.4.2. We assume that

D = I (η − U ≥ 0) ,

where U is an unobservable, and η comes from

V = α0 + dsαs +X ′cαc + η,

with assumption η ⊥ Xc, ds, U, E (e|X, η) = E (e|X). In this way, we only need to run a

linear regression to get η̂ and one dimension nonparametric estimation to get f̂η. The final

estimator is equation (1.4.17), with X being those regressors in equation (1.6.4).
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Figure 1.1: Estimated Density of η

To check whether we are in the nice world, Figure 1.1 displays the right tail of f̂η against a

standard normal and a standardized student distribution with six degrees of freedom. From

Figure 1.1, we argue that η has right tail behavior similar to that of t(6), indicating that

we appear to be in the nice world.

We choose the trimming parameter γn from the optimal convergence rate condition

(1.4.16). To estimate cov(e, U), we impose the assumptions of Heckman’s two-step esti-

mator. However, note that these are assumptions used to get a good estimate of γn, they

do not need to hold otherwise. We also provide estimates based on letting the trimming

parameter equal γn/ 2 and 2γn.

We compare our estimates with the ordinary least square estimator without any bias

correction and with Heckman’s two-step estimator, where the model is set as equation

(1.6.1), (1.6.4), and (1.6.5). The estimated parameter with standard errors are displayed

in Table 1.2. From Table 1.2, our estimates are sensitive to different trimming parameters,

showing the importance of choosing it carefully as this paper provides. The coeffi cients of
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Table 1.2: Estimation Results
SR Full Trim SR Double Trim SR Half Trim OLS Parametric

Constant −5.810∗∗∗ −3.965∗∗∗ −3.44∗∗∗ −4.466∗∗∗ −5.620∗∗∗
(0.356) (0.432) (0.393) (0.545) (1.031)

Sex 2.82∗∗∗ 1.294∗∗∗ 0.440 1.226 0.907
(0.565) (0.474) (0.563) (0.824) (0.863)

Age 0.338∗∗∗ 0.200∗∗∗ 0.140∗∗∗ 0.257∗∗∗ 0.318∗∗∗

(0.024) (0.030) (0.029) (0.038) (0.058)
Age2

/
100 −0.466∗∗∗ −0.243∗∗∗ −0.086∗ −0.352∗∗∗ −0.400∗∗∗

(0.042) (0.050) (0.051) (0.064) (0.100)
Education 0.088∗∗∗ 0.112∗∗∗ 0.092∗∗∗ 0.098∗∗∗ 0.099∗∗∗

(0.005) (0.003) (0.007) (0.007) (0.007)
Age×Sex −0.226∗∗∗ −0.059∗ −0.025 −0.111∗ −0.092

(0.040) (0.033) (0.041) (0.058) (0.060)
Age2

/
100×Sex 0.345∗∗∗ 0.045 −0.041 0.141 0.100

(0.070) (0.057) (0.071) (0.098) (0.100)
Education×Sex 0.037∗∗∗ −0.057∗∗∗ 0.026∗∗∗ 0.023∗∗ 0.033∗∗∗

(0.008) (0.005) (0.009) (0.010) (0.013)

Note: * significant at 10% level, ** significant at 5% level, *** significant at 1% level.

age and age2 are expected to be positive and negative respectively, resulting in an inverted-

U-shape type response centered around some positive value. All estimates of the coeffi cients

before age and age2 are as expected, except our estimator with halved the trimming para-

meter: the coeffi cient before age2 is only significant at 10% level. For the coeffi cient before

education×sex, our estimator with the doubled trimming parameter has an opposite sign

than the others. For the parametric estimator, among the coeffi cients before the variables

involved sex, only the one before education×sex is significant. Thus, if we do the Oaxaca

decomposition and only keep those significant coeffi cients, the unexplained part will be neg-

ative, favoring women, which seems unlikely. To sum up, our estimator with the optimized

amount of trimming delivers the most reasonable results.

The observed difference in the means of the log-wages for males and females (Y m −

Y f ) is 0.635. With OLS, the standard decomposition into the term
(
Xmc −Xfc

)
θm and

Xfc (θm − θf ) are 0.071 and 0.564 respectively. Only 11.2% of the difference in the mean
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of log-wages can be explained by the superior endowment for males. For our estimator

with the optimized trimming parameter, this percentage is 21.5%. From the parametric

estimator, the percentage is 19.7%. After correcting for selection bias, the unexplained

wage gap becomes smaller.

1.7 Conclusion

In this paper, we propose a general approach to trimming for heavy-tailed estimators.

Unlike most of the previous literature, which either assumes the Lindeberg condition holds

or imposes strong tail distribution assumptions, we instead find the largest range of possibly

trimming parameter values that satisfy the Lindeberg condition without any tail distribution

assumptions. We show a sharp distinction between a ’nice’ and an ’ugly’world, which

depends on details of the tail conditions. We demonstrate the results by working out the

details for the special regressor estimator of endogenous selection models. A monte carlo

experiment and an empirical study show that our approach works well in small samples.

The methods proposed here may be applied to a wide variety of other problems involving

potentially heavy tailed estimators. Appendix 1.9 discusses some examples. Also, Appendix

1.8 shows that it may be possible to make progress using our approach even in the ugly

world where standard inference is not possible.
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1.8 Appendix A: Jackknifing the Bias Term

The bias term here plays a very important role for estimator (1.2.8), causing trouble when

it dominates the variance term. In this section, we propose a possible remedy for the bias

term problem using Quenouille’s (1949) jackknife estimator.

Let θ̂ (z1, z2, ..., zn) be a statistic over the whole sample with sample size n. Let En =
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E
[
θ̂ (z1, z2, ..., zn)

]
, and assume that

En = θ +
c1

n
+
c2

n2
+ ..., (1.8.1)

where c1, c2 are some constants. Quenouille’s method is based on sequentially deleting

points zi, and recomputing statistics θ̂(i), then let

θ̂(·) =
1

n

∑n

i=1
θ̂(i).

The jackknife estimate is

θJ = nθ̂ − (n− 1) θ̂(·). (1.8.2)

Based on equation (1.8.1), it is not hard to see that E (θJ) = θ+O
(
n−2

)
, so the bias term

reduces from O
(
n−1

)
to O

(
n−2

)
.

Back to our estimator here, we know from previous sections that

E (Λni) = E (Y ∗)− cov (Y ∗, Un)

γn − E (Un)
, E (Πni) = 1.

The E (Un) in the denominator is unknown and cannot be estimated. To apply jackknife

technique, we modify the estimator a little bit

φni =
DiTniYi
fv (vi) γn

and φ̂n =
1

n

∑n

i=1
φni, (1.8.3)
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where φ̂n is the modified estimator. Then by Lemma 1.2.7

E
(
φ̂n

)
= E (φni) = E (Y ∗)− E (Y ∗Un)

γn
. (1.8.4)

Let the jackknifed estimator be

φ̂
J

n =
γnφ̂n − γn−1

(
1
n

∑n
i=1 φ̂

(i)

n

)
γn − γn−1

, (1.8.5)

where φ̂
(i)

n is the estimator in equation (1.8.3) dropping i-th observation with trimming

parameter be γn−1. Then

E
(
φ̂
J

n

)
= E (Y ∗)− E (Y ∗Un)− E (Y ∗Un−1)

γn − γn−1

= E (Y ∗)− 1

γn − γn−1

∫ γn

γn−1

E (Y ∗|u)ufu (u) du. (1.8.6)

Inspecting equation (1.8.6), the bias term is roughly γnfu (γn) . Assumption 8 says that the

second moment of U exists, which implies that

lim
u→∞

u2fu (u) = 0.

Therefore γnfu (γn) = o
(

1
γn

)
, thus the bias term is reduced. When fv (v) decays as expo-

nential, for example, fv (v) = exp (−v) at tails, then γn = log (n) . U is usually thin tail than

V, for simplicity let fu (u) be exp (−u) at tails as well. Then γnfu (γn) = log(n)
n , so the bias

term is reduced dramatically in this case. In the case when fu (u) = 0 between
[
γn−1, γn

]
,

the bias term vanishes. From the above discussion, we know that jackknife works better in

the case when both v and u are thin tails. More work needs to be done for the asymptotic
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normality of the jackknifed estimator. We leave this for future research.

The advantage of the modified estimator (1.8.3) is that we can do the jackknife more

easily and more effi ciently. The disadvantage is that when U and Y ∗ are correlated, the

original estimator is unbiased while the modified estimator is still biased. However, one

usually knows a priori if endogeneity is likely. When the endogenous selection problem does

exist, the modified estimator (1.8.3) is no worse than the original estimator.

1.9 Appendix B: Potential Extensions

In this section, we outline the way to do trimming for other important scenarios. These

extensions are not trivial. In general, additional assumptions on the density function of

certain unobservables are required. We point out where more regularity conditions are

needed here and leave the details for future research.

1.9.1 The Average Derivative Estimator

Suppose we have E (Y |X) = m (X) . Estimand is µ ≡ E [m′ (X)] .Without loss of generality,

we assume that X is a scalar. By E [m′ (X)] = E
[
−f ′x(X)
fx(X)Y

]
, Hardle and Stoker (1989)

propose to estimate µ by 1
n

n∑
i=1

−f ′x(xi)
fx(xi)

yi, where {xi, yi}ni=1 are i.i.d. series from X,Y . To

deal with the heavy-tails problem, we propose to estimate it by

µ̂ =
1

n

n∑
i=1

−f ′x (xi)

fx (xi)
yiI
(
−γ′n ≤ xi ≤ γn

)
.

Under similar conditions to the previous sections, the iff condition to the Lindeberg condi-

tion for trimming parameters are equation (1.2.4) with v replaced by x.
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By some derivations, we can obtain the bias term Bn and variance term σ2
n as follows:

Bn = −m (γn) fx (γn) +m (−γn) fx (−γn)−
∫ −γ′n
−∞

m′ (x) fx (x) dx−
∫ ∞
γn

m′ (x) fx (x) dx,

σ2
n = (1 + o (1))

∫ γn

−γ′n

f ′x (x)2 E
(
y2
∣∣x)

fx (x)
dx.

To get the optimal convergence rate condition as in equation (1.2.15) and the tail conditions

with which we can apply standard inference as in equation (1.2.14), we can proceed as before,

though doing so will require stronger regularity conditions on fx.

1.9.2 The Special Regressor Estimator in Binary Choice model

Consider a standard threshold crossing binary choice model, where to simplify discussion,

we assume regressors consist only of a constant µ and a single regressor V,

Y = I (V + µ− U ≥ 0) ,

where V is a continuous variable that is independent of U and V has support on R. Lewbel

(2000) identifies the constant µ by µ = E
[
Y−I(V≥0)
fv(V )

]
, where fv is the density function of

V. The sample counterpart estimator is 1
n

∑n
i=1

yi−I(vi≥0)
fv(vi)

, where {vi, yi}ni=1 are i.i.d. series.

To deal with the heavy-tails problem, we propose to trim based on V,

µ̂ =
1

n

n∑
i=1

yi − I (vi ≥ 0)

fv (vi)
I
(
−γ′n ≤ vi ≤ γn

)
.

Under similar conditions to previous sections, the iff condition to the Lindeberg condition

for trimming parameters are equation (1.2.4).
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By some derivations, we can have bias term Bn and variance term σ2
n as follows:

Bn = −
∫ −γ′n
−∞

Fu (α+ v) dv +

∫ ∞
γn

(1− Fu (α+ v)) dv,

σ2
n = (1 + o (1))

∫ γn

−γ′n

Fu (α+ v) (1− Fu (α+ v))

fv (v)
dv,

where Fu is the cumulative density function of U . These expressions would form the basis

of an anlysis to obtain the optimal convergence rate condition as in equation (1.2.15) and

the tail conditions with which we can apply standard inference as in equation (1.2.14).

Regularity conditions will need to be imposed on fv and Fu.

1.9.3 The Propensity Score Weighted ATE Estimator

Consider the Average Treatment Effect (ATE) under unconfoundedness, where the treat-

ment indicator D is independent of potential outcomes Y1 and Y0 after conditioning on

control variables X. The observed outcome is Y = Y1D + Y0 (1−D). To simplify analy-

sis, we assume that X is a scalar variable here. The estimand ATE µ ≡ E (Y1 − Y0) =

E
[

Y (D−Px(X))
Px(X)(1−Px(X))

]
, where Px is the CDF of X. As discuss before, we propose to estimate

µ by

µ̂ =
1

n

n∑
i=1

yi (Di − Px (xi))

Px (xi) (1− Px (xi))
I
(
−γ′n ≤ xi ≤ γn

)
,

where {xi, Di, yi}ni=1 are i.i.d. series from the model. The iff condition to the Lindeberg

condition of µ̂ could probably derived the same line analysis as in Section 1.2.2. Condition

(1.2.5) is designed specifically for density function. Some similar conditions could probably

be designed for cumulative density function.
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The bias term and variance term for the term in µ̂ is as follows:

Bn = −
∫ −γ′n
−∞

[E (Y1|x)− E (Y0|x)] fx (x) dx−
∫ ∞
γn

[E (Y1|x)− E (Y0|x)] fx (x) dx

σ2
n =

∫ γn

−γ′n

[
E
(
Y 2

1

∣∣x)
Px (x)

+
E
(
Y 2

0

∣∣x)
1− Px (x)

]
fx (x) dx.

As in the previous examples, these are the starting points for obtaining the optimal conver-

gence rate condition as in equation (1.2.15) and the tail conditions with which we can apply

standard inference as in equation (1.2.14), after imposing suffi cient regularity conditions on

fx.

1.9.4 Heavy Tail Time Series Models

In a time series framework, many data are known to have heavy tails, but those heavy-tailed

random terms are seldom independent. In many times series models, e.g., AR, ARCH,

and GARCH, error terms are martingale difference sequences. To apply our approach,

the Lindeberg condition we consider is now the one associated with a CLT for martingale

difference arrays.

Suppose we have the martingale difference sequence {Xk,T }Tk=1 with information set

{Fk−1,T }Tk=1 for each T > 0. The following central limit theorem for martingale difference

arrays is due to Brown (1971).

Theorem 1.9.1 (CLT for Martingale Difference Arrays) If we have for any ε > 0,

1

T

T∑
k=1

E
[
X2
k,T I

(
X2
k,T > εT

)∣∣Fk−1,T

] P→ 0, (1.9.1)
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and 1
T

T∑
k=1

E
[
X2
k,T

∣∣∣Fk−1,T

]
P→ 1, then we have 1

T

T∑
k=1

Xk,T
d→ N (0, 1) .

Our iff condition to the Lindeberg condition (1.9.1), and the associated bias and variance

with trimming, will differ from model to model. But the discussion of trimming parameters

could follow the same line as before, with appropriate regularity conditions on error terms.

1.10 Appendix C: Some Technical Assumptions and Proof

Assumption 17 The kernel functions K(v), K(x) have supports on [−1, 1] in R. Each

kernel function integrates to one over its support, is symmetric around zero, and has order

q, i.e., for K(x), ∫
R
xlK(x)dx = 0 for l < q,

∫
R
xqK(x)dx 6= 0 .

sup
x∈[−1,1]

K (x) is finite, and K (x) satisfies Lipschitz condition, namely, there exists a cK > 0,

such that

sup
x∈[−1,1]

|K (x)| ≤ cK , |K (x+ s)−K (x)| ≤ cK |s| .

This similarly holds for K(v).

Lemma 1.10.1 Under Assumption 3, lim
v→∞

vfv (v) = 0.

Proof of Lemma 1.10.1.2 By Assumption 3 that f̃v(v)
fv(v) � 1, to prove lim

v→+∞
vfv (v) = 0,

it is equivalent to show that

lim
v→+∞

vf̃v (v) = 0.

We prove the conclusion by contradiction.
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If not, there exists c1 > 0, and a monotone increasing series going to infinity {πn}∞n=0 ,

such that f̃v (πn) > c1
πn
. Let f̃v (v) = c1

πk
, v ∈ [πk−1, πk) , then this f̃v (v) will make∫ πn

π0
f̃v (v) dv the smallest among all f̃v that satisfy monotonicity and f̃v (πn) > c1

πn
.

Fix π0, πn, easy to show that

min
π1,...,πn−1

∫ πn

π0

f̃ (v) dv = c1n

(
1−

(
π0

πn

) 1
n

)
. (1.10.1)

Since for any c < 1,

lim
x→0

1

x
(1− cx) = − ln c,

and by π0
πn
→ 0, we have

lim inf
n→∞

∫ πn

π0

f̃v (v) dv ≥ − ln c,

for any c < 1. Therefore

lim inf
n→∞

∫ πn

π0

f̃v (v) dv →∞,

which contradicts with
∫
R f̃v (v) dv ≤ cb <∞.

The intuition for Lemma 1.10.1 is as follows. Since
∫∞

1
1
xdx = ∞,

∫∞
1

1
x1+ε

dx < ∞,

and
∫
R fv (v) dv = 1, intuitively, fv (v) should decrease to 0 faster than 1

v . Consequently, by

Assumption 4, we have

f2
v (γ)

∫ γ

0

E
(
ς2
∣∣V = v

)
fv (v)

dv → 0, as γ →∞, or γ → −∞. (1.10.2)

Proof of Theorem 1.2.3.2 We first consider the case where one of the first two conditions

in equation (1.2.4) hold. Without loss of generality, we assume that the first one holds.
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Because E (xni) is uniformly bounded and σ2
ni →∞, as n→∞, we have:

Ψ =

{
γ′n, γn

∣∣∣∣ lim
n→∞

E
(
x2
ni

σ2
ni

I
[
x2
ni

σ2
ni

> nε

])
= 0

}
. (1.10.3)

For any fixed ε > 0, and γ′n, γn from the first condition in equation (1.2.4)

E
(
x2
ni

σ2
ni

I
[
x2
ni

σ2
ni

> nε

])
≤

∫
[−γ′n,0]

+

∫
v≥0∩

{
v

∣∣∣∣ x2niσ2
ni

>nε

} E
(
ς2
∣∣V = v

)
fv (v)

dv

/σ2
ni. (1.10.4)

By the first condition in equation (1.2.4) we have

(∫
[−γ′n,0]

E
(
ς2
∣∣V = v

)
fv (v)

dv

)/
σ2
ni → 0, as n→∞. (1.10.5)

So we only need to focus on the second integral in equation (1.10.4).

Consider the set when v > 0, for any fixed ε > 0, the following in equivalent

{
vi

∣∣∣∣x2
ni

σ2
ni

> nε, v > 0

}

⇔
{
vi

∣∣∣∣∣ ς2
i

f2
v (vi)

I (0 < vi ≤ γn) > nε

∫ γn

−γ′n

E
(
ς2
∣∣V = v

)
fv (v)

dv (1 + o (1))

}

⇔
{
vi

∣∣∣∣∣ ς2
i

f2
v (vi)

I (0 < vi ≤ γn) > nε

∫ γn

0

E
(
ς2
∣∣V = v

)
fv (v)

dv (1 + o (1))

}

⇔
{
vi

∣∣∣∣∣ ς2
i

ε
I (0 < vi ≤ γn) > nf2

v (vi)

∫ γn

0

E
(
ς2
∣∣V = v

)
fv (v)

dv (1 + o (1))

}
(1.10.6)

where the third line holds by the first condition in equation (1.2.4). By assumption fv (v)
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decreases in order, condition

nf2
v (γn)

∫ γn

0

E
(
ς2
∣∣V = v

)
fv (v)

dv →∞

implies that the set in equation (1.10.6) is empty after some large n, so that we have

∫
v≥0∩

{
v

∣∣∣∣ x2niσ2
ni

>nε

} E
(
ς2
∣∣V = v

)
fv (v)

dv = 0 (1.10.7)

after some large n. Equation (1.10.4), (1.10.5), and (1.10.7) give that

lim
n→∞

E
(
x2
ni

σ2
ni

I
[
x2
ni

σ2
ni

> nε

])
= 0,

which implies the Lindeberg condition.

For γ′n, γn from the third condition in equation (1.2.4), because fv (v) decreases in order

at both tails, by the same logic as in the second part of the above proof, we have that{
vi

∣∣∣x2niσ2ni
> nε

}
is empty after some large n, for any fixed ε > 0. This implies the Lindeberg

condition.

Proof of Theorem 1.2.4.2 Without loss of generality, we consider the set

Q
(
γ′n, γn

)
=

{
vi

∣∣∣∣∣nf2
v (vi)

∫ γn

0

E
(
ς2
∣∣V = v

)
fv (v)

dv <
c1

ε
I
(
−γ′n < vi ≤ γn

)}
(1.10.8)

for some c1 > 0, and fixed small ε > 0, and the value

L
(
γ′n, γn

)
=

∫
v∈Q(γ′n,γn)

E
(
ς2
∣∣V = v

)
fv (v)

dv

/∫ γn

−γ′n

E
(
ς2
∣∣V = v

)
fv (v)

dv (1.10.9)
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From the proof in Theorem 1.2.3, it is not hard to verify that set (1.10.8) is the essential

part of set (1.2.2) and equation (1.10.9) is of the same order order as the expectation in

the Lindeberg condition (1.2.10). Thus, the Lindeberg condition holds if and only if for all

ε > 0

lim
n→∞

L
(
γ′n, γn

)
= 0. (1.10.10)

Suppose we are in the first situation in condition (1.2.4), then

∫ γn

−γ′n

E
(
ς2
∣∣V = v

)
fv (v)

dv =

∫ γn

0

E
(
ς2
∣∣V = v

)
fv (v)

dv (1 + o (1)) ,

so we could disregard the effect γ′n in this case. By equation (1.10.2), we can find {γ∗n}
∞
n=1 ,

γ∗n →∞, such that

nf2
v (γ∗n)

∫ γ∗n

0

E
(
ς2
∣∣V = v

)
fv (v)

dv � 1. (1.10.11)

We prove the conclusion in two parts. In the first part, we prove that for any {γn}∞n=1

with a sub-series going to infinity faster than γ∗n, the Lindeberg condition fails to hold. In

the second part, we prove that if a sub-series {γ∗n}
∞
n=1 could let the Lindeberg condition

hold, then condition (1.2.11) can also give a corresponding sub-series {γn}∞n=1 which is of

the same order as {γ∗n}
∞
n=1. If any sub-series of those {γ∗n}

∞
n=1 fails the Lindeberg condition,

our conclusion holds for sure. Combining the results above then implies the conclusion.

First, we set γn = anγ
∗
n as the trimming parameter, where {an}

∞
n=1 is any series going

to infinity. The results remain unchanged when only a sub-series of {an}∞n=1 goes to infinity,

for notational convenience, we say the whole series is the sub-series. By equation (1.10.2)

and (1.10.11),

nf2
v (anγ

∗
n)

∫ anγ∗n

0

E
(
ς2
∣∣V = v

)
fv (v)

dv = O (1) .
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By condition (1.2.5) in the Lemma and assumption 4 on E
(
ς2
∣∣V = v

)
we have,

f2
v ((1− cf ) anγ

∗
n)
∫ anγ∗n

0

E( ς2|V=v)
fv(v) dv

f2
v (anγ∗n/ af )

∫ anγ∗n/af
0

E( ς2|V=v)
fv(v) dv

= O (1) . (1.10.12)

From equation (1.10.2) and an →∞, we know

nf2
v (anγ

∗
n/ af )

∫ anγ∗n/af
0

E( ς2|V=v)
fv(v) dv

nf2
v (γ∗n)

∫ γ∗n
0

E( ς2|V=v)
fv(v) dv

= O (1) . (1.10.13)

So we have

nf2
v ((1− cf ) anγ

∗
n)

∫ anγ∗n

0

E
(
ς2
∣∣V = v

)
fv (v)

dv = O

(
nf2

v (γ∗n)

∫ γ∗n

0

E
(
ς2
∣∣V = v

)
fv (v)

dv

)
= O (1) .

Therefore [(1− cf ) anγ
∗
n, anγ

∗
n] ⊆ Q (γ′n, anγ

∗
n) for some small ε > 0. Then after some large

n

L
(
γ′n, anγ

∗
n

)
≥

∫ anγ∗n
(1−cf)anγ∗n

E( ς2|V=v)
fv(v) dv∫ anγ∗n

0
E( ς2|V=v)
fv(v) dv

≥ 1−
∫ (1−cf)anγ∗n

0

E( ς2|V=v)
fv(v) dv∫ anγ∗n

0
E( ς2|V=v)
fv(v) dv

.

So we have lim sup
n→∞

L (γ′n, anγ
∗
n) > 0, by L’Hopital’s rule and Assumption 6 on ω. Thus,

equation (1.10.10) does not hold on series {γ′n, anγ∗n}
∞
n=1 .

Second, we assume that a sub-series {γ∗n}
∞
n=1 will have the Lindeberg condition hold.

For notational convenience, we say the sub-series is {γ∗n}
∞
n=1 itself. We set γn = γ∗n/af .

Then we say we must have

nf2
v (γ∗n/af )

∫ γ∗n/af

0

E
(
ς2
∣∣V = v

)
fv (v)

dv →∞.

Otherwise a sub series of {γn}∞n=1 or {γn}
∞
n=1 itself can have condition (1.10.11) hold. By
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condition (1.2.5), set an = 1 in equation (1.10.12), and we can have that for that sub-

series [(1− cf ) γ∗n, γ
∗
n] ⊆ Q (γ′n, γ

∗
n), which leads to the contradiction that {γ∗n}

∞
n=1 fails the

Lindeberg condition by the previous part of proof. Obviously, {γn}∞n=1 is of the same order

as {γ∗n}
∞
n=1 .

We have proved that in the first situtation our conclusion holds. The proof our results

hold in the second situation is the same as the previous one. In the third case, we define

two sub series in the following way

{ni,+} ≡
{
n

∣∣∣∣∣
∫ γn

0

E
(
ς2
∣∣V = v

)
fv (v)

dv ≥
∫ 0

−γ′n

E
(
ς2
∣∣V = v

)
fv (v)

dv

}
,

{ni,−} ≡
{
n

∣∣∣∣∣
∫ γn

0

E
(
ς2
∣∣V = v

)
fv (v)

dv <

∫ 0

−γ′n

E
(
ς2
∣∣V = v

)
fv (v)

dv

}
.

By the definition of the third situation in equation (1.2.4), both series have infinite elements.

We then can apply the same analysis on both γni,+ and γ
′
ni,− , and the conclusion follows.

Proof of Lemma 1.2.5.2 We show the results one by one.

1. If fv (v) � 1
v1+δ

at its right tail, by some simple calculations, condition (1.2.5) is

satisfied.

2. Suppose fv (v) � vc1 exp (−vc2) , for any c1 > 0, c2 > 0. Note that for any a > 1

f2
v (v)

∫ aγ
−γ0

1
fv(v)dv

f2
v (γ)

∫ γ
−γ0

1
fv(v)dv

=
f2
v (v)

f1+ε
v (γ) f1+ε

v (aγ)

f1+ε
v (aγ)

∫ aγ
−γ0

1
fv(v)dv

f1−ε
v (γ)

∫ γ
−γ0

1
fv(v)dv

, (1.10.14)

By L’Hopital’s rule, one can verify that f1+ε
v (aγ)

∫ aγ
−γ0

1
fv(v)dv → 0 and f1−ε

v (γ)
∫ γ
−γ0

1
fv(v)dv →

∞ for arbitrary small ε > 0. The deterministic component for the rate of f2v (v)

f1+εv (γ)f1+εv (aγ)
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is the exponential term

exp {(1 + ε) (1 + ac2) γc2 − 2vc2} . (1.10.15)

We can let cf = 1
2

(
1− 1

a
c2
2

)
and it is then easy to check that

f2v ((1−cf)aγ)
f1+εv (γ)f1+εv (aγ)

= O (1)

by verifying equation (1.10.15) with v = (1− cf ) aγ and some small ε. Therefore, we

have

f2
v ((1− cf ) aγ)

∫ aγ
−γ0

1
fv(v)dv

f2
v (γ)

∫ γ
−γ0

1
fv(v)dv

= O (1) ,

which is the conclusion.

3. Suppose fv (v) � v−v
c
. We do the same transformation as equation (1.10.14). Then

it is easy to verify that f1+ε
v (aγ)

∫ aγ
−γ0

1
fv(v)dv → 0 and f1−ε

v (γ)
∫ γ
−γ0

1
fv(v)dv →∞ for

arbitrary small ε > 0. The deterministic component for the rate of f2v (v)

f1+εv (γ)f1+εv (aγ)
is

γ(1+ε)(1+ac)γcv−2vc . By setting cf = 1
2

(
1− 1

a
c
2

)
, for the same reason as before we

have
f2v ((1−cf)aγ)
f1+εv (γ)f1+εv (aγ)

= O (1) , and the desired result

f2
v ((1− cf ) aγ)

∫ aγ
−γ0

1
fv(v)dv

f2
v (γ)

∫ γ
−γ0

1
fv(v)dv

= O (1) .

4. If we have fv (v) � exp (− exp (vc)) , we do the analysis in the opposite way. First

verify that f1−ε
v (aγ)

∫ aγ
−γ0

1
fv(v)dv → ∞ and f1+ε

v (γ)
∫ γ
−γ0

1
fv(v)dv → 0 for arbitrary

small ε > 0. The deterministic component for the rate of f2v (v)

f1−εv (γ)f1−εv (aγ)
is

exp {exp (γc + log (1− ε)) + exp (acγc + log (1− ε))− exp (vc + log (2))} . (1.10.16)

Then for any 0 < cf < 1, v = (1− cf ) aγ will let equation (1.10.16) go to infinity which
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is equivalent to f2v (v)

f1−εv (γ)f1−εv (aγ)
→∞. Then we have the result, for any 0 < cf < 1,

f2
v ((1− cf ) aγ)

∫ aγ
−γ0

1
fv(v)dv

f2
v (γ)

∫ γ
−γ0

1
fv(v)dv

→∞.

Proof of Lemma 1.2.7.2 First

E (Λni) =
1

γn − E (Un)
E
[∫
R

DE (Y ∗|u, v)Tni
fv (v)

f (v|u) dv

]
=

1

γn − E (Un)
E
[
E (Y ∗|u)

∫
R
I (v − u ≥ 0) I (−γ0 ≤ v ≤ γn) dv

]
= E (Y ∗) +

E [(E (Y ∗|u)− E (Y ∗)) (γn − Un)]

γn − E (Un)

= E (Y ∗)− cov (Y ∗, Un)

γn − E (Un)
,

where by Assumption 8 the fourth line is finite. Similarly

E (Πni) = 1.

Furthermore

E
(
Λ2
ni

)
=

∫
R

∫
R

DTniE
(
Y ∗2|u, v

)
γ2
nf

2
v (v)

fv (v) fu (u) dvdu

=
1

(γn − E (Un))2

∫ γn

−γ0

E
(
Y ∗2D

∣∣ v)
fv (v)

dv. (1.10.17)

From the first line of of equation (1.10.17), and by Assumption 9, we know that

E
(
Λ2
ni

)
� 1

γ2
n

∫ γn

−γ0

pD (v)

fv (v)
dv (1.10.18)
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Since

E (Λni) = O (1) ,

and under some mild condition by Lemma 1.2.8

E
(
Λ2
ni

)
→∞,

then

var (Λni) = E
(
Λ2
ni

)
(1 + o (1))

=
1 + o (1)

(γn − E (Un))2

∫ γn

−γ0

E
(
Y ∗2D

∣∣ v)
fv (v)

dv � 1

γ2
n

∫ γn

−γ0

pD (v)

fv (v)
dv.

Proof of Lemma 1.2.8.2 Note that

lim
γn→∞

∫ γn
−γ0

pD(v)
fv(v) dv∫ γn

0 vdv
= lim

γn→∞
1

γnfv (γn)
=∞, (1.10.19)

where the first equality holds by L’Hopital’s rule and second equality holds by Lemma

1.10.1. Equation (1.10.19) implies that

var (Λni) �
1

γ2
n

∫ γn

−γ0

pD (v)

fv (v)
dv →∞.

Replace (1− cf ) afγ with afγ−m (γ) in the proof of Theorem 1.2.4, we can get the desired

result.

Proof of Theorem 1.2.9.2 The suffi ciency of condition (1.2.11) holds obviously by pre-
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vious results.

We define the set

Q (γn) =

{
v

∣∣∣∣∣nf2
v (v)

∫ γn

−γ0

pD (v)

fv (v)
dv <

c1

ε
I (−γ0 < v ≤ γn)

}
(1.10.20)

for some c1 > 0, some small ε > 0, and the value

L (γn) =

∫
v∈Q(γn)

1

fv (v)
dv

/∫ γn

−γ0

pD (v)

fv (v)
dv. (1.10.21)

By pD (v) → 1, as v → ∞ and assumption 9, not hard to verify that equation (1.10.21) is

of the same order order as the expectation in the Lindeberg condition.

Suppose we have the opposite of condition (1.2.11) that a sub-series of nf2
v (γn)

∫ γn
−γ0

pD(v)
fv(v) dv

is O (1) . For the convenience of notation, let the original series be the sub-series. Let c2 =

sup
{
nf2

v (γn)
∫ γn
−γ0

pD(v)
fv(v) dv

}
. Then if we have f2v (γn)

f2v (v)
> c2

c1
ε, we have 1

nf2v (v)
∫ γn
−γ0

pD(v)

fv(v)
dv
> ε

c1
.

For easier exposition, we strengthen the assumption that fv decreases in order to the

assumption that fv is monotone decreasing. By condition
fv(γ−m(γ))

fv(γ) = O (1), we have

f2v (γ)
f2v (γ−m(γ))

> c2
c1
ε for some small ε > 0. Using the result in last paragraph, we have

1

nf2v (γn−m(γn))
∫ γn
−γ0

pD(v)

fv(v)
dv

> ε
c1
. Therefore we have [γn −m (γn) , γn] ⊂ Q (γn) , implying

that

L (γn) ≥
∫ γn

γn−m(γn)

1

fv (v)
dv

/∫ γn

−γ0

pD (v)

fv (v)
dv.

By L’Hopital’s rule and condition (1.2.12), we have

lim inf
γn→∞

L (γn) ≥ 1− lim sup
γn→∞

(1−m′ (γn)) fv (γn)

fv (γn −m (γn))
> 0,
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which conflicts with the Lindeberg condition.

Proof of Lemma 1.2.10.2 We prove this by construction of m (γ) for each density

function. For easier exposition, we show the results for when the tails of fv decay following

exactly the same functions as those listed in the lemma.

fv (γ −m (γ))

fv (γ)
= O (1) and lim sup

γ→∞

(1−m′ (γ)) fv (γ)

fv (γ −m (γ))
< 1. (1.10.22)

1. Suppose fv (v) = 1
v1+c

, after some large v. Let m (γ) = (1− cf ) γ, where 0 < cf < 1.

Then one can immediately verify that condition (1.2.12) holds.

2. Suppose fv (v) = vc1 exp (−vc2) , after some large v. Let m (γ) = γ1−c2 . Then

fv (γ −m (γ))

fv (γ)
=

(
γ

γ − γ1−c2

)c1
e(γ−γ

1−c2)
c2−γc2 = e−c2 + o (1) ,

m′ (γ) = (1− c2) γ−c2 = o (1) ,

by which condition (1.2.12) holds.

3. Suppose fv (v) = v−v
c
, after some large v. Let m (γ) = 1

cγ
1−c log 2

log γ . Then

fv (γ −m (γ))

fv (γ)
= γγ

c−(γ−m(γ))c
(
γ −m (γ)

γ

)−(γ−m(γ))c

= γ
γc
[
1−
(

1−m(γ)
γ

)c] [(
1− m (γ)

γ

)− γ
m(γ)

]m(γ)
γ

(γ−m(γ))c

= γcγ
c−1m(γ)+o(γc−1m(γ)) (e+ o (1))o(1) = 2 + o (1) ,

m′ (γ) =
1− c
c

γ−c
log 2

log γ
− 1

c
γ−c

log 2

(log γ)2 = o (1) ,

by which condition (1.2.12) holds.
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4. Suppose fv (v) = e−e
vc

, after some large v. Let m (γ) = 1
cγ

1−ce−γ
c
. Then

fv (γ −m (γ))

fv (γ)
= ee

γc [1−e(γ−m(γ))
c−γc ] = e

eγ
c
[
1−e−cm(γ)γ

c−1+o(m(γ)γc−1)
]

= ee
γc [cm(γ)γc−1+o(m(γ)γc−1)]

= e+ o (1) ,

m′ (γ) =
1− c
c

γ−ce−γ
c − e−γc = o (1) ,

by which condition (1.2.12) holds.

Proof of Lemma 1.2.13.2 By Lemma 1.2.7, we know that σ2
n = E

(
Λ2
ni

)
(1 + o (1)) . By

Lemma 1.2.8, σ2
n →∞. So we have

σ̂2
n

σ2
n

− 1 =
1
n

∑n
i=1

[
Λ2
ni − E

(
Λ2
ni

)]
E
(
Λ2
ni

) + op (1) . (1.10.23)

To show the conclusion, we only need to show that
1
n

∑n
i=1[Λ2ni−E(Λ2ni)]
E(Λ2ni)

= op (1) . To this end,

we show the variance of this term is o (1) .

var

(
1
n

∑n
i=1

[
Λ2
ni − E

(
Λ2
ni

)]
E
(
Λ2
ni

) )
=

1
nE
(
Λ4
ni

)
E
(
Λ2
ni

)2 + o (1) =

1
n

∫ γn
−γ0

E(DY ∗4)
f3v (v)

dv(∫ γn
−γ0

E(DY ∗2)
fv(v) dv

)2 + o (1) .

By condition (1.2.15), we have 1
n

∫ γn
−γ0

E(DY ∗2)
fv(v) dv � 1. By condition (1.2.15) and (1.2.14),

we have nfv (γn)→∞. Therefore

var

(
1
n

∑n
i=1

[
Λ2
ni − E

(
Λ2
ni

)]
E
(
Λ2
ni

) )
� 1

n

∫ γn

−γ0

E
(
DY ∗4

)
fv (v)

1

(nfv (v))2dv → 0.
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The convergence comes from condition (1.2.15) and nfv (γn) → ∞. Then conclusion is

obtained by Markov’s inequality.

Proof of Lemma 1.3.1.2 The proof is a modification of Masry (1996) and Li and Racine

(2007).

The object of interest is

sup
v∈[−γ0,γn]

∣∣∣f̂v (v)− fv (v)
∣∣∣ . (1.10.24)

Decompose equation (1.10.24):

sup
v∈[−γ0,γn]

∣∣∣f̂v (v)− fv (v)
∣∣∣ ≤ sup

v∈[−γ0,γn]

∣∣∣f̂v (v)− E
(
f̂v (v)

)∣∣∣︸ ︷︷ ︸
P1

+ sup
v∈[−γ0,γn]

∣∣∣E(f̂v (v)
)
− fv (v)

∣∣∣︸ ︷︷ ︸
P2

(1.10.25)

For P2, use equation (1.3.2)

P2 ≤ c1h
q, (1.10.26)

for some c1 > 0.

The rest of proof focus on P1. Since [−γ0, γn] is compact for fixed n, we can cover it by

Ln intervals {In,k}Lnk=1 with length ln = 2γn
Ln
. Let vn,k be an inner point of In,k. Then

P1 = max
1≤k≤Ln

sup
v∈Ik,n

∣∣∣f̂v (v)− E
(
f̂v (v)

)∣∣∣ ≤ max
1≤k≤Ln

sup
v∈Ik,n

∣∣∣f̂v (v)− E
(
f̂v (vk,n)

)∣∣∣︸ ︷︷ ︸
P11

+ max
1≤k≤Ln

∣∣∣f̂v (vk,n)− E
(
f̂v (vk,n)

)∣∣∣︸ ︷︷ ︸
P12

+ max
1≤k≤Ln

sup
v∈Ik,n

∣∣∣E(f̂v (vk,n)
)
− E

(
f̂v (v)

)∣∣∣︸ ︷︷ ︸ .
P13

For P12,

P12 = max
1≤k≤Ln

∣∣∣∑n

i=1
wni (vk,n)

∣∣∣ ,
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where

wni (vk,n) =
K
(
vk,n−vi

h

)
− E

(
K
(
vk,n−vi

h

))
nh

.

Easy to get that E
(
w2
ni (vk,n)

)
≤ c2

n2h
, for some c2 > 0. Then

p (P12 > η) = p

(
max

1≤k≤Ln

∣∣∣∑n

i=1
wni (vk,n)

∣∣∣ > η

)
≤ Ln sup

v∈[−γ0,γn]
p
(∣∣∣∑n

i=1
wni (v)

∣∣∣ > η
)
.

(1.10.27)

Let

λn = (nh lnn)
1
2 ,

then by Assumption 37 and ch < 1,

λn |wni (v)| ≤ cK
(

lnn

nh

) 1
2

= o (1) . (1.10.28)

Given equation (1.10.28), we apply the Bernstein inequality (e.g., Serfling, 1980, p.95, Masry

1996), then we have,

sup
v∈[−γ0,γn]

p
(∣∣∣∑n

i=1
wni (v)

∣∣∣ > η
)
≤ 2 exp

(
−λnη +

c2λ
2
n

nh

)
.

Let ηn = c3

(
lnn
nh

) 1
2 , c3 > c2

sup
v∈[−γ0,γn]

p
(∣∣∣∑n

i=1
wni (v)

∣∣∣ > ηn

)
≤ 2

nc3−c2
,

then combine equation (1.10.27), we can get

p (P12 > ηn) ≤ 2Ln
nc3−c2

. (1.10.29)
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By choosing c3 − c2 large enough, such that
∑∞

n=1 p (P12 > ηn) < ∞. By Borel-Cantelli

lemma, we know that

P12 = Op

((
lnn

nh

) 1
2

)
. (1.10.30)

By Lipschitz condition on K (·) ,

sup
v∈Ik,n

∣∣∣∣K (v − vih

)
−K

(
vk,n − vi

h

)∣∣∣∣ ≤ cK ln
h

,

which implies that

|P11| ≤
c4ln
h2

, |P13| ≤
c5ln
h2

,

for some c4, c5 > 0. Since by condition (1.3.5) and Lemma 1.10.1, γn = O (n) . Under

the constraints for equation (1.10.29) and ln = 2γn
Ln
, we could let c3 − c2 large enough and

Ln = nc6 large enough such that ln = n−c7 small enough such that

|P11| = Op

((
lnn

nh

) 1
2

)
, |P13| = Op

((
lnn

nh

) 1
2

)
. (1.10.31)

From equation (1.10.30) and (1.10.31), we have

|P1| ≤ |P11|+ |P12|+ |P13| = Op

((
lnn

nh

) 1
2

)
. (1.10.32)

By equation (1.10.26) and q > 1−ch
ch

, we have

P2 = Op

((
lnn

nh

) 1
2

)
. (1.10.33)

The conclusion follows by equation (1.10.32) and (1.10.33).
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Proof of Theorem 1.3.2.2 We can get that the residual term is op

(√
σ2n
n

)
by Lemma

1.3.1 and results in Khan and Tamer (2009) Appendix B.2. Let

Qn (zi, zj) =
1

2

(
mni

f2
v (vi)

+
mnj

f2
v (vj)

)
1

h
K

(
vj − vi
h

)
. (1.10.34)

Then not hard to verify that

1

n

∑n

i=1

(
mnif̂v (vi)

f2
v (vi)

)

=
1

n (n− 1)

∑n

i=1

∑n

j=1,j 6=i
mni

f2
v (vi)

1

h
K

(
vj − vi
h

)
=

1

n (n− 1)

∑n

i=1

∑n

j=1,j 6=i
1

2

(
mni

f2
v (vi)

+
mnj

f2
v (vj)

)
1

h
K

(
vj − vi
h

)
=

1

n (n− 1)

∑n

i=1

∑n

j=1,j 6=i
Qn (zi, zj) . (1.10.35)

To apply U-statistics technique on equation (1.10.35), according to Powell et al. (1989), we

need to verify E
[
Q2
n (zi, zj)

]
= o (n) . Since we know the rate of convergence here is

√
n
σ2n

instead of
√
n, not hard to see that we only need to verify a weaker condition E

[
Q2
n (zi, zj)

]
=

o
(
nσ2

n

)
.

First we need to get the order of E
[
Q2
n (zi, zj)

]
,

E
[
Q2
n (zi, zj)

]
� E

[
m2
ni

f4
v (vi)

1

h2
K2

(
vj − vi
h

)]
.
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and

E
[
m2
ni

f4
v (vi)

1

h2
K2

(
vj − vi
h

)]
= E

[
DiTniY

∗2
i

(γn − E (Un))2 f4
v (vi)

1

h2
K2

(
vj − vi
h

)]
�
∫ ∞
−∞

pD (vi)Tni
γ2
nf

3
v (vi)

∫ ∞
−∞

1

h2
K2

(
vj − vi
h

)
f (vj) dvjdvi

�
∫ 1

−1
K2 (u)

∫ γn

−γ0

pD (vi)

γ2
nf

2
v (vi)

1

h

fv (vi + hu)

fv (vi)
dvidu.

By Assumption 11 that fv(v+h)
fv(v) = 1 + o (1) , continue from last equality

E
[

a2
1i

f4
v (vi)

1

h2
K2

(
vj − vi
h

)]
� 1

hγ2
n

∫ γn

−γ0

pD (vi)

f2
v (vi)

dvi

Here we show

E
(
Q2
n (zi, zj)

)
nσ2

n

= o (1) , (1.10.36)

where the left hand side is of the same order as

γ2
n

n
∫ γn
−γ0

pD(v)
fv(v) dv

1

hγ2
n

∫ γn

−γ0

pD (v)

f2
v (v)

dv =
1

nhfv (γn)

∫ γn
−γ0

pD(v)
fv(v)

fv(γn)
fv(v) dv∫ γn

−γ0
pD(v)
fv(v) dv

.

We already know that nhfv (γn)→∞ and the other term on the right hand side is obviously

bounded. Thus equation (1.10.36) holds.

Given equation (1.10.36), standard U-statistics result implies that3

1

n

∑n

i=1

(
mnif̂v (vi)

f2
v (vi)

)
= E [Qn (zi, zj)]+

1

n

∑n

i=1
2 (E [Qn (zi, zj)| zi]− E [Qn (zi, zj)])+op

(√
σ2
n

n

)
.

(1.10.37)

3 It is got from taking expectation on the squared equation (1.10.35).
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Note that

2E [Qn (zi, zj)| zi] =
mni

f2
v (vi)

E
(

1

h
K

(
vj − vi
h

)∣∣∣∣ zi)+ E
(

mnj

f2
v (vj)

1

h
K

(
vj − vi
h

)∣∣∣∣ zi)
=

mni

fv (vi)

∫ 1

−1
K (u)

fv (vi + hu)

fv (vi)
du+

∫ 1

−1

E [mni| vi + hu]

fv (vi + hu)
K (u) du

=
mni

fv (vi)
+
E (mni| vi)
fv (vi)

+R1i = Λni + E (Λni| vi) +R1i (1.10.38)

where

R1i = Λni

[∫ 1

−1
K (u)

fv (vi + hu)

fv (vi)
du− 1

]
+

∫ 1

−1
[E (Λni| vi + hu)− E (Λni| vi)]K (u) du.

(1.10.39)

And

E [Qn (zi, zj)] = E (Λni) +O (hq) . (1.10.40)

by value of q and h specified in the lemma, easy to verify that O (hq) = O
(
n−

1
2

)
.

Use equation (1.10.38)

2 (E [Qn (zi, zj)| zi]− E [Qn (zi, zj)]) = Λni+E (Λni| vi)−2E (Λni)+R1i−E (R1i) . (1.10.41)

By Assumption 11,

R1i = op (Λni) , R2
1i = op

(
Λ2
ni

)
implying that

1

n

∑n

i=1
(R1i − E (R1i)) = op

(√
σ2
n

n

)
. (1.10.42)
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Combine equation (1.10.37), (1.10.40), (1.10.41), and (1.10.42), we have

1

n

∑n

i=1

(
mnif̂v (vi)

f2
v (vi)

)
=

1

n

∑n

i=1
[Λni + E (Λni| vi)− E (Λni)] + op

(√
σ2
n

n

)
. (1.10.43)

From equation (1.3.8) and that the residual term is asymptotic negligible, we have

1

n

∑n

i=1
Λ̂ni =

1

n

∑n

i=1
(2Λni − Λni − E (Λni| vi) + E (Λni)) + op

(√
σ2
n

n

)
.

Moving E (Λni) from left hand side to the right hand side gives

1

n

∑n

i=1

(
Λ̂ni − E (Λni)

)
=

1

n

∑n

i=1
(Λni − E (Λni| vi)) + op

(√
σ2
n

n

)
,

which is the conclusion of the theorem.

Proof of Theorem 1.3.4.2 Not hard to see that

E
{

[Λni − E (Λni|vi)]2
}
� σ2

n,

so to show that one term is asymptotically negligible is equivalent to show that term is

op

(√
σ2n
n

)
. From the expression (1.3.11), we know

1

n

∑n

i=1

(
Λ̂∗ni −

1

n

∑n

i=1
Λ̂ni

)
=

1

n

∑n

i=1

[
2m∗ni
fv (v∗i )

− 2mni

fv (vi)

]
− 1

n (n− 1)

∑n

i=1

∑n

j=1,j 6=i

[
Qn
(
z∗i , z

∗
j

)
−Qn (zi, zj)

]
+

1

n

∑n

i=1

m∗ni
(
fv (v∗i )− f̂v (v∗i )

)2

f2
v (v∗i ) f̂v (v∗i )

−
mni

(
fv (vi)− f̂v (vi)

)2

f2
v (vi) f̂v (vi)

 . (1.10.44)
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Let

Υ1 =
1

n

∑n

i=1

m∗ni
(
fv (v∗i )− f̂v (v∗i )

)2

f2
v (v∗i ) f̂v (v∗i )

−
mni

(
fv (vi)− f̂v (vi)

)2

f2
v (vi) f̂v (vi)

 ,

then by Lemma 1.10.3, we show that Υ1 = op

(√
σ2n
n

)
.

For the U-statistics, Let

Υ2 =
2

n2

∑n

i=1

∑n

j=1
[Qn (z∗i , zj)−Qn (zi, zj)− E (Qn (z∗i , zj)| z∗i ) + E (Qn (zi, zj)| zi)]

Υ3 =
1

n2

∑n

i=1

∑n

j=1

[
Qn
(
z∗i , z

∗
j

)
−Qn (z∗i , zj)−Qn

(
zi, z

∗
j

)
+Qn (zi, zj)

]
Υ4 = − 1

n2

∑n

i=1
[Qn (z∗i , z

∗
i )−Qn (zi, zi)] ,

Υ5 =
1

n2 (n− 1)

∑n

i=1

∑n

j=1,j 6=i

[
Qn
(
z∗i , z

∗
j

)
−Qn (zi, zj)

]
,

then

1

n (n− 1)

∑n

i=1

∑n

j=1,j 6=i

[
Qn
(
z∗i , z

∗
j

)
−Qn (zi, zj)

]
(1.10.45)

=
1

n2

∑n

i=1

∑n

j=1

[
Qn
(
z∗i , z

∗
j

)
−Qn (zi, zj)

]
+ Υ4 + Υ5

=
2

n2

∑n

i=1

∑n

j=1
[Qn (z∗i , zj)−Qn (zi, zj)] + Υ3 + Υ4 + Υ5.

=
2

n

∑n

i=1
[E (Qn (z∗i , zj)| z∗i )− E (Qn (zi, zj)| zi)] + Υ2 + Υ3 + Υ4 + Υ5,

where the third line holds because Qn (zi, zj) is symmetric in zi, zj . Υ5 is obviously as-

ymptotically negligible. Lemma 1.10.4 1.10.5 and 1.10.6 show that Υ2 = op

(√
σ2n
n

)
,

Υ3 = op

(√
σ2n
n

)
, and Υ4 = op

(√
σ2n
n

)
, respectively.
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Therefore, we have

1

n

∑n

i=1

(
Λ̂∗ni −

1

n

∑n

i=1
Λ̂ni

)
=

1

n

∑n

i=1

[
2m∗ni
fv (v∗i )

− 2mni

fv (vi)
(1.10.46)

−2E (Qn (z∗i , zj)| z∗i ) + 2E (Qn (zi, zj)| zi)] + op

(√
σ2
n

n

)
.

For the right hand side of equation (1.10.46), by equation (1.10.38), we know

1

n

∑n

i=1

[
2m∗ni
fv (v∗i )

− 2mni

fv (vi)
− 2E (Qn (z∗i , zj)| z∗i ) + 2E (Qn (zi, zj)| zi)

]
=

1

n

∑n

i=1

[
Λ∗ni − E (Λ∗ni| v∗i )−

(
1

n

∑n

i=1
[Λni + E (Λni| vi)]

)]
+

1

n

∑n

i=1
(R∗1i −R1i) ,

where 1
n

∑n
i=1 (R∗1i −R1i) = op

(√
σ2n
n

)
for the same reason as equation (1.10.42). The

Lindeberg condition for

1

n

∑n

i=1

[
Λ∗ni − E (Λ∗ni| v∗i )−

(
1

n

∑n

i=1
[Λni + E (Λni| vi)]

)]

hold by Assumptions in the theorem, and

var

(
1

n

∑n

i=1

[
Λ∗ni − E (Λ∗ni| v∗i )−

(
1

n

∑n

i=1
[Λni − E (Λni| vi)]

)])
=

1

n
E
{
E
[

[Λ∗ni − E (Λ∗ni| v∗i )]
2
∣∣∣ z1, ..., zn

]}
− 1

n
E

[(
1

n

∑n

i=1
[Λni − E (Λni| vi)]

)2
]

=
1

n
E
{

1

n

∑n

i=1
[Λni − E (Λni| vi)]2

}
− 1

n2
E
{

[Λni − E (Λni| vi)]2
}

=
1

n
E
{

[Λni − E (Λni| vi)]2
}

+ op

(√
σ2
n

n

)
, (1.10.47)

where the first and second equalities hold because i.i.d. of {z∗i }
n
i=1 conditional on {zi}

n
i=1 and

the i.i.d. of {zi}ni=1 itself. Therefore, by equation (1.10.46) and (1.10.47), and Lindeberg-
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Feller central limit theorem, we have

√
n

E
{

[Λni − E (Λni|vi)]2
} [ 1

n

∑n

i=1

(
Λ̂∗ni −

1

n

∑n

i=1
Λ̂ni

)]
d→ N (0, 1) .

Lemma 1.10.2 Under assumptions in Theorem 1.3.4,

1

nσ2
n

E
[
Q2
n (zi, zj)

]
→ 0, for i 6= j,

1

n2σ2
n

E
[
Q2
n (zi, zi)

]
→ 0.

Proof of Lemma 1.10.2.2 The first conclusion is already shown in equation (1.10.36).

For the second conclusion, by some simple calculations,

1

n2σ2
n

E
[
Q2
n (zi, zi)

]
� γ2

n

n2
∫ γn
−γ0

pD(v)
fv(v) dv

1

γ2
nh

2

∫ γn

−γ0

pD (v)

f3
v (v)

dv

=
1

n2h2f2
v (γn)

∫ γn
−γ0

pD(v)
fv(v)

f2v (γn)
f2v (v)

dv∫ γn
−γ0

pD(v)
fv(v) dv

,

where nhfv (γn)→∞ and

∫ γn
−γ0

pD(v)

fv(v)

f2v (γn)

f2v (v)
dv∫ γn

−γ0
pD(v)

fv(v)
dv

is bounded. So we have 1
n2σ2n

E
[
Q2
n (zi, zi)

]
→ 0.

Lemma 1.10.3 Under assumptions in Theorem 1.3.4, Υ1 = op

(√
σ2n
n

)
.
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Proof of Lemma 1.10.3.2 If we use {v∗i }
n
i=1 to estimate fv, then

E
[
f̂v (v)

]
= E

[
1

nh

∑n

i=1
K

(
v∗i − v
h

)]
= E

[
1

h
K

(
v∗i − v
h

)]
= E

{
E
[

1

h
K

(
v∗i − v
h

)∣∣∣∣ z1, ..., zn

]}
= E

{
1

nh

∑n

i=1
K

(
vi − v
h

)}
= fv (v) +

κq
p!
f (q)
v (v)hq.

For the same reason,

var
(
f̂v (v)

)
=
πfv (v)

nh
.

Both terms coincide with equation (1.3.2) and (1.3.3).

Therefore, we could similarly prove that Lemma 1.3.1 hold for f̂v (v) using {v∗i }
n
i=1.

Apply the results in Khan and Tamer (2009) Appendix B.2., we have the conclusion.

Lemma 1.10.4 Under assumptions in Theorem 1.3.4, Υ2 = op

(√
σ2n
n

)
.

Proof of Lemma 1.10.4.2 Υ2 could be rewritten as

Υ2 =
2

n

∑n

i=1

[
1

n

∑n

j=1
Qn (z∗i , zj)− E (Qn (z∗i , zj)| z∗i )

− 1

n2

∑n

i=1

∑n

j=1
Qn (zi, zj) +

1

n

∑n

i=1
E (Qn (zi, zj)| zi)

]
.

Then not hard to check that E (Υ2| z1, ..., zn) = 0, implying that E (Υ2) = 0. For the second
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moment of Υ2, terms inside the first summation is i.i.d. given z1, ..., zn, so

E
(

Υ2
2

∣∣ z1, ..., zn
)

=
4

n
E

{[
1

n

∑n

j=1
Qn (z∗i , zj)− E (Qn (z∗i , zj)| z∗i )

]2
∣∣∣∣∣ z1, ..., zn

}

− 4

n

(
1

n2

∑n

i=1

∑n

j=1
[Qn (zi, zj)− E (Qn (zi, zj)| zi)]

)2

=
4

n

{
1

n

∑n

i=1

[
1

n

∑n

j=1
Qn (zi, zj)− E (Qn (zi, zj)| zi)

]2
}

− 4

n

(
1

n2

∑n

i=1

∑n

j=1
[Qn (zi, zj)− E (Qn (zi, zj)| zi)]

)2

. (1.10.48)

Easy to see that when j 6= j′,

E
{

[Qn (zi, zj)− E (Qn (zi, zj)| zi)]
[
Qn
(
zi, zj′

)
− E

(
Qn
(
zi, zj′

)∣∣ zi)]} = 0,

when i 6= j 6= i′ 6= j′,

E
{

[Qn (zi, zj)− E (Qn (zi, zj)| zi)]
[
Qn
(
zi′ , zj′

)
− E

(
Qn
(
zi′ , zj′

)∣∣ zi′)]} = 0.

Therefore, taking unconditional expectation on equation (1.10.48), we can have

E
(
Υ2

2

)
=
c1

n2
E
[
Q2
n (zi, zj)

]
+
c2

n3
E
[
Q2
n (zi, zi)

]
, (1.10.49)

where i 6= j, and c1, c2 are some constants. By Lemma 1.10.2,

E
(
Υ2

2

)
= op

(
σ2
n

n

)

implying the conclusion by Markov inequality.
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Lemma 1.10.5 Under assumptions in Theorem 1.3.4, Υ3 = op

(√
σ2n
n

)
.

Proof of Lemma 1.10.5.2 We do this along the same line as in Lemma 1.10.4. First we

rewrite Υ3 as

Υ3 =
1

n2

∑n

i=1

∑n

j=1

[
Qn
(
z∗i , z

∗
j

)
− 1

n

∑n

j=1
Qn (z∗i , zj)

− 1

n

∑n

j=1
Qn
(
zi, z

∗
j

)
+

1

n2

∑n

i=1

∑n

j=1
Qn (zi, zj)

]
(1.10.50)

Not hard to check that E (Υ3| z1, ..., zn) = 0, implying that E (Υ3) = 0. Note that

E
(

Υ2
3

∣∣ z1, ..., zn
)

=
1

n4

∑n

i=1

∑n

j=1

∑n

i′=1

∑n

j′=1
E
(

Υ
(3)
ij Υ

(3)
i′j′

∣∣∣ z1, ..., zn

)
,

where Υ
(3)
ij is the i, j-th term inside equation (1.10.50). In the case when (i, j) 6= (i′, j′) and

(i, j) 6= (j′, i′) , easy to see that

E
(

Υ
(3)
ij Υ

(3)
i′j′

∣∣∣ z1, ..., zn

)
= 0,

implying

E
(

Υ
(3)
ij Υ

(3)
i′j′

)
= 0.

Therefore only n2 terms left inside the quadra-summation, and then we have

E
(
Υ2

3

)
=
c1

n2
E
[
Q2
n (zi, zj)

]
+
c2

n3
E
[
Q2
n (zi, zi)

]
,
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for some constants c1, c2, and i 6= j. By Lemma 1.10.2,

E
(
Υ2

3

)
= op

(
σ2
n

n

)

implying the conclusion by Markov inequality.

Lemma 1.10.6 Under assumptions in Theorem 1.3.4, Υ4 = op

(√
σ2n
n

)
.

Proof of Lemma 1.10.6.2 Rewrite Υ4 as

Υ4 = − 1

n2

∑n

i=1

[
Qn (z∗i , z

∗
i )− 1

n

∑n

i=1
Qn (zi, zi)

]
.

Then for the same reason as in Lemma 1.10.4 and 1.10.5,

E
(
Υ2

4

)
=

c

n3
E
[
Q2
n (zi, zi)

]
,

for some constant c. The conclusion follows similarly as in Lemma 1.10.4 and 1.10.5.

Proof of Theorem 1.4.1.2 Consider 1
n−1

∑
j 6=i Λ

(i)
nj

1
hK

(
xj−xi
h

)
, then the condition for

denominator could be verified similarly. We take xi as a constant here.

E

[(
Λ

(i)
nj

1

h
K

(
xj − xi
h

))2
∣∣∣∣∣xi
]

=

∫
Ωxj

∫ γn(xi)

−γ0

E
(
DjY

∗2
j

∣∣∣xj , vj)
h2f2 (vj |xj) (γn (xi)− E (Un|xi))2K

2

(
xj − xi
h

)
f (vj |xj) dvjfx (xj) dxj (1 + o (1))

=
πfx (xi) (1 + o (1))

hγ2
n (xi)

∫ γn(xi)

−γ0

E
(
DiY

∗2
i

∣∣xi, vi)
f (vi|xi)

dvi �
1

hγ2
n (xi)

∫ γn(xi)

−γ0

pD|xi (v)

f (v|xi)
dv.

89



To let Lindeberg condition hold, similar to Theorem 1.2.3, we analyze the following set

Ψ (γn (xi)) =

{
zj

∣∣∣∣∣nf2
v (vj |xj)h

∫ γn(xi)

−γ0

E
(
DiY

∗2
i

∣∣xi)
f (vi|xi)

dvi

<
cDjT

(i)
nj Y

∗2
j

ε
K2

(
xj − xi
h

)}

=

{
zj

∣∣∣∣∣nf2
v (vj |xi) (1 + o (1))h

∫ γn(xi)

−γ0

E
(
DiY

∗2
i

∣∣xi)
f (vi|xi)

dvi

<
cDjT

(i)
nj Y

∗2
j

ε
K2

(
xj − xi
h

)}
, (1.10.51)

where c is some positive constant, and the second equality holds because the support of

K (.) is [−1, 1] and fv (v|x+ h) = fv (v|x) (1 + o(1)). For the same reason as in Theorem

1.2.3, a suffi cient condition is

nf2
v (γn (xi)|xi)h

∫ γn(xi)

−γ0

pD|xi (v)

f (v|xi)
dv →∞. (1.10.52)

The second conclusion in this Lemma follows similarly as in Theorem 1.2.9.

Lemma 1.10.7 Suppose Assumption 35, 8, 12, 13, 14 15, and 37 hold. Let the residual

term be

R2i = −

(
Ê
(

Λ
(i)
ni

∣∣∣xi)− E(Λ
(i)
ni

∣∣∣xi))(Ê(Π
(i)
ni

∣∣∣xi)− E(Π
(i)
ni

∣∣∣xi))
E
(

Π
(i)
ni

∣∣∣xi) Ê(Π
(i)
ni

∣∣∣xi)
+
E
(

Λ
(i)
ni

∣∣∣xi)(Ê(Π
(i)
ni

∣∣∣xi)− E(Π
(i)
ni

∣∣∣xi))2

E
(

Π
(i)
ni

∣∣∣xi)2
Ê
(

Π
(i)
ni

∣∣∣xi) .

We choose bandwidth h = n−ch , for some 0 < ch < c∗h, kernel function with order q >
1−ch
ch
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and γn from condition (1.4.7), for those with f(v|x) that satisfy equation (1.4.6), we have

√
n

σ2
n

(
1

n

∑n

i=1
|R2i|

)
= op (1) .

Proof of Lemma 1.10.7.2 By Assumption 14 that X lies in a compact set with a density

bounded away from zero, modifying the results in Silverman (1978), and Li and Racine

(2007) a little bit, we can have

sup
∣∣∣Ê(Λ

(i)
ni

∣∣∣xi)− E(Λ
(i)
ni

∣∣∣xi)∣∣∣ = O

√ ln (n) σ̃2
n (xi)

n

 ,

sup
∣∣∣Ê(Π

(i)
ni

∣∣∣xi)− E(Π
(i)
ni

∣∣∣xi)∣∣∣ = O

√ ln (n) σ̃2
n (xi)

n

 .

Under condition (1.4.7), Ê
(

Λ
(i)
ni

∣∣∣xi) and Ê(Π
(i)
ni

∣∣∣xi) converge to E(Λ
(i)
ni

∣∣∣xi) and E(Π
(i)
ni

∣∣∣xi)
which are Op (1). Therefore,

√
n

σ2
n

(
1

n

∑n

i=1
|R2i|

)
= Op

(√
n

σ2
n

ln (n) σ̃2
n (xi)

n

)

= Op


 ln (n)2 ∫ γn(xi)

−γ0
pD|xi (v)

f(v|xi) dv

nhγ2
n (xi)


1
2


= Op

( ln (n)2

nhf (γn (xi)|xi)
f (γn (xi)|xi)

γ2
n (xi)

∫ γn(xi)

−γ0

pD|xi (v)

f (v|xi)
dv

) 1
2

 .

Under condition (1.4.6), (1.4.7) and assumption on h, it is easy to verify that

ln (n)2

nhf (γn (xi)|xi)
→ 0.
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And the following is obvious

f (γn (xi)|xi)
γ2
n (xi)

∫ γn(xi)

−γ0

pD|xi (v)

f (v|xi)
dv → 0.

So we have
√

n
σ2n

(
1
n

∑n
i=1 |R2i|

)
= o (1) .
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D Additional Tables and Pictures

Table 3: Symmetric Setting
Distribution of v MEAN (TRUE=0) STD BIAS RMSE

Panel A: n = 200, fv known
t(1) Half Trim -1.037 0.287 -1.037 1.076

Full Trim -0.409 0.376 -0.409 0.556
Double Trim -0.150 0.615 -0.150 0.633

OLS -0.755 0.200 -0.755 0.781
Parametric -0.001 0.330 -0.001 0.330

t(3) Half Trim -1.197 0.246 -1.197 1.222
Full Trim -0.561 0.376 -0.561 0.676

Double Trim -0.253 0.924 -0.253 0.958
OLS -0.910 0.191 -0.910 0.930

Parametric 0.009 0.394 0.009 0.394
t(4) Half Trim -1.191 0.237 -1.191 1.214

Full Trim -0.582 0.384 -0.582 0.698
Double Trim -0.316 0.953 -0.316 1.004

OLS -0.934 0.192 -0.934 0.954
Parametric 0.004 0.412 0.004 0.412

Panel B: n = 1000, fv known
t(1) Half Trim -0.667 0.140 -0.667 0.682

Full Trim -0.230 0.220 -0.230 0.318
Double Trim -0.075 0.373 -0.075 0.381

OLS -0.756 0.089 -0.756 0.761
Parametric 0.000 0.145 0.000 0.145

t(3) Half Trim -0.984 0.110 -0.984 0.990
Full Trim -0.387 0.262 -0.387 0.467

Double Trim -0.156 0.828 -0.156 0.843
OLS -0.911 0.086 -0.911 0.915

Parametric -0.003 0.175 -0.003 0.175
t(4) Half Trim -1.013 0.105 -1.013 1.018

Full Trim -0.411 0.275 -0.411 0.494
Double Trim -0.202 0.892 -0.202 0.915

OLS -0.931 0.086 -0.931 0.935
Parametric -0.001 0.178 -0.001 0.178

Panel C: n = 5000, fv known
t(1) Half Trim -0.402 0.077 -0.402 0.409

Full Trim -0.137 0.127 -0.137 0.186
Double Trim -0.046 0.220 -0.046 0.225

OLS -0.755 0.040 -0.755 0.756
Parametric -0.001 0.065 -0.001 0.065
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Table 3 (Continue): Symmetric Setting
Distribution of v MEAN (TRUE=0) STD BIAS RMSE

Panel C: n = 5000, fv known (continue)
t(3) Half Trim -0.770 0.057 -0.770 0.772

Full Trim -0.270 0.185 -0.270 0.327
Double Trim -0.115 0.708 -0.115 0.717

OLS -0.910 0.038 -0.910 0.911
Parametric 0.000 0.077 0.000 0.077

t(4) Half Trim -0.825 0.053 -0.825 0.827
Full Trim -0.298 0.206 -0.298 0.362

Double Trim -0.139 0.847 -0.139 0.858
OLS -0.932 0.038 -0.932 0.933

Parametric -0.001 0.080 -0.001 0.080

Panel D: n = 200, fv unknown
t(3) Half Trim -1.058 0.221 -1.058 1.081

Full Trim -0.602 0.362 -0.602 0.702
Double Trim -0.333 0.856 -0.333 0.919

t(4) Half Trim -1.074 0.223 -1.074 1.097
Full Trim -0.617 0.369 -0.617 0.719

Double Trim -0.350 0.929 -0.350 0.992

Panel E: n = 1000, fv unknown
t(3) Half Trim -0.935 0.105 -0.935 0.941

Full Trim -0.408 0.263 -0.408 0.486
Double Trim -0.198 0.749 -0.198 0.774

t(4) Half Trim -0.973 0.103 -0.973 0.978
Full Trim -0.431 0.273 -0.431 0.510

Double Trim -0.230 0.874 -0.230 0.904

Panel F: n = 5000, fv unknown
t(3) Half Trim -0.771 0.057 -0.771 0.773

Full Trim -0.278 0.186 -0.278 0.334
Double Trim -0.140 0.654 -0.140 0.668

t(4) Half Trim -0.824 0.053 -0.824 0.826
Full Trim -0.305 0.205 -0.305 0.367

Double Trim -0.153 0.833 -0.153 0.847

Notes: True mean value is 0. MEAN, STD, BIAS, RMSE are the mean value, standard deviation, bias,

and root mean square errors of the estimates, respectively.
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Table 4: Asymmetric Setting
Distribution of v MEAN (TRUE=0) STD BIAS RMSE

Panel A: n = 200, fv known
t(1) Half Trim -0.757 0.365 -0.757 0.840

Full Trim -0.276 0.299 -0.276 0.407
Double Trim -0.063 0.348 -0.063 0.354

OLS -0.311 0.189 -0.311 0.363
Parametric -0.137 0.223 -0.137 0.261

t(3) Half Trim -0.837 0.426 -0.837 0.939
Full Trim -0.496 0.315 -0.496 0.587

Double Trim -0.141 0.608 -0.141 0.624
OLS -0.527 0.214 -0.527 0.569

Parametric -0.293 0.312 -0.293 0.428
t(4) Half Trim -0.836 0.417 -0.836 0.934

Full Trim -0.521 0.318 -0.521 0.610
Double Trim -0.174 0.628 -0.174 0.651

OLS -0.567 0.220 -0.567 0.608
Parametric -0.332 0.332 -0.332 0.469

Panel B: n = 1000, fv known
t(1) Half Trim -0.445 0.132 -0.445 0.464

Full Trim -0.083 0.148 -0.083 0.170
Double Trim -0.026 0.221 -0.026 0.223

OLS -0.311 0.082 -0.311 0.322
Parametric -0.136 0.097 -0.136 0.167

t(3) Half Trim -0.682 0.131 -0.682 0.694
Full Trim -0.183 0.209 -0.183 0.278

Double Trim -0.063 0.505 -0.063 0.509
OLS -0.527 0.096 -0.527 0.535

Parametric -0.288 0.135 -0.288 0.319
t(4) Half Trim -0.713 0.134 -0.713 0.726

Full Trim -0.219 0.234 -0.219 0.320
Double Trim -0.088 0.558 -0.088 0.565

OLS -0.566 0.098 -0.566 0.575
Parametric -0.330 0.147 -0.330 0.361

Panel C: n = 5000, fv known
t(1) Half Trim -0.186 0.060 -0.186 0.195

Full Trim -0.045 0.078 -0.045 0.090
Double Trim -0.015 0.122 -0.015 0.123

OLS -0.313 0.037 -0.313 0.315
Parametric -0.137 0.043 -0.137 0.143
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Table 4 (Continue): Asymmetric Setting
Distribution of v MEAN (TRUE=0) STD BIAS RMSE

Panel C: n = 5000, fv known (continue)
t(3) Half Trim -0.551 0.060 -0.551 0.555

Full Trim -0.111 0.131 -0.111 0.171
Double Trim -0.031 0.413 -0.031 0.414

OLS -0.526 0.043 -0.526 0.528
Parametric -0.288 0.061 -0.288 0.294

t(4) Half Trim -0.605 0.059 -0.605 0.608
Full Trim -0.132 0.154 -0.132 0.203

Double Trim -0.051 0.501 -0.051 0.504
OLS -0.567 0.044 -0.567 0.569

Parametric -0.329 0.064 -0.329 0.335

Panel D: n = 200, fv unknown
t(3) Half Trim -0.838 0.430 -0.838 0.942

Full Trim -0.488 0.319 -0.488 0.583
Double Trim -0.175 0.550 -0.175 0.577

t(4) Half Trim -0.834 0.428 -0.834 0.938
Full Trim -0.514 0.318 -0.514 0.604

Double Trim -0.214 0.583 -0.214 0.621

Panel E: n = 1000, fv unknown
t(3) Half Trim -0.671 0.127 -0.671 0.682

Full Trim -0.185 0.212 -0.185 0.282
Double Trim -0.083 0.463 -0.083 0.471

t(4) Half Trim -0.707 0.132 -0.707 0.719
Full Trim -0.226 0.239 -0.226 0.329

Double Trim -0.107 0.547 -0.107 0.558

Panel F n = 5000, fv unknown
t(3) Half Trim -0.545 0.061 -0.545 0.549

Full Trim -0.111 0.133 -0.111 0.174
Double Trim -0.044 0.402 -0.044 0.404

t(4) Half Trim -0.601 0.060 -0.601 0.604
Full Trim -0.134 0.155 -0.134 0.205

Double Trim -0.064 0.488 -0.064 0.492

Notes: True mean value is 0. MEAN, STD, BIAS RMSE are the mean value, standard deviation, bias, and

root mean square errors of the estimates, respectively.
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Figure 1.2: Monte Carlo Results in the First Experiment with V Distributed as t(3)
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Chapter 2

Identifying the Average Treatment

Effect in a Two Threshold Model

With Arthur Lewbel

2.1 Introduction

Suppose an outcome Y is given by

Y = Y0 + (Y1 − Y0)D (2.1.1)

where Y0 and Y1 are potential outcomes as in Rubin (1974), and D is a binary treatment

indicator. Generally, point identification of the average treatment effect (ATE) E (Y1 − Y0)

requires either i) conditional or unconditional unconfoundedness, or ii) an instrument for D

that can drive D to zero and to one (with probability one), or iii) functional restrictions on

the joint distribution of Y0, Y1 and D. In contrast, we provide a novel point identification
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result, and an associated estimator, for the ATE in a model where none of these conditions

hold.

Let V be a continuous instrument that affects the probability of treatment but not the

outcome, and let X denote a vector of other covariates. In our model, D is given by a

structure that is identical to one of the middle choices in an ordered choice model, that is,

D = I [α0 (X) ≤ V + U ≤ α1 (X)] (2.1.2)

where I (·) is the indicator function that equals one if · is true and zero otherwise, U is a

latent error term, and α0 (X) and α1 (X) are unknown functions. The joint distribution of

(U, Y0, Y1 | X) is assumed to be unknown.

In the special case of this model where α0 (X) and α1 (X) are linear with the same

slope, this is equivalent to treatment being given by the more standard looking ordered

choice specification

D = I
(
δ0 ≤ X ′β1 + V + U ≤ δ1

)
for constants δ0, δ1, and β1. However, we don’t impose these linearity restrictions. In

addition, unlike standard ordered choice models, we allow the distribution of U to depend

on X in completely unknown ways. Equivalently, the covariates X can all be endogenous

regressors, with no available associated instruments. The only covariate we require to be

exogenous is V .

The proposed model is confounded, because the unobservable U that affects D can be

correlated with Y0 and Y1, with or without conditioning on X. No parametric or semi-

parametric restrictions are placed on the distribution of (U, Y0, Y1 | X), so treatment effects
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are not identified by functional form restrictions on the distributions of unobservables. We

assume V has large support, but the model is not identified at infinity. This is because both

very large and very small values of V drive the probability of treatment close to zero, but no

value of V (or of other covariates) drives the probability of treatment close to one. So in this

framework none of the conditions that are known to permit point identification of the ATE

hold. Even a local ATE (LATE) is not identified in the usual way, because monotonicity of

treatment with respect to the instrument cannot hold in the proposed model. Nevertheless,

we show that the ATE is identified in our model, using a special regressor argument as

in Lewbel (1998, 2000a, 2007). We also provide conditions under which a corresponding

simple estimator of the ATE converges at rate root n.

To illustrate the model and foreshadow our later empirical application, suppose the

outcome Y is a measure of innovation in an industry and D = 1 when a latent measure

of competitiveness in the industry lies between two estimated thresholds, otherwise D = 0.

According to the "Inverted-U" theory in Aghion, Bloom, Blundell, Griffi th, and Howitt

(2005) (hereafter ABBGH), industries with intermediate levels of competitiveness have more

innovation than those with low levels or high levels of competition. As in Revenga (1990,

1992), Bertrand (2004), and Hashmi (2013), we use a source-weighted average of industry

exchange rates as an instrumental variable for competition, which we take to be our special

regressor V . This instrument is computed from the weighted average of the US dollar

exchange rate with the currencies of its trading partners. When V is low, products from the

U.S. becomes relatively cheaper, thereby reducing competition by driving out competitors.

The treatment effect we estimate is therefore the gains in innovation that result from facing

moderate (rather than low or high) levels of competition.
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More generally, our estimator is potentially useful in applications where one wants to

assess the impact of a treatment defined as a moderate level of some activity, versus low or

high levels. Many such treatments exist. For example, one might want to assess the effects

of moderate levels of BMI or of alcohol consumption on a variety of health outcomes (see,

e.g., Cao et al. 2014, Koppes et al. 2005, and Solomon et al. 2000). Other examples are

the effect of moderate levels of financial development on the growth rates of countries (see

Cecchetti and Kharroubi 2012) or the effects of moderate levels of financial regulation on

measures of financial instability (see Huang 2015).

Often one might be interested in comparing mean outcomes of the middle group, Y1,

with just the high group (those above the upper threshold) or just the low group (those

below the lower threshold). We provide an extension of our results that combines our main

identification theorem with identification at infinity arguments as in Heckman, Urzua and

Vytlacil (2006) to estimate these additional treatment effects. This would be useful for

applications such as returns to education, where, e.g., treatment could correspond to not

finishing high school (the low group), finishing high school (the middle group), and having

some college (the high group). Another extension we consider is identification in a model

where V in the treatment equation is replaced with ς (V ) for some unknown function ς.

Our empirical application uses panel data. We extend our method to show identification

of E (Y1it − Y0it) in the panel data model

Yit = ãi + b̃t + Y0it + (Y1it − Y0it)Dit, (2.1.3)

Dit = I(α0(xit) ≤ ai + bt + Vit + Uit ≤ α1(xit)), (2.1.4)
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where ai, ãi, bt, b̃t are individual and time dummies in selection and outcome equations.

If potential outcomes are given by Ỹdit = ãi + b̃t + Ydit, then our estimand E (Y1it − Y0it)

equals a standard ATE E
(
Ỹ1it − Ỹ0it

)
. Alternatively, given equation (2.1.3), E (Y1it − Y0it)

can be interpreted as a generalization of difference-in-difference (DID) estimation, where

unlike standard DID, here Dit can be endogenous and hence correlated with the potential

outcomes, so unconfoundedness does not hold. Equation (2.1.3) is also a generalization of

Manski and Pepper (2003).1 Despite the presence of fixed effects (incidental parameters)

in the nonlinear selection equation, we attain a rate root nT estimate for the ATE in this

panel model. We also consider other panel specifications, including dynamic panels.

The next section is a literature review. In section 3 we provide formal assumptions of

our model, prove identification, and establish the consistency and asymptotic normality of

our cross section and panel estimators. In section 4 we empirically apply our estimator to

investigate the relationship between competition and innovation. In this section we also

implement simulation experiments to evaluate small sample properties of our estimators,

using a Monte Carlo design that replicates features of our empirical data. This is followed

by an extensions section and conclusions. The paper additionally includes some appen-

dices. Appendix A provides an evaluation of how the robustness of our approach compares

to more structural models in the presence of measurement errors. Appendix B provides

some additional extensions, and Appendix C gives additional technical assumptions and

proofs. Finally, in a supplemental appendix separate from the main paper, we provide more

details regarding application of relatively standard semiparametric methods for deriving the

1Manski and Pepper (2003) consider the linear treatment response model Yit = αi+βDit+γt+εit where
αi is the individual fixed effect, γt is the time trend, εit is the random disturbance, and β defines the ATE.
Our model generalizes theirs by replacing their fixed ATE β with a random coeffi cient and replacing the
time trend γt with time fixed effects b̃t.
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limiting distribution of our estimators, and other technical material.

2.2 Literature Review

Existing methods for point identifying ATE’s are discussed in surveys such as Heckman

and Vytlacil (2007a, 2007b) and Imbens and Wooldridge (2009). The early treatment

effects literature achieves identification by assuming unconfoundedness, see, e.g., Cochran

and Rubin (1973), Rubin (1974), Barnow, Cain, and Goldberger (1980), Rosenbaum and

Rubin (1983), and Heckman and Robb (1984). As noted by ABBGH, competition is an

endogenous regressor, e.g., successful innovations increase market power and may thereby

reduce competition. Much of what determines both is diffi cult to observe or even define,

making it very unlikely that unconfoundedness would hold, regardless of what observable

covariates one conditions upon.

Without unconfoundedness, instrumental variables have been used in a variety of ways

to identify treatment effects. Instead of estimating the ATE, Imbens and Angrist (1994)

show identification of a local average treatment effect (LATE), which is the ATE for a

subpopulation called compliers (the definition of who compliers are, and hence the LATE,

depends on the choice of instrument). An assumption for identifying the LATE is that

the probability of treatment increase monotonically with the instrument. This assumption

does not hold in our application, since both increasing or decreasing V suffi ciently causes

the probability of treatment to decrease. Although he does not provide an example, an

implication of Kitagawa (2009) is that, if point identification of the ATE based only on

an exogenous instrument were possible without identification at infinity, then instrument

nonmonotonicity would be necessary. Our model possesses this necessary nonmonotonicity.
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Building on Björklund and Moffi tt (1987), Heckman and Vytlacil (1999, 2005, 2007a) de-

scribe identification of a marginal treatment effect (MTE) as a basis for program evaluation.

The MTE is based on having a continuous instrument, as we do. However, identification of

the ATE using the MTE requires the assumption that variation in V can drive the proba-

bility of treatment to either zero or one, and hence depends on an identification at infinity

argument. As we have already noted, identification at infinity is not possible in our model,

since no value of V can drive the probability of treatment to one.

A few other papers consider identification of treatment effects in ordered choice models,

such as Angrist and Imbens (1995) and Heckman, Urzua, and Vytlacil (2006). However,

these papers deal with models having more information than ours, i.e, observing extreme

as well as middle choices, and they consider identification of LATE and MTE, respectively,

not ATE. In an extension section, we will consider combining the information obtained by

these approaches with our estimator.

The way we achieve identification here is based on special regressor methods, particularly

Lewbel (2007), which exploits a related result to identify a class of semiparametric selection

models. The instrumental variable V needs to be continuous, conditionally independent of

other variables and have a large support, which are all standard assumptions for special

regressor based estimators. See, e.g., Dong and Lewbel (2015), Lewbel, Dong, and Yang

(2012), and Lewbel (2012). Some of the previously discussed papers also implicitly assume

a special regressor, notably, Heckman, Urzua, and Vytlacil (2006).

In addition to the ATE, our methods can be immediately extended to estimate quantile

treatment effects as in Abadie, Angrist, and Imbens (2002), Chernozhukov and Hansen

(2005). Bitler, Gelbach, and Hoynes (2006), or Firpo (2006). This is done by replacing Y
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with I(Y ≤ y) in our estimator.

In the panel context of equations (2.1.3) and (2.1.4), if unconfoundedness held so that

(Y0it, Y1it) ⊥ Dit | Xit, and if in addition ai and bt were absent from the selection equation,

then one could achieve identification via difference-in-difference methods, as in Ashenfelter

(1978), Ashenfelter and Card (1985), Cook and Tauchen (1982, 1984), Card (1990), Meyer,

Viscusi, and Durbin (1995), Card and Krueger (1993, 1994) and many others. In contrast,

we obtain identification without unconfoundedness, and while allowing for ai and bt fixed

effects. Analogous to Honore and Lewbel (2002), in panel data our identification and

estimation strategy overcomes the incidental parameters problem associated with these

fixed effects, and we attain a rate root nT estimate for the ATE.

Chernozhukov et al. (2009) discuss partial identification of marginal effects in nonlinear

panel data, while Manski and Pepper (2013) provide partial identification of the (ATE)

in a panel data context. Manski and Pepper also consider additional assumptions needed

for point identification of the ATE in a panel setting (see their section 3.1). Our panel

data point identification requires some but not all of the assumptions they list as needed,

including an average treatment response that is time-invariant, and the instrument exclusion

restriction in the outcome equation.

2.3 The Model

In this section we first prove identification of the ATE in our model. The proof we provide

is constructive, and we next describe a corresponding estimator. This is followed by some

extensions, in particular, a panel data estimator with fixed effects. The remaining parts of

this section then provide limiting distribution theory for the estimators.
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2.3.1 Identification and Estimation

Let Ω· and f· denote supports and density functions for random variable ·, e.g., Ωx and fx

are the support and density function for the random variable X. Let Ê(·) denote the sample

mean of the argument inside, and let f̂(·) and Ê(·|·) denote nonparametric Nadayara-Watson

kernel density and kernel regression estimators, with bandwidth denoted h. For notational

convenience, h is assumed the same for all covariates. We use R to denote any set of residual

terms that are proven to be asymptotically negligible for our derived limiting distributions.

Assumption 18 We observe realizations of an outcome Y , binary treatment indicator D,

a covariate V , and a k × 1 covariate vector X. Assume the outcome Y and treatment

indicator D are given by equations (2.1.1) and (2.1.2) respectively, where α0 (X) and α1 (X)

are unknown threshold functions with α0 (X) < α1 (X), U is an unobserved latent random

error, and Y0 and Y1 are unobserved random untreated and treated potential outcomes. The

joint distribution of (U, Y0, Y1), either unconditional or conditional on X, is unknown.

Assumption 19 Assume E(Yj |X,V, U) = E (Yj |X,U) for j = 0, 1, and V ⊥ U | X. As-

sume V | X is continuously distributed with probability density function f(V | X). For

all x ∈ supp (X), the supp(V | X = x) is an interval on the real line, and the inter-

val [inf supp (α0(X)− U | X = x) , sup supp (α1(X)− U | X = x)] is contained in supp(V |

X = x).

Assumption 18 defines the model, while Assumption 19 says that V is an instrument,

in that V affects the probability of treatment but not outcomes (after conditioning on X).

The instrument V is also continuously distributed, and has a large enough support so that,

for any values U and X may take on, V can be small enough to make D = 0 or large enough
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to make D = 0. But no value of V and X will force D = 1, so identification at infinity is

not possible.2

Remark 2.3.1 For identification, the assumption that supp(V | X = x) equals an interval

can be relaxed, as long as this support suitably contains α0(x) − U and α1(x) − U for all

x. We maintain the single interval support to simplify notation in the identification proofs,

and to apply the testing results in Section 2.5.1.

In this model, obtaining identification by imposing unconfoundedness would be equiva-

lent to assuming that U was independent of Y1−Y0, possibly after conditioning on covariates

X. However, we do not make any assumption like this, so unconfoundedness does not hold.

Alternatively, one might parametrically model the dependence of Y1 − Y0 on U to identify

the model. In contrast we place no restrictions on the joint distribution of (U, Y0, Y1), either

unconditional or conditioning upon X.

Assumption 20 For some positive constant τ , define the trimming function Iτ (v, x) =

I[inf supp(V |X = x)+τ ≤ v ≤ sup supp(V |X = x)−τ ]. Assume the interval [inf supp (α0(X)− U | X = x) ,

sup supp (α1(X)− U | X = x)] is contained in {v : Iτ (v, x) = 1}.

Assumption 21 Assume there exists a positive constant τ̃ < τ such that, for all v,x having

Iτ̃ (v, x) = 1, the density f(v|x) is bounded away from zero (except possibly on a set of

measure zero) and is bounded.

Assumption 20 is not necessary for identification, but will be convenient for simplifying

the limiting distribution theory for the estimator we construct based on the identification. In
2 If instead of the ordered choice D = I [α0 (X) ≤ V + U ≤ α1 (X)] we had a threshold crossing binary

choice D = I (α0 (X) ≤ V + U), then Assumption 19 would suffi ce to use "identification at infinity" to
identify the treatment effect, by using data where V was arbitrarily low to estimate E (Y0 | X) and data
where V was arbitrarily high to estimate E (Y1 | X). However, in our ordered choice model identification at
infinity is not possible, since no value of V guarantees with high probability that Y will equal Y1.
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particular, this assumption permits fixed trimming that avoids boundary bias in our kernel

estimators. This assumption could be relaxed using asymptotic trimming arguments. The

requirement that f(v|x) is bounded away from zero in Assumption 21 might also be relaxed

via asymptotic trimming (e.g., by including another trimming indicator I (f(v|x) > bn) ,

bn → 0, as n→∞). To save notation, we let Iτ ≡ Iτ (V,X). Define the function ψ (X) by

ψ (X) ≡ E [IτDY/f(V | X) | X]

E [IτD/f(V | X) | X]
− E [Iτ (1−D)Y/f(V | X) | X]

E [Iτ (1−D) /f(V | X) | X]
(2.3.1)

Theorem 2.3.2 Let Assumptions 18, 19 hold with Iτ = 1, or let Assumptions 18, 19 20

and 21 hold. Then

ψ (X) = E (Y1 − Y0 | X)

The theorem is proved in Appendix C. Theorem 2.3.2 is related to Lewbel (2007),

however, that paper estimates a semiparametric selection model, while we identify and

estimate a nonparametric conditional treatment effect. This includes identification for the

untreated E (Y0|X) which is not considered in Lewbel (2007). We later provide more results

that do not have analogs in Lewbel (2007), including, in Section 2.3.3, identification of a

panel data model with fixed effects.

Theorem 2.3.2 shows identification of the conditional ATE since ψ (X) is defined in terms

of moments and densities of observed variables. The first part of the Theorem shows that

just Assumptions 18 and 19 are needed for identification. The second part of the Theorem,

giving identification including the additional Assumptions 20 and 21, is convenient because

inclusion of the trimming term Iτ simplifies the asymptotics of the associated estimator.
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It follows immediately from Theorem 2.3.2 that Ψ ≡ E [ψ (X)] equals the ATE, which

is therefore identified and can be consistently estimated by Ψ̂ = 1
n

∑n
i=1 ψ̂ (xi) where

ψ̂ (x) =
Ê
[
IτDY/f̂(V | X) | X = x

]
Ê
[
IτD/f̂(V | X) | X = x

] − Ê
[
Iτ (1−D)Y/f̂(V | X) | X = x

]
Ê
[
Iτ (1−D) /f̂(V | X) | X = x

] ,

with uniformly consistent kernel estimators f̂ and Ê.

To provide some intuition for Theorem 2.3.2, suppose for the moment that X was empty,

and consider

E (D | U, Y0, Y1) = E (I [α0 − U ≤ V ≤ α1 − U ] | U, Y0, Y1)

=

∫
supp(V )

I [α0 − U ≤ v ≤ α1 − U ] f (v | U, Y0, Y1) dv =

∫ α1−U

α0−U
f (v|Y0, Y1) dv = Fv|Y0,Y1 (α1 − U)−Fv|Y0,Y1 (α0 − U)

where Fv|Y0,Y1 is the cumulative density function of V conditional on Y0, Y1. We have

confoundedness because the above expression depends on U , which is correlated with Y0

and Y1. However, if V were uniformly distributed, then the above expression would simplify

to E (D | U, Y0, Y1) = α1 − α0, which is independent of (U, Y0, Y1). So if V were uniformly

distributed, the model would be unconfounded. Moreover, in that case f would be constant

and equation (2.3.1) would reduce to the standard propensity score weighted estimator of

the (unconfounded) average treatment effect. Scaling by the density of V in equation (2.3.1)

is equivalent to converting to a uniform V , and so is equivalent to converting our model into

one that is unconfounded. Density weighting is a feature of some special regressor estimators

including Lewbel (2000a, 2007), and indeed V has the properties of a special regressor,

including appearing additively to unobservables in the model, a continuous distribution,

110



large support, and conditional independence.

2.3.2 Small Extensions

The above identification and associated estimator can be extended to handle independent

random thresholds, that is, all the results go through if the deterministic functions α1 (X)

and α0 (X) are replaced with random variables α1 and α0 (having distributions that could

depend on X), provided that (α0, α1) ⊥ (U, Y1, Y0) | X.

Our results also immediately extend to permit estimation of quantile treatment ef-

fects. The proof of Theorem 2.3.2 shows that the first term in equation (2.3.1) equals

E (Y1 | X) and the second term equals E (Y0 | X). Suppose we strengthen the assump-

tion that E (Yj | X,V, U) = E (Yj | X,U) for j = 0, 1 to say that Fj (Yj | X,V, U) =

Fj (Yj | X,U), where Fj is the distribution function of Yj for j = 0, 1. Then one can apply

Theorem 2.3.2 replacing Y with I (Y ≤ y) for any y, and thereby estimate E (I (Yj ≤ y) | X) =

Fj (y | X). Given this identification and associated estimators for the distributions Fj (y | X)

of the counterfactuals Yj , we could then immediately recover quantile treatment effects.

2.3.3 Panel Data

We now consider a panel data version of the model, allowing for fixed effects. Let the model

of treatment be

Dit = I(α0(xit) ≤ ai + bt + Vit + Uit ≤ α1(xit)), (2.3.2)

and let the outcome equation be

Yit = ãi + b̃t + Y0it + (Y1it − Y0it)Dit, (2.3.3)
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where ai and ãi equal the coeffi cients of individual i dummy variables, and where bt and b̃t

equal the coeffi cients time dummies in the two equations. For example, bt is the coeffi cient

of a dummy variable that equals one for all observations in time period t and zero otherwise.

As before, the observables in the model are the outcome Y, treatment D, instrument

V, and covariate vector X. We assume that ai, bt, ãi, and b̃t for all i and t are random

variables, in that we make some mild assumptions regarding their distribution. However,

we interpret ai, bt, ãi, and b̃t as fixed effects, in that their values will not be estimated, their

distribution is not be parameterized or estimated, and they are permitted to correlate with

both X and with the unobservables in the model in unknown ways.

Assumption 22 For all individuals i and time periods t, ai, bt, ãi, b̃t are random variables.

E
(
ãi + b̃t + Yjit|Xit, Vit, ai, bt, Uit

)
= E

(
ãi + b̃t + Yjit

∣∣∣Xit, ai, bt, Uit

)
,

for j = 0, 1. Vit ⊥ ai, bt, Uit|Xit.

Remark 2.3.3 The identification permits having ai, bt, ãi, and b̃t be pre-determined

constants.3 We more generally let ai, bt, ãi, and b̃t for all i and t be random variables

(which can be correlated with Xit) to clarify the minimum restrictions we require of them,

which is the above conditional independence with Vit. Note that the joint distribution

of (ai, bt, ãi, b̃t, Uit, Y0it, Y1it) conditional or unconditional on Xit, is unknown. A similar

assumption regarding fixed effects in discrete choice panel models appears in Honore and

Lewbel (2002).

Assumption 23 Assumption 20 holds after replacing supp[α0(X) − U,α1(X) − U ] with

3We thank a referee for pointing this out.
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supp[α0(xit)− ãi − b̃t − Uit, α1(xit)− ãi − b̃t − Uit]. We similary define Iτ (vit, xit) and let

Iτit ≡ Iτ (vit, xit) .

Assumptions 22 and 23 are essentially the panel data versions of Assumptions 19 and

20.

Theorem 2.3.4 Let Assumption 18, 21, 22, and 23 hold for each individual i in each time

period t. Let fvt denote the density of V in time t. Then

E[IτitDitYit/fvt(Vit|Xit)|Xit]

E[IτitDit/fvt(Vit|Xit)|Xit]
− E[Iτit(1−Dit)Yit/fvt(Vit|Xit)|Xit]

E[Iτit(1−Dit)/fvt(Vit|Xit)|Xit]
= E(Y1it − Y0it|Xit).

(2.3.4)

This theorem is proved in Appendix C. Analogous to Theorem 2.3.2, identification is

also possible without the trimming Iτit.

In typical panel data models, removing individual specific fixed effects requires some

type of differencing over time, and similarly for removing time fixed effects. Moreover, in

nonlinear models such differencing is generally not possible and fixed effects need to be

estimated, leading to the incidental parameters problem. However, despite the presence

of fixed effects in both the linear outcome equation (2.3.3) and the nonlinear treatment

equation (2.3.2), we have that equation (2.3.4) is virtually the same as the expression for

ψ(X) in equation (2.3.1). As a result, no differencing or incidental parameter estimation is

required. The estimator for panel data, corresponding to equation (2.3.4) in Theorem 2.3.4

is essentially identical to the cross section estimator ψ̂ (x) based on Theorem 2.3.2.

The intuition for this result is that the same density weighting that eliminates the

confounding effects of U in the cross section also happens to remove the nonlinear treatment
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equation fixed effects, and the differencing of the two terms that appear in equation (2.3.4)

removes the linear outcome equation fixed effects.

As in the cross section case, estimation based on equation (2.3.4) simply replaces fvt

with a kernel estimator of this density, and replaces the expectations with averages, or

nonparametric regressions if elements of Xit are continuous. If the distribution of V varies

by time then the density of fvt must be estimated separately in each time period, but

averaging or nonparametric regressions is done across all individuals in all time periods. No

differencing or other techniques for removing the fixed effects are required.

Identification and estimation based on more general panel models is possible. We present

one such extension, allowing for dynamic effects, in Appendix B.

2.3.4 Asymptotic Normality

Our identification theorems permit fixed trimming, indexed by Iτi in the cross section

and Iτit in the panel. This trimming allows our limiting distribution derivation to follow

standard arguments like those in Newey and McFadden (1994), avoiding the complications

associated with kernel estimator bias when V is near the boundary of its support. As

a result, we can estimate ψ(X) at the standard nonparametric rate associated with the

dimension of X. As noted briefly in Lewbel (2000b) and discussed more thoroughly in

Khan and Tamer (2010), without fixed trimming obtaining standard convergence rates

with inverse density weighted estimators like ours would generally require V to have very

thick tails. Our fixed trimming avoids these issues.

For this section, standard assumptions regarding kernels, bandwidths and smoothness,

as well as detailed proofs, are provided in Appendix C. Assumptions that require some

discussion are kept in the main text.
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Cross Section Asymptotics

We first derive properties for the cross section version of our estimator. Let x be an interior

point in the support of X. Define

h1i ≡
DiIτiYi
f(vi|xi)

, g1i ≡
DiIτi
f(vi|xi)

, h2i ≡
(1−Di)IτiYi
f(vi|xi)

, g2i ≡
(1−Di) Iτi
f(vi|xi)

, ψ1(x) ≡ E (h1i|x)

E (g1i|x)
, ψ2(x) ≡ E (h2i|x)

E (g2i|x)

From the proof of Theorem 2.3.2, ψ1(x) = E(Y1|x) and ψ2(x) = E(Y0|x).We let the sample

counterpart estimator of ψ(x) = ψ1(x)− ψ2(x) be

ψ̂1(x)− ψ̂2(x) =

1
nhk

n∑
i=1

DiIτiYi
f̂(vi|xi)

K
(
xi−x
h

)
1
nhk

n∑
i=1

DiIτi
f̂(vi|xi)

K
(
xi−x
h

) −
1
nhk

n∑
i=1

(1−Di)IτiYi
f̂(vi|xi)

K
(
xi−x
h

)
1
nhk

n∑
i=1

(1−Di)Iτi
f̂(vi|xi)

K
(
xi−x
h

) , (2.3.5)

where f̂(vi|xi) = f̂xv(xi, vi)/f̂x(xi) with f̂x(xi) and f̂xv(xi, vi) being the standard leave-one-

out nonparametric density estimators

f̂x(xi) =
1

nhk

n∑
l=1,l 6=i

K

(
xl − xi
h

)
,

f̂xv(xi, vi) =
1

nhk+1

n∑
l=1,l 6=i

K

(
xl − xi
h

,
vl − vi
h

)
,

where K is a kernel function and h is the bandwidth.

Assumptions 35, 36, 37 and 38 provided in Appendix C, are all standard. Given these

assumptions, the asymptotic normality of estimator (2.3.5) is established as follows.

Theorem 2.3.5 Let Assumption 18 ∼ 21, 35 ∼ 38 hold. As n → ∞, h → 0, nhk → ∞,
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and nhkh2p → c0 ∈ (0,+∞) . For any interior point x in the support of X, we have

√
nhk

var (qi (x) |x)
∫
Rk K

2 (u) du

[
ψ̂1(x)− ψ̂2(x)− E (Y1 − Y0|x)− Bp (x)

]
d→ N (0, 1) ,

where qi (x) and Bp (x) are defined in equation (2.10.6) and (2.10.7) respectively in the

supplemental Appendix.

The proof is in the supplemental online appendix.

Remark 2.3.6 The unconditional treatment effect E (Y1 − Y0) could be estimated as 1
n

n∑
i=1

[
ψ̂1(xi)− ψ̂2(xi)

]
.

It is generally possible to attain parametric convergence rates for estimators like this (av-

erages of smooth functions of kernel estimated densities and regressions), though doing so

requires dealing with standard boundary bias issues for values of x near the boundary of its

support. One method for doing so would be to use boundary bias corrections as in Hickman

and Hubbard (2014). Another approach is to employ asymptotic trimming as in Robinson

(1988) or Hardle and Stoker (1989).

Panel Data Asymptotics

The panel version of our estimator is essentially identical to averaging our cross section

estimator across multiple time periods, because, as noted in the proof of Theorem 2.3.4, the

estimator automatically accounts for fixed effects. Deriving the asymptotic properties of

the panel estimator is therefore relatively straightforward but tedious. The main difference

from the cross section case comes from allowing the distribution of V to vary over time.

However, it is also necessary to keep track of the fixed effects, since they can affect the

limiting distribution of the estimator.
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To simplify the analysis and to focus on the new issues raised by panel data, assume we

have no covariates X. This will be the case for our empirical application. Equations (2.3.2)

and (2.3.3) then simplify to

Yit = ai + bt + Y0it + (Y1it − Y0it)Dit, (2.3.6)

Dit = I
[
0 ≤ ãi + b̃t + Vit + Uit ≤ α

]
, (2.3.7)

where i = 1, 2, ..., n, t = 1, 2, ..., T, and α is an unknown constant. The sample counterpart

we estimate is then

1
nT

T∑
t=1

n∑
i=1

DitIτitYit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

DitIτit
f̂vt (vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)IτitYit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Iτit
f̂vt (vit)

. (2.3.8)

If we did have covariates Xit, the estimator would then be analogous to equation (2.3.5), and

we would need to combine the asymptotics we do here with those of the previous section.

We consider asymptotics where n goes to infinity faster than T , and obtain a convergence

rate of
√
nT . Define εjit by Yjit = E (Yj) + εjit for j = 0, 1, where E (εjit) = 0. Define

Λ1it ≡

(
Yit − E(ãi + b̃t + Y1)

)
DitIτit − E

[(
Yit − E(ãi + b̃t + Y1)

)
DitIτit

∣∣∣ vit]
fvt(vit)

,

Λ2it ≡

(
Yit − E(ãi + b̃t + Y0)

)
(1−Dit) Iτit − E

[(
Yit − E(ãi + b̃t + Y0)

)
(1−Dit) Iτit

∣∣∣ vit]
fvt(vit)

,

Π1it ≡
DitIτit
fvt(vit)

, Π1 ≡ E
(
DitIτit
fvt(vit)

)
, Π2it ≡

(1−Dit) Iτit
fvt(vit)

, Π2 ≡ E
(

(1−Dit)Iτit
fvt(vit)

)
.

Assumption 24 n→∞, T →∞, and T = o
(
n1−cT

)
, for some cT ∈ (0, 1) .
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Because
√
n convergence of f̂vt is not attainable, we need T = o

(
n1−cT

)
to attain the

convergence rate
(
f̂vt(v)− fvt(v)

)2
= op

(
(nT )−1/2

)
with appropriate choice of bandwidth

and kernel function.

Assumption 25 ai, ãi are i.i.d. across i and bt, b̃t are i.i.d. across t. (Y0it, Y1it) are

identically distributed across i, t. (Uit, Y0it, Y1it)⊥ (Ui′t′ , Y0i′t′ , Y1i′t′) for any i 6= i′, t 6= t′.

(Uit, Y0it, Y1it)⊥ (Uit′ , Y0it′ , Y1it′) |ai, ãi for any i, t 6= t′. (Uit, Y0it, Y1it)⊥ (Ui′t, Y0i′t, Y1i′t)| bt, b̃t

for any t, i 6= i′.

The assumption that (Y0it, Y1it) is identically distributed over t as well as over i for each t

is made only for convenience, and could be relaxed at the expense of additional notation that

would include redefining the estimand to be the average value over time of E (Y1 − Y0|t).

We could allow heterogeneity (non-identical distributions) over the time dimension for other

variables as well, but we do exploit the i.i.d. assumption across i, conditional on t. These

i.i.d. assumptions could also be relaxed to allow for weak dependence, at the cost of requiring

more notation and a more general central limit theorem. Variables with the same i or the

same t subscript are correlated with each other through individual or time dummies.

In Assumption 25, we define ai, ãi, bt, b̃t as random variables, but we estimate the model

treating them as one would handle fixed effects, without estimating their values or their

distributions and without imposing the kinds of assumptions that would be required for

random effects estimation. For example, ai and bt are allowed to be correlated with Uit and

Yit in arbitrary unknown ways.

Remark 2.3.7 Although they are not estimated, ãi and b̃t do affect our limiting distri-

bution, because the weights on these variables in the first and second components of our
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estimator are not identical in finite samples. In Lemma 2.10.8 in the online supplemental ap-

pendix, we show that the difference in these components due to ãi and b̃t is OP
(

(nT )−1/2
)
.

Assumption 26 Vit are independent across i and t. Vit are identically distributed across i

given t, with distribution fvt(Vit).

For each time period t, Assumption 26 is equivalent to the cross section special regressor

assumption without X. In addition it is assumed that special regressor observations are

independent over time, but the distribution of Vit is allowed to vary with t. This indepen-

dence assumption could be relaxed, and it would even be possible to let Vit be fixed over

time for each i, though this would require dropping the cross section fixed effects from the

model.

Assumption 27 E (ε0it|ai, ãi) = E (ε1it|ai, ãi) and E
(
ε0it|bt, b̃t

)
= E

(
ε1it|bt, b̃t

)
.

This is assumption is somewhat stronger than the assumption needed to interpret ATE,

because we only need E (εjit) = 0 such that E (Yjit) = E (Yj) for j = 0, 1.

Remark 2.3.8 Assumption 27 is necessary to attain
√
nT -convergence. To see why the

assumption is necessary, suppose we could observe the counterfactuals Y1it and Y0it. Then

the direct estimator for E (Y1)−E (Y0) would just be 1
nT

T∑
t=1

n∑
i=1

(Y1it − Y0it) . The random

component for this estimator is 1
nT

T∑
t=1

n∑
i=1

(ε1it − ε0it) , which is equal to

1

nT

T∑
t=1

n∑
i=1

(
ε1it − ε0it − E (ε1it − ε0it|ai, ãi)− E

(
ε1it − ε0it|bt, b̃t

))
+

1

n

n∑
i=1

E (ε1it − ε0it|ai, ãi) +
1

T

T∑
t=1

E
(
ε1it − ε0it|bt, b̃t

)
.
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The first term is OP
(

(nT )−1/2
)
, the second term is OP

(
n−1/2

)
, and the third term is

OP
(
T−1/2

)
. So the convergence rate of this estimator isOP

(
T−1/2

)
if E

[
E
(
ε1it − ε0it|bt, b̃t

)2
]
>

0. So even in the infeasible case where counterfactuals are observable, Assumption 27 would

be necessary to obtain
√
nT -convergence instead of rate

√
T .

As was discussed earlier, if potential outcomes are given by Ỹdit = ãi + b̃t + Ydit, then

our estimand E (Y1it − Y0it) equals a standard ATE E
(
Ỹ1it − Ỹ0it

)
.

Additional Assumptions 37 and 39 provided in the Appendix are standard. Given

these assumptions, the rate
√
nT asymptotic normality of estimator (2.3.8) is established

as follows.

Theorem 2.3.9 Let Assumption 18, 21, 22, 23, 24, 25, 26, 27, 37, 39 hold. Assume that

bandwidth h = c0n
− cT /2 in f̂vt , and assume a kernel of order p ≥ (1− cT / 2)/ cT . Then

1
nT

T∑
t=1

n∑
i=1

DitYit

/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit

/
f̂vt(vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Yit

/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
/
f̂vt(vit)

− [E(Y1)− E(Y0)]

=
1

nT

T∑
t=1

n∑
i=1

(
Λ1it

Π1

− Λ2it

Π2

)
+ oP

(
(nT )−1/2

)
,

and 1
nT

T∑
t=1

n∑
i=1

(
Λ1it
Π1
− Λ2it

Π2

)
= Op

(
(nT )−1/2

)
.

Remark 2.3.10 This theorem gives the influence function Λ1it
Π1
−Λ2it

Π2
for our estimator. The

terms in the influence function are identically distributed. From Lemma 2.10.8, 2.10.9, and

2.10.10 in the supplemental appendix, those terms are dependent (through fixed effects) but

not correlated with each other. Additional assumptions on the dependence of those terms

are needed to establish asymptotic normality.

120



Remark 2.3.11 Suppose
(
ai, ãi, bt, b̃t

)
is a series of constants instead of random vari-

ables. From the proof of Lemma 2.10.8, our estimator will still be consistent as long

as 1
n2T

(
n∑
i=1

ã2
i

)
= o (1) and 1

nT 2

(
T∑
t=1

b̃2t

)
= o (1) . The estimator will also, given As-

sumption 27, still converge at rate
√
nT with the same limiting distribution given below if

1
n

(
n∑
i=1

ã2
i

)
= O (1) and 1

T

(
T∑
t=1

b̃2t

)
= O (1). This result allows for limited forms of time

trends of unknown form, e.g., bt and b̃t could systematically increase or decrease over time.

Some additional results involving panel data asymptotics are provided in the appendix.

In particular, we provide limiting distribution theory under some more general conditions,

including if Assumption 27 does not hold, and a more general model of fixed effects.

2.4 Competition and Innovation

We apply our model to test the the "Inverted-U" theory of ABBGH (Aghion, Bloom,

Blundell, Griffi th, and Howitt 2005) relating innovation investments to competitiveness

in an industry. ABBGH consider two types of oligopoly industries, called Neck-and-Neck

(NN) industries, in which firms are technologically close to equal, and Leader-Laggard (LL)

industries, where one firm is technologically ahead of others. For these industries there

are two opposing effects of competition on innovation. One is the Schumpeterian effect,

where increased competition reduces profits and thus reduces the incentive to innovate.

The second is the escape-competition effect, where firms innovate to increase the profits

associated with being a leader. For these latter firms, increased competition increases the

incentive to innovate. ABBGH argue that the escape-competition effect dominates in NN

industries while the Schumpeterian effect dominates in LL industries. This theory results
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in an inverted-U relationship, because low levels of competition are associated with NN

industries and hence with low innovation, by the escape-competition effect, and high levels

of competition are associated with LL industries, again leading to low innovation but now

by the Schumpeterian effect. In contrast, with an intermediate level of competition, both

NN and LL industries innovate to some extent, yielding a higher overall level of innovation

in steady state than in either the low or high competition industries.

ABBGH find empirical support for the inverted-U based mainly on UK data. Hashmi

(2013) revisits the relationship using a richer dataset from the US, and finds no inverted-U.

Hashmi notes that his finding can be reconciled with the ABBGH model by the assumption

that the manufacturing industries in the UK are, on the average, more neck and neck than

their counterparts in the US.

For identification and estimation, both the ABBGH and Hashmi empirical results de-

pend heavily on functional form assumptions, by fully parameterizing both the relationship

of competitiveness to innovation and the functional form of error distributions. In contrast,

we apply our model to test for an inverted-U relationship with minimal restrictions on

functional forms and error distributions.

2.4.1 Data

Our sample, from Hashmi (2013), consists of US three-digit level industry annual data from

1976 to 2001. There are 116 industries, resulting in 2716 industry-year observations. Our

analysis is based on three key variables: a measure of industry competitiveness, a measure

of industry innovation, and a source-weighted average of industry exchange rates that serves

as an instrument, and hence as our special regressor. Summary statistics for this data are

reported in Table 1. We only applied our estimator to Hashmi’s data and not to ABBGH’s
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data, because the latter does not contain a continuous instrumental variable that can be

used as a special regressor.

The measure of the level of competition for industry i at time t, denoted cit, is defined

by

cit = 1− 1

nit

∑nit

j=1
ljt, (2.4.1)

where i indexes firms, ljt is the Lerner index of the price the cost margin of firm j in year t,

and nit is the number of firms in industry i in year t. The higher cit is, the higher is the level

of competition. The innovation index, denoted yit, is a measure of citation-weighted patent

counts, constructed using data from the NBER Patent Data Project. Details regarding the

construction of this data can be found in Hashmi (2013).

As ABBGH point out, innovation and competition are endogenous, that is, there are

likely to exist unobserved characteristics of each industry i in each time period t that

can affect both. To deal with this endogeneity, Hashmi uses a source-weighted average of

industry exchange rates as instrument variable for competition (ABBGH use a different,

events related instrument). Hashmi’s instrument, Vit, is a weighted average of the US dollar

exchange rate with the currencies of trading partners, with weights that vary by industry

according to the share of each country in the imports to the US. This instrument has been

used in other similar applications, including Revenga (1990, 1992) and Bertrand (2004).
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2.4.2 Model Specifications

Hashmi (2013) adopts a control function approach to deal with endogeneity. In a first stage,

cit is regressed on Vit, industry dummies and time dummies, so

cit = Vitβ + ai + bt + wit, (2.4.2)

where ai and bt are fixed effects (coeffi cients of industry and time dummies) and wit is the

error from the first stage regression. The fitted residuals ŵit from this regression are then

included as additional regressors in an outcome equation of the form

ln(yit) = ãi + b̃t + θ0 + θ1cit + θ2c
2
it + δŵit + εit, (2.4.3)

where ãi and b̃t are outcome equation fixed effects (coeffi cients of industry and time dum-

mies). Hashmi estimates the coeffi cients in equation (2.4.3) by maximum likelihood, where

the distribution of errors εit is determined by assuming that yit has a negative binomial

distribution, conditional on cit, industry, and year dummies. This model assumes the re-

lationship of ln(y) to c is quadratic, with an inverted-U shape if θ1 is positive and θ2

negative. The industry and time dummies cannot be differenced out in this model, and so

are estimated along with the other parameters.

In addition to the possibility that this quadratic is misspecified, or that the endogeneity

takes a form that is not completely eliminated by the control function addition of ŵ as

a regressor, or that the distribution is not negative binomial, Hashmi’s estimates could

also suffer the from the problem of incidental parameters (Neyman and Scott 1948). This

problem is that the need to estimate industry and time fixed effects results in inconsistent
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parameter estimates unless both T and n go to infinity. In this application neither T nor n

is particularly small, but the presence of the fixed effects still results in over 100 nuisance

parameters to estimate, which can lead to imprecision. Our intention is not to criticize

Hashmi’s or ABBGH’s model, but only to point out that there are many reasons why it is

desirable to provide a less parametric alternative, to verify that their results are not due to

potential model specification or estimation problems.

To apply our estimator, let the treatment indicator Dit equal one for industries i that

have neither very low nor very high levels of competition in period t, and otherwise let

Dit = 0. We then let innovation yit be determined by

yit = ãi + b̃t + Y0it + (Y1it − Y0it)Dit. (2.4.4)

where ãi, b̃t are the industry and time dummies respectively, and Y0it are Y1it are unobserved

potential outcomes for industry i in time t, after controlling for time and industry fixed

effects. Unlike the error distribution imposed in equation (2.4.3), both Y1it and Y0it here are

random variables with completely unknown distributions that can be correlated with each

other, and with the error term in the Dit equation, in completely unknown ways. We will

then estimate the ATE E(Y1it−Y0it), which equals the average difference in outcomes y (after

controlling for fixed effects), between industries with moderate levels of competitiveness,

versus industries that have very low or very high levels of competitiveness.

What our model assumes about the treatment indicator Dit is

Dit = I(α0 ≤ ai + bt + Vit + Uit ≤ α1), (2.4.5)
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where ai and bt are industry and time dummies, Uit are unobserved, unknown factors that

affect competition, and α0 and α1 are unknown constants. The way to interpret equation

(2.4.5) is that the latent variable c∗it given by

c∗it = ai + bt + Vit + Uit (2.4.6)

is some unobserved true level of competitiveness of industry i in time t. Our model does

not require the observed competitiveness measure cit to equal the true measure c∗it, but if

they do happen to be equal then our model is consistent with having Hashmi’s equation

(2.4.2) hold. Note when comparing the models for c∗it and cit to each other that replacing c
∗
it

with βc∗it to make equation (2.4.6) line up with equation (2.4.5) is a free scale normalization

that can be made without loss of generality, because the definition of Dit is unaffected by

rescaling c∗it.
4

As in Hashmi’s model, our estimator assumes that Vit is a valid instrument, affecting

competitiveness c∗it and hence the treatment indicator Dit, but not directly affecting the

outcome yit. We also require that Vit has a large support. This appears to be the case in

our data, e.g., the exchange rate measure sometimes as much as doubles or halves over time

even within a single industry, and varies substantially across industries as well.

2.4.3 Measurement Errors in Competitiveness

In our empirical application, we define Dit to be one when the observed cit lies between

the .25 and .75 quantiles of the empirical cit distribution (we also experiment with other

4 In our data it is very unlikely that cit perfectly measures true competitiveness in each industry and time
period. However, if cit is not mismeasured, then the thresholds used to construct Dit from cit would be
proportional, up to the scaling of the coeffi cient of V , to the unknown thresholds α1 (X) and α0 (X) (after
accounting for unknown fixed effects ai and bt). In theory this information might be usable to increase
estimation effi ciency, by exploiting the fact that E (D/fv|X), which we estimate, equals α1 (X)− α0 (X).
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quantiles). This is therefore consistent with equation (2.4.2) if cit is linear in c∗it. However,

our model remains consistent even if cit differs greatly from c∗it, as long as the middle 50% of

industry and time periods in the cit distribution corresponds to the middle 50% of industry

and time periods in the c∗it distribution.

More generally, suppose cit equals c∗it plus some measurement error. Then the Hashmi

model, even if correctly specified, will be consistent only if this measurement error satis-

fies the conditions necessary for validity of their control function estimator. Some control

function estimators remain consistent in models containing measurement errors that are

classical, i.e., independent of the true c∗it and of the true model. However, the Hashmi

control function estimator would not be consistent even with classical measurement errors,

because equation (2.4.3) is nonlinear in the potentially mismeasured variable cit (this is

not intended as a criticism of Hashmi’s empirical application, since that work uses control

functions only to deal with endogeneity and never made any claims regarding measurement

errors).

In contrast, our estimator can remain consistent in theory even with measurement errors

that are large and nonclassical, as long as cit correctly sorts industries into moderate versus

non-moderate levels of competitiveness. However, in practice, measurement error in cit will

likely cause some industries to be misclassified, so Dit is likely to be mismeasured for some

industries (particularly for some that are near the .25 and .75 quantile cutoffs). Also, in

practice we should expect Hashmi’s control function specification to at least partly correct

for potential measurement error.

To summarize: competitiveness is diffi cult to precisely define and measure, and as a

result the impact of measurement errors on this analysis could be large. One advantage
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of our methodology is that it only depends on sorting industries into two groups (that is,

moderate versus extreme levels of competitiveness as indicated by Dit). While this sorting

discards some information and may therefore cost some effi ciency, it will also mitigate

measurement error biases, because only a small number of observations of Dit are likely

to be mismeasured even if most or all of the cit observations are mismeasured to some

extent. To check whether this intuition is correct, in an appendix we do a monte carlo

analysis that compares the accuracy of our estimator with that of Hashmi’s in the presence

of measurement errors.

2.4.4 Estimation

Our estimator is quite easy to implement, in part because it does not entail any numerical

searches or maximizations. We first estimate the density of Vit separately for each year,

using a standard kernel density estimator f̂vt(vit) = 1
n−1

∑n
j 6=i,,j=1

1
hK

(
vit−vjt

h

)
. Note that

the density is estimated at each of the data points vit. We employ a Gaussian kernel function

K, and choose the bandwidth h using Silverman’s rule of thumb. Our estimator involves

dividing by these nonparametric density estimates, which can result in outlier observations

when f̂ is close to zero. As suggested in Lewbel (2000a) and Dong and Lewbel (2015) for

other special regressor based estimators, we trim out (i.e., discard from the sample) the 2%

of observations with the smallest values of f̂vt . This defines the trimming function Iτ (v)

from our asymptotic theory.

Given the density estimates f̂vt(vit), our resulting estimate of the ATE E(Y1it − Y0it) is
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then given by

Trim-ATE =

∑
i

∑
t Iτ (vit)DitYit/f̂vt(Vit)∑

i

∑
t Iτ (vit)Dit/f̂vt(Vit)

−
∑

i

∑
t Iτ (vit)(1−Dit)Yit/f̂vt(Vit)∑

i

∑
t Iτ (vit)(1−Dit)/f̂vt(Vit)

(2.4.7)

where the i and t sums are over the 98% of observations that were not trimmed out. This

model corresponds to the estimator (2.3.8), which has standard errors that we calculate

based on the asymptotic distribution provided in Theorem 2.8.2. To assess the effect of

the trimming on this estimator, we construct a corresponding estimate of ATE that is not

trimmed, given by

No-Trim-ATE =

∑
i

∑
tDitYit/f̂vt(Vit)∑

i

∑
tDit/f̂vt(Vit)

−
∑

i

∑
t(1−Dit)Yit/f̂vt(Vit)∑

i

∑
t(1−Dit)/f̂vt(Vit)

. (2.4.8)

For comparison, in addition we calculate a Naive-ATE estimator given by

Naive-ATE =

∑
i

∑
tDitYit∑

i

∑
tDit

−
∑

i

∑
t(1−Dit)Yit∑

i

∑
t(1−Dit)

. (2.4.9)

This Naive-ATE just subtracts the average value of Yit when Dit = 0 from the average value

of Yit when Dit = 1. This would be a consistent estimator of the ATE if treatment were

unconfounded, that is, if low or high competitiveness as indicated by Dit was randomly

assigned over firms and time periods. One could also consider a LATE estimator such

as an instrumental variables regression of Y on D using V as an instrument. However,

as noted in the introduction, LATE requires that the probability of treatment increase

monotonically with the instrument. This requirement does not hold in our application,

since both increasing or decreasing V suffi ciently causes the probability of treatment to
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decrease.

We also compare our results to a parametric maximum likelihood estimate of the ATE

(denoted ML-ATE) assuming a Heckman (1979) type selection model for treatment. This

model assumes equations (2.4.4) and (2.4.5) hold and that U , Y0, Y1 are jointly normally

distributed. Let Φ denote the standard normal cumulative distribution function, θ0 =

E (Y0), θ1 = E (Y1), and σ = cov [U, Y0, Y1] be the three by three covariance matrix of

elements σkl for k = 1, 2, 3 and l = 1, 2, 3. Then the ML-ATE is defined by

ML-ATE = θ̂1 − θ̂0 where
[
θ̂0, θ̂1, α̂0, α̂1, [σ̂kl]3×3

]
= arg max

∑
i

∑
t{

(1−Dit) log

(
1

σ22
φ

(
Yit − θ0

σ22

)[
Φ

(
α0 − Vit − σ12

σ22
(Yit − θ0)√

σ11 − σ2
12/σ22

)
+ 1− Φ

(
α1 − Vit − σ12

σ22
(Yit − θ0)√

σ11 − σ2
12/σ22

)])

+Dit log

(
1

σ33
φ

(
Yit − θ1

σ33

)[
Φ

(
α1 − Vit − σ13

σ33
(Yit − θ1)√

σ11 − σ2
13/σ33

)
− Φ

(
α0 − Vit − σ13

σ33
(Yit − θ1)√

σ11 − σ2
13/σ33

)])}
.

2.4.5 Empirical Results

Figure 1 shows our kernel density estimates f̂vt for each year t. The estimates can be

seen to vary quite a bit over time, so we use separate density estimates for each year

instead of assuming a constant distribution across years. Figure 2 shows a scatterplot of

our competitiveness and innovation data. The fitted linear line using least squared errors

estimation is slightly downward sloping. The fitted quadratic line using least squared errors

estimation is slightly U-shape. Note that the fitted curves do not deal with the endogeneity

issue.

Table 2A shows our main empirical results. The first row of Table 2A provides estimates

where Dit is defined to equal one for the middle half of the data, that is, Dit equals one

for firms and years that lie between the 25th and 75th percent quantiles of the observed
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measure of competition, making half the observations treated and the other half untreated.

Other rows of Table 2A report results using different quantiles to define Dit. In each row of

Table 2A we report four estimates of ATE, as described in the previous section. Standard

errors for all the estimates are provided in parentheses.

An inverted-U would imply a positive ATE, but all of our estimates are negative, con-

firming Hashmi’s finding that the inverted-U is not present in US data. For example, our

main estimate from the first row of Table 2A is that the Trim-ATE equals −3.9, and is

strongly statistically significant. We also find that failure to appropriately control for error

correlations between competitiveness and innovation substantially biases the magnitudes of

estimated treatment effects. Our semiparametric estimates of the ATE are 50% to 100%

larger than both the naive estimates that ignore these correlations, and the maximum like-

lihood estimates that allow for correlations but requires the errors to be jointly normally

distributed.

Attempts to find a positive ATE by experimenting with more unusual quantiles for

defining Dit were for the most part fruitless. An exception, based on examination of Figure

2, was to define the left and right thresholds by 0.62 (10%) and 0.68 (20%) respectively.

This implies a heavily skewed inverted U where 80% of firms are in the upper tail. This

yields a positive ATE of 8.66, but this model is implausible, since it treats a very narrow

spike in Figure 2 as the set of all moderately sized firms. We also experimented with varying

the degree of trimming, but we only report results without trimming and with 2% percent

trimming because the impacts of other changes in trimming were very small.

The quantiles of cit vary over time, so instead of defining Dit based on quantiles of the

entire sample of cit observations, one could instead define Dit for each year t based on the
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quantiles of cit just in year t. As a robustness check, results are reported in Table 2B based

on estimates calculating Dit this alternative way. Comparing Table 2A and 2B, shows that

the results are quite similar using either definition.

Hashmi models the mean of innovation using equation (2.4.3), so the following object

constructed from Hashmi’s paper can be compared with our ATE estimates

E
(

exp
(
ãi + b̃t + θ0 + θ1cit + θ2c

2
it + δwit

)∣∣∣Dit = 1
)
−E

(
exp

(
ãi + b̃t + θ0 + θ1cit + θ2c

2
it + δwit

)∣∣∣Dit = 0
)
.

We estimate this by replacing the expectations with Dit cell means, and using Hashmi’s

estimates for the parameters ãi, b̃t, θ0, θ1, θ2, and δ.5 The value of this quantity we find

from his model is −1.8, which is about half of our estimated ATE and similar to the ML-

ATE and Naive-ATE. Again, we agree with Hashmi’s main result regarding signs of effects,

but not magnitudes. This discrepancy might come from misspecification of Hashmi’s model,

sensitivity to measurement error in cit in his model, or imprecision in his estimates of ã and

b̃ due to the incidental parameters problem.

We provide a further comparison of our results with Hashmi’s in Section 2.5.2, where

we extend our identification result to the full ordered choice model of treatment.

2.4.6 Monte Carlo Designed for the Empirical Example

To assess how the estimator works in small samples, we provide two sets of Monte Carlo

experiments. We designed these experiments to closely match moments and other features

of our empirical data, to see how likely our estimator is to perform well in a controlled

setting that mimics our actual application. The number of observations is set to 2716, the

5Hashmi only reports θ1 and θ2. These are in the first column of table 9 in Hashmi (2013). Other
parameter estimates are found in the Stata log file he posts online.
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same as the number of observations in our empirical dataset. The same four estimators

we applied on the actual data, Trim-ATE, No-Trim-ATE, Naive-ATE and ML-ATE, are

analyzed in each set of Monte Carlo simulations

Let e1i, e2i, e3i, and Vi be random variables that are drawn independently of each other.

We consider a few different distributions for these variables as described below. The coun-

terfactual outcomes in our simulation are defined by

Y0i = θ0 + θ01e1i + θ02e3i and Y1i = θ1 + θ11e2i + θ12e3i.

True competitiveness is constructed to equal Vi + θ2e3i, and treatment Di is defined to

equal one for observations i that lie between the 25th and 75th quantile of the distribution

of Vi + θ2e3i. The observed outcome is then constructed as

Yi = Y0i + (Y1i − Y0i)Di.

For simplicity, fixed effect type dummies are omitted from the model. Note that e3i appears

in Di, Y0i, and Y1i, and so is the source of confounding in this model. By construction,

the unobserved Ui in our theoretical model is given by Ui = θ2e3i. Let θ denote the vector

of parameters (θ0, θ1, θ2, θ01, θ02, θ11, θ12). In each Monte Carlo experiment the parameter

vector θ is set to match moments and outcomes of our actual data, specifically, they are set

to make the ATE θ1 − θ0 equal our estimate −3.90, and to make the mean and variance of

Yi and Di, and the covariance between Yi and Di, equal the values observed in our data.

The variance of Vi is freely normalized (inside the binomial response indicator) to equal

one.
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The ML-ATE estimator is asymptotically effi cient when e1i, e2i, and e3i are normally

distributed. In our first experiment we let e1i, e2i, e3i, and Vi each have a standard normal

distribution, so the resulting ML-ATE estimates can then serve as an effi cient benchmark.

As noted by Khan and Tamer (2010), single threshold crossing model special regressor

estimators converge at slow rates when fv has thin tails, as in the previous design. Although

their results are not directly applicable to this paper’s two threshold model, it is still sensible

to see if our estimator works better with thicker tails, so our second experiment gives

e1i, e2i, e3i, and Vi each a uniform distribution on [−0.5, 0.5]. Note this is still likely not

the best case for our estimator, since Khan and Tamer (2010) note that special regressor

methods converge fastest when V has a thick tail and all other variables have thin tails.

Both the normal and uniform designs have symmetric errors, which favors the ML

alternative over our estimator. However, with symmetric errors it is impossible to define a

vector θ that matches all the moments of the empirical data, because symmetry prevents

matching the empirical covariance between Y and D. Therefore, in both designs we choose

values for θ that match all the other moments and come as close as possible to matching

this covariance (the required values for θ are given in the footnote of Table 4).

To match the empirical correlation between Y and D along with other moments, we

next consider designs that introduce asymmetry into the confounder e3i. In our third

experiment, we let e1i, e2i, and Vi be standard normal and let e3i be a modified normal,

equaling a standard normal with probability one half when e3i < 0 and equaling θ3 times

a standard normal with probability one half when e3i ≥ 0. When then choose θ3 along

with the other elements of θ to match the moments of the empirical data including the

covariance of Y with D. This required setting θ3 = 2.65. Similarly, in a fourth experiment

134



we let e1i, e2i, and Vi be uniform on [−0.5, 0.5] and take e3i to equal a (demeaned) mixed

uniform distribution. This mixture was uniform on [−2, 0] with probability one half and

uniform on [0, 5] with probability one half, before demeaning.

Each of these four Monte Carlo experiments was replicated 10,000 times, and the results

are summarized in Table 4 in the supplemental Appendix. Panel A in Table 4 is the

symmetric normal design. Because of symmetry, all of the estimators in this design are

unbiased. ML, being effi cient here, has the lowest root mean squared error (RMSE), and

the naive estimator is almost as effi cient as ML in this case, since it just involves differencing

simple covariance estimates. Our Trim-ATE estimator performs reasonably well compared

to the effi cient estimator, being unbiased and having a RMSE of .43 versus the effi cient

.30. Trimming improves the RMSE enormously here, as expected because fv has thin tails,

which produces outliers in the denominator of averages weighted by fv.

Panel B of Table 4 shows that, in the symmetric uniform design, all four estimators are

almost identical. The happens because, with V is uniform, f̂v is close to a constant, and the

estimators for the average effects of the treated and the untreated are close to their sample

means.

In the asymmetric designs, given in panels C and D of Table 4, the ML-ATE and Naive-

ATE are no longer consistent, and both become substantially downward biased, with an

average value of about one half the true value of −3.90. In contrast, our trimmed and

untrimmed ATE estimates had far smaller downward biases, resulting in much smaller

RMSE, particularly for the Trim-ATE.

The differences in biases between the inconsistent estimators (ML-ATE and NAIVE-

ATE) and our proposed estimator in these asymmetric Monte Carlos closely match the
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observed differences in our empirical application estimates. Specifically, in case 1 of Table

2A the estimated ATE using the ML and Naive estimators is about one half the estimate of

−3.90 we obtained using Trim-ATE. This provides evidence that the Monte Carlo results

in panels C and D of Table 4 are relevant for assessing the empirical performance of our

proposed estimator.

In addition to assessing the quality of estimators we also assess the quality of associated

standard error estimates, by providing, in the last column of Table 4, the percentage of

times the true ATE fell in the estimated 95% confidence interval (defined as the estimated

ATE plus or minus two estimated standard errors). In the symmetric designs all the es-

timated standard errors for all the estimators were too large, yielding overly conservative

inference. In the asymmetric designs the estimated 95% confidence intervals of the incon-

sistent estimators ML-ATE and NAIVE-ATE were very poor, containing the true value less

than 25% of the time. The No-Trim-ATE did much better, but our preferred estimator,

Trim-ATE, was by far the best, giving correct 95% coverage in panel C, and conservative

99% coverage in panel D.

2.5 Extensions

2.5.1 Testing the Large Support Assumption

The large support assumption is crucial for identification. In this section, we provide a

formal test on this assumption.

Suppose supp(V ) = [−M ′,M ],M ′,M > 0, fv bounded away from zero, and the support

of U is also a fixed interval on the real line. For simplicity, we assume there is no covariates
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X and

D = I (0 ≤ V + U ≤ α) . (2.5.1)

The large support assumption of V in the paper is that supp(−U) ⊆supp(V ) , supp(α− U) ⊆supp(V ).

Under the model specification and that the supports of U and V are both fixed intervals on

the real line, the large support assumption holds if and only if P (D = 1|V = M) = 0 and

P (D = 1|V = −M ′) = 0.

Without loss of generality, we only discuss how we test P (D = 1|V = M) = 0, and the

test for the other part of the implications follows similarly.

As discussed in the Theorem 2.5.3 and Remark 2.5.4, when the support of V strictly

covers the support of α−U on the right end, the test statistic will degenerate to a constant

0. When the support of V is exactly the same as the support of α − U on the right end,

the test statistic will converge at
√
n rate, even though we estimate P (D = 1|V = M)

nonparametrically. Though this property looks nice, it is basically not helpful on inference

and thus on test. Because of this peculiar property, we decide to compromise a bit and

instead test

H0 : P (D = 1|V = M) ≥ ε∗,

where ε∗ is a pre-determined small value.

Suppose we have n observations, we let v(1)
n = max {vi, i = 1, ..., n} . Then by Lemma

2.10.14, M − v
(1)
n = OP

(
n−1

)
. We approximate M by M̂ = v

(1)
n . Denote GD (v) ≡

P (D = 1|V = v) . We let G′D,− (M) and G′′D,− (M) denote the left first and second deriv-

atives at M respectively. Since we are only interested in the estimation at the boundary,

we estimate it by the local linear regression, which is known to be able to correct boundary
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effects automatically:

min
β

1

n

n∑
i=1

(
I (Di = 1)− β0 − β1

(
Vi − v
h

))
Kh (Vi − v) ,

where β ≡ (β0, β1)T , Kh (Vi − v) ≡ 1
hK

(
Vi−v
h

)
. Let β̂ (v) ≡

(
β̂0 (v) , β̂1 (v)

)T
be the esti-

mates from the above estimation.

Let e1 = (1, 0)T .We are only interested in the estimates at the boundary pointM. Since

we do not knowM, we approximate it by M̂ . Re-arrange the data such that vn = v
(1)
n = M̂.

Then it could be obtained from the following leave-one-out estimator ĜD
(
M̂
)
≡ eT1 β̂

(
M̂
)

where

β̂
(
M̂
)

=
[
Sh

(
M̂
)]−1 1

n− 1

n−1∑
i=1

Kh

(
Vi − M̂

) 1(
Vi − M̂

)
/h

 I (Di = 1) ,(2.5.2)

Sh

(
M̂
)
≡ 1

n− 1

n−1∑
i=1

Kh

(
Vi − M̂

) 1(
Vi − M̂

)
/h

(1,
(
Vi − M̂

)
/h
)
.

Define Sj,− ≡
∫ 0
−∞K (u)ujdu for any positive integer j, and S ≡

 S0,− S1,−

S1,− S2,−

 . Not

hard to see that S is the limit of Sh

(
M̂
)
in probability.

Theorem 2.5.1 Under H0, i.i.d., the model specification (2.5.1), that GD (v) is twice dif-

ferentiable and h = c0n
−1/5 for some c0 > 0, we have

√
nh
(
ĜD

(
M̂
)
−GD (M)− Bh

)
d→ N

(
0, σ2 (M)

)
,
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where Bh ≡ eT1 S
−1

 S2,−

S3,−

G′′D,− (M) fv (M)h2, σ2 (M) ≡ eT1 S
−1

QS
−1
e1GD (M) (1−GD (M)) fv (M) ,

Q ≡

 Q0,− Q1,−

Q1,− Q2,−

 , Qj,− ≡
∫ 0
−∞K

2 (u)ujdu.

The theorem is proved in the supplemental appendix.

By Theorem 2.5.1, we can test H0 via standard z-test. The P -value is calculated as

P = Φ

(
ĜD(M̂)−B̂h−ε∗

σ̂(M)

)
, where B̂h, σ̂ (M) can be obtained as in Remark 2.5.2. We suggest

ε∗ = 0.05 in empirical applications.

Remark 2.5.2 Not hard to see that the optimal bandwidth is

hopt = n−1/5

(eT1 S
−1

QS
−1
e1GD (M) (1−GD (M)) fv (M)

)/eT1 S
−1

 S2,−

S3,−

G′′D,− (M) fv (M)


2


1/5

.

To get B̂h, σ̂2 (M) and hopt, one can estimate G′′D,− (M) and fv (M) separately using lo-

cal quadratic estimator and the kernel estimator with boundary correction (e.g., Hardle

1990)6, respectively. Fan and Gijbels (1992) has discussed the nice property and the nice

performance of this plug-in estimator.

To make this section more complete, below we list the asymptotic property of ĜD
(
M̂
)

when the support of U covers the support of α− U on the right end.

Theorem 2.5.3 Under i.i.d., the model specification (2.5.1), that GD (v) is twice differen-

tiable, that the support of U covers the support of α−U on the right end, and h = c0n
−2/5,

6Here we use the modified kernel function: K (x)
/∫ 0
−∞K (x) dx .
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for some c0 > 0, we have

√
n
(
ĜD

(
M̂
)
−GD (M)

)
d→ N

(
0, σ̃2 (M)

)
,

where σ̃2 (M) ≡ eT1 S
−1

QS
−1
e1G

′
D (M) fv (M) , Q ≡

 Q1,− Q2,−

Q2,− Q3,−

 , Qj,− ≡
∫ 0
−∞K

2 (u)ujdu.

The theorem is proved in the supplemental appendix.

Remark 2.5.4 In the case where the support of V strictly covers the support of U, GD (v) =

G′D (v) = 0 in an interval around the boundary point. In this case, according to the above

theorem, σ2 (M) = 0. The estimates ĜD
(
M̂
)
will degenerate to zero in the limit.

We conduct this test of the large support assumption for our data by testing H0 :

P (D = 1|V = M) ≥ ε∗ where we set ε∗ as 0.05. We use the result from Theorem 2.5.1.

The P -value is calculated as P = Φ

(
ĜD(M̂)−B̂h−ε∗

σ̂(M)

)
as in Remark 2.5.2.

We first ignore the fixed effects and use the whole data set to get the estimates of

ĜD at the left and right boundary (minimum and maximum of V respectively). We use

the optimal bandwidth as in Remark 2.5.2. It turns out that ĜD at both sides are all

very close to zero. The P -values are both 0.000, which reject the null hypothesis that

P (D = 1|V = M) ≥ 0.05.

If Vit and Uit are homogenous in terms of the support across different time periods, we

are all set on the testing. To be safe, we also do the test for each time period separately.

We need to do the test at both ends of V for 26 periods. Each period contains at most

116 observations. The results are collected in Table 3A. The null hypothesis is rejected at

5% significance level in 36 out of the whole 52 cases (both sides for 26 years); the null is
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rejected at 10% significant level in 37 out of the whole 52 cases. The results are not perfect.

However, we think at least some of the failures are probably due to the small sample size.

One feature of the tests is that the P -value can easily become 0. The intuition can be

seen from the theoretical property of the test: when the support of V strictly covers the

support of U, the estimate should be close to zero and the variance is also every small (see

Remark 2.5.4), which will drive P = Φ

(
ĜD(M̂)−B̂h−ε∗

σ̂(M)

)
to zero.

To summarize, the null hypothesis is rejected for the whole sample in favor of our large

support assumption. The null hypothesis has been rejected for most cases when we conduct

the test over each time period separately. We think we could conclude that the large support

assumption generally holds for this application.

2.5.2 Ordered Choice Identification at Infinity

We now consider an extension of our results to full ordered choice data. In our empirical

application, this extension will help us distinguish between competing alternatives to the

inverted-U hypothesis.

We change notation in this section to define three values for treatment and three corre-

sponding potential outcomes: Let D = 0 with potential outcome Y0 if the latent variable is

below the lower threshold, D = 1 with potential outcome Y1 if the latent variable is between

the two thresholds, and D = 2 with Y2 if above the upper threshold. In this notation, our

previous results did not distinguish observing D = 0 from D = 2. In practice, one would

usually be able to see if an individual had D = 0 vs D = 2. Following Heckman, Urzua and

Vytlacil (2006) (see also Andrews and Schafgans 1998), if one can distinguish D = 0 from

D = 2, then one could use identification at infinity to identify E (Y0|X) and E (Y2|X).
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Suppose the treatment indicator is the standard ordered choice as follows

D = I [α0 (X) ≤ V + U < α1 (X)] + 2I [V + U ≥ α1 (X)] . (2.5.3)

The outcome equation is

Y = Y0I (D = 0) + Y1I (D = 1) + Y2I (D = 2) . (2.5.4)

As noted by Heckman, Urzua and Vytlacil (2006), without invoking functional form assump-

tions, identification of E (Y0|X) and E (Y2|X) requires E (D|X,V )→ 0 and E (D|X,V )→ 2

for limiting values of one or more covariates. In our case we use this identification at infinity

technique to identify E (Y0|X) taking the limit of E (D|X,V ) as V gets suffi ciently small,

and identifying E (Y2|X) by taking the limit as V gets suffi ciently large.

We impose the following assumptions, which are very similar to our earlier assumptions,

except now we assume all three values of D are observable.

Assumption 28 We observe realizations of an outcome Y , multinomial treatment indica-

tor D taking three values 0 1 and 2, a covariate V , and a k×1 covariate vector X. Assume

the outcome Y and treatment indicator D are given by equations (2.5.4) and (2.5.3) respec-

tively, where α0 (X) and α1 (X) are unknown threshold functions and α0 (X) < α1 (X), U is

an unobserved latent random error, and Y0 Y1 Y2 are unobserved random potential outcomes

for D = 0, 1, 2 respectively. The joint distribution of (U, Y0, Y1, Y2), either unconditional or

conditional on X, is unknown.

Assumption 29 Assume V ⊥ (U, Y0, Y1, Y2) | X. For all x ∈ supp (X), the supp(V | X =

x) covers the supp (α1 (X)− U) on the right and covers supp(α0 (X) − U | X = x) on the
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left.

Theorem 2.5.5 (Identification) Suppose Assumption 28, 29 hold. {γn (X)}∞n=1 , {γ′n (X)}∞n=1

are increasing series such that lim
n→∞

E (D | X,V ≤ −γn (X)) = 0 and lim
n→∞

E (D | X,V ≥ γ′n (X)) =

2. Then

E (Y0 | X) = lim
n→∞

E (I (D = 0)Y | X,V ≤ −γn (X)) , E (Y2 | X) = lim
n→∞

E
(
I (D = 2)Y | X,V ≥ γ′n (X)

)
.

and E (Y1 | X) =
E [I (D = 1)Y/f(V | X) | X]

E [I (D = 1) /f(V | X) | X]
/

The proof is in the supplemental Appendix.

The tuning paramerers γn (X) and γ′n (X) determine the set of V values that we average

over as the sample size grows. The intuition of this identification at infinity is that the the

larger in magnitude are γn (X) and γ′n (X), the more extreme are the values of V that we

average over, and hence the lower is the probability that the confounder U can alter D.

Eventually, the effect of the confounder vanishes in the limit.

In the special case of our empirical example, the treatment indicator is defined as

Dit = I [α0 ≤ Vit + ai + bt + Uit < α1] + 2I [Vit + ai + bt + Uit ≥ α1] , (2.5.5)

where covariates X become a constant, and the former confounder becomes ai + bt + Uit.

For the outcome equation, compared with the previous sections, ãi, b̃t are now absorbed

into the outcome variable.

The sample counterpart estimators for E (Y0) , E (Y1) and E (Y2) (corresponding to
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E
(
ãi + b̃t + Yj

)
, j = 1, 2, 3, in our previous notation) based on the above theorem is

Ê (Y0) =

1
nT

n∑
i=1

T∑
t=1

I (Dit = 0)YitI (Vit ≤ −γnT )

1
nT

n∑
i=1

T∑
t=1

I (Dit = 0) I (Vit ≤ −γnT )

, Ê (Y2) =

1
nT

n∑
i=1

T∑
t=1

I (Dit = 2)YitI (Vit > γ′nT )

1
nT

n∑
i=1

T∑
t=1

I (Dit = 2) I
(
Vit > γ′nT

) ,

Ê (Y1) =

1
nT

T∑
t=1

n∑
i=1

I (Dit = 1)Yit

/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

I (Dit = 1)
/
f̂vt(vit)

where γnT and γ′nT are increasing series such that lim
n,T→∞

E (D | V ≤ −γnT ) = 0 and

lim
n,T→∞

E (D | V ≥ γ′nT ) = 2.

The estimator Ê (Y1) duplicates our previous results, based on Theorem 2.3.4. Andrews

and Schafgans (1998) and Schafgans (1998) provide asymptotics for models that are iden-

tified at infinity like Ê (Y0) and Ê (Y2). Following Schafgans (1998), we consider various

values for γnT and γ
′
nT , based on the percentage of uncensored observations (e.g., for E (Y0)

uncensored means D = 0) used in the estimation, specifically, 50%, 40%, 30%, 20%, 10%,

and 5%. We estimate a standard error for Ê (Y0) using

(
n∑
i=1

T∑
t=1

I (Dit = 0)
(
Yit − Ê (Y0)

)2
I (Vit ≤ −γnT )

)1/2

n∑
i=1

T∑
t=1

I (Dit = 0) I (Vit ≤ −γnT )

.

and similarly for Ê (Y2).

Empirical results are reported in Table 3B. Panel A displays the estimates when we

define D as a whole sample and the thresholds are the 25% and 75% quantiles of the

measure of the competitiveness. As a robustness check, panel B displays the results when
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we define D separately for each year. The results do not vary much by year, and are also

not very sensitive to the choice of γnT and γ
′
nT , especially for Ê (Y2). Not surprisingly,

the standard errors become larger when the tuning parameters are larger, corresponding to

averages over fewer observations.

The estimate Ê (Y1) from the previous section is 4.33. Seen from Table 3B, Ê (Y2) is

slightly (but not significantly) higher than Ê (Y1) , while Ê (Y0) is much higher than Ê (Y1)

and Ê (Y2) . Therefore we obtain a mostly decreasing relationship between innovation and

competition. This pattern is similar to the quadratic least squares estimation of the raw

data (see Figure 2). This result is also consistent with Hashmi (2013), who speculates that

manufacturing in the US is probably dominated by Leader-Laggard industries.

The results in the section come with some caveats that do not apply to our main identi-

fication theorem. Due to only being identified at infinity, the estimators Ê (Y0) and Ê (Y2)

will converge slower than the parametric rate. These estimates can also be sensitive to the

tuning parameters γnT and γ
′
nT .

The results here could be readily extended to cases having more than three outcomes.

For example, if we had four outcomes, we can identify middle outcomes involving E (Y1)

and E (Y2) by the special regressor approach using Theorem 2.3.2, and those outcomes at

the ends, i.e. E (Y0) and E (Y4), using identification at infinity.

2.6 Conclusions

In this article, we propose a new method to estimate the average treatment effect in a two

threshold model, where the treated group is a middle choice. In our application, treatment

is defined as facing an intermediate level of competition, versus a low or high level of
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competition.

The proposed model is confounded, because the unobservables that affect the treatment

indicator D can be correlated in unknown ways with potential outcomes Y0 and Y1, with or

without conditioning on other covariates. No parametric or semiparametric restrictions are

placed on distributions of treatment and potential outcomes, so treatment effects are not

identified by functional form. Our model assumes a continuous instrument V with large

support, but treatment effects are not identified at infinity, because both very large and very

small values of V drive the probability of treatment close to zero, while no value of V (or

of other covariates) drives the probability of treatment close to one. So in this framework

none of the conditions that are known to permit point identification of the ATE hold.

Even the monotonicity conditions usually required for identifying LATE are not satisfied.

Nevertheless, we show that the ATE is identified, using a special regressor argument, and

we provide conditions under which the corresponding estimate of the ATE is consistent, and

asymptotically normal. Root-n consistency is even obtained in a panel context with fixed

effects, despite nonlinearities that would usually induce an incidental parameters problem

in the equation determining probability of treatment. We provide Monte Carlo results

that show that our estimator works well in small samples (comparable to the data in our

empirical application). We show in an Appendix that our estimator is relatively robust to

measurement error and misspecification.

We use our method to investigate the relationship between competition and innova-

tion. Our estimates using a dataset from Hashmi (2013) confirm Hashmi’s findings that

an inverted-U is not present in US data. We also find that standard parametric model

and naive treatment effect estimators substantially underestimate the magnitude of the
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treatment effect in this context.
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2.7 Appendix A: Robustness to Measurement Errors

Observable indices of competitiveness of an industry, like the average Lerner index in equa-

tion (2.4.1), may be relatively crude measures of true competitiveness. In this section we

therefore assess the robustness of our estimator, relative to a parametric model estimator

like Hashmi’s, to measurement error in the index of competitiveness. We first show that

both models, as one would expect, become inconsistent if competitiveness is mismeasured,

even when the models are otherwise correctly specified. However, we also show that the

bias in our estimator resulting from measurement error is quite small relative to alternative

estimators.
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First consider the case where competitiveness is mismeasured, but a parametric model

like Hashmi’s (dropping fixed effects for simplicity) is the correct specification in terms of

true competitiveness. This model assumes

lnY = θ0 + θ1c
∗ + θ2c

∗2 + ẽ, (2.7.1)

where lnY is logged innovation, c∗ is the true level of competitiveness, and ẽ is an error term.

For simplicity we ignore discreteness in lnY , and we assume c∗ can be linearly decomposed

into the observable instrument V and an unobserved independent component W , so

c∗ = V +W . (2.7.2)

Assume validity of Hashmi’s control function type assumption that ẽ = λW + e where e is

independent of W and V , so

lnY = θ0 + θ1c
∗ + θ2c

∗2 + λW + e (2.7.3)

In this model, if c∗ were observed, then control function estimation (first regressing c∗ on

a constant and V , getting the residuals Ŵ , and then regressing lnY on a constant, c∗,

c∗2, and Ŵ ) would consistently estimate the θ coeffi cients and hence any desired treatment

effects based on θ.

Now assume the observable competitiveness measure c equals the true measure c∗ plus

measurement error ce, so

c = c∗ + ce, (2.7.4)
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where ce is the measurement error and independent of c∗ and e. To take the best case

scenario for the parametric model, assume that the measurement error ce has mean zero

and is independent of V , W , and e.

Substituting equation (2.7.4) into equation (2.7.3) gives

lnY = θ0 + θ1c+ θ2c
2 + λW + e∗ (2.7.5)

where

e∗ = θ1ce − 2θ2cce − θ2c
2
e + e.

The error e∗ does not have mean zero and correlates with c and c2, which makes the control

function estimator inconsistent. Unlike the case of linear models with independent mean

zero measurement errors, the control function estimator is not consistent because of the

nonlinearity in this model.

Now consider applying our nonparametric estimator to this model. The treatment

indicator D that we would construct is defined as equaling one for firms in the .25 to .75

quantile of c and zero otherwise, while the corresponding indicator D∗ based on the true

measure of competitiveness equals one for firms in the .25 to .75 quantile of c∗ and zero

otherwise. Unless the measurement error ce is extremely large, for the large majority of firms

D will equal D∗. This is part of what makes our estimator more robust to measurement

error. Even if all firms have c mismeasured to some extent, most will still be correctly

classified in terms of D.

To check the relative robustness of these estimators to measurement error, we perform

additional Monte Carlo analysis. As before, we construct simulated data to match moments
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and the sample size of the empirical data set, and to make what would be the true treatment

effect in the model match our empirical estimate of −3.9. We do two simulations, one using

normal errors and one based on uniform errors, as before. In both, V and W are scaled to

have equal magnitudes, so V = δ0 + δ1ε1 and W = δ0 + δ1ε2. To match data moments,

the normal error simulations set δ0 = 0.375, δ1 = 0.0733, and ce = κ1ε3 where ε1, ε2,

and ε3 are independent standard normals and κ1 is a constant with values that we vary

to obtain different magnitudes of measurement error. The uniform error simulations set

δ0 = δ1 = 0.25, and ce ∼ κ2(ε3 − 0.5), where now ε1, ε2, and ε3 are independent random

variables that are uniformly distributed on [0, 1].

To check for robustness against an alternative specification as well as measurement error,

we also generate data replacing the quadratic form in equation (2.7.1) with the step function

lnY = θ0 + (θ1 − θ0)D∗ + ẽ, (2.7.6)

where D∗, D, c∗, c, V , W , and e are all defined as above.

The Monte Carlo results, based on 10,000 replications, are reported in Tables 5 and 6

in the supplemental Appendix. In addition to trying out the four estimators we considered

earlier, (Trim-ATE, No-Trim-ATE, Naive-ATE, and ML-ATE) we also apply the control

function estimator described above, analogous to Hashmi’s estimator.

Our main result is that, with both normal and uniform errors, the greater the magnitude

of measurement error is (that is, the larger the κ1 and κ2 are), the better our estimator

performs relative to other estimators. For the quadratic model without measurement error

the control function would be a consistent parametric estimator and so should outperforms

our semiparametric estimator. We find this also holds with very small measurement error
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(e.g., κ1 = .02 in the left side block of Table 5), however, both control function and Trim-

ATE perform about equally at κ1 = .03, and at the still modest measurement error level

of κ2 = .04, Trim-ATE has smaller RMSE (root mean squared error) than all the other

estimators, including control function. Similar results hold for the uniform error model

reported in Table 6. Also, in the step function model (shown on the right side of Tables

5 and 6) our Trim-ATE is very close to, or superior to, all the other estimators including

control functions at all measurement error levels.

It is worth noting that possible measurement error affects our empirical application only

because we defined treatment D in terms of an observed, possibly mismeasured underlying

variable, competitiveness. In other applications the treatment indicator may be observed

without error even when an underlying latent measure is completely unobserved. For exam-

ple, suppose an outcome Y is determined in part by an individual’s chosen education level,

which in turn is determined by an ordered choice specification. The true education level of

a student might be unobserved, but a treatment D defined as having graduated high school

but not college could still be correctly measured.

2.8 Appendix B: Additional Extensions

2.8.1 Identifying an additive function of V

In previous sections, we assumed V appears in the selection equation in the form V +U . In

this section, we consider the generalization where selection depends on ς (V ) + U for some

unknown function ς (V ). This may be more realistic in some applications, since economic

theory may not indicate a priori the function ς (V ). Given identification and an associated

estimator for ς, one could then redefine V as ς (V ) and then estimate treatment effects as
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before. Though not likely to be empirically relevant, it is interesting to note that in the very

special case where the function ς equals the distribution function of V , the model becomes

unconfounded and our proposed estimator reduces to standard propensity score weighting.

To identify ς, suppose that the selection equation takes the form

D = I (α̃0 (X) ≤ ς (V ) +$ (X,Z) + U ≤ α̃1 (X)) , (2.8.1)

for some continuously distributed exogenous covariate Z that affects selection but does not

affect the thresholds. Formally, we assume the following.

Assumption 30 Equation (2.8.1) holds for observed covariates V,Z, and vector X, where

ς,$, α̃0, α̃1 are unknown functions, ς is differentiable, 0 is in the support of V , ς (0) = 0,

and ς ′ (0) = 1, and (V,Z) ⊥ U | X.

We could equivalently write equation (2.8.1) as

D = I (α0 (X,Z) ≤ ς (V ) + U ≤ α1 (X,Z))

for some unknown functions ς, α0, and α1 where α1 (X,Z)−α0 (X,Z) = δ (X) for some func-

tion δ. In the standard specification of ordered choice models whereD = I (δ0 ≤ X ′β1 + V β2 + U ≤ δ1)

and X is exogenous, every continuous regressor contained in the vector X could be relabeled

as Z and would then satisfy Assumption 30. This is much stronger than necessary, since

we only the require existence of one such regressor.

The assumptions that zero is in the support of V , that ς (0) = 0, and that ς ′ (0) = 1 are

all free normalizations that are made without loss of generality. To see this, first note that

there must exist some value of v in the support of V for which ς ′ (v) 6= 0, since otherwise
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ς (V ) would be a constant, not a function of V . Redefining V as V −v then ensures that zero

is the support of V and that ς ′ (0) 6= 0. Next redefine all of the unknown functions, and U ,

by dividing them all by ς ′ (0). After this scale normalization, we will have by construction

that ς ′ (0) = 1. Finally, ς (0) = 0 is a free location normalization, since if ς (0) = c 6= 0 then

we can redefine $ (X,Z) as $ (X,Z) + c to make ς (0) = 0.

The following theorem shows identification of the function ς. The proof is constructive,

so one could obtain a consistent estimator of ς by mimicking the steps of the proof, using

standard kernel based nonparametric regression derivative estimators. After estimating ς,

our previous estimators may be applied by replacing the density of V with the density of

ς (V ).

Theorem 2.8.1 Suppose we observe X,V, Z,D and D follows equation (2.8.1). Given

Assumption 30, the functions ς (V ) and ∂$(X,Z)
∂Z are identified.

The proof is in the supplemental Appendix.

2.8.2 Additional Panel Data Asymptotics

We showed earlier that in the panel model, Assumption 27 was necessary for obtaining a

√
nT convergence rate. Here we consider asymptotics when Assumption 27 is not imposed.

In this case we can also replace Assumption 24 with the weaker Assumption 31, yielding(
f̂vt(v)− fvt(v)

)2
= op

(
n−1/2

)
, because the convergence rate of the estimator will now

only be
√
T . Similarly, a higher order kernel will no longer be needed.

Assumption 31 n→∞, T →∞, and T = o (n) .

161



Theorem 2.8.2 Let Assumption 18, 21, 22, 23, 25, 26, 31, 37, and 39 hold. Assume that

bandwidth h = c0n
−1/5 in f̂vt and assume a symmetric kernel of order p = 2. Then

√
T


1
nT

T∑
t=1

n∑
i=1

DitYit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

Dit
f̂vt (vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Yit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
f̂vt (vit)

− E(ãi + b̃t + Y1) + E(ãi + b̃t + Y0)


d→ N

0,
var
(
E
[

Λ1it| bt, b̃t
])

Π
2
1

−
2cov

(
E
[

Λ1it| bt, b̃t
]
,E
[

Λ2it| bt, b̃t
])

Π1Π2

+
var
(
E
[

Λ2it| bt, b̃t
])

Π
2
2

 .

This theorem is proved in the supplemental online appendix.

Remark 2.8.3 In this
√
T convergence case, we can allow arbitrary dependence between

Yjit and
(
ãi, b̃t

)
, which implies that Yjit can contain some general function of ãi and b̃t as

long as E (Yjit) = E (Yj) , j = 0, 1. We similarly allow for more general fixed effects of the

form g
(
ãi, b̃t

)
instead of ãi + b̃t for some unknown function g, because these fixed effects

will still difference out.

Remark 2.8.4 Suppose
(
ai, ãi, bt, b̃t

)
is a series of constants instead of random variables.

From the proof of Lemma 2.10.8, the above rate
√
T limiting distribution will still hold if

1
n2

(
n∑
i=1

ã2
i

)
= O (1) and 1

nT

(
T∑
t=1

b̃2t

)
= O (1) .

2.8.3 Dynamic Panels

Our identification can extend to the dynamic panel case. Define the treatment indicator

equation as

Dit = I(α0(xit) ≤ ai + bt + Vit + ϑ (Dit−1) + Uit ≤ α1(xit)), (2.8.2)
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and the outcome equation as

Yit = ãi + b̃t + g (Yit−1) + Y0it + (Y1it − Y0it)Dit, (2.8.3)

where the treatment indicator and the outcome variable are related to those in the last

period, and these effects are captured by two unknown functions ϑ, g.

As before, the observables in the model are the outcome Y, treatment D, instrument V,

and covariate vector X. (ai, bt, ãi, b̃t) as fixed effects, which can correlate with unobservables

and with X in unknown ways.

Assumption 32 For individuals i and time periods t, ai, bt, ãi, b̃t are random variables.

E
(
g (Yit−1) + ãi + b̃t + Yjit|Xit, Vit, ai, bt, Uit, Dit−1

)
= E

(
g (Yit−1) + ãi + b̃t + Yjit

∣∣∣Xit, ai, bt, Uit, Dit−1

)
,

(2.8.4)

for j = 0, 1, and

Vit ⊥ ai, bt, Uit, Dit−1|Xit. (2.8.5)

Remark 2.8.5 Equation (2.8.4) does not put much more restriction than the corresponding

part in Assumption 22. Equation (2.8.5), however, generally requires that Vit ⊥ Vit−1.

Although we impose Vit ⊥ Vit−1 in Assumption 26, it is for theoretical convenience and

could be extended to the weak dependence case. On the contrary, we generally cannot

allow any dependence between Vit and Vit−1 for the identification here. If there is no

dynamics in the selection equation, i.e., ϑ = 0, then we do not need Vit ⊥ Vit−1. We would

like to emphasize that, just as in previous sections, all strong assumptions are only on the

special regressor V.
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Assumption 33 Assumption 20 holds after replacing supp[α0(X) − U,α1(X) − U ] with

supp[α0(xit)− ãi − b̃t − Uit − ϑ (Dit−1) , α1(xit)− ãi − b̃t − Uit − ϑ (Dit−1)].

Theorem 2.8.6 Let Assumption 18, 32, and 33 hold for each individual i in each time

period t. Let fvt denote the density of V in time t. Then

E[DitYit/fvt(Vit|Xit)|Xit]

E[Dit/fvt(Vit|Xit)|Xit]
− E[(1−Dit)Yit/fvt(Vit|Xit)|Xit]

E[(1−Dit)/fvt(Vit|Xit)|Xit]
= E(Y1it − Y0it|Xit). (2.8.6)

It follows the proof as in Theorem 2.3.4.

We provide another set of weaker assumptions that permit some limited dependence

among {Vit}Tt=1 (e.g. {Vit}
T
t=1 can be a Markov chain, see Remark 2.8.7) and are able to

achieve identification. We need to modify the estimator a bit as in equation (2.8.9) where

fvt(Vit|Xit) is replaced by fvt(Vit|Xit, Vit−1).

Assumption 34 For individuals i and time periods t, ai, bt, ãi, b̃t are random variables.

E
(
g (Yit−1) + ãi + b̃t + Yjit|Xit, Vit, ai, bt, Uit, Dit−1, Vit−1

)
= E

(
g (Yit−1) + ãi + b̃t + Yjit

∣∣∣Xit, ai, bt, Uit, Dit−1, Vit−1

)
, (2.8.7)

for j = 0, 1, and

Vit ⊥ ai, bt, Uit, Dit−1| (Xit, Vit−1) . (2.8.8)

Remark 2.8.7 Condition (2.8.8) can be implied by Vit ⊥ ai, bt, {Uij}tj=1

∣∣∣Xit, and Vit ⊥ {Vij}t−2
j=1

∣∣∣Vit−1.

So {Vit}Tt=1 can be a Markov chain under this condition.

Theorem 2.8.8 Let Assumption 18, 33 and 34 hold for each individual i in each time
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period t. Let fvt denote the density of V in time t. Then

E[DitYit/fvt(Vit|Xit, Vit−1)|Xit]

E[Dit/fvt(Vit|Xit, Vit−1)|Xit]
−E[(1−Dit)Yit/fvt(Vit|Xit, Vit−1)|Xit]

E[(1−Dit)/fvt(Vit|Xit, Vit−1)|Xit]
= E(Y1it−Y0it|Xit).

(2.8.9)

The proof is in the supplemental Appendix.

Heckman and Navarro (2007) obtain the identification of structural dynamic discrete

choice model and models for dynamic treatment effects. Although the model specifica-

tions in Heckman and Navarro (2007) and our paper are very different, the identification

strategies are similar. Both their paper and ours rely on the suffi cient variation on some

covariates. Heckman and Navarro (2007) allows more general serial correlation than our

paper, because we could only allow limited dependence on the special regressor. However,

we model the feedback effects and fixed effects explicitly in the choice and outcome equa-

tions, while Heckman and Navarro (2007) does not. Like other sections of our paper, all

strong assumptions are on the special regressor.
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2.9 Appendix C: Additional Assumptions and Proofs

Proof of Theorem 2.3.2.2 To prove this look first at

E

(
IτDY

f (V | X)
| U,X

)
= E

[
E

(
IτDY1

f (V | X)
| V,U,X

)
| U,X

]
= E

[
IτI [α0 (X) ≤ V + U ≤ α1 (X)]E (Y1 | V,U,X)

f (V | X)
| U,X

]
=

∫
supp(V |U,X)

IτI [α0 (X)− U ≤ v ≤ α1 (X)− U ]E (Y1 | U,X)

f (v | X)
f (v | U,X) dv

=

∫ α1(X)−U

α0(X)−U

E (Y1 | U,X)

f (v | X)
f (v | X) dv = E (Y1 | U,X)

∫ α1(X)−U

α0(X)−U
1dv

= [α1 (X)− α0 (X)]E (Y1 | U,X) ,

the fourth equality holds by Assumption 20.

Therefore

E

(
IτDY

f (V | X)
| X
)

= [α1 (X)− α0 (X)]E (Y1 | X)

The same analysis dropping Y gives

E

(
IτD

f (V | X)
| X
)

= α1 (X)− α0 (X)

so

E

(
IτDY

f (V | X)
| X
)

= E (Y1 | X)E

(
IτD

f (V | X)
| X
)
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Similarly,

E

(
Iτ (1−D)Y

f (V | X)
| X
)

= E

(
Iτ (1−D)Y0

f (V | X)
| X
)

= E

(
IτY0

f (V | X)
| X
)
− E

(
IτDY0

f (V | X)
| X
)

= E (Y0 | X)E

(
Iτ

f (V | X)
| X
)
− [α1 (X)− α0 (X)]E (Y0 | X)

= E (Y0 | X)E

(
Iτ

f (V | X)
− [α1 (X)− α0 (X)] | X

)
= E (Y0 | X)E

(
Iτ (1−D)

f (V | X)
| X
)

Together these equations prove the result.

Proof of Theorem 2.3.4.2 The proof is the almost the same as the proof for Theorem

2.3.2. To prove this first look at

E

(
IτitDitYit
fvt (Vit|Xit)

∣∣∣∣Uit, ai, bt, Xit

)

= E

E
IτitDit

(
ãi + b̃t + Y1it

)
fvt (Vit|Xit)

| Vit, Uit, ai, bt, Xit

 | Uit, ai, bt, Xit


= E

IτitI (α0(Xit) ≤ ai + bt + Vit + Uit ≤ α1(Xit))E
(
ãi + b̃t + Y1it | Vit, Uit, ai, bt, Xit

)
fvt (Vit|Xit)

| Uit, ai, bt, Xit


=

∫
supp(Vit|Uit,ai,bt,Xit)

IτitI (α0(Xit)− ai − bt − Uit ≤ vit ≤ α1(Xit)− ai − bt − Uit)
fvt (vit|Xit)

E
(
ãi + b̃t + Y1it | Uit, ai, bt, Xit

)
fvt (vit | Uit, ai, bt, Xit) dvit

=

∫ α1(Xit)−ai−bt−Uit

α0(Xit)−ai−bt−Uit

E
(
ãi + b̃t + Y1it | Uit, ai, bt, Xit

)
fvt (vit|Xit)

fvt (vit|Xit) dvit

= E
(
ãi + b̃t + Y1it | Uit, ai, bt, Xit

)∫ α1(Xit)−ai−bt−Uit

α0(Xit)−ai−bt−Uit
1dvit

= E
(
ãi + b̃t + Y1it | Uit, ai, bt, Xit

)
[α1(Xit)− α0(Xit)]
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and therefore

E [IτitDitYit/fvt (Vit|Xit) |Xit]

= E
[
E
(
ãi + b̃t + Y1it | Uit, ai, bt, Xit

)
[α1(Xit)− α0(Xit)] |Xit

]
= E

(
Y1it + ãi + b̃t

∣∣∣Xit

)
[α1(Xit)− α0(Xit)] .

Given the above result, the rest of the proof follows similarly as in the proof for Theorem

2.3.2.

We let mk ≡ (m1,m2, ...,mk) be a k×1 non-negative integers. Following Masry (1996),

we adopt the notation: umk ≡ Πk
i=1u

mi
i , mk! ≡Πi=1mi!, |mk| ≡

∑k
i=1mi, and

∑
|mk|=p ≡∑p

m1=0 · · ·
∑p

mk=0
m1+···+mk=p

. We let Dmkfx (x) ≡ ∂|mk|fx (x)
/
∂m1x1 · · · ∂mkxk. If we have covariates

of other dimensions, e.g. k + 1, then mk+1 and the other notations above are changed

accordingly with k replaced by k + 1.

Assumption 35 Observations are i.i.d. across i.

Assumption 36 fx(x), E(g1i|x) , and E(g2i|x) are bounded away from zero over the whole

support of X.

Assumption 37 The kernel functions K(v), K(x), and K(x, v) have supports that are

convex and bounded on R1, Rk, and Rk+1 respectively. Each kernel function integrates to

one over its support, is symmetric around zero, and has order p, i.e., for K(x),

∫
Rk
xmkK(x)dx = 0 for |mk| < p,

∫
Rk
xmkK(x)dx 6= 0 for some |mk| = p,
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and
∫
K(x)2dx,

∫
Rk |x

mk |K(x)dx for |mk| = p are finite. This similarly holds for K(v) and

K(x, v).

Assumption 38 Let s1i ≡ DiIτiYi
fxv(xi,vi)

, s2i ≡ DiIτiYifx(xi)
f2xv(xi,vi)

, s3i ≡ DiIτi
fxv(xi,vi)

, s4i ≡ DiIτifx(xi)
f2xv(xi,vi)

,

s5i ≡ (1−Di)IτiYi
fxv(xi,vi)

, s6i ≡ (1−Di)IτiYifx(xi)
f2xv(xi,vi)

, s7i ≡ (1−Di)Iτi
fxv(xi,vi)

, s8i ≡ (1−Di)Iτifx(xi)
f2xv(xi,vi)

. Then for

each sji, j = 1, ..., 8, fx (x) , fxv (x, v) satisfy the Lipschitz condition that there exists some

positive numbers M1, ...M10, such that

|E(sji|x+ ex)− E(sji|x)| ≤Mj ‖ex‖ , j = 1, ..., 8

|fx(x+ ex)− fx(x)| ≤ M9 ‖ex‖ ,

|fxv(x+ ex, v + ev)− fx(x, v)| ≤ M10 ‖(ex, ev)‖ .

E(sji|xi), j = 1, ..., 8, fx, fxv are p-th order differentiable and the p-th order derivatives

are bounded. The p-th order derivatives of fx, fxv also satisfy the Lipschitz condition. The

second moment of qi (x) (defined in equation 2.10.6) exists.

Assumption 39 E (DitIτitYit|v) , E [(1−Dit) IτitYit|v] , fvt(v) are p times continuous dif-

ferentiable in v, and the p-th order derivatives are bounded. Second moments of DitIτitYitfvt (vit)
,

DitIτit
fvt (vit)

, (1−Dit)IτitYit
fvt (vit)

, and (1−Dit)IτitYit
fvt (vit)

are bounded.
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Table 1: Summary Statistics of the US Dataset

MEAN SD LQ MED UQ

Competition 0.76 0.11 0.70 0.76 0.83

Innovation 5.53 9.98 0.22 1.59 5.77

Source-weighted Interest Rate 0.91 0.23 0.79 0.87 0.99

Note: MEAN = mean. SD = standard errors. LQ = 25% quantile (lower). MED = 50% quantile
(median). UQ = 75% quantile (upper).

Table 2A: Empirical Estimates in Various Cases

Right Threshold Left Threshold Trim-ATE No-Trim-ATE Naive-ATE ML-ATE

Case 1 25%(0.70) 75%(0.83) -3.90 (0.61) -4.25 (0.75) -1.89 (0.27) -1.85 (0.39)

Case 2 33%(0.72) 67%(0.80) -3.27 (0.52) -3.47 (0.66) -1.67 (0.26) -1.69 (0.37)

Case 3 10%(0.63) 90%(0.89) -2.77 (0.98) -2.75 (1.10) -1.95 (0.29) -4.40 (3.48)

Case 4 20%(0.68) 80%(0.85) -4.25 (0.71) -4.62 (0.86) -2.22 (0.28) -2.12 (0.43)

Case 5 30%(0.71) 70%(0.82) -3.54 (0.54) -3.95 (0.68) -1.83 (0.26) -1.81 (0.37)

Case 6 40%(0.74) 60%(0.79) -2.49 (0.54) -2.58 (0.67) -1.18 (0.25) -1.48 (0.39)
Notes: Right Threshold and Left Threshold are the α and α in Equation (2.4.5) respectively. The first

value is the percentage of competition set for the thresholds, with corresponding value of competition in the
parenthesis. Four different estimates are reported here, with standard errors in parenthesis. Trim-ATE and
No-Trim-ATE are our proposed estimator with and without trimming (2%) respectively. Naive-ATE is an
estimate for E(Y1|T = 1)− E(Y0|T = 0). ML-ATE is Heckman’s selection MLE.

Table 2B: Empirical Estimates in Various Cases - Robust Check

Right Threshold Left Threshold Trim-ATE No-Trim-ATE Naive-ATE ML-ATE

Case 1 25% 75% -4.02 (0.63) -4.29 (0.80) -2.04 (0.27) -2.02 (0.39)

Case 2 33% 67% -3.46 (0.53) -4.02 (0.66) -1.81 (0.26) -4.46 (0.64)

Case 3 10% 90% -3.05 (1.06) -2.98 (1.20) -2.26 (0.29) -4.51 (3.00)

Case 4 20% 80% -4.98 (0.74) -5.03 (0.93) -2.75 (0.28) -2.69 (0.44)

Case 5 30% 70% -3.62 (0.56) -3.86 (0.70) -1.86 (0.26) -5.95 (0.50)

Case 6 40% 60% -2.41 (0.57) -2.99 (0.67) -0.99 (0.26) -0.97 (0.44)
Notes: Right Threshold and Left Threshold are the α and α in Equation (2.4.5) respectively. Four

different estimates are reported here, with standard errors in parenthesis. Trim-ATE and No-Trim-ATE
are our proposed estimator with and without trimming (2%) respectively. Naive-ATE is an estimate for
E(Y1|T = 1)− E(Y0|T = 0). ML-ATE is Heckman’s selection MLE.
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Table 3A: P-Value of the Testing of the Large Support Assumption

Year Left Right Year Left Right

1976 0.000∗∗∗ 0.000∗∗∗ 1977 0.000∗∗∗ 0.001∗∗∗

1978 1.000 0.000∗∗∗ 1979 0.000∗∗∗ 0.000∗∗∗

1980 0.051∗ 0.000∗∗∗ 1981 1.000 0.000∗∗∗

1982 1.000 1.000 1983 0.592 0.000∗∗∗

1984 0.008∗∗∗ 0.000∗∗∗ 1985 0.000∗∗∗ 0.000∗∗∗

1986 0.000∗∗∗ 0.000∗∗∗ 1987 0.658 0.010∗∗∗

1988 0.846 0.000∗∗∗ 1989 0.000∗∗∗ 0.000∗∗∗

1990 0.000∗∗∗ 0.000∗∗∗ 1991 0.000∗∗∗ 0.000∗∗∗

1992 0.000∗∗∗ 0.000∗∗∗ 1993 1.000 0.000∗∗∗

1994 0.000∗∗∗ 1.000 1995 0.000∗∗∗ 1.000
1996 0.867 1.000 1997 0.000∗∗∗ 0.608
1998 0.000∗∗∗ 0.000∗∗∗ 1999 0.000∗∗∗ 0.725
2000 0.000∗∗∗ 0.347 2001 0.000∗∗∗ 0.000∗∗∗

Notes: ∗∗∗, ∗∗, ∗ denote the cases when P-values are less than 0.01, 0.05, 0.10 respectively.

Table 3B: Ordered Choice Estimates (Identification at Infinity)

Trimming
Parameter 50% 40% 30% 20% 10% 5%

Panel A: Define D from the whole sample

E(Y0) 10.17 (0.97) 11.35 (1.17) 12.78 (1.46) 15.56 (1.98) 17.40 (2.87) 26.94 (4.44)
E(Y2) 5.86 (0.50) 5.96 (0.58) 5.94 (0.67) 5.94 (0.88) 4.56 (0.76) 5.06 (0.98)

Panel B: Define D separately each year (robust check)

E(Y0) 9.61 (0.95) 10.55 (1.17) 11.67 (1.41) 15.05 (2.08) 14.85 (2.42) 18.90 (4.53)
E(Y2) 6.55 (0.49) 6.39 (0.53) 6.54 (0.62) 6.07 (0.77) 5.79 (0.95) 7.96 (1.76)

Notes: The estimates are obtained from the identification at infinity, with standard deviation in parentheses.

The choice of the trimming parameters is based on the specified percentages of uncensored observations.
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2.10 Appendix D: Supplemental Appendix

This supplemental appendix provides proofs for Theorem 2.3.5, 2.3.9, 2.8.2 in Section 2.10.1,

proofs for Theorem 2.5.1, 2.5.3, 2.5.5 in Section 2.10.2, proofs for Theorem 2.8.1, 2.8.8 in

Section 2.10.3, and Table 4, 5, and 6 in Section 2.10.4.

To make the proof more clearly, we suppress the trimming indicators Iτi, Iτit in the

supplemental appendix. The proof can still go through when the trimming indicators are

present.

Remark 2.10.1 (Uniform Convergence) Based on Silverman (1978), we have the uni-

form convergence of f̂xv (x, v) and f̂x (x) over a compact set of (V,X) and X respectively.

We could use this result for those observations in our estimator (2.3.5) with nonzero weight

for the following reasons. For the estimation at x, an interior point of the support of X, be-

cause we use a kernel function K with bounded support, those xi outside of a small interval

around x will have zero weights. When h is small enough, those xi with non-zero weights

will eventually fall into the compact set where we have the uniform convergence results.

For the estimation at v, we put a trimming indicator as in the identification theorem. If we

select a compact set that strictly covers the one where that trimming indicator is nonzero,

we have the uniform convergence results for all vi with nonzero weights.
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2.10.1 Proof of Theorem 2.3.5 and 2.3.9, 2.8.2

We let ĥ1i = DiYi
f̂(vi|xi)

, ĝ1i = Di
f̂(vi|xi)

,where f̂(vi|xi) = f̂xv(xi,vi)

f̂x(xi)
, and f̂x(xi) and f̂xv(xi, vi) are

standard leave-one-out nonparametric density estimators:

f̂x(xi) =
1

nhk

n∑
l=1,l 6=i

K

(
xl − xi
h

)
,

f̂xv(xi, vi) =
1

nhk+1

n∑
l=1,l 6=i

K

(
xl − xi
h

,
vl − vi
h

)
.

where h is the bandwidth and K is the kernel function. Without loss of generality, we use

the same h for each covariate. The kernel function K is defined in Assumption 37.

The sample counterpart estimate for ψ1(x) could be then

ψ̂1(x) =
Ê
(
ĥ1i

∣∣∣x)
Ê ( ĝ1i|x)

, (2.10.1)

where Ê denotes the standard kernel nonparametric estimation:

Ê
(
ĥ1i

∣∣∣x) =
1

nhk

n∑
i=1

ĥ1iK

(
xi − x
h

)/[
1

nhk

n∑
i=1

K

(
xi − x
h

)]
,

Ê ( ĝ1i|x) =
1

nhk

n∑
i=1

ĝ1iK

(
xi − x
h

)/[
1

nhk

n∑
i=1

K

(
xi − x
h

)]
.

For simplicity, we abuse the notation a bit by defining

h̃1i ≡ h1ifx(xi), g̃1i ≡ g1ifx(xi) (2.10.2)

and Ê
(̂̃
h1i

∣∣∣∣x) and Ê (̂̃g1i

∣∣∣x) are defined as the numerators in Ê ( ĥ1i

∣∣∣x) and Ê ( ĝ1i|x)
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respectively:

Ê

(̂̃
h1i

∣∣∣∣x) ≡ 1

nhk

n∑
i=1

ĥ1iK

(
xi − x
h

)
, (2.10.3)

Ê
(̂̃g1i

∣∣∣x) ≡ 1

nhk

n∑
i=1

ĝ1iK

(
xi − x
h

)
. (2.10.4)

It follows from the definition of h̃1i and g̃1i that

E
(
h̃1i

∣∣∣x) = E (h1i|x) fx (x) and E ( g̃1i|x) = E (g1i|x) fx (x) ,

and ψ̂1(x) =
Ê

(̂̃
h1i

∣∣∣∣x)
Ê
(̂̃g1i∣∣∣x) .

Replacing the subscript 1 with 2, similarly define ψ̂2(x), Ê
(
ĥ2i

∣∣∣x) , Ê ( ĝ2i|x) , h̃2i, g̃2i,̂̃
h2i, ̂̃g2i, Ê

(̂̃
h2i

∣∣∣∣xi) , Ê (̂̃g2i

∣∣∣xi). The resulting estimator is then

ψ̂1(x)− ψ̂2(x) =

1
nhk

n∑
i=1

DiYi
f̂(vi|xi)

K
(
xi−x
h

)
1
nhk

n∑
i=1

Di
f̂(vi|xi)

K
(
xi−x
h

) −
1
nhk

n∑
i=1

(1−Di)Yi
f̂(vi|xi)

K
(
xi−x
h

)
1
nhk

n∑
i=1

1−Di
f̂(vi|xi)

K
(
xi−x
h

) (2.10.5)

=
Ê
(
ĥ1i

∣∣∣x)
Ê ( ĝ1i|x)

−
Ê
(
ĥ2i

∣∣∣x)
Ê ( ĝ2i|x)

=

Ê

(̂̃
h1i

∣∣∣∣x)
Ê
(̂̃g1i

∣∣∣x) −
Ê

(̂̃
h2i

∣∣∣∣x)
Ê
(̂̃g2i

∣∣∣x) .

We define the following term for the influence function of ψ̂1(xi)− ψ̂2(xi) :
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qi (x) ≡

 h1i

E ( g̃1i|x)
+
E (h1i|xi)
E ( g̃1i|x)

− E (h1i|xi, vi)
E ( g̃1i|x)

−
E
(
h̃1i

∣∣∣x) g1i

E ( g̃1i|x)2 −
E
(
h̃1i

∣∣∣x)E (g1i|xi)

E ( g̃1i|x)2

+
E
(
h̃1i

∣∣∣x)E (g1i|xi, vi)

E ( g̃1i|x)2

−
 h2i

E ( g̃2i|x)
+
E (h2i|xi)
E ( g̃2i|x)

− E (h2i|xi, vi)
E ( g̃2i|x)

−
E
(
h̃2i

∣∣∣x) g2i

E ( g̃2i|x)2

−
E
(
h̃2i

∣∣∣x)E (g2i|xi)

E ( g̃2i|x)2 +
E
(
h̃2i

∣∣∣x)E (g2i|xi, vi)

E ( g̃2i|x)2

 . (2.10.6)

The bias term resulted from nonparametric regression is defined by:

Bp (x) ≡ B1,p

E (g1i|x)
− B2,p

E (g1i|x)
− E (h1i|x)B3,p

E (g1i|x)2 +
E (h1i|x)B4,p

E (g1i|x)2 (2.10.7)

− B5,p

E (g2i|x)
+

B6,p

E (g2i|x)
+
E (h2i|x)B7,p

E (g2i|x)2 − E (h2i|x)B8,p

E (g2i|x)2 ,

176



where Bj,p, j = 1, ..., 8, are defined in equation (2.10.8).

B1,p ≡ hp
∑
|mk|=p

E [DiYi/fxv (xi, vi)D
mkfx (xi)|x]

mk!

∫
Rk
umk
l K (ul) dul, (2.10.8)

B2,p ≡ hp
∑

|mk+1|=p

E
[
DiYifx (xi) /f

2
xv (xi, vi)D

mk+1fxv (xi, vi)
∣∣x]

mk+1!

∫
Rk+1

u
mk+1

l K (ul) dul,

B3,p ≡ hp
∑
|mk|=p

E [Di/fxv (xi, vi)D
mkfx (xi)|x]

mk!

∫
Rk
umk
l K (ul) dul,

B4,p ≡ hp
∑

|mk+1|=p

E
[
Difx (xi) /f

2
xv (xi, vi)D

mk+1fxv (xi, vi)
∣∣x]

mk+1!

∫
Rk+1

u
mk+1

l K (ul) dul,

B5,p ≡ hp
∑
|mk|=p

E [ (1−Di)Yi/fxv (xi, vi)D
mkfx (xi)|x]

mk!

∫
Rk
umk
l K (ul) dul,

B6,p ≡ hp
∑

|mk+1|=p

E
[
(1−Di)Yifx (xi) /f

2
xv (xi, vi)D

mk+1fxv (xi, vi)
∣∣x]

mk+1!

∫
Rk+1

u
mk+1

l K (ul) dul,

B7,p ≡ hp
∑
|mk|=p

E [ (1−Di) /fxv (xi, vi)D
mkfx (xi)|x]

mk!

∫
Rk
umk
l K (ul) dul, ,

B8,p ≡ hp
∑

|mk+1|=p

E
[
(1−Di) fx (xi) /f

2
xv (xi, vi)D

mk+1fxv (xi, vi)
∣∣x]

mk+1!

∫
Rk+1

u
mk+1

l K (ul) dul,

Lemma 2.10.2 Assume we observe Wi
(k+1)×1

= (Xi
k×1

Vi
1×1

), si
1×1

, Zi
(k+2)×1

= ( Wi
(k+1)×1

si
1×1

), , which

are i.i.d. across i. The density functions fx, fw for X and W are bounded. fx and fw are

p-th order differentiable, and p-th order derivatives are bounded. E(si|wi), fx, fw satisfy the

Lipschitz condition

|E(si|wi + ew)− E(si|wi)| ≤M1 ‖ew‖ ,

|fx(xi + ex)− fx(xi)| ≤M2 ‖ex‖ ,

|fw(wi + ew)− fw(wi)| ≤M3 ‖ew‖

for some positive M1, M2, M3. Under the above assumptions, when x is a interior point of
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X, we have

Ê
(
sif̂w(wi)

∣∣∣x) f̂x(x) (2.10.9)

=
1

n

n∑
i=1

1

hk
si

 1

n− 1

n∑
l=1,l 6=i

1

hk+1
K

(
wl − wi

h

)K (xi − x
h

)

=
1

n

n∑
i=1

[
si
hk
K

(
xi − x
h

)
fw (wi) +

E (si|wi)
hk

K

(
xi − x
h

)
fw (wi)

−2E

(
si
hk
K

(
xi − x
h

)
fw (wi)

)]
+ E

[
si

h2k+1
K

(
xi − x
h

)
K(

wl − wi
h

)

]
+ oP

(
1√
nhk

)
.(2.10.10)

and

Ê
(
sif̂x(xi)

∣∣∣x) f̂x(x) (2.10.11)

=
1

n

n∑
i=1

1

hk
si

 1

n− 1

n∑
l=1,l 6=i

1

hk+1
K

(
xl − xi
h

)K (xi − x
h

)

=
1

n

n∑
i=1

[
si
hk
K

(
xi − x
h

)
fx (xi) +

E (si|xi)
hk

K

(
xi − x
h

)
fx (xi)

−2E

(
si
hk
K

(
xi − x
h

)
fx (xi)

)]
+ E

[
si
h2k

K

(
xi − x
h

)
K(

xl − xi
h

)

]
+ oP

(
1√
nhk

)
.(2.10.12)

Proof of Lemma 2.10.2.2 Consider first the following term,

1

n(n− 1)h2k+1

n∑
i=1

n∑
l=1,l 6=i

siK

(
xi − x
h

)
K

(
wl − wi

h

)
(2.10.13)

=
2

n(n− 1)

n∑
i=1

n∑
l=i+1

1

2

[
siK

(
xi − x
h

)
+ slK

(
xl − x
h

)]
1

h2k+1
K

(
wl − wi

h

)
.

Let

P1(zi, zl) =
1

2

[
siK

(
xi − x
h

)
+ slK

(
xl − x
h

)]
1

h2k+1
K

(
wl − wi

h

)
.
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Then equation (2.10.13) becomes

2

n(n− 1)

n∑
i=1

n∑
l=i+1

P1(zi, zl). (2.10.14)

Following Powell et al. (1989), we first verify that E
[
P1(zi, zl)

2
]

= op(n).

E
[
P1(zi, zl)

2
]

=

∫ ∫
Ωwi,wl

E

{[
1

2

[
siK

(
xi − x
h

)
+ slK

(
xl − x
h

)]
1

h2k+1
K

(
wl − wi

h

)]2
∣∣∣∣∣wi, wl

}
fw(wi)fw(wl)dwidwl.

=

∫ ∫
Ωui,ul

1

h2k+1
E

{[
1

2
[siK (ui) + slK (ui + hul)]K(ul)

]2
∣∣∣∣∣ (x+ hui, vi), (x+ hui + hul, vi + hul)

}
fw(x+ hui, vi)fw (x+ hui + hul, vi + hul)duidvidul

= Op

(
1

h2k+1

)
= op(n),

where the second equality holds by the change of variables ul = wl−wi
h , ui = xi−x

h , the third

equality holds by the bounds conditions, and the last equality holds by the assumption that

nh2k+1 → ∞. According to Lemma 3.2 in Powell et al. (1989), equation (2.10.14) is equal

to

E [P1(zi, zl)] +
2

n

n∑
i=1

{E [P1(zi, zl)|zi]− E [P1(zi, zl)]}+ op

(
1√
n

)
. (2.10.15)

The term inside the summation in equation (2.10.15) has the following form:

E [P1(zi, zl)|zi]− E [P1(zi, zl)]

=
1

2
E

[
si

h2k+1
K

(
xi − x
h

)
K

(
wi − wl

h

)∣∣∣∣ zi]+
1

2
E

[
sl

h2k+1
K

(
xl − x
h

)
K

(
wi − wl

h

)∣∣∣∣ zi]
−E

[
si

h2k+1
K

(
xi − x
h

)
K

(
wi − wl

h

)]
.
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Since

E

[
si

h2k+1
K

(
xi − x
h

)
K

(
wi − wl

h

)∣∣∣∣ zi]
=

∫
Ωwl

si
h2k+1

K

(
xi − x
h

)
K

(
wi − wl

h

)
fw(wl)dwl

=
si
hk
K

(
xi − x
h

)
fw(wi) +

si
hk
K

(
xi − x
h

)∫
Ωul

K (ul) [fw(wi + hul)− fw(wi)] dul,

and similarly

E

[
sl

h2k+1
K

(
xl − x
h

)
K

(
wi − wl

h

)∣∣∣∣ zi]
=

E [si|wi]
hk

K

(
xi − x
h

)
fw(wi) +

1

hk

∫
Ωul

[
E [si|wi + hul]K

(
xi + hul − x

h

)
fw(wi + hul)

−E [si|wi]K
(
xi − x
h

)
fw(wi)

]
K (ul)dul,

the following holds

E [P1(zi, zl)|zi]− E [P1(zi, zl)]

=
1

2

si
hk
K

(
xi − x
h

)
fw(wi) +

1

2

E [si|wi]
hk

K

(
xi − x
h

)
fw(wi)− E

[
si
hk
K

(
xi − x
h

)
fw(wi)

]
+R1i − E (R1i) , (2.10.16)

where

R1i =
si
hk
K

(
xi − x
h

)∫
K (ul) [fw(wi + hul)− fw(wi)] dul (2.10.17)

+
1

hk

∫
Ωul

[
E [si|wi + hul]K

(
xi + hul − x

h

)
fw(wi + hul)

−E [si|wi]K
(
xi − x
h

)
fw(wi)K (ul) dul

]
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and, since E(si|wi), fx, fw satisfy the Lipschitz condition, E
(
R2

1i

)
= op

(
1
hk

)
. So

1

n

n∑
i=1

[R1i − E (R1i)] = op

(
1√
nhk

)
. (2.10.18)

By the fact that p(zi, zl) are symmetric for zi, zl, we have

E [P1(zi, zl)] = E

[
siK

(
xi − x
h

)
K(

wl − wi
h

)

]
.

From equation (2.10.15) (2.10.16) and (2.10.18), we have

2

n(n− 1)

n∑
i=1

n∑
l=i+1

P1(zi, zl)

=
1

n

n∑
i=1

[
si
hk
K

(
xi − x
h

)
fw (wi) +

E (si|wi)
hk

K

(
xi − x
h

)
fw (wi)

−2E

(
si
hk
K

(
xi − x
h

)
fw (wi)

)]
+ E

[
siK

(
xi − x
h

)
K(

wl − wi
h

)

]
+ oP

(
1√
nhk

)
,

which implies the first part of the Theorem.

The second part holds by the same line of analysis by replacing W with X.

Lemma 2.10.3 Adopt the same notation and assumptions as in Lemma 2.10.2, and assume

Dpfx and Dpfw also satisfy the Lipschitz condition. Then

E

[
si

h2k+1
K

(
xi − x
h

)
K

(
wl − wi

h

)]
= E

[
sifw (wi)

hk
K

(
xi − x
h

)]
+ S1,pfx (x) + o (hp) (2.10.19)

E

[
si
h2k

K

(
xi − x
h

)
K

(
xl − xi
h

)]
= E

[
sifx (xi)

hk
K

(
xi − x
h

)]
+ S2,pfx (x) + o (hp) (2.10.20)
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where

S1,p ≡ hp
∑

|mk+1|=p

E [siD
mk+1fw (wi)|x]

mk+1!

∫
Rk+1

u
mk+1

l K (ul) dul,

S2,p ≡ hp
∑
|mk|=p

E [siD
mkfw (xi)|x]

mk!

∫
Rk
umk
l K (ul) dul.

Proof of Lemma 2.10.3.2

E

[
si

h2k+1
K

(
xi − x
h

)
K

(
wl − wi

h

)]
=

∫
Ωωi

∫
Ωωl

1

hk+1
K

(
wl − wi

h

)
fw (wl) dwlE

[
si
hk
K

(
xi − x
h

)∣∣∣∣wi] fw (wi) dwi

= B1 + E

[
sifw (wi)

hk
K

(
xi − x
h

)]
,

where

B1 ≡
∫

Ωωi

∫
Ωωl

1

hk+1
K

(
wl − wi

h

)
(fw (wl)− fw (wi)) dwlE

[
si
hk
K

(
xi − x
h

)∣∣∣∣wi] fw (wi)dwi.

Then, doing the standard change of variables transformation ul = wl−wi
h , we have

B1 = hp
∑

|mk+1|=p

∫
Ωωi

∫
Rk+1

u
mk+1

l K (ul)
Dmk+1fw (w̃i)

mk+1!
dulE

[
si
hk
K

(
xi − x
h

)∣∣∣∣wi] fw (wi) dwi,

where w̃i is some value between wi and wi +hul. Since the kernel has bounded support and

Dpfw (w̃i) satisfies the Lipschitz condition, we have

B1 = hp
∑

|mk+1|=p

∫
Rk+1

u
mk+1

l K (ul) dul

∫
Ωωi

E
[
si
hk
K
(
xi−x
h

)
Dmk+1fw (wi)

∣∣wi]
mk+1!

fw (wi) dwi + o (hp)

= hp
∑

|mk+1|=p

∫
Rk+1

u
mk+1

l K (ul) dul
E
[
si
hk
K
(
xi−x
h

)
Dmk+1fw (wi)

]
mk+1!

+ o (hp) .
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Substituting this into B1, we have

B1 = S1,p + o (hp) ,

which is equation (2.10.19). The second conclusion can be proved similarly.

Corollary 2.10.4 Under the same assumptions in Lemma 2.10.3 and assuming E (si|x)

and E (si|w) are p-th order differentiable, with bounded p-th order derivatives, we have

Ê

[
si

f̂(vi|xi)

∣∣∣∣∣x
]
f̂x(x)− E

[
si

f(vi|xi)

∣∣∣∣x] fx(x) = Op(h
p) +Op

(
1√
nhk

)
+OP

(
log (n)

nhk+1

)
.

(2.10.21)

Proof of Corollary 2.10.4.2

Ê

[
si

f̂(vi|xi)

∣∣∣∣∣x
]
f̂x(x)− E

[
si

f(vi|xi)

∣∣∣∣x] fx(x)

= Ê

[
si

f̂(vi|xi)

∣∣∣∣∣x
]
f̂x(x)− Ê

[
si

f(vi|xi)

∣∣∣∣x] f̂x(x) + Ê

[
si

f(vi|xi)

∣∣∣∣x] [f̂x(x)− fx(x)
]

+

{
Ê

[
si

f(vi|xi)

∣∣∣∣x]− E [ si
f(vi|xi)

∣∣∣∣x]} fx(x).

All terms except the first term are readily seen to be Op(hp) + Op

(
1√
nhk

)
. For the first
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term

Ê

[
si

f̂(vi|xi)

∣∣∣∣∣x
]
f̂x(x)− Ê

[
si

f(vi|xi)

∣∣∣∣x] f̂x(x)

=
1

n

n∑
i=1

sif̂x(xi)

f̂w(wi)

1

hk
K

(
xi − x
h

)
− 1

n

n∑
i=1

sifx(xi)

fw(wi)

1

hk
K

(
xi − x
h

)

=
1

n

n∑
i=1

si

[
f̂x(xi)− fx(xi)

]
fw(wi)

1

hk
K

(
xi − x
h

)
(2.10.22)

+
1

n

n∑
i=1

sifx(xi)
[
f̂w(wi)− fw(wi)

]
f2
w(wi)

1

hk
K

(
xi − x
h

)
(2.10.23)

+
1

n

n∑
i=1

si

[
f̂x(xi)− fx(xi)

] [
f̂w(wi)− fw(wi)

]
f2
w(wi)

1

hk
K

(
xi − x
h

)
(2.10.24)

+
1

n

n∑
i=1

sif̂x(xi)
[
f̂w(wi)− fw(wi)

]2

f2
w(wi)f̂w(wi)

1

hk
K

(
xi − x
h

)
. (2.10.25)

According the results in Lemma 2.10.2 and Lemma 2.10.3, equation (2.10.22) and (2.10.23)

are Op(hp) +Op

(
1√
nhk

)
. From Silverman (1978) and Remark 2.10.1, we have

sup
K
(
xi−x
h

)
6=0,

∣∣∣f̂x(xi)− fx(xi)
∣∣∣ = Op

[√
log (n)

nhk

]
, (2.10.26)

sup
K
(
xi−x
h

)
6=0, Iτi 6=0

∣∣∣f̂w(wi)− fw(wi)
∣∣∣ = Op

[√
log (n)

nhk+1

]
. (2.10.27)

Then
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∣∣∣∣∣∣ 1n
n∑
i=1

si

[
f̂x(xi)− fx(xi)

] [
f̂w(wi)− fw(wi)

]
f2
w(wi)

1

hk
K

(
xi − x
h

)∣∣∣∣∣∣
≤ sup

K
(
xi−x
h

)
6=0, Iτi 6=0

∣∣∣f̂x(xi)− fx(xi)
∣∣∣ ∣∣∣f̂w(wi)− fw(wi)

∣∣∣ 1

n

n∑
i=1

∣∣∣∣ si
f2
w(wi)hk

K

(
xi − x
h

)∣∣∣∣
= OP

(
log (n)

nhk+1/2

)
,

and similarly, we have

1

n

n∑
i=1

sif̂x(xi)
[
f̂w(wi)− fw(wi)

]2

f2
w(wi)f̂w(wi)

1

hk
K

(
xi − x
h

)
= OP

(
log (n)

nhk+1

)

Therefore, we know that equation (2.10.24) and (2.10.25) are of the orders OP
(

log(n)

nhk+1/2

)
and OP

(
log(n)
nhk+1

)
respectively.

Combining the above results the proves the Corollary.

Proof of Theorem 2.3.5.2 We first derive the properties of ψ̂1(x). This can be divided

into several components as follows

ψ̂1(x)− ψ1(x) =
Ê
(
ĥ1i

∣∣∣x)
Ê ( ĝ1i|x)

=

Ê

(̂̃
h1i

∣∣∣∣x)
Ê
(̂̃g1i

∣∣∣x)

=

Ê

(̂̃
h1i

∣∣∣∣x)
E ( g̃1i|x)

−
E
(
h̃1i

∣∣∣x) Ê (̂̃g1i

∣∣∣x)
E ( g̃1i|x)2 +R2 (x) , (2.10.28)

where

R2 (x) ≡

[
Ê

(̂̃
h1i

∣∣∣∣x)− E ( h̃1i

∣∣∣x)] [Ê (̂̃g1i

∣∣∣x)− E ( g̃1i|x)
]

[E ( g̃1i|x)]2
+

Ê

(̂̃
h1i

∣∣∣∣x)[Ê (̂̃g1i

∣∣∣x)− E ( g̃1i|x)
]2

[E ( g̃1i|x)]2
.
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According to Corollary 2.10.4, and the assumption that 1
E( g̃1i|x) is bounded, R2 (x) is of

order oP
(

1√
nhk

)
. So

ψ̂1(x)− ψ1(x) =

Ê

(̂̃
h1i

∣∣∣∣x)
E ( g̃1i|x)

−
E
(
h̃1i

∣∣∣x) Ê (̂̃g1i

∣∣∣x)
[E ( g̃1i|x)]2

+ oP

(
1√
nhk

)
. (2.10.29)

Notice that

Ê

(̂̃
h1i

∣∣∣∣x)
E ( g̃1i|x)

=
1

E ( g̃1i|x)

1

n

n∑
i=1

DiYi

f̂(vi|xi)
1

hk
K

(
xi − x
h

)
(2.10.30)

=
1

E ( g̃1i|x)

1

n

n∑
i=1

{
DiYif̂x(xi)

fxv(xi, vi)

1

hk
K

(
xi − x
h

)

−
DiYifx(xi)

[
f̂xv(xi, vi)− fxv(xi, vi)

]
f2
xv(xi, vi)

1

hk
K

(
xi − x
h

)
+R3i

 ,

where

R3i ≡
DiYif̂x(xi)

[
f̂xv(xi, vi)− fxv(xi, vi)

]2

E ( g̃1i|x) f2
xv(xi, vi)f̂xv(xi, vi)

1

hk
K

(
xi − x
h

)

−
DiYi

[
f̂x(xi)− fx(xi)

] [
f̂xv(xi, vi)− fxv(xi, vi)

]
E ( g̃1i|x) f2

xv(xi, vi)

1

hk
K

(
xi − x
h

)
.

Following the same proof in Corollary 2.10.4

1

n

n∑
i=1

R3i = Op

(
log (n)

nh2k+1

)
= op

(
1√
nhk

)
. (2.10.31)
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Apply Lemma 2.10.2 on the first term in equation (2.10.30),

1

E ( g̃1i|x)

1

n

n∑
i=1

DiYif̂x(xi)

fxv(xi, vi)

1

hk
K

(
xi − x
h

)
(2.10.32)

=
1

E ( g̃1i|x)

1

n

n∑
i=1

[
h1i

hk
K

(
xi − x
h

)
+
E (h1i|xi)

hk
K

(
xi − x
h

)
−2E

(
h1i

hk
K

(
xi − x
h

))]
+ E

[
DiYi

fxv(xi, vi)

1

h2k
K

(
xi − x
h

)
K

(
xl − xi
h

)]
.

By the same reasoning, the second component in equation (2.10.30) is

1

E ( g̃1i|x)

1

n

n∑
i=1

DiYifx(xi)f̂xv(xi, vi)

f2
xv(xi, vi)

1

hk
K

(
xi − x
h

)
(2.10.33)

=
1

E ( g̃1i|x)

1

n

n∑
i=1

[
h1i

hk
K

(
xi − x
h

)
+
E (h1i|xi, vi)

hk
K

(
xi − x
h

)
−2E

(
h1i

hk
K

(
xi − x
h

))]
+ E

[
DiYifx(xi)

f2
xv(xi, vi)

1

h2k
K

(
xi − x
h

)
K

(
wl − wi

h

)]
.

Substituting equation (2.10.32) and (2.10.33) back into equation (2.10.30) and using the

results in Lemma 2.10.3, we have

Ê

(̂̃
h1i

∣∣∣∣x)
E ( g̃1i|x)

=
1

E ( g̃1i|x)

1

n

n∑
i=1

[h1i + E (h1i|xi)− E (h1i|xi, vi)]
1

hk
K

(
xi − x
h

)
(2.10.34)

+
B1,p

E (g1i|x)
− B2,p

E (g1i|x)
+ oP (hp) .

Applying the same strategy to the next term in equation (2.10.29), we get

E
(
h̃1i

∣∣∣x) Ê (̂̃g1i

∣∣∣x)
[E ( g̃1i|x)]2

=
E
(
h̃1i

∣∣∣x)
E ( g̃1i|x)2

1

n

n∑
i=1

[g1i + E (g1i|xi)− E (g1i|xi, vi)]
1

hk
K

(
xi − x
h

)
(2.10.35)

+
E (h1i|x)B3,p

E (g1i|x)2 − E (h1i|x)B4,p

E (g1i|x)2 + oP (hp)
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Substituting equation (2.10.34) and (2.10.35) into equation (2.10.29), we have

ψ̂1(x)− ψ1(x) =
1

n

n∑
i=1

 h1i

E ( g̃1i|x)
+
E (h1i|xi)
E ( g̃1i|x)

− E (h1i|xi, vi)
E ( g̃1i|x)

−
E
(
h̃1i

∣∣∣x) g1i

E ( g̃1i|x)2

−
E
(
h̃1i

∣∣∣x)E (g1i|xi)

E ( g̃1i|x)2 +
E
(
h̃1i

∣∣∣x)E (g1i|xi, vi)

E ( g̃1i|x)2

 1

hk
K

(
xi − x
h

)

+
B1,p

E (g1i|x)
− B2,p

E (g1i|x)
− E (h1i|x)B3,p

E (g1i|x)2 +
E (h1i|x)B4,p

E (g1i|x)2 + oP (hp) op

(
1√
nhk

)
.

Similarly,

ψ̂2(x)− ψ2(x) =
1

n

n∑
i=1

 h2i

E ( g̃2i|x)
+
E (h2i|xi)
E ( g̃2i|x)

− E (h2i|xi, vi)
E ( g̃2i|x)

−
E
(
h̃2i

∣∣∣x) g2i

E ( g̃2i|x)2

−
E
(
h̃2i

∣∣∣x)E (g2i|xi)

E ( g̃2i|x)2 +
E
(
h̃2i

∣∣∣x)E (g2i|xi, vi)

E ( g̃2i|x)2

 1

hk
K

(
xi − x
h

)

+
B5,p

E (g2i|x)
− B6,p

E (g2i|x)
− E (h2i|x)B7,p

E (g2i|x)2 +
E (h2i|x)B8,p

E (g2i|x)2 + oP (hp) + op

(
1√
nhk

)
.

Putting these results together gives

ψ̂1(x)−ψ̂2(x)−(ψ1(x)− ψ2(x)) =
1

n

n∑
i=1

qi (x)
1

hk
K

(
xi − x
h

)
+Bp (x)+oP (hp)+op

(
1√
nhk

)
,

which implies that

√
nhk

var (qi (x) |x)
∫
Rk K

2 (u) du

[
ψ̂1(x)− ψ̂2(x)− (ψ1(x)− ψ2(x))− Bp (x)

]
d→ N (0, 1)

Proof of Theorem 2.3.9.2 The first-order asymptotics of our estimator follow directly

from of Lemmas 2.10.5, 2.10.8, 2.10.9 and 2.10.10. The convergence rate of the resulting
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influence function can be seen from Lemmas 2.10.8, 2.10.9 and 2.10.10.

Lemma 2.10.5 Let Assumptions 21, 22, 23, 24, 25, 26, 37, and 39 hold. Assume that

bandwidth h = c0n
− cT /2 in f̂vt , and assume a kernel of order p ≥ (1− cT / 2)/ cT . Then

1
nT

T∑
t=1

n∑
i=1

DitYit

/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit

/
f̂vt(vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Yit

/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
/
f̂vt(vit)

− [E(Y1)− E(Y0)]

=

1
nT

T∑
t=1

n∑
i=1

Λ1it

1
nT

T∑
t=1

n∑
i=1

Π1it

−

1
nT

T∑
t=1

n∑
i=1

Λ2it

1
nT

T∑
t=1

n∑
i=1

Π2it

+ oP

(
1√
nT

)
.

Proof of Lemma 2.10.5.2 First note that

1
nT

T∑
t=1

n∑
i=1

DitYit

/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit

/
f̂vt(vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Yit

/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
/
f̂vt(vit)

− [E(Y1)− E(Y0)]

=

1
nT

T∑
t=1

n∑
i=1

Dit

(
Yit − E

(
ãi + b̃t + Y1

))/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit

/
f̂vt(vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
(
Yit − E

(
ãi + b̃t + Y1

))/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
/
f̂vt(vit)

.

We first show that

1

nT

T∑
t=1

n∑
i=1

Dit

(
Yit − E(ãi + b̃t + Y1)

)
f̂vt(vit)

=
1

nT

T∑
t=1

n∑
i=1

Λ1it + op(
1√
nT

).
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To this end,

1

nT

T∑
t=1

n∑
i=1

Dit

(
Yit − E(ãi + b̃t + Y1)

)
f̂vt(vit)

(2.10.36)

=
1

nT

T∑
t=1

n∑
i=1

Dit

(
Yit − E(ãi + b̃t + Y1)

)
fvt(vit)

−
Dit

(
Yit − E(ãi + b̃t + Y1)

)
f2
vt(vit)

(
f̂vt(vit)− fvt(vit)

)
+Rnit,

where

Rnit ≡
Dit

(
Yit − E(ãi + b̃t + Y1)

)
f2
vt(vit)f̂vt(vit)

(
f̂vt(vit)− fvt(vit)

)2
.

Again, by the uniform convergence of f̂vt(vit) (our assumption on p guarantees that the bias

term vanishes fast enough),

sup
Iτit 6=0

∣∣∣f̂vt (vit)− fv (vit)
∣∣∣ = OP

(
log (n)

/√
nh
)

= OP

(
log (n)

/
n1/2−cT /4

)
= op

(
(nT )−1/4

)
,

such that 1
nT

T∑
t=1

n∑
i=1

|Rnit| = op

(
1√
nT

)
.

Generalizing Lemma 2.10.2 a little, we have, E
[
p (zi, zj)

2
]

= O (1/h) = o (n/T ), and

1

n

n∑
i=1

Dit

(
Yit − E (ãi + b̃t + Y1)

)
f2
vt(vit)

(
f̂vt(vit)− fvt(vit)

)

=
1

n

n∑
i=1

E
[(
Yit − E(ãi + b̃t + Y1)

)
Dit

∣∣∣ vit]
fvt(vit)

+ op

(
1√
nT

)
,

for t = 1, ..., T. Substitute this back into equation (2.10.36), we get that 1
nT

T∑
t=1

n∑
i=1

Dit(Yit−E(ãi+b̃t+Y1))
f̂vt (vit)
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is equal to

1

nT

T∑
t=1

n∑
i=1

(
Yit − E(ãi + b̃t + Y1)

)
Dit − E

[(
Yit − E(ãi + b̃t + Y1)

)
Dit|vit

]
fvt(vit)

+op

(
1√
nT

)
,

which is 1
nT

T∑
t=1

n∑
i=1

Λ1it + op

(
1√
nT

)
.

For the same reason

1

nT

T∑
t=1

n∑
i=1

Dit

f̂vt(vit)
= Π1 +

1

nT

T∑
t=1

n∑
i=1

Dit − E (Dit|vit)
fvt(vit)

+ op

(
1√
nT

)
.

By the independence assumption on Vit across i and t, we know 1
nT

T∑
t=1

n∑
i=1

(
Dit

f̂vt (vit)
− Dit

fvt (vit)

)
=

Op

(
1√
nT

)
. Therefore

1
nT

T∑
t=1

n∑
i=1

Dit

(
Yit − E

(
ãi + b̃t + Y1

))/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit

/
f̂vt(vit)

=

1
nT

T∑
t=1

n∑
i=1

Λ1it

1
nT

T∑
t=1

n∑
i=1

Dit

/
f̂vt(vit)

+ op

(
1√
nT

)

=

1
nT

T∑
t=1

n∑
i=1

Λ1it

1
nT

T∑
t=1

n∑
i=1

Π1it

−

1
nT

T∑
t=1

n∑
i=1

Λ1it

(
1
nT

T∑
t=1

n∑
i=1

(
Dit

/
f̂vt(vit) −Dit /fvt(vit)

))
(

1
nT

T∑
t=1

n∑
i=1

Π1it

)(
1
nT

T∑
t=1

n∑
i=1

Dit

/
f̂vt(vit)

) + op

(
1√
nT

)

=

1
nT

T∑
t=1

n∑
i=1

Λ1it

1
nT

T∑
t=1

n∑
i=1

Π1it

+ op

(
1√
nT

)
,

where the last equality holds by 1
nT

T∑
t=1

n∑
i=1

Λ1it = oP (1) and 1
nT

T∑
t=1

n∑
i=1

(
Dit

f̂vt (vit)
− Dit

fvt (vit)

)
=

Op

(
1√
nT

)
. Applying the same analysis to the second component of the estimator finishes

the proof.
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Lemma 2.10.6 Let Assumption 21, 22, 23, 25 hold, then

1

nT

T∑
t=1

n∑
i=1

Dit

fvt(vit)
−Π1 = OP

(
(nT )−1/2

)
,

1

nT

T∑
t=1

n∑
i=1

1−Dit

fvt(vit)
−Π2 = OP

(
(nT )−1/2

)
.

Proof of Lemma 2.10.6.2 Here we prove the first equality of the lemma, and the second

follows by the same logic. Note that

E

(
Dit

fvt(vit)

∣∣∣∣ ai, ãi) = E

(
E

(
Dit

fvt(vit)

∣∣∣∣ ai, bt, uit)∣∣∣∣ ai, ãi)
= E

(∫
I (0 ≤ ai + bt + vit + uit ≤ α)

fvt(vit)
fvt (vit|ai, ãi, bt, uit) dvit

∣∣∣∣ ai, ãi)
= E

(∫
I (0 ≤ ai + bt + vit + uit ≤ α) dvit

∣∣∣∣ ai, ãi)
= α = Π1.

Similarly, we have

E

(
Dit

fvt(vit)

∣∣∣∣ bt, b̃t) = α = Π1.

By this result, we have

1

nT

T∑
t=1

n∑
i=1

Dit

fvt(vit)
−Π1

=
1

nT

T∑
t=1

n∑
i=1

(
Dit

fvt(vit)
− E

(
Dit

fvt(vit)

∣∣∣∣ ai, ai)− E ( Dit

fvt(vit)

∣∣∣∣ bt, b̃t)+ Π1

)
.

By the conditional independence assumption, we know the covariance of the above terms
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for either different i or t is zero. So we have

√
nT

(
1

nT

T∑
t=1

n∑
i=1

Dit

fvt(vit)
−Π1

)
d→ N (0, var (Π1it)) .

The second part of the theorem follows similarly.

Lemma 2.10.7 Let Assumption 21, 22, 23, 25, for j = 0, 1

E

[(
Dit

fvt(vit)Π1

− 1

)
εjit

∣∣∣∣ ai, ãi] = E

[(
1−Dit

fvt(vit)Π2

− 1

)
εjit

∣∣∣∣ ai, ãi] = 0,

E

[(
Dit

fvt(vit)Π1

− 1

)
εjit

∣∣∣∣ bt, b̃t] = E

[(
1−Dit

fvt(vit)Π2

− 1

)
εjit

∣∣∣∣ bt, b̃t] = 0,

E

[
Dit

fvt(vit)Π1

− 1

∣∣∣∣ ai, ãi] = E

[
1−Dit

fvt(vit)Π2

− 1

∣∣∣∣ ai, ãi] = 0,

E

[
Dit

fvt(vit)Π1

− 1

∣∣∣∣ bt, b̃t] = E

[
1−Dit

fvt(vit)Π2

− 1

∣∣∣∣ bt, b̃t] = 0.

Proof of Lemma 2.10.7.2 Note that by the proof of Lemma 2.10.6

E

[(
Dit

fvt(vit)Π1

− 1

)
εjit

∣∣∣∣ ai, ãi] = E (εjit| ai, ãi)− E (εjit| ai, ãi) = 0,

E

[(
Dit

fvt(vit)Π1

− 1

)
εjit

∣∣∣∣ bt, b̃t] = E
(
εjit| bt, b̃t

)
− E

(
εjit| bt, b̃t

)
= 0,

for j = 0, 1. Others follow similarly.

Lemma 2.10.8 Let Assumption 21, 22, 23, 25 hold, then

1
nT

T∑
t=1

n∑
i=1

Dit

(
ãi + b̃t − E

(
ãi + b̃t

))/
fvt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
(
ãi + b̃t − E

(
ãi + b̃t

))/
fvt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit) /fvt(vit)

=
1

nT

T∑
t=1

n∑
i=1

[(
Dit

fvt(vit)Π1

− 1−Dit

fvt(vit)Π2

)(
ãi − E (ãi) + b̃t − E

(
b̃t

))]
+ oP

(
(nT )−1/2

)
,
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and 1
nT

T∑
t=1

n∑
i=1

[(
Dit

fvt (vit)Π1
− 1−Dit

fvt (vit)Π2

)(
ãi − E (ãi) + b̃t − E

(
b̃t

))]
= Op

(
(nT )−1/2

)
.

Proof of Lemma 2.10.8.2

1
nT

T∑
t=1

n∑
i=1

Dit

(
ãi + b̃t

)/
fvt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
(
ãi + b̃t

)/
fvt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)/fvt(vit)

=

1
nT

T∑
t=1

n∑
i=1

Dit

(
ãi + b̃t

)/
fvt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)

− 1

nT

T∑
t=1

n∑
i=1

(
ãi + b̃t

)

−


1
nT

T∑
t=1

n∑
i=1

(1−Dit)
(
ãi + b̃t

)/
fvt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)/ fvt(vit)

− 1

nT

T∑
t=1

n∑
i=1

(
ãi + b̃t

)
 .
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We analyze the first term.

1
nT

T∑
t=1

n∑
i=1

Dit

(
ãi + b̃t

)/
fvt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)

− 1

nT

T∑
t=1

n∑
i=1

(
ãi + b̃t

)

=
1

nT

T∑
t=1

n∑
i=1

(
Dit

fvt(vit)Π1

− 1

)(
ãi + b̃t

)
−

1
nT

T∑
t=1

n∑
i=1

Dit

(
ãi + b̃t

)/
fvt(vit)

(
1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)−Π1

)
(

1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)

)
Π1

=
1

nT

T∑
t=1

n∑
i=1

(
Dit

fvt(vit)Π1

− 1

)(
ãi − E (ãi) + b̃t − E

(
b̃t

))
+
(
E (ãi) + E

(
b̃t

)) 1

nT

T∑
t=1

n∑
i=1

(
Dit

fvt(vit)Π1

− 1

)

−

1
nT

T∑
t=1

n∑
i=1

Dit

(
ãi + b̃t

)/
fvt(vit)

(
1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)−Π1

)
(

1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)

)
Π1

=
1

nT

T∑
t=1

n∑
i=1

(
Dit

fvt(vit)Π1

− 1

)(
ãi − E (ãi) + b̃t − E

(
b̃t

))
+ oP

(
(nT )−1/2

)
.

So we have

1
nT

T∑
t=1

n∑
i=1

Dit(ãi+b̃t)
fvt (vit)

1
nT

T∑
t=1

n∑
i=1

Dit
fvt (vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)(ãi+b̃t)
fvt (vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
fvt (vit)

=
1

nT

T∑
t=1

n∑
i=1

[
Dit

fvt(vit)Π1

− 1−Dit

fvt(vit)Π2

](
ãi − E (ãi) + b̃t − E

(
b̃t

))
+ oP

(
(nT )−1/2

)
.

The rate of the influence function above can be similarly seen from Lemma 2.10.7.
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Lemma 2.10.9 Let Assumption 21, 22, 23, 25, and 26 hold, then

1
nT

T∑
t=1

n∑
i=1

E
[(
Yit − E

(
ãi + b̃t + Y1

))
Dit

∣∣∣ vit]/ fvt(vit)
1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)

=
1

nT

T∑
t=1

n∑
i=1

E
[(
Yit − E

(
ãi + b̃t + Y1

))
Dit

∣∣∣ vit]
Π1fvt(vit)

+ oP

(
(nT )−1/2

)

1
nT

T∑
t=1

n∑
i=1

E
[(
Yit − E

(
ãi + b̃t + Y0

))
(1−Dit)

∣∣∣ vit]/ fvt(vit)
1
nT

T∑
t=1

n∑
i=1

(1−Dit) /fvt(vit)

=
1

nT

T∑
t=1

n∑
i=1

E
[(
Yit − E

(
ãi + b̃t + Y0

))
(1−Dit)

∣∣∣ vit]
Π2fvt(vit)

+ oP

(
(nT )−1/2

)

and 1
nT

T∑
t=1

n∑
i=1

E[ (Yit−E(ãi+b̃t+Y1))Dit|vit]
Π1fvt (vit)

= Op

(
(nT )−1/2

)
, 1
nT

T∑
t=1

n∑
i=1

E[ (Yit−E(ãi+b̃t+Y0))(1−Dit)|vit]
Π2fvt (vit)

=

Op

(
(nT )−1/2

)
.

Proof of Lemma 2.10.9.2 The first part of this theorem follows the same line proof as

Lemma 2.10.8. The
√
nT convergence rate then follows by Assumption 26.

Lemma 2.10.10 Letting Assumption 21, 22, 23, 25, and 27 hold, we have

1
nT

T∑
t=1

n∑
i=1

Ditε1it/ fvt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)ε0it/fvt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)/fvt(vit)

=
1

nT

T∑
t=1

n∑
i=1

Dit

fvt(vit)Π1

ε1it −
1

nT

T∑
t=1

n∑
i=1

1−Dit

fvt(vit)Π2

ε0it + oP

(
(nT )−1/2

)
.
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and 1
nT

T∑
t=1

n∑
i=1

[
Dit

fvt (vit)Π1
ε1it − 1−Dit

fvt (vit)Π2
ε0it

]
= OP

(
(nT )−1/2

)
.

Proof of Lemma 2.10.10.2 Following the same proof as in Lemma 2.10.8, we have

1
nT

T∑
t=1

n∑
i=1

Ditε1it/ fvt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)ε0it/fvt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)/fvt(vit)

(2.10.37)

=
1

nT

T∑
t=1

n∑
i=1

(
Dit

fvt(vit)Π1

− 1

)
ε1it −

1

nT

T∑
t=1

n∑
i=1

(
1−Dit

fvt(vit)Π2

− 1

)
ε0it

+
1

nT

T∑
t=1

n∑
i=1

(
ε1it − ε0it − E (ε1it − ε0it|ai, ãi)− E

(
ε1it − ε0it|bt, b̃t

))
+

1

n

n∑
i=1

E (ε1it − ε0it|ai, ãi) +
1

T

T∑
t=1

E
(
ε1it − ε0it|bt, b̃t

)
+ oP

(
(nT )−1/2

)
,

where the first three terms are Op
(

(nT )−1/2
)
and last two terms are zeroby Assumption

27. So we have

1
nT

T∑
t=1

n∑
i=1

DitY1it/ fvt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit/fvt(vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Y0it/fvt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)/fvt(vit)

− E (Y1 − Y0)

=
1

nT

T∑
t=1

n∑
i=1

[
Dit

fvt(vit)Π1

ε1it −
1−Dit

fvt(vit)Π2

ε0it

]
+ oP

(
(nT )−1/2

)
.

Lemma 2.10.11 ai, bt are random vectors that satisfy Assumption 25. wit are random

vectors and wit ⊥ wit′ |ai, for t 6= t′, wit ⊥ wi′t|bt for i 6= i′, wit ⊥ wi′t′ for i 6= i′, t 6= t′.

h(ai, bt, wit) are a real function that the first and second moment exist, and E
[
h(ai, bt, wit)

2
]

=
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o(n). E[h(ai, bt, wit)] =E[h(ai′ , bt′ , wi′t′)] for any i, t, i′, t′. T →∞ as n→∞. Then

1

nT

n∑
i=1

T∑
t=1

h(ai, bt, wit)

is equal to

E [h(ai, bt, wit)]+
1

nT

n∑
i=1

T∑
t=1

[E [h(ai, bt, wit)|ai] + E [h(ai, bt, wit)|bt]− 2E [h(ai, bt, wit)]]+op

(
1√
T

)
.

wit are heterogeneous across t, but E(h) are assumed the same across t. This would

typically be satisfied by having E(h) = 0 for any i, t.

Proof of Lemma 2.10.11.2 Let

Q =
1

nT

n∑
i=1

T∑
t=1

[h(ai, bt, wit)− E(h(ai, bt, wit)|ai)− E(h(ai, bt, wit)|bt) + E(h(ai, bt, wit))] ,

(2.10.38)

To establish that Q = op(
1√
T

), begin with

E[Q2] =
1

n2T 2

n∑
i=1

T∑
t=1

n∑
i′=1

T∑
t′=1

E [(h− E(h|ai)− E(h|bt) + E(h)) (h− E(h|ai′)− E(h|bt′) + E(h))] .

For i 6= i′, t 6= t′, the term inside summation is zero. Now consider the case where only one

index is equal to the other one, i.e., i = i′, t 6= t′. Since

E [h(ai, bt, wit)h(ai, bt′ , wit′)] = E [E [h(ai, bt, wit)h(ai, bt′ , wit′)|ai]]

= E [E [h(ai, bt, wit)|ai]E[h(ai, bt′ , wit′)|ai]] ,
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the term inside summation is zero again. So we can rewrite E[Q2] as

E[Q2] =
1

n2T 2

n∑
i=1

T∑
t=1

E
[
(h− E(h|ai)− E(h|bt) + E(h))2

]
.

By assumption E
(
h2
)

= op(n), so E[Q2] = op
(

1
T

)
, which implies Q = op

(
1√
T

)
.

Lemma 2.10.12 Make the same assumptions as in Lemma 2.10.11 and Assumption 24.

Further assume var(E [h(ai, bt, wit)|ai]) ≤M , for all i, where M is a finite positive number.

Then

1

nT

n∑
i=1

T∑
t=1

[E [h(ai, bt, wit)|ai] + E [h(ai, bt, wit)|bt]− 2E [h(ai, bt, wit)]]

is equal to 1
T

T∑
t=1

[E [h(ai, bt, wit)|bt]− E [h(ai, bt, wit)]] + op

(
1√
T

)
.

Proof of Lemma 2.10.12.2

1

nT

n∑
i=1

T∑
t=1

[E [h(ai, bt, wit)|ai] + E [h(ai, bt, wit)|bt]− 2E(h(ai, bt, wit))]

First by assumption that ωit|bt is i.i.d across i, we know that

E [h(ai, bt, wit)|bt] = E [h(ai′ , bt, wi′t)|bt] ,

which gives

1

nT

n∑
i=1

T∑
t=1

[E [h(ai, bt, wit)|bt]− E(h(ai, bt, wit))] (2.10.39)

=
1

T

T∑
t=1

[E [h(ai, bt, wit)|bt]− E(h(ai, bt, wit))]
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For the other part, note that

1

nT

n∑
i=1

T∑
t=1

[E [h(ai, bt, wit)|ai]− E(h(ai, bt, wit))]

=
1

T

T∑
t=1

[
1

n

n∑
i=1

[E [h(ai, bt, wit)|ai]− E(h(ai, bt, wit))]

]
,

where E[h(ai, bt, wit)|ai] is independent across i.

E

( 1

n

n∑
i=1

[E [h(ai, bt, wit)|ai]− E(h(ai, bt, wit))]

)2


=
1

n2

n∑
i=1

E
[
([E [h(ai, bt, wit)|ai]− E(h(ai, bt, wit))])

2
]
≤ M

n
,

by Markov’s inequality,

1

n

n∑
i=1

[E [h(ai, bt, wit)|ai]− E(h(ai, bt, wit))] = Op(
1√
n

),

which gives that

1

nT

n∑
i=1

T∑
t=1

[E [h(ai, bt, wit)|ai]− E(h(ai, bt, wit))] = Op(
1√
n

). (2.10.40)

The lemma then follwos from combining equation (2.10.39) and equation (2.10.40).

Lemma 2.10.13 Denote ζn = (A1n, B1n, A2n, B2n)′ , a 4-by-1 vector, where A1n, B1n, A2n, B2n

are random variables that evolve as n goes to infinity. Assume that ζn converge in probability

to ζ = (0, B1, 0, B2)′, where B1 6= 0, B2 6= 0, and

√
n [ζn − ζ]

d→ N(0,Ω),
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where Ω is a positive definite matrix

Ω =



σ2
A1

σA1B1 σA1A2 σA1B2

. σ2
B1

σB1A2 σB1B2

. . σ2
A2

σA2B2

. . . σ2
B2


.

Then

√
n

(
A1n

B1n
− A2n

B2n

)
d→ N

(
0,
σ2
A1

B
2
1

− 2σA1A2
B1B2

+
σ2
A2

B
2
2

)
.

Proof.2 The Lemma follows immediately from the delta method.

Proof of Theorem 2.8.2.2 First we have

sup
Iτit 6=0

∣∣∣f̂vt (vit)− fv (vit)
∣∣∣ = OP

(
log (n)

/√
nh
)

= OP

(
log (n)n−2/5

)
.

Following the proof of Lemma 2.10.5, we have7

1
nT

T∑
t=1

n∑
i=1

DitYit

/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

Dit

/
f̂vt(vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Yit

/
f̂vt(vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
/
f̂vt(vit)

− [E(Y1) + E(Y0)]

=

1
nT

T∑
t=1

n∑
i=1

Λ1it

1
nT

T∑
t=1

n∑
i=1

Π1it

−

1
nT

T∑
t=1

n∑
i=1

Λ2it

1
nT

T∑
t=1

n∑
i=1

Π2it

+ oP

(
1√
n

)
.

7Note that the residual here is oP
(

1√
n

)
. We do not need this to be oP

(
1√
nT

)
due to the slower conver-

gence of our estimator.
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Applying Lemma 2.10.12 on this expression, it is equivalent to

1
T

T∑
t=1

E
[

Λ1it| bt, b̃t
]

1
nT

T∑
t=1

n∑
i=1

Π1it

−

1
T

T∑
t=1

E
[

Λ2it| bt, b̃t
]

1
nT

T∑
t=1

n∑
i=1

Π2it

+ op

(
1√
T

)
.

Applying Lemma 2.10.13 to this expression, we have

1
nT

T∑
t=1

n∑
i=1

DitYit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

Dit
f̂vt (vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Yit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
f̂vt (vit)

− E(ãi + b̃t + Y1) + E(ãi + b̃t + Y0)

=

1
nT

T∑
t=1

n∑
i=1

Λ1it

1
nT

T∑
t=1

n∑
i=1

Π1it

−

1
nT

T∑
t=1

n∑
i=1

Λ2it

1
nT

T∑
t=1

n∑
i=1

Π2it

+ op

(
1√
n

)

=

1
T

T∑
t=1

E
[

Λ1it| bt, b̃t
]

1
nT

T∑
t=1

n∑
i=1

Π1it

−

1
T

T∑
t=1

E
[

Λ2it| bt, b̃t
]

1
nT

T∑
t=1

n∑
i=1

Π2it

+ op

(
1√
T

)
,

which then gives the conclusion by applying Lemma 2.10.13.

2.10.2 Proof of Theorem 2.5.1, 2.5.3 and 2.5.5

Lemma 2.10.14 M − v(1)
n ∝ n−1 in probability.

Proof.2 Let {an}∞n=1 be any series that an →∞ and an = o (n) . Let cv = infv∈supp(V ) fv (V ).

Then

P
(
v(1)
n < M − an

n

)
≤
(

1− cv
an
n

)n
=

((
1− cv

an
n

) n
cvan

)cvan
= (e (1 + o (1)))−cvan → 0,

202



where the second equality holds by the fact that limx→0 (1− x)
1
x = e−1. So we have M −

v
(1)
n = OP

(
n−1

)
. Let cv = supv∈supp(V ) fv (V ) . On the other hand, if an → 0, then

P
(
v(1)
n < M − an

n

)
≥
(

1− cv
an
n

)n
= (e (1 + o (1)))−cvan → 1.

So we have in probability M − v(1)
n ∝ n−1.

Proof of Theorem 2.5.1.2 The proof of this theorem is standard. We define the com-

ponents of the bias term and variance term from the estimates by Bh and Vh respectively:

Bh

(
M̂
)
≡ 1

n− 1

n−1∑
i=1

Kh

(
Vi − M̂

) 1(
Vi − M̂

)
/h

[GD (Vi)−GD
(
M̂
)
−G′D

(
M̂
)

(Vi − V )
]
,

Vh

(
M̂
)
≡ 1

n− 1

n−1∑
i=1

Kh

(
Vi − M̂

) 1(
Vi − M̂

)
/h

 [I (Di = 1)−GD (Vi)] .

Then ĜD
(
M̂
)

= GD

(
M̂
)

+ eT1

[
Sh

(
M̂
)]−1 (

Bh

(
M̂
)

+ Vh

(
M̂
))

.

One can then show that

Sh

(
M̂
)

P→ S,

Bh

(
M̂
)

= h2

 S2,−

S3,−

G′′D (M) fv (M) + oP
(
h2
)
,

and

E
[
Vh

(
M̂
)]

= 0

E

[
Vh

(
M̂
)2
]
≡ QGD (M) (1−GD (M)) fv (M) + o (1) .
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Therefore,

bias
(
ĜD

(
M̂
))

= eT1

 S2,−

S3,−

G′′D (M) fv (M)h2 + oP
(
h2
)
,

var
(
ĜD

(
M̂
))

=
1

nh
eT1 S

−1
QS
−1
e1GD (M) (1−GD (M)) fv (M) + o

(
1

nh

)
,

where the leading terms in the bias and variance are Bh and σ2 (M) respectively.

By Lemma 2.10.14, GD
(
M̂
)
−GD (M) = OP

(
n−1

)
, thus

√
nh
(
ĜD

(
M̂
)
−GD (M)− Bh

)
d→ N

(
0, σ2 (M)

)
,

which is the conclusion.

Since MSE
(
ĜD

(
M̂
))

=
[
bias

(
ĜD

(
M̂
))]2

+var
(
ĜD

(
M̂
))
, to minimize mean squared

error we can get hopt as

hopt = n−1/5

(eT1 S
−1

QS
−1
e1GD (M) (1−GD (M)) fv (M)

)/eT1 S
−1

 S2,−

S3,−

G′′D,− (M) fv (M)


2

−1/5

.

Proof of Theorem 2.5.3.2 Most proof of this theorem is standard, except that ĜD
(
M̂
)

converges at the
√
n rate, while in the typical case the convergence rate would be

√
nh. The

intuition for this result is that in Vh

(
M̂
)
E
[

(I (Di = 1)−GD (Vi))
2
∣∣∣Vi = M

]
= 0, and

E
[

(I (Di = 1)−GD (Vi))
2
∣∣∣Vi = M − h

]
∝ h, under the large support assumption. This is

because we put the most weight on the observations aroundM within ch during estimation,

for some c > 0. The variance for those observations is of the order h, resulting in the faster
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rate of convergence.

Comparing this to the proof of Theorem 2.5.1, the difference is that

E

[
Vh

(
M̂
)2
]

=
1

n
QG′D (M) fv (M)+

M̂ −M
nh

QG′D (M) fv (M)+oP

(
1

n

)
+oP

(
M̂ −M
nh

)
,

where the leading term in E
[
Vh

(
M̂
)2
]
in Theorem 2.5.1 becomes zero here.

Therefore,

bias
(
ĜD

(
M̂
))

= h2eT1

 S2,−

S3,−

G′′D (M) fv (M) + oP
(
h2
)
,

var
(
ĜD

(
M̂
))

=
1

n
eT1 Qe1G

′
D (M) fv (M) +

M̂ −M
nh

eT1 Qe1G
′
D (M) fv (M) + oP

(
1

n

)
+ oP

(
M̂ −M
nh

)
,

here the leading terms in bias and variance are Bh and σ̃2 (M), respectively.

Since MSE
(
ĜD

(
M̂
))

=
[
bias

(
ĜD

(
M̂
))]2

+var
(
ĜD

(
M̂
))
, minimize means squared

error we can get hopt as

hopt =

(
M̂ −M

n

)1/5

eT1 Qe1G
′
D (M)

/
eT1

 S2,−

S3,−

G′′D (M)


2

fv (M)

 .

By Lemma 2.10.14 M̂ −M ∝ n−1 in probability, so hopt ∝ n−2/5. Therefore, the bias term

is asymptotically negligible and we have
√
n
(
ĜD

(
M̂
)
−GD

(
M̂
))

d→ N
(
0, σ2 (M)

)
. By

Lemma 2.10.14 again, GD
(
M̂
)
−GD (M) = OP

(
n−1

)
, and thus

√
n
(
ĜD

(
M̂
)
−GD

(
M̂
))

d→ N
(
0, σ2 (M)

)
,
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which is the conclusion.

Proof of Theorem 2.5.5.2 By Assumption 29, E (Y0|X) = E (Y0|X,V ≤ −γn (X)) . The

first part of the theorem follows from

lim
n→∞

E (I (D = 0)Y0|X,V ≤ −γn (X))− E (Y0|X,V ≤ −γn (X))

= lim
n→∞

E [(I (D = 0)− 1)Y0|X,V ≤ −γn (X)] = 0,

where the last equality holds by lim
n→∞

E (D|X,V ≤ −γn (X)) = 0. This generates the ex-

pression for E (Y0|X), and the expression for E (Y2|X) is obtained in the same way. The

expression for E (Y1|X) follows immediately from Theorem 2.3.2.

2.10.3 Proof of Theorem 2.8.1 and 2.8.8

Proof of Theorem 2.8.1.2 First, the following is identified:

E (D|V = v, Z = z,X = x)

= FU |X (α1 (x)− ς (v)−$ (x, z) |x)− FU |X (α0 (x)− ς (v)−$ (x, z) |x) ,

∂E (D|V = v, Z = z,X = x)

∂v

= −
[
fU |X (α1 (x)− ς (v)−$ (x, z) |x)− fU |X (α0 (x)− ς (v)−$ (x, z) |x)

] dς (v)

dv
,

∂E (D|V = v, Z = z,X = x)

∂z

= −
[
fU |X (α1 (x)− ς (v)−$ (x, z) |x)− fU |X (α0 (x)− ς (v)−$ (x, z) |x)

] ∂$ (x, z)

∂z
.
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dς(v)
dv

/
∂$(x,z)
∂z is identified by

dς (v)

dv

/
∂$ (x, z)

∂z
=
∂E (D|V = v, Z = z,X = x)

∂v

/
∂E (D|V = v, Z = z,X = x)

∂z
.

(2.10.41)

Then fix V = 0, by ς ′ (0) = 1, and ∂$(x,z)
∂z is identified by varying (X,Z) . Fix X,Z at some

point, and then by knowing ∂$(x,z)
∂z , ς ′ (v) is identified. Finally, ς (V ) is identified by

ς (v) = ς (0) +

∫ v

0
ς ′ (s) ds.

Proof of Theorem 2.8.8.2 The proof here is very similar to the proof of Theorem 2.3.4.

Start by looking at

E

(
DitYit

fvt(Vit|Xit, Vit−1)

∣∣∣∣Uit, ai, bt, Xit, Dit−1, Vit−1

)

= E

E
Dit

(
ãi + b̃t + Y1it + g (Yit−1)

)
fvt(Vit|Xit, Vit−1)

| Vit, Uit, ai, bt, Xit, Dit−1, Vit−1

 | Uit, ai, bt, Xit, Dit−1, Vit−1


= E

[
I (α0(Xit) ≤ ai + bt + Vit + ϑ (Dit−1) + Uit ≤ α1(Xit))

fvt(Vit|Xit, Vit−1)

E
(
ãi + b̃t + Y1it + g (Yit−1) | Vit, Uit, ai, bt, Xit, Dit−1, Vit−1

)
| Uit, ai, bt, Xit, Dit−1, Vit−1

]
=

∫
supp(Vit|Uit,ai,bt,Xit,Dit−1,Vit−1)

I (α0(Xit) ≤ ai + bt + Vit + ϑ (Dit−1) + Uit ≤ α1(Xit))

fvt(vit|Xit, Vit−1)

E
(
ãi + b̃t + Y1it + g (Yit−1) | Uit, ai, bt, Xit, Dit−1, Vit−1

)
fvt (vit | Uit, ai, bt, Xit, Dit−1, Vit−1) dvit

=

∫ α1(Xit)−ai−bt−Uit−ϑ(Dit−1)

α0(Xit)−ai−bt−Uit−ϑ(Dit−1)
E
(
ãi + b̃t + Y1it + g (Yit−1) | Uit, ai, bt, Xit, Dit−1, Vit−1

)
dvit

= E
(
ãi + b̃t + Y1it + g (Yit−1) | Uit, ai, bt, Xit, Dit−1, Vit−1

)∫ α1(Xit)−ai−bt−Uit−ϑ(Dit−1)

α0(Xit)−ai−bt−Uit−ϑ(Dit−1)
1dvit

= E
(
ãi + b̃t + Y1it + g (Yit−1) | Uit, ai, bt, Xit, Dit−1, Vit−1

)
[α1(Xit)− α0(Xit)]
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and therefore

E [DitYit/fvt(Vit|Xit, Vit−1)|Xit]

= E
[
E
(
ãi + b̃t + Y1it + g (Yit−1) | Uit, ai, bt, Xit, Dit−1, Vit−1

)
[α1(Xit)− α0(Xit)] |Xit

]
= E

(
Y1it + ãi + b̃t + g (Yit−1)

∣∣∣Xit

)
[α1(Xit)− α0(Xit)] .

Given the above result, the rest of the proof follows from the same logic as the proof for

Theorem 2.3.2.
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2.10.4 Additional Tables

Table 4: Monte Carlo results matching the empirical data

MEAN(−3.9) SD LQ MED UQ RMSE MAE MDAE %2SE

Panel A: Symmetric setting with normal errors

Trim-ATE −3.90 0.43 −4.19 −3.90 −3.61 0.43 0.34 0.00 1.00

No-Trim-ATE −3.90 1.22 −4.67 −3.92 −3.12 1.22 0.95 0.02 1.00

Naive-ATE −3.90 0.32 −4.11 −3.90 −3.68 0.32 0.25 0.00 1.00

ML-ATE −3.90 0.30 −4.10 −3.90 −3.70 0.30 0.24 0.00 1.00

Panel B: Symmetric setting with uniform errors

Trim-ATE −3.90 0.38 −4.16 −3.90 −3.64 0.38 0.31 0.00 1.00

No-Trim-ATE −3.90 0.38 −4.16 −3.90 −3.64 0.38 0.31 0.00 1.00

Naive-ATE −3.90 0.38 −4.16 −3.90 −3.65 0.38 0.30 0.00 1.00

ML-ATE −3.91 0.38 −4.17 −3.90 −3.65 0.38 0.30 0.00 1.00

Panel C: Asymmetric setting with normal errors

Trim-ATE −3.21 0.51 −3.55 −3.21 −2.87 0.86 0.73 0.69 0.95

No-Trim-ATE −3.65 1.33 −4.50 −3.65 −2.81 1.35 1.06 0.25 0.77

Naive-ATE −1.99 0.34 −2.21 −2.00 −1.77 1.94 1.91 1.90 0.15

ML-ATE −1.98 0.35 −2.22 −1.98 −1.75 1.95 1.92 1.92 0.15

Panel D: Asymmetric setting with uniform errors

Trim-ATE −3.45 0.48 −3.77 −3.45 −3.12 0.66 0.54 0.45 0.99

No-Trim-ATE −3.76 1.08 −4.47 −3.76 −3.06 1.09 0.86 0.14 0.85

Naive-ATE −1.84 0.37 −2.08 −1.84 −1.59 2.10 2.06 2.06 0.09

ML-ATE −2.07 0.39 −2.34 −2.07 −1.81 1.87 1.83 1.83 0.25

Note: True E(Y1)−E(Y0) = −3.9. Parameters set (θ0, θ1, θ01, θ02, θ11, θ12, θ2) for the four MC in
order are as follows: (6.94 3.04 5.64 8.44 6.71 4.87 1.06), (6.97 3.07 23.67 −24.30 22.62 25.72 1.07), (6.67
2.77 6.57 −2.91 4.51 −5.43 0.43), (7.41 3.51 8.43 −4.27 5.47 −1.47 0.55). Trim-ATE and No-Trim-ATE
are our proposed estimator with and without trimming (2%) respectively. Naive-ATE is an estimate for
E(Y1|T = 1) − E(Y0|T = 0). ML-ATE is Heckman’s selection MLE. All statistics are for the simulation
estimates. MEAN = mean. SD = standard errors. LQ = 25% quantile (lower). MED = 50% quantile
(median). UQ = 75% quantile (upper). RMSE = root mean square errors. MAE = mean absolute errors.
MDAE = median absolute errors. %2SE = percentage of simulations in which the true coeffi cient was within
two estimated standard errors of the estimated coeffi cient.
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Table 5: Robust check: Monte Carlo with normal errors

Quadratic Step

MEAN (≈ −3.9) SD RMSE MEAN (−3.9) SD RMSE

Panel A: κ1 = 0.02, Noise Ratio = 0.19

Trim-ATE −4.23 0.46 0.49 −3.19 0.41 0.82

No-Trim-ATE −7.79 1.57 4.20 −3.31 1.04 1.20

Naive-ATE −3.75 0.38 0.39 −3.14 0.34 0.83

ML-ATE −3.67 0.73 0.76 −3.10 0.66 1.04

Control Function −3.74 0.24 0.31 −1.38 0.20 2.52

Panel B: κ1 = 0.03, Noise Ratio = 0.28

Trim-ATE −4.08 0.42 0.42 −2.85 0.42 1.11

No-Trim-ATE −7.68 1.61 4.11 −2.96 1.11 1.46

Naive-ATE −3.60 0.37 0.47 −2.79 0.34 1.16

ML-ATE −3.54 0.74 0.82 −2.74 0.64 1.33

Control Function −3.59 0.23 0.41 −1.33 0.21 2.58

Panel C: κ1 = 0.04, Noise Ratio = 0.36

Trim-ATE −3.93 0.48 0.48 −2.55 0.42 1.41

No-Trim-ATE −7.63 1.64 4.07 −2.66 1.09 1.65

Naive-ATE −3.40 0.38 0.62 −2.45 0.34 1.49

ML-ATE −3.33 0.66 0.87 −2.42 0.59 1.60

Control Function −3.40 0.26 0.59 −1.26 0.20 2.62

Note: True mean value is −3.9. Noise ratio is defined as the ratio of standard deviation of ce to the
standard deviation of c∗. The first three and last three columns are the results when the true response forms
are quadratic and step function respectively. Five different estimators are reported here. Trim-ATE and
No-Trim-ATE are our proposed estimator with and without trimming (2%) respectively. Naive-ATE is an
estimate for E(Y1|T = 1)−E(Y0|T = 0). ML-ATE is Heckman’s selection MLE. Control function approach
is defined as in the paper. MEAN = mean. SD = standard errors. RMSE = root mean square errors.
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Table 6: Robust check: Monte Carlo with uniform errors

Quadratic Step

MEAN (≈ −3.9) SD RMSE MEAN (−3.9) SD RMSE

Panel A: κ2 = 0.06, Noise Ratio = 0.17

Trim-ATE −3.86 0.36 0.36 −3.23 0.34 0.76

No-Trim-ATE −3.96 0.36 0.36 −3.23 0.34 0.75

Naive-ATE −3.79 0.34 0.35 −3.24 0.34 0.74

ML-ATE −3.54 1.76 1.79 −3.23 0.51 0.84

Control Function −3.71 0.25 0.31 −1.87 0.23 2.04

Panel B: κ2 = 0.07, Noise Ratio = 0.19

Trim-ATE −3.83 0.35 0.35 −3.13 0.34 0.84

No-Trim-ATE −3.92 0.35 0.35 −3.14 0.33 0.83

Naive-ATE −3.76 0.35 0.37 −3.13 0.34 0.84

ML-ATE −3.46 1.87 1.92 −3.10 0.55 0.97

Control Function −3.65 0.25 0.35 −1.84 0.23 2.07

Panel C: κ2 = 0.08, Noise Ratio = 0.22

Trim-ATE −3.79 0.36 0.37 −3.04 0.33 0.91

No-Trim-ATE −3.88 0.36 0.36 −3.05 0.33 0.91

Naive-ATE −3.70 0.35 0.39 −3.02 0.33 0.94

ML-ATE −3.40 1.85 1.91 −3.02 0.53 1.03

Control Function −3.59 0.25 0.40 −1.82 0.23 2.10

Note: True mean value is −3.9. Noise ratio is defined as the ratio of standard deviation of ce to the
standard deviation of c∗. The first three and last three columns are the results when the true response forms
are quadratic and step function respectively. Five different estimators are reported here. Trim-ATE and
No-Trim-ATE are our proposed estimator with and without trimming (2%) respectively. Naive-ATE is an
estimate for E(Y1|T = 1)−E(Y0|T = 0). ML-ATE is Heckman’s selection MLE. Control function approach
is defined as in the paper. MEAN = mean. SD = standard errors. RMSE = root mean square errors.
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Chapter 3

Binary choice model with

interactive effects

With Qiankun Zhou

3.1 Introduction

Nowadays, econometric analysis of models with interactive effects or cross sectional depen-

dence has gained lots of attention both theoretically and empirically. The interactive effects,

or cross sectional dependence, is used to capture the unobserved individual and time-specific

effects. Compared to models without interactive effects, the model with interactive effects

provide a more reliable estimator (for example, see Bai (2003, 2009a), Bai and Ng (2002,

2008)). Moreover, taking interactive effects into account would also reduce the heterogene-

ity of the model and thus eliminate the source of bias in panel data models (Hsiao (2014)).

A number of different approaches have been advanced for dealing with models with interac-

tive effects, among which Pesaran (2006) proposes the so called common correlated effects
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(CCE) estimator which can be computed by least squares in augmented regressions with

cross-sectional averages of the dependent variable and the individual-specific regressors, and

Bai (2009a) investigates identification and estimation of panel data model with interactive

effects through the principal component approach. Other approaches can be found in Bai

and Serene (2008) and the reference therein.

For the above approaches of dealing with models with interactive effects, there are

several issues needed to addressed. On the one hand, these approaches usually assume the

model is linear, and it would be problematic if they are applied to nonlinear model (for

example, binary choice model), on the other, these approaches usually assume large N and

large T when deriving the limiting behavoir of the estimator, but it’s rare the case that

econometricans have enough time period data in microeconometrics where the time periods

are usually small. As a result, it would be necessary to extend the previous works on dealing

with interactive effects to the case where the model is nonlinear and the time periods are

small or fixed.

In this paper, we consider the estimation of binary choice model with interactive effects

when the number of cross-section units N is large and the number of time periods T is fixed.

The various applications of binary choice model has its root in microeconometrics where

economists usually have interest to investigate the plausibility of some specific policies or

programs. In most cases, the outcome of the policies and programs can be normalized as

a zero-one variable which suits the setup of binary choice model. Hsiao (2014) provides a

general application of binary choice model. Also, for empirical analysis in microeconomet-

rics, there are typically large amount of cross sectional individuals such as surveys from

households, but the length of survey is always small or fixed, for example, the PSID study
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contains thousands of individuals in the past 50 years. Consequently, we only consider the

case when T is a fixed number. When T is large, i.e., going infinity as sample size increases,

our results could be extended without much diffi culty.

Unlike the usual methods of dealing with interactive effect as in Bai (2009a) and Pesaran

(2006), our approach relies on projection methods. Especially, we use the projection method

of Mundlak (1978) to control the cross sectional dependence, this approach has been recently

considered by Bai (2009b). The projection method is widely used in econometrics to model

the unobservable effects with the observables of the model, for example, Hayakawa (2012)

and Semykina and Wooldridge (2010) and the related reference. This paper also applies

the so called special regressor method proposed by Lewbel (2000a) and Honore and Lewbel

(2002)1, which transforms the nonlinear model into a linear one. Upon transformation, we

use the usual partition regression method to obtain the estimator of parameters of interest.

Obviously, our estimator has the advantage of computational simplicity compared to the

estimator recently proposed by Fernandez-Val and Weidner (2012), where there is no closed

form for the estimators and nonlinear optimization is needed for calculation.

We also develop asymptotic theory for the special regressor estimator of large N and

fixed T . Monte Carlo simulation shows that the special regressor method outperforms the

MLE in the presence of interactive effects. Finally, we consider the application of our ap-

proach to the women’s laborforce participation. Compared to the existing researches on the

women’s laborforce participation, our approaches suggest that husbands’income have sig-

nificant negative effects on the women’s laborforce participation rather than nonsignificant

effects. Our finding is intuitive since it’s normal that women are less likely to work when

1For recent works of special regressor method, refer to Dong and Lewbel (2012), Lewbel (2012) and
Lewbel et al (2012).
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husbands’income is high.

The rest of the paper is organized as follows: Section 2 introduces the models, assump-

tions and motivational examples. Section 3 provides the estimation procedure as well as

the asymptotic analysis. Section 4 reports the results of the Monte Carlo simulation. An

empirical application to women’s laborforce participation is provided in Section 5. Section

6 concludes by identifying important areas for extensions and further developments. All

proofs are given in the appendix.

3.2 Model

3.2.1 Setup

We begin by considering the following discrete choice model with interactive effects

y∗it = vit + δt + x′itβ + uit, t = 1, . . . , T ; i = 1, . . . , N (3.2.1)

uit = λ′ift + εit (3.2.2)

yit = 1 {y∗it > 0} (3.2.3)

where yit be the observation on the i-th cross-section unit at time t, δt is time effect, and xit

is a k × 1 vector of observed individual-specific regressors on the i-th cross-section unit at

time t, λi and ft are each r×1 and both are unobservable, and εit is the error term. 1{A} is

the indicator function and takes value one if condition A is satisfied and zero otherwise. The

number of factors r is fixed. Moreover, we assume vit is a special regressor, which satisfies

the following conditions: (i) vit is a continuous random variable; (ii) vit is independent of

δt and uit conditional on xit; (iii) vit has a relatively large support. These conditions will
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be elaborated more in the following sections.

Example 3.2.1 The model considered above has its roots in economics, especially in mi-

croeconometrics. As pointed by Bai (2009b), in microeconometrics, for example, if we want

to conduct a survey to study whether or not the workers will accept the job offer based on

the salaries. In this kind of survey, we can use an indicator of 1 and 0 to denote the final

decision, and the observed wage is a function of observable variables (xit) and unobserved

innate ability (λi). The innate ability is potentially correlated with the observed individual

characteristics such as education. It is also assumed that the innate ability is priced at each

period such that its effect on wage is time varying which can be captured by ft. The con-

sequence for this motivation is a factor analytic error structure that is correlated with the

regressors. Moreover, multiple factors could also be considered to allow wages to be affected

by other unobservable individual traits such as dedication and perseverance.

In this paper, we will focus on the situation in which the number of cross-section units

(N) is large and the number of time periods T is fixed. For this approach, because T is

small, it is desirable to treat ft as parameters instead of treating λi as parameters where

both ft and λi are unobservable individual and time effects.

The primary interest of the present paper is the correlation between λi and the regres-

sors which is motivated from the above example. As a result, projection method used for

modeling unobservables with observables (for recent application of projection method, refer

to Bai (2009b), Hayakawa (2012), Semykina and Wooldridge (2010)) can be applied here.

Following Chamberlain (1982) as well as Bai (2009b), we assume that

E (λi |xi1, xi2, . . . , xiT ) = λ+
T∑
s=1

ψsxis (3.2.4)
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where λ is a r × 1 vector and ψs is an r × k matrix (s ≥ 1). Equivalently, we can view the

above as a linear projection, and we can observe that the problem of the above projection

is that there are too many parameters to estimate. Instead, we can consider a restricted

version of projection (Mundlak, 1978) as follows

E (λi |x̄i ) = λ+ ψx̄i (3.2.5)

with x̄i = 1
T

∑T
t=1 xit and ψ is an r × k matrix. And we can write the above projection as

following model

λi = λ+ ψx̄i + ηi

where, by definition, we have E (ηi |xi1, xi2, . . . , xiT ) = 0.

Using Mundlak’s projection, model (3.2.1)-(3.2.2) can be rewritten as

y∗it = vit + (δt + λft) + x′itβ + x̄′iψ
′ft + f ′tηi + εit

and we can still use δt for δt + λft for simplicity of notations, i.e.,

y∗it = vit + δt + x′itβ + x̄′ψ′ft + f ′tηi + εit (3.2.6)

Substitute equation (3.2.6) into (3.2.3) we have

y∗it = vit + δt + x′itβ + x̄′iψ
′ft + f ′tηi + εit

yit = 1 {y∗it > 0} t = 1, . . . , T ; i = 1, . . . , N (3.2.7)
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Remark 3.2.2 For the Mundlak’s projection method of equation (3.2.6), it’s closely related

to the augmented regression method proposed by Pesaran (2006), where Pesaran suggests

to approximate ft by observable proxies (δt, xit).

The parameter of interest is β, not f1, . . . , fT and ψ. In order to estimate β, we need

to impose several assumption on model (3.2.7), and we follow Bai (2009b)’s way to do

so. To simplify notation, let eit ≡ f ′tηi + εit and denote the conditional distribution of eit

conditional on xit, xi as Feit(eit |xit ) with the support Ωeit .

Assumption 1: (xi,ηi, εi) are iid over i where xi ≡ (xi1, xi2, . . . , xiT )′ and εi ≡ (εi1, εi2, . . . , εiT )′.

The rank of E(x′ixi) = k, i.e., E(x′ixi) is of full rank.

Assumption 2: E (eit|xit, xi) ≡ 0.

For the special regressor, vit, we shall impose the following assumptions about its sup-

port and distribution, all of these assumption are standard in the literature for special

regressors, for instance, Lewbel (2000a), Honoré and Lewbel (2002), Liang (2011), etc,.

More specifically, we assume that

Assumption (S1): The conditional distribution of vit given xit has a continuous con-

ditional density function ft(vit |xit ) with respect to Lebesgue measure on the real line.

The support of vit conditional on xit,is [Lt,Kt] where −∞ ≤ Lt < 0 < Kt ≤ ∞, and

infvit∈[Lt,Kt] ft(vit |xit ) > 0.

Assumption (S2): δt, ηi, εit ⊥ vit|xit, xi and ft (vit|xit, xi) = ft (vit|xit) .

Assumption (S3): The support of sit ≡ −δt − x′itβ − x̄′iφ′ft − eit is a subset of [Lt,Kt] .

For assumption S1, we permit heteroskedasitity of vit at t dimension. In assumption S2,

other than standard assumptions, we require xi has no effect on the distribution of vit once

conditioned on xit. Assumption S3 is the large support assumption for the special regressor.
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Remark 3.2.3 The existence of special regressor depends on the context of empirical analy-

sis, and it may not be easy to find such a regressor in some cases. For more discussions

about the special regressor, see Honoré and Lewbel (2002) and Lewbel et al (2012).

Based on the above assumption, we have the following identification proposition, which

is similar to Theorem 1 of Honore and Lewbel (2002).

Lemma 3.2.4 Under assumptions S1, S2, and S3, let

wit =
[yit − 1 (vit > 0)]

ft(vit |xit )
(3.2.8)

then we have

E(wit |xi1, xi ) = δt + x′itβ + x̄′iψ
′ft (3.2.9)

As a result, by introducing wit and the special regressor vit, we successfully transformed

the nonlinear binary choice model into a linear model, and we will mainly consider the

estimation of β based on the equation E(wit |xit, x̄i ) = δt + x′itβ + x̄′iψ
′ft.

3.2.2 Identification

For binary choice model, it’s always necessary to point out the identification condition for

parameters of interest. Without further restriction, if the support of the observed predictor

variables is bounded, then the binary choice model can only be identified in the logistic case

(Chamberlain (2010)). However, the identification of special regressor approach is somewhat

different from the usual approach. For special regressor approach, upon transformation, the

nonlinear model has a linear representation (here, the linear representation is (3.2.9)). As a

result, the identification of β can be achieved by applying the identification results of linear
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partition regression. Let πi ≡ (1 x′i)
′, gt ≡ (δt f

′
tψ)′ . Then the conditional expectation

(3.2.9) for wit could be rewritten as

E(wit|xit, xi) = x′itβ + π′igt =
[
x′it, π

′
i

](β
gt

)
≡ HitΛt (3.2.10)

where Hit ≡ [x′it, π
′
i] and Λt ≡

[
β′, g′t

]′
. As a result, the identification follows if the matrix

E [H ′tHt] defined below is of full rank.

Assumption: (Identification) Let Ht = [H ′1t, H
′
2t, . . . ,H

′
Nt], and E [H ′tHt] is of full rank.

It obvious that the assumption that E [H ′tHt] is of full rank requires N ≥ 2k+1 because

we have 2k+1 unknown parameters in the model, we will maintain this implicit assumption

throughout our paper.

Lemma 3.2.5 Under assumptions 1, 2, S1, S2, S3 together with the above identification

assumption, β is identified.

The proof of this lemma is straightforward: by equation (3.2.10) from Lemma 3.2.4, Λt

is identified by the full rank of E [H ′tHt], consequently β is identified.

Remark 3.2.6 The identification results of lemma (3.2.5) is similar to that of Lewbel

(2000a), and is straightforward in that, once we transformed the binary choice model into

the linear model, the identification results of linear model can be directly applied here.

3.2.3 Estimation

In the above section, we discuss how to transform the nonlinear binary choice panel data

model into a possible linear regression model. In order to estimate the parameters of

interest, β, we can apply the two-step estimation method. In the first step, we apply the
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nonparametric method to estimate wit of (3.2.8). In the second step, we apply OLS or

GMM method to estimate β of (3.2.9). In the second step, to focus on the parameters of

interest, we difference out the nuisance parameter gt first. It would also be very desirable

to do so, if we have some large T. This could be done in the following standard way. Let

At ≡ E(πiπ
′
i)
−1E(πix

′
it), x

r
it ≡ xit −A′tπi, then we have

E (xritwit) = E [xritE (wit|xit, xi)] = E
[
xrit
(
x′itβ + π′igt

)]
= E

[(
xit −A′tπi

) (
x′itβ + π′igt

)]
= E

[
xritx

r′
it

]
β,

and

β = E
[
xritx

r′
it

]−1
E (xritwit) .

Therefore, our sample counterpart estimator could be

β̂ =

(
1

NT

T∑
t=1

N∑
i=1

x̂ritx̂
r′
it

)−1(
1

NT

T∑
t=1

N∑
i=1

x̂ritŵit

)
(3.2.11)

=

(
1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

)(
xit − Â′tπi

)′)−1(
1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

)
ŵit

)
,

where ŵit = yit−1(vit>0)

f̂(vit|xit)
is a nonparametric estimate for wit, and

Ât =

(
1

N

N∑
i=1

πiπ
′
i

)−1(
1

N

N∑
i=1

πix
′
it

)
.

A possible estimator of ft(vit|xit) is standard Nadaraya-Watson estimator:

f̂t(vit |xit ) =
f̂t(vit, xit)

f̂t(xit)
=

(Nh)−1∑N
k=1Kh (vkt − vit, xkt − xit)(

N h̃
)−1∑N

k=1Kh̃ (xkt − xit)
(3.2.12)
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where h = h1h2 · · ·hk+1, h̃ = h2 · · ·hk+1, Kh(u) =
∏k+1
l=1 k

(
ul
hl

)
, Kh̃(u) =

∏k+1
l=2 k

(
ul
h̃l

)
,

h = (h1, . . . , hk+1)′ , and h̃ = (h2, . . . , hk+1)′ . For simplicity, let h1 = h2 = ... = hk+1 = h.

This simplification is just for theoretical convenience. In practice, one could use Silverman’s

rule of thumb to choose hi, or use cross-validation method.

Given the above argument, we can estimate wit by

ŵit =
[yit − 1 (vit > 0)]

f̂t(vit |xit )
(3.2.13)

where f̂t(vit |xit ) is given by (3.2.12).

Remark 3.2.7 Recently, Dong and Lewbel (2012) propose a simple way to estimate wit

of equation (3.2.6) , which starts with imposing assumptions on the special regressor, vit,

V = S′b+ U, E (U) = 0, U ⊥ S, ε, U ∼ f(U), and then define T by T = yit−1(vit≥0)
f(U) , which

is equivalent to wit in our framework. We focus on the method of Lewbel (2000a) since it’s

a more general approach.

3.2.4 Asymptotic analysis

Given the estimation of β̂, we are interested in looking at its limiting behavoir whenN →∞.

The asymptotic normality of β̂ is standard as in Newey and McFadden (1994). Though we

have an estimated Ât, due to the root-N convergence of Ât and nonparametric smoothing,

the preliminary estimation of At has no impact on the final asymptotics.

Denote φit = (xit −A′tπi)[yit − 1(vit > 0)], and let

χit = (xit −A′tπi)wit =
(xit −A′tπi)[yit − 1(vit > 0)]

f(vit|xit)
=

φitf(xit)

f(vit, xit)
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Let

qit = χit − E(χit|xit, πi) + E(χit|xit)− E(χit|vit, xit). (3.2.14)

To understand qit, it is very similar to the qit in Lewbel (2000a). Note that

E(χit|xit, πi) = (xit −A′tπi)E(wit|xit, πi) = (xit −A′tπi)(x′itβ + π′iγt),

which plays the same role as zxTβ in equation (4.12) in Lewbel (2000a).

Our main result is given in the following theorem, and its proof is provided in the

appendix.

Theorem 3.2.8 Under Assumption 1, S1, S2, S3, and technical assumptions in the ap-

pendix, let

∆ =
1

T

T∑
t=1

[E(xitx
′
it)− E(xitπ

′
i)E(πiπ

′
i)
−1E(πix

′
it)]

then the following holds,

√
N(β̂ − β)

d→ N

(
0,∆V ar

(
1

T

T∑
t=1

qit

)
∆′

)
as N →∞ (3.2.15)

Assuming fixed T allows us to come out a clean asymptotics as in equation (3.2.15). From

the proof of our lemmas and theorems, not hard to see that our results could be extended

to the case when T goes to infinity without much diffi culty, however the convergence rate

might be different if T is larger than N . Assumption 2 and S2 are more likely to hold as

T goes to infinity: xi tends to the true underlying individual characteristics and xi is less

likely to have time effect, therefore even with strong serial correlation, once conditional on

xit, xi is more likely not to affect the distribution of vit.
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Remark 3.2.9 For an consistent estimator of the variance term of the limiting distribution,

we can replace∆ and V ar
(

1
T

∑T
t=1 qit

)
by their sample counterpart estimators respectively.

For example, we can replace ∆ by ∆̂ = 1
T

T∑
t=1

[Ê(xitx
′
it)− Ê(xitπ

′
i)Ê(πiπ

′
i)
−1Ê(πix

′
it)] where

Ê(A) denotes the estimator of E(A) and usually the sample average. For the estimators of

V ar
(

1
T

∑T
t=1 qit

)
, we could estimate it by

V̂ ar

(
1

T

T∑
t=1

qit

)
=

1

N

N∑
i=1

(
1

T

T∑
t=1

q̂it

)2

−
(

1

NT

N∑
i=1

T∑
t=1

q̂it

)2

and q̂it is the estimator of qit and it can be obtained by replacing the terms of (3.2.14) by

corresponding nonparametric estimators (for example, kernel estimators) as follows

q̂it = χ̂it − Ê(χit|xit, πi) + Ê(χit|xit)− Ê(χit|vit, xit).

3.2.5 Choice of special regressors

In this paper, special regressor methods assume that the model includes a single regressor,

call it V , which has the following two properties. First the special regressor V is exogenous

and additive to the model error, and then, the special regressor V is continuously distributed,

and has a large support, so it can take on a wide range of values.2 ,3 Details of special

regressor methods can be found in Dong and Lewbel (2012), Lewbel (2012) and references

therein.
2For example, any normally distributed regressor would automatically satisfy this continuous with large

support condition.
3No matter how many endogenous regressors are in the model, only one special regressor that satisfies

these properties is needed.
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The remaining job is how to choose a special regressor. According to Lewbel et al

(2012), other things equal, if there are more than one regressor in the model satisfies the

required conditions to be special, in general the one with the thickest tails (e.g., having the

largest variance) will typically be the best choice of special regressor, because it’s desirable

for effi ciency and can affect rates of convergence.

3.3 Monte Carlo Simulation

In the above sections, we have established the asymptotic properties of the special regressor

estimation of β. In this section, we conduct several experiments to check the performance

of our proposed estimators. The design is as follows, and it is very close to the setting of

Bai (2009b) in the linear panel data framework.

Model 1: Our first model has the form of (r = 1)

y∗it = δt + vit + β1xit + λift + εit

xit = 1 + λift + ξit

yit = 1(y∗it > 0)

where t = 1, ..., T ; i = 1, ..., N, with T is set to vary from 3, 5, 10, and N is set to vary

from 50, 100, 500, 1000; β1 = 1, δt = 0.9 − 0.2(t − 1), λi, ξit are all iid N(0, 1), ft ∼iid

N(0, 2), εit ∼iid N(0, σ2
i ) with σ

2
i ∼ χ2(1), vit ∼ N(0, 2), all of them are i.i.d. across i, and

t. The simulation results are provided in Table 1.
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Model 2: Our second model has the form of (r = 1)

y∗it = δt + vit + β1xit + λift + εit

xit = 1 + λift + ξit

yit = 1(y∗it > 0)

where t = 1, ..., T ; i = 1, ..., N, with T is set to vary from 3, 5, 10, and N is set to vary from

50, 100, 500, 1000; β1 = 1, δt = 0.9 − 0.2(t − 1), λi, ξit are all iid N(0, 1), ft ∼iid N(0, 2),

εit = ρiεi,t−1 + εit with εit ∼iid N(0, 2) and ρi ∼ IIDU [0.1, 0.9] , vit ∼ N(0, 2), all of them

are i.i.d. across i, and t. The simulation results are provided in Table 2.

Model 3: Our third model has the form of (r = 1)

y∗it = δt + vit + β1xit + λift + εit

xit = 1 + λift + ξit

yit = 1(y∗it > 0)

where t = 1, ..., T ; i = 1, ..., N, with T is set to vary from 3, 5, 10, and N is set to vary from

50, 100, 500, 1000; β1 = 1, δt = 0.9 − 0.2(t − 1), λi, ξit are all iidN(0, 1), ft ∼iid N(0, 2),

εit =
√
χitεit with χit = 0.5 + x2

it/20 and εit ∼iid N(0, 1), vit ∼ N(0, 2), all of them are i.i.d.

across i, and t. The simulation results are provided in Table 3.

For the above 3 DGPs, we assume the presence of one single interactive effects. The

first one is the usual unconditional heterogenous variance model, the second one accom-

modates the case when the error is generated by stationary AR(1) process, and the last

DGP considers conditional heterogeneous variance. These three cases are general enough
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to accommodate the variability of economic situations.

For comparison in simulations, we compute the estimators of β using MLE_naive,

MLE_infeasible and the special regressor method (trimmed and untrimmed). For the

MLE_naive, it doesn’t consider the interactive effects, i.e., only the regressors xit are used

in estimating β, and it is called naive estimator simply because it ignores the unobserv-

able interactive effects in the model. The MLE_infeasible takes interactive effects into

account, and treat the unobservable interactive effects as additional regressors. Hence it’s

the benchmark for comparison since MLE usually is the effi cient one for a full model, and

it’s infeasible due to the presumed knowledge of unobservable interactive effects in the

model.

From the simulation results, we can find that the MLE_naive is very unsatisfactory

and there is huge bias for MLE_naive in the simulation. However, our method reaches

our expectation in different settings including seral correlation and heterogeneity (both

conditional and unconditional), and outperforms the MLE in the presence of interactive

effects. The most important finding is that with the increase of N and T, the estimators

using our method are very close to the effi cient estimation method of MLE_infeasible.

However, in practice, the prior knowledge of normally distributed error terms might be an

obstacle to apply directly the MLE_infeasible, as a result, the method proposed in this

paper would be preferrable in estimation with the presence of interactive effects.
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3.4 Empirical application

In order to apply our special regressor method to empirical studies, we consider the women’s

laborforce participation. The data contains 1461 married women of the Panel Study of

Income Dynamics (PSID) for 10 calendar years 1979—19884. The women’s laborforce par-

ticipation has been widely studied by econometricians. First, Hyslop (1999) considers a

dynamic search framework to analyze the intertemporal labor force participation behavior

of married women, where he considers linear probability and probit models and the dy-

namic probit models are estimated using maximum simulated likelihood (SML) estimation.

After that, Carro (2007) applies the similar data using the modified maximum likelihood

in a dynamic setting. More recently, Wooldridge (2010) employs a panel data model for

women’s laborforce participation, where he assumes the error term is normally distributed.

To summarize, most of the researches on women’s labor force participation assumes

normally distributed error term and use large cross section data with small fixed time period.

As pointed out in the introduction, our estimation approach adapts these situations very

well because we don’t require the errors to be normally distributed and we assume T is

usually small. As a result, we will consider the following model for women’s labor force

participation,

yit = 1
(
vit + δt + x′itβ + λift + εit

)
where yit takes value one if women i participate in period t and zero otherwise, xit =

(#children0-2it, #children3-5it, #children6-17it, logincomeit, time effect, race), where #childrena-

b is the number of children aged between a and b, logincome is the log of husband’s labor

income deflated by Consumer Price Index and age is wife’s age. These variables are con-

4We appreciate Dr. Carro very much for generously providing us the data for analysis.
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sidered by Carro (2007) as well as Hyslop (1999) and Wooldridge (2010). In the researches

of Carro (2007) and Hyslop (1999), they allow time dummy variables to specify the time

effects, which can be interpreted as time effect δt in our set up.

For the choice of special regressor, we use the negative age minus the whole sample

mean as the special regressor, the transformation is to make sure that age has a positive

coeffi cient and zero mean. This is suggested by Dong and Lewbel (2012) and by the fact that

the current researches suggest that the estimated coeffi cient of age is significant negative

(for example, Hyslop (1999) and Wooldridge (2010)).

For the women’s labor force participation analysis, as pointed by Hyslop (1999), there

is so called "taste of work" which is unobservable and affects the labor force participation.

Moreover, this "taste of work" is correlated with the realization of fertility as well as non-

labor income. As a result, to take into account of this effects, we can use λi to denote the

"taste of work", and will use the Mundlak’s projection method to approximate this taste,

i.e.,

E (λi|xi1, · · · , xiT ) = λ+ φx̄i

with x̄i = 1
T

∑T
t=1 xit where xit are the observable variables and are given above. As a

result, ft can interpreted as the time effects of "taste of work" at different time.

For comparison, we consider two probit models. One is the same as above, assuming

that εit is standard normal. A simple alternative is as follows

y∗it = vit + δt + x′itβ + σεit,

yit = 1(y∗it > 0),
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we can note that for the complete model, we need to estimate T + 4 + 3T + T = 54

parameters, which is a lot. However, for the simple alternative model, we only need to

estimate T + 4 + 1 = 15 parameters.

In order to apply our estimation approach for analyzing women’s labor force partic-

ipation, we use the normal kernel density for nonparametric estimation, and choose the

bandwidth by Silverman’s Rule-of-Thumb. Of course, the optimal choice of kernel density

and associated bandwidth is beyond the scope of current paper. Below, only the estimates

of β is reported.

Table 4: Estimation results for women’s labor force participation

Special Regressor Probit (complete) Probit (simple)

child0_2 -0.855 -3.755 -2.014

(0.187) (0.034) (0.088)

child3_5 -0.601 -2.061 -1.318

(0.198) (0.039) (0.097)

child6_17 0.205 0.091 -0.098

(0.529) (0.099) (0.234)

logincome -0.113 0.039 0.304

(0.039) (0.687) (1.644)

race 0.063 0.304 0.615

(0.110) (1.644) (0.069)

From the above table, several interesting results can be found. The main finding is

that we find that husbands’income has positive significant effect on women’s labor force

participation. This result is consistent with the finding of Carro (2007) in dynamic setting,

and suggests that husbands’ income should have negative significant effect on women’s

labor force participation. However, there would be no significant effects of on women’s
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labor force participation if we apply the probit model, which is adapted by Wooldridge

(2012). As mentioned above, this results is counter-intuitive since it’s normal that married

women are not willing to participate work if the husbands’ income is high. It’s obvious

that the special regressor method proposed in this paper capture this and none of the other

methods could obtain the similar results. All of these suggest that it would be inappropriate

to apply the probit model when the data contains potentially unobserved interactive effects

especially with a short time span, and that it would be appropriate to use our proposed

estimation for taking into account of the unobserved interactive effects without presuming

specific distributional assumptions.

3.5 Conclusion

In this paper, we consider the estimation of binary choice model with interactive effects

through the special regressor approach. Since the interactive effects are usually unobserv-

able, it would be problematic in modelling if they are ignored. To control the unobserved

interactive effects, we adopt the Mundluk (1978)’s projection method, which uses projec-

tion method to model the unobserved interactive effects. Furthermore, we apply the special

regressor method of Lewbel (2000), which transform the binary choice model into a linear

model with the help of the so called special regressor.

Mento Carlo simulations show us that the special regressor estimator in our paper out-

performs the MLE if the unobserved interactive effects are ignored in probit model, and

this suggests that the special regressor estimator would be appropriate for modelling binary

choice model with interactive effects and thus eliminating source of bias in binary choice

model. Finally, we apply our model to analyze women’s labor force participation. Com-
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pared to the existing researches on women’s labor force participation, the special regressor

estimation results suggest that husbands’income should have negative significant effect on

women’s labor force participation, which is intuitive and consistent with the real world.

Our next step is to apply the special regressor method to dynamic binary choice model, but

this is beyond the current scope.
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3.6 Appendix

3.6.1 Proof of lemma (3.2.4)

Proof.2 Note that sit ≡ −δt − x′itβ − x̄′iφ′ft − eit,

E(wit |xit, xi ) = E

(
[yit − 1 (vit > 0)]

ft(vit |xit )
|xit, xi

)
= E

(
E [yit − 1 (vit > 0) |vit, xit, xi ]

ft(vit |xit )
|xit, xi

)
=

∫ Kt

Lt

E [yit − 1 (vit > 0) |vit, xit, xi ]
ft(vit |xit )

ft(vit |xit )dvit

=

∫ Kt

Lt

∫
Ωeit

[1 (vit − sit > 0)− 1 (vit > 0)] dFeit (eit |vit, xit,, xi ) dvit

=

∫
Ωeit

∫ Kt

Lt

[1 (vit > sit)− 1 (vit > 0)] dvitdFeit (eit |xit, xi )

=

∫
Ωeit

∫ Kt

Lt

[(1 (vit > sit)− 1 (vit > 0)) 1 (sit ≤ 0)

+ (1 (vit > sit)− 1 (vit > 0)) 1 (sit > 0)] dvitdFeit (eit |xit, xi )

=

∫
Ωeit

∫ Kt

Lt

[1 (sit < vit ≤ 0) 1 (sit ≤ 0) + 1 (0 < vit ≤ sit) 1 (sit > 0)] dvitdFeit (eit |xit, xi )

=

∫
Ωeit

[
1 (sit ≤ 0)

∫ 0

sit

1dvit − 1 (sit > 0)

∫ sit

0
1dvit

]
dFeit (eit |xit, xi )

=

∫
Ωeit

−sitdFeit (eit |xit, xi ) =

∫
Ωeit

(
δt + x′itβ + x̄′iψ

′ft + eit
)
dFeit (eit |xit, xi )

= δt + x′itβ + x̄′iψ
′ft + E (eit |xit, xi ) = δt + x′itβ + x̄′iψ

′ft,

where third and fifth line holds by ft (vit|xit, xi) and Feit (eit |vit, xit,, xi ) = Feit (eit |xit,, xi )

respectively, and the last line holds by E (eit |xit, xi ) = 0.

3.6.2 Proof of the theorem (3.2.8)

In order to analyze the limiting behavior of β̂, we impose several additional assumptions in

the following.
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Assumption A.1: φit, f(xit) and f(vit, xit) are bounded, and f(vit, xit) is bounded away

from zero.

Assumption A.2: There exist some functions m1(x), m2(v, x), m3(x), and m4(v, x) such

that density function f(xit), f(vit, xit), E(χit|xit), and E(χit|vit, xit) satisfy the following

local Lipschitz condition:

|f(xit + cx)− f(xit)| ≤ m1(xit) ‖cx‖ ,

|f(vit + cv, xit + cx)− f(vit, xit)| ≤ m2(vit, xit) ‖(cv, cx)‖ ,

|E(χit|xit + cx)− E(χit|xit)| ≤ m3(xit) ‖cx‖ ,

|E(χit|vit + cv, xit + cx)− E(χit|xit)| ≤ m4(vit, xit) ‖(cv, cx)‖ .

Also E[m1(xit)
2], E[m2(vit, xit)

2], E[m3(xit)
2], and E[m4(vit, xit)

2] exist.

Assumption A.3: The kernel functionsK(v, x) andK(x) have supports that are convex on

Rk+1 and Rk respectively.
∫
K(x)2dx,

∫
K(v, x)2dvdx,

∫
‖x‖K(x)dx, and

∫
‖(v, x)‖K(v, x)dvdx

are finite. Both kernel functions are symmetric about zero and have order of p, which is

∫
xl11 ...x

lk
k K(x)dx = 0 for l1 + ...+ lk < p,

∫
xl11 ...x

lk
k K(x)dx 6= 0 for some l1 + ...+ lk = p.

This similarly holds for K(v, x).

Assumption A.4: h → 0, as N → ∞, and there exists a small ε > 0, such that

N1−εh2(k+1) →∞, Nh2p → 0.
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Lemma 3.6.1 Under Assumption A.1 to A.4, the following hold:

1√
N

N∑
i=1

φit(f̂(xit)− f(xit))

f(vit, xit)
=

1√
N

N∑
i=1

[E(χit|xit)− E(χit)] + op(1),

1√
N

N∑
i=1

φitf(xit)(f̂(vit, xit)− f(vit, xit))

f2(vit, xit)
=

1√
N

N∑
i=1

[E(χit|vit, xit)− E(χit)] + op(1).

Proof.2 The proof is a simple version of theorem B in Lewbel (2000b).

f̂(xit) here is a leave-one-out nonparametric estimate, which is

f̂(xit) =
1

N − 1

N∑
j=1,j 6=i

1

hk
K

(
xit − xjt

h

)
.

Let µ̂ = 1
N

N∑
i=1

φitf̂(xit)
f(vit,xit)

, then

µ̂ =
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

1

hk
φit

f(vit, xit)
K

(
xit − xjt

h

)
.

Since K(x) is symmetric,

µ̂ =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

1

2hk

(
φit

f(vit, xit)
+

φjt
f(vjt, xjt)

)
K

(
xit − xjt

h

)
.

Define P (zit, zjt) by

P (zit, zjt) =
1

2hk

(
φit

f(vit, xit)
+

φjt
f(vjt, xjt)

)
K

(
xit − xjt

h

)
,

Where zit = [ φit
f(vit,xit)

, xit] . The aymptotic property of µ̂ follows from Lemma 3.1 in Powell,

Stock, and Stoker (1989). To apply the lemma, we first need to prove that E
[
‖P (zit, zjt)‖2

]
=
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O(N).

E
[
‖P (zit, zjt)‖2

]
=

∫∫
1

4h2k
E

[(
φit

f(vit, xit)
+

φjt
f(vjt, xjt)

)2
∣∣∣∣∣xit, xjt

]
(3.6.1)

K

(
xit − xjt

h

)2

f(xit)f(xjt)dxitdxjt

≤ M1

∫∫
1

4h2k
K

(
xit − xjt

h

)2

f(xit)f(xjt)dxitdxjt,

whereM1 is a suffi ciently large number which could bound E
[(

φit
f(vit,xit)

+
φjt

f(vjt,xjt)

)2
∣∣∣∣xit, xjt] .

The existence of M1 is guaranteed by Assumption A.1. By changing variable uit =
xit−xjt

h ,

∫∫
1

4h2k
K

(
xit − xjt

h

)2

f(xit)f(xjt)dxitdxjt =

∫∫
1

4hk
K (uit)

2 f(xjt+uith)f(xjt)duitdxjt.

Since
∫
K(x)2dx is finite, the term above is O( 1

hk
). By Assumption A.4, we know the above

term is O(N). Therefore, E
[
‖Pij‖2

]
is O(N). The preliminary conditions of Lemma 3.1 in

Powell, Stock, and Stoker (1989) is thus satisfied, so the following holds:

N
1
2 [µ̂− E(µ̂)] = N

1
2

N∑
i=1

2 [E(p(zit, zjt)|zit)− E(p(zit, zjt))] + op(1).

The term 2E(p(zit, zjt)|zit) is not clear at first glance. It could be written as follows:

2E(p(zit, zjt)|zit) =

∫
1

hk

[
φit

f(vit, xit)
+ E

(
φjt

f(vjt, xjt)

∣∣∣∣xjt)]K (xit − xjth

)
f(xjt)dxjt

=

∫ [
φit

f(vit, xit)
+ E

(
φit

f(vit, xit + hu)

∣∣∣∣xit + hu

)]
K (u) f(xit + hu)du.

= χit + E(χit|xit) +

∫
φit

f(vit, xit)
[f(xit + hu)− f(xit)]K (u) du

+

∫ [
E

(
φitf(xit + hu)

f(vit, xit + hu)

∣∣∣∣xit + hu

)
− E(χit|xit)

]
K(u)du.
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Let

ς it = 2E[p(zit, zjt)|zit)− χit − E(χit|xit)]

=

∫ {
φit

f(vit, xit)
[f(xit + hu)− f(xit)]−

[
E

(
φitf(xit + hu)

f(vit, xit + hu)

∣∣∣∣xit + hu

)
− E(χit|xit)

]}
K (u) du,

then

N
1
2 [µ̂− E(µ̂)] = N

1
2

N∑
i=1

{χit + E(χit|xit)− E[χit + E(χit|xit)]} (3.6.2)

+N
1
2

N∑
i=1

(ς it − E(ς it)) + op(1).

Using local Lipschitz conditions in Assumption A.2, ς it is Op(h), and

E(ς2
it) ≤ h2E

[(
φit

f(vit, xit)
m1(xit) +m3(xit)

)2
] [∫

‖u‖K(u)du

]2

= O(h2) = o(1),

which implies that N
1
2
∑N

i=1(ς it − E(ς it)) is op(1), by Assumption A.1 and A.2.

For E(µ̂),

E(µ̂) = E

[
1

hk
φit

f(vit, xit)
K

(
xit − xjt

h

)]
=

∫∫
1

hk
E

(
φit

f(vit, xit)

∣∣∣∣xit)K (xit − xjth

)
f(xit)f(xjt)dxitdxjt

=

∫∫
1

hk
E (χit|xit)K

(
xit − xjt

h

)
f(xjt)dxitdxjt

=

∫∫
E (χit|xit)K (ujt) f(xit + hujt)dxitdujt.
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Since K (x) is p-th order kernel,

E(µ̂) =

∫
E (χit|xit) f(xit)dxit +Op(h

p) (3.6.3)

= E(χit) +Op(h
p).

By Assumption A.4, equation (3.6.2), and equation (3.6.3),

N
1
2 [µ̂− E(χit)] = N

1
2

N∑
i=1

{χit + E(χit|xit)− E[χit + E(χit|xit)]}+ op(1).

Reorganize it, we have

N
1
2 µ̂ = N

1
2

N∑
i=1

[χit + E(χit|xit)− E(χit)] + op(1).

Move χit from right-hand side to left-hand side, then it is the first conclusion in this lemma.

The second conclusion follows similarly.

Proof of Theorem (3.2.8).2 Since

1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

)
π′i = 0,

and

1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

)(
xit − Â′tπi

)′
=

1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

)
x′it,

then the following hold

β̂−β =

[
1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

)(
xit − Â′tπi

)′]−1 [
1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

) (
ŵit − x′itβ − π′iλt

)]
.
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Remeber that E(wit|xit, πi) = x′itβ + π′iλt, so

β̂−β =

[
1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

)(
xit − Â′tπi

)′]−1 [
1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

)
(ŵit − E(wit|xit, πi))

]
.

For the first term in β̂ − β,

1

NT

T∑
t=1

N∑
i=1

(
xit − Â′txit

)(
xit − Â′txit

)′
(3.6.4)

=
1

T

T∑
t=1

 1

N

N∑
i=1

xitx
′
it −

(
1

N

N∑
i=1

xitπ
′
i

)(
1

N

N∑
i=1

πiπ
′
i

)−1(
1

N

N∑
i=1

π′ixit

) ,
We do not impose any assumptions about relationship across t. Under the condition that

observations are i.i.d. across dimension i ,

1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

)(
xit − Â′tπi

)′ p→ 1

T

T∑
t=1

[
E(xitx

′
it)− E(xitπ

′
i)E(πiπ

′
i)
−1E(π′ixit)

]
,

(3.6.5)

and remember the notation made in the theorem∆ = 1
T

T∑
t=1

[E(xitx
′
it)−E(xitπ

′
i)E(πiπ

′
i)
−1E(π′ixit)],

so

1

NT

T∑
t=1

N∑
i=1

(xit − Â′tπi)(xit − Â′tπi)′
p→ ∆. (3.6.6)

For the second term in β̂ − β, multiply it by
√
N,

√
N

[
1

NT

T∑
t=1

N∑
i=1

(
xit − Â′tπi

)
(ŵit − E(wit|xit, πi))

]

=
1√
NT

T∑
t=1

N∑
i=1

(
xit −A′tπi

)
(ŵit − E(wit|xit, πi))−

1√
NT

T∑
t=1

(
Ât −At

)′ N∑
i=1

πi(ŵit − E(wit|xit, πi)).

1√
N

N∑
i=1

πi(ŵit−E(wit|xit, πi)) could be shown to be Op(1) and since (Ât−At) is op(1) and
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T is fixed, the following holds

1√
NT

T∑
t=1

(
Ât −At

)′ N∑
i=1

πi(ŵit − E(wit|xit, πi)) = op(1).

Therefore, the influence function for the second term in β̂ − β is 1√
NT

T∑
t=1

N∑
i=1

(xit −

A′tπi)(ŵit −E(wit|xit, πi)). Since At is a constant, the influence function becomes a special

case of Lewbel (2000a) and Honoré and Lewbel (2002).

If we know wit and do not need to estimate them, then the asymptotic property of this

part is straightforward. Remember the notation φit = (xit − A′tπi)[yit − 1(vit > 0)] and

χit = φitf(xit)
f(vit,xit)

then

1√
NT

T∑
t=1

N∑
i=1

(xit −A′tπi)(ŵit − E(wit|xit, πi))

=
1√
NT

T∑
t=1

N∑
i=1

[
φitf(xit)

f(vit, xit)
− (xit −A′tπi)E(wit|xit, πi) +

φit(f̂(xit)− f(xit))

f(vit, xit)

−φitf(xit)(f̂(vit, xit)− f(vit, xit))

f2(vit, xit)
+Rit

]

where

Rit ≡
φitf(xit)(f̂(vit, xit)− f(vit, xit))

f2(vit, xit)
− φitf̂(xit)(f̂(vit, xit)− f(vit, xit))

f(vit, xit)f̂(vit, xit)

=
φitf(xit)(f̂(vit, xit)− f(vit, xit))

2 − φitf(vit, xit)(f̂(vit, xit)− f(vit, xit))(f̂(xit)− f(xit))

f2(vit, xit)f̂(vit, xit)
.
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From Silverman (1978) and Collomb and Hardle (1986), as h→ 0,

sup |f̂(vit, xit)− f(vit, xit)| = Op[(N
1−εhk+1)−

1
2 ],

sup |f̂(xit)− f(xit)| = Op[(N
1−εhk)−

1
2 ],

for any arbitrary small ε > 0.

Thus, under Assumption A.1, Rit isOp
(

1
N1−εhk+1

)
and 1√

NT

T∑
t=1

N∑
i=1

Rit isOp
(

1
N1/2−εhk+1

)
.

Under Assumption A.2, 1√
NT

T∑
t=1

N∑
i=1

Rit is op(1). So we could focus on the rest part.

From the Lemma above,

1√
NT

T∑
t=1

N∑
i=1

φit(f̂(xit)− f(xit))

f(vit, xit)
=

1√
NT

T∑
t=1

N∑
i=1

[E(χit|xit)− E(χit)] + op(1),

1√
NT

T∑
t=1

N∑
i=1

φitf(xit)(f̂(vit, xit)− f(vit, xit))

f2(vit, xit)
=

1√
NT

T∑
t=1

N∑
i=1

[E(χit|vit, xit)−E(χit)]+op(1).

Combined the results so far,

1√
NT

T∑
t=1

N∑
i=1

(
xit −A′tπi

)
(ŵit − E(wit|xit, πi))

=
1√
NT

T∑
t=1

N∑
i=1

{
φitf(xit)

f(vit, xit)
−
(
xit −A′tπi

)
E(wit|xit, πi) + [E(χit|xit)− E(χit)]

−[E(χit|vit, xit)− E(χit)]}+ op(1). (3.6.7)

=
1√
NT

T∑
t=1

N∑
i=1

[
φitf(xit)

f(vit, xit)
− E(χit|vit, xit) + E(χit|xit)− E(χit|vit, xit)

]
+ op(1).
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Since we assume that observations are i.i.d. across i, remember that

qit =
φitf(xit)

f(vit, xit)
− E(χit|vit, xit) + E(χit|xit)− E(χit|vit, xit),

then

1√
NT

T∑
t=1

N∑
i=1

[
φitf(xit)

f(vit, xit)
− E(χit|vit, xit) + E(χit|xit)− E(χit|vit, xit)

]
d→ N

(
0, var

(
1

T

T∑
t=1

qit

))
. (3.6.8)

From equation (3.6.6), (3.6.7), and (3.6.8), we have

√
n(β̂ − β)

d→ N

(
0,∆var

(
1

T

T∑
t=1

qit

)
∆′

)
.
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