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Abstract 
 

Internal allyl electrophiles were successfully implemented in a catalytic 

cross-coupling to allylB(pin) with high regiocontrol to afford 

multisubstituted 1,5-dienes bearing chemically differentiated olefins.  

Construction of alkenyl compounds with all carbon quaternary centers and 

high enantiomeric excess can be achieved in one step without the use of 

enantiomerically enriched chiral ligands. 
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I. Introduction 
 
The development of transition metal-catalyzed cross-coupling was a 

pivotal discovery in synthetic chemistry.1  Metal catalyzed cross-coupling 

allows for rapid construction of carbon-carbon bonds in a highly selective 

manner.  Akira Suzuki and Ei-ichi Negishi were awarded the Nobel Prize in 

chemistry for their work on the cross-coupling of electrophiles bearing aryl, 

alkyl, and vinyl organometallic reagents.  Since their initial discoveries, one 

motif that has been underexplored in this context is the use of allyl 

nucleophiles or allyl electrophiles.  Several examples of coupling allylmetals 

with aryl electrophiles have been demonstrated in the literature, 2 but the 

cross-coupling of allylmetal reagents with allyl electrophiles has been less 

explored.  Two major difficulties inherent to this transformation include 

control of the regioselectivity, and the propensity for -hydride elimination 

from intermediate organopalladium compounds to form1,3-diene byproducts 

                                                           
1 The Nobel Prize in Chemistry 2010 - Advanced Information". Nobelprize.org. Nobel Media AB 
2013. Web. 9 Jul 2013. 
<http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/advanced.html>. 
2Refs for coupling aryl E with allyl metals.  Sn: (a)Echavarren, A. M.; Stille, J. K. J. Am. Chem. 
Soc. 1987, 109, 5478.  (b) Obora,Y.; Tsuji, Y.; Kobayashi, M.; Kawamura, T. J. Org. Chem. 
1995, 60, 4647.  (c) Kosugi, M.; Sasazawa, K.; Shimizu, Y.; Migita, T.  Chem. Lett. 1977, 301. 
Si: (d)Hatanaka, Y.; Ebina, Y.; Hiyama, T. J. Am. Chem. Soc. 1991, 113, 7075.  (e) Hatanaka, Y.; 
Goda, K.; Hiyama, T. Tetrahedron Lett. 1994, 35, 1279. (f) Hatanaka, Y.; Goda, K.; Hiyama, T. 
Tetrahedron Lett. 1994, 35, 6511.  B: (g) Kalinin, V. N.; Denisov, F. S.; Bubnov, Y. N.  
Mendeleev Commun.  1996, 206.  (h) Yamamoto, Y.; Takada, S.; Miyaura, N. Chem. Lett. 2006, 
35, 704. 
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(Figure 1).3    Initial studies in this field observed mixtures of linear and 

branched 1,5-diene products (Figure 1).   

Figure 1. Allyl-Allyl Coupling Products and Byproducts 

 

 

Branch-selective allyl-allyl cross-coupling is an attractive 

transformation because it allows for the construction of a stereocenter and 

produces a product with two terminal alkenes.  These olefins can be utilized 

in subsequent reactions to append further complexity to the molecule.  In 

2010, the Morken group developed the first branch-selective and 

enantioselective palladium-catalyzed allyl-allyl cross-coupling to form 

enantioenriched 1,5-dienes (Figure 2, Eq 1).4  An important feature of this 

reaction is implementation of allylboronate as the nucleophile.  Boron 

reagents are generally less toxic and less reactive compared to other 

organometals used in these transformations.5  For this reason, they are safer 

to work with and can tolerate a broad range of functional groups.  

                                                           
3 Keinan, E.; Kumar, S.; Dangur, V.; Vaya, J.  J. Am. Chem. Soc.  1994, 116, 11151. 
4 Zhang, P.; Brozek, L. A.; Morken, J. P.  J. Am. Chem. Soc.  2010, 132, 10686. 
5 Miyaura, N.; Suzuki, A.  Chem. Rev. 1995, 95, 2457. 
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To expand the utility of the 1,5-diene as a synthetic building block, we 

sought to construct products with differentiated steric and electronic 

properties of the alkenes for chemoselective functionalization.  We 

envisioned achieving this through the cross-coupling of internal allyl 

electrophiles with allylB(pin) and a palladium catalyst (Figure 2, Eq 2).  

This methodology offers a complement toward other existing modes of 

diene differentiation, and will be discussed in Section II of this text.6  We 

then expanded the scope of the transformation to synthesize all carbon 

quaternary centers from trisubstituted allyl electrophiles.  Finally, the 

synthesis of enantioenriched chiral quaternary centers using enriched 

electrophiles and achiral ligands was examined.  

 

Figure 2.  Strategy for Improved Chemoselectivity  

 

 

                                                           
6(a) Le, H; Kyne, R. E.; Brozek, L. A.; Morken, J. P. Org. Lett. 2013, 15, 1432.  (b) Zhang, P.; 
Le, H.; Kyne, R. E.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 9716. 
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II. Background on Allyl-Allyl Cross-Coupling 

A. Linear Selective Cross-Coupling 

The first examples of catalytic, intermolecular cross-coupling of 

unsymmetrical allyl partners were demonstrated by Trost and Stille.  The 

Trost group coupled substituted allyl stannanes with cinnamyl acetate in the 

presence of Pd(PPh3)4 to access 1,5-hexadiene derivatives. 7  They observed 

that the coupling occurred at the least hindered carbon of the electrophile.  In 

most cases, the allyl from the stannane reacted with inversion through an 

SE2’ pathway.8  Thus, they proposed that C-C bond formation occurs via an 

outer-sphere mechanism in which an activated allylstannane directly reacts 

with the least hindered carbon of the η3 -allyl intermediate (Figure 3). 

 

Figure 3.  Trost’s Outer-Sphere Cross-Coupling 

 

 

Concurrently, Godschalx and Stille reported a similar coupling of allyl 

bromides with allylstannanes, catalyzed by a BnClPd(PPh3)2 complex.9   

                                                           
7 Trost, B. M.; Keinan, E. Tet. Lett. 1980, 21, 2595. 
8
 SE2’in the literature 

9 Godschalx, J.; Stille, J. K. Tet. Lett. 1980, 21, 2599. 
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Initially, they hypothesized this reaction would proceed through an inner-

sphere mechanism: oxidative addition of the allyl bromide to Pd0, 

transmetalation of the allylstannane to PdII, and reductive elimination to 

form the linear 1,5-diene (Figure 4).  To test this hypothesis, they devised a 

common intermediate experiment (Figure 5).  If an inner-sphere mechanism 

operated, equations (3) and (4) would afford the same ratio of products 

because reductive elimination occurs through a common intermediate.  In 

practice, the experiments produced different product ratios.  This result 

supported an outer sphere coupling mechanism, which is consistent with the 

observations reported by the Trost group.  

 

Figure 4. Stille’s Inner-Sphere Hypothesis 

 

Figure 5. Stille’s Mechanistic Experiments 
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More recently, the Morken group developed the first branch-selective 

coupling of allyl carbonates with allyl boronates. At the same time, the 

Kobayashi group developed a linear-selective coupling using the same 

substrates and metal.10  The opposite regioselectivity observed by the two 

groups stems from the choice of phosphine ligand.  The Kobayashi group 

later switched to a Ni(PPh3)4 catalyst to minimize significant 1,3-diene 

formation that formed with aliphatic or more hindered carbonates.  Nickel 

has been shown to enhance reductive elimination relative to -hydride 

elimination.11  Using this catalyst, they demonstrated that linear unprotected 

allyl alcohols could be used in a cross-coupling to afford the linear 1,5-

dienes (Figure 6).12   Based on the observed regioselectivity, they proposed 

an outer-sphere coupling mechanism similar to that suggested by Trost and 

Stille. 

Figure 6. Kobayashi’s Outer-Sphere Ni-Catalyzed Coupling 

 

 

                                                           
10 Schneider, U.; Kobayashi, S. Chem. Eur. J. 2009, 15, 12247. 
11 (a) Kurosawa, H.; Ohnishi, H.; Emoto, M.; Kawasaki, Y.; Murai, S.  J. Am. Chem. Soc.1988, 
110, 6272.  (b) Kurosawa, H.; Ohnishi, H.; Emoto, M.; Chatani, N.; Kawasaki, Y.; Murai, S.; 
Ikeda, I.  Organometallics 1990, 9, 3038. 
12 Jimenez-Aquino, A.; Flegeau, E. F.; Schneider, U.; Kobayashi, S. Chem. Comm. 2011, 47, 
9456. 
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B. Mechanistic Insights into Inner-Sphere Allyl-Allyl Cross-

Coupling 

Thus far, the mechanistic evidence for allyl-allyl coupling using 

palladium and nickel catalysts strongly supported an outer sphere 

mechanism.  However, an important study conducted by the Schwartz group 

suggested that this is not always the case.  They observed that allyl 

palladium dimers can react with allyl Grignard or stannane nucleophiles, 

forming stable bis(3-allyl)Pd intermediates (Figure 7).13  Isolation of the 

bis(3-allyl)Pd intermediate proved that the allyl stannane moiety could 

transmetalate onto palladium.14  In order to induce coupling of the allyl 

moieties on the Pd-intermediate (via reductive elimination), -acidic ligands 

such as maleic anhydride or fumaronitrile were required.  This coupling was 

highly selective for C-C bond formation at the least hindered carbon of the 

allyl units.  Unlike the results by Trost and Stille, inversion of prenyl 

nucleophiles was not observed in either product (Figure 7).  In addition, the 

prenyl group was delivered to the same face as the 3-bound palladium 

intermediate.  Together, these details support an inner-sphere mechanism.  In 

addition, they concluded that association of -acidic ligands to the metal 

                                                           
13 (a)  Goliaszewski, A.; Schwartz, J.  J. Am. Chem. Soc. 1984, 106, 5028.  (b)  Goliaszewski, A.; 
Schwartz, J. Tetrahedron, 1984, 41, 5779. 
14 (a) Shi, M.; Nicholas, K.M.  J. Am. Chem. Soc.  1997, 119, 5057.  (b)  Shirakawa, E.; Yoshida, 
H.; Nakao, Y.; Hiyama, T.  Org. Lett.  2000, 2, 2209. 
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promoted the reductive elimination by converting one of the 3-allyl ligands 

to the 1 form (Figure 7).  In the prior examples, absence of this ligand type 

may be the driving force for the well documented outer-sphere mechanism.   

 

Figure 7. Schwartz’s Stoichiometric Allyl-Allyl Coupling 

 

 

 In support of the findings by Schwartz, Jolly15 and Pörschke16 

demonstrated that bidentate phosphine ligands were also able to promote 

reductive elimination of bis(allyl)metal intermediates (Figure 8).  Isolation 

of complex 4 at low temperatures suggests that phosphine ligation converts 

bis(3-allyl)Pd complex 3 into the bis(1-allyl) form.  At ambient 

temperatures, 4 gives complex 5 via reductive elimination.  These two 

reports suggest that a bis(1-allyl)Pd conformation such as 4, may be 

required for reductive elimination to occur under thermodynamic control.  In 

                                                           
15 Jolly, P. W. Angew. Chem. Int. Ed. 1985, 24, 283. 
16 Krause, J.; Bonrath, W.; Pörschke, K.-R.  Organometallics. 1992, 11, 1158. 
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the context of Schwartz’s experiment, maleic anhydride could occupy one or 

two coordination sites around palladium to form a similar intermediate.   

  

Figure 8. Reductive Elimination via Bidentate Phosphine Ligands 

 

 

One detail that the prior experiments do not specify is through which 

carbon atoms the C-C bond formation is occurring.  To study the mechanism 

of the reductive elimination step for bis-allyl systems, Echavarren et al.17   

employed DFT calculations to estimate the activation energies from three 

plausible intermediates: 3, 6 and 7 (Figure 9).  First, his calculations showed 

that the coordination of ligands around palladium is in equilibrium.  

Progression from 3 to 6 and 6 to 7 is slightly endothermic by 0.4 and 2.4 

kcal/mol respectively.  The calculations predicted that reductive elimination 

from bis(3) transition state 3, has the highest calculated activation energy at 

                                                           
17 (a) Cuerva, J. M.; Bengoa, E. G-.; Mendez, M.; Echavarren, A. M.  J. Org. Chem.1997, 62, 
7540.  (b) Cardenas, D. J.; Echavarren, A. M. Chem. Eur. J.2002, 8, 3620. (c) Cardenas, D. J.; 
Echavarren, A. New J. Chem. 2004, 28, 338. 
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36.6 kcal/mol.  This is congruent with the experimental observations 

demonstrated by Schwartz, Jolly and Porchke15,16.   

Figure 9. Possible Reductive Elimination Intermediates 

 

 

Reductive elimination from transition state 6 was predicted to be 

lower in energy by 13.6 kcal/mol.18  There are four available pathways for 

reductive elimination to proceed from intermediate 7: 1,1’, 1,3’, syn 3,3’, 

and anti 3,3’ (Figure 10).  The syn 3,3’ refers to a boat configuration of the 

seven-membered ring, whereas anti 3,3’ describes the chair conformation.  

The calculations predicted that the anti 3,3’ and syn 3,3’ pathways have the 

lowest activation energies.  The standard 1,1’ pathway was predicted to be 

higher in energy by 12.4 kcal/mol.  The 1,3’ pathway was the highest energy 

pathway from the bis(1) intermediate.  One plausible hypothesis for this 

trend is that the formation of double bonds between C1-C2 and C1’-C2’ in 

the 3,3’ pathway has a stabilizing interaction with the lone pair electrons on 

palladium.  This is unique for allyl systems as the reductive elimination of 

                                                           
18 This value includes the energy required to adopt the (3)(1) binding mode. 
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aryl and alkyl ligands occurs through the 1,1’ mechanism.  This unique 

finding has been confirmed by other groups through computation and 

experimentation.19  

Figure 10. Reductive Elimination Energies from Bis(1) Intermediates 

 

 

C. Branch-Selective Allyl-Allyl Cross Coupling  

The Morken group capitalized on the 3,3’ reductive elimination to 

develop a number of branch-selective cross-coupling transformations.4,6,20  

Selectivity for the 3,3’ elimination was achieved by optimizing the ligand.21  

A screen of bidentate phosphine ligands revealed that ligands with small bite 

angles favored the branched product while ligands with large bite angles and 

monodentate ligands were less selective (Scheme 1).4 One hypothesis for 

this trend is that the bite angle of the ligand distorts the square planar 
                                                           
19 (a) Perez-Rodriguez, M.; Braga, A. A. C.; de Lera, A. R.; Maseras, F.; Alvarez, R.; Expinet, P.  
Organometallics.  2010, 29, 4983.  For a related experimentally observable h1-allyl-h1-
carboxylate, see: (b)Sherden, N. H.; Behenna, D. C.; Virgil, S. C.; Stoltz, B. M. Angew. Chem., 
Int. Ed. 2009, 48, 6840. 
20

 (a) Brozek, L. A.; Ardolino, M. J.; Morken, J. P.  J. Am. Chem. Soc. 2011, 133, 16778.  (b) 
Ardolino, M. J.; Morken, J. P.  J. Am. Chem. Soc. 2012, 134, 8770. 
21

 (a) Birkholz, M. N.; Freixa, Z.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099.  (b) 
van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 2000, 100, 
2741. 
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geometry adopted by the bis(1-allyl)Pd intermediate.  Echavarren 

calculated the P-Pd-P angles for the 1,1’ and 3,3’-eliminations to be 104.9o 

and 96.6o respectively.17  Similar reports speculate that small-bite-angle 

ligands increase the distance between C1 and C1’, thereby increasing the 

activation energy barrier to the 1,1’-reductive elimination pathway.22   

Recent findings show that palladium complexes with large bite-angle ligands 

react through three coordinate “arm off” structures that favor the linear 

product.23  

 

Scheme 1. Morken’s Branch-Selective and Enantioselective Coupling 

 

 

                                                           
22

 Marcon, J. E.; Moloy, K. G. J. Am. Chem. Soc. 1998, 120, 8527. 
23

 Ardolino, M, J.; Morken, J. P. Tetrahedron. 2015. 



13 
 

The scope of this reaction was quite broad: sterically encumbered allyl 

carbonates, heteroaromatics, and even protected allylic and homoallylic 

alcohols were tolerated with good yields and up to 99:1 er.  

To verify the proposed inner sphere mechanism, two important 

experiments were carried out.  In the first experiment, isotopically labeled 

allylB(pin) was employed as the substrate in the allyl-allyl coupling (Figure 

11, Eq. 5).  Under the normal cross-coupling conditions, the deuterium label 

was found at both allyl termini in the reaction product (and the recovered 

allylBpin was unscrambled).  If the reaction occurred through an outer-

sphere mechanism, in which nucleophilic addition of allylB(pin) to the  Pd-

allyl intermediate occurs in an SE2’ fashion, deuterium scrambling would 

not occur, and allyl inversion would be present.  The observations made in 

this experiment are consistent with a mechanism that proceeds by 

transmetalation, followed by isomerization of the bis(allyl)Pd complex.   

In the second experiment, enantiomerically enriched 8 was prepared 

and subjected to the cross coupling.  The only product observed was (S)-10, 

which was isolated with 91% ee and >20:1 E:Z ratio (Figure 11, Eq 6).  

Assuming that oxidative addition occurs anti to the leaving group, and 

reductive elimination occurs from the same face as the palladium, the 

resulting product would be (R)-9.  Surprisingly, this product was not 
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observed.  A plausible explanation for this observation is that the palladium 

center was able to isomerize to the opposite face of the allyl species via 

rapid  isomerization.  The favored pathway is dictated by the chiral 

ligand and produced (S)-10 upon completion of the reaction.  This was the 

first demonstration of catalyst controlled enantioselectivity in a branched 

selective allyl-allyl cross-coupling. 

Figure 11. Deuterium Labeling Mechanistic Studies 

 

 

 Since this initial publication, the Morken group has expanded the 

scope of this transformation to access a number of branched 1,5-dienes 

(Figure 12).  In 2011, a diasterioselective transformation utilizing prochiral 
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-substituted allyl boronates and allyl chlorides was developed (Figure 12, 

Eq 7).20a The reaction tolerated silyl ethers, esters, imides, and pendant 

alkene substituents.  Sterically hindered all-carbon quaternary centers were 

synthesized with high enantioselectivity using racemic trisubstituted or 

tertiary allyl carbonates in the coupling (Figure 12, Eq 8).6(b) Before 

optimization, significant amounts of -hydride elimination products were 

observed.  This was later minimized by the addition of CsF24 and water25 

additives that accelerate the transmetalation with respect to -hydride 

elimination.  Finally, the Morken group demonstrated that functionalized 

allyl boronates, including those with an additional boronic ester at the 

vinylic position, can be employed in the reaction (Figure 12, Eq 9).6(a) This 

type of allyl nucleophile provided 1,5-diene products with differentiated 

olefins.  These developments demonstrate how versatile and powerful the 

allyl-allyl cross-coupling reaction is for asymmetric carbon-carbon bond 

formation.   

 

 

 
                                                           
24 Wright S. W,; Hageman, D. L.; McClure, L. D. J. Org. Chem. 1994, 59, 6095. 
25 (a) Amatore C, Jutand A, Le Duc G. Chem. Eur. J.  2011, 17, 2492 (b) Carrow, B.; Hartwig, 
J. J. Am. Chem. Soc. 2011, 133, 2116. (c) Suzaki Y, Osakada K. Organometallics. 2006, 25, 
3251. 
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Figure 12. Morken’s Branch-Selective Cross-Couplings 

 

 

III.  Development of the Internal Allyl-Allyl Cross-Coupling 

A. The Proposed Catalytic Cycle 

Using the previous mechanistic studies of the Morken group as a 

model, the proposed mechanism for the cross coupling of a disubstituted, 

internal allyl electrophile with allyl B(pin) is shown in Figure 13.  In the first 

step, oxidative addition of the allyl electrophile to palladium (0) forms 

Pd(II)-(3-allyl) intermediate 11.  Transmetalation of the allyl boron 

nucleophile to the palladium center can form two possible Pd(II)-(1-allyl) 

intermediates (12  or 13).  With two intermediates that can eliminate by two 

different reductive elimination pathways, we expected to observe mixtures 

of products 14 and 15 (See Figure 10 for reductive elimination pathways).  
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To elaborate, product 14 can form by 3,3’ reductive elimination of 13 or 1,1’ 

reductive elimination of 12.  Similarly, product 15 can form by 3,3’ 

reductive elimination of 12 or 1,1’ reductive elimination of 13.  

Figure 13.  Proposed Catalytic Cycle for Internal Ally-Allyl Cross-Coupling 

  

While motifs 14 and 15 are synthetically useful, our aim is to form the 

C-C bond at the more hindered or substituted carbon atom of the 

electrophile.  We hypothesized that in cases where one substituent was 

sterically larger than the other RL>RS, or if an additional substituent was 

present geminal to RL, steric repulsions between the ligands on Pd and the 

substitutents on the allyl electrophile would bias the reductive elimination 
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from intermediate 13. By tuning the bite angle on the bidentate phosphine 

ligand, we predict that 3,3’-reductive elimination from species 13 will afford 

product 14 with high regioselectivities.   

In addition to the complex regioselectivities in this transformation, we 

were also aware that competing formation of 1,3-diene byproducts through 

various off cycle β-hydride abstraction and elimination pathways were likely 

and could affect the yield of our transformation.  Possible mechanisms are 

shown with red arrows in Figure 14.   

 

Figure 14.  1,3-Diene Forming Pathways 
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B. Proof of Concept and Reaction Optimization 

We initiated our studies using methyl substituted cinnamyl carbonate 

16 as a model substrate (Table 1).  This carbonate was chosen for a few 

reasons:  it can be easily prepared from cinnamyl alcohols (see SI for 

synthesis), the Boc protecting group is tolerable under similar reaction 

conditions,4 and the size difference between the phenyl and methyl 

substituents is enough to reveal any effects of sterics on the regioselectivity.  

For the initial reaction parameters, we used conditions that were optimized 

in a previous paper on a similar substrate.4 Based on our sterics hypothesis, 

we expected the coupling to favor branched product 17.   

 

Table 1.  Ligand Optimization 
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For the ligand screen, a variety of commercially available bidentate 

phosphine ligands were chosen.  They are all racemic and range in bite 

angle26 and electronic properties (Table 1).  A few observations stood out 

from the ligand screen.  First, PPh3 selectively afforded the undesired 

regioisomer 18, while dppbenzene afforded product 17 with good 

regioselectivity.  Second, we expected to see a negative trend between 

increasing bite angle and selectivity of the 3,3’ reductive elimination product 

17.  This held true with the exception of dppp and OMe-BIPHEP, which 

were completely selective for 18 (the 1, 1’ reductive elimination product) 

despite reportedly small bite angles.  The third observation was the overall 

low yields due to increased formation of byproduct 19. 

The first observation is in line with our hypothesis that bidentate 

ligands promote branched product formation via 3,3’ reductive elimination 

of the bis(1-allyl)Pd intermediate. In contrast, monodentate ligands bias 

outersphere or 1,1’ elimination pathways.  Increasing the bite angle of the 

ligand impacts the energetics of the 3,3’ and 1,1’ reductive elimination 

pathways by perturbing the bis (1-allyl) intermediate to favor a the 1,1’ 

pathway. 27  Based on the second observation, it is clear that other factors in 

                                                           
26

 Zhang, Z.; Qian, H.; Longmeier, J.; Zhang, X. J. Org. Chem. 2000, 65, 6223 
27

 Van Leeuwen, P. W. N. M; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 2000, 100, 2741 
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addition to bite angle, such as electronics and sterics of the ligands, also play 

a role in the observed regioselectivity for this class of substrate.   The third 

observation hints that larger ligands can slow down the transmetalation, 

allowing the off cycle reactions to form large quantities of 19.     

 

    After identifying dppbenzene as the optimal ligand for branch 

selectivity, we looked at reoptimizing the reaction conditions to improve 

1,5- diene yields and reduce 1,3-diene formation.  Increasing the reaction 

temperature to 60 °C increased both 1,5 and 1,3-diene formation (Table 1, 

Entry 2).  Removal of CsF (Entry 3) led to no 1,5-diene product.  Reducing 

the equivalents of CsF (Entry 4) resulted in lower yields compared to entry 

1.  Replacing CsF with Cs2CO3 provided a higher yield albeit with 

diminished regioselectivity.  The addition of 15 equivalents of water 

improved yields (Entry 6), but too much was detrimental to the 

regioselectivity (Entry 7).  In entry 9 we demonstrated that the regioisomer 

of the substrate provides equivalent reactivity and selectivity.  This result 

affirms a common intermediate forms after oxidative addition and it 

broadens the utility of the reaction.    
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Table 2.  Parameter Optimization 

 

 

C. Scope of Secondary Allyl Electrophiles 

After optimizing the reaction parameters, we explored the scope of the 

reaction on secondary allyl acetates (Table 3).   For these studies the Boc 

group was replaced with an acetate leaving group because it provided similar 

reactivity, but improved yields. The lower yields may be attributed to β– 

hydride abstraction facilitated by tert-Butanol.  Compound 20 was coupled 

to allylB(pin) to afford a 3:1 branched to linear ratio and 88% combined 
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yield (Table 3, Entry 1).  The remaining yield corresponds to 1,3-diene 

byproducts.   

Table 3. Allyl-Allyl Cross-Coupling of Secondary Allyl Acetates 

 

aConditions: 3 equiv of allylB(pin), 10 equiv of CsF, 15 equiv of H2O, 0.2 M THF. b 

Ratios were determined by 1H NMR of crude. cYields are the average of two or more 
experiments and are corrected to account for inseparable elimination product 1,3-diene. 
dYield determined by 1H NMR using trimethoxybenzene as internal standard.  e Starting 
material is a mixture of regioisomers. 

 

To our surprise, we observed that the electronic properties of the 

phenyl ring had a measureable impact on the regioselectivity.  Electron rich 

substrate 21 showed increased formation of linear product compared to the 
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branched (1:1 vs 4:1). In contrast, electron poor substrate 23 showed 

increased selectivity for the branched product (10:1).    To further probe the 

influence of these forces, we synthesized substrates 24 and 25 whose 

substituents differ by electronic or steric properties only.  The poor 

selectivity for either product in both examples demonstrates that the both 

steric and electronic effects are subtle when independent.  We postulate that 

electronic effects can alter the equilibrium of all possible Pd(II)-(1-allyl) 

intermediates.  Electron rich substituents (Table 3, entries 2 and 5) can 

increase electron density at the gamma carbon, resulting in stronger Pd-C 

coordination at the gamma carbon.  This results in more 3,3’ reductive 

elimination at the alpha carbon.   In contrast, electron poor substituents will 

decrease the electron density at the gamma position, weakening the C-Pd σ 

bond.  The result is a bias for Pd intermediate at the alpha carbon and C-C 

bond formation at the gamma carbon.   

Further enhancing the steric effects with ortho substitution around the 

ring (Table 3, Entries 7, 8) supported our original hypothesis.  These 

observations suggest that 3,3’ reductive elimination is affected by the steric 

and electronic properties of the substituents on the electrophile, with large 

and electron poor/withdrawing substituents promoting branch-selective 

coupling alpha to the large substituent.   
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D. Allyl-Allyl Cross-Coupling of Trisubstituted Allyl Acetates 

In Table 4, we subjected a variety of tri-substituted allyl electrophiles 

to the optimized cross-coupling conditions.  The steric effect of the R3 

substituent led to very high selectivity for the quaternary 1,5-diene.  This 

observation is highlighted in Figure 15; the steric repulsion forces between 

the R1 and R3 substituents and the ligands on palladium significantly 

increases the energy of this intermediate.  In entries 4-9, the steric bulk of 

the R2 substituent correlates to increases in 1,3-diene formation, resulting in 

lower yields.   

Despite the high energy barriers of this transformation, the reaction 

conditions tolerated  terpene derived substrates, 6 and 7 membered cyclic 

substrates as well as aromatic substrates providing very hindered products in 

59-90% yield.    Regioisomers (Entry 10) and cis olefins (Entry 3) also 

behaved well under these conditions and formed only one regioisomer.  

 

 

 

 

 

 



26 
 

Table 4.  Substrate Scope of Trisubstituted Allyl Electrophiles 

 

aConditions: 3 equiv of allylB(pin), 10 equiv of CsF, 15 equiv of H2O, 0.2M THF. 
bYields are the average of two or more experiments and are corrected to account for 
inseparable elimination product 1,3-diene. cZ-allylic acetate was employed. 
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Figure 15. Regioselectivity Model for Trisubstituted Allyl Electrophiles 

  

 

E. Enantioenriched 1,5-Dienes 

As discussed throughout the text, the Morken group has demonstrated 

many branch-selective and enantioselective allyl-allyl cross-couplings with 

terminal allyl electrophiles.  The selectivity observed in these systems is 

reliant on π-σ-π isomerization of the palladium to both faces of the substrate 

followed by 3,3’ reductive elimination, which are influenced by the chiral 

bidentate phosphine ligand (Scheme 1 and Figure 11). 

As Figure 16 shows, addition of a substituent at R3 renders both allyl 

termini stereogenic, thus racemization is inhibited.  Without racemization, 

the reaction is subject to catalyst control.  We reasoned that enrichment of 

the substrate would be preserved through the cross-coupling and transferred 

to the product (Figure 16).  This negates the need for chiral bidentate 

ligands, and would provide a general, stereospecific transformation. 
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Figure 16. Model for Chirality Transfer with Enriched Trisubstituted Allyl 

Electrophiles 

 

 

F. Synthesis of Enantioenriched Allyl Electrophiles 

To test our chirality transfer process, we synthesized aryl acetate 48.  

Achieving the substrate with high ee was accomplished using one of two 

methods as shown in Scheme 2.  Both routes started off with a Grignard 

reaction with acetic anhydride and aryl bromide.  Acid hydrolysis afforded 

the α,β unsaturated ketone in moderate yield.  Under the conditions 

highlighted in blue, an enantioselective CuH-catalyzed 1,2 addition was 

performed to give good ee albeit low yield.28  These conditions were 

unfavorable because they utilized expensive catalysts and were very 

temperature sensitive. 

 

                                                           
28

 Voigtritter, K. R.; Isley, N. A.; Moser, R.; Aue, D. H.; Lipshutz, B. H. Tetrahedron, 2012, 68, 3410 
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Scheme 2.  Synthetic Route Toward Enantioenriched Allyl Acetates 

 

In the second route, highlighted in green, NaBH4 reduction followed 

by Sharpless kinetic resolution gives the allylic alcohol in high ee and in 

higher yield over the two steps.  The final step is acetate protection catalyzed 

by triethyl amine and DMAP.  With the model substrate in hand, we 

subjected it to the standard reaction conditions for racemic substrates (Table 

5, Entry 1).  The reaction produced 49 in >20 : 1 regioselectivity and 79% 

yield.  The regioselectivity values were in agreement with what was 

observed for the racemic analog, but the enantiomeric ratio (er) was only 

79:21.  Factoring in the ee of the starting material, this equates to a mere 

65% conservation of enantioenrichment (cee).   

We began to perturb the reaction conditions and observed that lower 

catalyst loadings afforded higher cee (Table 5). In entry 2, 1 mol% catalyst 

resulted in 98% cee while 10 mol% catalyst resulted in 47% cee.  Oddly, the 
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yield of 49 also diminished with increasing cee (Entry 2 vs. 5).  We found 

evidence in the literature of this trend in other systems. 

Table 5. Effects of Catalyst Loading on Chirality Transfer 

 

aConditions: 3 equiv of allylB(pin), 10 equiv of CsF, 15 equiv of H2O, 0.2M THF. b 

Ratios were determined by 1H NMR of crudes. c Yields are the average of two or more 
experiments and are corrected to account for inseparable elimination product 1,3-diene. d 
er ratios were determined using chiral GC or HPLC.  Absolute configuration assigned in 
analogy to known compounds.  See the Supporting Information.  ecee is calculated as 
follows: cee = (product ee/starting material ee) x 100.  
 

We surmised that the erosion of ee observed at higher catalyst 

loadings could be the result of a redox-transmetalation process involving 

two palladium intermediates.29  This has been demonstrated in the literature 

by Kurosawa, Bäckvall and Amatore.  Kurosawa demonstrated that Pd(II)-

(η3 allyl) complexes can undergo transmetalation from an outer sphere Pd0 
                                                           
29 (a) Mackenzie, P. B.; Whelan, J.; Bosnich, B. J. Am. Chem. Soc. 1985, 107, 2046.  (b) Kurosawa, H.; 
Ogoshi, S.; chantani, N.; Kawasaki, Y.; Murai, S.; Ikeda, I. Chem. Lett. 1990, 1745. (c) Bäckvall, J.-E.; 
Grandberg, K. L.; Heumann, A. Isr. J. Chem. 1991, 31, 17. (d) Granberg, K. L.; Bäckvall, J.-E.; J. Am. 
Chem. Soc. 1992, 112, 6858.  € Amatore, c.; Gamez, S.; Jutand, A.; Meyer, G.; Moreno-Mallas, M.; 
Morral, L.; Pleixtas, R. Chem. –Eur. J. 2000, 6, 3372. (f) Amatore, C.; Jutand, A.; Mensah, L.; Meyer, G.; 
Fiaund, J.-C.; Legros, J. Y. Eur. J. Org. Chem. 2006, 1185.  
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or Pt0 catalyst.  This occurs on the opposite face of the bound Pd(II) 

resulting in net stereo inversion and both oxidation of the incoming metal 

and reduction of the eliminated metal.   

Figure 17 shows the mechanism of redox transmetalation in the context of 

substrate 48.  This hypothesis fits the data: the more palladium catalyst 

present in the system, the more outer sphere transmetalation can occur, 

resulting in more erosion of the ee.  In cases where the catalyst loading is 

low, transmetalation is slow such that 1,3-diene formation increases.    

Figure 17. Mechanism for Redox Transmetalation. 

 

 To reduce the effects of redox transmetalation, we reduced the 

catalyst loading to 2.5% and increased the equivalents of allyl B(pin) and the 

other additives (to speed up transmetalation).  The scope of the reaction was 

expanded to include alkyl and aryl trisubstituted electrophiles.  The cross-

coupling of the alkyl acetate gave 51 in modest yield and 83% cee.  The 

para- methoxy acetate afforded 52 in good yield, and slightly higher cee.  

The substrate bearing the electron withdrawing group performed poorly 

under these conditions, affording 53 in 34% cee.  In this case, the 
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withdrawing nature of the substrate could increase its reactivity to redox 

transmetalation.  Further mechanistic studies and substrate scope were 

performed by Hai Le. 

 

Table 6. Scope of Stereo Selective Cross Coupling 

 

 In conclusion, we have demonstrated a general cross-coupling method 

for internal allyl electrophiles and allylboron nucleophiles to afford highly 

substituted 1,5-dienes bearing tertiary centers, all carbon quaternary centers, 

and enantioenriched chiral centers.  Regioselectivities were high and found 

to be driven by both steric and electronic properties of the substrate.  Internal 

allyl electrophiles provided an opportunity to differentiate the olefins for 

more selective subsequent synthesis.  Enantioenriched quaternary centers 

can be formed from enriched acetates under low catalyst conditions without 

the need for a chiral phosphine ligand.   
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IV. Experimental Information 
 
A. General information 

 
1H NMR spectra were recorded on a Varian Gemini-500 (500 MHz) 

spectrometer. Chemical shifts are reported in ppm with the solvent 

resonance as the internal standard (CDCl3: 7.26 ppm). Data are reported as 

follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = 

triplet, q = quartet, p = pentet, br = broad, m = multiplet, app = apparent), 

and coupling constants (Hz). Coupling constants are reported to the nearest 

0.5 Hz. 13C NMR spectra were recorded on a Varian Gemini-500 (125 MHz) 

spectrometer with complete proton decoupling. Chemical shifts are reported 

in ppm with the solvent resonance as the internal standard (CDCl3: 77.0 

ppm). Infrared (IR) spectra were recorded on a Bruker alpha 

spectrophotometer, ʋmax cm-1. Bands are characterized as broad (br), strong 

(s), medium (m), and weak (w). High resolution mass spectrometry (ESI) 

was performed at the Mass Spectrometry Facility, Boston College.  

Liquid Chromatography was performed using forced flow (flash 

chromatography) on silica gel (SiO2, 230×450 Mesh) purchased from 

Silicycle. Thin Layer Chromatography was performed on 25 μm silica gel 

plates purchased from Silicycle. Visualization was performed using 

ultraviolet light (254 nm), potassium permanganate (KMnO4) in water, ceric 
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ammonium molybdate (CAM) in water, or phosphomolybdic acid (PMA) in 

ethanol. Analytical chiral gas liquid chromatography (GLC) was performed 

on a Hewlett-Packard 6890 Series chromatograph equipped with a split 

mode capillary injection system, a flame ionization detector, and a Supelco 

β-Dex 120 column, or a Supelco Asta Chiraldex B-DM with helium as the 

carrier gas. Analytical chiral supercritical fluid chromatography (SFC) was 

performed on a Thar SFC equipped with a Waters 2998 photodiode array 

detector and an analytical-2-prep column oven with methanol as the 

modifier. Analytical high performance liquid chromatography (HPLC) was 

performed on an Agilent 1120 compact chromatograph equipped with 

gradient pump and variable wavelength detector. Optical rotations were 

measured on a Rudolph Analytical Research Autopol IV Polarimeter. 

All reactions were conducted in oven- or flame-dried glassware under 

an inert atmosphere of nitrogen or argon. Tetrahydrofuran (THF), Toluene 

(PhMe), and dichloromethane (DCM) were purified using a Pure Solv MD-4 

solvent purification system from Innovative Technology Inc. by passing 

through two activated alumina columns after being purged with argon. 

Triethylamine (TEA) and Ethyl Acetate (EtOAc) were distilled from 

calcium hydride. Tetrakis(triphenylphosphine)palladium(0) [Pd(PPh3)4], 

bis(cyclopentadienyl)zirconium(IV) dichloride (ZrCp2Cl2), (R)-(−)-5,5′-
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Bis[di(3,5-di-tert-butyl-4-methoxyphenyl)phosphino]-4,4′-bi-1,3-

benzodioxole ((R)-(-)-DTBM-Segphos), 1,2-bis(diphenylphosphino)benzene 

(dpp-Benzene) were purchased from Strem Chemicals Inc. Allylboronic acid 

pinacol ester [allylB(pin)] was generously donated by Frontier Scientific. All 

other reagents were purchased from either Fisher or Aldrich and used 

without further purification. 

 

B.  Preparation and Characterization of Starting Materials 

Synthesis and characterization of (E)-4-phenylbut-3-en-2-yl acetate 

(20): 

 

 

General procedure A:  To a flame-dried round-bottomed flask equipped 

with a stir bar was added 3.0 M methylmagnesium chloride in THF (5.53 

mL, 16.5 mmol) and THF (25 mL).  The solution was cooled to 0 ºC and 

cinnamaldehyde (1.88 mL, 14.9 mmol) in THF (5 mL) was added dropwise 

via syringe.  The reaction was allowed to stir at 0 ºC for 1 h.  The reaction 

was quenched with water and 0.5 M HCl (aq).  The organic layer was 

separated, and the aq. layer was extracted with ethyl acetate three times.  
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The combined organics were washed with brine, dried with Na2SO4, filtered 

and concentrated in vacuo. 47 was then acetylated using procedure B. 

 

General Procedure B:  A 100 mL round-bottomed flask was charged with 

47 (2.4 g, 9.5 mmol), 4-dimethylaminopyridine (116 mg, 0.95 mmol) and 

CH2Cl2 (20 mL).  Triethylamine (2.7 mL, 19 mmol) was added and the 

reaction stirred for 20 minutes, followed by the addition of acetic anhydride 

(1.8 mL, 19 mmol).  The reaction was capped with a septum, vented with a 

needle, and was allowed to stir while warming to room temperature for 1 h.  

The reaction was then quenched with water.  The organic layer was 

separated and the aqueous layer was extracted with CH2Cl2 three times.  The 

organic portions were combined, dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude material was purified on silica gel (5% 

Et2O/pentane) to afford a colorless oil (88 % yield over 2 steps).   

 

(E)-4-phenylbut-3-en-2-yl acetate (20): 1H NMR (500 

MHz, CDCl3):  1.41 (3H, d, J = 6.6 Hz), 2.08 (3H, s), 5.53 

(1H, quint, J = 6.8 Hz), 6.19 (1H, dd, J = 15.9, 6.8 Hz), 6.60 (1H, d, 15.9 

Hz), 7.23-7.26 (1H, m), 7.29-7.34 (2H, m), 7.36-7.39 (2H, m); 13C NMR 

(125 MHz, CDCl3):  20.3, 21.4, 71.0, 126.5, 127.9, 128.8, 131.5, 136.3, 
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170.3; IR (neat): 2980 (w), 1732 (s), 1370 (m), 1235 (s), 1040 (m), 966 (m), 

951 (m), 748 (m), 693 (m) cm-1; HRMS (ESI+) for C13H16O2 [M+H]: 

calculated: 190.0994, found: 190.1002.  Rf  = 0.25 in 5% EtOAc/hexanes.  

 

Synthesis and characterization of (E)-4-(4-methoxyphenyl)but-3-en-2-yl 

acetate (21): 

 

General Procedure C:  A flame-dried round-bottomed flask under N2 was 

equipped with a stir bar and charged with 4-bromoanisole (0.12 mL, 1 

mmol) and THF (4 mL).  The solution was cooled to -78 oC before adding 

2.5 M n-butyllithium in hexanes (0.4 mL, 1.0 mmol) dropwise via syringe.  

The reaction was stirred for 10 minutes before the dropwise addition of 

crotonaldehyde (0.85 mL, 1.0 mmol) in THF (1 mL).  After 10 minutes at –

78 ºC, the reaction was warmed to room temperature and was allowed to stir 

for 30 min.  The reaction was diluted with ether (10 mL) before quenching 

with water (5 mL) at 0 ºC.  The aqueous portion was extracted with ether 

three times and the organic portions were washed with brine, dried over 

Na2SO4, filtered and concentrated in vacuo to afford 54. The alcohol 54 was 
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then protected following procedure B. After purification on SiO2, the 

product rearranged to the corresponding regioisomer.  Spectral data is in 

accordance with literature values.30 

 

Synthesis and characterization of (E)-4-(4-chlorophenyl)but-3-en-2-yl 

acetate (22): 30 

 

General procedure D:   

Step 1: A round-bottom flask equipped with a stir bar was charged with 4-

chlorobenzaldehyde (0.56 g, 4.0 mmol) and D.I. water (25.5 mL).  A 

suspension of acetone (1.46 mL, 20.0 mmol) and NaOH (0.58 g, 14.4 mmol) 

in D.I. water (8.5 mL) was added to the reaction.  The mixture was stirred at 

room temperature for 3 h.  The reaction was quenched with water and the 

aqueous layer was extracted with DCM three times.  The organic portion 

                                                           
30 Akai, S.; Hanada, R.; Fujiwara, N.; Kita, Y.; Egi, M. Org. Lett. 2010, 12, 4900 
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was washed with brine, dried with Na2SO4, filtered and concentrated in 

vacuo.   

Step 2: A round-bottom flask equipped with a stir bar was charged with 55 

(0.63 g, 2.6 mmol), H2O (0.5 mL) and MeOH (2 mL).  The solution was 

cooled to 0 oC before NaBH4 (113.5 mg, 3 mmol) was added.  The reaction 

was stirred at room temperature for 1 h.  The reaction was then diluted with 

CH2Cl2 and washed with brine.  The aqueous layer was extracted with 

CH2Cl2 three times.  The organic portion was dried over Na2SO4, filtered, 

and concentrated in vacuo.  The allyl alcohol 56 was then protected using 

general procedure B. The crude material was purified on silica gel (5% 

Et2O/pentane) to afford a clear colorless oil (60% yield over 2 steps).  

 

(E)-4-(4-chlorophenyl)but-3-en-2-yl acetate (22): 1H 

NMR (500 MHz, CDCl3):  1.40 (3H, d, J = 6.5 Hz), 

2.07 (3H, s), 5.50 (1H, app dq, J = 13.0, 6.6 Hz), 6.16 (1H, dd, J= 15.9, 6.6 

Hz), 6.55 (1H, d, J = 15.9 Hz), 7.26-7.31 (4H, m); 13C NMR (125 MHz, 

CDCl3):  20.3. 21.3, 701.7, 127.7, 128.7, 129.5, 133.5, 134.8, 170.2; IR 

(neat): 2981 (w), 1734 (s), 1492 (m), 1371 (m), 1238 (s), 1094 (m), 1042 

(m), 1013 (m), 968 (m), 952 (m), 806 (m) cm-1; HRMS (ESI+) for 
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C12H13ClO2 [M+H]: calculated: 224.0604, found: 224.06115.  Rf = 0.24 in 

5% EtOAc/hexanes. 

 

(E)-1-(4-(trifluoromethyl)phenyl)but-2-en-1-yl 

acetate (23): From commercially available 1-Bromo-

4-(trifluoromethyl)benzene, procedure C and B were followed.  1H NMR 

(500 MHz, CDCl3):  1.73 (3H, d, J = 6.4 Hz), 2.11 (3H, s), 5.63 (1H, dd, J 

= 15.2, 6.9 Hz), 5.78 (1H, dq, J = 15.2, 6.4 Hz), 6.24 (1H, d, J = 6.9 Hz), 

7.45 (2H, d, J = 8.3 Hz), 7.61 (2H, d, J = 8.3 Hz); 13C NMR (125 MHz, 

CDCl3):  169.8, 143.7, 130.6, 130.0 (q, 2JCF = 32.4 Hz), 128.9, 127.0, 125.4 

(q, 3JCF = 3.6 Hz), 124.0 (q, 1JCF = 271.7 Hz), 75.6, 21.2, 17.7; IR (neat): 

2921(br), 1737 (s), 1371 (m), 1323 (s), 1227(s), 1164 (s), 1122 (s), 1065 (s), 

1016 (s), 962 (s), 831 (m) cm-1; HRMS (ESI+) for C11H10F3 [M-OAc+H]: 

calculated 199.0735, found: 199.0783.   The crude material was purified on 

silica gel (5% Et2O/pentane) to afford a colorless yellow oil (86 % yield over 

2 steps).  Rf = 0.32 in 5% EtOAc/hexanes. 

 

 (E)-3-(4-methoxyphenyl)-1-phenylallyl acetate 

(24):  From commercially available 3-(4-

methoxyphenyl)-1-phenyl-propenone, general procedure D, step 2 was 
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followed.  The allyl alcohol was protected using general procedure B. 1H 

NMR (500 MHz, CDCl3):  2.13 (3H, s), 3.81 (3H, s), 6.22 (1H, dd, J = 

16.1, 7.3 Hz), 6.42 (d, J = 7.3 Hz), 6.58 (1H, d, J = 16.1 Hz), 6.84 (2H, d, J 

= 8.8 Hz), 7.28-7.44 (7H, m); 13C NMR (125 MHz  CDCl3):  21.4, 45.9, 

55.3, 76.4, 114.0, 125.3, 127.0, 127.9, 128.0, 128.6, 128.9, 132.3, 139.5, 

159.6, 170.1; IR (neat): 2934 (br), 1735(s), 1607 (m), 1512 (s), 1455 (w), 

1370 (m), 1300 (w), 1233 (s), 1176 (m) cm-1; HRMS (ESI+) for C18H18O3 

[M]: calculated: 282.1256, found: 282.1267.   The crude material was used 

without purification (83% yield over 2 steps).  Rf = 0.33 in 10% 

EtOAc/hexanes. 

 

(E)-2-methylhex-4-en-3-yl acetate (25):  From 

commercially available isopropylmagnesium chloride and 

crotonaldehyde, general procedure A and B were followed.  1H NMR (500 

MHz, CDCl3):  0.88 (6H, app. t, J = 6.1 Hz), 1.70 (3H, dd, J = 6.6, 1.7 

Hz), 1.82 (1H, app octet, J = 6.9 Hz), 2.04 (3H, s), 4.98 (1H, t, J = 7.1 Hz), 

5.39 (1H, ddq, J = 15.4, 7.8, 1.7 Hz), 5.70 (1H, dq, J = 15.4, 6.6 Hz); 13C 

NMR (125 MHz, CDCl3):  17.8, 18.0, 18.2, 21.3, 32.0, 79.6, 127.8, 129.9, 

170.4; IR (neat): 2963 (m), 2934 (w), 2876 (w), 1735 (s), 1469 (w), 1450 

(w), 1371 (m), 1236 (s), 1018 (m), 968 (m) cm-1; HRMS (ESI+) for C7H13O2 
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[M -OAc]: calculated: 97.1017, found: 97.1020.   The crude material was 

purified on silica gel (100% pentane) to afford a colorless oil (59% yield 

over 2 steps).  Rf = 0.35 in 5% EtOAc/hexanes. 

 

Synthesis and characterization for (E)-4-(o-tolyl)but-3-en-2-yl acetate 

(26):  

 

General Procedure E:  To a flame-dried round-bottom flask equipped with 

a stir bar and reflux condenser was added magnesium turnings (280 mg, 11.5 

mmol).  An additional flame-drying was performed before THF (22 mL) and 

2-bromotoluene (1.32 mL, 11 mmol) was added dropwise at 0 ºC.  The 

solution was refluxed at 60 ºC for 1 h, then cooled to 0 ºC before a solution 

of crotonaldehyde (0.83 mL, 10 mmol) in THF (5 mL) was added dropwise 

via syringe.  The reaction was allowed to stir at ambient temperature for 1 h.  

The reaction was cooled to 0 ºC and quenched with saturated aqueous 

NH4Cl.  The aqueous layer was extracted with ethyl acetate three times and 

the combined organics were washed with brine, dried with Na2SO4, filtered, 

and concentrated in vacuo.  The allyl alcohol was then protected using 
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general procedure B.  The crude material was purified on silica gel (5% 

Et2O/pentane) to afford 26 as a colorless oil (76% yield over 2 steps).    

 

 (E)-4-(o-tolyl)but-3-en-2-yl acetate (26): 1H NMR (500 

MHz, CDCl3):  1.42 (3H, d, J = 6.6 Hz), 2.08 (3H, s), 

2.35(3H, s), 5.55 (1H, app q, J = 6.6 Hz), 6.07 (1H, dd, J = 15.9, 6.8 Hz), 

6.82 (1H, d, J = 15.8 Hz), 7.13-7.18 (3H, m), 7.41-7.44(1H, m); 13C NMR 

(125 MHz, CDCl3):  19.7, 20.5, 21.4, 71.2, 125.6, 126.0, 127.7, 129.5, 

130.1, 130.2, 135.4, 135.6, 170.3; IR (neat): 3019 (w), 2979 (w), 2932 (w), 

1734 (s), 1486 (w), 1459 (w), 1370 (m), 1234 (s), 1152 (w), 1039 (m), 966 

(m), 950 (m), 749 (m) cm-1; HRMS (ESI-) for C13H16O2 [M+H]: calculated: 

205.1138, found: 205.0484.  Rf = 0.31 in 5% EtOAc/hexanes.   

 

(E)-4-(2-methoxyphenyl)but-3-en-2-yl 

acetate (27 major – 1h) and (E)-1-(2-

methoxyphenyl)but-2-en-1-yl acetate 

(minor): From commercially available 1-bromo-2-methoxybenzene, general 

procedure E and B were followed. The desired starting material isomerized 

to its regioisomer during silicagel purification. 1H NMR (500 MHz, CDCl3): 

 1.42 (3H, d, J = 6.3 Hz, major), 1.69 (3H, d, J = 4.9 Hz, minor), 2.07 (3H, 
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s, major), 2.08 (3H, s, minor), 3.84 (3H, s, minor), 3.85 (3H, s, major), 5.54 

(1H, dq, J = 6.3, 6.3 Hz, major), 5.62-5.76 (2H, m, minor), 6.22 (1H, dd, J = 

16.1, 6.8 Hz, major), 6.60 (1H, d, J = 5.4 Hz, minor), 6.84-6.99 (3H+1H, m, 

major+minor), 7.20-7.30 (1H+2H, m, major+minor), 7.36 (1H, d, J = 7.4 

Hz, minor), 7.42 (1H, d, J = 7.4 Hz); 13C NMR (125 MHz, CDCl3):  17.7, 

20.4, 21.3, 21.4, 55.4, 55.6, 70.7, 71.5, 110.7, 110.8, 120.6, 125.3, 126.5, 

127.0, 127.1, 128.2, 128.6, 128.9, 128.9, 129.3, 156.4, 156.9, 169.9, 170.3; 

IR (neat): 2978 (br), 2937 (br), 2838 (w), 1731 (s), 1598 (m), 1580 (w), 

1490 (m), 1463 (m), 1438 (m), 1370 (m), 1232 (s) cm-1; HRMS (ESI+) for 

C13H16O3  [M +H]: calculated: 220.1099, found: 220.1109.  The crude 

material was purified on silica gel (10% ether/pentane) to afford a clear oil 

(42%y after 2 steps).  Rf = 0.23 in 10% EtOAc/hexanes. 
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Synthesis and characterization of (E)-4,8-dimethylnona-3,7-dien-2-yl 

acetate (28) 

 

General procedure F:  A flame-dried round-bottom flask under N2 was 

equipped with a stir bar, and charged with PhI(OAc)2 (44.0 mmol, 14.2 g), 

TEMPO (4.0 mmol, 270 mg), CH3CN (34 mL), and aqueous pH 7 buffer 

(9.6 mL).  The solution was cooled to 0 ºC before adding geraniol (40.0 

mmol, 6.17 g) via syringe.  The reaction was allowed to stir while warm to 

room temperature for 1 h.  Na2S2O3 was then added.  The organic layer was 

removed and the aqueous layer was extracted with ether three times.  The 

organic portions were dried with Na2SO4, filtered and concentrated in vacuo. 

The crude oil was purified on silica gel (10% Et2O/hexanes) to afford a 

colorless oil (4.9 g, 80% yield).  

57 was subjected to conditions in general procedure A and B to obtain the 

desired starting material as a colorless oil (72% yield over 3 steps).   
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(E)-4,8-dimethylnona-3,7-dien-2-yl acetate (28): 1H NMR 

(500 MHz, CDCl3):  1.25 (3H, d, J = 6.4 Hz), 1.60 (3H, s), 

1.68 (3H, s), 1.70 (3H, d, J = 1.3 Hz), 1.97-2.02 (2H, m), 

2.01 (3H, s), 2.04-2.12 (2H, m), 5.07 (1H, br. t, J = 6.8 Hz), 5.16 (1H, d, J = 

8.8 Hz), 5.59 (1H, dq, J = 15.1, 6.3 Hz); 13C NMR (125 MHz  CDCl3):  

16.6, 17.6, 20.9, 21.4, 25.6, 26.3, 39.4, 68.1, 123.8, 124.7, 131.7, 139.4, 

170.4; IR (neat): 2974 (w), 2929 (w),1732 (m), 1447 (w), 1369 (m), 1240 

(s), 1144 (w), 1040 (m), 951 (w) cm-1; HRMS (ESI+) for C11H19 [M-OAc]: 

calculated: 151.1492, found: 151.1482.   Rf = 0.65 in 10% EtOAc.   

 

(Z)-4,8-dimethylnona-3,7-dien-2-yl acetate (30):  From 

commercially available cis-3,7-Dimethyl-2,6-octadien-1-ol 

(Nerol), general procedure F, A, and B were followed.  1H 

NMR (500 MHz, CDCl3):  1.25 (3H, d, J = 6.3 Hz), 1.60 (3H, s), 1.67 (3H, 

s), 1.72 (3H, d, J = 1.4 Hz), 2.00 (3H, s), 2.01-2.17 (3H, m), 2.21-2.22 (1H, 

m), 5.09 (1H, br t, J = 6.8 Hz), 5.17 (1H, d, J = 9.3 Hz), 5.59 (1H, dq, J = 

15.4, 6.1 Hz); 13C NMR (125 MHz  CDCl3):  17.6, 21.2, 21.4, 23.3, 25.7, 

26.5, 32.4, 67.8,123.8, 125.4, 132.0, 139.8, 170.3; IR (neat): 2969 (w), 2930 

(w),2860 (w), 1734 (m), 1670 (w), 1447 (w), 1369 (m), 1240 (s), 1035 (m), 

950 (w) cm-1; HRMS (ESI+) for C11H19 [M-OAc]: calculated: 151.1492, 
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found: 151.1534.   The crude material was purified on silica gel (2% 

Et2O/pentane) to afford a colorless oil (55% yield over 4 steps).  Rf = 0.34 in 

5% EtOAc/hexanes.   

 

(E)-7,11-dimethyldodeca-6,10-dien-5-yl acetate 

(31):  From commercially available geraniol, and n-

butyllithium, procedure F, A, and B was followed. 1H 

NMR (500 MHz, CDCl3):  0.89 (3H, t, J = 7.0 Hz), 1.17-1.37 (4H, m), 

1.44-1.52 (1H, m), 1.60 (3H, s), 1.60-1.66 (1H, m), 1.68 (3H, s), 1.71 (3H, 

d, J = 1.3 Hz), 1.98-2.20 (2H, m), 2.02 (3H, s), 2.06-2.12 (2H, m), 5.04-5.10 

(2H, m), 5.47 (1H, dt, J = 9.0, 6.8 Hz); 13C NMR (125 MHz  CDCl3):  7.0, 

9.8, 10.7, 14.4, 15.5, 18.6, 19.2, 20.2, 27.7, 32.5, 64.6, 116.7, 116.9, 124.6, 

133.2, 163.4; IR (neat): 2959 (w), 2930 (m), 2860 (w), 1734 (s), 1671 (w), 

1443 (w), 1369 (m), 1238 (s) cm-1; HRMS (ESI+) for C14H25 [M-OAc]: 

calculated: 193.1962, found: 193.1963.   The crude material was purified on 

silica gel (2% Et2O/pentane) to afford a clear oil (79% yield over 3 steps). Rf 

= 0.53 in 5% EtOAc/hexanes. 

 

 (E)-2,5,9-trimethyldeca-4,8-dien-3-yl acetate (33): From 

commercially available geraniol, and isopropylmagnesium 
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chloride (2M in THF), general procedure F, A, and B was followed. 1H 

NMR (500 MHz, CDCl3):  0.87 (3H, d, J = 12.2 Hz), 0.89 (3H, d, J = 6.8 

Hz), 1.60 (3H, s), 1.67 (3H, s), 1.72 (3H, d, 1.3 Hz), 1.82 (1H, octet, J = 6.8 

Hz), 2.01-2.04 (2H, m), 2.03 (3H, s), 2.06-2.14 (2H, m), 5.03-5.12 (1H, m), 

5.28 (1H, dd, J = 9.5, 7.1 Hz); 13C NMR (125 MHz  CDCl3):  16.9, 17.7, 

17.8, 18.3, 21.3, 25.7, 26.3, 32.5, 39.7, 76.0, 122.0, 124.0, 131.6, 140.8, 

170.5; IR (neat): 2964 (w), 2928 (w), 1734 (s), 1671 (w), 1446 (w), 1369 

(m), 1239 (s), 1017 (m), 972 (m) cm-1; HRMS (ESI+) for C13H23 [M-OAc]: 

calculated: 179.1805, found: 179.1828.   The crude material was purified on 

silica gel (100% pentane) to afford a colorless oil (68% yield over 3 steps).  

Rf = 0.4 in 5% EtOAc/hexanes. 

 

(E)-1-cyclohexyl-3,7-dimethylocta-2,6-dien-1-yl acetate 

(35): From commercially available geraniol, and 

cyclohexylmagnesium chloride (2M in Et2O), general 

procedure F, A, and B was followed.  1H NMR (500 MHz, CDCl3):  0.86-

1.02 (2H, m), 1.07-1.28 (4H, m), 1.44-1.54 (1H, m), 1.60 (3H, s), 1.62-

1.69(2H, m), 1.65 (3H, s), 1.69-1.78 (2H, m), 1.70, (3H, s), 1.98-2.06 (2H, 

m), 2.00 (3H, s), 2.08-2.14 (2H, m), 5.01-5.10 (2H, m), 5.28 (1H, m); 13C 

NMR (125 MHz  CDCl3):  16.9, 17.7, 21.3, 25.7, 25.9, 26.0, 26.2, 26.4, 
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28.3, 28.9, 39.7, 42.2, 75.3, 122.4, 124.0, 131.6, 140.6, 170.5; IR (neat): 

2926 (s), 2854 (m), 1734 (s), 1450 (m), 1369 (m), 1240 (s), 1016 (m), 973 

(m) cm-1; HRMS (ESI+) for C16H27 [M-OAc]: calculated: 219.2113, found: 

219.2123.   The crude material was used without purification to give a clear 

oil (77% yield over 3 steps).  Rf = 0.5 in 5% EtOAc/hexanes.  

 

(E)-3,7-dimethyl-1-phenylocta-2,6-dien-1-yl acetate 

(37): From commercially available geraniol, general 

procedure F, C, and then B was followed. 1H NMR (500 

MHz, CDCl3): δ 1.57 (3H, s), 1.65 (3H, s), 1.81 (3H, s), 2.03-2.11 (4H, m), 

2.09 (3H, s), 5.02-5.06 (1H, s), 5.40 (1H, d, J = 8.8 Hz), 6.53 (1H, d, J = 8.8 

Hz), 7.25-7.30 (1H, m), 7.34 (4H, d, J = 4.4 Hz); 13C NMR (125 MHz, 

CDCl3): δ 16.9, 17.6, 21.3, 25.6, 26.2, 39.5, 72.7, 123.3, 1213.7, 126.5, 

127.6, 128.4, 131.8, 140.4, 140.7, 170.2; IR (neat):  2966 (w), 1734 (s), 1369 

(m), 1230 (s), 1016, (m), 960 (m), 745 (m), 671 (s); HRMS (ESI+) for 

C16H22 [M-OAc]+: calculated: 214.1722, found: 214.1802. The crude 

material was purified on silica gel (5% ether/hexanes) to afford a colorless 

oil (55% yield). Rf = 0.29 in 5% ether/hexanes. 
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Synthesis and characterization of 3-butylcyclohex-2-en-1-yl acetate (39): 

 
General procedure G:  

Step 1: To a flame-dried round-bottomed flask charged with magnetic stir 

bar, under positive N2 atmosphere was added by 8 mL THF. The flask was 

cooled to -78 oC, and 2.4 mL n-BuLi (2.54 M in hexanes) was added 

dropwise. Cyclohexenone (0.49 mL, 5.0 mmol in 2 mL THF) was slowly 

added to the mixture. The flasked was warmed to 0 oC and allowed to stir for 

2 hours. The reaction was then quenched with H2O. The organic layer was 

separated, and the aqueous layer was extracted with Et2O three times. The 

organics were combined and condensed in vacuo to afford 58. The crude oil 

of 58 was used in the next step without further purification. 

Step 2: 31To a round-bottomed flask charged with stir bar and the crude oil 

of 58 was added MeCN (25 mL) and H2O (D.I., 5 mL), followed by salicylic 

acid (210 mg, 1.5 mmol). The flask was capped and allowed to stir 

                                                           
31 McCubbin, J. A.; Voth, S.; Krokhin, O. V. J. Org. Chem. 2011, 76, 8537  
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overnight. Saturated NaHCO3 was added to the reaction mixture, the organic 

layer was separated and the aqueous layer was extracted with Et2O three 

times. The combined organics were concentrated in vacuo to afford 59 as a 

light, yellow oil. The crude oil of 59 was subjected directly to acetylation 

conditions (general procedure B).  

 

3-butylcyclohex-2-en-1-yl acetate (39): 1H NMR (500 MHz, 

CDCl3): δ 0.89 (3H, t, J = 6.8 Hz), 1.29 (2H, tq, J = 14.7, 7.4 

Hz), 1.36-1.42 (2H, m), 1.54-1.80 (4H, m), 1.88-195 (1H, m), 1.97-2.00 

(3H, m), 2.04 (3H, s), 5.27 (1H, br s), 5.44 (1H, br s);  13C NMR (125 MHz, 

CDCl3): δ 13.9, 19.1, 21.5, 22.4, 28.3, 28.4, 29.6, 37.3, 68.9, 119.3, 144.9, 

170.9; IR (neat): 2930 (s), 1730 (s), 1369 (m), 1234 (s), 1057 (m), 909 (m); 

HRMS (ESI+) for C10H17 [M-OAc]+: calculated: 137.1325, found: 137.1369. 

The crude material was purified on silica gel (5% ether/hexanes) to afford a 

colorless oil (78% yield over 3 steps). Rf = 0.33 in 5% ether/hexanes. 

 

 

3-butylcyclohept-2-en-1-yl acetate (41): Starting from 

cycloheptenone, general procedure G was followed; 1H NMR 

(500 MHz, CDCl3): δ 0.89 (3H, t, J = 7.1 Hz), 1.25-1.39 (6H, m), 1.59-1.71 
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(4H, m), 1.78-1.82 (1H, m), 1.88-1.93 (1H, m), 1.94-1.99 (2H, m), 2.05 (3H, 

s), 2.03-2.18 (2H, m), 5.35-5.40 (2H, m); 13C NMR (125 MHz, CDCl3): δ 

13.9, 21.4, 22.3, 26.0, 27.1, 29.8, 32.4, 32.9, 39.8, 74.0, 127.1, 143.9, 170.4; 

IR (neat): 2926 (m), 1734 (s), 1367 (m), 1237 (s), 1024 (m), 840 (w); HRMS 

(ESI+) for C11H20 [M-OAc]+: calculated: 152.1565, found: 152.1593. The 

crude material was purified on silica gel (5% ether/hexanes) to afford a 

colorless oil. Rf = 0.24 in 5% ether/hexanes. 

 

Synthesis and characterization of (E)-2-phenyloct-2-en-4-yl acetate (43): 

 

General Procedure H:  

Step 1:32 A flame-dried 2-neck round-bottom flask equipped with a reflux 

condenser, stir bar, and rubber septum was charged with THF (4 mL), 

                                                           
32 Raminelli, C.; Gargalaka, J.; Silveira, C. C.; Comasseto, J. V. Tetrahedron, 2007, 63, 8801 
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methylmagnesium chloride (2.16 mL, 4.8 mmol, 2.2 M in THF) and 1-

hexyne (0.55 mL, 4.8 mmol).  The reaction was heated to 50 oC for 1 h, at 

which point the reaction was cooled to room temperature, and 

aceteophenone (0.47 mL, 4.0 mmol) was added dropwise via syringe. The 

reaction was warmed to 50 oC, and was allowed to stir for an additional 2 h.  

The solution was then cooled to room temperature and quenched with 

saturated aqueous ammonium chloride (10 mL).  The organic layer was 

separated and the aqueous layer was extracted with ethyl acetate three times.  

The organic portions were combined and washed with brine, dried over 

Na2SO4, filtered, and concentrated in vacuo.  

Step 2: Literature procedure was followed to reduce the alkyne and obtain 

60. 30   

The allylic alcohol 61 was subjected to conditions in procedure G (step 2) 

and procedure B to afford the desired allylic acetate 43.  

 

(E) & (Z)-2-phenyloct-2-en-4-yl acetate (43): 

1H NMR (500 MHz, CDCl3):  0.77 (3H, t, J = 

7.0 Hz, cis), 0.86 (3H, t, J = 7.0 Hz, trans), 1.06-

1.19 (m), 1.20-1.34 (m), 1.36-1.48 (m), 1.52-1.60 (m), 1.66-1.74 (m), 1.93 

(3H, s, cis), 1.99 (3H trans + 3H cis, s), 2.09 (3H, s, trans), 5.14 (1H, dt, J = 
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9.3, 6.6 Hz, cis), 5.36 (1H, dd, J = 9.3, 1.5 Hz, cis), 5.56-5.64 (2H, m, trans), 

7.11-7.15 (m), 7.18-7.22 (m), 7.24-7.30 (m), 7.32-7.36 (m); 13C NMR (125 

MHz  CDCl3):  13.9, 14.0, 16.5, 21.3, 22.4, 22.6, 26.0, 27.1, 27.2, 34.6, 

34.7, 71.7, 72.6, 125.9, 125.9, 126.6, 127.0, 127.3, 127.5, 128.2, 128.2, 

138.7, 141.0, 141.1, 142.8, 170.1, 170.5; IR (neat): 2957 (w), 2932 (w), 

2861 (w), 1732 (s), 1494 (w), 1445 (w), 1369 (m), 1235 (s), 1016 (m), 

950(m) cm-1; HRMS (ESI+) for C14H19 [M-OAc]: calculated:187.1418, 

found:187.1491.   The crude material was purified on silica gel (10% 

ether/hexanes) to afford a clear oil (24% yield over 4 steps).  Rf = 0.33 in 5% 

EtOAc/hexanes.   

 

(E)-2-phenylpent-3-en-2-yl acetate 

(major) & (E)-4-phenylpent-3-en-2-yl 

acetate (minor) (45): From 

commercially available (E)-pent-3-en-2-one, procedure A and B was 

followed.  1H NMR (500 MHz, CDCl3):1.37 (3H, d, J = 6.3 Hz, minor), 1.75 

(3H, dd, J = 6.4, 1.9 Hz, major), 1.85 (3H, s, major), 2.05 (3H, s, minor), 

2.06 (3H, s, major), 2.12 (3H, d, J = 1.5 Hz, minor), 5.67 (1H, app dq, J = 

19.5, 6.4 Hz, major), 5.72-5.79 (2H, m, minor), 5.99 (1H, ddd, J = 15.1, 2.9, 

1.4 Hz, major), 7.22-7.28 (1H major + 1 H minor, m), 7.31-7.36 (3H major 
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+ 3H minor), 7.39-7.41 (1H major + 1H minor, m); 13C NMR (125 MHz, 

CDCl3): 16.3, 17.9, 20.8, 21.4, 22.3, 26.2, 68.3, 83.2, 125.1, 125.9, 126.2, 

126.9, 127.0, 127.1, 127.3, 127.4, 127.5, 128.1, 128.2, 128.3, 134.6, 137.9, 

142.7, 144.6, 169.4, 170.4; IR (neat): 3026 (w), 2935 (w), 1736 (s), 1494 

(m), 1240 (s), 1119 (m), 913 (m), 760 (m), 699 (m); HRMS (ESI+) for 

C13H16O2 [M-OAc]: calculated 145.1012, found 145.1003. The crude 

material was purified on silica gel (5% Et2O/Pentane) to afford a colorless 

oil (30% yield over 2 steps). Rf = 0.38 in 5% EtOAc/hexanes. 

Synthesis and characterization of (E)-4-phenylpent-3-en-2-yl acetate 

(48) 

 

General Procedure I:  

Step 1: Starting from phenylacetylene, literature procedure was followed.33  

Step 2: General procedure D, step 2 was followed. 

                                                           
33 Dabrowski, J. A.; Haeffner, J.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 7694 
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Step 3:34 A flame dried round bottom flask equipped with a stir bar was 

charged with 62 (1.2 g, 7.6 mmol), L-(-)-DIPT (1.92 mL, 9.2 mmol), and 

CH2Cl2 (76 mL).  The mixture was cooled to -20 oC and Ti(Oi-Pr)4  (2.26 

mL, 7.6 mmol) was added.  The solution stirred for 30 minutes, then 5.5 M. 

t-BuO2H in decane (0.84 mL, 4.6 mmol) was added slowly via syringe. The 

reaction was stirred for 16 h. The reaction was then quenched with a cold 

solution of citric acid (6 g) and FeSO4·7H2O (16 g) in 50 mL D.I. H2O and 

was stirred vigorously at room temperature, until the solution was clear.  The 

organic layer was set aside and the aqueous layer was extracted with CH2Cl2 

three times.  The combined organic fractions were concentrated in vacuo, 

and the crude residue was dissolved in diethyl ether (50 mL).  To this 

solution was added a solution of NaOH (20 g) and NaCl (3 g) in H2O (50 

mL) at 0 oC.  The mixture stirred at 0 oC for 1 h before the addition of H2O 

(25 mL). The organic layer was removed and the aqueous layer was 

extracted with ethylacetate three times. The organic portions were combined, 

dried over Na2SO4, filtered, and concentrated in vacuo. The crude material 

was purified on silica gel to afford the enantioenriched alcohol.  

                                                           
34 (a) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. 
Chem. Soc. 1981, 103, 6237; (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, 
H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765; (c) Li, Z.; Parr, B. T.; Davies, H. M. L. 
J. Am. Chem. Soc. 2012, 134, 10942.  
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Step 4: General procedure B was followed to obtain the desired starting 

material 48. 

 
 (E)-4-phenylpent-3-en-2-yl acetate (48): Spectral data is 
in accordance with literature values.35  
 

Analysis of stereo chemistry: The enantiopurity was determined using 

chiral GLC (Chiral β-dex, Supelco, 60 oC for 5 minutes, ramp 1 oC / min to 

140 oC, hold at 140 oC for 20 minutes, 20 psi, sr = 35:1). The absolute 

stereochemistry was determined by analogy to reported literature.34  

 

 
 
 
 
 

Racemic     Reaction product 

 
 
 
 

                                                           
35 Voigtritter, K. R.; Isley, N. A.; Moser, R.; Aue, H. D.; Lipshutz, B. H. Tetrahedron 2012, 68, 
3410 
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Synthesis and characterization of (E)-4-(4-methoxyphenyl)pent-3-en-2-
yl acetate (66): 

 
 
General procedure K:  
Step 1: Starting with 4-bromoanisole, 63 was obtained following literature 

procedure.36    

Step 2: Adapted from literature procedure.6 A round-bottomed flask was 

equipped with a stir bar and reflux condenser.  The flask was charged with 

63 (3.94 g, 16 mmol), THF (48 mL) and 10% HCl in H2O (16 mL).  The 

reaction was stirred at 80 oC for 1 h. The reaction was then diluted with H2O 

and extracted with ethyl acetate three times. The organic portion was washed 

with brine, dried with Na2SO4, filtered, and concentrated in vacuo. The 

crude material was purified on column chromatography (SiO2, 20% 

EtOAc/hex) to afford ketone 64 as a white solid.  

                                                           
36 Guthrie, J. P.; Wang, X.-P. Can. J. Chem. 1992, 70, 1055.   
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Step 335: In the dry-box, an oven-dried 2-dram vial equipped with a stir bar 

was charged with anhydrous Cu(OAc)2 (4.63 mg, 0.026 mmol) and (R)-

DTBM-SEGPHOS (30.08 mg, 0.026 mmol).  The vial was capped with a 

rubber septum and brought out of the box.  At room temperature, dry ethyl 

ether (2 mL) and diethoxymethyl silane (2.45 mL, 15.3 mmol) were added 

under N2. After stirring for 10 min, the reaction mixture was cooled to -25 

oC. A solution of 64 (0.82 g, 5.1 mmol) in dry ethyl ether (1 mL) was added 

slowly via syringe.  The mixture was stirred for 15 h at -25 oC.  To the 

mixture was added 1.0 M TBAF in THF (15.3 mL) and the reaction was 

stirred for an additional 1 h.  MeOH (10 mL) was then added, and the 

reaction was warmed to room temperature, concentrated in vacuo, and 

filtered through a short SiO2 plug. The crude material was then purified 

using column chromatography (SiO2, 20% EtOAc/hexanes) to afford clean 

66 as a colorless oil (814.2 mg, 83% yield).  

 Step 4:  General procedure B was followed to obtain the desired starting 

material. 

(E)-4-(4-methoxyphenyl)pent-3-en-2-yl acetate 

(66): 1H NMR (500 MHz, CDCl3):  1.36 (3H, d, J = 

6.3 Hz), 2.05 (3H,s), 2.10 (3H, s), 3.81 (3H, s), 5.67 (1H, d, J = 8.8 Hz), 

5.76 (1H, dq, J = 8.8, 6.3 Hz), 6.86 (2H, d, J = 8.8 Hz), 7.34 (2H, d, J = 8.8 
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Hz); 13C NMR (125 MHz, CDCl3):  16.3, 20.9, 21.4, 55.3, 68.4, 113.6, 

125.9, 126.9, 135.1, 137.3, 159.1, 170.4; IR (neat): 2977(br), 2932 (br), 

2837 (w), 1732 (m), 1607 (w), 1513 (m), 1444 (w), 1370 (w), 1289 (w), 

1242 (s), 1181 (w), 1036 (m) cm-1; HRMS (ESI+) for C14H19O3 [M+H]: 

calculated: 235.1334, found: 235.1321. The crude material was purified on 

silica gel (7% ether/pentane) to afford a corlorless oil (15% yield over 4 

steps).  Rf = 0.12 in 5% EtOAc/hexanes. 

 

Analysis of stereo chemistry: The enantiopurity was determined on alohol 

66 using chiral SFC (OJ-H, Chiralpak, 3mL/min, 4% isopropanol, 100 bar, 

35 oC). The absolute stereochemistry was determined by analogy to reported 

literature.35  

 

    
Racemic     Reaction product 
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Synthesis and characterization of (E)-4-(4-(trifluoromethyl)phenyl)pent-
3-en-2-yl acetate (67): 

 
 
 

 (E)-4-(4-(trifluoromethyl)phenyl)pent-3-en-2-yl 

acetate (67):  From commercially available 4-

bromobenzotrifluoride, procedure K, step 1 and 2 was followed, then 

procedure I step 3 and 4 and procedure B was followed. 1H NMR (500 

MHz, CDCl3):  1.40 (3H, d, J = 5.9 Hz), 2.05 (3H, s), 2.14 (3H, d, J = 1.5 

Hz), 5.73-5.80 (2H, m), 7.43 (2H, d, J = 8.3 Hz), 7.57 (2H, d, J = 8.3 Hz); 

(125 MHz, CDCl3):  16.3, 20.6, 21.3, 68.1, 123.1, 125.1, 125.2, 125.3, 

125.4, 126.2, 129.4 (q, 2JCF = 32.4 Hz), 136.7, 146.2, 170.4; IR (neat): 2979 

(br), 1738 (m), 1616 (w), 1371 (w), 1326 (s), 1240 (m), 1165 (m), 1124 (m), 

1072 (m), 1042 (w), 1014 (w), 946 (w) cm-1; HRMS (ESI+) for C14H15F3O2 

[M+H]: calculated: 273.1102, found: 273.1099.   The crude material was 
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purified on silica gel (10% ether/pentane) to afford a colorless oil. Rf = 0.22 

in 5% EtOAc/hexanes. 

 

Analysis of stereo chemistry: The enantiopurity was determined on alohol 

67 using chiral SFC (OD-H, Chiralpak, 3mL/min, 3% Isopropanol, 100 bar, 

35 oC). The absolute stereochemistry was determined by analogy to reported 

literature.34  

 

  
Racemic     Reaction product 
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C. Synthesis and Characterization of the Allyl-Allyl Coupling 

Products 

 

General procedure L: In the dry-box, an oven dried 2-dram vial equipped 

with a stir bar was charged with (η3-allylPdCl)2 (1.4 mg, 0.0038 mmol), 

dppbenzene (4.6 mg, 0.0075 mmol), and THF (0.25 mL).  The resulting 

solution was allowed to stir at room temperature for 5 min.  At this time, the 

vial was sequentially charged with 20 (37.2 mg, 0.15 mmol), allylB(pin) 

(75.6 mg, 0.45 mmol), CsF (228 mg, 1.5 mmol), and THF (0.75 mL).  The 

vial was tightly capped with a rubber septum, removed from the dry-box, 

and placed under a positive pressure of N2.  Degassed H2O was then added 

(40 µL) via a glass syringe. The rubber septum was rapidly exchanged with 

a polypropylene cap, sealed with tape, and the reaction was allowed to stir at 

room temperature for 16 h.  The slurry was diluted with water, the organic 

layer was separated and the aqueous layer was extracted three times with 

Et2O.  The organic portion was dried with Na2SO4 filtered, and concentrated 

under reduced pressure.  The crude material was purified by silica gel 

chromatography (100% pentane) to yield a 6:2:1 mixture of 17 and 18, and 
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elimination product 19. The combined yield of 17 and 18 was calculated to 

be 88%. 19 can be removed by treating the mixture with maleic anhydride 

(30mg, 0.3 mmol) in THF at 60 oC for 3 h.  

 

(E)-hepta-1,5-dien-4-ylbenzene (17, 

major) & (E)-(3-methylhexa-1,5-dien-

1-yl)benzene (18, minor): 1H NMR (500 

MHz, CDCl3):  1.11 (3H, d, J = 6.8 Hz, minor), 1.66 (3H, d, J = 5.6 Hz, 

major), 2.10-2.26 (2H, m, minor), 2.36-2.54 (2H+1H, m, major+minor), 

3.70 (1H, q, J = 8.3 Hz, major), 4.95-5.09 (2H+2H, m, major+minor), 5.50-

5.61(2H, m, major), 5.70-5.87(1H+1H, m, major+minor), 6.16 (1H, dd, J = 

15.9, 7.3 Hz, minor),  6.37 (1H, d, J = 15.9 Hz, minor), 7.17-7.38 (5H + 5H, 

m, major + minor); 13C NMR (125 MHz  CDCl3):  13.2, 19.9, 36.9, 41.1, 

41.4, 43.0, 115.9,116.0, 124.0, 126.0, 126.0, 126.8, 127.3, 128.2, 128.4, 

128.5, 133.8, 136.0,136.7, 137.0, 137.8, 144.9); IR (neat): 3077(m), 3026 

(m), 2976 (m), 2922 (m), 1640 (m), 1600 (w), 1493(m), 1451 (m), 1072 (w), 

1030 (w), 994(s) cm-1; HRMS (ESI+) for C13H17 [M +H]: calculated: 

173.1330, found: 173.1333.   The crude material was purified on silica gel 

(100% pentane) to afford a colorless oil. Rf = 0.81 in 5% EtOAc/hexanes.   
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(E)-1-(hepta-

1,5-dien-4-yl)-

4-

methoxybenze

ne (21, major) & (E)-1-methoxy-4-(3-methylhexa-1,5-dien-1-yl)benzene 

(21, minor):  Prepared using general procedure L.  1H NMR (500 MHz, 

CDCl3):  1.09 (3H, d, J = 6.8 Hz, minor), 1.65 (3H, d, J = 4.9 Hz, major), 

2.06-2.24 (2H, m, minor), 2.33-2.49 (2H, m, major), 2.82-2.89 (1H, m, 

minor), 3.65 (1H, td, J = 8.3, 6.6 Hz, major), 3.79 (3H, s, major), 3.81 (3H, 

s, minor), 3.82 (3H, s, elim. pdt.), 4.95-5.06 (2H minor + 2H elim. pdt., m), 

4.97 (1H, d, J = 10.3 Hz, major), 5.03 (1H, d, J = 17.1 Hz, major), 5.47-5.57 

(2H, m, major), 5.74 (1H, ddt, J = 17.1, 10.3, 6.8 Hz, major), 5.82 (1H, ddt, 

J = 17.1, 9.8, 7.3 Hz, minor), 6.01 (1H, dd, J = 15.6, 7.3 Hz, minor), 6.29-

6.32 (1H, m, elim. pdt.), 6.82-6.88 (2H major + 2H minor, m), 7.11-7.16 

(2H major + 2H elim. pdt., m), 7.21 (2H elim. pdt., m), 7.29 (2H minor, m); 

13C NMR (125 MHz  CDCl3):  13.1, 41.2, 42.1, 55.2, 113.8, 115.8, 123.7, 

128.2, 134.1, 136.8, 137.1, 157.8; IR (neat): 3074 (w), 3007 (w), 2914 (w), 

2835 (w), 1609(w), 1510 (s), 1463 (w), 1441 (w), 1302 (w), 1247 (s), 1177 

(m), 996 (m) cm-1; HRMS (ESI+) for C14H18O1 [M +H]: calculated: 

203.1435, found: 203.1443.   The crude material was purified on silica gel 
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(1% ether/pentane) to afford a colorless oil (22mg, 70% combined yield for 

21 major and minor). Rf = 0.52 in 5% ether/hex 

 

(E)-1-chloro-4-(hepta-1,5-dien-4-

yl)benzene (22, major) & (E)-1-

chloro-4-(3-methylhexa-1,5-dien-

1-yl)benzene (22, minor):  Prepared using general procedure L.  1H NMR 

(500 MHz, CDCl3):  1.11 (3H, d, J = 6.8 Hz, minor), 1.65 (3H, d, J = 5.3 

Hz, major), 2.09-2.23 (2H, m, minor), 2.34-2.49 (2H + 1H, m, 

major+minor), 3.67 (1H, q, J = 7.5 Hz, major), 4.99 (1H, d, J = 10.3 Hz, 

major), 5.03 (1H, d, J = 17.1 Hz, major), 4.96-5.08 (2H, m, minor),5.49-

5.47 (2H, m, major), 5.71 (1H, ddt, J = 17.2, 10.3, 6.9 Hz, major), 5.81 (1H, 

ddt, J = 17.1, 10.1, 7.1 Hz, minor), 6.14 (1H, dd, J = 15.9, 7.5 Hz, minor), 

6.32 (1H, d, J = 15.6 Hz, minor), 7.10-7.30 (4H major + 4H minor, m); 13C 

NMR (125 MHz, CDCl3):  13.2, 19.8, 36.9,41.1, 41.3, 42.4, 116.1, 116.3, 

124.5,127.1, 127.2, 128.5, 128.6, 128.7, 131.6, 133.3, 136.2, 136.8, 143.4; 

IR (neat): 3077(w), 3013 (w), 2977 (w), 2922 (w), 1640 (w), 1491 (s), 1439 

(m), 1371 (w), 1092 (s), 1014 (s), 994 (m), 967 (m), 913(s) cm-1; HRMS 

(ESI+) for C13H15Cl  [M +H]: calculated: 207.0948, found: 207.0941.   The 

crude material was purified on silica gel (100% pentane) to afford a 
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colorless oil (28mg, 92% combined yield for 22 major and minor). Rf = 

0.93 in 5% EtOAc/hexanes. 

 

(E)-1-(hepta-1,5-

dien-4-yl)-4-

(trifluoromethyl)be

nzene (23, major) & (E)-1-(3-methylhexa-1,5-dien-1-yl)-4-

(trifluoromethyl)benzene (23, minor) & (E)-1-(buta-1,3-dien-1-yl)-4-

(trifluoromethyl)benzene (elim. pdt.):  Prepared using general procedure 

L.  1H NMR (500 MHz, CDCl3):  1.11 (3H, d, J = 6.9 Hz, elim. pdt.), 1.64 

(3H, d, J = 5.4 Hz, major), 1.68 (3H, d, J = 6.4 Hz, minor), 2.11-2.25 (1H, 

m, minor), 2.37-2.52 (2H+1H, m, major + minor), 3.14 (1H, ap. t, J = 8.0 

Hz, minor), 3.67 (1H, q, J = 7.4 Hz, major), 4.94-5.08 (6H, m, major + 

minor + elim. pdt.), 5.46 (1H, dq, J = 15.6, 6.4 Hz, minor), 5.51-5.62 

(2H+1H, m, major + minor), 5.64-5.75 (2H, m, major + minor), 5.75-5.85 

(1H, m, elim. pdt.), 6.25 (1H, dd, J = 16.1, 7.8 Hz, elim. pdt.), 6.39(1H, d, J 

= 15.7 Hz, elim. pdt.); 13C NMR (125 MHz, CDCl3):  13.2, 14.0, 17.9, 

19.7, 22.3, 29.7, 34.1, 36.9, 40.1, 40.9, 41.2, 42.9, 48.6, 116.2, 116.4, 116.5, 

119.4, 125.0, 125.2, 125.3 (q, 3JCF = 3.8 Hz), 126.1, 126.5, 127.1, 127.7, 

127.8, 127.9, 128.1, 128.2, 128.4, 132.8, 133.5, 135.9, 136.2, 136.6, 138.8, 
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149.0; IR (neat): 3026 (w), 2917 (w), 1639 (w), 1598 (w), 1493 (m), 1445 

(m), 1375 (w), 973 (s), 912 (s) cm-1; HRMS (ESI+) for C14H15F3  [M +H]: 

calculated: 241.1204, found: 241.1197.   The crude material was purified on 

silica gel (100% pentane) to afford a colorless oil (17.4mg, 50% combined 

yield for 23 major and minor). Rf = 0.8 in 5% ether/hexanes. 

 
 
(E)-1-methoxy-4-(1-phenylhexa-

1,5-dien-3-yl)benzene (24, minor) 

& (E)-1-methoxy-4-(3-phenylhexa-1,5-dien-1-yl)benzene (24, major):  

Prepared using general procedure L. 1H NMR (500 MHz, CDCl3): δ 2.54-

2.62 (2H major + 2H minor, m), 3.50 (1H major + 1H minor, app dt, J = 

14.7, 7.3 Hz),  3.79 (3H major, s), 3.80 (3H minor, s), 4.98 (1H major + 1H 

minor, d, J = 10.4 Hz), 5.05 (1H major + 1 H minor, d = 17.1 Hz), 5.72-5.82 

(1H major + 1H minor, m), 6.22 (1H major, dd, J = 15.7, 7.3 Hz), 6.31-6.38 

(1H major + 2H minor, m), 6.83 (2H major, d, J = 8.3 Hz), 6.87 (2H minor, 

d, J = 8.8 Hz), 7.16-7.36 (7H major + 7H minor, m); 13C NMR (150 MHz, 

CDCl3):  40.2, 40.3, 48.1, 49.0, 55.2, 55.3, 113.9, 116.3, 126.2, 126.3, 

127.1, 127.3, 127.4, 127.8, 128.2, 128.5, 128.6, 128.7, 129.2, 129.5, 129.9, 

130.3, 131.4, 133.9, 135.9, 136.7, 137.5, 144.1, 158.1, 158.9; IR (neat): 

3001 (w), 1639 (m), 1510 (s), 1463 (m), 1247 (s), 1175 (m), 1035 (m), 993 
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(m), 699 (m); HRMS (ESI+) for C19H20O [M+H]+: calculated: 265.1592, 

found: 265.1580.   The crude material was purified on silica gel (2% 

ether/pentane) to afford a clear oil (29 mg, 75% combined yield for 24 

major and minor). Rf = 0.5 in 2% ether/hexanes. 

 

 (E)-4,7-dimethylocta-1,5-diene (25, 

minor) and (E)-4-isopropylhepta-1,5-

diene (25, major):  Prepared using 

general procedure L.  1H NMR (500 MHz, CDCl3):  0.84 (3H, d, J = 6.8 

Hz, major), 0.89 (3H, d, J = 6.8 Hz, major), 0.92-0.98 (3H, m, minor), 0.94 

(6H, d, J = 6.4 Hz, minor), 1.58 (3H, dd, J = 6.8, 2.0 Hz, major), 1.61 (1H, 

m, major), 1.98 (2H, m, major), 2.04-2.30 (4H, m, major+minor), 2.48-2.62 

(2H, m, minor), 4.91-5.05 (4H, m, major+minor), 5.12 (1H, d, J = 10.2 Hz, 

minor), 5.17 (1H, t, J = 10.8 Hz, major), 5.53 (1H, dq, J = 10.3 Hz, 6.8 Hz, 

major), 5.70-5.81 (1H major + 1 H minor, m); 13C NMR (125 MHz  CDCl3): 

 13.3, 18.7, 20.7, 21.1, 23.3, 23.5, 26.8, 31.7, 32.0, 37.4, 41.9, 42.8, 115.0, 

115.4, 124.3, 132.8, 133.0, 136.2, 137.4, 137.9; IR (neat): 2960 (w), 2923 

(br), 1465 (w), 1384 (w), 903 (s), 724 (s), 650 (m) cm-1; HRMS (ESI+) for 

C10H17 [M-H]: calculated: 137.1330, found: 137.1328.   The crude material 
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was purified on silica gel (100% pentane) to afford a colorless oil. Rf = 0.49 

in 5% EtOAc/hexanes. 

 

(E)-1-(hepta-1,5-dien-4-yl)-2-

methylbenzene (26, major) & (E)-1-

methyl-2-(3-methylhexa-1,5-dien-1-

yl)benzene (26, minor): Prepared using general procedure L.  1H NMR 

(500 MHz, CDCl3):  1.15 (3H, d, J = 6.6 Hz, minor), 1.66 (3H, d, J = 4.9 

Hz, major), 2.12-2.26 (2H, m, minor), 2.34 (3H, s, minor), 2.36 (3H, s, 

major), 2.38-2.49 (2H, m, major), 3.84-3.93 (1H, m, major), 4.96-5.08 (2H 

major + 2H minor, m), 5.48-5.56 (2H, m, major), 5.76 (1H, ddt, 17.1, 10.3, 

7.1 Hz, major), 5.83 (1H, ddt, J = 17.1, 10.0, 7.1 Hz, minor), 6.10 (1H, dd, J 

= 15.7, 7.6 Hz, minor), 6.55 (1H, d, J = 15.9 Hz, minor), 7.06-7.20 (m, 

major and minor), 7.23 (1H, d, J = 7.8 Hz, major), 7.41 (1H, d, J = 7.1 Hz 

minor); 13C NMR (125 MHz, CDCl3):  major (143.2, 136.9, 135.4, 133.8, 

130.3, 126.3, 126.2, 125.7, 123.9, 115.9, 40.7, 38.7, 19.7, 13.3) minor 

(137.5, 137.0, 135.0, 130.1, 126.7, 126.1, 126.0, 125.5, 115.9, 41.5, 37.2, 

20.1, 19.8); IR (neat): 3074 (m), 3017 (m), 2975 (m), 2860 (m), 1640 (m), 

1603 (w), 1488 (m), 1461 (m), 1440 (m), 912 (s), 751(s), 726 (s) cm-1; 

HRMS (ESI+) for C14H18  [M +H]: calculated: 187.1482, found: 187.1487.   
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The crude material was purified on silica gel (100% pentane) to afford a 

colorless oil (26 mg, 94 % combined yield for 26 major  and 26 minor). Rf 

= 0.71 in 5% EtOAc/hexanes. 

 

(E)-1-(hepta-1,5-dien-4-yl)-2-methoxybenzene (27): 

Prepared using general procedure L.  1H NMR (500 MHz, 

CDCl3):  1.65 (3H, d, J = 6.8 Hz), 2.38 (1H, app dt, J = 14.2, 7.3 Hz), 2.46 

(1H, app dt, J = 13.7, 5.9 Hz), 3.84 (3H, s), 4.13 (1H, app q, J = 6.3 Hz), 

4.94 (1H, d, J = 10.2 Hz), 5.00 (1H, d, J = 17.1 Hz), 5.46-5.53 (1H, m), 

5.56-5.61 (1H, m), 5.76 (1H, ddt, J = 17.1, 10.2, 6.9 Hz), 6.86 (1H, d, J = 

8.1 Hz), 6.91 (1H, t, J = 7.5), 7.14-7.21 (2H, m); 13C NMR (125 MHz, 

CDCl3):  13.2, 36.1, 40.0, 55.4, 120.6, 124.1, 126.8, 127.7, 133.3, 133.6, 

137.2, 156.8; IR (neat): 3073 (w), 3007 (w), 2918 (w), 2835 (w), 1639 (w), 

1599 (w), 1490 (s), 1463 (m), 1438 (m), 1238 (s), 1031 (m), 808 (s) cm-1; 

HRMS (ESI+) for C14H18O1  [M+H]: calculated: 203.1429, found: 203.1436.   

The crude material was purified on silica gel (2% ether in pentane) to afford 

a clear oil (21 mg, 70% yield for 27). Rf = 0.74 in 5% EtOAc/hexanes. 
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(E)-4,8-dimethyl-4-(prop-1-en-1-yl)nona-1,7-diene (29):  

Prepared using general procedure L.  1H NMR (500 MHz, 

CDCl3):  0.94 (3H, s), 1.24-1.29 (2H, m), 1.58 (3H, s), 1.68 

(3H, s), 1.69 (3H, s), 1.88 (2H, app dt, J = 15.9, 7.3 Hz), 1.99-2.08 (2H, m), 

4.90 (1H, d, J = 17.6 Hz), 5.00 (1H, s), 5.08 (1H, t, J = 7.3 Hz), 5.27-5.37 

(2H, m), 5.76 (1H, ddt, J = 18.1, 11.0, 7.6 Hz); 13C NMR (125 MHz  

CDCl3):  17.5, 18.2, 22.8, 23.5, 25.7, 38.6, 40.9, 45.7, 116.5, 121.8, 125.1, 

130.8, 135.7, 139.5; IR (neat): 2964 (m), 2916 (m), 2856 (m), 1639 (w), 

1450 (m), 1439 (m), 1377 (m), 995 (m), 972 (s), 911 (s) cm-1; HRMS (ESI+) 

for C14H25 [M+H]: calculated: 193.1956, found: 193.1948.   The crude 

material was purified on silica gel (100% pentane) to afford a colorless oil 

(23 mg, 80% yield). Rf = 0.89 in 5% EtOac/hexanes.   

 

(E)-6-allyl-2,6-dimethyldodeca-2,7-diene (32): 

Prepared using general procedure L.  1H NMR (500 

MHz, CDCl3):  0.89 (3H, t, J = 6.8 Hz), 0.94 (3H, s), 

1.20-1.38 (6H, m), 1.58 (3H, s), 1.67 (3H, s), 1.87 (2H, app dt, J = 16.3, 7.8 

Hz), 1.98-2.90 (4H, m), 2.22-2.31 (1H, m), 4.98 (1H, d, J = 5.4 Hz), 4.99 

(1H, s), 5.09 (1H, t, J = 7.3 Hz), 5.24-5.34 (2H, m), 5.75 (1H, ddt, J = 

16.1,10.7, 7.3); 13C NMR (125 MHz  CDCl3):  13.9, 17.5, 22.1, 22.9, 23.4, 
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25.7, 32.0, 32.5, 38.5, 41.0, 45.8, 116.5, 125.2, 127.6, 130.9, 135.7, 138.3; 

IR (neat): 2959 (s), 2924 (s), 2872 (m), 2856 (m), 1639 (s), 1457 (m), 1377 

(m), 995 (m), 974 (s) 911 (s) cm-1; HRMS (ESI+) for C17H31 [M+H]: 

calculated: 235.2426, found: 235.2430.   The crude material was purified on 

silica gel (100% pentane) to afford a colorless oil (28 mg, 79% yield). Rf = 

0.87in 5% EtOAc/hexanes. 

 

(E)-6-allyl-2,6,9-trimethyldeca-2,7-diene (34): Prepared 

using general procedure L.  1H NMR (500 MHz, CDCl3):  

0.93 (3H, s), 0.97 (6H, d, J = 6.6 Hz), 1.20-1.32 (2H, m), 

1.59 (3H, s), 1.68 (3H, s), 1.87 (2H, app dt, J = 16.4, 7.6 Hz), 2.03 (2H, m), 

2.22-2.31 (1H, m), 4.98 (1H, d, J = 8.3 Hz), 5.00 (1H, s), 5.08-5.12 (1H, m), 

5.24-5.26 (2H, m), 5.69-5.79 (1H, m); 13C NMR (125 MHz  CDCl3):  17.5, 

22.8, 23.0, 23.0, 23.4, 25.7, 31.4, 38.2, 41.0, 45.8, 116.4, 125.2, 130.9, 

134.9, 135.2, 135.7; IR (neat): 2960 (s), 2923 (m), 2867 (m), 1638 (w), 1509 

(m), 1377 (m), 1102 (w), 995 (m), 974 (s), 911 (s) cm-1; HRMS (ESI+) for 

C16H29 [M+H]: calculated: 221.2269, found: 221.2278.   The crude material 

was purified on silica gel (100% pentane) to afford a colorless oil (21 mg, 

63% yield). Rf = 0.9 in 5% EtOAc/hexanes. 
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 (E)-(3-allyl-3,7-

dimethylocta-1,6-dien-1-

yl)cyclohexane (36); (E)-(7-

methyl-3-methyleneocta-

1,6-dien-1-yl)cyclohexane (68); ((1E, 3Z)-3,7-dimethylocta-1,3,6-trien-1-

yl)cyclohexane (69): Prepared using general procedure L.  1H NMR (500 

MHz, CDCl3):  0.92 (36, 3H, s), 1.05-1.21 (36 + 68+ 69, m), 1.22-1.34 (36 

+ 68+ 69, m), 1.58 (36, 3H, s), 1.61 (68, 3H, s), 1.63-1.78 (36 + 68+ 69, m), 

1.79 (69, 3H, s), 1.83-1.96 (36 + 68+ 69, m), 1.97-2.09 (36, 2H, m), 2.12-

2.24 (2H 68+ 1H 69, m), 2.84 (69, 2H, br t, J = 7.4 Hz), 4.86 (68, 1H, s), 

4.90 (S-28, 1H, s), 4.97 (36, 1H, d, J = 6.3 Hz), 4.99 (36, 1H, s), 5.06-5.14 

(36, 1H, m), 5.14-5.18 (68, 1H, m), 5.19-5.23 (69, 1H, m), 5.24 (68, 1H, d, J 

= 5.9 Hz), 5.25 (36, 1H, s), 5.62 (69, 1H, dd, J = 15.1, 6.8 Hz), 5.64 (68, 1H, 

dd, J = 15.7, 6.9 Hz), 5.72-5.79 (36, 1H, m), 6.02 (68, 1H, d, J = 15.7 Hz), 

6.42 (36, 1H, d, J = 15.1 Hz); 13C NMR (125 MHz, CDCl3):  17.5, 17.7, 

20.6, 22.9, 23.4, 25.7, 26.0, 26.1, 26.1, 26.2, 26.2, 26.4, 27.0, 29.7, 32.3, 

33.2, 33.5, 33.5, 38.3, 41.0, 41.4, 45.9, 113.1, 116.4, 122.9, 124.4, 125.2, 

127.2, 129.3, 130.9, 131.7,131.9, 133.6, 135.7, 136.7; IR (neat): 3073 (w), 

2962 (m), 2921 (s), 2851 (s), 1679 (br), 1639 (w), 1448 (s), 1377 (m), 1259 

(w), 1103 (br), 995 (m), 971 (s), 910 (s) cm-1; HRMS (ESI+) for C19H33  [M 
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+H]: calculated: 261.2582, found: 261.2589.   The crude material was 

purified on silica gel eluted with (100% pentane) to afford a colorless oil (30 

mg, 77% yield for 36).  Rf = 0.94 in 5% EtOAc/hexanes.  

 

 (E)-(3-allyl-3,7-dimethylocta-1,6-

dien-1-yl)benzene (38, major) & 

((1E,3Z)-3,7-dimethylocta-1,3,6-

trien-1-yl)benzene (minor): Prepared 

using general procedure L 1H NMR (500 MHz, CDCl3): δ 1.09 (3H major, 

s), 1.36-1.46 (2H major, m), 1.58 (3H major, s), 1.67 (3H major, s), 1.69 (3H 

minor, s), 1.72 (3H minor, s), 1.89-1.99 (2H major, m), 1.94 (3H minor, s), 

2.15 (1H major, dd, J = 13.2, 5.4 Hz), 2.20 (1H major, dd, J = 13.2, 5.4 Hz), 

2.97 (2H minor, br t, J = 6.9 Hz), 5.02 (1H major, s), 5.06 (1H major, d, J = 

8.3 Hz), 5.07-5.12 (1H major, m), 5.13-5.18 (1H minor, m), 5.43 (1H minor, 

br t, J = 7.3 Hz), 5.75-5.83 (1H major, m), 6.16 (1H major, d, J = 16.2 Hz), 

6.28 (1H major, d, J = 16.6 Hz), 6.56 (1H minor, d, J = 16.1 Hz), 7.17-7.23 

(1 H major + 1 H minor, m), 7.28-7.33 (2 H major, m), 7.35-7.38 (2 H major 

+ 2 H minor, m), 7.44 (2H minor, d, J = 7.7 Hz); 13C NMR (125 MHz, 

CDCl3): δ 17.6, 17.8, 20.5, 23.0, 23.3, 25.7, 26.7, 30.3, 39.2, 41.0, 45.7, 

117.0, 122.5, 124.8, 125.9, 126.0, 126.4, 126.8, 127.0, 127.2, 128.3, 128.5, 
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128.6, 130.4, 131.2, 135.2, 138.0, 139.1, 145.5; IR (neat): 2966 (m), 1718 

(w), 1493 (s), 1377 (s), 1027 (s), 912 (s), 747 (s), 694 (s); HRMS (ESI+) for 

C19H26 [M +H]+ (major): calculated: 253.1944, found: 253.1956. The crude 

material was purified on silica gel (pentane) to afford a colorless oil (21 mg, 

55% yield for 38). Rf = 0.80 in pentane. 

 

3-allyl-3-butylcyclohex-1-ene (40): Prepared using general 

procedure L,  1H NMR (500 MHz, CDCl3): δ 0.89 (3H, t, J = 6.9 

Hz), 1.19-1.37 (6H, m), 1.41-1.46 (2H, m), 1.58-1.62 (2H, m), 1.93 (2H, 

dddd, J = 10.3, 6.4, 4.0, 2.5 Hz), 2.05 (2H, d, J = 7.8 Hz), 4.97-5.00 (1H, m), 

5.01-5.03 (1H, m); 5.42 (1H, d , J = 10.3 Hz), 5.64 (1H, dt, J = 9.8, 3.5 Hz), 

5.77 (1H, dddd, J = 17.6, 16.6, 10.3, 7.3 Hz); 13C NMR (125 MHz, CDCl3): 

14.1, 19.0, 22.7, 23.6, 25.1, 32.1, 32.3, 39.6, 44.3, 116.6, 126.1, 135.5, 

135.6; IR (neat): 2923 (s), 1638 (m), 1455 (s), 1377 (w), 994 (m), 911 (s), 

689 (w); HRMS (ESI+) for C13H22 [M+H]+: calculated: 179.1755, found: 

179.1693. The crude material was purified on silica gel (pentane) to afford a 

colorless oil (16 mg, 59% yield). Rf = 0.89 in pentane.  

 

3-allyl-3-butylcyclohept-1-ene (42): Prepared using general 

procedure L,  1H NMR (500 MHz, CDCl3): δ 0.90 (3H, t, J = 
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6.8 Hz), 1.18-1.39 (6H, m), 1.41-1.60 (4H, m) 1.62-1.77 (2H, m), 2.08-2.18 

(4H, m), 4.99-5.02 (2H, m), 5.40 (1H, d, J = 11.7 Hz), 5.63 (1H, dt, J = 11.8, 

5.9 Hz), 5.76-5.84 (1H, m); 13C NMR (125 MHz, CDCl3): δ 14.1, 23.6, 24.8, 

25.9, 28.2, 29.7, 35.7, 39.0, 42.5, 44.2, 116.7, 129.2, 135.7, 140.1; IR (neat): 

2923 (s), 1670 (m), 1457 (m), 1377 (w), 995 (w), 912 (m), 727 (w); HRMS 

(ESI+) for C14H24 [M+H]+: calculated: 193.1956, found: 193.1948. The 

crude material was purified on silica gel (pentane) to afford a colorless oil 

(21.9 mg, 78% yield). Rf = 0.88 in pentane.  

 

 (E)-(4-methyldeca-1,5-dien-4-yl)benzene (44): 

Prepared using general procedure L.  1H NMR (500 

MHz, CDCl3):  0.91 (3H, t, J = 7.0 Hz), 1.29-1.42 (7H, m), 2.07 (2H, dd, J  

= 7.0 Hz), 2.46-2.56 (2H, m), 4.94 (H, d, J = 9.5 Hz),  5.01 (H, d, J = 17.9 

Hz), 5.43 (1H, app dt, J = 13.4, 6.8 Hz), 5.56-5.66 (2H, m), 7.16-7.20 (1H, 

m), 7.28-7.35 (4H, m); 13C NMR (125 MHz, CDCl3):  13.9, 25.6, 31.8, 

32.5, 43.2, 46.2, 116.9, 125.7, 126.7, 128.0, 135.5, 148.0; IR (neat): 3075 

(w), 2959 (s), 2925 (s), 1639 (w), 1599 (w), 1494 (m), 1458 (m), 1444 (m), 

1374 (m), 975 (m), 912 (s), 762 (s), 698 (s) cm-1; HRMS (ESI+) for C17H25  

[M+H]: calculated: 229.1956, found: 229.1948.   The crude material was 



78 
 

purified on SiO2 eluted with (100% pentane) to afford a colorless oil (30 mg, 

86% yield). Rf = 0.8 in 5% EtOAc/hexanes. 

. 

 

General procedure M:  In the dry-box, (η3-allylPdCl)2 in solution of THF 

(25.5 µL, 0.00188 mmol) and dppbenzene in solution of THF (43 µL, 

0.00375 mmol) was added to an oven dried 2-dram vial equipped with a stir 

bar.  The resulting solution was allowed to stir at room temperature for 5 

min.  At this time, the vial was sequentially charged with 48 (24.3 mg, 0.15 

mmol), allylB(pin) (75.6 mg, 0.45 mmol), CsF (228 mg, 1.5 mmol), and 

THF (0.75 mL).  The vial was tightly capped with a rubber septum, removed 

from the dry-box, and placed under a positive pressure of N2. Degassed, D.I. 

water was then added (40 µL) via a micro syringe.  The rubber septum was 

rapidly exchanged with a polypropylene cap, sealed with electrical tape, and 

the reaction was allowed to stir at room temperature for 16 h.  The slurry 

was then diluted with water, the organic layer was separated and the aqueous 

layer was extracted three times with Et2O.  The organic portion was 

combined and dried with Na2SO4, filtered, and concentrated under reduced 
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pressure.  The crude material was purified by silica gel chromatography 

(100% pentane) to yield a mixture of 14:2:1:1 of 48, 49, 70, 71, respectively. 

The combined yield of 48 and 49 was calculated to be 70% yield (19.5 mg). 

70 and 71 can be removed by treating the mixture with maleic anhydride (30 

mg, 0.3 mmol) in THF at 60 oC for 3 h. 

 

(E)-(4-methylhepta-1,5-dien-4-yl)benzene (49, 

major) & (E)-(4-methylhepta-2,6-dien-2-

yl)benzene (50, minor): Prepared using general procedure M.  1H NMR 

(500 MHz, CDCl3):  1.05 (3H, d, J = 6.8 Hz, minor), 1.34 (3H, s, major), 

1.73 (3H, dd, J = 6.9, 2.0 Hz, major), 2.04 (3H, d, J = 1.5 Hz), 2.11-2.16 

(2H, m, minor), 2.44-2.57 (2H major + 1H minor, m), 2.57-2.69 (1H, m, 

minor), 4.94-5.07 (2H major + 2H minor, m), 5.44 (1H, dq, J = 15.7, 6.4 

Hz), 5.56-5.64 (2H, m, major+minor), 5.67 (1H, dq, J = 15.2, 1.5 Hz, 

major), 5.82 (1H, ddt, J = 17.1, 10.3, 7.3 Hz, minor), 7.16-7.40 (8H, m, 

major+minor); 13C NMR (125 MHz, CDCl3):  major: 16.0, 18.1, 20.5, 25.5, 

33.2, 41.8, 43.2, 46.1, 115.7, 117.0, 122.3, 125.7, 125.9, 126.5, 126.7, 128.0, 

128.1, 133.5, 134.3, 135.4, 137.2, 139.6, 144.0, 147.9; IR (neat): 3075 (w), 

3058 (w), 3026 (w), 2966 (m), 2916 (m), 2856 (w), 1639 (w), 1598 (w), 

1494 (m), 1445 (m), 1375 (m), 1028 (w), 995 (m), 971 (m) cm-1; HRMS 
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(ESI+) for C14H19 [M+H]: calculated: 187.1487, found: 187.1478.   The 

crude material was purified on silica gel (100% pentane) to afford a 

colorless oil (19.5 mg, 70% combined yield). Rf = 0.78 in 5% 

EtOAc/hexanes. 

 

Analysis of stereo chemistry: The enantiomer ratio of 49 was determined 

using chiral GLC (CD-BDM, Supelco, 80 oC for 70 minutes, 15 psi, sr = 

35:1). The absolute stereo chemistry was determined by analogy to 52. 

 

 
 
 
 
 
 
 
 
 

 Racemic     Reaction Product 
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(E)-1-methoxy-4-(4-methylhepta-

1,5-dien-4-yl)benzene (18, major) 

& (R,E)-1-methoxy-4-(4-

methylhepta-2,6-dien-2-yl)benzene (52, minor): Prepared using general 

procedure M.  1H NMR (500 MHz, CDCl3):  1.05 (3H, d, J= 6.8 Hz, 

minor), 1.33 (3H, s, major), 1.73 (3H, dd, J = 6.3, 2.0 Hz, major), 2.03 (3H, 

d, J = 1.5 Hz, minor), 2.42-2.55 (2H major + 2H minor, m), 2.58-2.67 (1H, 

m, minor), 3.81 (3H, s, major), 3.82 (3H, s, minor), 4.94-5.08 (2H major + 

2H minor, m), 5.44 (1H, dq, J = 15.6, 6.3 Hz, major), 5.52 (1H, d, J = 9.3 

Hz, minor), 5.56-5.68 (2H, m, major), 5.82 (1H, ddt, J = 17.1, 9.8, 6.8 Hz, 

minor), 6.83-6.88 (2H, m, minor), 6.86 (2H, d, J = 8.8 Hz, major), 7.25 (2H, 

d, J = 8.8 Hz), 7.34 (2H, d, J = 8.8 Hz, minor); 13C NMR (125 MHz, 

CDCl3):  major: 16.1, 18.1, 20.5, 25.6, 33.1, 41.9, 42.6, 46.2, 55.2, 55.3, 

113.3, 113.5, 115.6, 116.9, 122.0, 126.7, 127.6, 127.4, 129.4, 132.8, 135.5, 

137.3, 139.9, 140.0, 157.5; IR (neat): 3138 (w), 3001 (m), 2962 (m), 2834 

(w), 1638 (w), 1609 (m), 1580 (w), 1511 (s), 1463 (m), 1441 (m), 1374 (w), 

1293 (m), 1248 (s), 1182 (m), 1035 (m) cm-1; HRMS (ESI+) for C15H21O1 

[M+H]: calculated: 217.1592, found: 217.1591. The crude material was 

purified on silica gel (100% pentane) to afford a colorless oil (22.7 mg, 86% 

combined yield). Rf = 0.33 in 5% EtOAc/hexanes.   
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Analysis of stereo chemistry: The enantiomer ratio of 52 was determined 

using chiral GLC (CD-BDM, Supelco, 80 oC, ramp 0.5 oC/min to 115 oC, 

hold at 115 oC for 30 minutes, 20 psi, sr = 35:1).  

 

   
Racemic     Reaction product 

 

 
 
Proof of stereo chemistry: 

Mixture of 52 major and minor was treated with ozonolysis/reduction 

contitions, followed by alcohol protection with benzyl group to obtain 72 

and 73, which can be easily separated.  
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Absolute stereochemistry of 52 was determined by comparing the HPLC 

chromatogram of 72 with that of compound reported previously.37  

 

Chiral HPLC: AD-H, Chiralpak, 1.0 mL/min, 2% isopropanol/hex, 254 nm 

 

 

Absolute stereochemistry of the minor isomer was determined by comparing 

with authentic sample of dimethyl (R)-(+)-methylsuccinate (74) via 

intermediate 73.  

 
 

 

Chiral HPLD: AD-H, Chiralpak, 1.0 ml/min, 1% isopropanol/hex, 254 nm. 
                                                           
37 Zhang, P.; Le, H.; Kyne, R. E.; Morken J. P. J. Am. Chem. Soc. 2011, 133, 9716 
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Racemic 73 from racemic 74   73 from authentic 74  

 

73 derived from 52 
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(E)-1-(4-methylhepta-1,5-dien-4-yl)-4-

(trifluoromethyl)benzene (53): Prepared using 

general procedure M.  1H NMR (500 MHz, 

CDCl3):  1.36 (3H, s), 1.73 (3H, dd, J = 6.8, 2.0 Hz), 2.45-2.57 (1H, m), 

4.86-5.04 (2H, m), 5.46 (1H, dq, J = 15.6, 6.3 Hz), 5.56 (1H, ddt, J = 17.1, 

9.8, 6.3 Hz), 5.64 (1H, d, J = 15.6 Hz), 7.42 (2H, d, J= 8.3 Hz), 7.54 (2H, d, 

J = 8.3 Hz); 13C NMR (125 MHz, CDCl3):  18.1, 25.4, 43.4, 46.0, 117.6, 

123.2, 124.7, 124.8, 124.9, 127.1, 127.5 (p, 1JCF = 32.3 Hz), 134.6, 138.7, 

152.0; IR (neat): 2922 (w), 1640 (w), 1617 (w), 1451 (w), 1410 (w), 1326 

(s), 1165 (m), 1124 (s), 1071(m), 1016 (m) cm-1; HRMS (ESI+) for C15H18F3 

[M+H]: calculated: 255.13606, found: 255.13573.   The crude material was 

purified on silica gel (100% pentane) to afford a clolorless oil (27mg, 69% 

yield). Rf = 0.8 in 5% EtOAc/hexanes. 

 

Analysis of stereo chemistry: The enantiomer ratio of 53 was determined 

using chiral GLC (CD-BDM, Supelco, 80 oC, ramp 0.5 oC/min to 110 oC, 

hold at 110 oC for 10 minutes, 20 psi, sr = 35:1). Absolute stereochemistry 

was determined by analogy to 52. 
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Racemic     Reaction product 

 

 
 

 

 (R,E)-4,8-dimethyl-4-(prop-1-en-1-yl)nona-1,7-diene (51): 

Prepared using general procedure M. All spectral information 

match with the analogous racemic product 29. The crude 

material was purified on silica gel (pentane) to afford a colorless oil (14 mg, 

50% yield). Rf = 0.90 in pentane. 

 

Analysis of stereochemistry:  

Product 51 was treated with catalytic OsO4, and NMO followed by NaIO4 

diol cleavage to afford 75 for GLC analysis. The analogous racemic material 

was prepared from racemic product 29. The absolute stereochemistry was 

determined by analogy to 52. 
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Chiral GLC (CD-BDM, Supelco, 40 oC, ramp 0.15 oC to 90 oC, 90 oC for 30 minutes, 20 

psi, sr: 35:1) 

   

Racemic 75     75 from reaction product 

 

 

For HNMR and CNMR spectra, see Supporting Information: 
H. Le, A. Batten and J. P. Morken Org. Lett. 2014, 16, 2096. 
 
 


