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Abstract

We show that non-trivial aggregate fluctuations may originate with vanishingly-

small common shocks to either information or fundamentals. These “sentiment” fluc-

tuations can be driven by self-fulfilling variation in either first-order beliefs (as in

Benhabib, Wang, and Wen, 2015) or higher-order beliefs (as in Angeletos and La’O,

2013). We show how the signal structures required for such fluctuations can arise en-

dogenously in a simple monetary model where agents learn from prices. Away from the

limit, the same signal structures can deliver strong amplification of aggregate shocks.

We then analyze out-of-equilibrium best response functions in the underlying coordi-

nation game to study whether sentiment equilibria are stable outcomes of a convergent

process. We find that limiting sentiment equilibria are generally unattainable under

both higher-order belief and adaptive learning dynamics, whereas equilibria without

sentiment shocks show strong stability properties. Away from the limit case, however,

multiple noisy rational expectations equilibria may be stable.
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1 Introduction

Macroeconomists have long sought to model the ways in which changes in expectations

can affect aggregate outcomes without corresponding changes in underlying economic fun-

damentals. A recent and influential branch of literature focuses on models in which some

equilibria reflect responses to extrinsic “sentiment” shocks. As in a correlated equilibrium

(Aumann, 1987), imperfectly correlated signals can sustain equilibria in which outcomes de-

pend on random realizations that are not payoff relevant. This new way of thinking about

“animal spirits” circumvents well-known difficulties with traditional sunspot models, whose

existence typically relies on non-convexity in the payoff structure of private agents.1 These

non-convexities have proven problematic for the out-of-equilibrium convergence of agents’

actions under higher-order belief and adaptive learning dynamics.2

In this paper, we examine the sources of sentiment equilibria that arise when asymmet-

ric information arises from the observation of endogenous variables, and study the problem

of agents who must coordinate on these equilibria starting from outside equilibrium. To

demonstrate our basic insights, we build on the signal structure originally explored by Ben-

habib et al. (2015). Theoretically, our basic innovation is to incorporate aggregate shocks,

which can be either pure noise or exogenous fundamentals, within the endogenous signal

structure that they consider. This innovation is key in characterizing the individual best re-

sponse function in the underlying coordination game implied by dispersed information. With

endogenous signals, the usual definition of a rational expectations equilibrium is that of a

Nash equilibrium in which responding to the signal according to equilibrium prescriptions

is a best action if all others do the same. The existence of a dispersed information rational

expectations equilibrium does not, however, guarantee that agents will be able to coordinate

on it; perfectly valid rational expectations equilibria may generate divergent local learning

1See Azariadis (1981); Cass and Shell (1983); Benhabib and Farmer (1994) among others.
2See Guesnerie (2005) and Evans and Honkapohja (2001). A notable exception is Woodford (1990) who

shows the existence of adaptively learneable sunspots; for a comprehensive discussion see also Evans and

McGough (2011). Examples of stability under higher-order belief dynamics are found by Desgranges and

Negroni (2003).
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dynamics. The characterization of individual best response functions helps to establish con-

ditions for the emergence of sentiment equilibria, and ultimately to elucidate the stability

properties of the equilibria we find.

Our first result is to show that the sentiment equilibria uncovered by Benhabib et al.

(2015) emerge as noisy rational expectations equilibria in the limit of vanishing variance

of a common noise in the endogenous signal. When common noise is small enough, the

equilibrium with sentiment fluctuations is always accompanied by a equilibrium with no

such fluctuations.3 Thus, both the sentiment and sentiment-free equilibria of Benhabib

et al. (2015) can be seen as the limiting case of arbitrarily small noise in the endogenous

signal. In equilibrium, endogenous signals can (but need not) deliver a multiplier effect on

common noise that grows unboundedly as the noise goes to zero, up to the point where an

arbitrarily small amount of common error may serve to coordinate non-trivial fluctuations

in a rational expectations equilibrium.

In our second result, we show that sentiment equilibria can also be characterized as limit

outcomes when the common component of the signal is of a fundamental nature, rather

than noise. Sentiments arising from fundamental and noise shocks are formally equivalent.

This result sheds doubt about the nature of such equilibria, and emphasizes the fact that

sentiment equilibria need not rely on the (potentially implausible) existence of an exogenous

and pay-off irrelevant process; sentiments and sunspot shocks are conceptually quite distinct.

Whether originating in common noise or fundamentals, however, aggregate fluctuations in

these limiting cases will remain unexplained in the eyes of an econometrician, who can only

observe measurable characteristics of fundamentals, and thus will attribute such fluctuations

to non-fundamental causes.

Next we show that, with a modest modification, the endogenous signal structure can also

deliver sentiment equilibria that satisfy the first-order-belief irrelevance property of Angeletos

and La’O (2013). There exists an equilibrium where a vanishing common shock (be it noise

or fundamental) affects aggregate actions while leaving first-order beliefs unchanged, but

3Benhabib et al. (2015) call the fluctuation-free equilibrium the fundamental equilibrium. To avoid

confusion, we call the equilibrium without fluctuations induced by sentiments the sentiment-free equilibrium.
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also another equilibrium in which the small common shock has no effect on either beliefs or

actions. Provided the common component in the signal is noise and its variance is sufficiently

large, however, both first-order-belief irrelevance and the uniqueness of equilibrium obtain

as in Angeletos and La’O (2013).

Having demonstrated in a reduced-form context that sentiment-like fluctuations may

arise from both vanishing noise and vanishing fundamental shocks, we next show that the

endogenous signal structure underlying these results arises rather naturally as a price in the

context of a monetary economy with island-bound intermediate and final good producers.

The key element in generating the required signal structure is the existence of a common

endowment used in intermediate production, which is freely traded across otherwise isolated

islands in the economy. Island-specific intermediate firms combine the tradable endowment

with island-specific labor to generate an input into subsequent final good production. The

price of the resulting final good input commingles island-specific conditions and aggregate

beliefs in exactly the way that is required to generate the sentiment equilibria uncovered in

the reduced-form models. Once the structure of the endogenous signal is established, we

show that all of the reduced-form analysis described above can be reproduced in the context

of the simple model.

Finally, we examine the out-of-equilibrium properties of the rational expectations equilib-

ria we have found, both in and out of the limit. We consider two equilibrium selection tech-

niques, higher-order belief stability and adaptive learnability, that have gained prominence

in both microeconomics and other areas of macroeconomics. The first assumes that agents

behave like game-theorists who try to rationalize the response of others exploiting common

knowledge of the model and rationality; the latter assumes agents act like econometricians

who learn about the endogenous precision of the signal by regressing past observations as

the economy is repeated through time. We show that the limiting sentiment equilibria do

not survive either of these tests while the limiting sentiment-free equilibria do. Outside

of the limit of vanishing common noise, however, multiple equilibria can be locally unique

rationalizable outcomes, including an equilibrium with a large, albeit finite, multiplier on
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common noise.

Our learnability results contrast with the original stability analysis in Benhabib et al.

(2015). In their approach, agents treat the signal as exogenous, conjecturing a common

precision and then updating dynamically. In our characterization instead, agents’ learning

incorporates the endogenous relationship between the signal precision and the average action

and this endogeneity generates a coordination issue not contemplated by Benhabib et al.

(2015). The differences in our results suggest that apparently small differences in the micro

foundations of sentiment-like fluctuations can lead to very different conclusions about their

stability, and thus deserve close attention in this literature.

In addition to the sunspot and sentiment literature cited above, this paper belongs to a

long literature that studies coordination games with incomplete information. Angeletos and

Pavan (2007) characterize equilibria and the welfare consequences of exogenous signal struc-

tures. Amador and Weill (2010), Vives (2012), and Manzano and Vives (2011), among others,

consider imperfect information models in which the endogeneity of signals plays an impor-

tant role, including in generating multiple equilibria. Gaballo (2015) shows that information

transmitted by prices can originate learnable dispersed-information equilibria in the limit

of zero cross-sectional variance of fundamentals, where a non-learnable perfect-information

equilibrium also exists. Recent work by Bergemann and Morris (2013) characterizes the full-

set of incomplete information equilibria of similar coordination games, although it does not

study their out-of-equilibrium properties. Related work by Bergemann et al. (forthcoming)

studies the exogenous information structures that give to maximal aggregate volatility, and

the extrema they find are typically achieved by the endogenous signal structures considered

here. The studies of Hassan and Mertens (2011, 2014) have also shown that arbitrarily small

deviations from rational expectations can generate non-trivial aggregate consequences, in a

manner that resembles the multiplier effect that we demonstrate.
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2 Noisy Multiple Equilibria

This section introduces the simple abstract version of the model of sentiment-driven multi-

plicity, as presented in Benhabib et al. (2015). Our innovation is to incorporate a common

noise term within the endogenous signal structure that they consider. This innovation allows

us to derive a well-defined best response function in the resulting dispersed information game

and to characterize cases of both unique and multiple equilibria.

2.1 A Reduced-Form Model

A continuum of expected utility maximizing agents, indexed by i ∈ (0, 1), have utility

−(yi − εi)
2, where yi ∈ < denotes the action of agent type i and εi ∼ N (0, σ2

ε) is an

exogenous idiosyncratic fundamental, assumed to be iid across agents. Before choosing her

action, agent i receives a signal si of the fundamental. The optimal action of agent i is given

by

yi = E [εi| si]. (1)

Following the analogy to Benhabib et al. (2015), we refer to the aggregate action is given by

y =
∫
yidi as aggregate output.

Notice that we have specified equation (1) so as to eliminate all interdependency in agents’

payoffs. This has the advantage of focusing our analysis on interactions which occur because

of the endogenous nature of information. All of the basic insights that follow do not depend

on complementarity (positive or negative) in actions.

The signal that agent i receives is a linear combination of her own idiosyncratic state and

a potentially noisy indicator of the aggregate action in the economy:

si = λεi + (1− λ) (y + ζ). (2)

Here, λ ∈ (0, 1) denotes the signal weight on the private fundamental and ζ ∼ N
(
0, σ2

ζ

)
is

an error term that is common across agents. Benhabib et al. (2015) microfound their signal

structure as arising from a survey in which consumers must forecast their own demand for a

firm i’s goods. The signal structure here could be rationalized similarly, with the addition of
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a correlated error term among consumers’ forecasts. Later, we offer an alternative founda-

tion for this signal structure that requires neither the existence of firm-specific surveys nor

exogenously correlated errors in measurement. The choice to explicitly model this common

error term is, conceptually, our only departure from Benhabib et al. (2015).4

2.2 Endogenous Information and Optimal Weight

Given her signal, si, which depends on the aggregate action, agent i must infer her own

private state. The key feature of the resulting signal extraction problem is that the precision

of the signal depends on the nature of average actions across the population and, in particular,

on the average reaction to the same signal. This is a typical property of endogenous signals.

An equilibrium is therefore a situation in which the individual reaction to the signal is

consistent with its actual precision, i.e. is an optimal response to the average reaction of

others, which each individual takes as given.

We now turn to the task of characterizing the equilibria of the economy. Since we

assume that all stochastic elements are normal, the optimal forecasting strategy is linear.

As a consequence the individual action is linear in si and can be written as

yi = ai [λεi + (1− λ) (y + ζ)] , (3)

where ai is the coefficient measuring the strength of the reaction of agent i to the signal she

receives si. Since the signal is ex-ante identical for all agents, each uses a similar strategy,

and we can recover the average action by integrating across agents:

y = a (1− λ) (y + ζ) , (4)

with a ≡
∫
aidi denoting the average weight applied on the signal.5 Solving the expression

above for the average action yields

y =
a (1− λ)

1− a (1− λ)
ζ, (5)

4Adding additional idiosyncratic noise to the signal, si, does not qualitatively change any of our results.
5Keep in mind that ai and si do not covary as the former is a strategy fixed prior to the realization of

uncertainty.
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which is a non-linear function of the average weight placed on the signal by agents. Impor-

tantly, this function features a singularity at the point 1/(1 − λ). When a < 1/(1 − λ) the

average action is positively correlated with the common noise, whereas the opposite holds

when a > 1/(1− λ).

The variance of the aggregate action is then given by

σ2
y(a) =

(
a (1− λ)

1− a (1− λ)

)2

σ2. (6)

where σ2
y and σ2 ≡ σ2

ζ/σ
2
ε are the variance of the aggregate action and the variance of

the common noise respectively, both being normalized by the variance of the idiosyncratic

fundamental. For a given σ2, the volatility of the average action is increasing in the average

weight with a < 1/(1− λ) and conversely when a > 1/(1− λ).

Substituting the average action in (5) into the signal described in equation (2), we get

an expression for the agent’s signal exclusively in terms of the idiosyncratic and common

shocks, as governed by the average response a:

si = λεi +
1− λ

1− a (1− λ)
ζ. (7)

Notice that the closer the average weight is to the value 1/(1− λ) the lower is the precision

of the signal with regard to εi, and that the effect of deviations of a is symmetric. Since the

average weight a determines the precision of the signal, rational expectations requires that

agent’s own weighting of the signal is also function of a. We are now ready to compute such

an optimal response.

Taking the average weight as given, it is straightforward to work out an expression for the

optimal individual weight ai such that E[si(εi − aisi)] = 0, i.e. the covariance between the

signal and forecast error is zero in expectation. This condition implies that the information

is used optimally. The best individual weight is given by

ai(a) =
λ (1− a (1− λ))2

λ2 (1− a (1− λ))2 + σ2 (1− λ)2
, (8)

which is a function of the average weight.
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Given the linear-quadratic environment, we can interpret ai(a) in a game-theoretic fashion

as an individual best reply to the profile of others’ actions summarized by a sufficient statistic

a. To be precise, every ai is associated to one and only one contingent strategy that provides

for an action yi = aisi contingent on the realization of si, which identifies a set of states of

the world indistinguishable to the agent i.

2.3 Noisy Equilibria

Given that agents face an informational structure with the same stochastic properties, an

equilibrium has to be symmetric. This last requirement completes our notion of equilibrium

which is formally stated below.

Definition 1. A noisy rational expectations equilibrium (REE) is characterized by a value

â such that ai (â) = â for each i.

Our game-theoretic interpretation of the optimal coefficient makes clear the equivalence

between a rational expectations equilibrium and a Nash equilibrium: no one has any indi-

vidual incentive to deviate when everybody else conforms to the equilibrium prescriptions.

An equilibrium of the model is given as a fixed-point of the individual best weight map-

ping. In practice, there are as many equilibria as intersections between ai(a) with the

bisector. Figure 1 illustrates the equilibrium condition graphically. The fixed-point relation

delivers a cubic equation, which may have one or three real roots. To the aim of the paper,

it is useful to provide a taxonomy of the equilibria in terms of the local properties of the

individual best weight function.

Definition 2. An equilibrium â exhibits complementarity in information if the optimal

individual weight is marginally increasing in the average weight, i.e. a′i(â) > 0. Alternatively,

agents face substitutability in information if a′i(â) < 0.

An equilibrium featuring complementarity (substitutability) in information is such that

a marginal increase in the average weight would imply a higher (lower) individual average

weight. This property is key to the comprehension of the local dynamics behind the possi-
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Figure 1: When common noise is large enough, a single Nash equilibrium a− exists.

bility that agents can actually converge to the equilibrium from an out-of-equilibrium initial

condition.

We can now characterize the equilibria in our economy. Proposition 1 establishes that

when the endogenous signal weights idiosyncratic conditions strongly-enough, a unique noisy

equilibrium exists. Moreover, in the limit of small variance in the common noise term, this

equilibrium converges to a point with zero aggregate fluctuations.

Proposition 1. Suppose that λ ≥ 1/2. For any σ2, there exists a unique equilibrium char-

acterized by au. Moreover, limσ2→0 au = λ−1 and limσ2→0 σ
2
y(au) = 0.

Proof. Given in appendix.

Proposition 2 proves instead that, when the aggregate component has relatively high

weight in the signal, the model may exhibit a multiplicity. In particular, there are three

equilibria whenever λ < 1/2 and the variance of the aggregate error is small enough. For the

remainder of this section we maintain the assumption that λ < 1/2, whenever not specified

otherwise.

Proposition 2. Suppose that λ < 1/2. For any for any σ2, there exists a low equilibrium

a− ∈ (0, (1− λ)−1). Moreover, there exists a threshold σ̄2 such that, for any σ2 ∈ (0, σ̄2) a

medium equilibrium a◦ and a high equilibrium a+ exist in the range ((1− λ)−1 , λ−1).
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Figure 2: Uniqueness and multiplicity for different variances of common noise.

Proof. Given in appendix.

A few observations are warranted. First, the equilibrium a− is characterized by strategic

substitutability in information, while the equilibria a◦ and a+ are characterized by informa-

tion complementarity. To see this, compute the derivative of ai with respect to a:

a′i(a) = − 2λ (1− λ)3 (1− a (1− λ))σ2(
(1− λ)2 σ2 + λ2 (1− (1− λ)a)2

)2 . (9)

The denominator of this expression is always positive, which implies that that a′i(a) is positive

whenever a > 1/(1− λ), and negative otherwise.

While an analytical characterization of the three equilibria is possible, the expressions

themselves are rather complicated. The properties of these equilibria are of interest, however,

and proposition 3 establishes an important relationship between the aggregate variances

implied by different equilibria.
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Figure 3: Volatilities and equilibrium stability approaching the limit.

Proposition 3. For any given σ2 such that a multiplicity exists, it is always the case

σ2
y (a◦) ≥ σ2

y (a+) .

Proof. Given in appendix.

Panel (b) of figure 2 shows the emergence of multiplicity, as the ai(a) function becomes

tangent with the bisector. At this moment, the variances of output in the two equilibria a◦

and a+ coincide. Figure 3 shows how these aggregate variance evolve apart as the size of the

common error shrinks.

3 Sentiments in the Limit: Noise or Fundamentals?

This section characterizes the sentiment equilibria uncovered in Benhabib et al. (2015) as

limit noisy equilibria emerging with a zero-variance of the common noise in the signal. Never-

theless, we will demonstrate that an equivalent characterization is possible when the common

component in the signal has a fundamental nature, i.e. it is a correlated component of fun-

damentals with vanishing variance. These results suggests that a strict dichotomy between
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fundamental and non-fundamental fluctuations is potentially misleading, as equilibrium vari-

ation can effectively span a continuum between the two.

3.1 Sentiment Equilibria as Limit Noisy Equilibria

We want to study the different equilibria in the important limit that σ2 goes to zero. That

is, we want to consider the case in which the measurement error in the aggregate action (or

sentiment) goes to zero. The analysis of Benhabib et al. (2015), in contrast, occurs at the

limit point rather than approaching it. We show here that considering the limit of our model

sheds considerable light on the equilibria they study.

The panels of figure 2 show that, as σ2 becomes small, the low and medium equilibria

converge to a single equilibrium outcome with sizable aggregate volatility, while the high

equilibrium converges to a point with no aggregate fluctuations. The following proposition

establishes the result formally.

Proposition 4. Suppose λ < 1/2. In the limit σ2 → 0, the low and middle equilibria

converge to the same limit “sentiment” equilibrium which is characterized by a◦,− = (1−λ)−1

and exhibits sizable aggregate volatility

lim
σ2→0,

σ2
y(a◦,−) =

λ(1− 2λ)

(1− λ)2
, (10)

while the high equilibrium converges to the “sentiment-free” equilibrium which is characterized

by a+ = λ−1 and exhibits no aggregate fluctuations.

Proof. Given in appendix.

One implication of this analysis is that the addition of a small amount of aggregate noise

in the signal can introduce an additional equilibria. A previous literature has demonstrated

cases where adding idiosyncratic noise to signals can either eliminate (Morris and Shin,

1998) or generate additional equilibria (Gaballo, 2015). But this is the first time it has been

observed, to our knowledge, that adding aggregate noise can cause equilibria to proliferate.
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3.2 Sentiment Equilibria as Limit Fundamental Equilibria

It turns out that assuming that the aggregate term in the signal given by (2) is noise is

not essential to generating sentiment-like equilibria. To prove this, consider a version of

the model in which agents have utility function −(yi − εi − µ)2 where µ ∼ N
(
0, σ2

µ

)
now

represents a common exogenous fundamental. The individual optimal action

yfi = E [εi + µ| si], (11)

is, as before, conditional on the signal

sfi = λ(εi + µ) + (1− λ) yf , (12)

that, in this case, does not embed any noise. Nonetheless, correlated fundamentals generate

confusion between the idiosyncratic and common component of the signal. As before, the

signal embeds the average action yf which makes endogenous the precision of the signal to

the average weight. Following the analysis of the earlier section, the realization of the signal

can be rewritten as

sfi = λεi +
λ

1− a(1− λ)
µ. (13)

where a represents the average weight placed on the signal by other agents. The variance of

the average action yf is now given by

σ2
yf =

(
λa

1− a(1− λ)

)2

σ2, (14)

which is slightly different from (6). As before, agents take the average weight as given, when

setting their optimal individual weight afi such that E[si(εi + µ− afi s
f
i )] = 0, which implies

the best individual weight

afi (a) =
1

λ

(
(1− a(1− λ))2 + (1− a(1− λ))σ2

(1− a(1− λ))2 + σ2

)
. (15)

While the best response function in equation (15) is slightly different than that of equation

(8) for the exogenous noise case, we can prove that the characterization of the limit equilibria

is identical.

14



Proposition 5. Suppose λ < 1/2. In the limit σ2 → 0, there exist a limit “sentiment”

equilibrium for a = (1− λ)−1 which exhibits sizable aggregate volatility

lim
σ2→0,

σ2
yf ((1− λ)−1) =

λ(1− 2λ)

(1− λ)2
, (16)

and a limit “sentiment-free” equilibrium for a = λ−1 which exhibits no aggregate fluctuations.

Proof. Given in appendix.

In general, it is easy to show that propositions 1 through 4 follow identically, and their

proofs in parallel with only the obvious algebraic substitutions. Most importantly, the best

response function afi (a) converges in the limit to ai(a), the best-response function of the

model with common noise. In other words, the limiting equilibria exhibit the same degree

of complementarity in information irrespective of their characterization. As a consequence,

the stability properties of limit equilibria that we will study in section 6 will be identical

regardless of the “source” of the sentiment shock.

The observation that sentiment-like fluctuations might be driven by imperceptible changes

in fundamentals is new, and suggests that maintaining a strict dichotomy between “senti-

ment” fluctuations and “fundamental” fluctuations may be misleading. Since endogenous

signal structures can generate strong multiplier effects on small shocks, they deliver fluc-

tuations that can effectively span a continuum from purely fundamental-driven to purely

sentiment-driven. Of course, this possibility do not preclude the existence of fluctuations

that originate from truly payoff-irrelevant shocks, but the possibility of fundamental-based

sentiments may appeal to those who find such fluctuations implausible.

4 Second-order Sentiments

In this section we show how to exploit the structure explored above to build up sentiment

equilibria which integrate the features of Benhabib et al. (2015) and Angeletos and La’O

(2013). In particular, the original payoff structure can be modified so that we can obtain

equilibria where common noise perturbs the average action and second order beliefs, with-
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out affecting first-order beliefs. Still, the variance of the common shock, whether noise or

fundamental, governs the existence and potential multiplicity of limit equilibria.

4.1 Introducing Strategic Interactions

The distinctive feature of the Angeletos and La’O (2013) model of sentiments is that sen-

timent shocks cause aggregate fluctuations without any effect on first-order beliefs about

fundamentals in the economy; i.e. sentiment fluctuations are driven entirely by a comple-

mentarity in actions and agents’ expectations regarding the actions of other agents. For

their leading case, the authors use an exogenous information structure in which errors about

higher-order beliefs are assumed to be correlated via a non-trivial common shock to expec-

tations.

To introduce second-order sentiment fluctuations in our environment, we must also intro-

duce strategic interactions among agents. The structure that we adopt is motivated by the

random matching environment of Angeletos and La’O (2013), but is simplified to maintain

tractability. The economy consists of a continuum of islands indexed by i ∈ (0, 1), each pop-

ulated by two agent types. Type one agent on island i has utility function −(di− εi)2 where

di ∈ < denotes her individual action and εi ∼ N(0, σ2
ε) is an island-specific fundamental iid

across islands. Agent type one on island i chooses her action based on an information set

that contains only the private signal xi = εi + ηi, where ηi ∼ N(0, σ2
η). The action of type

one agents is therefore given by

di = E[εi|xi]. (17)

Agents of type two located on island i have utility function −(yi − εi − di)2. Optimality

requires her action take the form

yi = Ei [εi + di] . (18)

Thus, the type two agent seeks to track the island specific state and the actions of type

one agents. Type two agents directly observe the island-specific fundamental εi but not the

action of the agent type one in her own island. Nevertheless, agents of type two observe a

signal that, in analogy to the endogenous signal of section 2, mixes a noisy measure of the
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aggregate action with island-specific action of type one agents:

si = λdi + (1− λ)(y + ζ). (19)

Notice that this information structure no longer commingles idiosyncratic fundamentals with

an endogenous aggregate, but instead combines the idiosyncratic action of type one agents

on island i with the average action of type two agents. In this case uncertainty is driven only

by the inability of type two agents to disentangle the situation of the aggregate economy

from the departure of beliefs of type one agents from the true fundamental εi.

4.2 Characterization of Equilibria

Here we show that our endogenous information structure with an arbitrarily small common

noise can lead to equilibria with exactly the sort of fluctuations modeled by Angeletos and

La’O (2013) using exogenous information. Let γ = σ2
ε/(σ

2
ε + σ2

η) be the optimal inference

coefficient for type one agents. Then their action, denoted di, is just

di = γxi = γεi + γηi. (20)

Since type two agents directly observe εi, the signal si is informationally-equivalent to ob-

serving

s̃i ≡ si − λγεi = λγηi + (1− λ)(y + ζ). (21)

The linear strategy of a type two agent can then be characterized by the coefficient ai

according to

yi = (1 + γ)εi + aisi. (22)

Given symmetry and the zero cross sectional mean of εi, we have an expression for the

aggregate action analogous to equation (5)

y =
a(1− λ)

1− a(1− λ)
. (23)

and the signal becomes

s̃i = λγηi +
1− λ

1− a(1− λ)
ζ. (24)
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The type two agent seeks to forecast γηi, and the optimal forecast weight on the signal

s̃i is again given by

ai(a) =
λ (1− a (1− λ))2

λ2 (1− a (1− λ))2 + σ2 (1− λ)2
. (25)

Equation (25) thus represents the best-response function of an individual agent i, given the

average action a, and it can be analyzed in exactly the same way as before.

Definition 3. A higher-order noisy REE is a noisy rational expectations equilibrium where

common noise does not affect first-order beliefs on fundamentals.

The key difference is that now the first order beliefs of both agents type one and two

about the fundamental εi are orthogonal to the impact of ζ. The following proposition follows

directly from the equivalence established above.

Proposition 6. The set of higher-order noisy equilibria is characterized by the same â values

and exhibit the same qualitative properties of the noisy equilibria uncovered in section 2.

Proof. The result follows from a comparison of equations (8) and (25)

With endogenous information the equilibria with sentiment fluctuations need not be

unique. In particular, uniqueness is recovered with sufficiently large common noise, while

a sentiment-free equilibrium always exists when common noise approaches zero. When a

unique equilibrium obtains, it has the same features as the equilibria characterized in An-

geletos and La’O (2013). Nevertheless, our formalization gives an explicit interpretation to

the sentiment as a common error in the measurement of the average action. Moreover, we

have also shown the possibility that a sentiment equilibrium can coexist with a sentiment-

free equilibrium, as in Benhabib et al. (2015), with sentiments concerning only higher-order

beliefs as in Angeletos and La’O (2013).

In section 3.2, we extended the our framework to deliver sentiments based on fundamen-

tals as well as noise. The analysis also applies here, with one caveat: when the common

variation in the signal is both non-trivial and of fundamental nature, then first-order expec-

tations move in every equilibrium. Common noise instead, regardless of its variance, leaves

first-order expectations unchanged. In the limiting case, however, the noisy and fundamental
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equilibria once again converge and all have the first-order expectation neutrality property of

Angeletos and La’O (2013).

5 A Micro-Founded Model

In this section, we explore a monetary economy which can endogenously generate the signal

structure, actions, and outcomes of all of the reduced form models above. The signal emerges

naturally as the price of an input good employed by a final good producer who must forecast

the output price, and therefore the demand, he will face in equilibrium. For expositional

reasons, we begin with the example of fundamental-driven sentiments, and then proceed to

noise-driven sentiments affecting either first or second-order beliefs.

5.1 Preferences and technology

The economy consists of a continuum of islands indexed by i ∈ [0, 1]. Each island is inhabited

by a representative household with utility

Ui = logCi − φNi, (26)

where Yi and Ni are, respectively, the consumption and labor supply of the household located

on island i. The household chooses Yi and Ni to maximize its utility subject to the budget

constraint

PiCi = WiNi +QZ + Πi, (27)

where Pi is the nominal price level on island i, Wi is the cost of hiring a unit of labor on

the island, Πi is profit generated by firms operating on island i, and Q is the nominal price

of a homogeneous endowment that can be traded across islands. The initial quantity of the

tradable endowment is equal across islands and assumed fixed, Z = 1.

The productive sector on each island is composed of intermediate and final good pro-

ducers. Competitive intermediate producers on island i each buy a quantity Z(i) of the
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homogeneous endowment, and hire a quantity of labor Ni in order to maximize profits

RiKi −WiNi −QZ(i), (28)

where Ri is the selling price of the intermediate capital of type i, denoted Ki, which is

produced with island-specific labor and the homogeneous capital endowment good Z, and the

subscript (i) distinguishes quantities demanded from quantities supplied of that endowment.

The technological constraint of the intermediate producer is given by

Ki = Nλ
i

(
e−ζZ(i)

)1−λ
, (29)

with λ ∈ (0, 1) denotes the labor share of intermediate production and e−ζ is an exogenous

productivity factor that, for the moment, we assume is constant.

Final good producers demand island-specific capital as the (only) input in final good

production, according to the production function

Ci = Kα
i , (30)

where α ∈ (0, 1) measures the returns to scale of their production technology. Final good

producers are price takers in all markets, and must choose their demand for the intermediate

capital input conditional on the observed price of their good, but prior to realization of the

final good price that emerges in their market. Their objective is to maximize expected profits

E[Πi|Ri] = E[Pi|Ri]Ci −RiK(i), (31)

where E[·|·] is the conditional expectation operator. Market clearing in the economy requires∫ 1

0
Zdi =

∫ 1

0
Z(i)d(i) = 1. In equilibrium, final good firm profits, Πi = PiYi − RiKi, are

transferred lump-sum to the household located on island i.

Finally, we assume that in equilibrium the price level on each island is government by a

standard money-velocity relation

PiCi = MiVi, (32)
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where Vi = eµi denotes the exogenous velocity of money.6 We assume µi = µ + εi, where

µ ∼ N
(
0, σ2

µ

)
and ε ∼ N (0, σ2

ε), are, respectively, the aggregate and idiosyncratic component

of a money velocity shock affecting each island. Idiosyncratic shocks are iid across islands.

Initially, we assume that the total island-specific money supply Mi = 1 is fixed on each

island.

5.2 Timing and equilibrium

Each period is divided into three stages. The timing of actions is the following.

Stage 1. Idiosyncratic and aggregate velocity shocks are realized and observed by households

on each island.

Stage 2. Markets for the endowment, labor, and island specific capital open, final good producers

observe the local price of capital, and all three markets clear.

Stage 3. Final good production is implemented, consumption goods are sold to households, and

final good producers observe the price of their output.

The definition of equilibrium is formally given by the following.

Definition 4. For a given realization of {µi}10, a rational expectation equilibrium is a col-

lection of prices {{Pi, Ri,Wi}10, Q} and quantities {Ni, Ki, Ci, Zi}10 such that agents’ choices

are optimal given the prices they observe, and markets clear.

The first order conditions of the household’s problem are

1

PiCi
= Γi (33)

φ

Wi

= Γi (34)

6Explicit specifications of the demand for money yield equivalent results. Money in the utility function

exactly reproduces the equilibrium if it enters utility as an additive-separable term, 1
Vi

log (Mi/Pi). Log-

linearization of the economy with a cash-in-advance constraint also delivers identical conditions when the

opportunity cost of money-holding approaches zero from above.
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where Γi denotes the Lagrange multiplier on the household budget constraint. The optimal-

ity conditions of intermediate producers are standard, given the Cobb-Douglas production

function

Wi = λRi(Ni/Zi)
λ−1 (35)

Q = (1− λ)R1(Ni/Zi)
λ. (36)

Lastly, final good producers’ optimality requires

E[Pi|Ri]K
α−1
i −Ri = 0. (37)

Letting x ≡ log(X/X̄) for any level variable X, the full set of equilibrium conditions of

the economy can be written in terms of log-deviations of each variable from their steady-

state values X̄. Substituting out Γi, and imposing the money-velocity relation in the labor-

optimality condition (34), as well as market clearing in the money market, yields two log-

linear first-order conditions

µi = pi + ci (38)

wi = µi. (39)

The optimality conditions of intermediate producers, expressed in log terms, are

wi = ri + (λ− 1)ni + (1− λ)zi (40)

q = ri + λni − λzi. (41)

Optimality of final good producers implies

ri = (α− 1)ki + E[pi|ri]. (42)

Equations (38) - (42) combined with the distribution of µi, the rational expectation E[pi|ri],

and the market-clearing conditions

ki = λni + (1− λ)zi (43)

ci = αki (44)

0 =

∫ 1

0

zidi (45)

give the full set of necessary conditions defining equilibrium in the economy.
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5.3 Fundamental-driven Sentiments

We now seek a compact expression for the informational content of the signal ri. Substitute

the money-velocity relation in equation (38) into the final good producer’s optimality con-

dition (42) and integrate across i to derive an expression for the aggregate (average) price

of the intermediate input,

r = µ̄0 − c+ (α− 1)k, (46)

where µ̄0 ≡
∫ 1

0
E[µi|ri]di. Combining this with aggregate market clearing in final goods

y = αk yields

r = µ̄0 − k. (47)

It then follows from the aggregate version of equation (41) that the aggregate price

q = µ̄0. (48)

Finally, substituting the expression for q back into equation (41), using the labor demand

condition in equation (40) to eliminate ni − zi, and substituting out µi = wi, we can derive

an expression for the the endogenous signal ri:

ri = λµi + (1− λ)µ̄0. (49)

The endogenous signal ri thus combines the actual island-level fundamental (which is

potentially correlated across islands) and the average expectation of final goods firms regard-

ing their own islands’ fundamentals. Equally importantly, it combines these two object such

that they appear in the signal with the same sign. The commonality of the signs is crucial: it

implies that an agent’s overestimate of µi contributes to an increase in ri via its effect on µ̄0,

and thus to an increase in the estimate of µi by all agents in the economy; a symmetric logic

holds in reverse. This self-reinforcing nature of expectational errors is the essential feature

that drives the potential for large informational multipliers and, ultimately, sentiment driven

fluctuations in our economy.

To see that this micro-founded environment corresponds exactly to the reduced-form

signaling game in section 3.2, define the island level action yfi ≡ ki + ri. Rearrange the
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condition for final good optimality in equation (42), and substitute out pi = µi−ci = µi−αki
using equation (38), to find that

yfi = ki + ri

= E[pi|ri] + αki

= E[µi|ri]− αki + αki

= E[µi|ri], (50)

where the monetary shock µi = µ + εi contains an aggregate and idiosyncratic compo-

nent, exactly as in the reduced-form model. Finally, the aggregate action yf = k + r =∫ i
0
E[ui|ri]di = µ̄0, corresponds exactly to the aggregate action for the reduced-form model,

and the equivalence is established.

Figure 4 demonstrates the consequences of the information friction for the aggregate

volatility of consumption in the micro founded model, according to the “low” equilibrium

outcome. This is the equilibrium that corresponds to the limiting sentiment equilibrium. The

figure shows that the information friction induces substantial excess volatility in response

to aggregate shocks even well away from the limit of no volatility. The same information

mechanism which delivers “sentiments” as a special case more generally offers the potential

to be an important amplification mechanism for non-trivial aggregate shocks.

5.4 “Noise”-driven Sentiments

We now consider a model identical to that considered above where we fix the aggregate

money velocity shock µ = 0, and instead assume that the aggregate productivity parameter

of intermediate firms is random, unobserved by final good firms, and distributed according

to ζ ∼ N(0, σ2
ζ). We show that this model in fact nests the baseline reduced-form model

with which the paper begins.

The expression for q derived in equation (48) does not depend on intermediate firm

optimality, and so is not affected. The first order conditions of intermediate producers

24



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

σ (Rel. Vol. of Agg. Fundamental)

σ
d
is

p
c

/
σ

f
u
ll

c
(M

u
lt
ip
li
e
r
E
ff
e
c
t)

Figure 4: Informational multipliers in the micro-founded model. Figure depicts the variance

of aggregate consumption under dispersed information “low” equilibrium relative to the full-

information benchmark. As the volatility of the aggregate shock becomes large relative to

island-level shocks, the multiplier tends towards one.

become

wi = (λ− 1)ζ + ri + (λ− 1)ni + (1− λ)zi (51)

q = (λ− 1)ζ + ri + λni − λzi. (52)

Eliminating wi and q and combining as before, yields an expression for the endogenous signal

ri = λµi + (1− λ)(µ̄0 + ζ). (53)

The expression in equation (53) corresponds exactly to the exogenous noisy signal originally

introduced in equation (2). Combined with the definition of yfi from equation (50), this

establishes the isomorphism to the model of section 2.

A striking feature of this structure is that the aggregate productivity of intermediate

producers is playing exclusively the role of noise in the final good producer’s problem. The

(re)definition of the final good producer’s action, yi = ki + ri, in equation (50) clarifies
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how this can occur: since the intermediate price is observed by final good producers and

responds fully to changes in marginal costs, the allocative consequences of the productivity

shock are automatically and completely incorporated in the final good producer’s decision.

Despite this, the productivity shock changes the inference problem of the final good producer

regarding the current state of money velocity and, therefore, regarding the price it will

ultimately face in the market.

5.5 Second-order sentiments

We now consider an information structure in which final good firms observe the monetary

shocks hitting the economy but remain unsure about the beliefs, and therefore actions,

of other agents in the economy. The introduction of this strategic uncertainty leads to

uncertainty about the profit-maximizing quantity of production the final good firm should

undertake, even if they themselves observe the payoff relevant shocks in the economy.

To maintain the analogy with the reduced-form model in section 4, we introduce an

additional agent and an additional stage into the game.7 In particular, we assume that each

island is also inhabited by a nominal GDP-targeting central bank who chooses the money

supply conditional on a noisy signal regarding the velocity of money,

xi = µi + ηi (54)

where ηi ∼ N(0, σ2
η). In this section, we maintain the assumption of section 5.4 that µ = 0

and ζ ∼ N(0, σ2
ζ).

8

The additional stage of the game is thus,

7Higher-order sentiments could also be generated by introducing uncertainty on the household side of

the economy. Doing so, however, would require households to forecast the response of final good firms to

their own actions and visa-versa, leading to a infinite regress of higher-order expectations. Such cases are of

course interesting, but greatly reduce the analytical tractability of the simple example.
8Recall that, conditional on seeing the price ri, final good firms have no direct incentive to forecast the

productivity shock hitting the economy; its role is purely as aggregate noise in their problem. We could have

also assumed the velocity shock has non-zero cross-sectional mean to derive higher-order sentiment equilibria

with fundamental origins.
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Stage 0. The central bank on island i observes the signal xi and chooses local money supply

mi = −E[µi|xi] to stabilize the expectation of the log of nominal GDP.

With money supply now endogenously fixed based on the signal xi, stages 1-3 proceed as

before except that final good produces no longer need to forecast the monetary shocks hitting

the economy. The linear first-order conditions of the household sector are now

pi + ci = µi − E[µi|xi] (55)

wi = µi − E[µi|xi]. (56)

Following the same logic as before, the aggregate price is now given by

q = µ̄1 (57)

where µ̄1 ≡ −
∫ 1

0
E {E[µi|xi]|ri} di. Substituting out for q and wi in equations (51)-(52) and

combining yields an expression for the endogenous signal

ri = λ(µi − E[µi|xi]) + (1− λ)(µ̄1 + ζ). (58)

The expression for ri thus reflects the expectations of each central bank as well as the

average expectations of final good firms about their own central bank’s beliefs. That both

elements enter with the same sign again suggests the potential for sentiment fluctuations,

but establishing the formal equivalence to the case in section 4 still requires several steps.

Modifying slightly our earlier definition, let yi ≡ ki + ri − (1− γ)µi. Then

yfi = E[pi|ri] + αki − (1− γ)µi (59)

= −E {E[µi|xi]|ri}+ γµi (60)

= −γE[ηi|ri], (61)

where γ = σ2
ε/(σ

2
ε + σ2

η) is the optimal inference coefficient of the central bank. Notice that

equation (60) immediately implies that the average action is given by

yf ≡
∫ 1

0

yfi di = µ̄1. (62)
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Moreover, from the perspective of final goods firms, the signal ri is informationally equivalent

to observing

r̃i ≡ ri − λ(1− γ)µi = λε̃i + (1− λ)(yf + ζ), (63)

where ε̃i ≡ −γηi.

Agents now seek to forecast ε̃i and equation (61) shows that they respond to this forecast

with unit elasticity. Working from the signal r̃i, one quickly arrives at the same fixed point

equation the we have previously derived for all three versions of the reduced-form model.

The only difference between the micro-founded signal as derived here and the reduced-form

model of section 4 is the sign attributed to the average action in the redefined objective of

agents. This is not directly relevant to the existence of limit sentiment equilibria, however.

Instead, the key requirement, which is satisfied by the signal in equation (63), is that errors

in inference are reinforced, rather than offset, by the presence of the aggregate action in the

signal. Here signs on the average expectation and the weight on the term to be inferred,

ε̃i, are once again the same and thus deliver the same self-reinforcing dynamics needed to

generate sentiments.

6 Stability of Sentiments

This sections exploits the characterization of the individual best response function in the

game implied by dispersed information to examine the stability of sentiment equilibria under

two popular out-of-equilibrium beliefs dynamics: rationalizability and adaptive learning. We

will show that only the sentiment-free limit equilibrium exhibits strong stability properties

whereas sentiment-like equilibria are generally excluded by these tests.

6.1 Higher-Order Belief Dynamics

Any REE can be seen as a Nash equilibrium of a coordination game where holding an

expectation that a certain REE will emerge is the “rational” expectation if all other hold the

same belief. More generally an individual “rational” expectation is a function of the beliefs
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of others. In our case a “rational”expectation is characterized by a mapping ai(a) : < → <

which associates to any value of the average weight a an individual best weight ai(a). A

REE is an equilibrium weight â such that ai(â) = â for each i ∈ (0, 1). That â reflects the

precision of the endogenous signal at the equilibrium. But how can people achieve common

knowledge that others will conform to the equilibrium prescription so that â is actually the

correct weight?

This is an old question on the epistemic foundations of Nash equilibrium with an impor-

tant tradition in decision theory. A widely accepted concept is that of the rationalizable set

(Bernheim, 1984; Pearce, 1984), defined as the profile set surviving to iterated deletion of

never best replies. This criterion exploits implications from common knowledge of rationality

in the model.

Guesnerie (1992) introduces the rationalizability argument to macroeconomics in the

context of complete information competitive economies. Here we adapt Guesnerie’s original

setup in a dispersed information model focusing on the best-expectation coordination game

entailed by the maps {ai(a)}i∈(0,1). In contrast to the original Guesnerie setting, here agents

agree on the unconditional expectation of their idiosyncratic fundamental which is exoge-

nous to the average behavior. Nevertheless, they are uncertain about the precision of the

information they are looking at. So nothing in the model guarantees that agents use the

same conditional distribution to forecast their idiosyncratic fundamental. In the following we

will check whether the assumption of common knowledge is sufficient to restrict the agents’

strategic space to the REE prescriptions.

Initially we will take a local point of view. Suppose it is common knowledge that the

individual weights on the signal lie in a neighborhood z (â) of â, is this a sufficient condition

for convergence in higher-order beliefs to the â? The process of iterated deletion of never

best replies works as follows. Let τ index the iterative round of deletion. If ai,0 ∈ z (â) for

each i then a0 ∈ z (â). Nevertheless, the latter implies that a second order beliefs is justified

for which ai,1 = ai (a0) for each i, so that ai,1 ∈ ai (z (â)). As a consequence a1 ∈ ai (z (â)).

One can iterate the argument showing that ai,τ ∈ aτi (z (â)). Hence we have the following.
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Definition 5. A REE â is a locally unique rationalizable outcome if and only if there exists

a neighborhood z (â) of â such that limτ→∞ a
τ
i (z (â)) = â.

When a REE is a locally unique rationalizable outcome we can conclude that the equilib-

rium is stable to a sufficiently small higher-order beliefs perturbation (or is eductively stable

in Guesnerie’s language). In other words, the equilibrium is robust to beliefs that others

could locally deviate from it, as agents conclude that no rational conjecture can sustain such

a deviation.

A global qualification of the higher-order belief stability criterion obtains when the best

response function entails a contraction for each point of the domain of a, that is when

limτ→∞ a
τ
i (<) = â. When an equilibrium is the globally unique rationalizable outcome, then

this is the only profile of strategies that rational agents will play. In this sense the theory

provides a complete out-of-equilibrium belief dynamics converging to the unique equilibrium.

On the other hand, notice that uniqueness of a REE is not sufficient to guarantee stability

to even arbitrarily small perturbation of higher-order beliefs.

Belief convergence requires that ai(a) entails a contracting map. For a locally rational-

izable REE a necessary and sufficient condition is |a′i (â)| < 1. The proposition below states

the result.

Proposition 7. The low equilibrium is a locally unique rationalizable equilibrium provided

σ is large enough. Whenever the middle and the high equilibria exists the latter is always a

locally unique rationalizable equilibrium, whereas the former is never. In the limit of σ → 0

the middle and the low equilibria are never stable under higher-order beliefs dynamics.

Proof. Given in appendix.

One can easily show that a◦ is never a locally unique rationalizable outcome from qualita-

tive properties associated with the equilibria. First, ai(1− λ)−1 = 0 lies below the forty-five

degrees lines. Second, for a > (1−λ)−1 the the best weight function is always monotonically

increasing. These two observations taken jointly require a′i(a◦) > 1, and thus are sufficient

to claim that whenever the middle equilibrium a◦ exists, then it is not a locally unique

rationalizable outcome.
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A second easy result is that whenever a+ exists distinct from a◦, it is always a locally

unique rationalizable outcome since the first derivative at this equilibrium has to be bounded

in (0, 1) to meet the 45 degree line. In the knife-edge case that a◦ = a+ the fix point map

is tangent to the bisector, meaning a′i (a+) = 1, which does not satisfy the condition for

rationalizability.

To establish the convergence properties of a−, one needs to check that there is a threshold

σ such that for any σ ∈ (0, σ) this equilibrium is not locally rationalizable, whereas it is

otherwise. That this is the case is clear from figure 2; the detailed proof is postponed to the

appendix.

To give an intuition notice that in the case of the two limit equilibrium outcome we have

limσ→0 a− = limσ→0 a◦ = (1− λ)−1 for which the derivative obtains as limσ→0 a
′
i = ±∞. On

the other hand a′i (a−) increases in σ with 0 as upper bound so that there exists a σ such that

for any σ > σ the low a− is always rationalizable. Therefore there could be a multiplicity

(two) of rationalizable REE for intermediate values of σ ∈ (σ, σ̄). To understand if this is

the case we perform the following numerical analysis.

Figure 3 illustrates the size of output volatility generated by the three equilibria (when-

ever they exist) as a function of the inverse of σ. For σ high enough only the low equilibrium

exists. The output volatility generated at that equilibrium is monotonically decreasing in

σ. The low equilibrium is a locally unique rationalizable outcome provided σ is sufficiently

large. With sufficiently low σ, the middle and the high equilibrium exist too. The latter is

always a locally unique rationalizable outcome, whereas the former is never.

Notice that in the example illustrated in figure 3 there is no region in which multiple

locally unique rationalizable outcomes exist. Moreover, there exists a region in which the

low equilibrium is the only equilibrium, but it is not a locally unique rationalizable outcome.

Finally, only for sufficiently small σ can a globally unique rationalizable outcome arise,

originating in the “low” equilibrium.

In figure 5, we show through numerical investigation the relation that for sufficiently

low values of λ there is a region in which two equilibrium, the high and the low, emerge
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Figure 5: Stability properties for differing signal weights.

as locally unique rationalizable outcomes. Nevertheless this would not arise in the limit of

infinite precision where only the high equilibrium remains a locally unique rationalizable

equilibrium.

6.2 Adaptive Learning

To address the question of learnability of the rational expectation equilibria we have analyzed,

we now suppose that agents behave like econometricians, rather than game-theorists. That

is, agents individually set their weights consistently with data generated by possibly out-of-

equilibrium replications of the signal extraction problem, without internalizing the effect of

the ongoing process of learning in the economy. In practice, at time t they set a weight ai,t

which is estimated from the sample distribution of signals collected from past repetition of

the signal extraction problem. If agents are close to a locally adaptively stable equilibrium,

this implies that once estimates are close enough to the equilibrium values they will almost

surely converge to the equilibrium.

It has been shown that the asymptotic behavior of statistical learning algorithms can
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be studied by stochastic approximation techniques (for details refer to Marcet and Sargent,

1989a,b and Evans and Honkapohja, 2001). To see how this works in our context, consider

the case that agents learn about the optimal weight according to an optimal adaptive learning

scheme:

ai,t = ai,t−1 + γt S
−1
i,t−1 si,t

(
ηi,t − ai,t−1si,t

)
(64)

Si,t = Si,t−1 + γt+1

(
s2i,t − Si,t−1

)
, (65)

where γt is a decreasing gain with
∑
γt =∞ and

∑
γ2t = 0, and matrix Si,t is the estimated

variance of the signal rewritten with a convenient time index. The following formally define

adaptive stability.

Definition 6. A REE â is a locally learnable equilibrium if and only if there exists a neigh-

borhood z (â) of â such that, given an initial estimate ai,0 ∈ z (â), it is limt→∞ ai,t
a.s
= â.

Adaptive learning provides an out-of-equilibrium dynamics which can explain how agents

can (or fail to) converge to a REE. The collective use of statistical techniques, although it

does not account for the fully fledged effect of collective learning, can entail a situation in

which agents’ estimates about the precision of the signal are correct. Such a convergence

point is necessarily a REE.

The global qualification of the learnability criterion is obtained when convergence occurs

almost surely irrespective of any initial condition, that is limt→∞ ai,t
a.s
= â for any ai,0 ∈ <.

Notice that, in contrast to the rationalizability criterion, there could exist a unique globally

learnable equilibrium despite the existence of multiple rational expectation equilibria. This is

because the stochasticity of the learning process will always displace estimates temporarily

away from equilibrium values. Nevertheless, if there only exists one REE, then if it is

learnable it has to be globally learnable.

To check local learnability of the REE, suppose we are already close to the rest point

of the system. That is, consider the case
∫

limt→∞ ai,t di = â where â is one among the

equilibrium points {a−, a◦, a+} and so

lim
t→∞

Si,t = σ2
s (â) = λ2σ2

ε +
(1− λ)2

(1− â (1− λ))2
σ2
ζ . (66)
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According to stochastic approximation theory, we can write the associated ODE governing

the stability around the equilibria as

da

dt
=

∫
lim
t→∞

E
[
S−1i,t−1si,t (εi,t − ai,t−1si,t)

]
di =

= σ2
s (â)−1

∫
E [si,t (εi,t − ai,t−1si,t)] di =

= σ2
s (â)−1

(
λσ2

η − ai,t−1

(
λ2σ2

ε +
(1− λ)2

(1− at−1 (1− λ))2
σ2
ζ

))
=

= ai (a)− a.

For asymptotic local stability to hold, the eigenvalues of the Jacobian of ai (a) calculated

at the equilibrium have to lie inside the unit circle. The relevant condition for stability is

therefore a′i (a) < 1. The result is stated by the following proposition.

Proposition 8. Whenever the middle and high equilibria exist, the latter is locally learnable,

whereas the former it is not. The low equilibrium is always locally learnable, except in the

limit of σ → 0, and it is globally learnable provided σ is large enough.

Proof. Given in appendix.

In practice, we have proved that ai (a) corresponds, at least locally around the equilib-

rium, to the dynamic map called the “projected T-map” in the adaptive learning literature.

The T-map is a correspondence between the parameters used to calibrate the individual

forecasting rule and the ones that would be optimal given observed data. It is an useful

tool to recover information on the local out-of-equilibrium dynamics when expectations are

formed recursively as information is gathered through time.

Referring to figure 2, the slope of the curves at the intersection of the bisector features the

stable or unstable nature of the equilibrium. In particular, notice that the middle equilibrium

defines two distinct basins of attraction for the learnable equilibria. As σ decreases the basin

of attraction of the high equilibrium shrinks from below. This means that estimates are more

and more likely to converge to the high equilibrium, the sentiment-free one, as σ gets smaller.

At the limit σ → 0, the low equilibrium is no longer learnable from above, meaning that for

any estimate a larger than a−, no matter how close to a−, is fated to trigger convergence
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to the high equilibrium. This would suggest that although sufficiently negative shock to

the estimates can lead to a persistent deviation in the lower basin of attraction of the low

“sentiment” equilibrium, long run-convergence can only obtain at the high sentiment-free

equilibrium.

7 Conclusion

Endogenous structures of asymmetric information can deliver strong multipliers on common

disturbances and thus offer a potential foundation for a variety of sentiment-like phenom-

ena. The multiplicity of equilibria implied by such signal structures also implies that they

need not do so. Here we have demonstrated that a single analysis can address such fluc-

tuations whether they originate in common noise or common fundamentals, and regardless

of whether they impact first-order or higher-order expectations. Examination of out-of-

equilibrium properties suggest that the limiting cases of pure sentiment shocks are generally

not stable. However, away from the limit, the large informational multipliers of endogenous

signals may be more robust to expectational perturbations.
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Appendix: proofs

Proposition 1. To prove uniqueness, observe that the function ai(a) is continuous, bounded

above by λ−1, and monotonically decreasing in the range (−∞, (1− λ)−1). From λ ≥ 1/2,

we have (1− λ)−1 > λ−1. Thus ai(a) intersects the 45 degree line a single time.

To prove the limiting statements, consider any point aδ = 1−δ
1−λ such that δ > 0. Then,

we have

ai(aδ) =
λδ2

λ2δ2 + σ2(1− λ)2.
(67)

Since limσ2→0 ai(aδ) = 1
λ

for any δ, the unique equilibrium must converge to the same point.

That the variance of this equilibrium approaches zero follows from equation (5).

Proposition 2. To prove the existence of a−, notice that lima→−∞ ai = λ−1 and ai((1− λ)−1) =

0. By continuity, an equilibrium a− ∈ (0, (1− λ)−1) must always exist. Moreover a− must

be monotonically decreasing in σ2 as ai is monotonically decreasing in σ2.

We now assess the conditions under which additional equilibria may also exist. Because

lima→∞ ai = λ−1 , the existence of a second equilibria (crossing the 45 degree line in figure

1) implies the existence of a third. Thus, we need to to check whether or not the difference

ai(a)−a is positive anywhere in the range a > (1− λ)−1. Such a difference is positive if and

only if

Φ (σ) ≡ λ (1− a (1− λ))2 (1− λa)− a (1− λ)2 σ2 > 0 (68)

which requires a < λ−1 as a necessary condition. Therefore, if two other equilibria ex-

ist they must lie in ((1− λ)−1 , λ−1). Fixing a ∈ ((1− λ)−1 , λ−1), limσ→0 Φ (σ) is clearly

positive, implying that there always exists a threshold σ̄ such that two equilibria a+, a◦ ∈
((1− λ)−1 , λ−1) exist with a+ ≥ a◦ for σ2 ∈ (0, σ̄2).

Proposition 3. To prove the proposition is enough to look at the derivative

∂σ2
y (a)

∂a
=

2a (1− λ)2 σ2

(1− (1− λ)a)3
(69)

which is negative with a > (1− λ)−1. This implies that σ2
y (â) is decreasing in the distance

|â− (1− λ)−1|. In other words the closer the â to (1− λ)−1, the higher the σ2
y (â).

Proposition 4. Recall the monotonicity of ai(a) on the range (0, (1−λ)−1. Following the logic

of proposition 1, for any point aδ in that range, limσ2→0 ai(aδ) = λ−1, while ai((1−λ)−1) = 0.

Thus, the intersection defining a− must approach (1− λ)−1. Analogous argument for point

just to the right of (1 − λ)−1 establishes that a− converges to the same value. Finally, the
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bounded monotonic behavior of ai(a) establishes that for the high equilibrium limσ2→0 a+ =

λ−1.

The output variance of the high equilibrium in the limit σ → 0 is zero follows from

equation (6). The limiting variance of the other limit equilibrium equilibria can be established

by noticing that (8) implies

σ2

(1− a(1− λ))2
=
λ(1− aλ)

(1− λ)
(70)

that plugged in (6) gives 10 for a→ (1− λ)−1.

Proposition 5. We can prove that a sentiment-free equilibrium with no aggregate variance

exists for a = λ−1 by simple substitution in (15) and (16). The limiting variance of the other

limit equilibrium at the singularity a → (1 − λ)−1 can be established by noticing that (15)

implies

σ2

(1− a(1− λ))2
=

1− aλ
aλ

+
1− a(1− λ)

aλ

σ2

(1− a(1− λ))2
,

which gives

σ2

(1− a(1− λ))2
= −1− aλ

1− a
.

that plugged in (14) gives (16) for a→ (1− λ)−1. The derivative of the best reply function

is

afi (a)′ = −σ
2(λ− 1)

λ

(
1− (1− λ)2a2 + σ2

λ((1− a(1− λ))2 + σ2)2

)
, (71)

which in the limit σ → 0 is zero for any a ∈ (0, λ−1), but it goes to ±∞ for a→ (1−λ)−1± .

Proposition 7. The derivative of the ai(a) is given by (9) which is positive whenever a >

1/(1 − λ)−1. Given that ai((1 − λ)−1) = 0 then necessarily a′i(a◦) > 1 and a′i(a+) ∈ (0, 1).

Concerning the stability of a− notice that limσ→∞ a
′
i(a−) = 0 and

lim
σ2→0,a→(1−λ)−1

±

a′i(a) =
2λ (1− λ)3 (a (1− λ)− 1)−1 σ(

(1− λ)2 + σ2
yλ

2
)2 = ±∞

where we used (10), so by continuity the thesis is proved.

Proposition 8. The derivative a′i (a) at the three equilibria has been already studied. We

know that a′i (a+) ∈ (0, 1) , a′i (a−) < 0 and a′i (a◦) > 1. Nevertheless at the limit σ → 0

where a+ = a◦ coincide there is no neighborhood to qualify a+ a locally learnable REE.
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