
Persistent link: http://hdl.handle.net/2345/bc-ir:104596

This work is posted on eScholarship@BC,
Boston College University Libraries.

Boston College Working Papers in Economics, 2018

Originally posted on: http://ideas.repec.org/p/boc/bocoec/871.html

Designing fair tiebreak mechanisms for
sequential team contests

Authors: Nejat Anbarci, Ching-Jen Sun, M. Utku Ünver

http://hdl.handle.net/2345/bc-ir:104596
http://escholarship.bc.edu


Designing Fair Tiebreak Mechanisms for Sequential Team

Contests⇤

Nejat Anbarcı† Ching-Jen Sun‡ M. Utku Ünver§
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Abstract

Economists have long recognized that the e↵ect of the order of actions in sequential contests

on performance of the contestants is far from negligible. We model the tiebreak mechanisms,

known as penalty shootouts, which have sequential move order and are used in several team-

sports contests, as a dynamic mechanism-design problem with a fairness desideratum in mind.

In most sports, such as soccer and hockey, the order in which teams take the penalties is fixed,

known as ABAB. We first show that even with two balanced teams, this mechanism possesses

many symmetric Markov-perfect equilibria giving various asymmetric winning probabilities

to the first- and second-moving teams (but favoring the first mover under appropriate refine-

ments) – an observation which also obtained some empirical support for soccer. Following

that, we characterize all sequentially fair mechanisms in which two balanced teams have equal

chances to win the shootout whenever the score is tied after equal numbers of attempts. Using

additional desirable properties, we uniquely characterize practical mechanisms for easy and

di�cult shootouts, in which the success probability of a penalty kick is uniformly greater than

50% or less than 50%, as in soccer and hockey, respectively.
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1 Introduction

Economists have long recognized that the e↵ect of the order of actions in sequential contests on

performance of the contestants is far from negligible; examples in sequential individual and team

contests are abound, e.g., R&D races (Fudenberg et al., 1983 and Harris and Vickers, 1985, 1987),

job promotions (Rosen, 1986), political campaigns (Klumpp and Polborn, 2006), music competi-

tions (Ginsburgh and van Ours, 2003) as well as penalty shootouts in soccer matches (Apesteguia

and Palacios-Huerta, 2010) and tennis matches (Cohen-Zada, Krumer, and Shapir, 2018 and the

references therein). Clearly, an order of actions that provides a systematic first- or second-mover

advantage to one of the parties may decrease the probability of the ‘better’ contestant to win, caus-

ing e�ciency and fairness issues. These unfair advantages may arise since the order of actions in

contests may generate di↵erent strategic e↵ects.

Understanding these strategic e↵ects of move order on a well-defined sequential team contest,

which has been empirically studied many times, is invaluable for empirical economists and mecha-

nism designers alike. The history and experience of soccer and other sports’ tiebreak mechanisms,

known as penalty shootouts, present us a unique natural experiment to reckon and propose a plau-

sible model and mechanism design.

Recently, in real-world contests that consist of multiple battles, where the final success or failure

in a contest is determined by the outcome from multiple battles, the standard order of actions

between two parties, A and B, in the form of ABABABAB... (ABAB hereafter; also known as

fixed order as every party moves once in every round of the battle in a fixed order, A first, B

second) has been modified to become ABBAABBA... (ABBA hereafter, also known as alternating

order). For example, ABBA replaced ABAB in the U.S. presidential debates as well as in tiebreak

shootout procedures at the U-17 Women’s and Men’s World Soccer Championships. The three

2016 U.S. presidential election debates between Donald Trump and Hillary Clinton, also followed the

ABBA structure.1 The International Football Association Board (IFAB) - the body that determines

the rules of soccer - decided to implement the ABBA sequence in various trials before eventually

replacing the current ABAB sequence.2 In addition, the ABBA format for penalty shootouts is

adopted in all English Football League (EFL) competitions in 2017-18, while the rest of the world

still uses ABAB as of this writing.3 Similarly, FIDE, the governing body of chess, has recently

1In each debate, each segment started with a two-minute speech by one candidate followed by a two-minute

speech by the other. The first speaker in the first segment was determined according to a coin toss. But then in each

segment the order of the first two speeches was reversed. E.g., on the final TV debate the order of the two-minute

speeches went as follows: Clinton, Trump, Trump, Clinton, Clinton, Trump, and so on.
2See https://www.independent.co.uk/sport/football/international/uefa-penalty-shooutout-rules-system-new-

trial-a7715026.html retrieved on Feb 13, 2018.
3Penalty shootouts currently constitute the only way to determine the winning team when the score is tied in

major soccer elimination tournament matches after the regular 90-minute period and the 30-minute extra time, i.e.,

the overtime. It is customary to use tiebreak mechanisms in many other sports as well to determine the eventual

winner when the regular match ends with a tie, e.g., tennis, ice hockey, field hockey, water polo, handball, cricket, and

rugby. In a shootout, traditionally each team took five penalty kicks from the penalty mark in fixed order (ABAB),
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changed the rules and regulations for the FIDE World Chess Championship and switched from

ABAB to a generalized ABBA structure that reverses the sequence of players who play with white

pieces at the half-way, i.e., ABABAB-BABABA. Traditionally ABBA has been used in tennis for

serve order in tiebreak sets.

A particular observation shared by multiple empirical studies regarding soccer penalty shootouts

is that the degree of how much kicking order in the traditional ABAB sequence matters may di↵er

across di↵erent soccer competitions/traditions. For example, although kicking order does not mat-

ter for the German national cups, the Spanish national cup shootouts notoriously favor first-kicking

teams significantly. On the other hand, in English national cups, the first-kicking team has only

a slight advantage. These three countries represent di↵erent soccer styles and player characteris-

tics, and their datasets consist of hundreds of shootouts.4 Hence, in di↵erent tournament/country

environments the current shootout mechanism leads to di↵erent focal outcomes in terms of first-

and second-moving teams’ winning chances. In addition, some researchers provide evidence that

the first kicking team wins significantly more often overall with the current fixed-order shootout

mechanism, while some others dispute that evidence.5 No study, however, provides evidence that

the second kicking team wins more often overall.

Thus, the rationale behind experimenting with ABBA in soccer is the belief that ABBA will

eliminate or at least alleviate a first-mover advantage if it exists. Indeed, using simple calculations

assuming exogenous first-kick and second-kick success probabilities, Brams and Ismail (2018) and

Echenique (2017) show that ABBA is less biased than ABAB. For example, Echenique performs

calculations to argue that if the first-mover advantage ranges between 60% and 70% in the ABAB

system, it should move to the 52-55% range under the ABBA system.

In many multi-battle contests, players from rival teams, alliances or groups form pairwise

matches and compete head-to-head, e.g., as in the soccer penalty shootout contests. Each team,

alliance or group consists of independent players who share some common interests. Individual

players in these teams take decentralized actions to obtain victories in their own battles, while their

performance contributes to their team’s or group’s performance. In such dynamic team contests,

a team’s success or win benefits all its members, while likewise a team’s failure or loss hurts all

its members. In addition, each team member bears the cost of their own contributions and may

and the order of the kicks has always been decided by the referee’s initial coin toss. Before 2003, the team that wins

the coin toss gets to kick first in each round, including the sudden death rounds. Since 2003 the team that wins the

toss decides which team kicks first. Although the winner of the coin toss has the option to go second, this has rarely

been the case in actual shootouts. If the shootout score is tied after each team takes five penalty kicks, sudden-death

rounds are reached, which go on until the tie is broken such that the kicking order is preserved or “fixed” in these

extra rounds.
4See Table 5.1 in Palacios-Huerta (2014) and Table 1 in Kocher, Lenz, and Sutter (2012), which are summarized

in Figure A.1 in Appendix A.
5See Apesteguia and Palacios-Huerta (2010) and Palacios-Huerta (2014) for evidence on the first kicking team

winning significantly more often; Kocher, Lenz, and Sutter (2012), on the other hand, dispute this finding (see also

Figure A.1).
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also enjoy their individual success even if their team loses or su↵er their individual failure even

if their team wins. Overall, teams’ expected winning odds and the expected total e↵ort of the

individual players can depend on the sequencing arrangements and the temporal structure of the

contest. Thus, the probability of a player winning his battle can be determined by not only his and

his matched opponent’s abilities and strategies, but also depends on the state of the contest, such

as how much one team is leading or lagging behind its rival at any given point.

This paper models shootouts as a mechanism design problem in sequential team contests with

a fairness desideratum in mind. We can classify penalty shootouts as easy-task or di�cult-task

shootout/contest based on the goal scoring probability. A shootout is easy if the goal probability

is greater than 50% for any kick in any round and it is di�cult if the goal probability is less than

50%. A soccer shootout is an example of an easy task, while a hockey shootout is an example of a

di�cult task.6

Shootouts tend to be shorter and more structured than a regular match and can be modeled like

dynamic versions of contests. We introduce such a model in which the kickers not only care about

their team’s winning the shootout but also about the outcome and even the individual performance

they display during taking their penalty shot. Given that fairness, rather than revenue maximization

and even e�ciency, is the main desideratum of the design of tiebreaks, the first important question

we address is what fairness means in this environment, where a coin toss determines the first-kicking

team.

We tackle this question from two di↵erent angles: Whenever the score is tied after any round

in a penalty shootout, having two teams (1) that are totally balanced in terms of their players’

shootout abilities, a sequentially fair outcome should mean that each team is expected to win the

shootout with 50% probability, and (2) where one team has higher-ability kickers than those of

the other team, then the higher-ability team should have a higher probability of winning at state-

symmetric perfect Bayesian equilibria. These two parts lead to nothing but the age-old Aristotelian

Justice principle, which rests on a two-part criterion: equals should be treated equally and unequals

unequally (see Aristotle, 1999).7

We first show that kicking order matters to each team’s chance of winning the shootout in that

the current fixed-order mechanism, ABAB, (1) is not sequentially fair and (2) can lead to many

equilibria, with di↵erent winning probabilities for first- and second-moving teams. In Appendix

C, we show that it is possible to devise a forward-looking equilibrium refinement that gets rid of

the multiplicity of equilibria, in which the first-kicking team wins more often while any equilibrium

candidate with the second-mover advantage does not survive it.

6Scoring a penalty shot is “easy” in soccer with a success probability greater than 59% in each round - see, for ex-

ample see Apesteguia and Palacios-Huerta, 2010), while it is “di�cult” in hockey with a probability less than 35% (see,

for example, http://businessofhockey.wordpress.com/2015/01/04/a-deep-look-into-advanced-shootout-statistics/ re-

trieved on Feb 13, 2018).
7Observe that the use of a coin toss as a simple tiebreak mechanism, as FIFA did before 1970 (see Section 3),

would be sequentially fair and satisfy the first part of the Aristotelian justice criterion, but it would fail its second

part. Thus, this justice criterion rules this simple tiebreak mechanism out.
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We then ask whether it is possible to devise a shootout mechanism that is sequentially fair. In

our characterization of sequentially fair mechanisms in regular rounds, we find that there is only

one exogenous mechanism, namely the unbiased random-order mechanism – in which the kicking

order before any round is determined by an unbiased coin flip – that is sequentially fair. Non-

random-order exogenous mechanisms, which, like the current fixed-order mechanism, ABAB, or the

alternating order, ABBA sequence, have a predetermined kicking-order pattern by teams, are found

not to be sequentially fair. Thus, not only the ABAB sequence but the recently adopted ABBA

sequence is not sequentially fair, either.

Then the question becomes whether there are any other sequentially fair tiebreak mechanisms

beside the random-order mechanism. As a result, we identify a continuum of sequentially fair

mechanisms in which move order is endogenous. We show that sequential fairness fully coincides

with “uneven score symmetry.” That is, as long as the score is not tied at the end of a round, the

probability of which team moves first in the next round is the same for both teams whenever they

are in each other’s shoes. E.g., when Team A is ahead 3� 2 in the beginning of Round 4, and when

Team B is ahead in Round 4 with a score of 2� 3, in Round 4 Team A’s probability of moving first

in the first case is the same as Team B’s probability of moving first in the second case. Thus, there

is a continuum of sequentially fair mechanisms.

We also show that sequentially fair mechanisms satisfy the second part of the Aristotelian

Justice principle: among two teams with unequal kicking skills, the better team will have a higher

probability of winning the shootout at symmetric equilibria.

There are clearly many other factors that are known to a↵ect the outcome of the current shootout

mechanisms, maybe, unfairly. For example, performance under pressure is one that is investigated

in both sports sciences (see Jordet et al., 2006 and Jordet, 2009) and in economics (see Apesteguia

and Palacios-Huerta, 2010). Hence, the more we can equalize the stressful situations the teams

face, the better it will be according to this criterion. For example, alternating the order of teams,

like in the ABBA sequence, when score is tied is one way to facilitate this kind of fairness, or using

coin flips throughout. One other factor that needs to be considered is practicality, i.e., easy to be

implemented in the field. It turns out that if these concerns are answered appropriately, they would

not be at odds with sequential fairness. We come up with simple fundamental properties to obtain

a tight characterization among the continuum of the sequentially fair mechanisms in regular rounds

we found.8

In Section 8, where we adopt the approach of market design, we discuss the relative merits

of di↵erent sequentially fair mechanisms in terms of these additional criteria. We start with a

property that can be used to give the opportunity of kicking to as many players as possible. For

8With this paper, we certainly do not claim to have addressed every concern in design of penalty shootouts. After

reading our paper, some economists, especially those who are soccer fans, will no doubt come up with what we could

have missed in our modeling or what else could be done additionally. This is the first paper using rational economic

theory to address this design issue, and it addresses many empirical abnormalities surprisingly well through our

approach of one parameter deviation from a model of players with only outcome-oriented preferences.
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easy contests, we show that there is a class of sequentially fair mechanisms satisfying maximization

of the expected number of attempts, which we term the behind-first mechanisms, such that the team

that is behind in score after a round always kicks first in the next round, but if the score is tied

after any round, then any random or fixed exogenous or endogenous order is admissible at the next

round. In di�cult contests, the same property is satisfied by ahead-first mechanisms.

Note that sequentially fair mechanisms, including behind-first and ahead-first mechanisms, leave

unspecified how one should choose which team would kick first when the score is tied, which would

be a major issue especially during the sudden-death rounds of a shootout. One thing we show is

that the fixed-order scheme, ABAB would not be sequentially fair, and the order should somehow

alter in sudden-death rounds. Hence, we embed the ABBA structure to our behind-first and ahead-

first mechanisms in sudden-death rounds. Although there are many other ways to obtain sequential

fairness by altering order in sudden-death rounds, this mechanism provides a sudden-death equality

of opportunity to both teams in addition to its practicality. This also addresses almost all fairness

concerns of previous investigators regarding “performance di�culties under stress” criteria: One

team kicks at most one more or less time than the other team in stressful situations of kicking while

behind (and equal times when the sudden-death rounds are even).

This change of order also naturally translates to the regular rounds with a formally defined

simplicity property. Our simplicity property minimizes the patterns of how kicking order changes

across rounds while keeping the probability of either team kicking first ex-ante positive. We uniquely

characterize easy shootout mechanisms, such as the ones in soccer, satisfying sequential fairness and

maximization of the expected number of attempts together with the other two properties, namely,

simplicity and sudden-death equality of opportunity: The team that is behind in score after a

round always kicks first in the next round, but if the score is tied after any round, then the team

that kicked second at that round kicks first in the next round. We refer to this mechanism the

alternating-order behind-first mechanism. Symmetrically, in di�cult shootouts, such as in hockey,

its symmetric counterpart, alternating-order ahead first uniquely characterizes this class.

2 Other Relevant Literature

Apart from the papers mentioned in the Introduction, our paper is also related to the following

strands of research. In the first strand, Chiappori et al. (2002) studies soccer penalty kicks both

theoretically and empirically to test mixed strategies, while Palacios-Huerta (2003) does so with

a much more empirical focus. Both papers have considered regular penalty kicks during matches

rather than penalty kicks in shootouts.

The second strand focuses on topics of economic design of sports contests, such as the optimal

number of entrants/teams in a race/league, the optimal structure of prizes (revenue sharing) for a

tournament (league), and so on (see Szymanski, 2003 for a review of this particular literature).

Before we finish this section, we need to make three remarks.
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First, a precursor of our concept of sequential fairness can be found in Che and Hendershott

(2008), who use a static one-shot version of it, ex-post fairness.9

Second, the similarity to the economic contest literature and our paper is not superfluous.

Our model leads to a “di↵erence in e↵orts”-based contest-success function and we can derive this

endogenously from the specifics of our model (see Anbarcı et al., 2018). This is a rather non-standard

contest-success function than the ones used in the contest literature in economics. Moreover, ties

are allowed in our contest function within a round, while there is usually a winner or a loser in the

standard contest functions such as Tullock’s in every round of the contest.

Finally, in a general sense, our paper belongs to market design, a field seeking to provide

practical solutions mainly to resource-allocation problems where the market mechanism may not

be used either because monetary transfers are not allowed simply because such transfers would

draw legal and ethical objections (e.g., public school slots and human kidneys are not allowed to

be traded for money) or for other reasons such as unfairness or congestion. Fairness desideratum

in the design of penalty shootouts also places these specific tiebreak mechanisms in this category

of research. This field commonly studies problems that were viewed to be outside of the scope of

traditional economics paradigm and proposes practical solutions using traditional tools of economic

theory, such as problems of student admissions at schools (see Abdulkadirog̈lu and Sönmez, 2003)

or organ transplantation (see Roth, Sönmez, and Ünver, 2004).

3 Background on Soccer and Shootouts

Until 1970, elimination matches that were tied after extra time were either decided by a coin toss

or replayed in two days if it was a finals match. Finally, the events in the 1968 European football

championship led FIFA in 1970 to try penalty shootouts instead.10 Given that the current shootout

mechanism, ABAB, is no panacea, FIFA and England are now experimenting with alternating the

orders of kicking teams, i.e., using ABBA scheme.

3.1 Unpredictability of Penalty Kicks

The soccer players who take the penalty kicks in shootouts are typically among the most skilled

and elite professionals in the world, while the task they have to perform is a relatively easy but

risky one. It involves hitting a spot with the ball from 12 yards (approximately 11 meters) at a

su�ciently high speed to elude a high-caliber goalie who is scrambling to protect an 8-yard-wide

9In the National Football League (NFL), matches that end in a tie are determined by a sudden-death-like overtime.

The initial coin toss yields a significant advantage to the team that wins it and the outcome fails to be ex-post fair.

Che and Hendershott (2008, 2009) propose “auctioning o↵” or “dividing-and-choosing” the starting possession to

restore ex-post fairness.
10A semifinal match was decided by a coin flip. The final match also ended in a tie after over time. But because

of the growing public outrage of soccer fans and since there was no further match left in the tournament, authorities

decided to replay this match in two days.
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goal. Thus, each such kick involves an element of risk and can turn out to be costly for the kicker,

especially if the miss is unambiguously his fault. The following quote by Italy’s Roberto Baggio

provides strong implications about plausible assumptions regarding players’ preferences and the

various basic physical aspects of a penalty kick (see the next subsection):11

“As for the penalty, I don’t want to brag but I’ve only ever missed a couple of penalties

in my career. And they were because the goalkeeper saved them not because I shot wide.

That’s just so you understand that there is no easy explanation for what happened at

Pasadena. When I went up to the spot I was pretty lucid, as much as one can be in

that kind of situation. I knew [the Brazilian goalie] Ta↵arel always dived so I decided

to shoot for the middle, about halfway up, so he couldn’t get it with his feet. It was an

intelligent decision because Ta↵arel did go to his left, and he would never have got to

the shot I planned. Unfortunately, and I don’t know how, the ball went up three meters

and flew over the crossbar. . . . I failed that time. Period. And it a↵ected me for years.

It is the worst moment of my career. I still dream about it. If I could erase a moment

from my career, it would be that one.”

3.2 Kickers’ Preferences Over Outcomes and Physical Aspects of

Penalty Kicks

The outcomes of players’ kicks pertain to their teams as well as to themselves. From the team’s

perspective a goal is preferred to a non-goal, and clearly there is no di↵erence at all between a

saved kick and a kick that misses the goal. From Baggio’s quote, we also infer that, from a player’s

perspective, while scoring a goal is the best outcome and the goalie’s save has to some extent a

face-saving value, missing the goal can be the worst of all outcomes for a kicker. Thus, a kick can

be extremely costly for the kicker if his kick misses the goal, in which case the entire blame can be

assigned to him unambiguously. One cannot, however, posit whether a player’s individual utility

from his kick or his collective utility from his team’s winning the shootout should outweigh one

another. For example, a player can be somewhat happy and heartbroken at the same time (1) if he

scored his penalty kick while his team lost the shootout, or (2) if he missed his penalty kick outright

while his team won the shootout.

We also infer from Baggio’s quote that goalies typically feel the need to dive at the time the ball

is kicked.12 For that reason, for a significant portion of penalty kicks, the goalie and the ball end

11Baggio had a stellar career and his five goals in the tournament helped Italy to reach the final’s match of the

1994 World Cup against Brazil. With the shootout score at 3-2, as the last kicker in regular rounds Baggio had to

score to keep Italy’s chances alive. He aimed for the middle but the ball sailed over the crossbar. The quote is from

Baggio’s (2001) autobiography.
12This is because, at the optimal speed-accuracy combinations of world-class kickers, the kicked ball typically

takes around 0.3 seconds to reach the goal line (see, e.g., Harford, 2006, Chiappori et al., 2002, and Palacios-Huerta,

2003), which is less than the total of (1) roughly 0.2 seconds’ reaction time of the goalie to clearly recognize the kick
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up in opposite corners of the goal. Even when the goalie dives in the correct direction, he cannot

save a goal with 100% chance, since he must also be able to reach the ball.

4 Model

4.1 The Setup

Two soccer teams, which we refer to as Teams 1 (T1 for short) and 2 (T2 for short), are facing o↵

in a penalty shootout.13 Each team shall take n sequential rounds of penalty shots. Each round

consists of one team kicking first, and, after observing the outcome of that shot, the second team

taking the next shot. If one team scores more goals than the other at the end of n rounds, then

it wins the match. We refer to these n rounds as the regular rounds. Throughout the paper we

will assume that n = 2. This is su�cient to characterize sequential fairness and analyze the current

scheme, ABAB, as well as other proposed mechanisms, such as the alternating-order mechanism,

ABBA. Thus, with n = 2, the analysis is tractable and yet rich enough to capture the multi-round

feature of penalty shootouts.14

If the shootout score is tied at the end of n regular rounds, the format reverts to sudden death;

that is, each team takes an additional round of shots, and then, if one team scores while the other

one does not, the former team wins the match; otherwise a further round of sudden-death penalty

shots is taken. We refer to the sudden-death rounds as n+ 1, n+ 2, ....

Since potentially the match can continue forever, we assume that each team consists of an infinite

number of kickers and that each kicker takes at most one shot.15

A penalty kick consists of a probabilistic event with three outcomes: Either a goal is scored (G),

the shot goes wide out (O), or the shot is saved by the goalie (S). The latter two outcomes lead to

the same score for the team: a goal is not scored.

While each kicker is a strategic player, for tractability the goalie is modeled as a probabilistic

machine (also see Fn 8).16 The goalie waits in the middle of the goal line prior to the shot. He

direction of the ball first, plus (2) the time during his dive to reach the expected arrival spot of the ball before it

reaches the goal plane. Hence, a goalie cannot a↵ord to wait until he clearly observes the kick direction: to prevent

a goal with non-trivial probability, he must commit to pick a side to dive - or alternatively to stay in the middle. As

Baggio’s quote also indicates, a shot aimed at the middle may be missed outright or may hit the feet or the legs of

the diving goalie that cover part of the middle; thus, the shot can be saved even if the goalie dives.
13Instead of the conventional Team A vs Team B notation, we use T1 vs T2 because we reserve the letters A and

B to the interim states of the dynamic contest when one team is ahead or behind the other.
14We have n = 3 results in an online appendix at http://www2.bc.edu/utku-unver/research/fair-tiebreak-asu-

online-appendix.pdf, and no extra insight exists in this analysis. Similarly, we skip n > 3 as the analysis becomes

extremely cumbersome and lengthy without providing any further insight.
15In reality, each soccer player can take at most one shot, unless all players in his team have already kicked penalty

shots. As each team consists of 11 players, 11 shots need to be taken by each team before any player can kick a

second shot. As n = 5, this happens very rarely.
16Alternatively, one can opt for a simple game in which the goalie is also strategic, as concluded by both Palacios-
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jumps to one side or the other with probabilities 1
2 : 1

2 prior to the penalty shot, as he needs to

react early to have any realistic chance to save the kick (see our previous footnote, Fn 12). So with

probability 1
2 he reaches to the same side of the goal as the kick. Hence, we model the goal line as

a one-dimensional line segment [0, 1], where x = 0 refers to the center of the goal, and x = 1 refers

to the goal pole on the side of the kick (see Figure 1).

Each kicker, who is a single-round player in our game, has an action summarized as aiming at

coordinate x 2 [0, 1] of the goal line, which we refer to as the intended spot. When a kicker aims

at x, the exact spot the ball reaches on the goal line is determined by a continuous probability

density function �x in a closed support [✏x, ✏x] for some ✏x > x > ✏x. The spot the ball reaches, y,

is observable by all other players, but not the intended spot, x. Both x and y are observable by

the kicker himself. Moreover, given that the shot is aimed at x, there is a PG(x) probability that a

goal will be scored and a PO(x) probability that the shot will go out. Hence, the shot is saved by

the goalie with probability 1 � PG(x)� PO(x).17 We assume that PG, PO, and �x for all x 2 [0, 1]

are all common knowledge.

We assume that PG is a twice continuously di↵erentiable strictly concave function, which reaches

its maximum at some interior x 2 (0, 1).18

Although so far we developed our theory taking soccer as our primary application, the insights

we discover apply to other contests and sports. In particular, we can classify penalty shootouts

as easy-task or di�cult-task based on the goal scoring probability PG(x). A shootout is easy if

PG(x) >
1
2 for all x 2 [0, x]. A shootout is di�cult if PG(x) <

1
2 for all x 2 [0, x]. A soccer shootout

is an example of an easy task, while a hockey shootout is an example of a di�cult task.19 This

distinction will not matter in our results until we discuss practical market design in Section 8. We

assume that the shootout is either easy or di�cult, but not mixed, throughout the paper. Thus,

Huerta (2014) and Chiappori et al. (2002). In this simple 2x2 game, neutral-sided kickers kick and goalies dive.

Then it would be clear that each kicker would kick the ball right or left with 1/2 probability each and the goalie

would dive to each side with 1/2 probability. Thus, the equilibria of these games lead to our reduced-form goalie

behavior.
17Actually PG and PO are summary functions obtained from the following process: As mentioned before, the spot

the ball reaches, y, is observable by all other players, but not the intended spot, x. If y > 1, then the ball goes out.

So PO(x) =
R
✏x

y=1 �x(y)dy. On the other hand, the goalkeeper can save the ball that arrives at spot y with probability

S(y), which is a continuous function. Hence, PG(x) =
R 1
✏x
[1 � S(y)]�x(y)dy. Hence, we assume that the family of

densities {�x}x2[0,1] and save probability function S have all the properties that need the below restrictions to hold

for PG and PO.
18In fact PG is not concave around 0, and it is decreasing, as the ball can go both sides of the middle, x = 0, when

it is aimed at x = 0. Nevertheless, we assume the goal-maximizing point is farther to the right. Therefore, without

loss of generality, we use a strictly concave PG.
19As alluded to in the Introduction, scoring a penalty shot is “easy” in soccer with a success probability greater

than 59% in each round (for example, see Apesteguia and Palacios-Huerta, 2010), while it is “di�cult” in hockey

with a probability less than 35% (for example, see http://businessofhockey.wordpress.com/2015/01/04/a-deep-look-

into-advanced-shootout-statistics/ retrieved on Feb 13, 2018). As di↵erent from soccer, usually hockey goalies do

not dive one side of the goal as the goal is substantially smaller, hence, the goal probabilities are uniformly less than

50%.
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Figure 1: Depiction of the goal and kicking spot (see lower portion of the figure) and our modeling

of the goal, the goal probability function for an easy shootout, PG, and the probability function of

kicking out, PO, as functions of distance from the center of the goal, x, which we refer to as the

intended spot (see higher portion of the figure). Observe that the left side of the goal would have a

perfectly symmetric PG and PO curves around x = 0. Thus, modeling one side is su�cient for our

purposes.

our analysis will focus on these two cases throughout.

Function PO, on the other hand, is an increasing twice continuously di↵erentiable convex func-

tion. Increasing PO is straightforward to motivate: the closer to the middle the ball is aimed, the

lower is the chance that the ball will go out. Single-peakedness of PG is also easy to motivate:

Whenever the ball is aimed at low x values, it can be saved with a higher chance by the diving

goalie (see the previous footnote). For higher x values, although the goalie’s chances of saving the

ball decrease as he may no longer be able to reach it, the chances of the ball going out increase.

Hence, it is easy to motivate the spot x, which maximizes the goal probability. We will refer to

it as the goal-optimal spot. Concavity of PG and convexity of PO are primarily assumed for the

tractability of our analysis, and do not play any other major role for the interpretation of our results.

See Figure 1 for a depiction of our model for an easy shootout.

We assume that each kicker on both teams is identical in ability and has the same goal-scoring

and kicking-out probability unless otherwise noted (as we do in Subsection 7.1).
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4.2 Shootout Mechanisms and the Shootout Game

A shootout mechanism is a function, �, that assigns a probability �(hk�1, gT1 : gT2) to T1 kicking

first in Round k, given the sequence of first-kicking teams in the first k�1 rounds is hk�1 = (hk�1
r )k�1

r=1

where hk�1
r 2 {T1, T2} is the team that kicked first in Round r and gT1 : gT2 is the score (i.e., the

goals scored by T1 and T2, respectively) at the beginning of Round k. Thus, the probability of T2

kicking first in Round k is 1� �(hk�1; gT1 : gT2).

Each shootout mechanism � induces a hidden-action extensive-form game, which we will simply

refer to as the game, such that the exact spot that each kicker aims the ball on the goal line

is unobservable by others. Given the current state (hk�1; gT1 : gT2), for Rounds k = 1, 2, ...,

the order of first-kicking teams in the previous k � 1 rounds hk�1, and feasible scores gT1 : gT2,

the Nature determines with probability �(hk�1; gT1 : gT2) T1 kicking next first and probability

1��(hk�1; gT1 : gT2) T2 kicking next first. Then a kicker of the first-kicking team takes the penalty

shot, observing the state and the history of the outcomes of all the shots up to that point as goal,

out, or save. The kicker aims at his intended spot x 2 [0, 1] to maximize his expected individual

payo↵ (which we explain in the next paragraph). Then the Nature determines with probability

distribution PG(x), PO(x), 1 � PG(x) � PO(x) whether the penalty kick results in a goal, goes out,

or is saved, respectively. After the outcome of this shot is observed, the other team’s kicker takes

a penalty shot, observing the history of the outcomes of the shots up to that point. We continue

until the end of regular rounds, Round k = n, similarly. If the score is tied, then we continue with

the sudden-death rounds until the tie is broken at the end of a Sudden-death Round k > n.

Each kicker aims to maximize his expected individual payo↵ in the game. Each kicker’s payo↵

function consists of two additive components. The first is the utility received when his team wins or

loses the shootout: VW is the team win payo↵ and VL < VW is the team loss payo↵. This component

of the payo↵ is common to each kicker on the team. The second component of the individual payo↵

consists of an individual outcome based valuation: If the kicker scores a goal he gets payo↵ UG > 0,

if he kicks the ball out he receives payo↵ UO < 0, and if the goalie saves the kick he receives payo↵

US = 0. This is a normalization that guarantees that scoring a goal is the most desirable outcome,

and kicking the ball out is less desirable than kicking the ball inside the goal frame and yet the

goalie saves it. With this normalization, we can also drop a variable from our notation without

a↵ecting our analyses. Thus, the overall ex-post payo↵ of a kicker i of Team Tk is then

ui,Tk = Vt + Up (1)

where t 2 {W,L} refers to the overall team outcome, win or loss; and p 2 {G,O, S} refers to the

kicker’s penalty outcome, goal, out, or save.

An information set is H 2 Hi,Tk, which is the collection of information sets that kicker

i 2 {1, 2, ...} of Team Tk 2 {T1, T2} can move, consists of the exact spot the ball went to for each

of the previous kicks, the team of the kick, and whether the kick was scored as a goal, went out, or

was saved by the goalie. Thus, they are all observable by kicker i of Team Tk moving in information
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set H. What is not observable by him is the intended spots of previous kicks. Each information set

also has an associated round (without loss of generality indexed with the kicker, i.e. i’th round),

order of kicking in the round as 1st or 2nd, and a current score di↵erence between T1 and T2. We

refer to all of this observable information as the state of the information set. Note that from the

point of view of the kicker, who is a single-shot player in the game, all payo↵-relevant information

of an information set is given through its state.

A pure strategy Xi,Tk : Hi,Tk ! [0, 1] is a function from the collection of information sets that

team Tk’s kicker i can move to the intended spots that he can target while taking the penalty shot.

As alluded to before, this is a hidden-action sequential game, as each player observes only

where the ball goes and whether the kick was a goal, out, or a save in previous kicks, but not the

intended spot towards which the ball was kicked. Hence, as a kicker takes a penalty shot, he has

a belief over intended spots of previous kicks. Formally, a belief µ(H) is a function that maps

each information set H 2 Hi,Tk that Team Tk’s i’th kicker moves with positive probability to a

probability distribution over histories of actions taken that would lead to the same information set.

4.3 Markov Perfection and State-Symmetric Equilibria

Our solution concept is state-symmetric perfect Bayesian equilibrium (SPBE), in which strategies in

regular rounds depend only on the state of the game, i.e., on the round number, kicking order, and

score di↵erence; strategies in sudden-death rounds depend only on the current kicking order and

score di↵erence. The strategies in SPBE are memoryless in that they depend only on the current

state.

A perfect Bayesian equilibrium in the game of shootout mechanism � is an assess-

ment, i.e., a strategy profile and a belief profile pair
⇥
X = (Xi,Tk)i2{1,2,...},Tk2{T1,T2}, µ =

(µ(H))H2Hi,Tk,i2{1,2,...},Tk2{T1,T2}

⇤
such that for any {Tk, T `} = {T1, T2}, i 2 {1, 2, ...}, and

H 2 Hi,Tk,

• spot Xi,Tk(H) 2 [0, 1] maximizes the expected value over all possible ex-post payo↵s ui,Tk at

information set H, given (X�i,Tk), (Xj,T `) among all spots in [0, 1]; and

• belief µ(H) is consistently derived by Bayes’ rule from �, X, PG, PO, µ(H 0) for all H 0
6= H.

Observe that each kicker is a one-shot player and maximizes his individual expected payo↵ over

his ex-post payo↵s ui,Tk defined in Equation 1. The exact formulation of this expected payo↵ will

become clear later in our analysis.

In this game, once the equilibrium strategies are found, beliefs are straightforward to construct.

At any information set H, the kicking player believes with probability one that other kickers before

him used equilibrium strategies. This is because the payo↵s explicitly depend on the actual outcome

of each kick, which is observable as Goal (G) or No Goal (NG), not on the intended spots of kicks

(which are not observable). Further, beliefs will not play a role in finding the optimal strategies in

equilibria as the kicker decides on his best action by taking into consideration only future players’
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kicks, not those of the past ones. We will not explicitly calculate the beliefs from this point on,

except when we refine the possible multiple equilibria of the fixed-order mechanism, ABAB, in

Appendix C

Since we are making a fairness-centered analysis over di↵erent shootout mechanisms, we will

focus on a Markovian symmetric equilibrium concept (i.e., unless we refine the possible multiple

equilibria of the fixed-order mechanism):

A state-symmetric assessment (X,µ) is defined as

• In regular rounds: Xi,Tk(H) = Xi,T `(H 0) and µ(H) = µ(H 0) for teams Tk, T ` 2 {T1, T2}

where both information sets H 2 Hi,Tk and H 0
2 Hi,T ` pertain to the same Regular Round

i  n, and the same kicking order, 1st or 2nd, in the round while the score di↵erence between

T1 and T2 in H, s, and in H 0, s0, satisfy s = �s0 if T ` 6= Tk and s = s0 if T ` = Tk.

• In sudden-death rounds: Xi,Tk(H) = Xj,T `(H 0) and µ(H) = µ(H 0) for any Tk, T ` 2

{T1, T2} where information setsH 2 Hi,Tk andH 0
2 Hj,T ` involve (possibly di↵erent) Sudden-

Death Rounds i, j > n but they refer to the same kicking order, 1st or 2nd, while the score

di↵erence between T1 and T2 in H, s, and in H 0, s0, satisfy s = �s0 if Tk 6= T ` and s = s0 if

Tk = T `.

A state-symmetric assessment in sudden-death rounds, for instance, dictates that two players on

the same team or di↵erent teams will exactly aim at the same intended spot and have exactly the

same beliefs if they were in each other’s shoes. Note that before every sudden-death round the

score is identical if the game reaches it, while before each regular round after Round 1 it could be

di↵erent. Unlike the sudden-death rounds, the number of regular rounds is finite, and therefore the

round number as well as the kicking order and score would matter in regular rounds. Therefore,

even if two teams are tied in di↵erent regular rounds, the players who kick first need not use the

same strategy in those two rounds.

A state-symmetric equilibrium of a shootout mechanism � is defined as a state-symmetric

Perfect Bayesian equilibrium of the game induced by �. This solution concept is identical to

symmetric Markov-perfect equilibrium if one were to ignore the beliefs and focused only on strategies

assuming that each state of the game spans a subgame of the game. As noted above, beliefs play

no role other than equilibrium selection when there are multiple equilibria; this is without loss of

generality.

4.4 Sequential Fairness and the Aristotelean Justice Criterion

Using the concept of state-symmetric equilibrium, we now define the key design concept in our

analysis as follows: an assessment (X,µ) of the game induced by mechanism � is sequentially fair

if for all problems with balanced teams (i.e., for any underlying utility values VW , VL, UG, UO and

goal and out probability functions PG, PO), at any (hk�1; gT1 : gT2) with gT1 = gT2 (i.e., when they

are tied at the beginning of Round k for any k), each team has exactly a 50% chance of winning.
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We will seek shootout mechanisms whose all state-symmetric equilibria are sequentially fair. We

will refer to such mechanisms, for short, as sequentially fair mechanisms. Note that it is not

the shootout mechanism that is inherently fair, but its state-symmetric equilibria that need to be

fair.

We will analyze sequential fairness in sudden-death rounds first. It will be useful to formally

define this concept. A mechanism is sequentially fair in sudden-death rounds if, for all problems

with balanced teams, for any Sudden-death Round k > n, at any (hk�1; gT1 : gT2) with gT1 = gT2,

(i.e., when they are tied at the beginning of Round k), each team has exactly a 50% chance of

winning.

Our desiderata are determining whether the current mechanism’s equilibria are sequentially fair,

inspecting other plausible mechanisms, and characterizing the class of sequentially fair mechanisms.

Sequential fairness is the first part of the two-part Aristotelean justice criterion. We say that a

mechanism satisfies the Aristotelean justice criterion if it is sequentially fair and, when there

is team with higher-ability kickers than those of the other team, whenever scores are tied at the

beginning of a round, the better team wins with a weakly higher probability (and with a strictly

higher probability at least at one round) at all state-symmetric equilibria.20

5 Analysis: A Kicker’s Optimization Problem

We first analyze each kicker’s optimization problem for a given mechanism � and other agents’

strategies. The i’th kicker of Team Tk, denoted by ` ⌘ Tk, i’s best response determination problem

boils down to

max
x`2[0,1]

U`(x`;WG,`,WNG,`) ⌘

✓
PG(x`)WG,` + [1� PG(x`)]WNG,`

◆
+

✓
PG(x`)UG + PO(x`)UO

◆
(2)

where PG(x`)UG + PO(x`)UO is Kicker `’s expected individual kick payo↵, and PG(x`)WG,` +

[1� PG(x`)]WNG,` is Kicker `’s expected continuation team payo↵ given expected continuation

values WG,` conditional on he scores and WNG,` conditional on he does not score. These values,

WG,` and WNG,`, are functions of the shootout mechanism, the score di↵erence, round number (i

in this case), kicking order in that round, and the others’ strategy profile. We drop them from our

notation for simplicity.

Hence, the necessary first-order conditions for an interior maximum turn out to be

P 0

G(x
⇤

`)(WG,` �WNG,` + UG) + P 0

O(x
⇤

`)UO = 0. (3)

The second-order conditions lead to the first-order conditions being su�cient, since we have

P 00

G(x
⇤

`)(WG,` �WNG,` + UG) + P 00

O(x
⇤

`)UO < 0, (4)

20We introduce an instance of unbalanced teams in Subsection 7.1 such that we can rank the teams as better and

worse teams.
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which follows from the facts that P 00

G < 0, WG,` �WNG,` � 0, UG > 0, P 00

O � 0 and UO < 0. Hence,

if an interior maximum exists it is unique given WG,`�WNG,`. We will refer to WG,`�WNG,` as the

expected marginal contribution of the kicker to his team. We turn our attention to analyze

the properties of the optimum for a kicker.

Proposition 1 At any interior best response of Kicker `, x⇤

` < x is the kicker-optimal spot, and

the higher his expected marginal contribution, the higher is his goal-scoring probability.

Also note that if kicking out and the goal being saved were valued equally, i.e., UO = US = 0,

then x⇤

` = x, i.e., x⇤

` would be also goal-optimal. But since x⇤

` < x because UO < US = 0, a kicker

chooses to kick more conservatively. The relative magnitude P 0

G(x
⇤

`)/P
0

O(x
⇤

`) as well as magnitudes

of expected marginal contribution WG,` �WNG,`, UO, and UNG determine how much he shaves o↵

the goal-optimal spot to determine his kicker-optimal spot.

Observe that the choice of kicker-optimal spot is costly because of the probability of kicking the

shot out, and therefore, it can be interpreted as a choice of an e↵ort level. The goal-optimal spot

is also the goal-optimal e↵ort. The closer the spot gets (from the center) to the goal-optimal spot,

it can be interpreted as exerting higher e↵ort. From now on, when it is convenient, we will use this

analogy more freely and refer to the choice of targeted spot as exerting an e↵ort.

Next, we focus on fully solving WG,`�WNG,` for the current scheme, the fixed-order mechanism,

ABAB.

6 The Current Scheme: The Fixed-Order Mechanism,

ABAB

The current shootout scheme is the fixed-order mechanism, ABAB, in which the first kicker is

determined before Round 1 with an even lottery and then the procedure continues with the same

kicking order throughout. Formally, the fixed-order mechanism, ABAB, � is defined as follows:

�(;; 0 : 0) = 0.5 and �(hk�1; gT1 : gT2) =

(
1 if hk�1

1 = T1

0 if hk�1
1 = T2

for all Rounds k � 2, orders of first-kicking teams in the previous k � 1 rounds hk�1, and feasible

scores gT1 : gT2 at the beginning of Round k.

We will now characterize the state-symmetric equilibria of the fixed-order mechanism, ABAB,

in the sudden-death rounds.

Without loss of generality assume that T1 wins the coin toss before Round 1 and kicks first

throughout.

At state-symmetric equilibria, if they exist, each T1 kicker will use exactly the same action when

he kicks in the sudden-death rounds, as T1 always goes first and the score is tied at the beginning

of each sudden-death round.
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Similarly, by symmetry, each T2 kicker will use exactly the same action when his team is behind

(which can be by one goal at most); and he will use exactly the same action when the score is even

(which can happen if the preceding T1 kicker kicks out or his kick is saved).

On the other hand, T1 and T2 kickers may potentially use di↵erent actions at state-symmetric

equilibria, as they kick in di↵erent orders: in each round T1 goes first and T2 goes second.

Hence, if a state-symmetric equilibrium exists, for a given k = 1, 2, the probability of Team Tk

winning is the same at the beginning of each sudden-death round.

At a state-symmetric equilibrium, let us define VT1 to be the value function of T1, that is the

expected utility it contributes by winning or losing to its all kickers, in the first sudden-death round.

Denote by x the kicking strategy for T1’s kickers. Define V B
T2 to be the value function of T2 in the

first sudden-death round when T2 is currently behind by one goal, V E
T2 and to be the value function

of T2 in the first sudden-death round when the score is currently even. T2’s kickers’ optimal kicking

strategy in each scenario is yB and yE respectively.

We can write the following Bellman equation for VT1:

VT1 = PG(x)WG,T1 + [1� PG(x)]WNG,T1 (5)

where WG,T1 is the expected future value conditional on the kicker scoring and WNG,T1 is the

expected future value conditional on the kicker not scoring. We have

WG,T1 =PG(yB)VT1 + [1� PG(yB)]VW (6)

WNG,T1 =PG(yE)VL + [1� PG(yE)]VT1 (7)

For T2, we have

V B
T2 = PG(yB) VT2|{z}

=WB

G,T2

+ [1� PG(yB)] VL|{z}
=WB

NG,T2

(8)

V E
T2 = PG(yE) VW|{z}

=WE

G,T2

+ [1� PG(yE)] VT2|{z}
=WE

NG,T2

(9)

where

VT2 =VW + VL � VT1 (10)

is the continuation payo↵ attributed to T2 in our win-or-lose game.

Next, we solve the decision problem faced by each kicker given other players’ actions and beliefs

using the first-order necessary and su�cient conditions given in Equation 3. Recall that for a Kicker

`

P 0

G(x`)(WG,` �WNG,` + UG) + P 0

O(x`)UO = 0 (11)

where x` is the optimal spot for Kicker `.

We can then solve (x, yB, yE) by plugging Equations 5 – 10 into Equation 11. To do that we

need to resolve the continuation values VT1 and VT2 for each team.
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From Equation 5,

VT1 =
PG(x)[1� PG(yB)]VW + [1� PG(x)]PG(yE)VL

PG(x)[1� PG(yB)] + [1� PG(x)]PG(yE)
= ↵VW + (1� ↵)VL (12)

where the winning probability of T1, ↵, is given by

↵ =
PG(x) [1� PG(yB)]

PG(x) [1� PG(yB)] + [1� PG(x)]PG(yE)
. (13)

A value for ↵ > 0.5 at a state-symmetric equilibrium will signal that the fixed-order mechanism,

ABAB, is biased in favor of the first-kicking team in the sudden-death rounds (and ↵ < 0.5 is vice

versa for the second-kicking team). On the other hand, the fixed-order mechanism is a sequentially

fair mechanism if and only if ↵ = 0.5 at every state-symmetric equilibrium. For T2, then, we get

by Equation 10,

VT2 = (1� ↵)VW + ↵VL. (14)

Hence, Equations 5 – 10 through Equation 11 become self-contained to solve for x, yB and yE. The

following theorem characterizes the state-symmetric equilibrium strategy candidates solving these

equations:21

Theorem 1 (The fixed-order mechanism, sudden-death rounds) (i) In sudden-death

rounds, a state-symmetric equilibrium of the fixed-order mechanism, ABAB, exists if and only if

P 0

G(0)[
VW�VL

2 + UG] + P 0

O(0)UO � 0.

(ii)When it exists, there may be multiple state-symmetric equilibria with strategy profiles

(x, yB, yE), all of which are to the left of the goal-optimal spot, satisfying

• x = yE, i.e., the T1 kicker and T2 kicker, when the score is even, kick at the same spot; and

• for every equilibrium with (yE, yB), there exists another equilibrium with (ŷE, ŷB) such that

ŷE = yB and ŷB = yE.

It will be useful to quantify “may be” in the above theorem. The below proposition answers

this question:

Proposition 2 Suppose that in the sudden-death rounds of the fixed-order mechanism, ABAB, a

state-symmetric equilibrium exists. Then, multiple state-symmetric equilibria exist if and only if

there are multiple solutions � to the equation

� =
1� PG (y(1� �))

2� PG (y(�))� PG (y(1� �))
, (15)

21To reiterate, in our analysis, we do not have to model the beliefs of agents explicitly. We use the summary

functions PG and PO, and the agents have to best respond to what the other players are doing at equilibrium. As

mentioned before, the beliefs will be crucial in using the equilibrium selection criterion, though, later in Appendix

C.
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where y(�) = f�1
�

�UO

(VW�VL)�+UG

�
for f(x) = P 0

G(x)/P
0

O(x) for all x 2 [0, 1].

Moreover, there is an odd number of solutions with � = 1
2 always being a solution and others

being located symmetrically around it. We also have yB = y(�) and x = yE = y(1 � �) for any

solution �.22

Thus, generically, the fixed-order mechanism, ABAB, is not sequentially fair as the winning

probability of T1 ↵ 6= 1
2 in equilibrium, whenever yB 6= yE.

Example 1 (Sequentially unfair equilibria) Suppose the game has the following structure:

VW � VL = 7; UG =
556.08

879
; UO = �15s

PG(x) = 0.82� 1.2(0.5� x)2; PO(x) =
270.232704

879s
x

It can be readily verified that for every s � 1, (x, yE, yB) = (0.04, 0.04, 0.03) (and hence (x, yE, yB) =

(0.03, 0.03, 0.04)) constitutes an equilibrium.

Theorem 2 The fixed-order mechanism, ABAB, is not sequentially fair in general.

Its proof is immediately implied by Theorem 1. We will provide some intuition for this result

when we discuss sequentially fair mechanisms in the sudden-death rounds in Section 7.2. As alluded

to in a footnote in the Introduction briefly, we also show in Appendix C that it is possible to devise

a forward-looking equilibrium refinement – similar in vein to the Intuitive Criterion of Cho and

Kreps (1987) – to get rid of the multiplicity of equilibria, so that the first-kicking team wins more

often. Any potential equilibrium candidate with the second-mover advantage does not survive this

refinement.

7 Mechanism Design: Sequentially Fair Mechanisms

In the previous section, we have concluded that the currently used fixed-order mechanism, ABAB,

is not sequentially fair. It turns out that even if we introduced a sequentially fair extension to it

in sudden-death rounds, such as an unbiased coin flip to determine the winner, it would still be

sequentially unfair.

In fact, a large class of intuitive mechanisms turns out to be sequentially unfair. A fitting

example of such mechanisms is the alternating-order mechanism, ABBA, in which the kicking order

reverses in every round. It turns out that even this mechanism is sequentially unfair. In addition, a

large class of mechanisms, which we refer to as exogenous mechanisms, turns out to be sequentially

unfair. A mechanism � is exogenous if, for all rounds k, and kicking orders hk�1 regarding the

22We thank Randy Silvers for his help in generating examples.
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beginning of round k, �(hk�1 : gT1 : gT2) = ⇢(k) for some function ⇢, i.e., who goes first in each

round is determined independent of the current score but as a function of the current round. Hence,

both fixed order, ABAB, and alternating order, ABBA, are exogenous, and even the version of the

alternating-order mechanism in which the 5th round’s kicking order is randomly determined is

exogenous.

Another interesting exogenous mechanism is the random-ordermechanism �, which determines

who goes first in every round using an unbiased lottery at the beginning of that round, that is

�(hk�1; gT1, gT2) =
1
2 for all k. Despite its impracticality, one may expect this exogenous mechanism

to be sequentially fair. Indeed, this turns out to be the case.23 However, the class of sequentially fair

mechanisms is far richer than the random-order mechanism. There are some practical mechanisms

in this class.

We will next characterize all sequentially fair mechanisms in the regular rounds. We will assume

that a mechanism that gives sequential fairness in the sudden-death rounds exists (and we then

show that there are uncountably many such mechanisms).

We introduce a class of mechanisms that will be crucial in our analysis of sequentially fair mecha-

nisms. A mechanism � is uneven score symmetric if for all (hk�1; gT1 : gT2) and (h0 k�1; gT2 : gT1)

such that gT1 6= gT2 and k  n, we have �(hk�1; gT1 : gT2) = 1��(h0 k�1, gT2 : gT1). That is, as long

as the score is not tied at the end of a round, the probability of who kicks first in the next round

is the same for T1 and T2 whenever they are in each other’s shoes. E.g., when T1 is ahead 3 � 2

in (the beginning of) Round 4, and when T2 is ahead in Round 4 with a score of 2� 3, in Round

4 T1’s probability of kicking first in the first case is the same as T2’s probability of kicking first in

the second case.

It turns out that such mechanisms fully characterize the sequentially fair mechanisms in the

regular rounds.

Theorem 3 (Sequentially fair mechanisms) Suppose a mechanism � is sequentially fair in

sudden-death rounds. Then � is sequentially fair if and only if it is uneven score symmetric in

regular rounds.

The intuition behind this result can be given as follows: When a round starts even, the first

team’s kicker and the second team’s kicker both exert the same e↵ort and kick to the same intended

spot. This is almost like asserting that when the score is even, kicking order is of minimum impor-

tance. The importance of kicking order, on the other hand, stems from the fact that when the score

is uneven at the beginning of a round, kickers assert di↵erent levels of e↵ort in kicking penalties

depending on when they kick. Under an uneven-score-symmetric mechanism, each team’s kickers

foresee that their team will be treated symmetrically as the other team, in case either team falls

behind or jumps ahead in score. Therefore, this assurance takes the reason behind the importance

of kicking order out of the equation.

23However, a biased random-order mechanism where the probability of which team kicks first does not depend on

the current score is sequentially unfair.
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Figure 2: The e↵ort levels of teams under a sequentially fair mechanism is state-symmetric equilibria

in an easy shootout.

A corollary to the proof of this theorem is of independent interest. It tells how e↵ort levels can

be compared between the teams in di↵erent states and rounds (see also Figure 2).

Corollary 1 Let � be a sequentially fair mechanism. Suppose e↵ort levels, i.e., the state-symmetric

equilibrium intended spots, are denoted as follows:

• In Round 1: (1) for first kicking team as ⇠1; and (2) for second kicking team as !1E when

score is even and as !1B when it is behind.

• In Round 2: (1) for first kicking team as ⇠2A when it is ahead, as ⇠2E when the score is even,

and as ⇠2B when it is behind; and (2) for second kicking team as !2E when score is even and

as !2B when it is behind.

Then the following relations hold for easy shootouts:

Round 1. ⇠1 = !1E = !1B < !2B.

Round 2. ⇠2B < ⇠2A < ⇠2E = !2E = !2B.

For di�cult shootouts, only the first inequality reverses in Round 2 relations above.

The theorem makes another interesting point: There is only one sequentially fair exogenous

mechanism; the random-order mechanism that determines which team will kick first with an unbi-

ased coin toss in each round. We formalize it below, and it follows directly from Theorem 3.

Proposition 3 Random order is the only exogenous mechanism that is sequentially fair.

Note that one does not need to treat both teams symmetrically all the time to obtain sequential

fairness. In fact, when the score is tied, it does not matter which team kicks first. However, when

the score is not tied, teams need to be treated symmetrically. This feature opens the door for some

interesting practical mechanisms to be sequentially fair. Two examples of such mechanisms are the

behind-first and ahead-first mechanisms. In behind first (ahead first), the team who is behind

(ahead) in score after a round kicks first in the next round, and otherwise the order of the teams is

determined in some other manner. There are also many other uneven-score-symmetric mechanisms

in which lotteries play a significant role. For example, a lottery mechanism that forces the behind

team to go first in 75% of the time and T1 to go first 60% of the time when the score is tied is also

sequentially fair.
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7.1 Better Teams under Sequentially Fair Mechanisms

Uneven-score-symmetric mechanisms have another nice feature. Theorem 3 states that when two

teams have the same kicking ability, they have equal winning probability. What if one team is

better than the other? Suppose there is one player who has a better kicking ability than the rest

of the players, i.e., the player has a higher PG(x) and a lower PO(x) for every x 2 [0, 1]. We

formally define a better player as follows: Let {PG, PO} represent all players’ kicking ability

except the better player, and { ePG, ePO} represent the better player’s kicking ability. We assume (a)

PG(x) < ePG(x) and PO(x) > ePO(x), and (b)
P 0
G
(x)

eP 0
G
(x)

=
P 0
O
(x)

eP 0
O
(x)

for all x 2 [0, 1]. We show that the team

with this better player – now named the better team – has a higher winning probability under

uneven-score-symmetric mechanisms.

Theorem 4 Suppose a mechanism that is sequentially fair in sudden-death rounds and uneven score

symmetric in regular rounds is used in the shootout. Then a better team has a higher ex-ante chance

of winning at the unique state-symmetric equilibrium of the shootout induced by this mechanism, if

the better player is used strategically in the best kicking order possible by the better team.

Therefore, sequentially fair mechanisms satisfy the Aristotelean Justice criterion according to

the definition of better/worse teams above.

7.2 Sequential Fairness in Sudden-Death Rounds

The class of sequentially fair mechanisms is larger when sudden-death rounds are also considered.

The analysis of sudden-death rounds di↵ers from that of regular rounds, as they make the game

potentially an infinite game.

First we introduce a practical sequentially fair mechanism for the sudden-death rounds.

As we concluded in the previous section, the fixed-order mechanism, ABAB, clearly fails sequen-

tial fairness in the sudden-death rounds. So is there a simple and deterministic mechanism that is

sequentially fair in the sudden-death rounds? The answer is a�rmative, and the alternating-order

mechanism, ABBA, is sequentially fair in sudden-death rounds, although it is not in regular rounds.

The intuition is straightforward: Under the alternating-order mechanism, ABBA, one can have un-

even scores, such as T1 being ahead, in an intermediate regular round. Hence, it cannot satisfy

uneven score symmetry as required in a sequentially fair mechanism. On the other hand, in the

sudden-death rounds, the score is never uneven at the beginning of a round. Hence, the exogeneity

of the alternating order does not prevent sequential fairness.

Theorem 5 The alternating-order mechanism, ABBA, is sequentially fair in sudden-death rounds.

The intuition behind this result and its relationship to Theorem 1 about the multiplicity of

equilibria in the fixed-order can be given as follows: All mechanisms span an infinite game in the

sudden-death rounds. Typically this gives rise to multiplicity of equilibria. However, we are inter-

ested in state-symmetric equilibria for sequential fairness. In the fixed-order mechanism, ABAB,
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not all histories and information sets are reached in the path of the shootout, since fixed-order

always dictates the same team to kick first. That is, two teams are “never in each other’s shoes”

during sudden-death rounds. Hence, the game has total freedom to choose among many di↵erent

equilibria, i.e., the rounds that dictate that T2 kicks first are never reached and have no restrictions

on the equilibrium behavior. On the other hand, the alternating-order mechanism, ABBA, is just

the opposite in that sense: both teams are “in each other’s shoes” in every other round. This

puts more restrictions on the state-symmetric equilibria, and only the 50%-50% winning equilibria

survive state-symmetry.

Actually, for such a restriction to hold, we do not even need the teams to be “in each other’s

shoes” as frequently as in the alternating-order mechanism. In fact, there are uncountably many

other mechanisms that are sequentially fair in sudden-death rounds:

Theorem 6 Take any mechanism � that is uneven score symmetric in regular rounds and any

sequentially fair mechanism ' in sudden-death rounds. Construct a mechanism  as follows: Fix a

Sudden-death Round k.

• For all ` such that n < ` < k, feasible scores gT1 : gT2, and beginning of Round ` kicking

orders h`�1, let  (h`�1; gT1 : gT2) = �(h`�1; gT1 : gT2), and

• for all ` � k and `  n, feasible scores gT1 : gT2, and beginning of Round ` kicking orders

h`�1, let  (h`�1; gT1 : gT2) = '(h`�1; gT1 : gT2).

Then  is sequentially fair.

That is, we can replace the continuation of any uneven-score-symmetric mechanism after some

sudden-death round with a sequentially fair mechanism in sudden-death rounds (i.e., such as with

the alternating-order mechanism, ABBA), and regardless of initial part of the mechanism, the newly

constructed mechanism becomes sequentially fair. The intuition of this result is as follows: Take

the last round before sequential fairness kicks in, say Round k. By backward induction, as teams

are tied at the beginning of Round k and in Round k+1 they have a 50%�50% chance of winning,

in all situations the two kickers of Round k exert the same e↵ort regardless of kicking order (as

we explained in the intuition behind Theorem 3). Therefore, at the beginning of Round k, both

teams have an equal chance of winning as well. An example of such a mechanism is a behind-first

mechanism such that in the first n+ 10 rounds T1 kicks first whenever the game is tied, and then

we alternate the order. Note that in the first 10 sudden-death rounds T1 kicks first, and yet, the

mechanism is sequentially fair as it is appended by a sequentially fair mechanism in sudden-death

rounds, namely the alternating-order mechanism, ABBA.

8 Market Design and Practical Criteria

Sequential fairness is capable of ruling out many mechanisms in regular rounds, including the

current fixed-order mechanism, ABAB. Interestingly, it also rules out a seemingly fair exogenous
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mechanism, namely the alternating-order mechanism, ABBA. In terms of endogenous mechanisms,

however, sequential fairness does not pose as much of a restriction. One needs further desirable

properties to help refine the set of sequentially fair mechanisms. We will next define additional

criteria to provide concrete practical advice in that regard.

8.1 Goal E↵orts and Maximizing the Expected Number of Attempts

We can talk about e�ciency or ine�ciency of an attempt, to the extent it maximizes the e↵ort

levels of kickers. In other economic contests, e�ciency could be even more important. Among

sequentially fair mechanisms, it turns out that behind first and ahead first are the two extremes in

terms of inducing kickers’ e↵orts in Round 1:

Proposition 4 Behind-first (ahead-first) mechanisms maximize (minimize) Round 1 e↵orts of all

kickers among all sequentially fair mechanisms at the state-symmetric equilibrium.

The intuition behind this result can be summarized as follows for behind first (ahead first is

symmetric). First we summarize the incentives facing Round 2 kickers. In Round 2, kicking first is

not good at all for higher goal e↵orts: the first-kicking team’s player (if his team is either behind

or ahead) will always exert less e↵ort than he would in the case when he kicks second in Round

2. This is true because his marginal contribution will be less in the first case, as the other team’s

kicker – who will go second – can always miss or o↵set the first kicker’s failure. So he has higher

incentives to shirk when he kicks first.

Now, we turn our attention to Round 1 kickers’ marginal contributions under both mechanisms.

First, observe that both teams’ kickers under any uneven-score-symmetric mechanism exert the

same e↵ort in Round 1, by Corollary 1. Therefore, understanding the first-kicking team player’s

incentives is su�cient to draw the di↵erence between the two mechanisms regardless of the kicking

order or score during Round 1. A Round 1 kicker, if he does not exert high e↵ort under behind

first, may cause his team to fall behind with higher probability. This causes his teammate to shirk

more, when he goes first, and the other team’s second player to exert higher e↵ort, when he goes

second in Round 2. On the other hand, under ahead first, the Round 1 kicker’s incentives are

exactly the opposite! If he does not exert high e↵ort in Round 1, his team may fall behind with

higher probability, but his teammate will exert relatively higher e↵ort under ahead first by going

second in Round 2 (with respect to behind first) and the other team’s second kicker will exert less

e↵ort in Round 2 (with respect to behind first). Hence, Round 1 kicker’s possible failure can still be

salvaged with higher probability under ahead first. So he shirks under ahead first vis-a-vis behind

first. Therefore, behind first dominates any random (i.e., convex combination of ahead first and

behind first) and ahead-first mechanisms among all uneven-score-symmetric mechanisms.

On the other hand, observe that ahead first and behind first cannot be compared with each other

in Round 2 whenever the score is not tied: in ahead first when T1 is ahead, T1 kicks first while in

behind first, it kicks second under the same scenario. So there are no two comparable information
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sets that are reached with positive probability under both mechanisms in Round 2. When the

score is tied however, all uneven-score-symmetric mechanisms lead to the same goal e↵orts and are

equivalent in Round 2.

Thus, round by round we are not able to establish an e↵ort ranking among di↵erent sequentially

fair shootout mechanisms. Nevertheless, we can still obtain a partial ranking based on the expected

number of attempts.

Maximizing the expected number of attempts can be desirable from a social perspective, as well

as a team perspective, if the attempt cost is negligible or negative. Spectators may wish to see

more scoring attempts. Recall that we had defined two particular cases of shootouts earlier. In easy

shootouts, the goal probability of each kick is greater than 50% for each intended spot, as in soccer,

while in di�cult shootouts, the goal probability of each kick is less than 50% for each intended spot,

as in hockey.

Then we have the following result as a proposition:

Proposition 5 A sequentially fair mechanism maximizes the expected number of attempts taken

by both teams if and only if

• it is behind first in an easy shootout, and

• it is ahead first in a di�cult shootout.

The intuition for this result is as follows for easy shootouts: In Round 1, all teams take penalties.

In Round 2 however, both teams take penalties for sure if and only if the score is tied after Round 1.

It turns out that this occurs with the most probability in a behind-first shootout (see Proposition

4). Moreover, when the score is not tied after Round 1, the second-moving team in Round 2 does

not take a kick if the ahead team moves first and scores or the behind team moves first and misses.

Given that in an easy shootout the probability of scoring is higher than the probability of missing,

this probability is minimized under behind first. Hence, overall, behind first maximizes the expected

number of attempts among all sequentially fair mechanisms. The intuition is reversed for di�cult

shootouts.

8.2 Alternating-Order Mechanisms and Sequential Fairness

Although behind-first mechanisms have nice features when the score is uneven, as mentioned before

they are silent on how to define the kicking order when the score is tied. Sequential fairness in

regular rounds, by our characterization in Theorem 3, is also mute on this issue, but reversing the

kicking order is a sure way of establishing sequential fairness in sudden-death rounds (Theorem 5).

The alternating-order mechanism, ABBA, which is not sequentially fair in regular rounds since

it does not satisfy uneven score symmetry, does possess a nice property: When the score is tied in

most crucial rounds, i.e., in sudden-death rounds, it gives both teams an equality of opportunity of
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kicking first. Clearly, such an equality-of-opportunity property is nowhere more important than in

sudden-death rounds in which the score must be tied before every round.

We would like to preserve the equality-of-opportunity feature of this mechanism, especially in

sudden-death rounds. The behind-first (ahead-first) mechanism defined below has this feature.

The alternating-order behind-first (ahead-first) mechanism: The team that is behind

(ahead) in score after any Round r kicks first in Round r + 1. If the score is tied after Round

r, then the team that kicked second in Round r kicks first in Round r + 1.24

Besides its simplicity, this mechanism possesses several nice features. We will start with sudden-

death equality of opportunity. This property would emerge naturally since a simple but strong case

could be easily made against the same team kicking multiple times in a row in those rounds in a

lop-sided fashion:

Sudden-death equality of opportunity: Whenever the shootout ends after the Sudden-death

Round n + r with r even, each team will have kicked first exactly r/2 times in the sudden-death

rounds.

Then we have the following corollary:

Corollary 2 The alternating-order behind-first (ahead-first) mechanism satisfies sudden-death

equality of opportunity.

Another justification of alternating-order behind first and ahead first is as follows: Eclectic

mechanisms could be confusing for players, coaches, referees, and fans. One can combine a sequen-

tially fair mechanism in regular rounds with another sequentially fair mechanism in sudden-death

rounds in an eclectic fashion to come up with an overall sequentially fair mechanism. For example,

consider the following mechanism in regular rounds coupled with the alternating-order mechanism

in sudden-death rounds: T1 kicks first in Round r as long as the score is tied or T1 is behind in

Round r � 1 ; once T2 falls behind after some Round r0 > r, T2 kicks first until T1 falls behind in

score after some Round r00 > r0, after which T1 kicks first. One can improve on such a patchy mech-

anism by requiring that such an eclecticism should be eliminated. We will introduce two properties

such that the latter uses the former in its definition to formalize this intuition of simplicity. Before

introducing the first property, we formally introduce how an order pattern can be recognized in a

mechanism:

A finite machine representation of a mechanism is a triple (Q,A, t) such that

• Q is a finite set of (machine) states such that state q = (Tk)w 2 Q denotes that team

Tk taking the first penalty shot in the round associated with this state and w is just an

24We are agnostic about how Round 1 order is determined in the definition of the mechanism. It can be determined

in any manner. However, in practice we suggest it be determined by a fair coin toss as in the current fixed-order

mechanism.
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index number. Thus, Q can be partitioned into two as QT1 = {(T1)1, ..., (T1)w1} and QT2 =

{(T21, ..., (T2)w2} for some w1 and w2 as the sets of states in which team T1 and T2 kick first,

respectively.

• A = {(g1 : g2)} is the set of possible scores.

• t : Q [ {;} ⇥ A ⇥ Q ! [0, 1] is a state transition probability function such that
P

q02Q t(q, (g1 : g2), q0) = 1 for all q 2 Q [ {;} and (g1 : g2) 2 A. Here, t(q, (g1 : g2), q0)

is the probability of moving from state q to state q0 when after round associated with q is

played and the score is g1 : g2 just before q0 and after q.

We refer to null state ;, as the start of the shootout. In this representation, we envision that

each machine state is associated with a round of penalty kicks taken by each team consecutively.

However, as round numbers proceed, the game will have to come back to some previous machine

state, as the set of states is finite whereas a game can last arbitrarily long in theory.

A mechanism � is said to have finite machine representation (Q,A, t), if (1) t(;, (0 :

0), (T1)1) = �(;, 0 : 0) and t(;, (0 : 0), (T2)1) = 1 � �(;, 0 : 0); and (2) recursively, for any

kicking-order history hr�1 at the beginning of Round r, and feasible score gT1 : gT2 at the be-

ginning of Round r, if the associated machine state with round r � 1 was q 2 Q, then we have

t(q, (gT1 : gT2), (T1)w) = �(hr�1, gT1 : gT2) for some state (T1)w 2 QT1 and t(q, (gT1 : gT2), (T2)w) =

1� �(hr�1, gT1 : gT2) for some state (T2)w 2 QT2; and once a transition occurs to a state q0 from q,

ex post we refer to q0 as the machine state associated with round r.

Note that a machine representation does not specify when the shootout game ends, as no round

information is kept in the machine representation. It only keeps track of how transitions are made

between di↵erent kicking orders in a well-defined pattern. We are now ready to introduce our next

property:

A mechanism is stationary if it has a finite machine representation (Q,A, t) such that for all

states qi 2 Q [ {;} and qj 2 Q, t(qi, (gT1 : gT2), qj) = t(qi, (g0T1 : g0T2), qj) for all scores such that

gT1 � gT2 = g0T1 � g0T2.

Thus, stationarity implies that state transitions are made in the same manner whenever score

di↵erences are the same.

For example, the alternating-order behind-first mechanism has this type of a representation as

shown in Figure 3.

We state the following proposition whose proof is given in the figure for behind first:

Proposition 6 The alternating-order behind-first (ahead-first) mechanism is stationary.

Machine representations can be used to measure the complexity of an algorithm.25 However,

25For example, in game theory, they are used to represent the recall requirement needed for implementing a

repeated game strategy (see Rubinstein, 1998, for an excellent survey).
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Figure 3: The state transition representation for the alternating-order behind-first mechanism.

Transitions from the start of the shootout are omitted for simplicity. In general one of the two

states in the figure will be chosen randomly with an unbiased lottery. Alternating-order ahead

first’s representation is symmetrically defined.

very complicated mechanisms can also be stationary.26 On the other hand, if we would like to

have a chance of both teams kicking first in at least one round, we need at least two states, one

T1-kicking-first state and one T2-kicking-first state. Thus, |Q| = 2 is the minimum we can hope for

in a reasonable mechanism.27 Our alternating-order behind-first mechanism also has this property

(see Figure 3). We formalize this property as follows:

A mechanism is simple if it has a stationary machine representation with only two states such that

in one state T1 kicks first and in the other T2 kicks first.

An important motivation for simplicity stems from the FIFA soccer rules. These rules state that

a rule violation by the referees during a game necessitates replay of the game. Shootout mechanisms

that satisfy the simplicity property will make the process easier to administer for the referees and

will make the process less prone to rule violations. We see simplicity as a vital requirement of

a real-life shootout mechanism. The current mechanism satisfies simplicity but none of the other

properties we have introduced in this paper. We formalize the simplicity of the alternating-order

behind first (ahead first) with the following proposition. We gave its proof earlier through Figure

3:

26Consider a modified Prouhet-Thue-Morse behind-first mechanism. First we define the fractal Prouhet-Thue-

Morse mechanism (see Palacios-Huerta, 2014): The kicking order proceeds in an exogenous manner as follows:

ABBABAAB..., i.e., the order sequence since the beginning of the shootout reverses after 2k rounds for each k =

1, 2, .... We define the following modified Prouhet-Thue-Morse behind-first mechanism: If one team is behind, it

kicks first; otherwise, at even scores the first-kicking team follows the sequence ABBABAAB; then this sequence

reverses starting with T2 and keeps reversing until the shootout ends. Any behind-first mechanism compatible with

a Prouhet-Thue-Morse order is stationary, and the simplest stationary machine representation of such a mechanism

cannot have fewer than |Q| = 16 states. On the other hand, the truly fractal Prouhet-Thue-Morse sequence is not

stationary.
27Indeed, the current fixed-order mechanism, ABAB, has |Q| = 2, as according to the initial coin toss, either team

can go first. However, it is not sequentially fair. The random-order mechanism has also |Q| = 2 and is sequentially

fair, however, does not maximize the expected number of attempts.
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Proposition 7 The alternating-order behind-first (ahead-first) mechanism is simple.

We state the main result of this section as follows:

Theorem 7 In an easy shootout, alternating order behind first is the unique sequentially fair mech-

anism that maximizes the expected number of attempts and satisfies simplicity and sudden-death

equality of opportunity.

On the other hand, in a di�cult shootout, alternating order ahead first is the unique sequentially

fair mechanism that maximizes the expected number of attempts and satisfies simplicity and sudden-

death equality of opportunity.

We next demonstrate the independence of properties in Theorem 7: A sequentially fair mecha-

nism that satisfies all properties but violates the maximization of expected number of attempts is

the alternating-order ahead-first (behind-first) mechanism for easy (di�cult) shootouts. A sequen-

tially fair mechanism that satisfies all properties but the sudden-death equality of opportunity is a

behind-first (an ahead-first) mechanism for easy (di�cult) shootouts, which randomly determines

with an even lottery who goes first when the score is tied. A sequentially fair mechanism that sat-

isfies all properties but is not simple is a Prouhet-Thue-Morse behind-first (ahead-first) mechanism

for easy (di�cult) shootouts.

9 Discussion and Concluding Remarks

Like the current fixed-order shootout mechanism, ABAB, in soccer, some sequential tournaments

may be conducive to a first- or second-mover advantage, which may impede the e�ciency and/or

fairness of these tournaments. We propose fairness as the first-order design desideratum instead of

e�ciency or revenue maximization unlike previous economic models, while e�ciency is a second-

order criterion in our setting. Our fairness approach can further be utilized in other economic

dynamic contest design problems, such as fair design of dynamic labor tournaments (Lazear and

Rosen, 1981; see Connelly et al., 2014 for a survey of the tournament theory literature).

Our approach adds only one parameter to the standard dynamic tug-of-war framework. A kicker

has di↵erent utility levels for saved or missed kicks, even though they are outcome equivalent. This

small friction in the model generates rich results and explains certain stylized empirical facts of the

current shootout mechanism. Moreover, it helps us to characterize the optimal shootout mechanism

in this setting.

Moreover, our behind-first and ahead-first mechanisms and the additional properties we have

considered here can be of help in sports competitions other than soccer and hockey. For example,

field hockey, as well as water polo, handball, cricket, and rugby also have tiebreak or penalty

shootout mechanisms the same as or similar to that of soccer, and thus can benefit from our

analysis.
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A relevant question would be whether any of these properties are already being used in real life

and how successful they are in their domains. Perhaps the behind-first property is nowhere more

blatant and e↵ectively at work than in the rules of “petanque” (a.k.a. boules or bocce), which was

invented in ancient times by the Greeks, later modified by Romans, and is now popular in various

parts of the world including France and Italy - and currently expanding.28 In this game, the goal is

to throw metal or wooden balls as close as possible to a small special wooden target, while standing

inside a small starting circle. The rules are as follows: A player from the team that threw (and

established) the target also throws the first ball. Then a player from the other team throws the

second ball. The team with the ball that is closest to the target is said to “have the point” or “be

winning” and other team is “losing.” Then the “losing” team gets to throw the next ball.29 Thus,

in essence, just like our behind-first mechanisms, petanque too intends to give the “losing” team

a chance to recover. Further, if the two balls closest to the target are from opposing teams and

equidistant, teams play alternately until one team becomes the “winning” team and the other one

the “losing” team.30

Our related current and future work involves testing the predictions of our model in the field

and other controlled media such as virtual reality labs. We hope this approach will help us direct

comparison of di↵erent shootout formats such as ABAB, ABBA, and our behind first and ahead

first.

We also hope that our approach will be a first in rigorously designing (and testing) fair rules and

institutions for sports contests and economic competitions such as labor or promotion tournaments,

akin to auction design for radio spectrum and electricity sales and matching mechanism design for

school choice and organ allocation.

28We thank William Thomson for bringing the sports of petanque to our attention.
29See Article 16 of the world governing body of petanque FIPJP’s o�cial rulebook at

http://fipjp.org/index.php/en/2015-05-10-11-11-42/petanque-rules retrieved on Feb 13, 2018.
30See Article 29 of the FIPJP’s o�cial rulebook.
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Appendix A Shootout Winning Percentages in

Major Tournaments
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Figure A.1: Empirical Evidence from Table 5.1 in Palacios-Huerta (2014) and Table

1 in Kocher, Lenz, and Sutter (2012): The winning proportions of first-kicking teams

are given on the vertical axis while the numbers of shootouts in the considered cham-

pionships are given on the horizontal axis. Euro int refers to combined proportion for

all European international championships such as European Championship, Champions

League, Cup Winners Cup, and UEFA Cup. Observe that as sample size increases (i.e.,

data points 50 or more) second-mover advantage disappears in major soccer data tour-

naments. While there is undisputed first-mover advantage in Spanish Cup, Euro int and

English Cup display somewhat first-mover advantage, and German Cup displays neither

first- nor second-mover advantage.31

Appendix B Proofs of the Results in the Main Text

Proof of Proposition 1. First observe that x solves Equation 4 when UO = 0. As the partial

derivative w.r.t. UO on the (left-hand side of) first-order condition is P 0

O(x
⇤

`) > 0, the implicit

31We also thank Martin Kocher, Marc Lenz, and Matthias Sutter for providing us their data set.
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function theorem implies that x⇤

` < x. Moreover, as the partial derivative w.r.t. WG,` �WNG,` on

the first-order condition is P 0

G(x
⇤

`) > 0 (as x⇤

` < x), the implicit function theorem again implies that

the higher the expected marginal contribution, WG,` � WNG,`, the higher is x⇤

` ; and the higher is

PG(x⇤

`).

Proof of Theorem 1. We write the three first-order conditions using Equation 11 (or 3) as:

P 0

G(x)[PG(yB)VT1 + (1� PG(yB))VW � PG(yE)VL � (1� PG(yE))VT1 + UG] + P 0

O(x)UO = 0

P 0

G(yB)[VT2 � VL + UG] + P 0

O(yB)UO = 0

P 0

G(yE)[VW � VT2 + UG] + P 0

O(yE)UO = 0

We first prove that x = yE in any state-symmetric equilibrium.

Claim 1. x = yE.

Proof of Claim 1. Define

� = PG(yB)VT1 + (1� PG(yB))VW � PG(yE)VL � [1� PG(yE)]VT1 � VW + VT2.

From the first-order conditions of x and yE, x � yE if and only if � � 0. Recall that the winning

probability of T1 in equilibrium, ↵, is given in Equation 13. Hence,

� = PG(yB)(VT1 � VW ) + PG(yE)(VT1 � VL) + VT2 � VT1

= PG(yB)(1� ↵)(VL � VW ) + PG(yE)↵(VW � VL) + (1� 2↵)(VW � VL)

= [�PG(yB)(1� ↵) + PG(yE)↵ + 1� 2↵](VW � VL)

= [1� PG(yB) + (PG(yE) + PG(yB)� 2)↵](VW � VL)

We substitute ↵ from Equation 13 as follows:

� = [1� PG(yB) + (PG(yE) + PG(yB)� 2)
PG(x)(1� PG(yB))

PG(x)(1� PG(yB)) + (1� PG(x))PG(yE)
](VW � VL)

= (1� PG(yB))[1 +
(PG(yE) + PG(yB)� 2)PG(x)

PG(x)(1� PG(yB)) + (1� PG(x))PG(yE)
](VW � VL)

=


(1� PG(yB))(VW � VL)

PG(x)(1� PG(yB)) + (1� PG(x))PG(yE)

�

⇥ [PG(x)(1� PG(yB)) + (1� PG(x))PG(yE) + (PG(yE) + PG(yB)� 2)PG(x)]

=
(1� PG(yB))(VW � VL)

PG(x)(1� PG(yB)) + (1� PG(x))PG(yE)
[PG(yE)� PG(x)]

Suppose x > yE, then as both x, yE < x and PG is increasing on the left of x, we have PG(x) >

PG(yE). But then � < 0, contradicting that x > yE. Supposition x < yE leads to a similar

contradiction. Therefore, we must have x = yE. ⇧

Given x = yE, ↵ can be simplified as

↵ =
PG(x)(1� PG(yB))

PG(x)(1� PG(yB)) + (1� PG(x))PG(yE)
=

1� PG(yB)

2� PG(yB)� PG(yE)
,
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and ↵ = 1
2 i↵ x = yB. Then the first-order condition w.r.t. yB can be simplified as:

P 0

G(yB)[VT2 � VL + UG] + P 0

O(yB)UO = 0

=) P 0

G(yB)[(1� ↵)(VW � VL) + UG] + P 0

O(yB)UO = 0

=) P 0

G(yB)[(VW � VL)
1� PG(yE)

2� PG(yB)� PG(yE)
+ UG] + P 0

O(yB)UO = 0 (16)

Similarly, the first-order condition w.r.t. yE can be simplified as:

P 0

G(yE)[VW � VT2 + UG] + P 0

O(yE)UO = 0

=) P 0

G(yE)[↵(VW � VL) + UG] + P 0

O(yE)UO = 0

=) P 0

G(yE)[(VW � VL)
1� PG(yB)

2� PG(yB)� PG(yE)
+ UG] + P 0

O(yE)UO = 0 (17)

Now we are ready to prove part (i).

First we show that P 0

G(0)[
VW�VL

2 + UG] + P 0

O(0)UO � 0 implies the existence of equilibrium.

Define H(z) ⌘ P 0

G(z)[
VW�VL

2 +UG]+P 0

O(z)UO. H(z) is continuous with H 0(z) < 0 as P 00

G(z) < 0 and

P 00

O(z) � 0. Then H(0) = P 0

G(0)[
VW�VL

2 +UG]+P 0

O(0)UO � 0 and H(x) = P 0

O(x)UO < 0 implies that

there exists some a 2 [0, x) such that H(a) = 0. It can readily be seen that (x, yB, yE) = (a, a, a)

solves the two first-order conditions and hence constitutes an equilibrium.

On the other hand, assume now P 0

G(0)[
VW�VL

2 + UG] + P 0

O(0)UO = H(0) < 0. As H 0(z) < 0,

H(z) < 0 for every z 2 [0, 1]. Suppose to the contrary that there exists an equilibrium (x, yB, yE).

Clearly yB 6= yE, for otherwise 1�PG(yE)
2�PG(yB)�PG(yE) = 1

2 and the first-order condition of yB becomes

H(yB) < 0. Suppose yB > yE. Then the first-order condition w.r.t. yE in Equation 17 becomes:

P 0

G(yE)[(VW � VL)
1� PG(yB)

2� PG(yB)� PG(yE)
+ UG] + P 0

O(yE)UO

< P 0

G(yE)[
VW � VL

2
+ UG] + P 0

O(yE)UO = H(yE) < 0,

a contradiction. Then yB < yE; and similarly, the first-order condition for yB is negative, leading to a

contradiction. Therefore, an equilibrium exists if and only if P 0

G[
VW�VL

2 +UG]+P 0

O(0)UO = H(0) � 0.

There may be multiple solutions (yE, yB), and whenever one exists, then (ŷE, ŷB) satisfying

ŷE = yB and ŷB = yE also leads to a state-symmetric equilibrium.

Proof of Proposition 2. The first-order conditions are given by Equations 16 and 17 for

yB and yE in the proof of Theorem 1, respectively. We get yB = y(�) and yE = y(1 � �), since

f = P 0

G/P
0

O is an invertible di↵erentiable decreasing function in the region [0, x̄] by assumption that

PO is convex and increasing and PG is strictly concave and increasing in the interval [0, x̄]. Thus,

circularly, plugging in yB and yE, we get Equation 15. Optimal spots yB and x = yE are multiple

valued if and only if � is multiple valued. � = 1
2 always solves Equation 15, and if � = ↵ is a

solution then � = 1� ↵ is also a solution. Thus, there is an odd number of solutions.

Proof of Theorem 3. We will prove the theorem for easy shootouts. The proof is symmetric

for di�cult shootouts. We solve it by backward induction. As both teams have an equal chance
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of winning in sudden-death rounds, the value function is VW+VL

2 for each team at the end of the

regular rounds.

Round 2, Second Kick:

Whether the last-kicking team is currently even or behind, it can readily be verified that the

optimal kicking strategy is always ⇠ < x, where ⇠ is determined by the following first-order condition:

P 0

G(⇠)[
VW � VL

2
+ UG] + P 0

O(⇠)UO = 0 (18)

Round 2, First Kick:

Next we look at the optimal kicking strategy for the first-kicking team in Round 2. Consider

two cases:

Case 1: When T2 kicks first in Round 2

There are three possible states: when the score is currently even, when T2 is currently behind

(by one goal), and when T2 is currently ahead (by one goal).

• When the score is currently even: Let y2E denote the optimal kicking strategy for T20s kicker in

Round 2 when the score is even. The value function for T2 is

VT2,P2,E = (PG(y2E)PG(⇠) + (1� PG(y2E))(1� PG(⇠)))
VW + VL

2

+ PG(y2E)(1� PG(⇠))VW + (1� PG(y2E))PG(⇠)VL

By Equation 11, y2E solves the following first-order condition:

P 0

G(y2E)[(PG(⇠)� (1� PG(⇠)))
VW + VL

2
+ (1� PG(⇠))VW � PG(⇠)VL + UG] + P 0

O(y2E)UO = 0

=) P 0

G(y2E)[
VW � VL

2
+ UG] + P 0

O(y2E)UO = 0

Therefore,

y2E = ⇠ (19)

and VT2,P2,E = VW+VL

2 .

• When T2 is currently behind : Let y2B denote the optimal kicking strategy for T20s kicker in

Round 2 when the score is currently behind. The value function for T2 is

VT2,P2,B = PG(y2B)PG(⇠)VL + PG(y2B)(1� PG(⇠))
VW + VL

2
+ (1� PG(y2B))VL

y2B satisfies the following first-order condition:

P 0

G(y2B)[PG(⇠)VL + (1� PG(⇠))
VW + VL

2
� VL + UG] + P 0

O(y2B)UO = 0

=) P 0

G(y2B)[(1� PG(⇠))
VW � VL

2
+ UG] + P 0

O(y2B)UO = 0

• When T2 is currently ahead : Let y2A denote the optimal kicking strategy for T20s kicker in Round

2 when the score is currently ahead. The value function for T2 is

VT2,P2,A = PG(y2A)VW + (1� PG(y2A))[(1� PG(⇠))VW + PG(⇠)
VW + VL

2
]

34



The optimal kicking strategy, y2A, satisfies the following first-order condition:

P 0

G(y2A)[VW � (1� PG(⇠))VW � PG(⇠)
VW + VL

2
+ UG] + P 0

O(y2A)UO = 0

=) P 0

G(y2A)[PG(⇠)
VW � VL

2
+ UG] + P 0

O(y2A)UO = 0 (20)

As

PG(⇠) >
1

2
=) y2A > y2B. (21)

Moreover, since PG(⇠) < 1, Equations 18 and 20 imply

y2A < ⇠. (22)

Case 2: When T1 kicks first in Round 2

Let x2E, x2B, and x2A denote the optimal kicking strategy for T10s kicker in Round 2 when the

score is even, when T1 is behind, and when T1 is ahead respectively. By symmetry, we have the

following results:

• When the score is currently even: The optimal kicking strategy is

x2E = y2E = ⇠, (23)

and the value function for T1 is VT1,P2,E = VW+VL

2 .

• When T1 is currently behind : The optimal kicking strategy is

x2B = y2B < ⇠, (24)

and the value function for T1 is

VT1,P2,B = PG(x2B)PG(⇠)VL + PG(x2B)(1� PG(⇠))
VW + VL

2
+ (1� PG(x2B))VL

• When T1 is currently ahead : The optimal kicking strategy is

x2B < x2A = y2A < ⇠, (25)

and the value function for T1 is

VT1,P2,A = PG(x2A)VW + (1� PG(x2A))[(1� PG(⇠))VW + PG(⇠)
VW + VL

2
]

Round 1, Second Kick:

Next we study the second team’s optimal kicking strategy in Round 1. There are two possible

states:

• When T1 does not score in Round 1:

The value function for T2 in this case is

VT2,P1,E = PG(y1E)[�(T1; 0 : 1)(VW+VL�VT1,P2,B)+(1��(T1; 0 : 1))VT2,P2,A]+(1�PG(y1E))
VW + VL

2
,
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where

VT1,P2,B = PG(x2B)PG(⇠)VL + PG(x2B)(1� PG(⇠))
VW + VL

2
+ (1� PG(x2B))VL

=
VW + VL

2
� [1� PG(x2B)(1� PG(⇠))]

VW � VL

2

VT2,P2,A = PG(y2A)VW + (1� PG(y2A))[(1� PG(⇠))VW + PG(⇠)
VW + VL

2
]

=
VW + VL

2
+ [1� (1� PG(y2A))PG(⇠)]

VW � VL

2

We substitute the equations of VT1,P2,B and VT2,P2,A into VT2,P1,E as follows:

VT2,P1,E =
VW + VL

2
+ PG(y1E){�(T1; 0 : 1)[1� PG(x2B)(1� PG(⇠))]

+(1� �(T1; 0 : 1))[1� (1� PG(y2A))PG(⇠)]}
VW � VL

2

The optimal kicking strategy, y1E, satisfies the following first-order condition:

P 0

G(y1E){↵1
VW � VL

2
+ UG}+ P 0

O(y1E)UO = 0, where

↵1 = �(T1; 0 : 1)[1� PG(x2B)(1� PG(⇠))] + (1� �(T1; 0 : 1))[1� (1� PG(y2A))PG(⇠)].

• When T1 scores in Round 1:

The value function for T2 is

VT2,P1,B = PG(y1B)
VW + VL

2
+(1�PG(y1B))[(1��(T1; 1 : 0))VT2,P2,B+�(T1; 1 : 0)(VW+VL�VT1,P2,A)],

where

VT2,P2,B = PG(y2B)PG(⇠)VL + PG(y2B)(1� PG(⇠))
VW + VL

2
+ (1� PG(y2B))VL

=
VW + VL

2
� [1� PG(y2B)(1� PG(⇠))]

VW � VL

2

VT1,P2,A = PG(x2A)VW + (1� PG(x2A))[(1� PG(⇠))VW + PG(⇠)
VW + VL

2
]

=
VW + VL

2
+ [1� (1� PG(x2A))PG(⇠)]

VW � VL

2

We substitute the equations of VT2,P2,B and VT1,P2,A into VT2,P1,B as follows:

VT2,P1,B =
VW + VL

2
� (1� PG(y1B))[(1� �(T1; 1 : 0))[1� PG(y2B)(1� PG(⇠))]

+�(T1; 1 : 0)[1� (1� PG(x2A))PG(⇠)]]
VW � VL

2

The optimal kicking strategy, y1B, satisfies the following first-order condition:

P 0

G(y1B){↵2
VW � VL

2
+ UG}+ P 0

O(y1B)UO = 0, (26)
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where

↵2 = (1� �(T1; 1 : 0))[1� PG(y2B)(1� PG(⇠))] + �(T1; 1 : 0)[1� (1� PG(x2A))PG(⇠)]

Then y1B = y1E i↵ ↵1 = ↵2 i↵

�(T1; 0 : 1)[1� PG(x2B)(1� PG(⇠))] + (1� �(T1; 0 : 1))[1� (1� PG(y2A))PG(⇠)]]

= (1� �(T1; 1 : 0))[1� PG(y2B)(1� PG(⇠))] + �(T1; 1 : 0)[1� (1� PG(x2A))PG(⇠)]

() (1� �(T1; 0 : 1)� �(T1; 1 : 0))[1� (1� PG(y2A))PG(⇠)]

= (1� �(T1; 0 : 1)� �(T1; 1 : 0))[1� PG(x2B)(1� PG(⇠))]

() (1� �(T1; 0 : 1)� �(T1; 1 : 0))[(1� PG(y2A))PG(⇠)� PG(x2B)(1� PG(⇠))] = 0

However, (1� PG(y2A))PG(⇠)� PG(x2B)(1� PG(⇠)) > 0 as x > ⇠ > x2B and y2A < ⇠. Accordingly,

y1B = y1E () �(T1; 0 : 1) + �(T1; 1 : 0) = 1. (27)

Round 1, First Kick:

Finally, we solve for T1’s optimal kicking strategy in Round 1. The value function for T1 is

VT1 = PG(x1)[VW + VL � VT2,P1,B] + (1� PG(x1))[VW + VL � VT2,P1,E]

= VW + VL � PG(x1)VT2,P1,B � (1� PG(x1))VT2,P1,E

We substitute the equations of VT2,P1,B and VT2,P1,E into VT1 as follows:

VT1 =
VW + VL

2
+ [PG(x1)(1� PG(y1B))↵2 � (1� PG(x1))PG(y1E)↵1]

VW � VL

2

The optimal kicking strategy, x1, satisfies the following first-order condition:

P 0

G(x1){[(1� PG(y1B))↵2 + PG(y1E)↵1]
VW � VL

2
+ UG}+ P 0

O(x1)UO = 0

Therefore

x1 R y1E () (1� PG(y1B))↵2 R (1� PG(y1E))↵1 (28)

On the other hand, we have

VT1 =
VW + VL

2
() PG(x1)(1� PG(y1B))↵2 = (1� PG(x1))PG(y1E)↵1

Given that both teams have an equal chance of winning in sudden-death rounds and VT2,P2,E =

VT1,P2,E = VW+VL

2 , � is sequentially fair if and only if VT1 = VW+VL

2 . We first make the following

claim:

Claim 1. PG(x1)(1 � PG(y1B))↵2 = (1 � PG(x1))PG(y1E)↵1 if and only if (1 � PG(y1B))↵2 =

(1� PG(y1E))↵1.
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Proof of Claim 1.

()) Suppose to the contrary that (1 � PG(y1B))↵2 6= (1 � PG(y1E))↵1 but PG(x1)(1 �

PG(y1B))↵2 = (1�PG(x1))PG(y1E)↵1. If (1�PG(y1B))↵2 > (1�PG(y1E))↵1, then from the first-order

condition of x1 we have x > x1 > y1E. Then PG(x1)(1 � PG(y1B))↵2 > PG(y1E)(1 � PG(y1B))↵2 >

PG(y1E)(1�PG(y1E))↵1 > (1�PG(x1))PG(y1E)↵1, a contradiction. The other case can be analyzed

in a similar fashion.

(() If (1 � PG(y1B))↵2 = (1 � PG(y1E))↵1, then from the first-order condition of x1 we have

x1 = y1E, which in turn implies

PG(x1)(1�PG(y1B))↵2 = PG(y1E)(1�PG(y1B))↵2 = PG(y1E)(1�PG(y1E))↵1 = (1�PG(x1))PG(y1E)↵1

Hence the Claim is established. ⇧

Accordingly, � is sequentially fair if and only if

(1� PG(y1B))↵2 = (1� PG(y1E))↵1. (29)

This equality holds for an arbitrary pair of (feasible) probabilities, {PG, PO}, if and only if ↵1 = ↵2,

which holds if and only if �(T1; 0 : 1) + �(T1; 1 : 0) = 1, i.e., � is uneven score symmetric.

Proof of Corollary 1. It can readily be seen from the proof of Theorem 3 that the optimal

kicking strategy at that state is solely determined by “the state” (the score di↵erence and the

kicking order in Round 2), and hence is independent of which sequentially fair mechanism leads to

that state. W.l.o.g., suppose T1 moves first in Round 1 and T2 moves second. Consider Round 1

first. Equation 27 in the proof of Theorem 3 implies that !1E = !1B. Equations 28 and 29 imply

that ⇠1 = !1E. Next consider Round 2. Equation 18 implies that !2B = !2E. Equations 18 and 19

when T1 moves second in Round 2 and Equation 23 when T1 moves first in Round 1 imply that

⇠2E = !2E. For an easy shootout, Equations 21 and 22 when T1 moves second in Round 2 and

Equations 24 and 25 when T1 moves first in Round 2 imply that ⇠2E > ⇠2A > ⇠2B. (where easiness of

the shootout is only used in Equation 21, for a di�cult shootout, we would have ⇠2E > ⇠2B > ⇠2A).

Finally, Equations 18 and 26 and the fact that ↵2 < 1 imply !1B < !2B.

Proof of Theorem 4. We show that by having the better player kick in Round 1, the better

team has a higher chance of winning under an uneven-score-symmetric mechanism. Consider two

subcases:

(i) When the better player is in T2.

Since the better player is placed in Round 1, the second-round maximization problems remain

unchanged. Following the proof of Theorem 3, we have x2A = y2A > x2B = y2B, and the last kicker’s

optimal kicking strategy is ⇠. Next we study the second team’s optimal kicking strategy in Round

1. When T1 does not score in Round 1, the value function for T2 is32

VT2,P1,E = ePG(y1E)[�(T1; 0 : 1)(VW+VL�VT1,P2,B)+(1��(T1; 0 : 1))VT2,P2,A]+(1� ePG(y1E))
VW + VL

2
,

32Recall that kicking order T1 in expression �(T1; gT1 : gT2) refers to the beginning of Round 2 when T1 kicked

first in Round 1.
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where

VT1,P2,B = PG(x2B)PG(⇠)VL + PG(x2B)(1� PG(⇠))
VW + VL

2
+ (1� PG(x2B))VL

=
VW + VL

2
� [1� PG(x2B)(1� PG(⇠))]

VW � VL

2

VT2,P2,A = PG(y2A)VW + (1� PG(y2A))[(1� PG(⇠))VW + PG(⇠)
VW + VL

2
]

=
VW + VL

2
+ [1� (1� PG(y2A))PG(⇠)]

VW � VL

2

Therefore

VT2,P1,E =
VW + VL

2
+ ePG(y1E){�(T1; 0 : 1)[1� PG(x2B)(1� PG(⇠))]

+(1� �(T1; 0 : 1))[1� (1� PG(y2A))PG(⇠)]}
VW � VL

2

The optimal kicking strategy, y1E, satisfies the following first-order condition:

eP 0

G(y1E)


↵1

VW � VL

2
+ UG

�
+ eP 0

O(y1E)UO = 0, where

↵1 = �(T1; 0 : 1)[1� PG(x2B)(1� PG(⇠))] + (1� �(T1; 0 : 1))[1� (1� PG(y2A))PG(⇠)].

When T1 scores in Round 1, the value function for T2 is

VT2,P1,B = ePG(y1B)
VW + VL

2
+(1� ePG(y1B))[(1��(T1; 1 : 0))VT2,P2,B+�(T1; 1 : 0)(VW+VL�VT1,P2,A)],

where

VT2,P2,B = PG(y2B)PG(⇠)VL + PG(y2B)(1� PG(⇠))
VW + VL

2
+ (1� PG(y2B))VL

=
VW + VL

2
� [1� PG(y2B)(1� PG(⇠))]

VW � VL

2

VT1,P2,A = PG(x2A)VW + (1� PG(x2A))


(1� PG(⇠))VW + PG(⇠)

VW + VL

2

�

=
VW + VL

2
+ [1� (1� PG(x2A))PG(⇠)]

VW � VL

2

We substitute the equations of VT2,P2,B and VT1,P2,A into VT2,P1,B as follows:

VT2,P1,B =
VW + VL

2
� (1� ePG(y1B))

h
(1� �(T1; 1 : 0)) [1� PG(y2B)(1� PG(⇠))]

+�(T1; 1 : 0) [1� (1� PG(x2A))PG(⇠)]
iVW � VL

2
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The optimal kicking strategy, y1B, satisfies the following first-order condition:

eP 0

G(y1B)

"h
[(1� �(T1; 1 : 0))[1� PG(y2B)(1� PG(⇠))]

+�(T1; 1 : 0)[1� (1� PG(x2A))PG(⇠)]
iVW � VL

2
+ UG

#
+ eP 0

O(y1B)UO = 0

Given that y2B = x2B and x2A = y2A, the first-order condition can be rewritten as

P 0

G(y1B){↵2
VW � VL

2
+ UG}+ P 0

O(y1B)UO = 0, where

↵2 = (1� �(T1; 1 : 0))[1� PG(x2B)(1� PG(⇠))] + �(T1; 1 : 0)[1� (1� PG(y2A))PG(⇠)].

Under a sequentially fair mechanism, �(T1; 0 : 1) + �(T1; 1 : 0) = 1, and we have ↵1 = ↵2.

Accordingly, y1E = y1B. Finally, we solve for T1’s optimal kicking strategy in Round 1. The value

function for T1 is

VT1 = PG(x1)[VW + VL � VT2,P1,B] + (1� PG(x1))[VW + VL � VT2,P1,E]

= VW + VL � PG(x1)VT2,P1,B � (1� PG(x1))VT2,P1,E

=
VW + VL

2
+ [PG(x1)(1� ePG(y1B))↵2 � (1� PG(x1)) ePG(y1E)↵1]

VW � VL

2

The optimal kicking strategy, x1, satisfies the following first-order condition:

P 0

G(x1){[(1� ePG(y1B))↵2 + ePG(y1E)↵1]
VW � VL

2
+ UG}+ P 0

O(x1)UO = 0

=) P 0

G(x1){↵1
VW � VL

2
+ UG}+ P 0

O(x1)UO = 0

Therefore x1 = y1E = y1B, and

VT1 =
VW + VL

2
+ [PG(x1)(1� ePG(x1))� (1� PG(x1)) ePG(x1)]↵1

VW � VL

2
<

VW + VL

2
.

Hence T2 has a higher chance of winning.

(ii) When the better player is in T1.

Following the same procedure in (i), we conclude x1 = y1E = y1B. But now VT1 becomes

VT1 = ePG(x1)[VW + VL � VT2,P1,B] + (1� ePG(x1))[VW + VL � VT2,P1,E]

= VW + VL � ePG(x1)VT2,P1,B � (1� ePG(x1))VT2,P1,E

=
VW + VL

2
+ [ ePG(x1)(1� PG(x1))� (1� ePG(x1))PG(x1)]↵1

VW � VL

2
>

VW + VL

2
.

Again, the team with a better player has a higher chance of winning.

Proof of Theorem 5. Without loss of generality, assume T1 kicks first in the first sudden-

death round (i.e., in Round n + 1). In a state-symmetric equilibrium, denote by xI the optimal

kicking strategy for the first kicker in each sudden-death round, and xB (xE) the optimal kicking
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strategy for the second kicker in each sudden-death round when the score is behind (tied). Let VT1

(VT2) denote T1’s (T2’s) value function at the beginning of the first sudden-death round (Round

n+ 1). Then

VT1 = [PG(xI)PG(xB) + (1� PG(xI))(1� PG(xE))]VT2

+ PG(xI)(1� PG(xB))VW + (1� PG(xI))PG(xE)VL

VT2 = [PG(xI)PG(xB) + (1� PG(xI))(1� PG(xE))]VT1

+ PG(xI)(1� PG(xB))VL + (1� PG(xI))PG(xE)VW

We substitute VT2 into the equation of VT1 as follows:

VT1 = [PG(xI)PG(xB) + (1� PG(xI))(1� PG(xE))]
2VT1

+ {[PG(xI)PG(xB) + (1� PG(xI))(1� PG(xE))]PG(xI)(1� PG(xB)) + (1� PG(xI))PG(xE)}VL

+ {[PG(xI)PG(xB) + (1� PG(xI))(1� PG(xE))](1� PG(xI))PG(xE) + PG(xI)(1� PG(xB))}VW

Then VT1 can be solved as:

VT1 = �VW + (1� �)VL, where

� =
1� (1� PG(xI))PG(xE)

2� (1� PG(xI))PG(xE)� PG(xI)(1� PG(xB))
.

As this is a zero-sum game, we have VT2 = (1� �)VW + �VL.

The optimal kicking strategy, xI , satisfies the following first-order condition:

P 0

G(xI){[PG(xB)� (1� PG(xE))]VT2 + (1� PG(xB))VW � PG(xE)VL + UG}+ P 0

O(xI)UO = 0.

Similarly, the optimal kicking strategies xB and xE are determined by the following conditions:

P 0

G(xB){VT1 � VL + UG}+ P 0

O(xB)UO = 0

P 0

G(xE){VW � VT1 + UG}+ P 0

O(xE)UO = 0

We are going to claim that all three kicking strategies are equivalent, i.e., xI = xB = xE, which in

turn implies that VT1 = VT2 =
VW+VL

2 as � = 1
2 , and sequential fairness is established.

First we compare xI and xE. Define

�IE = [PG(xB)� (1� PG(xE))]VT2 + (1� PG(xB))VW � PG(xE)VL � (VW � VT1)

By comparing the first-order conditions of xI and xE, we observe that

�IE T 0 if and only if xI T xE.

Substituting the equations of VT2 and VT1 into �IE gives us

�IE = VT1 � VT2 � PG(xB)(VW � VT2) + PG(xE)(VT2 � VL)

= [2� � 1� PG(xB)� + PG(xE)(1� �)](VW � VL)

= [(2� PG(xB)� PG(xE))� � 1 + PG(xE)](VW � VL).
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Plugging in the expression of � and doing some simplifications, we have

�IE =
PG(xI)(1� PG(xB))� PG(xB)(1� PG(xE))

2� (1� PG(xI))PG(xE)� PG(xI)(1� PG(xB))
(VW � VL)

We can then conclude that xI T xE if and only if xI T xB. Next we compare xI and xB. Define

�IB = [PG(xB)� (1� PG(xE))]VT2 + (1� PG(xB))VW � PG(xE)VL � (VT1 � VL)

By comparing the first-order conditions of xI and xB, we observe that

�IB T 0 if and only if xI T xB.

By the same token, we can simplify �IB as

�IB =
PG(xE)(1� PG(xI))� PG(xB)(1� PG(xE))

2� (1� PG(xI))PG(xE)� PG(xI)(1� PG(xB))
(VW � VL)

Therefore

xI T xB if and only if xE T xB.

Finally we compare xE and xB. Define

�EB = VW � VT1 � (VT1 � VL)

�EB can be simplified as

�EB =
PG(xE)(1� PG(xI))� PG(xI)(1� PG(xB))

2� (1� PG(xI))PG(xE)� PG(xI)(1� PG(xB))
(VW � VL)

Accordingly,

xE T xB if and only if xE T xI .

Combining all three observations (inequalities) above, we conclude that in a state-symmetric equi-

librium we must have xI = xE = xB.

Proof of Theorem 6. Take any mechanism � and any sequentially fair mechanism '.

Construct a mechanism  such that for a given Sudden-death Round k, for all n < ` < k, kicking-

order histories h`�1, and feasible scores gT1 : gT2,  (h`�1; gT1 : gT2) = �(h`�1; gT1 : gT2) and for

all ` � k and `  n, kicking-order histories h`�1, and feasible scores gT1 : gT2,  (h`�1; g1 : gT2) =

'(h`�1; gT1 : gT2).

Now in the Sudden-death Round k and after, whenever the game reaches this round, the prob-

ability of winning is given as 1
2 for each team. By backward induction, consider Round k � 1.

Consider the team that kicks second. Without loss of generality suppose it is T2, and T1 goes first

in Round k � 1. We can reuse the same first-order conditions for both teams that we used in the

proof of Theorem 1, setting

VT1 = VT2 =
VW + VL

2
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as the continuation value under the sequentially fair mechanism in Round k. Suppose x is T1’s

kicker’s optimal spot, yE is T2’s kicker’s optimal spot when they are still tied, and yB is T1’s kicker’s

optimal spot when T1 is ahead (by one goal). Recall the first-order conditions through Equation

11 (or 3):

P 0

G(x)[PG(yB)VT1 + (1� PG(yB))VW � PG(yE)VL � (1� PG(yE))VT1 + UG] + P 0

O(x)UO = 0

P 0

G(yB)[VT2 � VL + UG] + P 0

O(yB)UO = 0

P 0

G(yE)[VW � VT2 + UG] + P 0

O(yE)UO = 0

We rewrite T2’s kicker’s first-order conditions plugging in VT1 = VT2:

P 0

G(yB)[
VW � VL

2
+ UG] + P 0

O(yB)UO = 0

P 0

G(yE)[
VW � VL

2
+ UG] + P 0

O(yE)UO = 0

The last two equations yield yB = yE (each has a unique solution by assumptions). Given that T1’s

equation yields:

P 0

G(x)[
VW � VL

2
+ UG] + P 0

O(x)UO = 0

As T1 has the same first-order conditions as T2, we get x = yB = yE. So each team’s winning

probability is the same, 1
2 in Round k, as well. The mechanism  is sequentially fair starting from

Round k. We repeat this argument for each Sudden-death Round ` = k � 2, k � 3, ..., n + 1 and

obtain the desired result.

Proof of Proposition 4. From the proof of Theorem 3, we observe that any sequentially

fair mechanism � must satisfy the condition �(T1; 0 : 1) + �(T1; 1 : 0) = 1.33 Moreover, under

this condition, the three optimal kicking strategies in Round 1 are the same: x1 = y1E = y1B (see

Corollary 1) and they are determined by the following first-order condition:

P 0

G(x1)


↵1

VW � VL

2
+ UG

�
+ P 0

O(x1)UO = 0, where

↵1 = �(T1; 1 : 0)[1� (1� PG(y2A))PG(⇠)] + (1� �(T1; 1 : 0))[1� PG(x2B)(1� PG(⇠))].

Hence the higher the value of ↵1, the higher x1. As x2B < ⇠, which is Round 2 second kicking team’s

intended spot, and y2A < ⇠, we obtain 1�PG(x2B)(1�PG(⇠)) > 1� (1�PG(y2A))PG(⇠). Therefore

maximum x1 is achieved in a sequentially fair mechanism when �(T1; 1 : 0) = 0, i.e., when � is a

behind-first mechanism. On the other hand, minimum x1 is achieved when �(T1; 1 : 0) = 1, i.e.,

when � is an ahead-first mechanism.

Proof of Proposition 5. When a tie occurs at the end of Round 1, both teams take a shot

with probability 1 in Round 2. So an attempt is not taken only if the game is not tied at the end of

33Recall that kicking order T1 in expression �(T1; gT2 : gT2) refers to the beginning of Round 2 when T1 kicked

first in Round 1.
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Round 1. As both team players always exert the same e↵ort ⇠1 in a sequentially fair mechanism at

all state-symmetric equilibria in Round 1 (see the Corollary 1), the probability of one team being

ahead at the beginning of Round 2 is 2PG(⇠1)(1� PG(⇠1)).

Consider any uneven-score-symmetric mechanism in which the ahead team moves first with

probability ↵ 2 [0, 1] in Round 2. An attempt from the second-moving team in Round 2 is not

made if and only if the ahead team moves first and scores or the behind team moves first and

misses. This happens with a probability 2PG(⇠1)(1 � PG(⇠1))[↵PG(⇠2A) + (1 � ↵)(1 � PG(⇠2B))],

where ⇠1 is the Round 1 e↵ort level of this shootout and ⇠2B, ⇠2A are the Round 2 e↵ort levels at

state-symmetric equilibrium for the first-moving team.

For an easy shootout, we have PG(x) > 1/2 for all x 2 [0, x̄]. Given that the optimal first-period

e↵ort ⇠1 < x̄, 2PG(⇠1)(1 � PG(⇠1)) is decreasing in ⇠1. Since behind first maximizes ⇠1 among all

sequentially fair shootouts by Proposition 4, 2PG(⇠1)(1 � PG(⇠1)) is minimized under behind first.

Moreover, in an easy shootout 1� PG(⇠2B) < 1/2 < PG(⇠2A). Hence, the probability of not making

an attempt is minimized for behind first among all sequentially fair easy shootouts.

For a di�cult shootout, we have PG(x) < 1/2 for all x 2 [0, x̄]. Given that the optimal first-

period e↵ort ⇠1 < x̄, 2PG(⇠1)(1� PG(⇠1)) is increasing in ⇠1. Since ahead first minimizes ⇠1 among

all sequentially fair shootouts by Proposition 4, 2PG(⇠1)(1�PG(⇠1)) is minimized under ahead first.

Moreover, in a di�cult shootout 1 � PG(⇠2B) > 1/2 > PG(⇠2A). Hence, the probability of not

making an attempt is minimized for ahead first among all sequentially fair easy shootouts.

Proof of Theorem 7. Observe that the mechanisms that satisfy the properties should be

behind-first, since behind-first mechanisms are the only ones that satisfy sequential fairness and

maximizing expected number of attempts (by Theorem 5). The mechanisms that satisfy the sudden-

death equality of opportunity (SDEO from now on) have to have each team kicking first in every

two sudden-death rounds exactly once. Hence, the only kicking order that is simple and SDEO in

the sudden-death rounds is alternating-order. Stationarity (as implied by simplicity) implies that

the order of kicking switches when the score stays even between two rounds - i.e., if the state was

reached after a tie in score, the order switches after this state if the tied score continues. But this

does not imply how the kicking order changes if we transition to a tied score from an uneven score.

Simplicity implies that we have two states as Q = {(T1)1, (T2)1}. Thus, we need to use the same

states of sudden-death rounds also in the regular rounds. Hence, as kicking order switches when the

score is tied, i.e. we transition from (T1)1 to (T2)1 or the other way around in the sudden-death

rounds, we should do the same in the regular rounds as well. Thus, whenever a round ends with a

tied score, we should reverse the kicking order. We end up with the unique machine representation

in Figure 3, i.e. with the alternating-order behind-first.
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Appendix C First-Mover Advantage: A Refinement

Here, we address the question as to which state-symmetric equilibrium is more likely to be observed

when there are multiple state-symmetric equilibria in the fixed-order mechanism. To that end, we

use a selection criterion similar to Cho and Kreps’s (1987) “Intuitive Criterion.”

Suppose there are multiple state-symmetric equilibria. Let the state-symmetric equilibrium

with (x⇤, y⇤E, y
⇤

B) be the one with highest x, i.e., the intended spot by T1’s kickers is the closest

to the goal-optimal spot among all state-symmetric equilibria. We will refer to this equilibrium as

the most aggressive equilibrium for T1 for the following reason: As x⇤ = y⇤E > y⇤B, we have the

winning probability of T1, ↵ =
1�PG(y⇤

B
)

2�PG(y⇤
E
)�PG(y⇤

B
) >

1
2 by Equation 13; and moreover, such a winning

probability for T1 is the highest among all state-symmetric equilibria.

As a result, T1’s kickers can collectively enforce the most aggressive kicking equilibrium for

their team and win more often, in which the first kicker can set the tone of aggressiveness for his

team. Being the first mover, if T1 can credibly “signal” T2 that they are indeed playing this most

aggressive equilibrium, this would be the most beneficial for T1. In this case, we can use such a

signaling through beliefs in the state-symmetric equilibrium to obtain a refinement. For example, if

�x⇤ , the probability density function of the ball reaching a particular spot on the goal line when it is

aimed at x⇤ has the support set [x⇤
� ✏x⇤ , x⇤ + ✏x⇤ ]. Suppose that this support is disjoint from such

support sets of other equilibria. Then, whenever T2 kickers observe a kick spot in �x⇤ ’s support,

they can credibly deduce that indeed T1 is playing this aggressive equilibrium. Hence, the beliefs

of T2’s kickers in information sets that are never reached in a state-symmetric equilibrium can be

fine-tuned so that less aggressive equilibria can be eliminated.

Definition 1 (Refinement Criterion) If the most aggressive state-symmetric equilibrium for T1

involves aiming at x⇤ for each kicker, and the possible spots that the ball can go under x⇤ (as

determined by the support of �x⇤, [x⇤
� ✏x⇤ , x⇤+ ✏x⇤ ]) are di↵erent from any of the spots that the ball

can go under all other state-symmetric equilibria, then T1 can credibly enforce the most aggressive

state-symmetric equilibrium.

Hence, we get the following corollary:

Corollary 3 (Team 1 wins more often) If the state-symmetric equilibria can be refined, then

T1, the team that kicks first, wins with a higher probability than T2 in the sudden-death rounds of

the fixed-order mechanism, ABAB.

Hence, in our analysis with equally-skilled players and goalies, the fixed-order mechanism,

ABAB, is biased toward the first-moving team and further multiple equilibria certainly exist. In-

deed, empirically as well, these multiple equilibria and the overall first-mover advantage are evident.

The relative frequency figures regarding the winning probability of the teams that kick first vary

significantly across tournaments throughout the world (see Figure A.1).
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