Items in eScholarship@BC will redirect to URBC, Boston College Libraries' new repository platform. eScholarship@BC is being retired in the summer of 2025. Any material submitted after April 15th, 2025, and all theses and dissertations from Spring semester 2025, will be added to URBC only.
Random mechanisms have been used in real-life situations for reasons such as fairness. Voting and matching are two examples of such situations. We investigate whether desirable properties of a random mechanism survive decomposition of the mechanism as a lottery over deterministic mechanisms that also hold such properties. To this end, we represent properties of mechanisms--such as ordinal strategy-proofness or individual rationality--using linear constraints. Using the theory of totally unimodular matrices from combinatorial integer programming, we show that total unimodularity is a sufficient condition for the decomposability of linear constraints on random mechanisms. As two illustrative examples, we show that individual rationality is totally unimodular in general, and that strategy-proofness is totally unimodular in some individual choice models. However, strategy-proofness, unanimity, and feasibility together are not totally unimodular in collective choice environments in general. We thus introduce a direct constructive approach for such problems. Using this approach, we prove that feasibility, strategy-proofness, and unanimity, with and without anonymity, are decomposable on non-dictatorial single-peaked voting domains.