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Abstract

Within the last decade kidney exchange has become a mainstream paradigm to increase

the number of kidney transplants. However, compatible pairs do not participate, and the

full benefit from exchange can be realized only if they do. In this paper, we propose a new

incentive scheme that relies on incentivizing participation of compatible pairs in exchange via

insurance for the patient for a future renal failure. Efficiency and equity analyses of this

scheme are conducted and compared with efficiency and equity outcomes of live donation and

living donor organ exchange. We also present the potential role of such an incentive scheme

to strengthen the national kidney exchange system.
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mezt@bc.edu; www2.bc.edu/˜sonmezt
‡Boston College, Department of Economics and Distinguished Research Fellow at Koç University; unver@bc.edu;
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1 Introduction

The National Organ Transplant Act (NOTA) of 1984 called for an Organ Procurement and Trans-

plantation Network (OPTN) to be created and run by a private, non-profit organization under

federal contract. The federal Final Rule provides a regulatory framework for the structure and

operation of the OPTN: the primary goal of the OPTN is to increase and ensure the effectiveness,

efficiency, and equity of organ sharing in the national system of organ allocation, and to increase

the supply of donated organs available for transplantation.1 As in most resource allocation prob-

lems, tension often emerges between the dual objectives of efficiency and equity in the context of

organ transplantation. Our ultimate objective in this paper is the introduction and advocacy of

a new organ allocation policy that has strong potential not only to increase the supply of organs

available for transplantation (thus increasing the efficiency of the organ allocation system), but also

to decrease its inequity. To our knowledge, our proposed policy is the first to enhance both the

efficiency and equity of of the system. To introduce our policy proposal, it will be helpful to explain

two other contributions of our paper.

Our paper makes three main contributions. Our first contribution is the introduction of a new

and analytically tractable dynamic large-market model of organ transplantation that can be used to

analyze the efficiency and equity implications of various technologies and policies.2 Unlike former

models that focus on a single organ-allocation technology (such as deceased donor organ allocation

or living donor organ exchange), our model can be used to analyze the impact of various technologies

and policies that are often used together and interact with each other.

Our second contribution is a formal analysis of the efficiency and equity implications of the

following three primary organ-transplantation technologies:

1. deceased donor transplantation,

2. living donor transplantation, and

3. living donor organ exchange.

For organs that can be transplanted, the first step in this innovation sequence is deceased donor

transplantation, potentially followed by living donor transplantation. Living donor organ exchange

becomes a possibility only after the innovation of living donor transplantation. Thus, there is

a natural innovation sequence of the primary transplantation technologies. Understanding the

implications of each new technology on OPTN’s dual goals of efficiency and equity is clearly of

paramount importance.

1The Final Rule OPTN Charter, retrieved from http://optn.transplant.hrsa.gov/ContentDocuments/OPTN CHARTER II -

NOV 04.pdf on 12/22/2014.
2While traditional matching models mostly focus on discrete settings, the use of large market and continuum

models had become increasingly common over the last decade, especially in the context of market design applications.

These models include Kojima and Pathak (2009), Che and Kojima (2010), Lee (2011), Azevedo and Budish (2012),

Azevedo and Leshno (2013),Kojima, Pathak, and Roth (2013), Liu and Pycia (2013), Ashlagi and Roth (2014).

2



With the introduction of each of these technologies, the supply of donated organs available

for transplantation potentially increases. Thus, each innovation potentially increases the efficiency

of the organ-allocation system. However, for organs that require blood-type compatibility, the

introduction of living donor transplantation can potentially increase the inequity between various

patient groups. That is indeed what has been happening in the US for the case of kidneys. Similarly,

living donor organ exchange can further increase the inequity between certain patient groups. There

is an intuitive explanation for this phenomenon: It is much harder for blood-type O patients to

benefit from live donation or living donor organ exchange than patients of other blood types. That

is because in the absence of other complications,

1. while a blood-type O patient needs a blood-type O kidney for transplantation,

2. a patient of blood-type A or B can receive a transplant from either a same blood-type donor

or a blood-type O donor, and

3. a patient of blood-type AB can receive a transplant from any blood-type donor.

Using our model, we analyze the impact of each new technology on the number of patients of various

groups who receive a transplant and characterize the average waiting time for those patients who

are fortunate to be able to receive one. Our results support the empirical observation that while

living donor transplantation and living donor organ exchange both enhance the overall welfare of

the patient population, they are potentially detrimental to equity across patients of different blood

types.

To introduce our third and main contribution, it will be helpful to give some background on

the current status of living donor organ exchange. This practice is in its infancy with a handful

of exchanges in the world for the case of liver transplantation. Moreover, it currently accounts for

about 3% of transplants in the US for the case of kidneys. Transplants from kidney exchanges

only increased in the last decade, benefiting considerably from a successful collaboration between

economists and members of the transplantation community. In the early 2000s, along with Alvin

Roth, we formulated kidney exchange as a market design problem. Building on existing practices

in kidney transplantation, we analyzed in Roth, Sönmez, and Ünver (2004, 2005b, 2007) how an

efficient and incentive-compatible system of exchanges might be organized, and what its welfare

implications might be. Through a collaboration with members of the New England transplantation

community, we formed the first organized kidney exchange clearinghouse that utilized tools from

optimization, matching theory, and market design. The methodology and techniques advocated in

our research program provided the backbone of several kidney exchange programs in the US and

the rest of the world. Our research program and interactions with the transplantation community

revealed that the following five elements are especially important to the design and implementation

of a successful kidney exchange program:

1. organization and optimization of the exchange,

2. utilization of gains from larger exchanges,
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3. integration of good samaritan donors (a.k.a. non-directed donors) to exchange via kidney

chains,

4. inclusion of compatible pairs,

5. utilization of economies of scale via larger kidney exchange programs.

Of these five elements, while the former three have been largely embraced by the transplantation

community and successfully utilized by several kidney exchange programs, the success of the latter

two elements has so far been limited. For kidney exchange to realize its full promise, it is important

to address the failure to include compatible pairs in exchange pools as well as utilizing gains of

scope via a unified national exchange program rather than several smaller programs.

We will build on the following observation to introduce an incentives program that will not only

encourage participation of compatible pairs, but also support the goal of unification of programs

under a large national kidney exchange program: on the one hand countless blood-type O patients

with non-O donors are waiting for a potential exchange; on the other hand many O blood-type

donors donate directly to their non-O recipients. These non-O recipients thus use up kidneys

that are more sought after than they actually need. That is why inclusion of compatible pairs in

exchange is so critical. How can compatible pairs be incentivized to participate in kidney exchange,

and hence, we avoid the current welfare loss? A natural possibility is offering cash incentives, but

cash incentives are currently taboo in much of the world. What we propose instead is the following

incentives program.

New Policy Proposal : If an O donor with a compatible non-O patient (or if an AB patient with

a compatible non-AB donor) participates in kidney exchange, even though he does not need to,

then the patient is given priority in the deceased donor queue in case he needs another kidney in

the future.

Under our proposed incentives scheme, participation of compatible pairs is incentivized with

an “insurance” for a potential future renal failure. This insurance is of value to patients because

transplanted kidneys last well below 20 years on average, and about 15% of kidney transplants are

repeat transplants. Our policy proposal might receive wider acceptance in the medical community

than cash incentives because such priority is already given to living donors: if a previous living

donor needs a kidney transplant in the future, she is prioritized in the deceased donor queue. If

adopted, our incentive scheme might confer a major advantage on the US national kidney exchange

program run by the United Network for Organ Sharing (UNOS), since UNOS is also in charge of the

deceased donor queue. It would not be unrealistic to expect the national kidney exchange program

to thrive under this new policy. Using our model we analyze the impact of the introduction of our

incentives scheme on the welfare of patient population and analytically show that it increases the

welfare of all patient groups. Moreover, for realistic parameters, it also decreases inequity across

patients of different blood types. We also consider a model where patients can be listed in multiple

exchange programs, and show that at equilibrium the national program that adopts our incentives

program emerges as the only major program.
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2 A Dynamic Model of Transplant Patients

We consider a comprehensive dynamic organ transplantation model (for organs such as the heart,

kidney, liver, and pancreas) in which the deceased donor queue, live donation possibilities for

kidneys and livers, and living donor kidney and liver exchange can be incorporated. We consider

a continuum flow model in analysis where the cardinality of patients and donors who have arrived

at the same time are measured through one dimensional Lebesgue measures at a steady state. We

refer to this cardinality per unit time as measure.

Consider patients who need a particular organ transplant. Each patient is represented by his

blood type X ∈ T = {A,B,AB,O}. Suppose pX refers to the probability of having the X blood

type in the population distribution. We refer to the arrival measures of patients or donors as inflow

rates. We assume that πX is the inflow rate of new blood-type X patients. Suppose that in the

population of new patients, the expected lifetime while living with the disease is distributed with

a strictly increasing differentiable distribution function F (·)3 on the interval [0, T ].4 Thus, the

measure of X blood-type patients who are alive after t years on is given by πX [1− F (t)].5

In Table 1, survival rates, 1 − F (t), for kidneys are listed.6 At the steady state, when trans-

Time

6 mo. 1 yr. 2 yr. 3 yr. 4 yr. 5 yr.

On dialysis (for kidneys) 84% 75% 61% 50% 42% 34%

Table 1: Survival rates (1− F (t)) for kidney failures in the US.

plantation option is not present, the total mass of X patients is
∫ T
0
πX [1 − F (t)]dt.7 (cf. Figure

1.)

3I.e., the probability density function f(·) is well defined and positive in (0, T ).
4This expectancy is different for different organs due to disease progression and techniques that can be used to

substitute for the deficiency in the body because of the failing organ. For example, kidney patients who can live on

dialysis have in general longer survival times.
5Hence, πXdt is the two dimensional Lebesgue measure of patients who enter in a small time interval dt. By a

slight abuse of terminology, throughout the paper we will refer to the two dimensional Lebesgue measures of agent

sets, such as πXdt, as mass.
6The kidney data include 2005 estimates for dialysis patients reported in the National Kidney Organization 2012

Annual Report retrieved from http://www.usrds.org/2012/pdf/v2 ch5 12.pdf on 02/25/2012.
7Although we assume that inflow rate of patients is constant over time, we could easily make it a function of

time as well. For example, population growth is a reason for increase of inflow rate. Increase in longevity is another

reason, which not only affects πX but also F , as older people have a higher tendency to need organ transplantation.

These can be incorporated in our model easily. In that case a steady state does not exist. However, we can carry

on all of our analyses in this paper and draw similar results in that model as a function of time. For simplicity and

transparency of our analyses, we will use a model with constant inflow rates.
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Figure 1: Steady-state X patient distribution over waiting time when organ transplantation is not

possible. The shaded area is the mass of patients who are alive at any point in time.

3 Organ Transplantation and Deceased Donor Queue

The best remedy for organ failure is transplantation. A donor must be both blood- and tissue-type

compatible with the patient before her organ(s) can be transplanted. O donors are blood-type

compatible with all patients. A donors are blood-type compatible with A and AB patients, and

B donors are blood-type compatible with B and AB patients. On the other hand, AB donors

are blood-type compatible only with AB patients. Blood-type compatibility is formally defined

through a partial order . over blood types, such that X . Y means that X donors are blood-type

compatible with Y patients. Blood type distribution among US ethnic groups is reported in Table

2.8 In general, O blood type is the most common, while AB is the rarest, A is observed more

commonly than B, while their rates vary substantially across ethic groups: B has a strong presence

among Asian- and African-American groups, while this is not the case for white Americans. The

regional blood-type distributions are similar geographically according to the origins of the US ethnic

groups.

Once a donor is deemed compatible with a patient, she also has to be tissue-type compatible

with the patient. Tissue-type compatibility requires that the patient’s body has no pre-formed

antibodies against the donor’s DNA. Throughout the paper we assume that given a patient and a

blood-type compatible donor, tissue rejection occurs with a probability θ < 1.9 For some organs,

8Retrieved from http://bloodbook.com on 03/18/2013. The US general population is constructed using the ethnic

proportions and could be slightly different from the general distributions reported in other sources.
9In real life, tissue rejection probability may be different across the patient population. In those cases, we can
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such as the liver, tissue rejection is not an important problem. In those cases, we can assume θ ≈ 0.

On the the other hand, for other organs, such as the kidney, tissue rejection rate is significant, and

hence, θ > 0.

Blood Types Pop. %

O A B AB — (1992)

African American 49% 27% 20% 4% 12.4%

Asian American 40% 28% 27% 5% 3.3%

Native American 79% 16% 4% 1% 0.8%

White American 45% 40% 11% 4% 83.4%

US all 45.6 % 37.8% 12.6% 4%

Table 2: Blood Type Distribution in the US.

A common source of donation across organs is deceased donors. The deceased donor queue

is governed by a central entity. For example, in the US, for all organ types, UNOS is the federal

contractor that is in charge of the queue. We assume throughout the paper that any patient enrolled

in the queue remains in the queue until he receives a transplant or he dies.

We denote the inflow rate of the X deceased donors as δX < πX per unit time. Across blood

types, the ratio δX/πX need not be constant. For example, it is well known that among minority

communities, organ failure is more prominent than among the white American population, even

though deceased donation rates are not that significantly different. As the blood-type distribution

of minorities is different from the white American population, the ratio δX/πX is not constant

across blood types in the US: while a very high percentage of the donors, live or deceased, are

white Americans, the patient rate of white Americans is much lower than their donation rate for

kidneys and is higher only for lungs. On the other hand, for kidneys and hearts, the patient rate

of African-Americans is higher than their donation rate; while for kidneys and livers, the patient

rate of Asian-Americans is higher than their donation rate.10 Although these rates are distorted by

many other factors such as live donation possibilities, we can conclude that especially for kidneys

the ratio δB/πB is lower than that for other blood types.

When a transplanted organ, i.e., graft, fails, the recipient reenters the deceased donor queue

as if he were a new patient. Repeat patients’ survival function on the deceased donor queue is

“similar to” that of new entrants (for example, that is the case for kidneys), so we assume 1 − F
is also their survival function. We assume that φd is the steady-state fraction of the previous

recipients whose grafts fail and who reenter the deceased queue per new deceased donor transplant

instead assume, the rejection probability is a random variable θ̂ in [0, 1) with a continuous and integrable density

function and a well-defined mean θ, which is independently distributed from other attributes of a patient. This would

also work for our purposes.
10From the US Department of Health and Human Services - The Office of Minority Health web page for organ

donation https://minorityhealth.hhs.gov/templates/browse.aspx?lvl=3 & lvlid=12 retrieved on 02/25/2013.
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conducted.11,12 Thus, if at steady state a ε measure of X patients receive a deceased donor organ

at each instance, then a φdε measure of previous recipients will reenter the queue at each instance.

In 2005, 13.5%, 7.9%, 4.1%, 5.5% of all entering kidney, liver, heart, and lung patients, respectively,

were reentrants (Magee et al., 2007). In general, allocation policies do not differentiate primary

transplant patients from repeat transplant patients.

3.1 Deceased Donor Allocation Policies

The deceased donor organs are allocated through the points system of UNOS, which is a priority

mechanism. When a deceased donor arrives, the point total for each compatible patient is deter-

mined. The organ is offered to the patient with the highest point total. If it is rejected by the patient

or his doctor for any reason, then the organ is offered to the next patient, and so on. In general, dif-

ferent point schemes are used for different organs. Deceased donor allocation policies usually differ

across organs and across geographic transplant regions, although usually a centralized mechanism

is used in allocation. For example, for kidneys, at least on paper, ABO-identical allocation policies

are applied, while for organs for which medical urgency matters more, ABO-compatible allocation

is more common. That is, in the ABO-identical allocation policy, kidneys of blood-type X are

offered only to blood-type X patients.13 On the other hand, in the ABO-compatible allocation

policy, organs can be offered to any compatible patients. We inspect the welfare and distributional

consequences of these two policies separately.

Given a fixed blood-type allocation policy, the waiting time of a patient is often the most

significant contributor to the patient’s points of in deceased donor allocation for many organs such

as kidney, pancreas, or heart. Therefore, we will model deceased donor allocation using first-in-

first-out (FIFO from now on) queues for both the ABO-identical and ABO-compatible allocation

schemes.14

11 Fraction φd is formally calculated as follows: Suppose a measure ε of patients receive transplants at steady state

at each instance. If the patient’s life with a healthy graft ends, two things could be the reason: either the patient dies,

or the patient stays alive but his graft fails. Of the patients who leave the status of “living with a healthy graft,” let

h1(t) be the fraction that die after t years from the transplant and h2(t) be the fraction whose grafts fail after t years

from the transplant. Thus, we assume that a random patient’s expected lifetime with a healthy graft is distributed

with a differentiable distribution function H(·) in some interval [0, S] such that dH(t)
dt ≡ h(t) ≡ h1(t) + h2(t) where

t refers to the years that passed since the transplant. We assume that this distribution is independent of how

long the patient waited initially in the queue to receive his previous transplant. Then the inflow rate of patients

reentering the deceased donor queue is given by
∫ S

0
εh2(t)dt = ε

∫ S

0
h2(t)dt. We set φd =

∫ S

0
h2(t)d(t). Observe that

φd <
∫ S

0
h(t)d(t) = 1.

12For simplicity, we assume that it is constant, although it may possibly change as the age distribution of the

patients receiving transplants changes in the deceased donor queue, i.e., it may be a function of the waiting time.
13 In the event that no X patient is available, then the organ is offered to a compatible patient. However, this is the

application in the US. On the other hand, Eurotransplant uses full ABO - compatible scheme, and UK Transplant

permits O organs to be transplanted to B patients, especially for kidneys (cf. Canadian Council of Transplantation

documentation for “Deceased donor allocation in US, Europe, Australia, and New Zealand” released in October

2006).
14UNOS has switched to a new deceased donor kidney allocation scheme that will use a quality-based allocation
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We use the notation ts1,s2;s3X for the average waiting times conditional on receiving transplants.

In this notation, the subscript refers to the patient’s blood type. Moreover:

1. Superscript s1 refers to the population of patients, with s1 = a to denote the waiting time

for all deceased and live donation recipients and s1 = q to denote the waiting time in the

deceased donor queue or for living donor exchange pool for a specific patient group, whichever

is appropriate.

2. Superscript s2 is the transplantation technology we explore with

• s2 = d to denote deceased donor transplantation only, to which we will refer as deceased

donor transplantation technology for short,

• s2 = l to denote deceased and living donor transplantation, to which we will refer as

living donor transplantation technology for short,

• s2 = e to denote deceased and living donor transplantation with incompatible pair

exchange, to which we will refer as (regular) exchange technology for short, and

• s2 = i to denote deceased and living donor transplantation with incompatible and in-

centivized compatible pair exchange, to which we will refer as incentivized exchange

technology for short.

3. Superscript s3 refers to deceased donor allocation policy with s3 = i to denote ABO-identical

FIFO allocation and s3 = c to denote ABO-compatible FIFO allocation.

We state the following lemma, which will help us model the steady state of the deceased donor

queue.15

Lemma 1 (FIFO matching protocol) Consider the FIFO matching protocol. Suppose that there

is an ordered ω measure of X patients available in the queue and a σ ≤ ω measure of blood-type

compatible donors arrive. Then

1. if σ = ω, then all donors, except possibly a finite (and thus of 0 measure) of them, are almost

surely matched; and

2. if σ < ω, then all donors are almost surely matched.

3.2 Steady State of the Deceased Donor Queue

We are ready to characterize the steady state of the deceased donor queue under the two FIFO

allocation policies.

scheme for 20% of all allocation, while 80% of all allocation will continue to be done through its current FIFO-type

policy.
15This is in spirit similar to the Erdös and Rényi (1960) random graph convergence result. However, in substance

it is different, as we are not using the maximal matching policy as in Erdös and Rényi (1960) but rather the FIFO

matching policy.
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Figure 2: Steady-state X deceased donor queue under the ABO-identical deceased donor trans-

plantation technology: Incoming deceased donors, of a δX measure, are matched with a δX measure

of the longest waiting patients at each time.

3.2.1 ABO-Identical Deceased Donor Transplantation

Consider any blood type X. In the steady state, as δX < πX , there will always be a positive mass of

X patients available in the deceased donor queue. Moreover, as FIFO protocol is used, the organs of

the δX measure will be allocated to the longest-waiting X patients in the queue. Thus, by Lemma 1,

these donors will be almost surely matched to the longest waiting cohort of δX measure of patients.

We make the following observation regarding reentries to the queue:

Observation 1 Under the ABO-identical deceased donor allocation policy, as a δX measure of X

patients receive transplants per unit time, a φdδX measure of previous recipients reenter the deceased

donor queue per unit time due to graft failure.

Let the receiving cohort have arrived tX years before the current point in time. As there is a

[πX + φdδX ][1− F (tX)] measure of patients in this cohort including reentries and new arrivals, we

should have

[πX + φdδX ][1− F (tX)] = δX .

Hence, at steady state, the time spent on the X queue by the receiving cohort can be found through

tX = F−1(1 − δX
πX+φdδX

) < T = F−1(1). This is also the waiting time for X patients conditional

on survival. Based on this analysis, we state the following characterization of the deceased donor

queue at steady state. (cf. also Figure 2.)
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Theorem 1 (ABO-identical deceased donor transplantation) Under the ABO-identical de-

ceased donor transplantation technology, at steady state, the waiting time for X patients conditional

on receiving a transplant is

tq,d;iX = F−1
(
1− δX

πX+φdδX

)
, (1)

which is also the average waiting time conditional on getting a transplant. Moreover, δX
πX+φdδX

is the

probability of a patient ever receiving a transplant. The mass of the patients in the deceased donor

queue is ∫ tq,d;i
X

0

[πX + φdδX ][1− F (t)]dt.

Proof. Immediately follows from the analysis preceding the theorem.16

3.2.2 ABO-Compatible Deceased Donor Transplantation

The following lemmata analyze the role of blood-type compatibility in the waiting times of different

blood types under the ABO-compatible deceased donor transplantation technology.

Lemma 2 Let X 6= Y be two blood types such that X . Y . Then under the ABO-compatible

deceased donor transplantation technology, waiting times of X and Y patients at steady state satisfy

tq,d;cY ≤ tq,d;cX .

We make the following formal definition of pooled blood types:

Definition 1 If blood types in some S ⊆ T donate organs only to the blood types in S and they

receive organs only from blood types in S at steady state, and there is no proper subset of S with

this property, then we say that blood types in S are pooled.

For example, if O organs are transplanted to A and B patients besides O, and A and B organs

are only transplanted to A and B patients, respectively, then {O,A,B} is a pooled set. On the other

hand, neither {O,A} is pooled (as O organs are also transplanted to B patients) or {A,B} is pooled

(as both A and B patients also receive O organs). The whole blood type set T = {O,A,B,AB}
is not pooled, either, as its proper subset {O,A,B} is pooled. Lemma 3 characterizes the waiting

times of pooled blood types:

Lemma 3 For two distinct blood types X and Y , if Y patients receive X organs at steady state

under the ABO-compatible deceased donor transplantation technology, then tq,d;cX = tq,d;cY .

Moreover, if blood types in S ⊆ T are pooled together, then the waiting time of each X ∈ S is

given by

tq,d;cX = tS ≡ F−1
(

1−
∑

X∈S δX∑
X∈S(πX+φdδX)

)
(2)

16Average and deceased donor waiting times are identical, as the only means of transplantation is deceased donors

under this technology.
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Observe that tq,d;iX = t{X} as defined in Equation 2 for all blood types X.

Using Lemmata 2 and 3 together with the FIFO feature of the deceased donor allocation policy

and the partial order structure of the blood-type compatibility relationship, we can determine

which types will be pooled together under the ABO-compatible deceased donor transplantation

technology:

Theorem 2 (ABO-compatible deceased donor transplantation) At steady state, suppose Y

blood type has the longest ABO-identical allocation waiting time and X blood type has the short-

est ABO-identical allocation time among all blood types W with W . Y . Suppose further that

tq,d;iX < tq,d;iY . Then X and Y patients will be pooled together (possibly with other types) under

ABO-compatible allocation. Moreover, we can treat X and Y together as a composite blood type

{X, Y } with deceased donor inflow rate δ{X,Y } = δX + δY and patient inflow rate π{X,Y } = πX + πY

such that W . {X, Y } for all blood types W with W . Y , and {X, Y } . Z for all blood types Z with

X . Z.

Theorem 2 can be used iteratively to determine the ABO-compatible deceased donor transplan-

tation waiting times for all blood types with the simple mathematical fact that for all a, b, c, d > 0

whenever a
b
< c

d
we have a

b
< a+c

b+d
< c

d
:

Pooling procedure for blood types for ABO-compatible deceased donor transplantation:

1. Find all waiting times tX as defined in Equation 2 for all X ∈ T .17

2. Suppose X has the longest tW among all W ∈ T . Let Y have the shortest tW among all

W ∈ T with W .X.

(a) If Y = X then X is not pooled with any other blood type and tq,d;cX = tX . Repeat Step

1 for the remaining blood types T \ {X}.
(b) If Y 6= X then X is pooled with Y (possibly together with other types). Replace the

two blood types X and Y with the composite blood type S = X ∪ Y and update the

blood-type compatibility partial order . as defined in Theorem 2. Repeat Step 1 for the

new blood type set T :=
(
T \ {X, Y }

)
∪ {S}.

4 Living Donor Transplantation

Organs such as the kidney, liver, and lung have live donation possibilities. Live donation is especially

common for kidneys. In 2011, 34% of all kidney transplants in the US were from living donors.

We will refer to a living donor as a paired donor. We will assume that each patient has at

most one paired donor. We assume that a λ ∈ [0, 1] fraction of incoming patients have a paired

donor. We also assume that the blood types of the patient and the donor are independent and

17With a slight abuse of notation, even if X is not a set, it also refers to the set {X}.
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uncorrelated. We will refer to a patient with a paired donor as a paired patient and a patient

without a paired donor as a single patient.18 The patient and his paired donor are represented

as a pair. The blood types of the pair, X − Y ∈ T × T , X being the patient’s and Y being the

donor’s blood type, determine the type of the pair.

If the paired donor of a patient is both blood- and tissue-type compatible, we refer to the pair as

a compatible pair, and otherwise as an incompatible pair. Recall that by assumption there is a

θ probability chance that a blood-type-compatible donor is tissue-type incompatible with a patient.

Given a paired patient, let pY be the probability of his paired donor to be blood type Y .

Transplanted organs from living donors can also fail, as in the case of transplants from deceased

donors. As in the case of deceased donors, we assume that reentering patients have the same survival

function 1 − F as new patients. However, it is well known that living donor grafts survive longer

than deceased donor grafts. We assume that φl ≤ φd is the fraction of live donation recipients

reentering the deceased donor queue per each living donor organ transplant at steady state. We

further assume that the reentrants (who received a graft previously from either a deceased donor

or a living donor) are single (and no longer paired) upon reentry.

Consistent with the donation rates throughout the world, in the rest of the paper we assume

the following:

Assumption 1 There is a shortage of deceased donor organs even in the absence of paired patients,

i.e., (1− λ)πX + φdδX ≥ δX for all X ∈ T .

We can calculate the inflow rates of compatible and incompatible pair types:

• An O patient needs an O donor. Thus, (1− θ)pOλπO is the inflow rate of O patients with a

compatible paired donor. On the other hand, θpOλπO is the measure of incompatible O − O
pairs, pY λπO is the measure of O − Y pairs with Y ∈ {A,B,AB}, who are all incompatible.

• An X ∈ {A,B} blood-type patient can get an organ from O or X donor. Thus, given

Y ∈ {X,O}, (1− θ)pY λπX is the inflow rate of X patients with a compatible Y living donor;

on the other hand, θpY λπX is the measure of incompatible X − Y pairs. We have pY λπX as

the inflow rate of X−Y pairs with Y ∈ {A,B,AB}\{X}. The latter are incompatible pairs.

• An AB patient can get an organ from all blood-type donors. Thus, (1−θ)pY λπAB is the inflow

rate of compatible AB − Y pairs, and θpY λπAB is the inflow rate of incompatible AB − Y
pairs for all Y ∈ T = {O,A,B,AB}.

For a paired patient of blood type X, let plX denote the probability that his paired donor is compat-

ible with the patient. Thus, plXλπX is the inflow rate of X patients with compatible living donors.

18In reality, if the paired donor is a blood relative of the patient, the blood types of the patient and donor are

correlated through degree of relation and laws of genetics. Hence, potentially figuring out the exact correlation can

be complicated. For our purposes, we simply assume that the blood types of the patient and his paired donor are

uncorrelated to make our arguments.
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These patients receive organs from their paired donors upon entry, and they do not wait in the

deceased donor queue. We make the following observation regarding the allocation and reentry

measures of deceased and living donor organ recipients:

Observation 2 At steady state,

• a plXλπX measure of X patients receive live donation per unit time without waiting in the

deceased donor queue, and hence, a φlplXλπX measure of previous live donation recipients

reenter the deceased donor queue per unit time; and

• a δX measure of X patients receive deceased donor organs per unit time under ABO-identical

FIFO allocation policy, and hence, a φdδXπX measure of previous deceased donation recipients

reenter the queue per unit time.

Hence, the total inflow rate of patients entering or reentering the X deceased donor queue under

the ABO-identical FIFO allocation policy is given as

πq,l;i
X = πX︸︷︷︸

new patients

+ φdδX︸ ︷︷ ︸
reentry / deceased

+ φlplXλπX︸ ︷︷ ︸
reentry / live

− plXλπX︸ ︷︷ ︸
=lX: compatible pairs

. (3)

Above, “reentry / deceased” and “reentry / live” refer to the reentering previous deceased and living

donor organ recipients, respectively. Equation 3 and Observation 2 imply that the ABO-identical

allocation waiting time conditional on survival in the X deceased donor queue is given by (cf. Figure

3)

tq,l;iX = F−1
(

1− δX

πq,l;i
X

)
. (4)

The average waiting time for patients under living donor transplantation technology conditional

on receiving a transplant is substantially less for all blood types than those under the deceased

donor transplantation. Many patients have compatible living donors, and they immediately receive

a transplant without waiting. Hence, the average waiting time is

ta,l;iX =
δXt

q,l;i
X

δX + plXλπX
(5)

conditional on receiving a transplant under the ABO-identical deceased donor allocation policy.

The analysis in Theorem 2 can be used to find which blood types are pooled together under

the ABO-compatible deceased donor allocation policy by using πX + φlplXλπX − plXλπX instead of

πX for all X. This analysis also helps us pin down the waiting times in the deceased donor queue

under ABO-compatible allocation. In particular, we will make use of the following lemma:

Lemma 4 Fix a blood type X. Under living donor transplantation, the ABO-compatible deceased

donor allocation waiting time for every blood type Y , tq,d;cY , is continuous and weakly increasing in

πX and continuous and weakly decreasing in δX ; moreover, tq,d;cX is strictly increasing in πX and

strictly decreasing in δX .
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Figure 3: Steady-state X patient deceased donor queue under the living donor transplantation

technology with ABO-identical deceased donor allocation: Inflow rate πX of patients increases by

the inflow rate of reentering previous deceased and live donation recipients, φdδX and φlplXλπX ,

respectively; and decreases by plXλπX , the outflow of paired patients who immediately receive an

organ from their compatible donors.
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We are ready to make a more detailed analysis of how different blood types are affected by the

availability of live donation. Due to the partial-order structure of blood-type compatibility across

blood types, not all blood types will be affected equally when live donation is possible. For example,

O blood-type paired patients are at a disadvantage in finding a compatible paired donor. In general,

A blood type is more prominent in the population than B. Therefore, at random, A blood-type

paired patients will have a higher chance of finding a compatible donor than B types, given that

they can all receive from O blood-type donors as well as their own types. Finally, AB blood-type

paired patients have the highest chance of a compatible paired donor.

However, depending on the exact shape of the survival function, 1−F and the deceased-donor-

to-new-patient inflow rate ratios across blood types, δX/πX , O blood type does not necessarily

experience the lowest decrease in waiting time, and AB blood type does not necessarily experience

the greatest improvement.

On the other hand, for the benchmark case, where δX/πX , the deceased donor to new patient

inflow rate ratio, is the same for each blood type, we can make unambiguous predictions.19

Theorem 3 (Living donor transplantation and inequity in waiting times) Suppose Assump-

tion 1 holds. Living donor transplantation will unambiguously decrease the steady state ABO-

identical and ABO-compatible deceased donor and overall average donor waiting times for all blood

types.

Consider the benchmark case that the ratio δX/πX is constant across all X ∈ T . Then, under

living donor transplantation, no blood types pool under ABO-compatible deceased donor allocation.

Furthermore, both for ABO-identical or ABO-compatible policies and both for deceased and living

donor transplantation technologies, the following hold:

• O patients have the lowest waiting time decrease;

• AB patients have the highest waiting time decrease; and

• provided that pA > pB, A patients have a higher waiting time decrease than B patients.

In particular, if pA > pB, then the deceased donor queue waiting times (conditional on receiving a

transplant) satisfy tq,l;cO = tq,l;iO > tq,l;cB = tq,l;iB > tq,l;cA = tq,l;iA > tq,l;cAB = tq,l;iAB , and the average waiting

times (conditional on receiving a transplant) satisfy ta,l;cO = ta,l;iO > ta,l;cB = ta,l;iB > ta,l;cA = ta,l;iA >

ta,l;cAB = ta,l;iAB .

Another simpler metric we can use to measure efficiency and inequity of different transplantation

technologies is to compare the ratio of the transplant measure to the new patient inflow rate.

We refer to this metric as the transplant ratio of a technology. It will be a crucial metric for

19Although these conclusions seem to have been reached with the help of our assumption that blood types of

patients are uncorrelated with their paired donors, a version of this result will also hold true even if there is positive

correlation in a pair’s blood types; however, the magnitude of the difference in eventual waiting times will not be as

extreme.
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comparison for marginal inequality caused by different transplantation technologies. This will be

also independent of additional assumptions on the shape of survival rate function 1− F .

Let lX = plXλπX be the inflow rate of X patients with compatible donors. Then lX/πX is

the live donation transplant ratio for X patients, and δX/πX is the blood type X deceased

donation transplant ratio under the ABO-identical policy. We have the following result:

Theorem 4 (Living donor transplantation and inequity in transplant ratios) Suppose As-

sumption 1 holds. Living donor transplantation unambiguously increases transplant ratios for all

blood types. Moreover, live donation transplant ratios satisfy lO/πO < lA/πA, lB/πB < lAB/πAB,

i.e., O patients benefit marginally the least and AB patients marginally benefit the most from living

donor transplantation technology. Additionally, if pA > pB, then lB/πB < lA/πA, i.e., A patients

marginally benefit more than B patients.

5 Living Donor Exchange

In this section we analyze the effect of having a living donor exchange program on waiting times of

different patient groups. In practice, a paired donor usually donates directly to her paired patient,

and the patient leaves the pool before he ever enters the deceased donor queue. For the incompatible

pairs, we assume that a living donor exchange program operates in parallel with the deceased donor

queue. Incompatible pairs are listed in the exchange program. While waiting for a deceased donor

organ in the queue, patients also wait for an exchange to be conducted with another incompatible

pair.

Formally, a two-way exchange matches two pairs where the patient of the first pair is compatible

with the donor of the second pair and the patient of the second pair is compatible with the donor

of the first pair. We refer to such pairs as mutually compatible pairs.20 We also say that if the

donor of the first pair is blood-type compatible with the patient of the second pair and vice versa,

then these pairs are mutually blood-type compatible. We refer to the queue of the pairs in the

exchange program as the exchange pool. An exchange matching is a set of exchanges between

mutually compatible pairs such that each pair is matched in at most one exchange. For a given

pair type X − Y , we refer to Y −X as its reciprocal type.

We will assume that the donor exchange is conducted in an optimal manner by matching the

most measures of pairs at each point in time.21

Not all incompatible pairs are relatively abundant. For example, far fewer measures of incom-

patible A − O patient-donor pairs exist in the exchange pool than O − A pairs. A − O pairs are

20We can also think of exchanges that can match more than two pairs, such as three-way, four-way, etc. For

simplicity, we focus on two-way exchanges in our analysis. However, our results can easily be extended to cover

larger exchange sizes as in Roth, Sönmez, and Ünver (2007). Any sizes of exchanges greater than four will not

change the results as reported in that paper.
21This myopic exchange method turns out to be also dynamically optimal. While selecting among a particular

pair from a given type X − Y , organ exchange is also performed on a FIFO basis (cf. Theorem 5).
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incompatible only if there is tissue incompatibility between the A patient and O donor, while O−A
pairs are always incompatible.

Based on this observation, we make the following assumption:

Assumption 2 For any incompatible pair type X−Y such that X 6= Y and X.Y , its inflow rate to

the exchange pool is not less than the inflow rate of its reciprocal type Y −X, i.e., θpXπY ≤ pY πX .22

Another assumption concerns the prevalence of A − B and B − A types. This assumption is

made for notational convenience; a symmetric version of the results would hold if we did not make

this assumption, without loss of generality.

Assumption 3 A−B pairs do not inflow any slower than B −A pairs to the exchange pool, i.e.,

pAπB ≤ pBπA.23

To give an idea of how easily this assumption is satisfied, recall that for kidneys, we have θ ≈ 0.1

and for livers, θ = 0. For all organs with exchange programs, this inequality holds with a good deal

of slack for all populations.

Through Assumptions 2 and 3, all incompatible X−Y pairs with Y .X and X−Y = B−A pairs

can be matched immediately with Y −X pairs, as Y −X pairs will always be more in mass than

X − Y pairs in the exchange pool. Observe that the probability of mutual compatibility between

an X−Y pair and and a Y −X pair is (1− θ)2 > 0. We state a slightly different version of Lemma

1 for exchange:

Lemma 5 (Exchange matching protocol) Consider an ω measure of pairs denoted by the set

M and a σ ≤ ω measure of pairs denoted by set N (possibly intersecting with M), that are mu-

tually blood-type compatible with the pairs in M . Suppose these sets are formed randomly using

the governing population distributions. Then, there almost surely exists an exchange matching that

matches all pairs in N with pairs in M .

Proof. It follows from the random graph convergence theorem of Erdös and Rényi (1960).

Using the terminology in Ünver (2010), we classify the pairs into several categories, based on

their desirability in exchange.

Overdemanded pair types are the ones with a blood type donor who can donate to her

patient’s blood type yet who is not of the same blood type. These are A − O,B − O,AB −
A,AB − B,AB − O types. Underdemanded pair types are those with a blood type donor

who cannot feasibly donate to her patient’s blood type, excluding types A-B and B-A. That is,

22 A simple requirement that would make the assumption hold is that the ratio of live donation and patient inflow

rates are similar across blood types; i.e., pX/πX ≈ pY /πY for all blood types X,Y . This would be ensured if live

donation and illness rates are not too different for different blood types.
23On a separate note, for kidneys Terasaki, Gjertson, and Cecka (1998) report that A−B pairs make up of 5% of

all pairs while B −A pairs make up of 3%. However, our assumption has nothing to do with this observation.
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underdemanded types are reciprocals of overdemanded types, i.e., O−A,B−O,A−AB,B−AB,O−
AB. Reciprocally demanded pair types are A−B and B−A, as they can be matched with each

other in a donor exchange, when tissue incompatibility does not exist. Finally, self-demanded

pair types are those with the same blood-type donor and patient: O−O,A−A,B−B,AB−AB.

The names associated with these classes will be more meaningful after our analysis. The following

lemma shows the role of overdemanded types in exchange (similar results were also reported in Roth,

Sönmez, and Ünver, 2007; Ünver, 2010):

Lemma 6 (Exchange blood-type feasibility) An underdemanded type pair can be matched only

with an overdemanded type pair in an exchange. An overdemanded type pair can be matched

with an overdemanded, underdemanded, reciprocally demanded, or self-demanded type pair. A

reciprocally demanded type pair can be matched with a (reciprocal of its type) reciprocally demanded

or overdemanded type pair. A self-demanded type pair can be matched with a same type or overde-

manded type pair. In particular:

• An underdemanded O−A (or O−B) pair can be matched only with a pair from overdemanded

types A − O (or B − O) or AB − O. An underdemanded A − AB (or B − AB) pair can be

matched only with a pair from overdemanded types AB − A (or AB − B) or AB − O. An

underdemanded O − AB pair can be matched only with an overdemanded AB −O pair.

• A reciprocally demanded A−B (or B−A) pair can be matched only with a pair from the other

reciprocally demanded type B − A (or A − B) or overdemanded types AB − A (or AB − B)

or AB −O.

• A self-demanded X −X pair can be matched with a same type pair. Additionally, an O − O
pair can be matched only with a pair from overdemanded types A−O,B −O, or AB −O; an

A−A (or B−B) pair can be matched only with a pair from overdemanded types AB−A (or

AB−B) or AB−O; and an AB−AB pair can be only matched with a pair from overdemanded

types AB − A,AB −B, or AB −O.

Next, we model how the exchange pool and deceased donor queue evolve at steady state. In

this section, we focus on ABO-identical deceased donor allocation. Living donor exchange is mostly

prevalent for kidneys, and kidney deceased donor allocation is mostly ABO-identical. Recall that

only incompatible pairs participate in exchange. It turns out that we can conduct optimal two-way

exchanges in an ABO-identical manner as well. We can match X − Y pairs with Y − X pairs as

they become available. We show that this is optimal in the sense that the measure of exchange

transplants at each instance is maximized. We discuss ABO-compatible policies for deceased donor

allocation together with optimal exchange in Appendix A as it requires substantially different tools.

We characterize the FIFO ABO-identical exchange as an optimal policy as follows:24

24A result that is similar but logically independent form ours was proven in Ünver (2010) for discrete problems

with waiting costs.
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Theorem 5 (FIFO ABO-identical exchange is optimal) Suppose Assumptions 2 and 3 hold.

Then the exchange policy, immediately matching each arriving pair with the longest-waiting mutually

compatible pair of its reciprocal type, is optimal.

Moreover, this policy maximizes the mass of pairs that can be matched within any time interval.

In particular, it matches a larger mass of pairs than the alternative policy of running the exchange

only once at the end of the time interval.

With the availability of exchange, we separate patients into different groups based on their blood

type and donor status as single, paired with a compatible donor, or paired with an incompatible

donor. We can measure the efficiency and equity effects of each technological regime change on

these groups. There are 29 patient groups based on these two criteria.

As we will prove (in Theorem 6 below) that compatible and incompatible pairs of blood-type

compatible types receive transplants at time 0 (under the ABO-identical optimal exchange), we do

not distinguish them in our discussion. Therefore, we denote each patient group by the pair type

X − Y if the patient is paired and by the blood type X if the patient is single.

Through Theorem 5, we compute the measure of X patients matched through exchange

under the above-described optimal exchange policy, denoted as eX for all X ∈ T :

eO = θpOλπO︸ ︷︷ ︸
O−O pairs

+ θpOλ(πA + πB + πAB)︸ ︷︷ ︸
O−A, O−B, O−AB pairs

,

eA = θpAλπA︸ ︷︷ ︸
A−A pairs

+ θpOλπA︸ ︷︷ ︸
A−O pairs

+ pAλπB︸ ︷︷ ︸
A−B pairs

+ θpAλπAB︸ ︷︷ ︸
A−AB pairs

,

eB = θpBλπB︸ ︷︷ ︸
B−B pairs

+ θpOλπB︸ ︷︷ ︸
B−O pairs

+ pAλπB︸ ︷︷ ︸
B−A pairs

+ θpBλπAB︸ ︷︷ ︸
B−AB pairs

, and (6)

eAB = θpABλπAB︸ ︷︷ ︸
AB−AB pairs

+ θ(pO + pA + pB)λπAB︸ ︷︷ ︸
AB−O, AB−A, AB−B pairs

.

We use these measures to analyze how the availability of exchange affects the waiting time in

the deceased donor queue. We continue to focus on ABO-identical deceased donor allocation. As

more patients receive living donor transplants under exchange technology than under living donor

transplantation technology, the waiting times of patients improve across all blood types. Some of

these pairs are matched immediately as they enter the pool. These belong to overdemanded or

self-demanded types, or the less abundant reciprocal type B − A. And some pairs are matched

only after waiting in the pool. As a result, not all of them receive transplants, since some of

their paired patients die while waiting. These pairs belong to underdemanded types or the more

abundant reciprocal type A − B. They wait in the exchange pool and the deceased donor queue

simultaneously, and either

• are “pooled” with single patients of the same blood type in the deceased donor queue, so that

simultaneously some of them will receive deceased donor organs and some will participate in

exchange; or
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• wait for less time than their cohort of single patients and participate exclusively in exchange.

To determine the waiting times, for each blood type X, let

πeX−Y =

{
θpY λπX if Y . X

pY λπX otherwise
(7)

refer to the exchange pool X − Y inflow rate, and let

πdX = (1− λ)πX︸ ︷︷ ︸
new w/o living donors

+ φdδX︸ ︷︷ ︸
reentry / deceased

+ φlplXλπX︸ ︷︷ ︸
reentry / live

+ φleX︸︷︷︸
reentry / exchange

(8)

be the single X patient inflow rate for reentrants and new single patients. We calculate the

following ratios for each blood type X:

1. The ratio of deceased donor inflow rate to single patient inflow rate (for new patients and

reentrants):

rdX =
δX
πdX

=
δX

(1− λ)πX + φdδX + φlplXλπX + φleX
.

2. For each underdemanded type X − Y (i.e., Y 6= X and Y . X), the ratio of incompatible

Y −X inflow rate to X − Y inflow rate :

rX−Y =
πeY−X
πeX−Y

=
θpXλπY
pY λπX

.

3. For reciprocal type A−B,

rA−B =
πeB−A
πeA−B

=
pAλπB
pBλπA

.

Ratio rdX = δX
πd
X

would be relevant if we wanted to allocate all X deceased donors to only X

single patients. For an underdemanded type X − Y or X − Y = A−B, ratio rX−Y =
πe
Y−X

πe
X−Y

would

be relevant if we did not want X − Y pairs to receive deceased donation, but only to participate

in ABO-identical optimal exchange. In these cases, conditional on survival, the waiting time of

single X patients would be tdX = F−1
(
1 − δX

πd
X

)
, and the waiting time of X − Y pairs would be

tX−Y = F−1
(
1− πe

Y−X

πe
X−Y

)
.25

However, underdemanded or reciprocally demanded X − Y pairs have another option besides

waiting for their reciprocal type pairs. If available deceased donors arrive earlier, they can receive

deceased donor transplants. We assume that patients accept the first donor who is offered to them

25The waiting time of B − A is 0 as this type is on the shorter side of the market when compared to A − B, by

Assumption 3.
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through deceased donor allocation or exchange.26 Hence, the patient of an X − Y type pair will

never wait for a Y − X pair for exchange if a deceased organ comes first, i.e. if tX−Y < tdX . As

time is decreasing in r ratios, all we need to do is to compare these ratios in an iterative manner to

decide whether any underdemanded type or A−B type will receive a deceased donor transplant:

Exchange technology pooling procedure for single and paired patients under ABO-identical de-

ceased donor allocation:

1. Let X − Y1, ..., X − Yk be the ordered list of underdemanded or reciprocally demanded types

ascending in rX−Y ratio. Define for each ` = 0, ..., k :

rdX,X−Y1,...,X−Y` =
δX + πeY1−X + ...+ πeY`−X
πdX + πeX−Y1 + ...+ πeX−Y`

. (9)

2. For ` ∈ {0, ..., k − 1}, suppose types X − Y1, ..., X − Y` have already been deemed to be

receiving both deceased donor and exchange transplants.

• If rX−Y`+1
< rdX,X−Y1,...,X−Y` then X − Y`+1 pairs receive both exchange transplants and

deceased donor transplants with the rest of the X single patients and X − Y1, ..., X − Y`
pairs. We continue with Step 2 with ` := `+ 1.

• If rX−Y`+1
≥ rdX,X−Y1,...,X−Y` then all types X − Y`+1, ..., X − Yk only receive exchange

transplants, but no transplants from deceased donors. We terminate the procedure.27

Based on this procedure, we state the following theorem:

Theorem 6 (Welfare effects of ABO-identical optimal exchange) Suppose Assumptions 1-

3 hold. Consider the ABO-identical deceased donor allocation and optimal exchange policies. Con-

sider a blood type X. Conditional on survival, the waiting time and the measure receiving donation

are given for subgroups of X patients as follows:

1. X paired patients with compatible donors immediately receive their donor’s organ upon entry.

26This assumption can be rationalized by the risk associated with dying while waiting for an organ and high risk

aversion. To model this choice explicitly under a wider class of preferences, we can introduce additional structure

regarding the cardinal preferences of the patients and the shape of the survival distribution 1 − F (t). The patients

could be willing to wait more for a living donor than a deceased one since a transplant from the former survives

longer. On the other hand, there is an associated trade-off since longer waits could result in death and with inferior

life quality to living with a functioning graft. The patients will be willing to wait as long as the second disutility

does not outweigh the first utility marginally. When 1 − F (t) is concave (i.e., for t < t′ dying at time t′ is more

likely than at time t), an incentive compatibility constraint would lead to a waiting time gap between willingness

to wait for exchange and for deceased donors: at steady state when patients can receive a deceased donor organ t

years after entry, each patient will be willing to wait at most τ(t) years additionally for a living donor organ. All

our calculations can be modified to include this time gap function without much change.
27When some X − Y pairs receive deceased donor transplants and later reenter the pool, whether the patient of

such a pair reenters as part of a new pair or he reenters without a living donor does not have any impact on waiting

times. As X − Y pairs will be pooled with X single patients, what matters is the total inflow rate of new and

reentering X − Y pairs and X single patients, which is the same under either assumption.
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2. X paired patients who are part of incompatible overdemanded or self-demanded type pairs and,

if X = B, then of B − A type pairs, immediately participate in an exchange upon entry.

3. Suppose patients of underdemanded and reciprocally demanded types X−Y1, ..., X−Y` receive

both deceased donor and exchange transplants while patients of underdemanded and reciprocally

demanded types X − Y`+1, ..., X − Yk receive only exchange transplants. Then:

• Conditional on survival, X single patients and patients of X − Y1, ..., X − Y` pairs wait

for a deceased donor or exchange transplant for

tq,e;iX = F−1
(

1− δX + πeY1−X + ...+ πeY`−X
πdX + πeX−Y1 + ...+ πeX−Y`

)
. (10)

• Conditional on survival, for all m ∈ {`+ 1, ..., k}, patients of X − Ymtype pairs wait for

an exchange transplant for

tq,e;iX−Ym = F−1
(

1− πeYm−X
πeX−Ym

)
. (11)

• The average waiting time for all X patients conditional on receiving a transplant is given

as

ta,e;iX =

[
δX +

∑`
m=1 π

e
Ym−X

]
tq,e;iX +

[∑k
m=`+1

[
πeYm−Xt

q,e;i
X−Ym

]
δX + eX + plXλπX

(12)

Proof. It follows from the procedure discussed before the statement of the theorem. For Equation

12 X patient inflow rate with compatible living donors, plXλπX and X patient inflow rate with

incompatible but blood-type compatible donors have 0 waiting time.

We are ready to state some inequity consequences of exchange. Although all blood types benefit

from exchange, O and AB patients benefit the least, and B blood types benefit the most under mild

conditions. We use the exchange transplant ratios, { eX
πX
}, for this comparison. However, when

we consider living donor and exchange transplant ratios, { lX+eX
πX
}, we see that O benefit the

least, A and B patients benefit more than O, and AB patients benefit the most. This results hold

in a benchmark model where no blood type is more likely to donate live than to get sick, i.e., when

live donation propensities are independent of blood type. Thus, although B is behind A in living

donor transplant ratio (provided that pB < pA as in the general population in the US and most of

the world; cf. Theorem 4), the increase coming through B’s exchange transplant ratio makes its

living donor and exchange transplant ratio level with that of A’s.

Theorem 7 (Living donor transplantation and exchange and inequity in transplant ratios)

Suppose Assumption 1 holds. Consider a benchmark model where the ratio of living donation rate

to patient inflow rate is the same among blood types, i.e., pX
πX

’s is the same among all X ∈ T . Then

transplant ratios satisfy:
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• For exchange only: eO
πO

= eAB

πAB
< eA

πA
, eB
πB

. If additionally pA > pB, then eA
πA

< eB
πB

• For living donor transplantation and exchange together: lO+eO
πO

< lA+eA
πA

= lB+eB
πB

< lAB+eAB

πAB
.

The intuition behind the first result comes from the fact that A and B have the additional advantage

of exchange from two tissue-type-compatible pairs that are blood-type incompatible, i.e. exchanges

between A−B and B−A pairs. In exchanges including AB or O patients, at least one pair should

be tissue-type incompatible, and this pair becomes available for exchange with θ < 1 probability.

Additionally, if pA > pB, then πA > πB holds as well in the benchmark model. Although A−B and

B − A pair types participate in exchanges in equal measures, such exchanges are percentage-wise

more beneficial for B patients, and thus, B has the highest exchange transplant ratio.

However, the exchange technology’s contribution by itself is not sufficient to change the inequity

caused by living donor transplantation in transplant ratios, as indicated by the second part of the

theorem. One additional remark: the transplant ratios of A and B come very close to that of AB

as a result of the exchange technology. To see this, observe that the added benefit for AB over

A or B of living donor transplantation and exchange is that AB patients get direct live donation

from AB donors while A or B patients cannot. As the AB blood type is rare in the population,

the aforementioned transplant ratios are very close.

6 A New Proposal: Incentivizing Compatible Pairs To Par-

ticipate in Exchange

One shortcoming of the current living donor exchange practices is that they utilize almost exclusively

incompatible pairs. As a result, many non-O patients receive transplants from anO donor, effectively

utilizing O organs in a highly inefficient way. However, if compatible pairs can be incentivized to

participate in exchange, then the lack of balance between reciprocal type pairs will be mitigated.

One sensible way of incentivizing compatible pairs to participate is to give their patients priority

in the deceased donor queue if their transplanted graft fails in the future. As noted earlier in the

Introduction, living donors are already incentivized in a similar manner. If a living donor’s organ

fails in the future, he will get priority in the deceased donor queue. A similar practice of prioritizing

not only the donor but also the patient of a compatible pair may face little resistance in the medical

community.

In this section, using the tools we developed in the earlier sections, we analyze the efficiency

and equity effects of such an incentive scheme. Thus, when a paired patient with a compatible

donor receives a transplant through exchange and this graft later fails, we assume that the FIFO

structure of deceased-allocation policy has been altered. In particular, such reentrants, who we refer

to as prioritized reentrants, are placed at the front of the queue. In this section, we analyze the

welfare effects of incentivized exchange with respect to its alternative, regular exchange.

We focus on an ABO-identical FIFO deceased donor allocation policy (except the prioritized

reentrants), as this is the primary policy adopted for kidney allocation and the kidney is the most
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Figure 4: An example of a steady-state A deceased donor queue under the ABO-identical regular

exchange technology (also with ABO-identical deceased donor allocation): Inflow rate πA of pa-

tients decreases by plAλπA = (1− θ)(pA + pO)λπA as a result of living donor transplantation and a

further eodA +esdA = θ(pA+pO)λπA as a result of exchange for A−O and A−A types at time 0. Under

Assumption 2, pAπB ≥ pAπB, and assuming A−B type pairs do not end up receiving any deceased

donor transplants, a measure of pAπB of A − B pairs participate in exchange at time deceased

donor at time tq,e;iA−B. Assuming that A−AB type pairs both receive deceased donor transplants and

participate in exchange, a measure of θpAλπAB of A − AB pairs participate in exchange at time

tq,e;iA . As a result, the waiting time of single A patients and pooled A− AB pairs decreases in the

deceased donor queue with respect to that under the living donor transplantation technology.
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common organ transplanted through living donor exchange.

Suppose an endogenous proportion ρ of all compatible pairs takes up the incentivized exchange

option. We will maintain the following assumption in this and the next sections.

Assumption 4 Compatible pairs may join the exchange pool only if an exchange is immediately

available, and thus exchange does not involve a waiting cost; that is, the inflow rate of any under-

demanded type X −Y (i.e., X .Y and X 6= Y ) and its reciprocal overdemanded type Y −X satisfy

[ρ(1− θ) + θ]pXπY ≤ pY πX .

This assumption ensures that the inflow rate of any underdemanded type is greater than the

inflow rate of its reciprocal type pairs, who are either incompatible or compatible and willing to

use the incentivized exchange option. This is a simplification. If this is not the case, the excess

inflow of paired patients with compatible donors will not wait for exchange, but will instead receive

transplants from their donors immediately. As a result, compatible pairs never wait.28

We assume that we give precedence in exchange to incompatible pairs of a type over its com-

patible pairs (if they exist).

Under this assumption, we first show that ABO-identical exchange is also optimal for incentivized

exchange technology (the analogue of Theorem 6, which was proved for regular exchange).

Theorem 8 (FIFO ABO-identical incentivized exchange is optimal) Suppose Assumptions

1, 3, and 4 hold. Under incentivized exchange technology, the following policy is optimal:

• For any self-demanded type, immediately match incompatible pairs of this type with each other

whenever feasible, and

• for any underdemanded type or type B − A, match the longest waiting pairs of this type with

their reciprocal incompatible or willing compatible pairs whenever feasible.

Moreover, this policy maximizes the mass of pairs that can be matched within any closed time

interval, and in particular, matches a larger mass of pairs than waiting for the pairs to arrive and

running the exchange once at the end of the time interval.

The following theorem outlines the predictable differences of the outcomes under exchange with

incentivized compatible pairs with respect to regular exchange.

Theorem 9 (Incentivized exchange and its efficiency and equity consequences) Suppose

Assumptions 1, 3, and 4 hold. Under the ABO-identical incentivized exchange technology (with

ABO-identical deceased donor allocation), with respect to regular exchange,

28This assumption also endogenizes ρ to some degree. In a general equilibrium of this model, ρ would be endoge-

nously maximized to match the maximum possible number of underdemanded pairs through exchange, so that if a

non-participating compatible pair were to try to participate in incentivized exchange, it would not be able to partici-

pate in exchange immediately and had to wait, contradicting equilibrium conditions. Hence, a version of Assumption

4 would hold endogenously.

26



1. a weakly higher measure of patients is matched for each patient group. In particular, under-

demanded type pairs are matched with a strictly higher measure.

2. No compatible pairs of type X −X participate in incentivized exchange for any X ∈ T (since

incompatible X −X blood types are matched with each other through regular exchange);

3. No O reentrants are prioritized; however, A, B, and AB reentrants from compatible pairs that

participated in exchange are prioritized.

4. Waiting times for underdemanded types strictly decrease. Waiting times for O, A, and B

single patients and their pooled pair types may increase or decrease. Waiting time for AB

single patients increases. Waiting time for other pair types was 0 under regular exchange and

does not change.

The proof of this theorem, especially of Statement 4, is also of independent interest. It quantifies

the conflicting effects that affect waiting times when we switch from regular exchange to incentivized

exchange. Additionally, Figure 5 provides an example for A patients under the incentivized exchange

technology illustrating these effects.

We also inspect the equity consequences of incentivized ABO-identical exchange with compatible

pairs in terms of transplant ratios.

We state the marginal measures of transplants (in addition to regular exchange technology) due

to the new technology:

iO = ρ(1− θ)pOλ(πA + πB + πAB)

iA = ρ(1− θ)pAλπAB
iO = ρ(1− θ)pBλπAB (13)

iAB = 0

Thus, iX/πX is the marginal incentivized exchange transplant ratio for blood type X.

We have the following theorem under a benchmark model:

Theorem 10 (Incentivized exchange and decrease of inequity in transplant ratios) Suppose

Assumption 1 holds and live donation rates are equal among blood types, i.e., pX/πX is a constant

among all X ∈ T . Then, incentivized exchange benefits O patients most, followed by A and B

equally, and does not benefit AB patients at all. That is, 0 = iAB

πAB
< iA

πA
= iB

πB
< iO

πO
. Moreover,

overall transplant ratios under incentivized exchange except deceased donor transplants satisfy

lO + eO + iO
πO

≤ lA + eA + iA
πA

=
lB + eB + iB

πB
≤ lAB + eAB + iAB

πAB
,

where weak inequalities all hold with equality if and only if ρ = 1.

Thus, incentivized exchange – to some degree – reverses the increasing inequity caused by the

previous technologies in waiting times and transplant ratios for O patients.
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Figure 5: An example of a steady-state A deceased donor queue under the ABO-identical incen-

tivized exchange technology (with also ABO-identical deceased donor allocation): A ρ ∈ (0, 1]

fraction of all compatible pairs participate in exchange. A φlρ(1− θ)pOλπA measure of reentrants,

who were previously paired with compatible O donors, are prioritized to receive deceased donor

transplants upon reentry. A−AB type is no longer pooled with A single patients, and a measure of

[θ+ρ(1− θ)pA]λπAB of A−AB pairs are matched through exchange (through all incompatible and

ρ fraction of compatible AB−A pairs). Single patients who are not prioritized could be negatively

or positively affected depending on the underlying parameters. We show in this figure a scenario

that makes them wait slightly longer. This figure is scaled differently with respect to the previous

ones to show the marginal effects of our proposal in detail.
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7 Numerical Policy Experiments

In this section, we report the results and predictions of numerical policy experiments. These are

based on our model to estimate the potential effects of the transplantation technologies discussed.

We especially inspect how our new proposal, incentivized exchange, affects efficiency and equity.

We gave theoretical predictions throughout the paper, the sharpest of which were obtained using

two benchmark models. In these models, we assume that deceased or live donation rates are equal

across all blood types.

We use the US OPTN kidney data for the year 2011. Our model’s backbone parameters such as

inflow rates for blood types, {πX}, have to be estimated from the data using our model (cf. Table

3).29 Living donor transplant data include both direct donation and transplants through exchange,

which were not widespread in 2011. We make two assumptions, which lead to lower and upper

bounds in our estimates. Assuming that all pairs that participated in exchange arrived in 2011, we

find an upper bound on inflow rates. And assuming that all pairs that participated in exchange

arrived before 2011, we find a lower bound. We also uncover the paired donor rate λ using our

model based on unobserved intended live donations that did not materialize. For example, an O−A
pair is not detectable from the data, as the A donor could not donate to O, and hence, there is

no recorded evidence for the existence of the pair. We had to calculate the numerical predictions

regarding this censored data using our model.

One immediate observation is that the benchmark model with equal deceased donation rates

does not fit very well for the US example (as mentioned before in the deceased donor transplantation

section). We find δB/πB = 28.75% < δAB/πAB = 33.19% ' δO/πO = 34.33% < δA/πA = 37.84%

for the upper bound calculation (lower bound is similar). Hence, we conclude that B blood types

get end-stage renal disease more often. Minorities are known to be more prone to kidney disease.

Moreover, B blood type is more common among minorities such as African-Americans and Asian-

Americans. Thus, this finding is not very surprising (as predicted in Section 3). Observe that the

deceased donor number distribution is almost consistent with the population blood type distribution.

Under living donor transplantation technology, waiting times for ABO-identical deceased donor

allocation are estimated as 5.33 years for B, 4.59 years for O and AB, and 3.90 years for A (see

Table 5, left pane, middle row).30 Deceased donor allocation is done on a more regional basis

than national. Moreover, a graft can easily go bad if a suitable patient is not found in time.

Thus, in practice, it turns out that on many occasions AB patients benefit from these and receive

transplants from other blood types (the same observation goes for A and B patients, who receive

from O deceased donors more often than necessary). Hence, in the guidelines, the ultimate decision

29Data source and relevant calibration parameters are summarized in Table 3.
30The previous OPTN policy (page 76, at http://optn.transplant.hrsa.gov/ContentDocuments/OPTN Policies.pdf

retrieved on 11/09/2014) states that B and O blood type organs should be given to their own blood types only.

The new policy adopted in December, 2014 explicitly calls first for ABO-identical allocation for majority of kidneys

(see throughout the policy at http://optn.transplant.hrsa.gov/ContentDocuments/Policy8 Update KAS 12-2014.pdf

retrieved on 11/10/2014).
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Blood Types Total

O A B AB

OPTN 2011 Data

Additions to the Queue 16, 240 11, 237 4, 832 1, 260 33, 568

Living Donor Recipients 2, 544 2, 256 743 227 5, 770

- through exchange 199 167 58 18 442

Deceased Donor Recipients (σX) 5, 050 3, 964 1, 420 592 11,026

Reentrants 905 690 256 80 1, 931

Median Waiting Years 5.07 3.31 5.30 2.34

Estimates

Deceased Donor Organs (δX) 5, 290 4, 026 1, 319 392 11, 026

Reentry Rate (φ) 11.92% 11.09% 11.84% 9.77% 11.50%

New Entrants (πX) high 15, 607 10, 805 4, 645 1, 198 32, 254

low 15, 408 10, 638 4, 587 1, 180 31, 812

Living Donor Rate (λ) low 31.11% 22.54% 24.86% 17.91% 26.85%

high 34.53% 24.98% 27.55% 19.90% 29.79%

Table 3: Arrivals to and transplants from the kidney deceased donor queue in 2011 in the US. Data

obtained from Organ Transplantation and Transplant Network (OPTN) using the “national data”

option from http://www.http://optn.transplant.hrsa.gov on 02/25/2013. Deceased donor numbers

are reported for each blood type separately, but not the actual number of grafts transplanted. Using

the empirical fact that 1.48 kidneys are harvested from each deceased donor on average, we found

the number of deceased donor grafts available for each blood type.

is left to the physician. We refer to this actual allocation policy as de facto deceased allocation.

Since the AB blood type is seen in only 3 − 4% of the population, even a few violations of FIFO

cause dramatic decreases in AB’s waiting time. As a result (Table 3), the actual median waiting

times in the deceased donor queue for AB is the shortest (2.34 years), while B is the longest, but

very close to O (5.30 versus 5.07 years). And A’s is less than these two blood types (at 3.31 years).

Hence, in our policy discussion we will mostly ignore AB and focus on A, B, and O. Moreover,

we will use ABO-identical policies to approximate actual deceased donor allocation and optimal

exchange policies.31

A second observation in Table 3 is noteworthy. As actual waiting times differ vastly across

blood types, certain blood-type patients appear to be “looking for” paired donors more intensely

than others. In our model, we expect the paired donor rate λ to be constant for all blood types.

However, in the data this is different across blood types as 20% for AB, 25% for A, 27.5% for B,

and 35% for O. As we know, the O blood type is at a disadvantage; it looks like they try hardest

31In the paper, we report the upper-bound waiting times, which are all less than .1 years different from the

lower-bound times.
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Average Waiting Time Est. for All Recipients

(in years)

Blood Types

O A B AB

Deceased Donor Transplantation

De Facto Deceased Donor Allocation 5.36 4.84 5.56 3.36

ABO-Identical 5.18 4.78 5.82 5.29

ABO-Compatible 5.32 4.83 5.32 4.83

Living Donor Transplantation

De Facto Deceased Donor Allocation 3.45 2.74 3.55 1.90

ABO-Identical 3.35 2.69 3.67 3.08

ABO-Compatible 3.40 2.68 3.38 2.72

Regular Exchange (ρ = 0%)

De Facto Deceased Donor Allocation 3.30 2.44 2.92 1.83

ABO-Identical 3.20 2.37 3.01 2.97

ABO-Compatible 3.27 2.44 3.02 2.63

Average Waiting Time Est. for All Recipients

(in years)

Blood Types

O A B AB

Incentivized Exchange (ρ = 25%)

De Facto Deceased Donor Allocation 3.14 2.44 2.91 1.85

ABO-Identical 3.03 2.40 3.02 2.96

ABO-Compatible 3.15 2.44 2.84 2.62

Incentivized Exchange (ρ = 50%)

De Facto Deceased Donor Allocation 2.96 2.43 2.90 1.86

ABO-Identical 2.85 2.40 3.01 2.97

ABO-Compatible 3.02 2.44 2.67 2.60

Incentivized Exchange (ρ = 100%)

De Facto Deceased Donor Allocation 2.53 2.41 2.89 1.89

ABO-Identical 2.43 2.37 2.98 2.96

ABO-Compatible 2.58 2.42 2.58 2.61

Table 4: Numerical policy experiment reflecting average waiting time conditional on receiving a

transplant. These are the average waiting time estimates for all patients who receive transplants,

including those who receive (1) transplants immediately through exchange, direct live donation,

or prioritized deceased donation, (2) living donor transplants after waiting some time through

exchange, and (3) deceased donor transplants after waiting in the deceased donor queue under

different technologies.

Waiting Time Est. for Deceased Donation Recipients

(in years)

Blood Types

O A B AB

Deceased Donor Transplantation

De Facto Deceased Donor Allocation 5.36 4.84 5.56 3.36

ABO-Identical 5.18 4.78 5.82 5.29

ABO-Compatible 5.32 4.83 5.32 4.83

Living Donor Transplantation

De Facto Deceased Donor Allocation 4.79 3.98 5.04 2.51

ABO-Identical 4.59 3.90 5.33 4.59

ABO-Compatible 4.76 3.97 4.76 3.97

Regular Exchange (ρ = 0%)

De Facto Deceased Donor Allocation 4.67 3.85 4.61 2.49

ABO-Identical 4.47 3.73 4.90 4.57

ABO-Compatible 4.57 3.85 4.57 3.85

Waiting Time Est. for Deceased Donation Recipients

(in years)

Blood Types

O A B AB

Incentivized Exchange (ρ = 25%)

De Facto Deceased Donor Allocation 4.36 3.87 4.64 2.53

ABO-Identical 4.16 3.79 4.95 4.62

ABO-Compatible 4.32 3.87 4.32 3.87

Incentivized Exchange (ρ = 50%)

De Facto Deceased Donor Allocation 4.04 3.88 4.66 2.56

ABO-Identical 3.84 3.80 4.99 4.67

ABO-Compatible 4.08 3.89 4.08 3.89

Incentivized Exchange (ρ = 100%)

De Facto Deceased Donor Allocation 3.94 3.96 4.77 2.64

ABO-Identical 3.70 3.88 5.09 4.78

ABO-Compatible 4.03 3.97 4.03 3.97

Table 5: Numerical policy experiment reflecting deceased donor queue waiting time conditional on

receiving a transplant. These are the waiting time estimates for patients who receive deceased

donor transplants under different technologies. The prioritized reentrants are excluded from the

calculation for incentivized exchange technologies.

to find a compatible paired donor.32 We use these rates for each blood type in what follows.33

32Also cultural issues, such as family composition among different ethnic groups, can play a role in paired donor
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Table 4 reflects the average waiting time estimates for our numerical policy experiment. Table

5 is for the deceased donor queue waiting times.

We summarize our findings using the average waiting times for all patients conditional on re-

ceiving a transplant. Similarly, Table 7 gives waiting times for different pair types under exchange

policies with different rates of compatible pairs. Table 6 reflects the predicted number of patients

receiving transplants for each blood type.

In terms of waiting time, we observe that each new technology decreases the average waiting

time for O patients from 5.18 years under deceased donor transplantation to 3.35 with a transition

to living donor transplantation, to 3.20 years with a transition to regular exchange. It further falls

to 3.03, 2.85, and 2.43 years with transitions to incentivized exchange with ρ = 25%, ρ = 50%, and

ρ = 100%, respectively.

Estimates of Patients Receiving Transplants (in numbers)

upon reentry, patient of a compatible X − Y pair

participating in exchange receives an X deceased donor kidney

Blood Types

O A B AB

Total Living Donor Transplants

Deceased Donor Transplantation 0 0 0 0

Living Donor Transplantation 1, 945.40 1, 779.51 590.63 188.13

Regular Exchange (ρ = 0%) 2, 373.91 2, 310.06 968.37 211.38

Incentivized Exchange (ρ = 25%) 2, 754.33 2, 327.84 974.29 211.38

Incentivized Exchange (ρ = 50%) 3, 134.75 2, 345.62 980.22 211.38

Incentivized Exchange (ρ = 100%) 3, 895.59 2, 381.17 992.06 211.38

Deceased Donor Transplants

De Facto Deceased Donor Allocation 5, 050.00 3, 964.00 1, 420.00 592.00

ABO-Identical 5, 289.75 4, 025.91 1, 318.73 391.61

ABO-Compatible 4, 994.20 3, 962.75 1, 508.09 437.04

- 5, 100.30 - 3, 977.62 - 1, 614.28 - 454.77

Table 6: Numbers of patients estimated to receive transplants under various policies.

In terms of both efficiency and equity consequences of the step-wise changes across the 4 tech-

nologies, from d (deceased donor transplantation) to l (living donor transplantation), from l to e

(regular exchange), and finally from e to i (incentivized exchange with ρ = 100% participation),

we observe the following: O patients are predicted to experience 37%, 6%, and 20% increases in

number of transplants, respectively. These numbers are 45%, 20%, and 1% for B; 44%, 9% and 1%

for A (and finally for AB, 48%, 4%, and 0), respectively. Thus:

• AB patients are predicted to experience the highest gain from d to l, and O patients the

lowest.

rates. This contributes to the observed disparity. For example, consider the B blood type. Although its waiting

time is as long as O’s and even longer, its patients’ pairing rate is not as high.
33As waiting times decrease across the board under different policies, the paired donor rates can also equate among

the blood types. We assume this is not the case.
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Figure 6: Differences of A patient predicted average waiting times from those of other blood types

under various transplantation technologies with ABO-identical deceased donor allocation. Glos-

sary: d: deceased donor transplantation, l: living donor transplantation, e: regular exchange, ρ1:

incentivized exchange with ρ = 50%, ρ2: incentivized exchange with ρ = 100%.

• B patients are predicted to experience the highest gain from l to e, and AB and O patients

the lowest.

• O patients are predicted experience the highest gain from e to i, and AB patients the lowest.

Observe that these estimates are consistent with our theoretical predictions even though our theory

does not assume any heterogeneity among behavioral and medical characteristics of different blood-

type patients and donors as the data reflect (cf. Theorems 4, 7, 9, and 10).

Further policy implications of Table 4 are summarized in Figure 6 in terms of average waiting

time for all patients of each blood type (conditional on receiving a transplant). Under d, the waiting

time for B is .96 years longer than that of A, and the waiting time for O is .4 years longer than that

of A. We take A patients’ waiting time as the reference. This difference increases to .98 years for B

and .66 years for O under l: O blood types benefit the least, and A benefits from live donation more

than B and O do. Once e becomes available though, B decreases this gap to .64 years, while the

gap between O and A goes up to .82 years. However, under i, O starts to close the gap with A. First

the difference falls to .45 years with ρ = 50% and then to .06 years with ρ = 100%. Both A and

B have prioritized reentrants who receive a deceased donor kidney as soon as they enter. However,

deceased donor queue waiting times increase for both A and B under i (cf. Table 5). Thus, their

average waiting times can increase or decrease depending on which of these effects dominate. In
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Waiting Time Est. for Blood-Type-Incompatible Pairs

When Compatible Pairs are Prioritized (in years)

upon reentry, patient of a compatible X − Y pair

participating in exchange receives an X deceased donor kidney

% of Comp. Pair Types

Pairs in O−A O−B O−AB A−B A−AB B−A B−AB

ρ = 0% pooled w O pooled w O pooled w O 0 pooled w A 1.36 pooled w B

ρ = 25% pooled w O pooled w O pooled w O 0 pooled w A 1.36 pooled w B

ρ = 50% pooled w O pooled w O pooled w O 0 pooled w A 1.36 pooled w B

ρ = 100% 2.06 0.43 2.98 0 0.55 1.36 2.25

Table 7: Numerical policy experiment reflecting regular and incentivized exchange waiting times for pairs

conditional on receiving a transplant. Here “pooled” means that some X−Y pairs receive deceased

donor transplants along with single X patients while some other X − Y pairs simultaneously

participate in exchange. Their waiting times are reflected in Table 5 in the columns regarding the

X blood type.

the end, both B’s and A’s average waiting times slightly change from e to different i technologies.34

Policy makers may worry that prioritized reentrants from AB, A, and B blood types would

cause a more substantial negative effect on the waiting times of single patients (indeed, deceased

donor waiting queue time increases from 3.73 years under e to 3.88 years under i with ρ = 100% for

A; cf. Table 5), then these negative effects can be alleviated at a small decrease of the improvement

in O blood-type patients.

Consider the following modified incentivized exchange (m) technology: If the patient of a

compatible X − Y type pair reenters the pool after the pair participated in exchange, then this

patient is prioritized and given a Y deceased donor graft, but not an X deceased donor graft. So

an X reentrant of an X −O pair would get an O kidney but not an X kidney.

As we already save so many O patients under i, we project that m would lead to a Pareto

improvement in terms of waiting times for all patient types. Indeed the results of such a policy

experiment are given in Table 8. We observe that deceased donor queue waiting times improve across

all blood types, and average waiting times decrease more dramatically for A and AB patients under

a transition to m from e.

34Although we assumed throughout the theoretical analysis that πe
A−B ≥ πe

B−A through Assumption 3, our

estimates reflect an opposite trend. This is because B patients “work harder” to find paired donors than A patients

who wait less in the deceased donor queue. Our numerical analysis, as mentioned before, assumes that this disparity

in donor recruitment will continue to hold even with increasing transplant possibilities for B patients. Therefore, we

find the opposite of the assumption holding. As noted in the text, this assumption was made for notational ease,

mostly. Our results apply symmetrically in the situation πe
A−B < πe

B−A. This is reflected in Table 7 with B − A
pairs waiting for 1.36 years for exchange while A−B pairs participate in exchange as soon as they arrive.
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Average Waiting Time Est. for All Recipients

(in years)

upon reentry, patient of a compatible X − Y pair

participating in exchange receives a Y deceased donor kidney

Blood Types

O A B AB

Modified Incentivized Exchange (ρ = 25%)

De Facto Deceased Donor Allocation 3.16 2.41 2.89 1.81

ABO-Identical 3.05 2.37 2.99 2.93

ABO-Compatible 3.16 2.41 2.71 2.58

Modified Incentivized Exchange (ρ = 50%)

De Facto Deceased Donor Allocation 3.01 2.38 2.85 1.79

ABO-Identical 2.89 2.34 2.96 2.90

ABO-Compatible 3.04 2.39 2.55 2.53

Modified Incentivized Exchange (ρ = 100%)

De Facto Deceased Donor Allocation 2.60 2.35 2.85 1.81

ABO-Identical 2.50 2.28 2.89 2.92

ABO-Compatible 2.61 2.31 2.60 2.51

Waiting Time Est. for Deceased Donation Recipients

(in years)

upon reentry, patient of a compatible X − Y pair

participating in exchange receives a Y deceased donor kidney

Blood Types

O A B AB

Modified Incentivized Exchange (ρ = 25%)

De Facto Deceased Donor Allocation 4.39 3.82 4.58 2.47

ABO-Identical 4.20 3.74 4.90 4.55

ABO-Compatible 4.34 3.82 4.34 3.82

Modified Incentivized Exchange (ρ = 50%)

De Facto Deceased Donor Allocation 4.12 3.78 4.55 2.45

ABO-Identical 3.92 3.70 4.87 4.53

ABO-Compatible 4.12 3.79 4.12 3.79

Modified Incentivized Exchange (ρ = 100%)

De Facto Deceased Donor Allocation 4.12 3.76 4.53 2.41

ABO-Identical 3.87 3.68 4.85 4.49

ABO-Compatible 4.10 3.76 4.10 3.76

Table 8: Numerical policy experiment reflecting overall average waiting time and

deceased donor queue waiting time conditional on receiving a transplant under modified in-

centivized exchange. In the right pane, prioritized reentrants are excluded from the calculation for

deceased donation waiting times.

8 Multiple Exchange Platforms and Exchange with Incen-

tivized Compatible Pairs

Although in our model we assume that there is a unique central living donor organ exchange

authority, in reality many parallel platforms compete with each other in the case of kidney exchange

in the US. Given the vagueness of the original National Organ Transplant Act of 1984 regarding

the legality of living donor exchanges, it had to be amended in 2007. As a result, the US national

kidney exchange program started under the provision of UNOS later, in 2010. UNOS is originally

the federal contractor that oversees deceased donor allocation in the US. On the other hand, regional

kidney exchange programs had started in early 2000s. For example, the New England Program for

Kidney Exchange was founded in 2004, while the Ohio Solid Organ Consortium has conducted

ad-hoc kidney exchanges since early 2000s. Currently most kidney exchanges are done in smaller

non-profit programs rather than the UNOS national program. However, the pairs with difficult-

to-match patients due to severe tissue sensitivity have a much higher chance of being matched in

a large pool of pairs rather than in a small pool. And these smaller programs match internally

easier-to-match pairs. Thus, the left-over, difficult-to-match pairs form the majority of the national

program pair pool. Therefore, such pairs have a very small chance of being matched under the

current realm of market formation. The advantage of a large kidney exchange program is that it

will provide a more efficient system than several smaller programs (for example, see the simulations

reported in RSÜ 2005a; 2007).
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The consolidation of multiple programs in a single large kidney exchange program is difficult.

RSÜ (2005c) showed that there is no incentive-compatible exchange mechanism that would make

smaller programs reveal all their pairs to the centralized program. This result models programs as

decision makers trying to maximize the number of transplants received by their registered pairs.

Hence, it is an often-debated challenge how to create a single exchange pool with voluntary partic-

ipation.

It turns out that our proposal of incentivized exchange can also help us create a single large

exchange pool. Although there are multiple programs for exchange, only one of them is also in

charge of the administration of the deceased donor queue (i.e., UNOS). Hence, we can give the

right of incentivizing compatible pairs only to UNOS.

In this section, we show that such a policy design, which will cause compatible pairs to register

only at the UNOS national exchange program, will attract most of the other critical pairs to UNOS.

Therefore, at equilibrium there will be a large exchange pool containing the most pairs – namely,

the UNOS national program.

8.1 The Exchange Participation Game for Pairs

Consider the following dynamic game. Suppose there are n + 1 living donor kidney exchange

platforms P0, P1, ..., Pn . Platform P0 is the UNOS national exchange program.

Exchange with incentivized compatible pairs is available only in the UNOS program, P0, which

also oversees deceased donor allocation. Hence, only the UNOS program gives priority to the reen-

tering patient of a compatible pair who previously participated in an exchange conducted through

its program.

Each platform uses an ABO-compatible FIFO optimal exchange policy to maximize the measure

of pairs matched,35 while the national program uses the optimal policy by incentivizing compatible

pair participation with prioritized deceased donor allocation. In the ABO-compatible FIFO policy,

ties among pairs who arrive at the same time are broken through an even lottery as long as it does

not affect efficiency, as explained in Appendix A. Hence, a B − O pair can be matched with an

excess A−B pair (i.e., one that remains unmatched after all arriving B −A pairs are matched) or

an O − B pair with equal probability if they have waited the longest and either matching would

result with the same efficiency outcome in terms of maximizing the measure of pairs matched.

We assume that an exogenously determined ρ–fraction of compatible pairs (satisfying Assump-

tion 4) from overdemanded types automatically register for exchange at platform P0, and they are

not strategic agents. It is straightforward to extend our results to the case when compatible pairs

are strategic agents and ρ is endogenously determined through their own risk attitudes.

We assume that compatible overdemanded pairs are always immediately matched, whether they

participate in exchange or not. If there is no available pair in the exchange platform, the compatible

pair’s donor donates to her paired patient immediately and the compatible pair leaves the pool.

35It is easier to find the implications of the ABO-compatible policy for the equilibria of this game.
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Single patients are not strategic agents, either. All patients simultaneously wait in the deceased

donation queue.

On the other hand, each patient with an incompatible donor is a strategic agent who would like

to receive a transplant as soon as possible.36 For simplicity, we assume that an incompatible pair

immediately accepts the first offered donor, deceased or living. Our results do not change if we

explicitly model the utility functions of patients over time and living versus deceased donors (such

as, using a measure of expected survival of the transplant).

An incompatible pair can opt in or out of the exchange pool at any time after it arrives.

A paired patient without a compatible donor who has not registered in any exchange platform

waits to receive a deceased donor under the ABO-identical FIFO allocation policy.

We inspect the Nash equilibria of this game. The first lemma is obvious, so we just state it

without proving:

Lemma 7 At any Nash equilibrium of the participation game, if X − Y type pairs register for

exchange at two distinct exchange platforms with positive probability, then their expected waiting

times are the same at these platforms.

In this game, any strategy that tells pairs not to participate in exchange at any platform is

weakly dominated. For different ρ, there may exist equilibria in dominated strategies. For example,

there exists an equilibrium in which no pair participates in exchange when ρ = 0. When ρ > 0, there

are equilibria in which no self-demanded or reciprocally demanded pair participates in exchange.

Hence, we focus on equilibria in undominated strategies:

Proposition 1 In the participation game, there are pure strategy Nash equilibria in undominated

strategies. The total measure of patients matched through exchange or deceased donor transplanta-

tion is the same and maximal across all such equilibria for the given ρ; moreover, this total measure

strictly increases in ρ.

There are indeed multiple pure strategy equilibria where different measures of pairs register

at different programs. Some of these equilibria can be constructed straightforwardly: Denote one

equilibrium by σ∗ where all pairs register at P0. Consider another strategy profile σ′ where a

sufficiently small fraction ε of each pair type registers at platform P1, while the rest of the pairs

continue to register at P0. Now, P1 works as a mini-version of P0 with the same ratio of different

pair types registering. Hence, all pairs are matched at the same time at both P0 and P1 through

exchange and (if needed) deceased donor transplantation. Thus, σ′ is also an equilibrium, as no

pair has any incentive to deviate.

On the other hand, this kind of an equilibrium allows only a sufficiently small fraction of pairs

to register at platforms other than P0. Otherwise, there will be excess compatible pairs registering

at P0. Hence, underdemanded pairs registering at other platforms will have unilateral incentives to

36As a paired patient may die while waiting for a transplant, we assume that receiving an earlier transplant is

preferable to receiving a later transplant.
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deviate and register at P0. Thus, this maximum fraction, which we denote as ε, is inversely related

to ρ.

Our model does not consider explicitly difficult-to-match pairs, and assumes that each pair has

the same tissue-type-incompatibility probability. In reality, there exist positive measures of highly

sensitized pairs, and their chances of being matched are much smaller when the size of the exchange

pool is small. Hence, from a practical view point, a large exchange platform will be more desirable

than several small platforms, although all equilibria in undominated strategies are efficient.

Moreover, it does not matter for efficiency purposes whether or not some pair types participate in

exchange at a particular platform. For example, any positive measure of incompatible O−O pairs

can participate at any platform, and they will all be matched with each other without affecting

efficiency. On the other hand, if a positive measure of incompatible A − O pairs participated

at a platform where there are no underdemanded pairs, this would decrease the efficiency of the

exchange. Hence, we will refer to all pair types that are not self-demanded as efficiency-critical

types.

Thus, it is important to create a large exchange platform with efficiency-critical pair types. Our

main result of this section states the conditions that guarantee the creation of a large program:

Theorem 11 Suppose Assumptions 1, 3, and 4 hold. Then, in the participation game,

• ε, the maximum total equilibrium measure of registrants at platforms other than the national

exchange program P0, decreases with increasing ρ; and

• if

ρ >

∑
X−Y ∈O\{B−A} θpY πX + pAπB∑
X−Y ∈O\{B−A}(1− θ)pY πX

,

then the total measure of efficiency critical pairs participating at P0 is more than the sum

of their respective participation rates in other platforms in every undominated pure strategy

equilibrium.

Assumption ρ >
∑

X−Y ∈O\{B−A} θpY πX+pAπB∑
X−Y ∈O\{B−A}(1−θ)pY πX

in the theorem ensures that the measure of compat-

ible pairs participating in exchange are relatively high. In particular using the numerical policy

experiment data of the previous section, we need ρ > 32% when θ = 0.11 for this condition to hold.

9 Conclusion

Over the last decade living donor organ exchange emerged as an important transplantation technol-

ogy, in addition to the two primary technologies deceased donor transplantation and living donor

transplantation. While analyzing efficiency and equity implications of individual technologies have

been an important focus for researchers, doctors, and policy makers in health care, there has been

no study to date that assesses the interaction between them and their collective implications. As

the share of transplants from living donor transplantation and from organ exchange increased over
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the years, a need for a model that studies the interaction of these organ transplantation technologies

as well as their collective implications has arisen. Our model is a first attempt to fill this gap in the

literature.

The natural innovation sequence of transplantation technologies is (1) deceased donor transplan-

tation, (2) living donor transplantation, and (3) living donor organ exchange. As expected, each new

technology has increased the overall welfare of the transplant organ patient population. However,

the subsequent innovations have also increased the inequity between patients of the two primary

blood types A and O. In the US, more than 95 percent of the population is of blood types A, B,

and O. Blood types O and A are especially common with 45 percent and 38 percent representation

respectively, whereas less than 13 percent is of blood type B. While blood type O is the most com-

mon blood type for all ethnicities, the distribution of blood types differ considerably across different

ethnicities. Blood type O is especially common among African Americans and Native Americans,

blood type A is considerably more common among white Americans than minorities, and conversely

blood type B is considerably more common among minorities than White Americans. Since the

need for organ transplantation differ across different ethnicities, understanding the impact of trans-

plantation technologies on patients of different blood types is important. For example, for kidneys,

the most common organ used for transplantation, minorities are more prone to kidney disease.37

As such, starting with the base line technology of deceased donor transplantation alone, patients of

blood types B and O (i.e. blood types more common among minorities), have experienced longer

waits in deceased donor queues. While members of the transplantation community have been in

constant search of policies to overcome this inequity, ironically the subsequent two transplantation

technologies, living donor transplantation and living donor organ exchange have mostly increased

this inequity. That is, while both technologies have increased the overall welfare of the patient

population, they also resulted in an increased difference between the wait times across patients of

different blood types. Taking the wait times in deceased donor queue as a metric, both living donor

transplantation and living donor organ exchange have increased the inequity between patients of

blood types O and A. That is not unexpected since it is harder for O patients not only to find

a compatible living donor, but also to take part in organ exchange. For patients of blood type

B the effect of these technologies has been somewhat different. While living donation increased

the inequity between patients of blood types B and A, living donor organ exchange decreased it

mitigating some of this adverse equity implications on blood type B patients. Our paper is the first

paper to analyze the welfare and equity implications of existing organ transplantation technologies,

shedding light on these empirical patterns.

Our final major contribution is the introduction a new policy that has the potential not only to

37African Americans are almost four times as likely as Whites to develop kidney failure. Compared to non-Hispanic

whites, Hispanics are almost 1.5 times more likely to be diagnosed with kidney failure. Compared to Whites, American

Indians are about 1.8 times more likely to be diagnosed with kidney failure. See http://nkdep.nih.gov/learn/are-

you-at-risk/race-ethnicity.shtml and U.S. Renal Data System, USRDS 2010 Annual Data Report: Atlas of Chronic

Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute

of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2010.
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increase the overall patient welfare, but also to decrease the above mentioned inequity across patients

of different blood types. Currently compatible pairs very rarely participate in organ exchange and

their lack to do so results in considerable welfare loss. Our proposed policy is based on incentivizing

participation of compatible pairs in exchange by prioritizing patients of such pairs at the deceased

donor queue for possible future organ failures of the transplanted organ. Our proposed policy is

the first one with a potential to decrease the inequity across various patient populations while at

the same time increasing the overall welfare.
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A Appendix: ABO-Compatible Exchange and Deceased

Donor Allocation

For some organs, such as the liver, a patient in the deceased donor queue can get precedence in

receiving any ABO-compatible deceased donor organ. Moreover, for the kidney, similar practices

are in effect in many other countries (cf. Footnote 13). If an egalitarian concern is in place, a similar

practice can be adopted for exchange: AB − O type pairs can be used to match A− AB B − AB
or O−AB pairs, not just O−AB pairs. If two-way exchange is the only available exchange policy,

saving any of them would be efficient in Pareto sense. However, a FIFO policy can also be adopted.

Then, an AB − O type pair can be matched with the longest waiting pair of these three types.

However, these underdemanded types can also receive organs from the deceased donor queue. They

will determine which source to use, either exchange or deceased donor, according to their waiting

time. Sorting out what patient group receives from what source leads to a seemingly complex

graph-theory problem. However, thanks to techniques from combinatorial optimization theory, we

can solve this cumbersome problem.38

Consider the following two-sided graph (cf. Figure 7), with sides labeled O and U. Side O

consists of 4 nodes O,A,B,AB, representing the deceased donor blood types, 5 nodes representing

overdemanded pair types A − O,B − O,AB − O,AB − A,AB − B, and type B − A, which is on

the short side among the two reciprocally demanded types, A−B and B − A, by Assumption 3:

O = {O,A,B,AB,A−O,B −O,AB −O,AB − A,AB −B,B − A}. (14)

The other side also consists of 10 nodes, 4 representing the blood types of single patients, 5 for the

underdemanded pair types, and 1 for the A−B pair type:

U = {O,A,B,AB,O − A,O −B,O − AB,A− AB,B − AB,A−B}. (15)

We refer to each node i ∈ U∪O as a patient group by a slight abuse of terminology, as some of these

nodes may refer to pair types. The nodes in both sides are connected with blood-type feasibility

links, when possible. These links are represented by a matrix of 0’s and 1’s, C = [ci,j]i∈U,j∈O. Two

types i ∈ U and j ∈ O are linked, i.e. ci,j = 1, when

1. types i and j are mutually blood-type compatible if both i and j are pair types,

38The same technique can be adopted to determine which blood types will be pooled when exchange is not possible.

Instead, we gave an explicit simple algorithm for that case in Section 3.2.2.

42

http://www.sciencedirect.com/science/article/pii/S0899825608000961
http://www.sciencedirect.com/science/article/pii/S0899825608000961


2. an i blood-type patient is blood-type compatible with a j blood-type donor, if both i and j

are blood types, and

3. patient of a type i pair is blood-type compatible with a j blood-type donor, if j is a blood

type and i is a pair type.

O :

U :

O A B AB A − O B − O AB − O AB − A AB − B B − A

O A B AB O − A O − B O − AB A − AB B − AB A − B

1

Figure 7: ABO-compatible exchange and deceased donation feasibility graph (O,U, C). Lighter

links correspond to deceased donation possibilities and darker links correspond to exchange possi-

bilities.

Each node h ∈ O ∪ U is assigned a weight wh such that wh is the inflow rate for the single

patient / deceased donor / pair type h:

wh =

{ δh if h ∈ O ∩ T
πdh if h ∈ U ∩ T
πeh if h ∈ (O ∪U) ∩ T × T

(16)

where πeh is defined in Equation 7 and πdh is defined in Equation 8.

Now, we determine the least privileged node subset of U as follows: For any V ⊆ U and P ⊆ O,

define

CV(P) = {j ∈ P | ci,j = 1 for some i ∈ V}, (17)

CP(V) = {i ∈ V | ci,j = 1 for some j ∈ P}, and (18)

rdV(P) =

∑
j∈CV(P)wj∑
i∈V wi

. (19)

Here, CV(P) (CP(V)) is the set of deceased donor and pair types in P ⊆ O (patient and pair types

in V ⊆ U) that can be feasibly matched through deceased donation or exchange with some type

in set V ⊆ U (P ⊆ O). CP(V) will be used in subsequent proofs in the appendices. On the other

hand, rdV(O) is the supply-to-demand ratio for V. This ratio is the generalization of the rd ratio
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defined in Equation 9. Now we can find the subset of U which minimizes rd:39

V1 = arg min
V⊆U

rdV(O); and (20)

P1 = CV1(O). (21)

Then we iteratively construct the partition V1,V2, ...,Vk of U as follows:

V` = arg min
V⊆U\∪`−1

m=1Vm

rdV(O \ ∪`−1m=1Pm); and (22)

P` = CV`
(O \ ∪`−1m=1Pm) (23)

This means that the patient and pair groups belonging to V` are the least fortunate, i.e. bottle-

neck, after serving the groups in V1, ...,V`−1. Moreover, we can assign all deceased donors and

pairs belonging to types in P` exclusively to patients and pairs of types in V`, since it is feasible

to do so as designated by matrix C. This result follows from the minimum cut - maximum flow

theorem of Ford and Fulkerson (1956) in combinatorial optimization theory.40 Even when we do

that, their waiting time in the exchange and deceased donor queues will not be lower than the other

groups in U \ ∪`m=1Vm, as rd ratio is lowest for V` once V1, ...,V`−1 are fixed. Moreover, their

waiting time will be given as

tq,e;cV`
= F−1

(
1− rdV`

(P`)
)
. (24)

Theorem 12 (Optimal ABO-compatible exchange) Suppose Assumptions 1, 2, and 3 hold.

Under ABO-compatible exchange, the waiting time for each group of patients i ∈ U, i.e., blood-

type i single patients if i is a blood type, and type i pairs if i is a pair type, the waiting time is

characterized by tq,e;cV`
in Equation 24 where i ∈ V` and V`, P` are defined as in Equations 16-23.

Proof of Theorem 12. We prove the theorem using the concept of flow networks developed

in the combinatorial optimization and graph theory literature (see for example Korte and Vygen,

2002 for an excellent survey).

This tool will be used to show that, for each ` ∈ {1, ..., k}, for each patient group i ∈ V` (as

defined in Equations 20 and 22), we can feasibly serve deceased donors / pairs belonging to groups

in P` (as defined in Equations 21 and 23) to patients of group i at a rate wi r
d
V`

(P`) (as defined in

Equations 16, 19, and 24).

A flow network in our context is the directed graph with nodes N = {σ, τ}∪U∪O such that σ

is referred to as the source and τ is referred to as the sink. An edge of the flow network originating

from node i and pointing at node j is denoted by (i, j). In particular, each U node is pointed at

39If there is more than one such set, then we take the largest of them, which is uniquely defined.
40For example, see Katta and Sethuraman (2006), Yılmaz (2009), Athanassoglou and Sethuraman (2011), Budish,

Che, Kojima, and Milgrom (2013), and Che, Kim, and Mierendorff (2013) for uses of the minimum cut - maximum

flow theorem in the probabilistic matching framework.

44



by σ. Hence, for each i ∈ U, (σ, i) is in the network. Also each node in O points at τ . Hence,

for each j ∈ O, (j, τ) ∈ N. Moreover, there are edges starting from each node in U and ending at

some nodes in O: for each i ∈ U and j ∈ O, (i, j) ∈ N if and only if ci,j = 1. Let E be the set of

edges of the network.

We will send flows from the source σ through the edges of the graph, and these flows will reach

the sink. For this purpose, each edge (i, j) ∈ E has also a capacity q(i, j) > 0 denoting the maximum

flow it can carry. For all other pairs of nodes (i, j) 6∈ E , let q(i, j) = 0. Let q = (q(i, j))i,j∈N denote

the capacity vector for all the edges. A flow network is denoted by the pair (N, q). Fix a flow

network (N, q).

A flow function f : N × N → R is a mapping such that for each i, j ∈ N we have (i) if

q(i, j) > 0 then 0 ≤ f(i, j) ≤ q(i, j) and if q(i, j) = 0 then f(i, j) ≤ 0, (ii) f(j, i) = −f(i, j), and

(iii) if i 6∈ {σ, τ} then
∑

h∈N f(i, h) = 0. Property (i) says that an edge cannot carry a flow higher

than its capacity. In particular, for existing directed edges, the flow cannot be negative; and if there

is no directed edge from one node to another, then the flow cannot be positive. Property (ii) is a

technical one and used for ease of notation, making sure that the flow is a directed quantity but

not scalar: the flow of the reverse of an edge is the negative of the flow of the edge. Property (iii)

says that for any node other than the source and the sink, the flows from it and into it cancel out,

i.e., all flows entering it also leave the node. Let F be the set of flow functions. We refer to f(i, j)

as the flow from node i to j under f . For a subset of nodes {σ} ⊆ S ⊆ N \ {τ}, the flow from S

(to N \ S) under f is denoted by f(S) =
∑

i∈S,j∈N\S f(i, j). Such a subset of nodes S is referred to

as a cut.

The total capacity of a cut S is defined as q(S) =
∑

i∈S,j∈N\S q(i, j), i.e., it is the sum of the

capacities of edges originating from a node in S and ending at a node in N \ S. A minimum cut S

is a cut such that q(S) = min{σ}⊆S′⊆N\{τ} q(S′), i.e. a cut with the minimum total capacity.

The flow of f is its flow from cut N \ {τ} (to {τ}), which is also equal to its flow from cut {σ}
(to N \ {σ}). The maximum flow over the flow network (N, q) is defined as maxf∈F f(N \ {τ}).

The following is the fundamental theorem that relates the capacities of the edges to the maximum

flow that can be carried over a flow network:

Minimum Cut - Maximum Flow Theorem (Ford and Fulkerson (1956)): The maximum flow

over a flow network is equal to the total capacity of one of its minimum cuts.

One direction of the theorem’s statement, i.e., the maximum flow cannot exceed the total ca-

pacity of a minimum cut, is obvious by the definition of a flow function. The other direction is

proven through this theorem.

For our flow network used in the proof of our theorem, we define the capacities as follows (cf.

Figure 8, where the edges are denoted by lines with arrows and their capacities are written on the

lines; it defines a flow network using the feasible exchange and deceased donation graph given in

Figure 7):

For an edge (i, j) such that i ∈ U and j ∈ O, we set its capacity to q(i, j) = +∞. Hence, it can

carry any flow. On the other hand, for edge (j, τ) for each j ∈ O, we set its capacity q(j, τ) = wj,
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Figure 8: The χ–parametric flow network for the proof of Theorem 12, using the exchange and

deceased donation feasibility graph in Figure 7. To prevent confusion, the nodes representing single

patients (i.e., blood types in U as defined in Equation 15) are superscripted by p and the nodes

representing deceased donors (i.e., blood types in O as defined in Equation 14) are superscripted

by d.

the inflow rate of the deceased donor / pair type j to the pool, as defined in Equation 16. For edge

(σ, i) for each i ∈ U, we set its capacity qχ(σ, i) = χwi, where wi is the inflow rate of the single

patient / pair type i to the pool, as defined in Equation 16, and χ ∈ R+ is a parameter that will

be changed in our construction. We refer to such a flow network as a χ–parametric flow network.

The idea behind this construction is as follows: as we increase χ continuously starting from 0,

the flows carried from the source to the rest of the network are set to be equal to the capacities of

the edges from the source for an appropriately defined flow function fχ ∈ F . As χ is close to zero,

all the flows can be carried over the network and hence, {σ} is a minimum cut. We will be able

to increase these continuously until a break point occurs at χ1 < 1, i.e., the minimum cut becomes

a proper superset of {σ}. To see that, suppose to the contrary that χ1 ≥ 1. We have the total

capacity of cut N \ {τ} equal to qχ1(N \ {τ}) =
∑

j∈Owj, which should be greater than or equal

to maximum flow over the network. On the other hand, the total capacity of cut {σ} is equal to

qχ1({σ}) = χ1

∑
i∈Uwi. We increase χ to χ1 so that the flow of fχ1 is equal to qχ1({σ}). However,

this is a contradiction by Assumptions 1, 2, and 3, as the flow of fχ1 , qχ1({σ}) > qχ1(N \ {τ}), the
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maximum flow over the network at χ1.

Hence, at χ = χ1 < 1 there will be a minimum cut larger than {σ}, such that we will not be

able to carry all the flows if we exceed χ above χ1. Let {σ} ( N1 be this minimum cut. If there

are multiple such cuts, let N1 be the largest of them. It is straightforward to see that there is a

minimum cut, which includes all minimum cuts as subsets.

What are the properties of this minimum cut? Suppose i ∈ N1 ∩ U. Then observe that all

j ∈ O such that ci,j = 1 is also in N1. As otherwise the edge (i, j) with capacity q(i, j) = +∞
would make the total capacity of the minimum cut equal to +∞. However, this is a contradiction

to N1 being a minimum cut, as the cut {σ} has always a finite total capacity (see Figure 9 for an

example of a possible minimum cut at some χ1). Hence, whenever i ∈ N1 ∩U then all j ∈ O with

+∞ +∞
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πe
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πe
B−O

πe
AB−O

πe
AB−A

πe
AB−B

πe
B−A
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sink τ

O :

U :

Od Ad Bd ABd A − O B − O AB − O AB − A AB − B B − A

Op Ap Bp ABp O − A O − B O − AB A − AB B − AB A − B

N1

N \ N1

1

Figure 9: Example of a possible minimum cut N1 at some χ = χ1 with N1∩U = V1 = {Op, Ap, Bp}.
Hence, N1 ∩ O = P1 = CV1(O) = {Od, Ad, Bd}. The edges from N1 to N \ N1 are denoted by

dotted pointed lines. This cut’s total capacity is qχ1(N1) = δA+δB+δAB+χ1(π
d
AB+πeO−A+πeO−B+

πeO−AB + πeA−AB + πeB−AB + πeA−B).

ci,j = 1 also satisfy j ∈ N1. Let V1 = N1 ∩ U, and P1 = N1 ∩ O. By the above construction

P1 = CV1(O) (as defined in Equation 21).

The total capacity of N1 is equal to

qχ1(N1) =
∑

i∈N\V1

qχ1(σ, i) +
∑
j∈P1

q(j, τ) = χ1

∑
i∈N\V1

wi +
∑
j∈P1

wj.
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On the other hand, the flow of fχ1 over the network at χ1 is given as

fχ1({σ}) =
∑
i∈U

fχ1(σ, i) = χ1

∑
i∈U

wi.

This is the maximum as all the capacity of the edges from σ are used, i.e., fχ1(σ, i) = qχ1(σ, i) for

all i ∈ U.

As N1 is a minimum cut, by the Minimum Cut-Maximum Flow Theorem,

qχ1(N1) = fχ1({σ}).

Hence,

χ1

∑
i∈U\V1

wi +
∑
j∈P1

wj = χ1

∑
i∈U

wi,

leading to

χ1 =

∑
j∈P1

wj∑
i∈V1

wi
= rdV1

(P1)

where rd was defined in Equation 19.

Observe that even if we increase χ beyond χ1, the flow over the edges
{

(σ, i)
}
i∈V1

will not increase

and no additional flow through the increased χ will flow through the nodes j ∈ P1. Therefore, we

can remove the nodes in V1 and P1 from the network and repeat the above exercise iteratively.

As result, we determine a number of minimum cuts N1, ...,Nk with corresponding node sets in

U as V1, ....,Vk and node sets in O as P1, ...,Pk with breakpoints χ1 < ... < χk < 1 such that

P` = CV`
(O \ ∪`−1`′=1P`′) and χ` =

∑
j∈P`

wj∑
i∈V`

= rdV`
(P`) for each ` ∈ {1, ..., k}.

This proves that for each patient group i ∈ V`, we can feasibly serve deceased donors / pairs

belonging to groups in P` to group i at a rate fχ`(σ, i) = χ`wi = wir
d
V`

(P`). Hence, we can

feasibly match a measure fχ`(σ, i) of patients belonging to group i with arriving deceased donors

(through deceased donor transplantation) and pairs (through exchange) in P` by Lemmas 1 and 5,

respectively.

Define tq,e;cV`
= F−1

(
1− rdV`

(P`)
)

for each `. Observe that tq,e;cVk
< tq,e;cVk−1

< ... < tq,e;cV1
.

At time tq,e;cVk
after entry, the measure of live patients belonging to the groups in Vk is exactly

equal to
∑

j∈Pk
wj, the inflow rate of deceased donors / pairs belonging to groups in Pk. None

of the other patients belonging to groups in V1, ...,Vk−1 can be matched through deceased donor

transplantation or exchange using deceased donors / pairs belonging to Pk. Hence, they have

to wait longer than tq,e;cVk
. Moreover, none of the patients of groups in Vk will be matched with

deceased donors / pairs of groups in P1, ....,Pk−1, as this will decrease their waiting time at the cost

of increasing the waiting time of other groups, contradicting the FIFO protocol. We also proved

above that all remaining live patients/pairs in Vk after tq,e;cVk
years of entry (that is rdVk

(Pk) fraction

of the arriving rate) can be matched with all arriving deceased donors / pairs belonging to groups

in Pk. Hence, remaining live patients belonging to groups in Vk will be matched after tq,e;cVk
years

of entry. We repeat the above argument for each of the remaining sets ` = k − 1, ..., 1, concluding

the proof of the theorem.
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B Appendix: Remaining Proofs

Proof of Lemma 1. We prove it by contradiction: If σ = ω, then suppose an infinite or

uncountable number of donors are unmatched, and if σ < ω, then suppose a donor is unmatched

with a positive probability under the FIFO policy. In either case, an infinite or uncountable number

of patients is unmatched. But then, take a donor who is unmatched. There exists almost surely

a compatible unmatched patient, as the probability of finding no tissue-type compatible patient is

limn→∞ θn = 0.

Proof of Lemma 2. Since X 6= Y and X . Y , we have Y 6 .X. Moreover, W . Y for all blood

types W such that W .X.

Suppose to the contrary, tq,d;cY > tq,d;cX . Then the longest-waiting Y patients would receive the

maximum measure of organs that would otherwise go to X patients under the FIFO policy, as they

are waiting more than the longest-waiting X patients. Hence, either Y patients do not wait at all,

i.e., tq,d;cY = 0, or X patients never receive transplant, i.e., tq,d;cX = T . Either case contradicts the

assumption.

Proof of Lemma 3. Suppose Y patients receive X organs at steady state under the ABO-

compatible FIFO allocation policy. By Lemma 2, tq,d;cY ≤ tq,d;cX . Suppose the inequality is strict.

Then either all X organs would go to the longest-waiting X patients, which would contradict the

fact that X organs are transplanted to Y patients, or X patients would not be waiting at all

in the deceased donor queue, which would contradict the assumption that tq,d;cY < tq,d;cX . Hence,

tq,d;cY = tq,d;cX .

Next, suppose that blood types in some S ⊆ T are pooled together. Then there is a chain of

blood types X1, ..., Xk where S = {X1, ..., Xk} such that X1 receives from X1 and X2, ..., Xk−1

receives from Xk−1 and Xk. By the previous paragraph, all types in S have the same waiting time

under the ABO-compatible allocation scheme. Moreover, the supply-demand equations for these

types are given as, for all X ∈ S,

σX = [πX + φdσX ][1− F (tS)]

where tS is the common waiting time and σX is the measure of organs supplied to X patients.

At steady state, we observe an inflow rate φdσX of reentrants. Moreover,
∑

X∈S σX =
∑

X∈S δX .

Hence summing up the left-hand sides and right-hand sides of these equations, respectively, we get∑
X∈S δX = [

∑
X∈S(πX + φdδX)][1− F (tS)]. The solution for tS is as in Equation 2.

Proof of Theorem 2. By Lemma 2, tq,d;cY ≤ tq,d;cX . As tq,d;iX is the shortest among tq,d;i for

types that Y can receive from, the only way tq,d;cY ≤ tq,d;cX can happen is that Y patients receive X

organs at steady state or X pools with another type, which has a higher tq,d;i than Y . However,

the latter is not correct by assumption. Therefore, Y and X patients are pooled (possibly together

with other types). By Lemma 3, tq,d;cY = tq,d;cX . Moreover, by transferring some of the X organs that

the Y and X patients receive to other compatible patients, the waiting time of Y and X patients

can be adjusted above t{X,Y } but no higher than tq,d;iY . Similarly, by transferring some of the X
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organs that Y patients are receiving to X patients, and substituting those with other compatible

organs for Y , the waiting time of Y and X patients can be adjusted below t{X,AB} but no lower than

tq,d;iX . Observe that the waiting time of no donor blood type that is compatible with Y patients

can be made less than tq,d;iX or more than tq,d;iY , at steady state, under the constraint of Lemma 3,

which says that all donating blood types to Y patients will have the same waiting time. Hence, the

composite type of X and Y behaves like Y when it is receiving organs and behaves like X when

it is donating organs with deceased donor inflow rate δX + δY and patient inflow rate πX + πY , by

Lemma 3.

Proof of Lemma 4. Suppose that for a given X, the non-negative real line can be divided

into a sequence of open intervals marked by 0 = ε0 < ε1 < ε2 < ... such that for any k, for any

πX ∈ (εk, εk+1) the sets of pooled types do not change. And the sets of pooled types do change in

transition from ε−k to ε+k for each k.

For any πX ∈ (εk, εk+1), Equation 2 gives the waiting time of any pooled set S. Moreover, tq,d;cS
strictly increases in πX for the pooled set S that includes X. The waiting times of other types do

not change.

Moreover, waiting times are continuous in πX and bounded in this open interval. Hence, left-

and right-hand limits exist at each εk. Next, for some k suppose at πX = εk for some blood type left-

hand limit is higher than its value at πX = εk for the waiting time, i.e., limπX→ε−k t
q,d;c
Z > tq,d;cZ | πX=εk

for some Z ∈ T . Suppose, at εk, Z is pooled in S1 ∈ 2T . However, as
∑

Y ∈T πY at πX → ε−k can

be made arbitrarily close to its value at πX = εk, for some types of a pooled set S2 ∈ 2T \ {S1} at

πX → ε−k we necessarily have limπX→ε−k tS2 < tS2 | πX=εk . This can happen only if some Y ∈ S1 ∩S2
that donates to a blood type in S2 at πX → ε−k , which is no longer pooled within S2 but within

S1 at πX = εk. But then, this contradicts the definition of ABO-compatible FIFO policy as some

deceased donors of Y blood type, which is no longer pooled in S2 at πX = εk, could be given to the

patients of one or more blood types in S2 and their waiting time can be decreased without making

it smaller than the waiting time for S1 at πX = εk.

The cases where limπX→ε−k t
q,d;c
Z < tq,d;cZ | πX=εk , limπX→ε+k t

q,d;c
Z > tq,d;cZ | πX=εk , and limπX→ε+k t

q,d;c
Z <

tq,d;cZ | πX=εk are handled in a symmetric manner, leading to a contradiction. Hence, this shows that

all blood types’ ABO-compatible waiting times are continuous in πX .

Since each waiting time tq,d;cY is continuous at each πX = εk for all Y ∈ T and it is weakly (and

strictly for Y = X) decreasing at each open interval πX ∈ (εk, εk+1), then it is weakly (and strictly

for Y = X) decreasing in πX .

The proof for “decreasing and continuous in δX” is analogous to the proof for “increasing and

continuous in πX” and follows the above proof.

Proof of Theorems 3 and 4. Observe that we have plO = pO(1 − θ), plA = (pO + pA)(1 − θ),
plB = (pO+pB)(1−θ), and plAB = 1−θ. Hence, plO < plA, p

l
B < plAB. Since lX/πX = plXλ (recall that

lX = plXλπX ∈ (0, πX) is the inflow rate of compatible pairs with X patients), we obtain Theorem

4.

For Theorem 3, first, consider the ABO-identical deceased donor allocation policy. By Equation
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4, for any X,

tq,l;iX = F−1
(
1− δX

(πX−(1−φl)lX)+φdδX

)
. (25)

As tq,l;iX is increasing in net patient inflow rate, comparing Equation 1 with Equation 25 we conclude

for all X, tq,l;iX < tq,d;iX .

Next, consider the ABO-compatible deceased donor allocation policy. Assume that we introduce

patient–living donor pairs for each blood type one at a time. The net effect of having patients with

living donors is a decrease in the new patient inflow rate πX by lX for each X (as in the case of

ABO-identical allocation policy). Hence, using Lemma 4 for all four blood types consecutively, we

conclude that tq,l;cX < tq,d;cX for all X.

In the rest of the proof, we analyze the benchmark case where δX/πX is constant across all blood

types X. Then lO ≤ lX for all X and lAB ≥ lX for all X. These in turn imply that tq,l;iO ≥ tq,l;iX for

all X and tq,l;iAB ≤ tq,l;iX for all X, respectively, since tq,l;iX is decreasing in lX . We also have

δO
πO − (1− φl)lO

≤ δA
πA − (1− φl)lA

,
δB

πB − (1− φl)lB
≤ δAB
πAB − (1− φl)lAB

.

Then by Theorem 2 and the procedure following this theorem, using πX − lXδX instead of πX

for all X, we observe that none of the blood types are pooled together when live donation is

possible under the ABO-compatible deceased donation policy. Thus, we also have tq,l;cX = tq,l;iX for

all X. Further assume that pA > pB. Then plA > plB. Therefore, lA > lB, which in turn implies
δB

πB−(1−φl)lB < δA
πA−(1−φl)lA , and hence, tq,l;iA < tq,l;iB .

Given this result, comparing Equation 5 across blood types together with the fact that plO <

plA, p
l
B < plAB leads to the analogous result for the overall average waiting times for deceased and

living donors. If plB < plA, then we get the required result in Theorem 3.

Proof of Theorem 5. Under the proposed policy, by Lemma 6 all self-demanded pairs can be

matched with their own type pairs as soon as they arrive, and all pairs of type B −A that has the

lower inflow rate (by Assumption 3) than A−B pairs will be matched as soon as they arrive with

their reciprocal-type pairs. Hence, under this policy only A− B pairs will remain in the exchange

pool at any point in time. These pairs can only be matched with overdemanded pairs by Lemma

5, as B − A pairs are already committed to other A−B pairs.

Next consider underdemanded type pairs. These are Y − X type pairs such that Y 6= X and

Y . X. By Assumption 2, we have θpY πX ≤ pXπY . By Lemma 5, they can only be matched with

overdemanded types. Recall that the inflow rate of each Y −X type pair to the exchange pool is

pY λπX . Their reciprocal type X−Y , which is overdemanded, has the inflow rate θpXλπY < pY λπX .

Hence, we can match all such overdemanded pairs X − Y (by Lemma 6) as soon as they enter

the pool under the proposed policy with their reciprocal type pairs. As all overdemanded, self-

demanded, and type B − A reciprocally demanded pairs are matched as soon as they arrive, by

Lemma 6, the proposed policy achieves the maximum measure of pairs matched. At steady state,

as no incompatible overdemanded, self-demanded, and B − A type pair waits in the pool, gets
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immediately matched, and saves one additional pair, the maximum mass of possible exchanges is

also conducted in this manner in any closed time interval.

On the other hand, if we do not conduct the exchanges immediately whenever they become

available, but only after a closed time interval, then some of the patients of overdemanded, self-

demanded, and B−A type pairs who have arrived earlier will not survive. Hence, when we conduct

the exchanges at the end of the time interval, we will match a strictly smaller mass of possible pairs

than we would have matched under the proposed policy.

Proof of Theorem 7. Consider {eX}X∈T , the overall measures of pairs with X blood type pairs

participating in exchange for each X ∈ T reported in Equation 6. Observe that

eO
πO

=θpOλ+ θpOλ
πA + πB + πAB

πO
= θ(pO + pA + pB + pAB)λ

eA
πA

=θpAλ+ θpOλ+ pAλ
πB
πA

+ θpAλ
πAB
πA

= (θpO + θpA + pB + θpAB)λ

eB
πB

=θpBλ+ θpOλ+ pAλ+ θpBλ
πAB
πB

= (θpO + pA + θpB + θpAB)λ

eAB
πAB

=θ(pAB + pO + pA + pB)λ

where the second equality in each line (except the last) follows from the assumption that pX/πX is

a constant among all X ∈ T . Since θ < 1, we have eO/πO = eAB/πAB < eA/πA, eB/πB. With the

additional assumption pA > pB, we obtain eA/πA < eB/πB.

Next consider {lX + eX}X∈T , direct living donor and exchange transplants. We have

lO + eO
πO

=(1− θ)pOλ+ θ(pO + pA + pB + pAB)λ = (pO + θpA + θpB + θpAB)λ

lA + eA
πA

=(1− θ)(pO + pA)λ+ (θpO + θpA + pB + θpAB) = (pO + pA + pB + θpAB)λ

lB + eB
πB

=(1− θ)(pO + pA)λ+ (θpO + pA + θpB + θpAB)λ = (pO + pA + pB + θpAB)λ

lAB + eAB
πAB

=(1− θ)(pAB + pO + pA + pB)λ+ θ(pAB + pO + pA + pB)λ = (pAB + pO + pA + pB)λ

Since θ < 1, we have, lO+eO
πO

< lA+eA
πA

= lB+eB
πB

< lAB+eAB

πAB
.

Proof of Theorem 8. Using Assumption 4 instead of Assumption 2, the proof follows verbatim

the proof of Theorem, after noting that no self-demanded type can be used to save additional

underdemanded or A−B type pair (by Lemma 5).

Proof of Theorem 9. Let ψi,i be the ABO-identical optimal policy explained in Theorem 8

under incentivized exchange, and ϕe,i be the ABO-identical optimal policy explained in Theorem

5 under regular exchange. Recall that any reentrant is classified as a single patient. Under ψi,i, no

unwilling compatible pairs and compatible self-demanded pairs participate in exchange. And under

ϕe,i, no compatible pairs participate in exchange. Such compatible pairs’ patients immediately

receive transplants from their paired donors. All willing overdemanded type pairs are matched
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through exchange with their reciprocal types under both ψi,i and ϕe,i upon entry (by Assumption

4). We first prove Statement 1 and then the rest.

Proof of Statement 1: First consider underdemanded pairs. Suppose that an underdemanded

X − Y pair type is not pooled with X single patients for deceased donation under ϕe,i. Under ψi,i,

that type of pairs is matched at the rate

µX−Yi = [ρ(1− θ) + θ]pXλπY , (26)

at each point in time while under ϕe,i, they are matched at the rate

µX−Ye = θpXλπY , (27)

which is strictly smaller.

Next, suppose that pair types X1 − Y1, ..., X` − Y` are pooled altogether for deceased donation,

and suppose among these pair types, X`∗ −Y`∗ is underdemanded. Note that all of these pair types

are either underdemanded or A−B. Each Xk−Yk is matched at the rate µXk−Yk
e +εXk−Yk

e under ϕe,i,

where the rate εXk−Yk
e > 0 is the measure of Xk−Yk pairs whose patients receive deceased donation

and µXk−Yk
e is defined as in Equation 27. Under ψi,i, µXk−Yk

i is the measure of the reciprocal Xk−Yk
pairs (who are on high demand) willing to participate in exchange, which is strictly larger than

µXk−Yk
e , while the rate of deceased donation does not change. Hence, while µXk−Yk

i −µXk−Yk
e more of

Xk−Yk pairs participate in exchange under ψi,i, fewer of such pairs may receive deceased donation.

Suppose that εXk−Yk
i is the rate of Xk − Yk pairs receiving deceased donation under ψi,i. We will

show that ξk = [µXk−Yk
i + εXk−Yk

i ] − [µXk−Yk
e + εXk−Yk

e ] > 0 for all k. Suppose not for some k. In

particular, if there are multiple such k, let k be chosen with the smallest ξk ≤ 0. Hence, as waiting

time of all pairs X1 − Y1, ..., X` − Y` is the same under ϕe,i, Xk − Yk’s waiting time increases the

most among all pairs or stays the same and no other pair’s waiting time increases under ψi,i. Hence,

Xk − Yk continues to be pooled with Xk single patients under ψi,i. As µX`∗−Y`∗
i − µX`∗−Y`∗

e > 0, and

for all k∗ 6= `∗ we have, µXk∗−Yk∗
i − µXk∗−Yk∗

e ≥ 0, then a higher share of deceased donors should go

to Xk − Yk pairs under ψi,i with respect to ϕe,i. Hence, εXk−Yk
i − εXk−Yk

e > 0 implying that ξk > 0,

a contradiction.

Hence, unless A − B is pooled by itself with A single patients under ϕe,i, any pooled paired

group with X single patients has a strictly higher measure of being matched at each point in time

under ψi,i.

We continue with other patient groups. All overdemanded pairs and self-demanded pairs receive

live donation under both ψi,i and ϕe,i immediately after their arrival. We already showed that

underdemanded pairs strictly benefit from ψi,i. Moreover, by Assumption 3, and Theorems 5 and 8,

all B−A pairs are matched with A−B pairs through exchange as soon as they enter the exchange

pool. This and the proof for underdemanded pairs imply that A−B pairs either benefit under ψi,i

(if they are pooled with an underdemanded type for deceased donation under ϕe,i) or they remain

indifferent between the two technologies (otherwise).

Next consider any X ∈ T blood-type single patients. As more underdemanded-type pairs are

matched through exchange and the same measure of A − B pairs participate in exchange under
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ψi,i, overall fewer underdemanded-type and A−B type pairs will be left from the same cohort for

deceased donation. Hence, weakly more X single patients receive deceased donation under ψi,i.

Proof of Statement 2: Under ψi,i, by Theorem 9 X−X pairs are matched in exchange only with

X −X pairs. Moreover, all incompatible X −X pairs are almost surely matched through exchange

with each other as soon as they arrive. Hence, no compatible X −X pair is used to match them.

Proof of Statement 3: Patient blood type O can form 4 types of pairs: O−O, O−A, O−B, and

O − AB. None of them can form compatible pairs except O − O. By Statement 3, no compatible

O − O pairs participate in exchange. Hence, upon possible reentry under ψi,i, no O patients are

prioritized. On the other hand, positive measures of compatible overdemanded pairs with A, B,

AB patients participate in exchange. Therefore, a positive measure of these patients reenters at

steady state and gets prioritized.

Proof of Statement 4: First observe that the waiting time of underdemanded types strictly

decreases by Statement 1. The waiting times of reciprocally demanded B−A type pairs and A−B
type pairs do not increase by Statement 1. Moreover, self-demanded and overdemanded type pairs

do not wait and get immediately matched under both technologies. Finally, we consider single

patients. To see how their waiting times are affected, we consider the change of exchange rates for

compatible and incompatible pairs first. We do this analysis for all blood types separately.

1. O patients:

Compatible pairs: O − O is the only compatible type with O patients. However, incompatible

O −O pairs are already matched immediately with each other in exchange. Hence, a

κO = 0

measure of compatible pairs with O patients participates in exchange.

Incompatible pairs: A measure of [ρ(1 − θ) + θ]pOλ[πA + πB + πAB] incompatible pairs with O

patients is matched through exchange with their reciprocal type pairs at each point in time. This

is a net increase of

ξO = ρ(1− θ)pOλ[πA + πB + πAB]

with respect to regular exchange. If some of these pair types are pooled for deceased donation under

exchange with incentivized compatible pairs, then they are also pooled for deceased donation under

regular exchange.

Single patients:

* Prioritized reentrants : As no O reentrants are prioritized, all O deceased donors are still given

to O single patients, and there is a

φlκO = 0

measure of prioritized O reentrants per unit time.

* Regular single patients : On the other hand, some additional O patients are saved through

exchange, an additional measure of

φlξO = φl[ρ(1− θ)]pOλ[πA + πB + πAB]

of O patients reenters with respect to regular exchange. These reentrants join the regular deceased

donor queue. However, if some underdemanded pairs with O patients receive deceased donation
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under exchange, then some of these fall from competition for deceased donation under incentivized

exchange. Depending the size of this fallout, the net effect on the net inflow rate of O single patients

can be negative or positive, but this additional inflow rate to the regular deceased donation queue

will be no more than

φlξO.

Depending on which of the above effects dominates, the waiting time for regular O single patients

can slightly increase or decrease under incentivized exchange.

2. A patients:

Compatible pairs: A measure

κA = ρ(1− θ)pOλπA
of A− O type compatible pairs participates in exchange to save O − A type pairs. Self-demanded

A− A type compatible pairs do not participate in exchange.

Incompatible pairs: A measure [ρ(1 − θ) + θ]pAλπAB of underdemanded type pairs A − AB is

matched through exchange in every point in time. This is a net increase of

ξA = ρ(1− θ)pAλπAB
with respect to regular exchange. If some of these pair types are pooled for deceased donation under

incentivized exchange, then they are also pooled for deceased donation under regular exchange.

The reciprocally demanded pair type A − B continues to run a deficit as B − A inflow is – by

Assumption 3 – lower than A − B inflow. If A − B type pairs wait both for B − A type pairs

and decease donors under incentivized exchange, see the case for single patients to understand the

effect of incentivized exchange on their waiting times below. On the other hand if they are waiting

exclusively for B − As under incentivized exchange policies, then A − B types wait for the same

time under both regular and incentivized exchange, and exactly the same measure of them gets

matched.

Single patients:

* Prioritized reentrants : Patients of some of the A − O type compatible pairs that previously

participated in exchange reenter as their grafts fail. Their inflow is

φlκA = φlρ(1− θ)pOλπA.

These A reentrants, who no longer have living donors, go directly to the top of the A deceased

donor queue instead of going to the bottom as under regular exchange. We will refer to this as

incentivized exchange burden. This is also the rate of the decease donors reserved for these patients.

* Regular single patients : An additional ξA measure of A−AB pairs are saved by AB−A types

through exchange. A measure of

φlξA = φlρ(1− θ)pAλπAB
A patients reenters and joins in the regular queue with the single A patients. However, if some

A − AB pairs receive deceased donation under regular exchange, then some of these fall from

competition for deceased donation under incentivized exchange. Depending the size of this fallout,

the net effect on the net inflow of A single patients for the regular queue can be negative or positive,

but this additional inflow will be no more than
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φlξA − φlκA.

As a result, the waiting time for new A single patients can slightly increase or decrease under

exchange with incentivized compatible pairs (cf. Figure 5 for an example of the overall impact of

this new exchange policy on A patients).

3. B patients: Symmetric version of A patients, except that B−A’s are immediately matched with

A−B’s when they enter the pool by the assumption that B − A’s are on the short side.

4. AB patients:

Compatible pairs: A total measure of

κAB = ρ(1− θ)[pO + pA + pB]λπAB

compatible AB−O, AB−A, and AB−B type pairs participate in exchange to save their reciprocals

at each point in time. Self-demanded compatible AB−AB type pairs do not participate in exchange.

Incompatible pairs: All incompatible pairs with AB patients are either self-demanded or overde-

manded. Hence, they are matched immediately when they arrive through exchange with their

reciprocal types under both regular exchange and exchange with incentivized compatible pairs.

Hence, additionally a

ξAB = 0

measure of incompatible pairs with AB patients is matched under the new regime.

Single patients:

* Prioritized reentrants : The reentry burden of AB patients from previous compatible pairs

that participated in exchange is

φlκAB = φlρ(1− θ)[pO + pA + pB]λπAB,

which is the rate of prioritization for AB reentrants to the deceased donor queue. This is also the

rate of the decease donors reserved for these patients.

* Regular single patients : On the other hand, the same measure of AB patients reenters at each

point in time under both regular exchange and exchange with incentivized compatible pairs. No

pairs with AB patients are pooled for deceased donation under either regular exchange or exchange

with incentivized compatible pairs. Hence, a

φlξAB = 0

measure of additional AB reentrants from previous incompatible pairs reenters the deceased donor

queue. Net increase of rate of entry to the regular AB deceased donor queue is negative and equal

to

− φlκAB.

As a result, the waiting time for regular AB single patients unambiguously slightly increases under

exchange with incentivized compatible pairs. This holds as all of the prioritized AB patients receive

deceased donation under exchange with incentivized compatible pairs, while some patients from the

same population would have died and not received deceased donation under the alternative regime,

regular exchange.

Proof of Proposition 1. Fix ρ ∈ [0, 1] such that Assumption 4 holds. Consider the following

strategy profile σ∗: all pairs register at P0, the national program, with probability 1. As an optimal
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exchange mechanism is used, then under this profile the maximal measure of pairs are matched.

Moreover, σ∗ is a pure strategy equilibrium in undominated strategies: as no pairs register in any

other platform, it is a best response to register at P0.

Consider an arbitrary pure strategy equilibrium profile σ in undominated strategies. Each pair

registers at a unique exchange platform with probability one as soon as it arrives.

We prove that all pairs belonging to overdemanded pair types and pair type B−A are matched

with pairs belonging to underdemanded types or pair type A − B immediately when they arrive

under σ. To the contrary, suppose there is a platform Pa where a positive measure of pairs of a

type X − Y ∈ O ∩ T × T , i.e., overdemanded or type B − A, is not matched with pairs of types

in U ∩ T × T , i.e., either underdemanded or type A − B, at σ when they arrive with a positive

probability (using the notation in Appendix A).

Consider any pair type W1 −Z1 in set U that has cW1−Z1,X−Y = 1 (i.e., that is mutually blood-

type compatible with an X−Y type pair using the same notation). All pairs of type W1−Z1 should

be matched immediately at σ. Otherwise such a pair x can register at Pa and can be immediately

matched with probability 1 with one of the X − Y pairs at σ. The reason for this is as follows:

As pair x is of measure 0 and a positive measure of X − Y pairs are either being matched with

other overdemanded pairs or not being matched at all, the platform Pa, which is using an optimal

exchange policy with randomization when there are multiple possible pairs to match, will match

pair x immediately with probability 1. This implies that all W1 − Z1 type pairs are matched with

probability 1 through exchange when they arrive at σ by Lemma 7.

Suppose P′1 ⊆ O ∩ T × T is the set of overdemanded pair types or type B − A with which

W1 − Z1 type pairs are mutually blood-type compatible: that is, P′1 = C{W1−Z1}(O ∩ T × T )

(as defined in Equation 17). Observe that AB − O ∈ P′1. Let V′1 ⊆ U ∩ T × T be the set of

underdemanded pair types or A − B that are mutually blood-type compatible with the types in

P′1: that is, V′1 = CP′1
(U ∩ T × T ) (as defined in Equation 18). As AB − O ∈ P′1, we have

V′1 = U ∩ T × T = {O − A,O −B,O − AB,A− AB,A− AB,B − AB,A−B} (cf. Figure 7).

All pairs belonging to types in V′1 should be matched immediately with probability 1 at σ, as

otherwise, one pair that does not get matched immediately with positive probability can register

at a platform where a positive measure of W1 − Z1 type pairs register at σ. As all W1 − Z1 pairs

are matched immediately with pairs of types in P′1 and this one pair is of measure 0, it would be

guaranteed to be matched immediately as well.

Pairs of types in U∩ T × T can only be matched with pairs of types in O∩ T × T . We have a

measure of e1 =
∑

X−Y ∈U∩T ×T \{A−B}[θ+ρ(1− θ)]pY λπX +pBλπA underdemanded and A−B pairs

being matched through exchange at every moment in time at σ. However, the total measure of

overdemanded and B−A pairs arriving at each moment is only e2 =
∑

Y−X:O∩T ×T \{B−A}[θ+ ρ(1−
θ)]pXλπY +pAλπB. By Assumptions 2 and 4, e2 > e1. Hence, a positive measure of underdemanded

pairs should wait under any feasible exchange scheme, contradicting the fact that all pairs of types

in U ∩ T × T are matched immediately.

Thus, we showed that all pairs of types in O ∩ T × T matched to pairs of types in U ∩ T × T
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under equilibrium. As any positive measure of self-demanded types can be matched with each

other at any platform, equilibrium σ maximizes the total measure of pairs being matched through

exchange, and hence, through deceased donation, as well.

As ρ goes up, the measure of pairs of types in O∩T ×T goes up. Hence, more underdemanded

and overdemanded pairs are matched at any equilibrium, while the measure of reciprocally de-

manded pairs matched in exchange stays constant or goes up. On the other hand, if single patients

are pooled with some types in U ∩ T × T before ρ goes up, the measure of such patients being

matched also increases.

Proof of Theorem 11. By Proposition 1, as the maximal measure of pairs are matched at pure

Nash equilibria in undominated strategies, the worst equilibrium in undominated strategies for P0

is the best equilibrium for other platforms. The measure of pairs matched in every moment in time

through exchange in any pure strategy equilibrium in undominated strategies is given as∑
X−X∈T ×T

θpXλπX + 2
∑

X−Y ∈O\{B−A}
[θ + ρ(1− θ)]pY λπX + 2pAλπB

where [ρ(1−θ)]pY λπX is the measure of compatible pairs participating in exchange, which also save

the same amount of the underdemanded or A−B pairs through exchange. In the worst equilibrium

for P0 only the compatible pairs participate in exchange at P0 among all overdemanded and B−A
pairs. Hence no B − A pair participates at P0. Among the underdemanded pairs and A− B type

pairs, for such a type X − Y , the participation at P0 is such that exactly ρ(1 − θ)]pY λπX survive

and get matched with the compatible pairs. Contrary to the claim, suppose that as ρ increases,

the participation of overall pairs decreases or stays the same at P0 under the worst equilibrium.

Then, more compatible pairs are available of each (feasible) type. Thus, the waiting time for the

underdemanded pairs registered at P0 decreases while the waiting time at other programs for the

same types stays the same or increases. This leads to a contradiction.

Now, if

ρ >

∑
X−Y ∈O\{B−A} θpY πX + pAπB∑
X−Y ∈O\{B−A}(1− θ)pY πX

,

then

2
∑

X−Y ∈O\{B−A}
ρ(1− θ)pY λπX > 2

∑
X−Y ∈O\{B−A}

θpY λπX + 2pAλπB,

where the left-hand side denotes the least measure of pairs matched at P0 at each point in time at

any equilibrium with undominated pure strategies and the right-hand side denotes the maximum

total measure of efficiency critical pairs matched outside of P0 at an equilibrium.

Therefore, more pairs of types in O register at P0 at any pure undominated equilibrium, as half

of the above measures belong to pairs of types in O registering at P0 (left-hand side) and other

platforms in total (right-hand side), respectively. To the contrary, suppose that a less or equal
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measure of pairs of types in U registers at P0. Then as more pairs of types in U are matched within

P0 than at all other platforms combined, some pair type X − Y ∈ U will have a lower waiting time

at P0 than at some other platform, leading to a contradiction to Lemma 7.
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