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Abstract 

This dissertation consists of two chapters. The first chapter: Dynamic 
reserves in matching markets with contracts. In this paper we study a 
matching problem where agents care not only about the institution 
they are assigned to but also about the contractual terms of their 
assignment so that they have preferences over institution-contractual 
term pairs. Each institution has a target distribution of its slots 
reserved for different contractual terms. If there is less demand for 
some groups of slots, then the institution is given opportunity to 
redistribute unassigned slots over other groups. The choice function 
we construct takes the capacity of each group of seats to be a function 
of number of vacant seats of groups considered earlier. We advocate 
the use of a cumulative offer mechanism (COM) with overall choice 
functions designed for institutions that allow capacity transfer across 
different groups of seats as an allocation rule. In applications such as 
engineering school admissions in India, cadet-branch matching 
problems at the USMA and ROTC where students are ranked 
according to test scores (and for each group of seats, corresponding 
choice functions are induced by them), we show that the COM with a 
monotonic capacity transfer scheme produces stable outcomes, is 
strategy proof, and respect improvements in test scores. Allowing 
capacity redistribution increases efficiency. The outcome of the COM 
with monotone capacity transfer scheme Pareto dominates the 
outcome of the COM with no capacity transfer.  

The second chapter: On relationships between substitutes conditions. 
In the matching with contracts literature, three well-known conditions 
on choice functions (from stronger to weaker)- substitutability, 



unilateral substitutability (US) and bilateral substitutability (BS) have 
proven to be critical. This paper aims to deepen our understanding of 
them by separately axiomatizing the gap between the BS and the other 
two. We first introduce a new “doctor separability” (DS) condition 
and show that BS, DS and irrelevance of rejected contracts (IRC) are 
equivalent to IRC and US. Due to Hatfield and Kojima (2010) and 
Aygün and Sönmez (2012), it is known that US, “Pareto separability” 
(PS), and IRC are equivalent to substitutability and IRC. This, along 
with our result, implies that BS, DS, PS, and IRC are equivalent to 
substitutability and IRC. All of these results are given without IRC 
whenever hospital choices are induced from preferences.  
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Chapter 1: Dynamic Reserves in Matching Markets

With Contracts: Theory and Applications

May 4, 2015

1 Introduction

Engineering school admissions in India functions through a centralized matching

market in which students with different privileged backgrounds such as caste and

tribes are treated with different admission criteria. Students have different pref-

erences over how they are treated in admission to the same engineering program.

Therefore, students may prefer not to reveal their caste and tribe information in

the application process. Besides this strategic calculation burden on students, the

current system suffers from a crucial market failure: The centralized assignment

mechanism fails to transfer some unfilled seats reserved for under-privileged castes

and tribes to the use of remaining students. Hence, it is vastly wasteful.

In this paper, we propose a remedy to this problem in a new matching model

with contracts and ability to utilize unfilled seats of certain types for other students.

Moreover, our remedy removes strategic manipulation burden from students’ shoul-

ders about for which seat types they should apply at an engineering program. We

propose a strategy proof and stable mechanism in this framework.

There are other direct applications of our model such as USMA and ROTC

cadet-branch matching and assignment procedures in hierarchical firms. We discuss

all three motivating examples in Section 2.

More specifically our model addresses the real-life applications as follows: There
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are institutions and agents to be matched. Each institution initially reserves a certain

number of its slots for different privilege groups (agent types). For a single agent,

there might be more than one possible contract to obtain a slot at a given institution.

Each institution has a pre-specified order (precedence order) in which these different

privilege groups are to be considered. Different institutions might have different

orders. Each agent is a member of at least one privilege group. Since an agent

might have more than one privilege type, the set of agents cannot be partitioned

according to privilege groups. Each agent has a preference over institution-privilege

type pairs. Agents care not only about which institution they are matched to but

also about the contractual terms or privilege type under which they are admitted.

Each institution has a target distribution of its slots over privilege types, but we

do not consider these target distribution as hard bounds.1 If there is less demand

from at least one privilege type institutions are given opportunity to utilize these

vacant seats by transferring them over other privilege groups. Institutions might

have preferences over how to redistribute these unassigned slots. Each institution

has a complete plan where they state how they want to redistribute these slots, so we

take capacity transfers to be exogenous. The only condition imposed on the capacity

transfer scheme is monotonicity2 which requires that if more slots are left unassigned

from one or more privilege types, the capacity of other privilege types is required to

be weakly higher.

The novel design part of this paper is the construction of a choice function of

institutions that allows them to transfer capacities from low-demand privilege types

to high-demand privilege types. Each institution respects an exogenously given

precedence order between different privilege types of student groups when it fills

its slots. For each of the privilege types there is an associated choice function,

we call a sub-choice function. Given the target distribution of the institution and

the set of contracts, the first privilege type (according to its precedence order) of

the institution fills its slots according to its sub-choice function. Then, it moves
1Hard bounds and soft bounds are analyzed in detail in Ehlers et al. (2014).
2This condition is first introduced by Westkamp (2013) in the context of German university

admissions.
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to the second privilege type. Sub-choice functions are linked to each other by two

components. Firstly, since we take a pre-specified precedence order, the choice in

each privilege group depends on what has been chosen by the privileges groups

that were considered earlier according to the precedence order. Given the chosen

contracts from the first privilege type, the remaining set of contracts for the second

privilege type can be found as follows: if an agent has one of her contracts chosen

by the first privilege type, then all of her contracts are removed (rejected) for the

rest of the choice process. The second component that links sub-choice functions of

different privilege types is that the capacity of a privilege type changes dynamically

according to the number of unassigned slots in the privilege types considered earlier

in the choice procedure, i.e., the possible transfer of unassigned slots from privilege

groups to other privilege groups. The idea here is that the capacity of the privilege

type following the first privilege type according to precedence order is a function of

the number of unassigned seats in the first privilege type. The capacity of the third

privilege group is a function of unassigned seats in the first and second privilege

types, and so on. In short, each sub-choice function has two inputs: the set of

remaining contracts to consider, which depends on the choices of the privilege types

considered before it, and its capacity which changes dynamically according to the

number of unassigned slots of the privilege types considered earlier. In this modeling

choice, both of these two inputs of a given sub-choice function depends on the choices

of the sub-choice function of the privilege types preceding it. The overall choice of

an institution is the union of choices by its different privilege types.

In applications, which we describe in part 2, there is a strict ranking of individuals

according to test scores. In the cadet-branch matching problem, cadets are ranked

according to test scores, i.e., the order of merit list. In the school-choice application

from India, students are ranked according to test scores, as well. Then, for each

privilege type, students with that privilege type are ordered, according to the test

score ranking. Choice functions for each privilege type, then, are induced from these

strict rankings. These types of choice functions are common in practice and are

called q-responsive.
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We present the cumulative offer algorithm as an allocation rule with overall

functions of institutions described above. As in Kominers-Sönmez (2013), our overall

choice functions fail to satisfy unilateral substitutability and the law of aggregate

demand.3 Even with this complication, we are able to show that the cumulative offer

mechanism yields stable outcomes, is strategy proof, and respects improvements in

test scores. However, there might not be an agent-optimal stable allocation in our

framework. Moreover, even when an agent-optimal stable allocation does exist, the

cumulative offer mechanism might not find it. The main purpose of introducing

dynamic reserves, i.e., capacity transfers, is to increase efficiency. We show that

the outcome of the cumulative offer process under any monotonic capacity transfer

scheme Pareto dominates the outcome of the cumulative offer mechanism outcome

without a capacity transfer.

2 Motivating Applications

The theoretical framework we develop in this paper has a wide applications in match-

ing problems with distributional concerns. In this section we give three main applica-

tions of our analysis : caste-based affirmative action in engineering school admissions

in India, the cadet-branch matching problem with multiple branch-of-choice contract

possibilities at the USMA and ROTC programs, and firm-worker matching in the

context of hierarchical organization structures.

2.1 Engineering School Admissions in India

Countries in which minority groups have suffered from historic discrimination are

commonly characterized by considerable schooling inequalities between these groups

and the majority of the population. Particularly when the inequality is great, govern-

ments have adopted strong affirmative action policies in higher education to remedy

it, eschewing a voluntary preferential system in favor of a “reservation system” that

reserves a fixed percentage of seats in higher education institutions for the relevant
3These two conditions on choice functions are sufficient for the cumulative offer mechanism to

be strategy proof. See Hatfield and Kojima (2010) and Aygün and Sönmez (2012).
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groups. The fundamental assumption underlying the imposition of a reservation

system is that minority students gain admission into selective programs they would

otherwise not have access to, and such gains generates social return in the near

future.4

India is one of the few countries that practices affirmative action on a large scale.

Reservation in India is the process of setting aside a certain percentage of seats

in government institutions for members of under represented communities defined

primarily by castes and tribes. Reservation is a form of quota-based affirmative

action that is governed by constitutional laws, statutory laws, and local rules and

regulations. Scheduled castes (SC), Scheduled Tribes (ST), and Other Backward

Classes (OBC) are the primary beneficiaries of the reservation policies under the

constitution with the objective of ensuring to level the playing field.5

Among all higher education institutions in India, engineering schools are the

most prestigious. The admission procedure in engineering schools is organized and

regulated by the Indian Institute of Technology (IIT). The IIT practices affirmative

action and offers reservation to minority sectors of the society. The following table

shows the reservation structure of engineering schools in the State of Maharashtra.6

Category of Reservation Reservation

Scheduled Castes (SC) 13%

Scheduled Tribes (ST) 7%

Other Backward Classes (OBC) 30%

General Category (including SC, ST and OBC) 50%

As shown in the above table, the reservation system sets aside a proportion of

all possible positions for members of a specific group. Those not belonging to the

designated communities can compete only for general category positions, while mem-
4See Bertrand et al. (2010). They argue that affirmative action successfully targets the finan-

cially disadvantaged in India. The authors find that despite poor entrance exam scores, lower-caste
entrants obtain a positive return for admission.

5For a brief history of affirmative action policies in India, see Bertrand et al. (2010) and Weis-
skopf (2004).

6See “Rules for Admissions to First year of Degree Courses in Engineering/Technology in Gov-
ernment, Govt. Aided and Unaided Engineering institutes in Maharashtra State-Academic year
2014-2015”.
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bers of the designated communities can compete for both reserved seats and open

seats. Students who are not coming from designated communities are considered

only for general category seats. However, a student who belongs to one of the des-

ignated groups is given opportunity to use his or her caste (or tribe) background as

a privilege. If students from designated communities do not use their caste or tribe

privileges they are considered only for general category seats. Claiming a reserved

seat for students from designated communities is optional. If they state their privi-

lege and get accepted to a program with a reserved seat in that category, they have

to prove their membership in the group by providing a legal document.

2.1.1 Engineering School Admission Procedure and the DTEMechanism

In the Maharashtra Engineering school admission procedure, students are ranked

based on their total scores in the “Maharashtra Common Entrance Test (MT CET).”

This ranking is used to assign students to general category seats. Rankings for

privilege types SC, ST, and OBC are derived as follows: For each category, the

relative rankings of the same-category students are preserved and the students from

other categories are removed. For students with the same score, students are ranked

first by their math scores, then by chemistry scores, and finally by physics scores.

In the circumstance that students have the same three scores in each field, age

determines the priority, i.e., the older student is given priority. As such, each student

has a unique ranking. Each student submits his or her preferences over engineering

programs. They can rank at most 100 programs. Together with their program

rankings, they can also submit their privilege type if they are coming from SC, ST,

or OBC communities and want to use this privilege.

The Directorate of Technical Education (DTE), the institution in charge of the

admissions to engineering schools in Maharashtra, uses the following mechanism to

allocate seats to students in the centralized admission process (CAP):

Step 1 : Each student applies to his or her top choice. Each school considers the

applications for the general seat category first, following the ranking �. Students

are assigned general category seats one by one following � up to the capacity of
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the general category seats. If there are more students than allowed by the capacity

of the general seat category, the remaining students are considered for the reserved

categories depending on their submitted privilege type. For each reserved category

SC, ST, and OBC, students are assigned seats one by one following the priority order

of privilege type up to the capacity of that category. The remaining students are

rejected.

In general, at step n:

Step n : Each student who was rejected in the previous step applies to his or

her next-choice school. Each school fills its general seats first following � from the

tentatively held students and new applicants. Students are assigned general category

seats one at a time following � up to the capacity of the general category seats. If

there are more students than allowed by the capacity of the general seat category,

the remaining students are considered for the reserved categories depending on their

stated privilege type. For each reserved category SC, ST, and OBC, students are

assigned seats one at a time following the priority ranking in each privilege type up

to the capacity of that category. The remaining students are rejected.

This algorithm ends in finitely many steps. When outcomes are announced, all

students learn their program assignments together with the privilege type under

which they were accepted. DTE announces privilege types together with the pro-

gram assignment for each student to show the public that reservations are actually

respected.

After the above centralized admissions process is done, it there are empty seats in

OBC category these seats are converted into general seats and filled by general cat-

egory applicants according to test score rankings. This process is called “counseling”

process.

2.1.2 The Shortcomings of the DTE mechanism

The mechanism used by the DTE has many shortcomings. Two main problems with

their admission procedure are listed below. The Indian authorities either are not

aware of the first problem or they find it insignificant; however, they realize that the
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second problem is important and are trying to solve it.

(i) Students are asked to state their preferences over the set of programs even

though their assignments specify a program name together with a seat type. The

preference domain is narrower than the allocation domain in that students’ prefer-

ences over seat types are not investigated but are assumed in a specific way. For

example, suppose a student, say from OBC background, submits two schools in his

preference list, school A and school B, such that he prefeers school A to school B.

However, when his assignment is announced, it is going to be in the following form:

“general category seat from school B” or “OBC category seat from school A.” The

DTE assignment procedure simply assumes that students only care about which

program they are admitted to. They assume that for each program a student ranks

in his or her preference list, he or she prefers the open category seat type of that

program over the reserved type seat if the student submitted any privilege along

with his application. However, for several reasons, which we will discuss below, stu-

dents may actually care about what type of seats they receive together with their

program assignments. Their true preferences might be over program name-seat type

pairs, not just program names. Similar to the problem of narrower preference do-

main explained in the cadet-branch matching papers of Switzer and Sönmez (2013)

and Sönmez (2013), the DTE assumes each student prefers the general seats over the

reserved seats given a program. Hence, given a preference relation over schools, the

DTE generates a new preference profile such that the relative ranking of schools is

the same, and in each school the general seat is preferred over the reserved category

seat for every student. However, across different programs with different types of

seats, students might have more complicated preferences.

• Some students might not want to reveal their caste and tribe information and

hence would prefer general category seats over type-specific seats. One of the

main reasons for this is the fact that students who obtain a seat from a re-

served category are discriminated against in some universities. Opponents of

the reservation policies in India argue that the policy is anti-meritocracy and

8



decreases the average quality of Indian engineering schools. As a result, many

students who obtain reserved seats feel discriminated against, as the following

item illustrates:

“A survey among first year students (2013-14 batch) belonging to various SC,

ST and OBC categories, has revealed that an alarming 56% of them feel dis-

criminated against in the institution, albeit in a discreet manner. Nearly 60%

of those in the reserved category also said they experienced more academic pres-

sure than those in the general category.”7

Because of this pressure, some SC, ST and OBC students prefers general cate-

gory seats rather than reserved category seat for personal reasons such as pride

and dignity.8 However, current mechanism in use does not let students express

these concerns in their preferences.

• If a student from a designated community uses her privilege and is assigned to

a reserved seat, then she is exempt from school fees (or pay very low fee), will

receive book grants, and will be able to live for free in college housing. Because

of financial reasons a high-score, poor student from a designated community

would prefer a reserved seat over a general seat. This point is illustrated in

the following quote from an online education forum:

“It’s estimated that 70% of Below Poverty Line in India comprises of Scheduled

caste people. It’s very difficult for an SC/ST/OBC student to crack JEE ad-

vanced and once they crack this exam, they have to face even a bigger problem.

How will they afford at least 1.20 lakh Rupees per year for this technical edu-

cation? I mean come on, this comprises only of tuition and hostel fee. What

about other expenses? I think at least 40,000 rs would be enough in minimal

living condition. So a total of 1.6 lakh rs per year. Oh, did we include the cost

of a laptop, a bicycle and food? No. So what we conclude from all this is that

it’s not an easy task for reserved category students to get education in IITs.
7http://www.dnaindia.com/mumbai/report-caste-discrimination-in-india-s-elite-institutions-

students-2016745
8http://www.quora.com/How-does-it-feel-to-be-an-SC-ST-category-student-in-IIT
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I do agree that there are some reserved category students who take advantage

of all this. I guess at least 30% of reserved category students are economically

well and they can afford all this on their own. This is a flaw in the system and

we have to accept it.”9

• General category seats are regarded as more prestigious. Students from des-

ignated communities who care about obtaining prestigious seats have more

complicated preferences than simple preferences only over programs. Also,

some give political reasons for arguing against the reservation policy. Many

students from designated communities are agains caste-based reservation pol-

icy and do not claim caste or tribe privileges. In that case, they are considered

for only general seats.

Example 1. Suppose that student i who has privilege ST submits the following

preference over schools: s1Pis2Pis3. The DTE generates the following preference

relation from the stated preference: sGen
1 Pis

ST
1 Pis

Gen
2 Pis

ST
2 Pis

Gen
3 Pis

ST
3 . However,

student i’s true preference might be as follows: sGen
1 Pis

Gen
2 Pis

Gen
3 Pis

ST
1 Pis

ST
2 Pis

ST
3 .

This student can manipulate the DTE mechanism by misrepresenting her pref-

erences. Also, the mechanism may create an adverse incentive to have lower test

scores if a student from a designated category wants to gain admission only through

reserved category seats; i.e., in the above example, a student from ST community

might have the following true preference: sST1 Pis
ST
2 Pis

ST
3 Pis

Gen
1 Pis

Gen
2 Pis

Gen
3 .

As such, it is obvious that the DTE mechanism is not fair, does not respect improve-

ments, and is manipulable. Furthermore, it is actually very easy to manipulate the

DTE-mechanism. In our model, we expand the preference domain to program-seat

type pairs to fully alleviate this problem. Every preference profile over only schools

can be represented when preferences are defined over program type-seat type pairs.

The second problem regarding the DTE mechanism is that every year, many

reserved seats remain vacant and the public (especially general category applicants)

react negatively to this fact.
9http://www.quora.com/Reservation-in-India/As-per-the-policy-of-my-institute-IIT-Roorkee-

SC-ST-students-are-provided-with-concession-and-waiver-in-fee-irrespective-of-their-family-income
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(ii) The capacities of reserved seats in the SC and ST categories are taken to

be hard bounds. In other words, if there are not enough applications for one of the

privilege types SC or ST, some of the seats will remain empty. In Maharashtra, the

data show that most years applications from ST students have been low. Hence,

some reserved seats for the ST students have remained vacant.10 However, if there is

any vacant seat from the OBC category, the DTE converts that seat into a general

category seat.11 Also, the number of applications from designated communities is

volatile over time. Due to insufficient demand from some of these communities, every

year many seats that are reserved for SC and ST students remains vacant :

“As admissions to engineering colleges across the state closed, seats in

some of the finest institutes that charge almost nothing have gone abeg-

ging. Not only are seats open in some of the most prestigious colleges of

the state, slots are vacant in some of the top streams too: 69 in electron-

ics, 38 in mechanical engineering, 27 in civil engineering, 23 in computer

science and 10 in electrical engineering. The Directorate of Technical Ed-

ucation (DTE) on Thursday kickstarted the special admission round to

fill vacant seats in government institutes; 269 seats are yet to be filled.”12

In our model, we introduce dynamic reserves such that capacity can be transferred

from one group of seats to another. Allowing capacity transfer increases efficiency

by utilizing slots that would otherwise remain vacant.

2.2 Cadet-Branch Matching Problem

Motivated by the low retention rates of the US Military Academy (USMA) and Re-

served Officer Training Corps (ROTC) graduates, the army introduced an incentive

program in which cadets could bid three years of additional service obligation to

obtain higher priority for their desired branches. The full potential of this incen-
10See Weisskopf (2004). See also Bertrand et al. (2010).
11For the details of the admission procedure for engineering schools, see Weisskopf (2004), Kochar

(2009), and Bertrand et al. (2010).
12http://timesofindia.indiatimes.com/city/mumbai/Prestigious-government-engineering-

colleges-still-have-vacant-seats/articleshow/39833944.cms
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tive program is not utilized, however, because of the USMA’s and ROTC’s deficient

matching mechanism. Switzer and Sönmez (2013) propose a design that eliminates

the mechanism’s shortcomings and mitigates several policy problems the Army has

identified.

The Officer Career Satisfaction Program (OCSF) was designed by a group of

economists and officers at West Point’s Office of Economic and Manpower Analysis

to boost career satisfaction and retention. According to this program, cadets are

given the opportunity to obtain higher priority for branches that they will sign

branch-of-choice contracts with in exchange for serving an additional three years of

active duty, which is normally five years if a cadet does not sign a branch-of-choice

contact. In this setup, two different contractual terms are possible to obtain a seat

from a given branch: the cheap option (five years of active service duty) and the

expensive option (eight years of active service duty). The army reserves certain

slots for cadets who sign branch-of-choice contracts. Cadets at the USMA have a

strict priority ranking known as an order-of-merit-list (OML) that is based on a

weighted average of academic performance, physical fitness test scores, and military

performance. Prior to the implementation of the OCSF, the army had been using

the serial dictatorship induced by the OML to assign slots at 16 branches to cadets.

With the introduction of the OCSF, the army decided to change branch priorities as

follows: For the first 75% of slots at any branch, OML is used, and for the remaining

25% of slots cadets who sign branch-of-choice contracts receive higher priority, while

OML is used to rank them. If the last 25% of the slots cannot be filled, then OML

is used to rank cadets who do not sign a branch-of-choice contract.

One of the problems about the army’s design was that the mechanism they

propose is not a direct mechanism. They ask cadets to choose (i) a ranking of

branches alone, and (ii) a number of branches (possibly none) for which the cadet

is asked to sign a branch-of-choice contract.13 Sönmez and Switzer (2013) carefully

redesign this incentive program for the army as follows: Each cadet is asked to
13Similar to the problem of the engineering school admissions in India, the preference domain is

not large enough to contain all possible preferences even though the outcomes are announced as
branch-contractual terms for each cadet.
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state his or her preferences over branch-contractual term pairs. They propose to

use a cadet optimal stable mechanism with a specific choice function they designed.

According to their choice function, for the first 75% of slots the contracts with

highest-priority cadets will be chosen one at a time according to OML. If contracts

remain to be considered, for the last 25% of slots first consider contracts with the

expensive option following OLM among them. If there are not enough contracts

with the expensive option to fill the last 25% of slots, fill the remaining slots with

contracts with the cheap option following the OML.

In their choice function design, one should notice that the army reserves 25%

of slots for contracts with the expensive option, but if there is not enough demand

for these slots, they are transferred to the group of slots for contracts with the

cheap option. Consider the following design problem: Suppose that the army offers

more than one branch-of-choice contract possibility in the sense that , say, there are

different types of slots reserved for cadets who want to serve six additional years of

active duty and for cadets who want to serve three years of additional active service

duty (both in exchange of higher priorities at those slots). In our framework, these

different branch-of-choice options correspond to different privilege types and a cadet

might belong to all of them. If the army has a target distribution over these types

of cadets and initially reserves them certain available slots while there is not enough

demand for one of the privilege types, then the army can express its preference over

how to redistribute unassigned slots from the low-demand privilege type over the

others.

2.3 Assignment Procedures in Hierarchical Institutions

Alva (2014) offers an explanation of why hierarchies are a common organizational

structure in institutions from a matching-theoretic perspective, which emphasizes

the significance of stable outcomes for the persistence of organizational structures.

He studies the matching of individual talents via contracts with institutions that

are composed of different divisions enjoined by an institutional governance struc-

ture. The term precedence order in Kominers and Sönmez’s (2013) framework cor-
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responds to institutional governance structure in Alva’s model. Talents (students

in the school-choice models) have preferences not only over institutions but over

institution-division pairs. Conflicts over contracts between the divisions of an insti-

tution are resolved by a hierarchical (linear) governance structure, whereas conflicts

between divisions across institutions are resolved by the preferences of agents. The

author shows that stable market outcomes exist whenever each institution has a

linear order of its divisions in where, given a set a contracts, divisions choose con-

tracts according to this specified order and the choice of each division is bilaterally

substitutable and satisfies the irrelevance of rejected contracts condition.

In Alva’s model each division within an institution has a pre-specified capacity.

The author takes capacities of divisions to be hard bounds. If there is not enough

demand for a certain division, then some of the available slots in that division will

remain empty. Our main deviation from Alva (2014) is that if there is not enough

demand for some of the divisions we utilize these remaining slots by transferring

them to other divisions. This transfer scheme simply increases efficiency. To be

able to accomplish capacity transfers we introduce choice functions for each division,

where the capacity of a division becomes a function of number of the unassigned

slots of the divisions that fill their slots earlier.

3 The Model

3.1 Agents, Institutions, Contracts, and Privileges

In a matching problem with dynamic reserves, there is a set of agents I = {i1, ..., in},

a set of institutions S = {s1, ..., sm}, a set of privileges Θ = {t1, ...tk}, and a (finite)

set of contracts X = I×S×Θ. Each agent i ∈ I has a set of privileges τ(i) ⊆ Θ he or

she can claim, where τ : I ⇒ Θ is a privilege correspondence. Each contract x ∈ X

is between an agent i(x) ∈ I and an institution s(x) ∈ S, and states the privilege

t(x) ∈ τ(i(x)). We extend the notations i(·), s(·), and t(·) to sets of contracts

by setting i(Y ) ≡ ∪y∈Y {i(y)}, and s(Y ) ≡ ∪y∈Y {s(y)}. For Y ⊆ X, we denote

Yi ≡ {y ∈ Y : i(y) = i}; analogously, we denote Ys ≡ {y ∈ Y : s(y) = s} and
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Yt ≡ {y ∈ Y : t(y) = t}.

Each agent i ∈ I has a (linear) preference order P i (with weak order Ri) over

contracts in Xi = {x ∈ X : i(x) = i}. For ease of notation, we assume that each

i ∈ I also ranks a “null contract” ∅i, which represents remaining unmatched (and

hence is always available), so that we may assume that s ranks all the contracts in

Xi.14 We say that the contracts x ∈ Xi for which ∅iP ix are unacceptable to i. Let

P denote the set of all preferences over S × Θ. A preference profile of agents is

denoted by P = (P i1 , ..., P in) ∈ Pn. A preference profile of all agents except agent

il is denoted by P−il = (P i1 , ..., P il−1 , P il+1 , ..., P in) ∈ Pn−1.

An allocation X ′ ⊂ X is a set of contracts such that each agent appears in at most

one contract and no institution appears in more contracts than its capacity allows.

Let X denote the set of all allocations. Given an agent i ∈ I and an allocation

X
′ with (i, s, t) ∈ X ′ , we refer to the pair (s, t) as the assignment of agent i under

allocation X ′ . Agent preferences over allocations are induced by their assignments

under these allocations.

Definition 1. (Pareto dominance) Outcome Y ⊆ X Pareto dominates outcome

Z ⊆ X if YiRiZi for all i ∈ I and YiP iZi for at least one i ∈ I.

A mechanism is a strategy space Si for each agent i along with an outcome

function ϕ : (Si1 , ...Sin) −→ X that selects an allocation for each strategy vector

(si1si2 , ..., sin) ∈ Si1 × Si2 × ...× Sin . Given an agent i and a strategy profile s ∈ S,

let s−i denote the strategy of all agents except agent i.

A direct mechanism is a mechanism where the strategy space is the set of prefer-

ences P for each agent i. Hence a direct mechanism is simply a function ψ : Pn −→ X

that selects an allocation for each preference profile.

3.2 Choice Procedure of Schools

Each institution s ∈ S reserves certain parts of its capacity for special agent groups in

order to make some reserved seats available to other privilege types to accommodate
14We use the convention that ∅iP ix if x ∈ X \Xi.
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to the characteristics of applicants. These kinds of constraints are encoded in the

choice procedure of institution s. First of all, each institution pre-specifies a linear

order in which privilege types are considered. We assume that for each s ∈ S, the

privileges are ordered to a (linear) order of precedence Bs. The interpretation of Bs

is that if t Bs t
′ then, whenever possible, the slots reserved for agents with privilege

t are filled before the slots reserved for agents with privilege t′ . Note that an agent

might have multiple privileges, so that set of agents I may not be partitioned into

disjoint sets of agents with different privileges. In particular, a given agent may be

considered multiple times by a choice procedure.

Institution s initially has a target distribution of its seats over different groups

of agents with different privileges. Let qs denote the total capacity of institution s.

The number of reserved for agents with privilege tj is denoted by qstj . Then, we have

qs =
∑k

j=1 q
s
tj . Institution s has a strict preference for filling these slots according

to its target distribution. If the target distribution cannot be achieved because too

few agents from one or more of the k privilege groups apply, then institution s can

express its preferences over possible alternative distributions of privilege types by

specifying how its capacity is to be redistributed.

For a given institution s ∈ S, Cs(.) : 2X −→ 2X denotes the overall choice

function of institution s. Without loss of generality, assume that the precedence

order is t1 Bs t2 Bs ... Bs tk. Given a set of contracts Y ⊆ X, Cs(Y ) is determined

as follows:

• Given qst1 and Y = Y 0 ⊆ X, let Y1 ≡ Cs
t1(Y 0, q̄st1) be the set of chosen contracts

with privilege t1. Then, let r1 = qst1− | Y1 | be the number of unused seats that

were initially reserved for agents with privilege t1. Define Ỹ1 ≡ {y ∈ Y : i(y) ∈

i(Y1)}. This is the set of all contracts of agents whose contract is chosen by

the sub-choice function Cs
t1(·, ·). If a contract of an agent with privilege t1 is

chosen, then all of the contracts naming that agent shall be removed from the

set of available contracts for the rest of the procedure. The set of remaining

contracts is then Y 1 = Y 0 \ Ỹ1.
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• Given the set of remaining contracts Y 1 and the capacity qst2 = qst2(r1)≥ q̃st2 ,

let Y2 = Cs
t2(Y 1, qst2) be the set of chosen contracts with privilege t2, where

the capacity of the group of seats for agents with privilege t2 is the function of

the number of unused seats from the first group. Let r2 = qst2− | Y2 | be the

number of unused seats that were reserved for agents with privilege t2. Define

Ỹ2 ≡ {y ∈ Y 1 : i(y) ∈ i(Y 1)}. If a contract of an agent with privilege t2 is

chosen by the sub-choice function Cs
t2(., .), then all of the contracts belonging

to that agent will be removed from the set of available contracts. Then, the

remaining set of contracts is Y 2 = Y 1 \ Ỹ1.

• In general, let Yj = Cs
tj (Y

j−1, qstj ) be the set of chosen contracts with privilege

tj from the set of available contracts Y j−1, where qstj = qstj (r1, ..., rj−1) ≥ q̄
s
tj is

the capacity of the group of seats for agents with privilege tj as a function of

the vector of the number of unused seats (r1, ..., rj−1) that are initially reserved

for agents with privileges t1, ..., tj−1, respectively. Let rj = qstj− | Yj | be the

number of unused seats that were reserved for agents with privilege tj . Define

Ỹj = {y ∈ Y j−1 : i(y) ∈ i(Yj)}. The set of remaining contracts is then

Y j = Y j−1 \ Ỹj .

• Given the set of contracts Y = Y 0 and the capacity qst1 of the group of

seats reserved for agents with privilege t1, which comes first in the precedence

order, we define the overall choice function of institution s as Cs(Y ) =
k⋃

j=1

Cs
tj (Y

j−1, qstj (r1, ..., rj−1)).

3.3 Stability

An outcome is a set of contracts Y ⊆ X. We follow the Gale and Shapley (1962)

tradition in focusing on match outcomes that are stable in the sense that

• neither agents nor institutions wish to unilaterally walk away from their as-

signments, and

• agents and institutions cannot benefit by recontracting outside of the match.
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Definition 2. We say that an outcome Y is stable if it is

(i) individually rational- Ci(Y ) = Yi for all i ∈ I and Cs(Y ) = Ys for all

s ∈ S, and

(ii) unblocked- there does not exist an institution s ∈ S and blocking set

Z 6= Cs(Y ) such that Z = Cs(Y ∪ Z) and Zi = Ci(Y ∪ Z) for all i ∈ i(Z).

Note that if the first condition fails, then there is either an agent or an institution who

prefers rejecting a contract that involves him/it. If the second condition fails, then

there exists an unselected contract x where not only agent i(x) prefers (s(x), t(x))

over his assignment but also contract x can be selected by institution s(x) given its

composition.

Definition 3. A stable outcome Y ⊆ X that Pareto dominates all other stable

outcomes is called an agent-optimal stable outcome.

3.4 Monotone Capacity Transfers

The idea behind the class of problems we study is that each institution is required

to reserve certain parts of its capacity for different privilege types and may prefer

or be required to make some of these reserved seats available to other privilege

types if its capacity cannot be filled by the first privilege types. Each institution

has a pre-specified order in which different privileges are considered while filling its

slots and also has a target capacity distribution over these privilege groups. If its

target distribution cannot be achieved because too few agents from one or more

privilege types apply, the institution would like to have an alternative distribution

over privilege types. To guarantee the existence of stable matchings along with many

other possibility results under capacity transfers, in our framework we require the

capacity transfer scheme to be monotonic.

Definition 4. A capacity transfer scheme is monotonic, if for all j ∈ {2, ..., k} and

all pairs of sequences (rsr̃s)
j−1
s=1 such that r̃s > rs for all s 6 j − 1, qstj (r̃1, ..., r̃j−1) >

qstj (r1, ..., rj−1).
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Monotonicity of capacity transfer scheme requires that whenever weakly more

seats are left unassigned in every privilege type from t1 to tj−1, weakly more seats

should be available for privilege type tj . Notice that no capacity transfer trivially

satisfies this definition, so it is considered a monotonic capacity transfer. If the

reserve structure is defined as hard bounds, then there is no capacity transfer. In

this paper, we propose the control constraints to be interpreted as soft bounds-flexible

capacities rather than hard bounds. For example, transferring all of the unassigned

seats from privilege types (other than general category) that have empty slots to

only general category satisfies the monotonic capacity transfer definition and can be

considered a flexible capacity scheme. Even though transferring all of unassigned

seats from other privilege types to the general category might seem more likely to

occur in real-life merit-based assignment procedures to promote competition among

agents (students), in our framework, the capacity transfer schemes that institutions

can implement are very flexible because different institutions might have different

distributional concerns. As long as the capacity transfer scheme is monotonic, each

institution can express its preferences over different capacity transfers where it prefers

to fill its slots according to its initial target distribution.

3.5 Conditions on Preferences and Choice Functions

Let X be the set of contracts. P(X) = 2X is the power set of X. A choice function

is C : P(X) −→ P(X) such that for every Y ⊆ X, C(Y ) ⊆ Y . We now discuss

the extent to which institutions’ choice functions and sub-choice functions satisfy

the conditions that have been key to previous analyses of matching with contracts

models.

Definition 5. A choice function Cs satisfies substitutability if for all z, z′ ∈ X

and Y ⊆ X, z /∈ Cs(Y ∪ {z}) =⇒ z /∈ Cs(Y ∪ {z, z′}).

Hatfield and Milgrom (2005) introduced this substitutability condition, which

generalizes the earlier gross substitutes condition of Kelso and Crawford (1982).

Hatfield and Milgrom (2005) also showed that substitutability is sufficient to guar-
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antee the existence of stable outcomes. However, their analysis implicitly assumes

the irrelevance of rejected contracts (IRC)15 condition defined below:

Definition 6. Given a set of contracts X, a choice function Cs : 2X −→ 2X satisfies

IRC if ∀Y ⊂ X, ∀z ∈ X \ Y , z /∈ Cs(Y ∪ {z}) =⇒ Cs(Y ) = Cs(Y ∪ {z}).

Aygün and Sönmez (2013) show that the substitutability condition together with

the IRC condition assures the existence of a stable allocation.

Choice function substitutability is necessary in the maximal domain sense for

guaranteed existence of stable outcomes in a variety of settings. However, substi-

tutability is not necessary for the guaranteed existence of stable outcomes in settings

where agents have unit demand (Hatfield and Kojima (2008, 2010)). Indeed, as Hat-

field and Kojima (2010) showed, the following condition which is weaker than substi-

tutability, not only suffices for the existence of stable outcomes but also guarantees

that there is no conflict of interest among agents. As in the work of Hatfield and

Milgrom (2005), an irrelevance of rejected contracts condition is implicitly assumed

throughout the work of Hatfield and Kojima (2010).16 In a matching with contracts

framework, the IRC condition is crucial. In a recent study, Afacan (2014) gives an

example in which without assuming the IRC condition, the cumulative offer algo-

rithm (which will be defined in Section 4 and is what we propose an an allocation

mechanism) does not even produce an allocation.

Definition 7. A choice function Cs satisfies unilateral substitutability (US) if

z /∈ Cs(Y ∪ {z}) =⇒ z /∈ Cs(Y ∪ {z, z′}) for all z, z′ ∈ X and Y ⊆ X for which

i(z) /∈ i(Y ) (i.e., no contracts in Y is associated to agent i(z)).

Unilateral substitutability has been proven to be crucial in market design ap-

plications. The choice functions of branches in the cadet-branch problem (Switzer

and Sönmez (2013) and Sönmez (2013)) do not satisfy substitutability. However,

they do satisfy unilateral substitutability. Unilateral substitutability, together with

the law of aggregate demand, guarantees the existence of an agent-optimal stable
15Alkan (2002) refers to it as “consistency.”
16See Aygün and Sönmez (2012) for details.
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allocation, and under them the agent-proposing deferred acceptance mechanism is

strategy proof. Also, in a recent study, Afacan (2014) shows that the cumulative of-

fer mechanism (which is the main mechanism to be used in matching with contracts

framework and will be defined in Section 4) is both resource and population mono-

tonic whenever the choice functions of institutions satisfy unilateral substitutability

and irrelevance of rejected contracts.

Definition 8. A choice function Cs satisfies bilateral substitutability (BS) if

z /∈ Cs(Y ∪ {z}) =⇒ z /∈ Cs(Y ∪ {z, z′}) for all z, z′ ∈ X and Y ⊆ X for which

i(z), i(z
′
) /∈ i(Y ).

Bilateral substitutability of a choice function is implied by unilateral substi-

tutability, so it is a weaker condition than US. The BS together with the IRC of

overall choice functions guarantees the existence of a stable allocation in a match-

ing with contracts framework under no capacity transfer. However, BS and IRC

together are weak conditions (even under no capacity transfer) in the sense that

many well-known properties of stable allocations in the standard matching problem

do not carry over to the matching with contracts setting. For instance, the agent-

optimal stable allocation fails to exist. Strengthening BS to US restores most of

these well-known properties.17

The choice functions Cs do satisfy substitutability whenever each agent offers at

most one contract to school s.

Definition 9. A choice function Cs(·) satisfies weak substitutability (WS) if

z /∈ Cs(Y ∪ {z}) =⇒ z /∈ Cs(Y ∪ {z, z′}) for all z, z′ ∈ X and Y ⊆ X for which

| Y ∪ {z, z′} |=| i(Y ∪ {z, z′} |.

This WS condition, first introduced by Hatfield and Kojima (2008), is in general

necessary (in the maximal domain sense) for the guaranteed existence of stable out-

comes (Proposition 1 of Hatfield and Kojima (2008)). Notice that if every agent has

only one privilege type WS corresponds to substitutability.
17See Afacan and Turhan (2014) for the axiomatization of the gap between US and BS.
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Definition 10. A choice function Cs(·) satisfies the law of aggregate demand

(LAD) if Y ⊆ Y ′ =⇒ | Cs(Y ) |≤| Cs(Y
′
) |.

That is, the size of the chosen set never shrinks as the set of contracts grows

under the law of aggregate demand.18 Hatfield and Milgrom (2005) introduce the

LAD condition in a matching with contracts framework, and it has proven to be

critical. Hatfield and Kojima (2010) show that if choice functions of institutions all

satisfy US and LAD, every agent and institution signs the same number of contracts

at every stable allocation (i.e., the rural hospital theorem holds). Moreover, the

cumulative offer mechanism becomes strategy proof and weakly Pareto efficient for

agents. If institutions do not have preferences that generate their choices, then all of

these results are obtained under the additional IRC condition of Aygün and Sönmez

(2012).

Definition 11. A choice function Cs(·) satisfies quota monotonicity (QM) if for

any q, q′ ∈ Z+ such that q < q
′ , for all Y ⊆ X

Cs(Y, q) ⊆ Cs(Y, q
′
)

| Cs(Y, q
′
) | − | Cs(Y, q) |≤ q′ − q

Quota monotonicity requires choice functions to satisfy two conditions. First,

given any set of contracts, if there is an increase in the capacity we require the choice

function to select every contract it was choosing before increasing its capacity. It

might choose some additional contracts. Second, if, say, the capacity of a privilege

type is increased by 2, then the difference between the numbers of contracts chosen

after and before the capacity increase cannot exceed 2. Since we allow capacities of

privilege types to change dynamically during the choice procedure by exogenously

given monotonic capacity transfer schemes, quota monotonicity will be a crucial

regulative condition on privileges’ sub-choice functions to obtain positive results.

However, it will be trivially satisfied if the sub-choice functions are derived from
18In a different setting, Alkan (2002) refers to the LAD as “cardinal monotonicity.”
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strict priority rankings induced by test scores in merit-based allocation problems.

3.6 Conditions on Sub-choice Functions for Applications

In the Indian engineering school admission problem and cadet-branch matching prob-

lem in USMA and ROTC, each sub-choice function for a privilege type is induced

from a strict ranking of agents according to test scores. Since each agent (cadet) from

a particular privilege type is acceptable for the privilege types she announces at every

institution (branch), the sub-choice functions of every privilege type is acceptant.

Definition 12. A sub-choice function Cs
tj (·, q) is q−acceptant if | C(Y ) |= min{q, |

Y |} for every Y ⊆ X. A sub-choice function is acceptant if it is q − acceptant for

some q.

This definition basically says that if the number of applicants is less than the

capacity of the privilege type, every contract (each is associated with a different

student/cadet) must be chosen, and if the number of applicants is more than the

capacity of the privilege type then the capacity must be filled.

The following is the standard responsiveness definition presented in the literature.

Definition 13. (Responsive priorities (Roth, 1985)) The preferences of school s

are responsive with capacity q if (i) for any i, j ∈ I, if {i} �s {j}, then for any

I
′ ⊆ I \ {i, j}, I ′ ∪{i} �s I

′ ∪{j}, (ii) for any i ∈ I, if {i} �s ∅, then for any I ′ ⊆ I

such that | I ′ |< q, I ′ ∪ {i) �s I
′ , (iii) ∅ �s I

′ for any I ′ ⊆ I with | I ′ |> q.

In our framework, we can state both acceptance and responsiveness in a single

condition following Chambers and Yenmez (2014). Note that each agent (cadet) has

only one contract with a given privilege type in our framework.19 Let � be the strict

ranking of agents according to test scores. For privilege type tj , the priority ranking

associated with it, �tj , is obtained from � as follows: for every i, j ∈ I such that

tj ∈ τ(i) = τ(j), i �tj j if and only if i � j, and for every k ∈ I such that τ(k) 6= t,

∅ �tj k.

19This is not necessarily the case in Kominers and Sönmez (2013). In their slot-specific priorities
setting, an agent may have multiple contracts with a privilege type for a given institution.
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Definition 14. A sub-choice function Cs
tj (·, q) of institution s for privilege type tj is

q-responsive if there exists a strict priority ordering�tj on the set of contracts naming

privilege type tj , Xtj , and a positive integer q such that for any Y ⊆ (Xs ∩Xtj )

Cs
tj (Y, q) =

q⋃
i=1

{y∗i }

where y∗i is defined as y∗1 = max
Y
�tj and, for 2 ≤ i ≤ q, y∗i = max

Y \{y∗1 ,...,y∗i−1}
�tj .

Responsiveness and acceptance are both crucial for matching applications where

admissions are merit-based. A sub-choice function Cs
tj (·, q) is q−responsive if there

is a strict priority ordering over the agents for which the sub-choice function always

selects the highest-ranked available agents. If a school’s sub-choice functions are

q-responsive, then for each privilege type the school acts as if it has preferences

over contracts with a capacity constraint, and the school takes the highest-ranking

students available to that privilege type up to its capacity.

3.7 Respect for Unambiguous Improvements

One of the most important parameters of the Indian engineering school admission

problem and cadet-branch matching problem is the strict ranking of agents according

to test scores. Let � be the strict ranking of students. For each school s ∈ S the

strict ranking of contracts in privilege type tj is obtained from � as follows: x �s
tj y

if and only if i(x) � i(y) and t(x) = t(y) = tj . If tj /∈ τ(i), then ∅s �s
tj x for all

x such that i(x) = i. The choice function for each privilege type is obtained from

these strict rankings, i.e., Cs
tj (Y, q

s
tj ) = Cs

tj (Y, q
s
tj |�

s
tj ), which is q-responsive.

Clearly, a reasonable mechanism would never penalize a student as a result of an

improvement in his standing in the strict ordering according to test scores. Given

two strict rankings of students according to test scores � and �′ , we say that �′ is

an unambiguous improvement for student i over � if

1. the relative ranking between all students except student i remains exactly the

same between � and �′ , although
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2. the standing of student i is strictly better under �′ than under �.

Definition 15. A mechanism respects improvements if a student never receives a

strictly worse assignment as a result of an unambiguous improvement of his priority

ranking.20

Violation of this condition may create adverse incentives for some agents to lower

their test scores to obtain a better outcome according to their true preferences, as

in the current application procedure of engineering school admissions in India.21

4 The Cumulative Offer Process

The cumulative offer algorithm, which is the generalization of the agent-proposing

deferred acceptance algorithm of Gale and Shapley, is the central allocation mecha-

nism used in matching with contracts framework. We now introduce the cumulative

offer process for matching with contracts (see Hatfield and Kojima (2010); Hatfield

and Milgrom (2005); Kelso and Crawford (1982)).

Here, we provide an intuitive description of this algorithm; we give a more tech-

nical statement in Appendix A.

Definition 16. In the cumulative offer process, students propose contracts to

schools in a sequence of steps l = 1, 2, ... :

Step 1 : Some student i1 ∈ I proposes his most-preferred contract, x1 ∈ Xi1 .

School s(x1) holds x1 if x1 ∈ Cs(x1)({x1}), and rejects x1 otherwise. Set A2
s(x1) =

{x1}, and set A2
s′

= ∅ for each s′ 6= s(x1); these are the sets of contracts available

to schools at the beginning of Step 2.

Step 2 : Some student i2 ∈ I for whom no contract is currently held by any school

proposes his most-preferred contract that has not yet been rejected, x2 ∈ Xi2 . School

s(x2) holds the contract in Cs(x2)(A2
s(x2) ∪ {x

2}) and rejects all other contracts in

A2
s(x2) ∪ {x

2}; schools s′ 6= s(x2) continue to hold all contracts they held at the end

of Step 1. Set A3
s(x2) = A2

s(x2) ∪ {x
2}, and set A3

s′
= A2

s′
for each s′ 6= s(x2).

20This property was first formulated by Balinski and Sönmez (1999).
21See Sönmez (2013), where the author discusses how cadets intentionally lower their OML to

obtain better outcomes.
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Step l : Some student il ∈ I for whom no contract is currently held by any

school proposes his most-preferred contract that has not yet been rejected, xl ∈ Xil .

School s(xl) holds the contract in Cs(xl)(Al
s(xl)
∪{xl}) and rejects all other contracts

in Al
s(xl)
∪ {xl}; schools s′ 6= s(xl) continue to hold all contracts they held at the

end of Step l− 1 . Set Al+1
s(xl)

= Al
s(xl)
∪{xl}, and set Al+1

s′
= Al

s
′ for each s

′ 6= s(xl).

If at any time no student is able to propose a new contract, that is, if all students

for whom no contracts are on hold have proposed all contracts they find acceptable,

then the algorithm terminates. The outcome of the cumulative offer process is the

set of contracts held by schools at the end of the last step before termination.

In the cumulative offer process, agents propose contracts sequentially. Schools

accumulate offers, choosing at each step (according to Cs ) a set of contracts to hold

from the set of all previous offers. The process terminates when no agent wishes to

propose a contract.

Remark 1. Note that we do not explicitly specify the order in which students make

proposals. Hirata and Kasuya (2014) show that in the matching with contracts

model, the outcome of the cumulative offer process is order - independent if the

overall choice function of every institution satisfies the bilateral substitutability and

the irrelevance of rejected contracts condition. In our setup, the overall choice func-

tion of every institution satisfies BS and IRC, and hence, the order - independence

result holds for our choice functions.

5 Main Results

We now develop our general theoretical results. Overall choice functions of insti-

tutions were defined in Section 4.2 as the union of choices by sub-choice functions.

Sub-choices are linked by both their choices and the monotonic capacity transfer

scheme. Each sub-choice function has two inputs: the set of remaining (rejected)

contracts by the sub-choice functions that precede it and the capacity of the privi-

lege type as a function of number of unassigned seats from all of the privilege types

considered before it. For overall choice function, to guarantee the existence of stable
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allocation under monotonic capacity transfer schemes, we impose certain conditions

on sub-choice functions. As shown by Aygün and Sönmez (2012) and Aygün and

Sönmez (2013), the IRC condition is needed for the overall choice functions of insti-

tutions to guarantee the existence of stable allocation. To achieve this we require

that every sub-choice function satisfies IRC. Alva (2014) shows that if sub-choice

functions satisfy the BS together with the IRC, then the overall choice function

of institutions satisfies BS and IRC if there are no capacity transfers across differ-

ent privilege types (“divisions” in his terminology). These two conditions are not

enough to obtain an overall choice function that satisfies BS and IRC if we allow

capacity transfers across privilege types. Since sub-choice functions are linked by

their two inputs in our framework, we need to impose further axioms, namely, the

law of aggregate demand and quota monotonicity under monotonic capacity transfer

schemes.

5.1 The Existence of Stable Allocation under Monotonic Capacity

Transfers

To ensure that overall choice functions satisfy IRC, it suffices to impose IRC on

sub-choice functions for any capacity transfer scheme (not necessarily monotonic).

Proposition 1. Suppose that all sub-choice functions satisfy IRC. Then, the overall

choice function satisfies IRC.

Proof. See Appendix B.

Remark 2. For the rest of the paper we always assume that sub-choice functions

satisfy IRC so that the overall choice functions of institutions satisfy it as well.

When each agent has only one contract associated with an institution, then

substitutability becomes identical to weak substitutability (WS). To obtain an overall

choice function that satisfies WS, it suffices for sub-choice functions to satisfy WS,

LAD, and QM.

Proposition 2. Suppose that all sub-choice functions satisfy WS, LAD, and QM.
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If the capacity transfer scheme is monotonic, then the overall choice function also

satisfies WS and IRC.

Proof. See Appendix B.

The following proposition is key to guaranteeing the existence of a stable alloca-

tion. The BS condition on overall choice functions, together with IRC, is sufficient

to guarantee the existence of stable outcomes.

Proposition 3. Suppose that sub-choice functions satisfy BS, LAD, and QM. If the

capacity transfer scheme is monotonic, then the overall choice function satisfies BS

and IRC.

Proof. See Appendix B.

If overall choice functions of institutions satisfy BS and IRC, then by Hatfield

and Kojima (2010) and Aygün and Sönmez (2012), a stable allocation exists.

Theorem 1. Suppose that all sub-choice functions satisfy BS, LAD, and QM. If the

capacity transfer scheme is monotonic then there exists a stable allocation.

Proof. By Proposition 1 and Proposition 3 we know that the overall choice function

of each school satisfies BS and IRC. Then, by the Theorem 1 of Hatfield and Kojima

(2010), together with Theorem 1 of Aygün and Sönmez (2012), the set of stable

outcomes is non-empty.

In the Indian engineering school admission problem and the cadet-branch match-

ing problem, sub-choice functions are derived from strict priority rankings according

to exam scores. These type of sub-choice functions trivially satisfy BS, IRC, LAD,

and QM. By Theorem 1, we have existence of stable allocation under these type of

sub-choice functions. We state it as a corollary below:

Corollary 1. Suppose that all-sub-choice functions are q-responsive. Then, under a

monotonic capacity transfer scheme, there exists a stable allocation.
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5.2 Incentive Issues

Hatfield and Kojima (2010) and Aygün and Sönmez (2012) show that if the over-

all choice functions of institutions satisfy US and LAD, then the cumulative offer

mechanism is (group) strategy proof. Even though US and LAD are sufficient for

strategy-proofness, they are not necessary in some frameworks. Kominers and Sön-

mez (2013) provide a choice function that violates both US and LAD, but even with

this complication they show that the cumulative offer mechanism is strategy-proof

in their slot-specific priorities setup. In our problem, if we set the capacity of each

privilege type equal to 1 and do not allow capacity transfer our problem collapses

to a specific version of the slot-specific priorities model of Kominers and Sönmez

(2013). Notice that in our setting, each agent has only one contract associated with

a certain privilege type of a given institution, whereas in their setting this might not

be the case. Also, in our Indian school choice application and in the cadet-branch

matching framework, each sub-choice function is induced from a strict priority rank-

ing of contracts (also agents since each agent can have at most one contract for a

certain privilege type) that is obtained from a strict ranking of agents according

to test scores. However, some negative results from Kominers and Sönmez (2013)

hold in our model as well. Precisely, examples in the proofs of Proposition 4 and

Proposition 5 are both from Kominers and Sönmez (2013).

As in Kominers and Sönmez (2013), overall choice functions fail to satisfy US in

our setup as well:

Proposition 4. Suppose that sub-choice functions are q-responsive and capacity

transfer scheme is monotonic. The overall choice functions of schools may fail to

satisfy unilateral substitutability.

Proof. Consider X = {x1, x2, y} with S = {s}, I = {i, j} where i(x1) = i(x2) = i

and i(y) = j. Student i has a higher test score than student j. Also, s(x1) = s(x2) =

s(y) = s. The school has two slots and the s1 .s s2 with the following priorities:

Πs1 : x1 � ∅s1 and Πs2 : x2 � y � ∅s2 .

Suppose that the school set the following capacity transfer scheme: q̄s1 = 1 is
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given. qs2(r1) = 1 for both r1 = 0 and r1 = 1, i.e., even if the first slot remains

empty there will be no transfer of this empty seat. Note that the monotonicity of

capacity transfer scheme is satisfied when there is no capacity transfer.

Then, Cs fails to satisfy unilateral substitutability. To see why consider Cs({x2, y}) =

{x2} and Cs({x1, x2, y}) = {x1, y}. Note that y /∈Cs({x2, y}) but y ∈ Cs({x1, x2, y}).

Furthermore, overall choice functions in our setting need not satisfy LAD.

Proposition 5. Suppose that sub-choice functions are q-responsive and capacity

transfer scheme is monotonic. The overall choice functions of schools may fail to

satisfy the law of aggregate demand.

Proof. Consider X = {x1, x2, y} with S = {s}, I = {i, j} where i(x1) = i(x2) = i

and i(y) = j. Also, s(x1) = s(x2) = s(y) = s. The school has two slots and the

s1 .
s s2 with the following priorities:

Πs1 : x1 � y � ∅s1 and Πs2 : x2 � ∅s2

Suppose that the school sets the following capacity transfer scheme: q̄s1 = 1 is

given. qs2(r1) = 1 for both r1 = 0 and r1 = 1, i.e., even if the first slot remains

empty there will be no transfer of this empty seat. Then, Cs fails to satisfy the law of

aggregate demand. Consider Cs({x2, y}) = {x2, y} and Cs({x1, x2, y}) = {x1}.

Even though overall choice functions fail to satisfy US and LAD, in the cumula-

tive offer algorithm if a contract is rejected at any step of the algorithm, then that

contract cannot be held at any further step. In other words, there is no renegotiation

of a rejected contract.

Proposition 6. Suppose that sub-choice functions are q-responsive. If a contract z

is rejected by school s at any step of the cumulative offer algorithm, then it cannot

be held by school s in any subsequent step.

Proof. See Appendix B.
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When no renegotiation occurs in the cumulative offer process, the algorithm

coincides with the standard agent-proposing deferred acceptance algorithm.22

Proposition 7. Suppose that all sub-choice functions are q-responsive. Then, the

cumulative offer algorithm outcome under any monotone capacity transfer scheme is

stable.

The standard definition of dominant strategy incentive compatibility, i.e., strategy-

proofness, is as follows:

Definition 17. A direct mechanism ϕ is strategy-proof if @i ∈ I, P−i ∈ P−i, P i,

P̃ i∈ P such that ϕ(P̃ i, P−i)P
iϕ(P ).

That is, no matter which agent we consider, no matter what her true preferences

P i are, no matter what other preferences P−i other cadets report (true or not),

and no matter which potential “misrepresentation” P̃ i agent i considers, truthful

preference revelation is in her best interests. Hence, agents can never benefit from

“gaming” the mechanism ϕ.

Theorem 2. Suppose that all sub-choice functions are q-responsive and the capacity

transfer scheme is monotonic. Then, the cumulative offer mechanism Φ as a direct

mechanism is strategy-proof.

Proof. See Appendix B.

In a setting with no capacity transfer, Alva (2104) shows that if sub-choice func-

tions satisfy US and LAD, even though overall choice functions do not satisfy US

and LAD, the cumulative offer mechanism is strategy proof.

5.3 Agent-Optimal Stable Outcomes

In our framework, an agent-optimal stable outcome need not exist.

Proposition 8. An agent-optimal stable outcome might not exist.
22See Hatfield and Kojima (2010).
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Proof. Consider X = {x1, x2, y} with S = {s}, I = {i, j} where i(x1) = i(x2) = i

and i(y) = j. Also, s(x1) = s(x2) = s(y) = s. The school has two slots, each with

a different privilege type t1 and t2. The precedence order is t1 .s t2. The priorities

of each privilege type is as follows: Πt1 : x1 � ∅t1 and Πt2 : x2 � y � ∅t2 . Without

capacity transfer, the cumulative offer algorithm outcome is {x2}. However, the

outcome {x1, y} is also stable. Since there is no Pareto-domination relationship

between the two outcomes {x2} and {x1, y} and they are the only stable outcomes,

there is no agent-optimal stable outcome in this example.

In the above example, suppose school s uses the following capacity transfer

scheme : if r1 = 1, then qt2 = 2. The cumulative offer algorithm outcome is now

{x2, y}, which is the only stable outcome under the given monotonic capacity trans-

fer.

Even when agent-optimal stable outcomes do exist, the cumulative offer process

might not select them.

Proposition 9. The cumulative offer algorithm outcome might be Pareto dominated

by the agent-optimal stable outcome.

Proof. Consider the following example: I = {i, j, k} where i has the highest test

score and k has the lowest one. There is only one school, i.e., S = {s}. There

are five different privilege types, i.e., Θ = {t1, t2, t3, t4, t5}. The set of contracts is

X = {x2, x4, x5, y1, y3, y4, z1, z3} where i(x2) = i(x4) = i(x5) = i, i(y1) = i(y3) =

i(y4) = j and i(z1) = i(z3) = k. The privilege type specific to each contract is as

follows: t(y1) = t(z1) = t1, t(x2) = t2, t(y3) = t(z3) = t3, t(x4) = t(y4) = t4, and

t(x5) = t5. The agent preferences are

Pi : x2 �i x4 �i x5 �i ∅i

Pj : y3 �j y4 �j y1 �j ∅j

Pk : z1 �k z3 �k ∅k
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Suppose we have the following monotonic capacity transfer scheme:

1. The first seat, s1, is for privilege type t1 and q̄s1 = 1.

2. The second seat, s2, is for privilege type t2 and initially q̄s2 = 0. However, if

r1 = 1, then qs2 = 1.

3. The third seat, s3, is for privilege type t3 and initially q̄s3 = 0. If r1 = r2 = 1,

then qs3 = 1. Otherwise qs3 = 0.

4. The fourth seat, s4, is for privilege type t4 and initially q̄s4 = 1. For any r1, r2

and r3, qs4 = 1. (no capacity transfer)

5. The fifth seat, s5, is for privilege type t2 and initially q̄s5 = 0. However, if

r4 = 1, then qs5 = 1. Otherwise, it is 0.

6. The sixth seat, s6, is for privilege type t5 and initially q̄s6 = 0. However, if

r4 = r5 = 1, then qs6 = 1. Otherwise, it is 0.

7. The seventh seat, s7, is for privilege type t3 and initially q̄s7 = 0. However, if

r4 = r5 = r6 = 1, then qs7 = 1. Otherwise, it is 0.

8. The last seat, s8, is for privilege type t1 and initially q̄s8 = 0. However, if

r4 = r5 = r6 = r7 = 1, then qs8 = 1. Otherwise, it is 0.

For this example, the cumulative offer process is run with the precedence order

s1 .
s s2 .

s s3 .
s s4 .

s s5 .
2 s6 .

s s7 .
s s8 as follows:

Y Cs(Y )

{x2} {x2}

{x2, y3} {x2, y3}

{x2, y3, z3} {x2, y3}

{x2, y3, z3, z1} {z1, x2}

{x2, y3, z3, z1, y4} {z1, y4}

{x2, y3, z3, z1, y4, x4} {z1, x4}

{x2, y3, z3, z1, y4, x4, y1} {y1, x4}

As shown above, the cumulative offer algorithm outcome in this example is

{y1, x4}. However, it is Pareto dominated by the outcome {y1, x2}, which is sta-

ble. Moreover, {y1, x2} is the agent-optimal stable allocation in this example.
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5.4 Respect for Unambiguous Improvements

The failure of respecting improvement property hurts the mechanism not only from

a normative perspective but also via the adverse incentives it creates if student effort

plays any role in determining the strict ranking of agents according to test scores. As

in most merit-based resource allocation problems, this is the case for both engineering

school admissions in India and also the cadet-branch matching problem in USMA

and ROTC.

Theorem 3. The cumulative offer mechanism Φ respects unambiguous improve-

ments under any monotonic capacity transfer scheme.

Proof. See Appendix B.

5.5 Increasing Efficiency through Monotonic Capacity Transfer Schemes

The following example illustrates the idea that the outcome of the cumulative offer

algorithm under monotonic capacity transfers Pareto dominates the outcome of the

cumulative offer algorithm under no capacity transfers.

Example 2. ConsiderX = {x1, x2, y1, y3, z1, z2, w2, w3} with S = {s}, I = {i, j, k, l}

where i(x1) = i(x2) = i, i(y1) = i(y3) = j, i(z1) = i(z2) = k and i(w2) = i(w3) = l.

All the contracts are with school s. Θ = {t1, t2, t3} where t(x1) = t(y1) = t(z1) = t1,

t(x2) = t(z2) = t(w2) = t2 and t(y3) = t(w3) = t3. School s has three seats, one for

each type of student, i.e., q̄t1 = q̄t2 = q̄t3 = 1 is the target distribution of the school.

Students are ranked according to test scores from highest to lowest as : i− j− k− l.

Hence, the following priorities for each type are derived:

Πt1 : x1 � y1 � z1 � ∅t1

Πt2 : x2 � z2 � w2 � ∅t2

Πt3 : y3 � w3 � ∅t3
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The student preferences over contracts naming them are as follows:

Pi : x2Pix1Pi∅i

Pj : y3Pjy1Pj∅j

Pk : z2Pkz1Pk∅k

Pl : w2Plw3Pl∅l

If there is no capacity transfer then the cumulative offer algorithm outcome is

{x2, y3, z1}. Now, suppose that the school has the following monotonic capacity

transfer scheme: q̄t1 = 1. If r1 = 0, then qt2 = 1. If r1 = 1, then qt2 = 2. If

r1 = 0 and r2 = 0, then qt3 = 1. If r1 = 1 and r2 = 0, then qt3 = 1. If r1 = 0

and r2 = 1, then qt3 = 2. If r1 = 1 and r2 = 1, then qt3 = 2. Under this capacity

transfer scheme the outcome of the cumulative offer process is {x2, y3, z2}. The im-

portant observation here is that the outcome of the cumulative offer algorithm under

monotonic capacity transfer scheme Pareto dominates the outcome of the cumulative

offer algorithm under no capacity transfers. Even though agents i and j obtain the

same assignment, agent k obtains a strictly better assignment under the monotonic

capacity transfer described above.

Now, we generalize the observation obtained from the example above:

Theorem 4. If the sub-choice functions are derived from an underlying strict ranking

of students � according to test scores, then the outcome of the cumulative offer

algorithm under any monotonic capacity transfer, Φ�(P, q), Pareto dominates the

outcome of the cumulative offer algorithm under no capacity transfer, Φ�(P, q̄).

Proof. See Appendix B.

Hence, introducing monotonic capacity transfer increases efficiency by utilizing

seats that would remain unassigned without capacity transfer.
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6 Related Matching Problems with Distributional Con-

cerns

We now discuss some other matching models and approaches to matching problems

with complex distributional concerns to outline the most important differences be-

tween our work and others. For the discussion, we fix a strict ranking of all agents

� according to test scores that is respected at every institution when the strict

priority rankings of different privilege groups are constructed. Also, for each insti-

tution s ∈ S, we fix an initial target distribution of the seats over privilege types

q̄s = (q̄s,tj )
k
j=1 and a monotonic capacity transfer scheme qs = (qs,tj )

k
j=1.

Suppose that for all institutions and for every privilege types, the set of acceptable

students of two different institutions for the same privilege type is the same. Even

for this case, a matching problem with dynamic reserves cannot be reduced to a

college admission problem with responsive preferences because (i) a stable outcome

cannot in general be achieved by splitting each institution into k (number of different

privilege groups) smaller institutions, one for each privilege type and then running

separate assignment procedures for each privilege type, since their capacities change

dynamically in our model, and also an agent may have more than one privilege type

; and (ii) it is not possible in general to eliminate the possibility of capacity transfers

by modifying institutions’ priorities/sub-choice functions.

Alva (2014) studies a matching problem similar to ours. However, in his model,

there is no possibility for capacity transfers. The author interprets capacities of

privilege types as hard bounds. In his model, agents have preferences over institution-

privilege type pairs. In our application, our sub-choice functions are induced from

a strict priority ranking that is obtained from a common test score ranking. Alva

(2014) is working on more general choice functions than the one we use in our

merit-based admission applications. Some results we obtain are similar to his in

the sense that both Alva (2014) and our work analyze the relationship between the

conditions satisfied by the overall choice functions of institutions and conditions

imposed on the sub-choice functions of privilege types. However, our analysis is
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neither a generalization nor a special case of his.

In the context of German university admissions, Westkamp (2013) introduces

a general class of matching problems with complex constraints. In such a problem,

schools may decide or be required to reserve a certain part of its capacity for special

student groups (e.g., siblings, minorities, and so on) and may want to make some

of these reserved seats available to other student groups to accommodate to the

characteristics of applicants. Such constraints are encoded in the overall choice

function of the institution in his model: First, the institution specifies an order in

which special student groups are considered. A student may belong to multiple

special student groups. For each special student group there is a strict ranking of

the students. The institution fill its groups of slots by following the priority order of

each group. The idea in this paper is that how much capacity is reserved for each

group is a function of the number of seats left vacant by groups considered earlier,

starting from some fixed value for the first group to be considered. Each institution

has a target distribution of its slots. An institution initially intends to allocate a fixed

number of slots and has a strict preference for filling these slots according to its target

distribution. If its target distribution cannot be achieved because too few students

from one or more of the groups apply, an institution can express its preference over

possible alternative distributions of student groups by specifying how its capacity is

to be redistributed through its choice of the capacity functions. It is very important

note here that the formulation of Westkamp (2013) implicitly assumes that there

are no specific advantages or disadvantages associated with being admitted because

one belongs to a particular group, so that students do not care about the type of

the slot they receive, but care only about their assigned institutions. Even though

students only care about the school they are assigned to, Westkamp (2013) resolves

the indifferences over different type of seats in a given school by using the order of

precedence in that school. By contrast, the applications we use as our motivation

in this paper, some agents/students do care about what type seat they receives and

their true preferences among the different types of seats of a given institution might

be different from the given precedence order of the institution. To accommodate such
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preferences over school-seat type pairs we use the matching with contracts framework

rather than the conventional matching model used by Westkamp (2013). When

students have preferences over institutions-privilege type pairs the problem becomes

outside of the scope of the problems he considers. Notice that every preference profile

in his setting (after breaking the ties) can be represented in our setting as well but

not vice versa.

Kominers and Sönmez (2013) introduced a two-sided, many-to-one matching

with contracts model in which agents with unit demand match to branches, which

may have multiple slots available to accept contracts. Agents care only about their

institutional assignments so that they are indifferent between different contracts that

name the same institution. Each slot of every institution has its own linear prior-

ity order over contracts, and a branch chooses contracts by filling its slots sequen-

tially. They demonstrate that in these matching markets with slot-specific priorities,

branches’ choice functions may not satisfy the substitutability condition typically

crucial for matching with contracts. Despite this complication, they are able to

show that stable outcomes exist in their framework and can be found by a cumula-

tive offer mechanism that is strategy proof and respects unambiguous improvements

in priority. There are significant differences between our framework and theirs. First

of all, they do not allow for capacities to be transferred from one slot to another. In

our setting, each privilege type has initially set target capacities that may be greater

than one. If we consider each slot as a different privilege type and set the capacity

to 1 without the possibility of capacity transfer, we obtain a “specific version” of

their slot-specific priority models because in our applications each sub-choice func-

tion is derived from a strict priority ordering that is induced by a common ordering

of agents according to test scores. For example, if we have two students, say student

i and j, such that student i’s test score is higher than student j’s test score, then for

each privilege type that both i and j have the rankings of agents will be the same

in our setup: i has higher priority than j. In their setting, this does not need to be

the case. Hence, their analysis is neither a generalization nor a special case of the

dynamic capacity approach that we use. Most of our results are similar to theirs in
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the sense that we also show that the cumulative offer mechanism is stable, strategy

proof, and respects improvements in test scores, even though the overall choice func-

tions of institutions in our framework do not satisfy the unilateral substitutability

and the law of aggregate demand conditions.

Ehlers et al. (2014) take two different approaches to analyze controlled school

choice problems. In the first approach, controlled choice constraints define feasibility

of assignments, i.e., they are hard bounds. In this case, they show that it may be

impossible to eliminate justified envy across types. However, justified envy can be

eliminated among students of the same type by their student exchange algorithm.

In the second approach, they provide a new interpretation of controlled choice con-

straints as soft bounds. Our dynamic reserve interpretation can be thought as a soft

bound for controlled choice constraints. With the soft bound view, they describe

school preferences through choice rules that satisfy substitutability and the law of

aggregate demand. It must be noted here that in their model students preferences

are only over schools and each student has one type only, whereas in our setup stu-

dents have preferences over school-type pairs and each student may have more than

one type.

Hafalir et al. (2011) analyzes a model of school choice with minority and majority

students where certain slots at each school are reserved for minority students but

convert into regular slots if not claimed by minority students. They show that there

exists a stable mechanism with minority reserves that is group-strategy-proof for

students. This result is a special case of Theorem 2 of Westkamp (2013).

7 Conclusion

In this paper, we have studied a matching problem with distributional concerns where

agents care not only about the institution they are matched with but also about the

contractual terms of the contract with the institution. In other words, we expand

the preference domain of agents from institutions only to institutions-contractual

terms pairs. Each institution can be thought as a union of different divisions, where
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each division is associated with exactly one contractual term. Institutions have

target distributions over their divisions in the form of reserves. If these reserves are

considered as hard bounds, then in the case of demand for a particular division that is

less than its target capacity, some slots will remain empty. To overcome this problem

and to increase efficiency we introduce capacity transfers across divisions when one

or more of the divisions is not able to fill its target capacity. The capacity transfer

scheme is embedded into divisions’ choice functions, i.e., sub-choice functions. The

overall choice function of an institution can be thought of as the union of choices

with these sub-choice functions.

We offer the cumulative offer mechanism under monotonic capacity transfers as

an allocation rule in merit-based object allocation problems where agents are ranked

strictly according to certain test scores. When each privilege has a q-responsive

choice function obtained from a strict priority ranking, the cumulative offer mecha-

nism is stable and strategy proof. Moreover, the cumulative offer mechanism respects

improvement in test scores, i.e., improvement in the ranking of an agent. By intro-

ducing monotonic capacity transfers in the matching with contracts framework, we

obtain a gain in efficiency in the sense outcome of the the cumulative offer algorithm

under monotonic capacity transfer Pareto dominates the outcome of the cumulative

offer algorithm without capacity transfer.

8 Appendix

A. Formal Description of the Cumulative Offer Process

The cumulative offer process associated to proposal order Γ is the following

algorithm

1. Let l = 0. For each s ∈ S, let D0
s ≡ ∅, and let A1

s ≡ ∅.

2. For each l = 1, 2, ...

Let i be the Γl −maximal agent i ∈ I such that i /∈ i( ∪
s∈S

Dl−1
s ) and max

P i
(X \

( ∪
s∈S

Al
s))i 6= ∅i- that is, the agent highest in the proposal order who wants
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to propose a new contract- if such agent exist. (If no such agent exist, then

proceed to Step 3, below.)

(a) Let x = max
P i

(X \( ∪
s∈S

Al
s))i be i’s most preferred contract that has not been

proposed.

(b) Let s = s(x). Set Dl
s = Cs(Al

s ∪ {x}) and set Al+1
s = Al

s ∪ {x}. For each

s
′ 6= s, set Dl

s′
= Dl−1

s′
and set Al+1

s′
= Al

s′
.

3. Return the outcome

Y ≡ ( ∪
s∈S

Dl−1
s ) = ( ∪

s∈S
Cs(Al

s))

consisting of contracts held by institutions at the point when no agents want

to propose additional contract.

Here, the sets Dl−1
s and Al

s denote the set of contracts held by and available to

institution s at the beginning of the cumulative offer process step l. We say that a

contract z is rejected during the cumulative offer process if z ∈ Al
s(z) but z /∈ D

l−1
s(z)

for some l.

B. Proofs Omitted from the Main Text

• Proof of Proposition 1:

Proof. Take a set of contracts Y ⊆ X and a contract z ∈ X \ Y such that z /∈

Cs(Y ∪ {z}). We need to prove that Cs(Y ) = Cs(Y ∪ {z}). Suppose that t(z) = tj .

Then the contract z is not chosen by the sub-choice function of the privilege types

tl, l = 1, ..., j − 1. Note that if any other contract of the agent i(z) is chosen by the

sub-choice functions of privileges t1, ..., tj−1 the proof is done because when another

contract of agent i(z) is chosen at any step, the contract z is removed from the

process for the remaining steps. So, we will consider the non-trivial case where none

of the contracts of agent i(z) is chosen up to the privilege type tj . Since all the

sub-choice functions satisfy IRC, up to privilege type tj , the same contracts will be

chosen from the sets Y and Y ∪{z} by the sub-choice functions Cs
t1(·, ·), ..., Cs

tj−1
(·, ·),
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respectively. Let us denote the number of unused seats for privilege type tl from the

initial contracts sets Y and Y ∪ {z} as rl and r̃l, respectively. Since t(z) = tj we

have rl = r̃l for l = 1, ..., j− 1. It implies that qstj (r1, ..., rj−1) = qstj (r̃1, ..., r̃j−1). Let

us denote the remaining set of contracts after the choice by the choice function of

privilege type tl from the initial contract sets Y and Y ∪{z} as Y land Ỹ l, respectively.

By our assumption we know that z /∈ Cs
tj (Ỹ

j−1, qstj (r̃1, ..., r̃j−1) and Ỹ j−1 =

Y j−1∪{z}. By the IRC of the sub-choice function Cs
tj (·, ·), we obtain C(Ỹ j−1, qstj (r̃1, ..., r̃j−1) =

Cs
tj (Y

j−1, qstj (r1, ..., rj−1). Also, rj = r̃j . If i(z) ∈ i[Cs
tj (Ỹ

j−1, qstj (r̃1, ..., r̃j−1))], then

the contract z is removed from the process. Otherwise, we have Ỹ j = Y j ∪ {z}.

Since qstj+1
(r1, ..., rj) = qstj+1

(r̃1, ..., r̃j) the same argument holds for the privilege

type tj+1. By proceeding in the same fashion we obtain C(Ỹ l, qstj (r̃1, ..., r̃l)) =

Cs
tj (Y

l, qstj (r1, ..., rl)) for all l = 1, ..., k. Hence, we have Cs(Y ) = Cs(Y ∪ {z}).

• Proof of Proposition 2:

Proof. Since all sub-choice functions satisfy IRC, by Proposition 1, the overall choice

function satisfies IRC as well. In order to prove that the overall choice function

satisfies WS we take a set of contracts Y ⊆ X and two contracts x, z ∈ X \ Y such

that | Y ∪ {x, z} |=| i(Y ∪ {x, z}) |. Suppose that z /∈ Cs(Y ∪ {z}). We need to

show that z /∈ Cs(Y ∪ {x, z}). We consider two cases:

Case 1: x /∈ Cs(Y ∪ {x, z}). Since the overall choice function satisfies IRC,

we then have Cs(Y ∪ {x, z}) = Cs(Y ∪ {z}). Hence, by our assumption, we have

z /∈ Cs(Y ∪ {x, z}).

Case 2: x ∈ Cs(Y ∪ {x, z}). Let the privilege type of agent i(x) be t(x) = tj

where j ∈ {1, ..., , k}. Then for each l /∈ {1, ..., j − 1}, neither x not z are chosen by

sub-choice functions. By IRC of sub-choice functions since x is not chosen by the

sub-choice functions of privileges t1, ..., tj−1, sub-choices from the sets (Y ∪{z}) and

(Y ∪{x, z}) for privilege types t1, ..., tj−1 are identical. Hence, the number of unused

seats of privilege types t1, ..., tj−1 from the sets (Y ∪ {z}) and (Y ∪ {x, z}) are the

same, i.e., rl = r̃l for every l ∈ {1, ..., j − 1}. It implies that capacity of privilege

type tj qstj (r1, ..., rj−1) is equal to qstj (r̃1, ..., r̃j−1). Let Y l be the set of remaining
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contracts after sub-choice for privilege type tj from the set (Y ∪ {z}) and Ỹ l be the

set of remaining contracts after sub-choice for privilege tj from the set (Y ∪ {x, z}.

Note that Ỹ l = Y l ∪ {x} for all l ∈ {1, ..., j − 1}.

Let Yj and Ỹj be the set of chosen contracts by sub-choice functions for privilege

tj from the sets (Y ∪{z}) and (Y ∪{x, z}), respectively. By the weak substitutability

of sub-choice function for privilege tj we have z /∈ Ỹj . It is easy to see that Y j ⊆ Ỹ j

because otherwise there exists a contract y ∈ Y j (means y /∈ Yj) but y /∈ Ỹ j (means

y ∈ Ỹj). Since each agent has only one contract we have contradiction with the fact

that sub-choice functions satisfy weak substitutability (WS). By the law of aggregate

demand (LAD) of the sub-choice functions we have | Yj |≤| Ỹj |. Hence, we have

qstj+1
= qstj+1

(r1, ..., rj) ≥ q̃stj+1
= qstj+1

(r̃1, ..., r̃j) by monotonicity of the capacity

transfer scheme as rj ≥ r̃j and rl = r̃l for every l ∈ {1, ..., j − 1}.

By our assumption, we know that z /∈ Cs
tj+1

(Y j , qstj+1
). By quota monotonicity

(QM) of sub-choice functions we have z /∈ Cs
tj+1

(Y j , q̃stj+1
). Then, WS and IRC of

sub-choice functions imply that z /∈ Ỹj+1 = Cs
tj+1

(Ỹ j , q̃stj+1
). By the LAD of sub-

choice functions we have | Yj+1 |≤| Ỹj+1 |. It implies that rj+1 ≥ r̃j+1, and, hence,

qstj+2
(r1, ..., rj+1) ≥ qstj+2

(r̃1, ..., r̃j+1) by the monotonicity of the capacity transfer

scheme. Also, it is easy to see that Y j+1 ⊆ Ỹ j+1. Repeating the same arguments for

the rest of the privileges gives us z /∈ Cs(Y ∪ {x, z}) and completes the proof.

Lemma 1. Take Y ⊆ X and x, z ∈ X\Y such that i(x) 6= i(y) and i(x), i(z) /∈ i(Y ).

Suppose that z /∈ Cs(Y ∪ {z}). Set Y 0 = Y ∪ {z} and Ỹ 0 = Y 0 ∪ {x}. Suppose also

that x ∈ Ỹj = Cs
tj (Ỹ

j−1, qstj (r̃1, ..., r̃j−1)). Let Y
j = Y j−1 \{x ∈ Y j−1 : i(x) /∈ i(Yj)}

and Ỹ j = Ỹ j−1 \ {x ∈ Ỹ j−1 : i(x) /∈ i(Ỹj)}. Then, Y j ⊆ Ỹ j.

Proof. Assume not. Then there exists a contract y ∈ Y j such that y ∈ Ỹj (hence,

y /∈ Ỹ j) and i(y) /∈ i(Yj). Since none of the contracts of agent i(y) is chosen from

Y j−1 removing them from Y j−1 does not change the set of chosen contracts by IRC of

the sub-choice function, i.e., construct the set A =Y j−1 \ {y′ ∈ Y j−1 : i(y
′
) = i(y)}

and we have Cs
tj (A, q) = Cs

tj (Y
j−1, q). Now consider the choice from the sets A∪{y}

and Ỹ j−1. We have y /∈ Cs
tj (A ∪ {y},q). Notice that y is the only contract of agent
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i(y) in A ∪ {y}. Now consider the set A ∪ {x, y}. Since y ∈ Ỹj , by the IRC of the

sub-choice function we have y ∈ Cs
tj (A ∪ {x, y}, q). This contradicts with the BS of

the sub-choice function because y /∈ Cs
tj (A ∪ {y},q) and yet y ∈ Cs

tj (A ∪ {x, y}, q).

This completes the proof.

• Proof of Proposition 3:

Proof. Since all sub-choice functions satisfy IRC, by Proposition 1, the overall choice

function satisfies IRC as well. To prove that the overall choice function also satisfies

bilateral substitutability consider a set of contracts Y ⊆ X and contracts x, z ∈ X\Y

such that i(x), i(z) /∈ i(Y ). Suppose that z /∈ Cs(Y ∪ {z}). We need to show that

z /∈ Cs(Y ∪ {x, z}). There are two cases to consider:

Case 1 : x /∈ Cs(Y ∪ {x, z})

Since the overall choice function satisfies IRC, we then have Cs(Y ∪ {x, z}) =

Cs(Y ∪ {z}). Hence, by our assumption, we have z /∈ Cs(Y ∪ {x, z}).

Case 2: x ∈ Cs(Y ∪ {x, z})

There exist j ∈ {1, ..., k} such that x ∈ Ỹj = Cs
tj (Ỹ

j−1, qstj (r̃1, ..., r̃j−1)). For all

i ∈ {1, ..., j − 1}, we know that x /∈ Ỹi and z /∈ Yi by our assumptions. Then, by the

BS of sub-choice functions of the privileges t1, ...tj−1, we have z /∈ Ỹi. Also note that

Ỹ i = Y i∪{x} and z ∈ Y i for all i ∈ {0, 1, .., j−1}. By Lemma 1, we know that Y j ⊆

Ỹ j . Also, since r1 = r̃1,...,rj−1 = r̃j−1 we have qstj (r1, ..., rj−1) = qstj (r̃1, ..., r̃j−1). By

the LAD, we know that | Yj |≤| Ỹj |. Hence we have qstj+1
(r1, ..., rj) ≥ qstj+1

(r̃1, ..., r̃j)

by the monotonicity of the capacity transfer scheme.

We need to prove that z /∈ Cs
tj+1

(Ỹ j , qstj+1
(r̃1, ..., r̃j)). We know, by our assump-

tion, that z /∈ Cs
tj+1

(Y j , qstj+1
(r1, ..., rj)) where Y j ⊆ Ỹ j and qstj+1

(r1, ..., rj) ≥

qstj+1
(r̃1, ..., r̃j). Also, notice that i(Ỹ j \ Y j) ∩ i(Y j) = ∅. By quota monotonic-

ity (QM) of the sub-choice functions z /∈ Cs
tj+1

(Y j , qstj+1
(r1, ..., rj)) implies z /∈

Cs
tj+1

(Y j , qstj+1
(r̃1, ..., r̃j)). If i(Ỹ j \ Y j) /∈ i(Ỹj+1), then by the IRC of the sub-

choice function we have z /∈ Ỹj+1. Otherwise, there must exists y′ ∈ Ỹ j \ Y j

such that y′ ∈ Ỹj+1 = Cs
tj+1

(Ỹ j , qstj+1
(r̃1, ...r̃j)). Note that i(y′) /∈ i(Y j). Let

{y′ , ..., w′} be the set of contracts in Ỹ j \ Y j such that each of them is chosen
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by Ỹj+1. By the IRC of the sub-choice function, removing the other contracts of

the doctors i({y′ , ..., w′}) from the set Ỹ j does not change the chosen set. There-

fore, Cs
tj+1

(Ỹ j , qstj+1
(r̃1, ...r̃j)) = Cs

tj+1
(Y j ∪ {y′ , ..., w′}, qstj+1

(r̃1, ..., r̃j)). The BS of

the sub-choice function implies z /∈ Cs
tj+1

(Y j ∪ {y′ , ..., w′}, qstj+1
(r̃1, ..., r̃j)). Hence,

z /∈ Ỹj+1.

We now need to prove Y j+1 ⊆ Ỹ j+1 . Take y ∈ Y j+1. We know that y /∈ Yj+1.

Then, by QM, it implies that y /∈ Cs
tj+1

(Y j , qstj+1
(r̃1, ..., r̃j)). Finally, BS and IRC

implies that y /∈ Ỹj+1 = Cs
tj+1

(Ỹ j , qstj+1
(r̃1, ..., r̃j)), i.e., y ∈ Ỹ j+1.

To finish the proof we need to show that r̃j+1 ≤ rj+1, i.e., qj+1(r̃)− | Ỹj+1 |≤

qj+1(r)− | Yj+1 |. By the monotonicity of the capacity transfer scheme we have

q̃j+1 ≤ qj+1. By the LAD, it implies | Cs
tj+1

(Y j+1, qsj+1(r)) | − | Cs
tj+1

(Y j+1, qsj+1(r̃)) |≤

qsj+1(r)−qsj+1(r̃). Again by the LADS we obtain | Cs
tj+1

(Ỹ j+1, qsj+1(r̃)) |≥| Cs
tj+1

(Y j+1, qsj+1(r̃)) |.

The last two inequalities together implies that | Yj+1 | − | Ỹj+1 |=| Cs
tj+1

(Y j+1, qsj+1(r)) |

− | Cs
tj+1

(Ỹ j+1, qsj+1(r̃)) |≤ qsj+1(r)− qsj+1(r̃).

Since the same observations applies to all of the remaining privileges after tj+1,

this observation ends the proof.

• Proof of Proposition 6:

Proof. Towards a contradiction let t′ be the first step a school sholds a contract z it

previously rejected at Step t < t
′ . Since z is rejected by school s at Step t there are

two cases to consider:

(i) z was on hold at Step (t− 1), i.e., z ∈ Cs(As(t− 1)), or

(ii) z was offered to school s at Step t, i.e., z = As(t) \As(t− 1).

In either case no other contract of student i(z) could be on hold by school s at

Step (t−1). But then, since z is the first contract to be held after an earlier rejection,

school s cannot have held another contract by student i(z) at Step t. That is,

i(z) /∈ i[Cs(As(t))]
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Then by IRC z ∈ As(t) \ Cs(As(t)) implies that

z /∈ Cs(Cs(As(t)) ∪ {z})

and yet

z ∈ Cs(As(t
′
))

Consider every step t′′ in the cumulative offer algorithm where t < t
′′ ≤ t

′ . In each

stage one of the following cases occurs:

(i) a new contract, x, from another student with the same privilege type as t(z)

is offered, i.e., i(x) 6= i(z) but t(x) = t(z) = tj ,

(ii) a new contract, x, from another student with a different privilege type than

t(z) is offered, i.e., i(x) 6= i(z) and t(x) 6= t(z) = tj ,

(iii) a new contract from student i(z), z′ , with a different privilege type than

t(z) is offered, i.e., i(z′) = i(z) but t(z′) 6= t(z) = tj .

In each case and for each step of the cumulative offer algorithm between steps t

and t′ we will show that z is not going to be recalled.

(i) In this case note that both rl and Yl for l = 1, ..., j − 1 remain unchanged.

Hence the capacity of the privilege type tj will be as same as the capacity before

receiving the offer x. Since �tj is responsive with capacity qstj , z will be rejected as

it was before the arrival of the contract x since now competition for slots is higher.

(ii) There are several sub-cases to consider in this case. If the contract x is

chosen by a sub-choice function of a privilege tl where l > j then the contract z

will be rejected again since the capacity of the privilege type tj and all the chosen

contracts Yk where k < j will be the same. If the contract x is chosen by any

privilege type tl where l < j, the number of unused seats for all the privileges after

the privilege tl will be weakly smaller. By the monotonicity of capacity transfer

scheme, the capacity of the privilege type tj will be weakly smaller. Note that the

contract x cannot be the contract of any student whose contract is on hold at the

privilege type tj by the dynamics of the cumulative offer algorithm. Finally, if the
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contract x is not chosen by any of privileges, then by the IRC of the overall choice

function z will be rejected.

(iii) For this case there are several cases to consider as well. If z′ is not chosen

by any privileges by the IRC of the overall choice function z will be rejected. If

z
′ is chosen by the privilege t(z′) = tl where l < j, then the contract z will be

removed from the process by the definition of our choice function and, hence, z will

be rejected again. If z′ is chosen by a privilege t(z′) = tl where l > j, then neither

the number of unused seats rk where k < j nor the set of chosen contracts Yk where

k < j changes. Privilege type tj will have the same capacity as it had before the

arrival of z′ . Therefore, z will be rejected.

Hence it contradicts with z ∈ Cs(As(t
′
)).

• Proof of Proposition 7:

Proof. Let Y be the outcome of the cumulative offer algorithm. Since agents/students

only offer their acceptable contracts during the cumulative offer process we have

Ci(Y ) = Yi for all i ∈ I. Towards a desired contradiction suppose that Y is not

stable. Then, there must exist a school s ∈ S and a set of blocking contracts

Z 6= Cs(Y ) such that Z = Cs(Y ∪ Z) and Zi = Ci(Y ∪ Z) for all i ∈ i(Z). Con-

sider an agent/student j ∈ i(Z) where ZjP
jYj . By the definition of the cumulative

offer algorithm agent j must have offered contract Zj before offering the contract

Yj . Since Zj /∈ Y then Zj must have been rejected at some step of the cumulative

offer process. It holds for every agent whose more preferred contract in Y com-

pared to their contract in Z. So, there is a step t of the cumulative offer process in

which (Y ∪Z) ⊆ As(t). By Proposition 6, a rejected contract during the cumulative

offer algorithm can not be on hold at a further step under monotone capacity trans-

fer scheme, i.e., there is no renegotiation. It contradicts with our assumption that

Z = Cs(Y ∪ Z).

• Proof of Theorem 2:

Proof. Let � be the strict priority ranking of agents according to test scores. The
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priority ranking of each privilege type tj (j = 1, ..., k) at each institution s ∈ S, �s
tj ,

is derived from �. Each sub-choice function of privilege type tj at institution s ∈ S

is induced by the priority order �s
tj . In other words, Cs

tj (Y
j−1, qstj (r1, ..., rj−1)) =

Cs
tj (Y

j−1, qstj (r1, ..., rj−1) |�
s
tj ). Note that each sub-choice function is q-responsive.

Fix an agent i ∈ I. Consider the following proposal order Γ such that for all

l = 1, 2, ...

jΓlk ⇐⇒ j � k for all j, k 6= i

jΓli for all j 6= i

that is, the order obtained from � by moving agent i to the bottom of each

linear order Γl. By the order-independence of the cumulative offer process result of

Hirata and Kasuya (2014) no matter which proposal order we choose, outcome of

the cumulative offer process will be the same since overall choice functions satisfy

the BS and IRC conditions in our setting.

Claim 1 : Suppose that agent i obtains contract x from the cumulative offer

algorithm when he submits preference P i : z1P
iz2P

i...znP
ixP i... . If agent i submits

the preference P̃ i : xP̃ i∅i, then she obtains contract x in the cumulative offer process.

Proof of Claim 1 : Consider two different problems that are the same ex-

cept agent i’s preference and also consider two different cumulative offer processes

associated with these two different problems: In the first problem agent i submits

preference P i and in the other one she submits P̃ i. Let X be the outcome of the

cumulative offer algorithm if we exclude agent i from both of the problems, i.e., X

is the set of contracts that are on hold by institutions before agent i proposes a

contract in both problems. Note that agent i is the last agent to propose a contract

according to proposal order Γ. In the cumulative offer process where she submits

the preference P i since she obtains the contract x all the contracts he prefers to x

according to P i are rejected, i.e., z1, z2,...,zn are all rejected. However, note that

when she offers these contracts rejection cycles that return back to agent i occur.

48



Note that there are two possible ways for a contract that are currently on hold

in privilege type tj at institution s to be rejected as a result of a rejection chain:

(i) Current capacity of a privilege type is full, the rejected contract belongs to the

lowest scored agent among the agents whose contracts are currently on hold at that

privilege type and some other agent who has a higher score offers a contract to that

privilege type, and (ii) Contracts of some other agents are chosen to be on hold

in the privilege types that are considered before the privilege type tj so that the

number of unassigned slots in privilege types t1,...,tj−1 decreases, and as a result the

capacity of privilege type tj decreases by the monotonicity of the capacity transfer

scheme.

Suppose agent i offers z1 to institution s(z1) in privilege type t(z1). Note that

for z1 to get rejected capacity of privilege type t(z1) must be exhausted when agent i

offers z1 because otherwise z1 would be accepted and the cumulative offer algorithm

would terminate as agent i is the last agent to propose according to Γ . There are

two possible ways for z1 to be rejected:

(1) agent i has a lower score than the lowest scored agent whose contract is

currently on hold in privilege type t(z1) at s(z1). If this is the case z1 is automatically

rejected.

(2) agent i has higher score than some agents whose contracts are currently on in

privilege type t(z1) at s(z1). Upon arrival of z1 the contract of lowest scored agent,

call it y, will be rejected. Agent i has higher score than agent i(y). Then, agent

i(y) offers her next best contract and starts a rejection chain. In the last stage of

the rejection chain a contract from some agent must be accepted in institution s(z1)

in one of privilege types which is considered earlier than t(z1), so that by monotone

capacity transfer scheme capacity of privilege type t(z1) is decreased and z1 gets

rejected. During the rejection cycle, until it reaches to institution s(z1), capacities in

every privilege type in every institution other than s(z1) remain unchanged because

otherwise the rejection chain would not reach to institution s(z1). So, if s(z1) 6= s(x),

then capacities of privilege types in s(x) remains unchanged. Also, note that if

s(z1) = s(x), then the capacity of t(x) either remains the same or decreases. In this
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scenario one should note that if a contract replace another one during the choice

procedure it means the newly offered contract must be associated with agent whose

score is higher than the agent which has the replaced contract.

Since z1, z2, ..., zn are all rejected, one of the two ways should occur for each

contract zl, l = 1, ..., n.

Let the privilege type associated with contract x is tj = t(x). In the first problem,

due to rejection cycles some other agents might propose some additional contracts

to privilege types t1,t2,..., and tj−1 to institution s(x). Since sub-choice functions

of privilege types are all q-responsive following test scores and the capacity transfer

scheme is monotonic, capacity of privilege type tj in institution s(x) weakly decreases

as agent i continues to propose her contracts z1, ..., zn. Also, the score of the agent

who has minimum scored contract among the ones that are currently on hold in

privilege type t(x) weakly increases. However, we know that contract x is chosen in

this scenario.

Now, consider the cumulative offer process where agent i finds contract x accept-

able only. Compared to the first scenario privilege type tj has weakly more slots and

score of the agent who is associated with the minimum scored contract weakly lower.

Therefore, if x is chosen by s(x) for privilege type tj in the first scenario, then it

must be chosen by s(x) for privilege type tj in the second scenario. This completes

the proof of the claim.

The above claim basically says that if any agent wants contract x to be chosen

and if it is possible by submitting some preference, then she can do it by truncating

her preferences such that she finds only contract x acceptable. By Proposition 6

we know that if each sub-choice function is q-responsive then the cumulative offer

process collapses to agent-proposing deferred acceptance algorithm, i.e., a rejected

contract at some step of the cumulative offer algorithm can not be on hold at a further

step of the algorithm. Since the agent-proposing deferred acceptance algorithm is

immune to truncation strategies, this observation completes the proof.

• Proof of Theorem 3:

50



Proof. Fix a student i and let �′ be an unambiguous improvement for student i over

�.

We will first consider the outcome of the cumulative offer mechanism under a

monotone capacity transfer when the sub-choice functions for each school are induced

from strict priority rankings �′t1 ,�
′
t2 , ...,�

′
tk
, respectively. Recall that by Remark 1,

the order of students making offers has no impact on the outcome of the cumula-

tive offer algorithm. Therefore, we can obtain the outcome of the cumulative offer

algorithm when the strict ranking of students according to test scores is �′ : First,

entirely ignore student i and run the cumulative offer algorithm until it stops. Let

X
′ be the resulting set of contracts. At this point, student i makes an offer for

her first-choice contract x1. His offer may cause a chain of rejections, which may

eventually cause contract x1 to be rejected as well. If that happens, student i makes

an offer for his second choice x2, which may cause another chain of rejections, and

so on. Let this process terminate after student i makes an offer for his lth choice

contract xl. There may still be a chain of rejections after this offer, but it does not

reach student i again. Hence, student i receives his lth choice under ΦCOM (�′).

Next consider the outcome of the cumulative offer mechanism under the same

monotone capacity transfer when the sub-choice functions for each school are induced

from strict priority rankings �t1 ,�t2 , ...,�tk , respectively. Initially entirely ignore

student i and run the cumulative offer algorithm until it stops. Since the only

difference between the two scenarios is the standing of student i in the priority list,

X
′ will again be the resulting set of contracts. Next, student i makes an offer for her

first-choice contract x1. Since �′ is an unambiguous improvement for student i over

�, precisely the same sequence of rejections will take place until he makes an offer

for her lth choice contract xl. Therefore, student i cannot receive a better contract

than his lth choice under ΦCOM (�) even though she can receive a worse contract

than her lth choice if the rejection chain returns back to her.

• Proof of Theorem 4:

Proof. Consider two problems (I, S, P |I|,�, (q̄stj )s∈S) and (I, S, P |I|,�, (qstj (r1, ..., rj−1))s∈S)
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in which there is no capacity transfer in the first one while the second one allows

monotone capacity transfer across different privilege types, everything else is the

same in both problems. Note that for every institution s ∈ S and all privilege types

tj , j = 1, ..., k, we have qstj (r1, ..., rj−1) ≥ q̄
s
tj .

We need to show that each agent i ∈ I obtains weakly better outcome in the cu-

mulative offer algorithm with monotone capacity transfer than she obtains in the cu-

mulative offer algorithm without capacity transfer. Consider the following proposal

order �- the strict ranking of agents according to test scores. Let i1 − i2 − ... − in

be the enumeration of agents according to � where i1 has the highest test score, i2is

the second highest test score, and so on. Let I ′il ≡ {ij ∈ I: j < l} be the set of agents

who have higher test scores than agent il . We are going to prove the theorem by

induction on students following the proposal order �.

First ranked student according to � obtains the same outcome under both mono-

tone capacity transfer scheme and no capacity transfer. Hence, he weakly prefer the

assignment from the second problem over the assignment from the first problem.

Suppose that x′l is the contract agent il obtains in the cumulative offer algorithm

with monotone capacity transfer and xl is the contract she obtains from the cumu-

lative offer algorithm with no capacity transfer. Assume that for all l ≤ L, x′lR
ilxl.

We need to show that it also hold for agent iL+1, i.e., x
′
L+1R

iL+1xL+1. Assume not.

Suppose that agent iL+1 obtains a contract y in the cumulative offer algorithm with

monotone capacity transfer such that xL+1P
iL+1y where xL+1 is the contract she

obtain in the cumulative offer algorithm without capacity transfer. We know that

q
s(xL+1)
t(xL+1)

(r) ≥ q̄
s(xL+1)
t(xL+1)

by the monotone capacity transfer. Also, by our inductive

hypothesis, the set of agents in (I
′
iL+1
∩Xs(xL+1) ∩Xt(xL+1)) whose contract are not

on hold in the cumulative offer algorithm with monotone capacity transfer at the

step where agent iL+1 offer her contract xL+1 is contained by the set of agents in

(I
′
iL+1
∩Xs(xL+1) ∩Xt(xL+1)) whose contracts are not on hold in the cumulative offer

algorithm without capacity transfer at the step where agent iL+1 offer her contract

xL+1. Then, it means when there are weakly more seats available and there are

less agents whose score are higher than agent iL+1 in the privilege type t(xL+1) at
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institution s(xL+1) her contract xL+1 is rejected while it is accepted when there are

weakly more students whose score higher than iL+1 vying for a seat in the same insti-

tution and for the same privilege type and there are weakly less seats available. This

contradicts with the construction of our sub-choice functions which are q-responsive.

Hence, x′L+1R
iL+1xL+1 completes the proof.
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On Relationships Between Substitutes Conditions

Mustafa Oǧuz Afacan∗ and Bertan Turhan†

Abstract

In the matching with contracts literature, three well-known conditions (from stronger to

weaker)– substitutes, unilateral substitutes (US), and bilateral substitutes (BS)– have

proven to be critical. This paper aims to deepen our understanding of them by separately

axiomatizing the gap between BS and the other two. We first introduce a new “doctor

separability” condition (DS) and show that BS, DS, and irrelevance of rejected contracts

(IRC) are equivalent to US and IRC. Due to Hatfield and Kojima (2010) and Aygün and

Sönmez (2012), we know that US, “Pareto separability” (PS), and IRC are the same as

substitutes and IRC. This, along with our result, implies that BS, DS, PS, and IRC are

equivalent to substitutes and IRC. All of these results are given without IRC whenever

hospitals have preferences.
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1 Introduction

In the matching with contracts framework of Hatfield and Milgrom (2005), Hatfield and

Kojima (2010) obtain the existence of a stable allocation under a bilateral substitutes (BS)

condition. Aygün and Sönmez (2012) then show that if hospital choices are not necessarily

induced by preferences, an irrelevance of rejected contracts (IRC)1 assumption is also needed.

Nevertheless, BS and IRC are still weak in the sense that many well-known results in the

standard matching problem do not carry over to the matching with contracts setting under

them. For instance, the doctor-optimal stable allocation fails to exist. Hatfield and Kojima

(2010) then introduce a stronger unilateral substitutes condition (US), and the existence

of the doctor-optimal stable allocation is obtained under both US and IRC. With an

additional law of aggregate demand condition (LAD),2 Hatfield and Kojima (2010) recover

both the strategy-proofness of the doctor-optimal stable rule and a version of the so-called

“rural hospitals theorem.”

Given that many well-known properties are restored by strengthening BS to US or substi-

tutes, it is important to understand the relations between them. While the extant literature

clarifies the difference between the US and substitutes conditions through axiomatizing the

gap between them, such an analysis is yet to be done for the difference between them and

BS. In this study, we pursue this analysis and separately axiomatize the gap between BS

and the other two. To this end, we introduce a doctor separability (DS) condition, which

says that if no contract of a doctor is chosen from a set of contracts, then that doctor con-

tinues not to be chosen unless a contract of a new doctor (we refer to a doctor as new doctor

if he does not have any contract in the initially given set of contracts) becomes available.

We then show that US and IRC are equivalent to DS, BS, and IRC.3

1Alkan (2002) refers to it as “consistency.”
2In a different setting, Alkan (2002) refers to LAD as “cardinal monotonicity.”
3Alva (2014) gives some necessary (but not sufficient) conditions for US and BS to hold. We will come

back to those conditions in Remark 3.
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Hatfield and Kojima (2010) show that US and “Pareto Separability” (PS) are equivalent

to substitutability. By additionally imposing IRC, Aygün and Sönmez (2012) extend it to

the case where hospital choices are primitives. This result, along with our axiomatization,

yields that BS, DS, PS, and IRC are equivalent to substitutes and IRC.4 As IRC is

automatically satisfied whenever hospitals have preferences, all of our results hold without

IRC when hospitals are assumed to have preferences.

As summarized above, strengthening BS to either US or substitutes recovers important

properties. Indeed, it is not only restricted to the ones mentioned above. In a recent study,

Afacan (2014) shows that the Cumulative Offer Process (Hatfield and Milgrom (2005)) is

both population and resource monotonic under US and IRC, and it respects doctors’ im-

provements with the additional LAD. The theoretical appeal of understanding the difference

between US and BS is therefore clear. In addition, our paper has practical appeal as recent

works in the literature (notably, Sönmez and Switzer (2013), Sönmez (2013), and Komin-

ers and Sönmez (2013)) illustrate that the US and BS conditions are critical for practical

market design.

2 Model and Results

There are finite sets D and H of doctors and hospitals, and a finite set of contracts X.

Each contract x ∈ X is associated with one doctor xD ∈ D and one hospital xH ∈ H. Given

a set of contracts X ′ ⊆ X, let X ′
D = {d ∈ D : ∃ x ∈ X ′ with xD = d}. Each hospital h has

a choice function Ch : 2X → 2X defined as follows: for any X ′ ⊆ X:

Ch(X ′) ∈ {X ′′ ⊆ X ′ : (x ∈ X ′′ ⇒ xH = h) and (x, x′ ∈ X ′′, x 6= x′ ⇒ xD 6= x′
D)}.

Definition 1. Contracts satisfy irrelevance of rejected contracts (IRC) for hospital h if, for

any X ′ ⊂ X and z ∈ X \X ′, if z /∈ Ch(X ′ ∪ {z}) then Ch(X ′) = Ch(X ′ ∪ {z}).
4Alva (2014) provides another characterization of substitutability by using different properties, which

are not directly related to the currently used ones.

61



Definition 2. Contracts are bilateral substitutes (BS) for hospital h if there do not exist

contracts x, z ∈ X and a set of contracts Y ⊆ X such that xD, zD /∈ YD, z /∈ Ch(Y ∪ {z}),

and z ∈ Ch(Y ∪ {x, z}).

Definition 3. Contracts are unilateral substitutes (US) for hospital h if there do not exist

contracts x, z ∈ X and a set of contracts Y ⊆ X such that zD /∈ YD, z /∈ Ch(Y ∪ {z}), and

z ∈ Ch(Y ∪ {x, z}).

Below we introduce our new condition.

Definition 4. Contracts are doctor separable (DS) for hospital h if, for any Y ⊂ X and

x, z, z′ ∈ X\Y with xD 6= zD = z′D, if xD /∈ [Ch(Y ∪{x, z})]D, then xD /∈ [Ch(Y ∪{x, z, z′})]D.

Less formally, DS says that if a doctor is not chosen from a set of contracts in the sense

that no contract of him is selected, then that doctor should still not be chosen unless a

contract of a new doctor (that is, doctor having no contract in the given set of contracts)

becomes available. For practical purposes, we can consider DS as capturing contracts where

certain groups of doctors are substitutes.5

Theorem 1. Contracts are US and IRC if and only if they are BS, DS, and IRC.

Proof. “If” Part. Let Y ⊂ X and x ∈ X such that xD /∈ YD and x /∈ Ch(Y ∪{x}). We now

claim that x /∈ Ch(Y ∪ {x, z}) for any z ∈ X as well. If zD /∈ YD, then by BS, the result

follows. Let us now assume that zD ∈ YD. Then, we can write Y = Y ′ ∪ {z′} for some z′

where z′D = zD. This means that x /∈ Ch(Y ′ ∪ {x, z′}), and since xD /∈ YD, it in particular

implies that xD /∈ [Ch(Y ′ ∪ {x, z′})]D. By DS, then, we have xD /∈ [Ch(Y ′ ∪ {x, z′, z})]D; in

other words, xD /∈ [Ch(Y ∪ {x, z})]D. Hence, in particular, x /∈ Ch(Y ∪ {x, z}).

“Only If” Part. Let contracts be US satisfying IRC. By definition, they are BS as

well. Let xD /∈ [Ch(Y ∪ {x, z})]D and Y ′ = Y \ {x′ ∈ Y : xD = x′
D and x 6= x′}. By

5If xD /∈ [Ch(Y ∪ {x, z})]D, then doctor xD is not chosen. And under DS, he continues not to be
chosen unless a new doctor comes. Hence, we can interpret it as the doctors in the given set of contracts are
substitutes.
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IRC, Ch(Y ∪ {x, z}) = Ch(Y ′ ∪ {x, z}). Let us now add a new contract z′ where zD = z′D.

By US, x /∈ Ch(Y ′ ∪ {x, z, z′}). If x ∈ Ch(Y ∪ {x, z, z′}), then by IRC, it has to be that

Ch(Y ∪ {x, z, z′}) = Ch(Y ′ ∪ {x, z, z′}). This, however, contradicts x /∈ Ch(Y ′ ∪ {x, z, z′}).

Hence, x /∈ Ch(Y ∪{x, z, z′}). For any other contract x′ ∈ Y of doctor xD, we can define Y ′ =

[Y \{x′}]∪{x}. Then, by above, xD /∈ [Ch(Y ′∪{x′, z})]D (note that Y ′∪{x′, z} = Y ∪{x, z}).

By easily following the same steps above, we can conclude that x′ /∈ Ch(Y ∪ {x, z, z′}) as

well. Hence, xD /∈ [Ch(Y ∪ {x, z, z′})]D, showing that contracts are DS.

Definition 5. Contracts are substitutes for hospital h if there do not exist contracts x, z ∈ X

and a set of contracts Y ⊆ X such that z /∈ Ch(Y ∪ {z}) and z ∈ Ch(Y ∪ {x, z}).

Definition 6. Contracts are Pareto separable (PS) for hospital h if, for any two distinct

contracts x, x′ with xD = x′
D and xH = x′

H = h, if x ∈ Ch(Y ∪ {x, x′}) for some Y ⊆ X,

then x′ /∈ Ch(Y ′ ∪ {x, x′}) for any Y ′ ⊆ X.

Fact 1 (Hatfield and Kojima (2010) and Aygün and Sönmez (2012)). Hospital choices are

US and PS, satisfying IRC, if and only if they are substitutes satisfying IRC.

As a corollary of Theorem 1 and Fact 1 above, we obtain the following characterization.

Corollary 1. Contracts are substitutes satisfying IRC if and only if they are BS, DS, PS,

satisfying IRC.

Remark 1. As IRC is automatically satisfied whenever hospital choices are generated

by certain preferences, all of the above results work without IRC in that case.

Remark 2. It is easy to verify that DS is independent of both BS and PS.

Remark 3. By following our notation, Alva (2014) says that contracts (of hospital h)

satisfy “recall rejected talents” (RRT ) if there are Y ⊂ X and x, z ∈ X such that x ∈ Y ,

xD /∈ [Ch(Y )]D, and x ∈ Ch(Y ∪ {z}). Moreover, he says that both RRT and another

condition “New Offer From New Talent” (NOFNT ) are satisfied if the z contract in the

RRT definition is such that zD /∈ YD. He shows that (i) US fails if RRT is satisfied and
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(ii) BS fails if both RRT and NOFNT are satisfied. It is easy to verify that the absence of

RRT implies DS (the converse is not true even under IRC); however, the absence (or the

presence) of both RRT and NOFNT does not imply DS even under IRC.
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