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Tumor subclone structure reconstruction with genomic
variation data

ABSTRACT

YI QIAO

DISSERTATION ADVISOR: GABOR T. MARTH

Unlike normal tissue cells, which contain identical copies of the same genome, tumors

are composed of genetically divergent cell subpopulations, or subclones. The abilities

to identify the number of subclones, their frequencies within the tumor mass, and the

evolutionary relationships among them are crucial in understanding the basis of tu-

morigenesis, drug response, relapse, and metastasis. It is also essential information

for informed, personalized therapeutic decisions. Studies have attempted to recon-

struct subclone structure by identifying distinct allele frequency distribution modes at a

handful of somatic single nucleotide variant loci, but this question was not adequately

addressed with computational means at the start of this dissertation work, and recent

efforts either enforce certain assumptions or resort to statistical procedure which cannot

guarantee the complete landscape of solution space.

This dissertation present a computational framework that examines somatic varia-

tion events, such as copy number changes, loss of heterozygosity, or point mutations,

in order to identify the underlying subclone structure. Chapter 2 discuss the presence

of intra-tumoral heterogeneity, and for historical interest, a method to reconstruct the

parsimonious solution based on simplifying assumptions in tumor micro-evolution pro-

cess. Analysis results on clinical datasets concerning Ovarian Serious Carcinoma and

Intracranal Germ Cell Tumor based on this method, which confirmed the genomic com-

plexity, are also presented.

Due to the reason that the linkage information i.e. whether two mutations are co-



localizing in the same cancer cell is lost during tissue homogenization and DNA frag-

mentation, common sample preparation steps used in whole genome profiling tech-

niques, often there are more than one subclone model capable of explaining the obser-

vation. Chapter 3 describes an extended method that is able to search for all models

consistent with the observation. Consequently, the solution to a specific input dataset

is then a set of possible subclone structures. The method then trim this solution space

in the case that more than one sample from the same patient are available, such as

the primary and relapse tumor pairs. Furthermore, a statistical framework is devel-

oped that, when further trimming is not possible, predicts whether two mutations are

co-localizing in the same subclone. The formal definition on the problem of subclone

structure reconstruction, as well as techniques to pre-process various types of genomic

variation data are given given here as well. Results on the analysis of published and

novel datasets, ranging from cancer types including Acute Myeloid Leukemia, Sinonasal

Undifferenciated Carcinoma and Ovarian Serious Carcinoma, and data types including

whole genome sequencing, copy number array, single nucleotide polymorphism array

and single nucleotide variant calls with deep sequencing are also included. They show

that the method is applicable to these wide range of cancer and data types, able to in-

dependently replicate the published conclusion based on manual reasoning, and gain

novel insights into the pattern of tumor recurrence and chemoresistance. It also shows

that the method can be valuable in prioritizing variants for function study.

Chapter 4 summarizes the entire work, and provide future prospects in subclonality

research.
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1
Introduction

T
O OUR BEST KNOWLEDGE, cancer arises due to the accumulation of somatic

mutations that one acquires throughout his or her life span. It is the

outcome of a Darwinian evolution process among cell populations in the

micro-environment provided by different tissues of an organ [1] that some cells ac-

quire alleles in “cancer-causing genes” [2, 3]. In the past thirty years, cancer-causing

genes have been categorized into two main types: oncogenes, which are inactivated in

normal cells and has the potential to cause cancer [4], and tumor suppressor genes,

which are normally activated and protect the cell from progressing towards cancer [5].

Mutation occurs for many different reasons, including exposure to mutagenic chemi-
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cals, intrinsic error of the DNA repair mechanism, inherited mutation from fertilized

egg (“germline”) that confers to genome instability (“susceptibility”), exogenous DNA

materials from bacterial or viral infections, epigenetic changes and so on. Mutation

also comes in many different forms, which were defined, based on the scope of the

effect, as Single Nucleotide Variation (SNV), Insertion or Deletion (INDEL), chromoso-

mal rearrangements and Copy Number Variation (CNV) [1, 6]. Disruption of the normal

function of oncogenes and tumor suppressors leads to cellular phenotype such as self

sufficiency in growth signals, insensitivity to anti-growth signals, evasion of apoptosis,

limitless replicative potential, sustained angiogenesis1, and metastasis [7].

In this chapter, I will give a brief introduction to our current knowledge regarding

the complexity of cancer genome, the methods to study genomic variations, and latest

studies which revealed intra-tumoral heterogeneity.

1.1 COMPLEXITY OF CANCER GENOME

With the understanding of human genome, and the waves of technologies that have

come into exist especially the Next Generation Sequencing (NGS), the genome of can-

cer has been systematically studied through many efforts. Following the launching of

the Human Genome Project (HGP) in 1990, which could be considered as the first

step to unravel the puzzle of cancer genome, three major organizations, the Wellcome

Trust Sanger Institute, the National Cancer Institute (NCI), and the International Can-

cer Genome Consortium (ICGC) have been leading the efforts to generate high-quality

-omic data on more than 25,000 tumors for up to 50 types of cancers [8]. NGS not

only increased the resolution of genotype profiling, but also enabled the discovery of

novel mutations in new cancer-causing genes. Original assumption of a single uniform

background mutation rate (~1/Mb) turned out to be overly simplified. A recent study

initiated by the Broad Institute (BI) revealed that the mutation frequencies varied across

1The development of new blood vessels
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cancer types and across patients within a cancer type through the analysis of 27 cancer

types [9]. The same study also showed that the heterogeneity in the mutational spec-

trum of tumors. For example, a cluster consisting of samples dominated by C>G or C>T

mutation in the context of TpC contains mostly cervical, bladder, breast and some head

and neck cancer patients. Consistent with this result, Nik-Zainal et al. [10] reported

that a cluster substitutions like C>T, C>A or C>G in TpCpX trinucleotides was found to

be associated with ER-positive2 breast tumors. In addition, two new types of mutations

were reported recently, chromothripsis3 [11, 12] and kataegis4 [10, 13, 14]. Chro-

mothripsis, which refers to a catastrophic phenomenon that the chromosomes appear

to be shattered and then stitched back together, was identified by the use of paired-

end NGS across multiple cancer samples [12, 15]. This process occurs in 2%− 3% of

human cancer [16, 17]. The mechanism was proposed as that erroneous chromosome

escapes from pulverization of chromosomal segments and undergoes aberrant reassem-

bly through non-homologous end-joining [12, 18]. Kataegis operates locally, generating

a hypermutation region characterized by multiple base substitutions. Though the mech-

anism remains unclear, the activation-induced deaminase (AID) and apolipoprotein B

mRNA-editing enzyme catalytic polypeptide-like (APOBEC) protein families are likely

to be involved [10, 19].

There have been several very detailed review articles summarizing the studies of

global cancer genome features [19–21]. Here we focus more on new studies (mainly in

late 2013 to 2014) that are not covered by these articles, summarizing the landscape

of somatic mutations in different types of cancer.

2Endocrine receptor (estrogen or progesterone receptor) positive
3a catastrophic phenomenon that the chromosomes appear to be shattered and then stitched back

together
4a hypermutation region characterized by multiple base substitutions
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1.1.1 COLORECTAL AND GASTRIC CANCER

Genetic aberration were detected in colorectal carcinoma (CRC) by the The Cancer

Genome Atlas (TCGA) through the analysis of whole exome sequencing, copy num-

ber, promoter methylation, and mRNA & microRNA expressions in 276 samples as well

as low coverage whole genome sequencing data in 97 samples [22, 23]. Hypermu-

tated tumors (defined as > 12 mutations per mega-base) were observed in 16% of the

CRC samples, three quarters of which had high levels of micro-satellite instability fre-

quently caused by the silencing of DNA mismatch-repair pathway gene MLH1 due to

the hypermethylation on its promoter region. 24 genes that were found significantly

mutated involved in several pathways such as the WNT signaling (APC, CTNNB1, SOX9,

TP53, FAM123B), PI3K pathway (IGF2, IRS2, PTEN, PIK3CA), the transforming growth

factor-β (SMAD2 and SMAD4), the RTK-RTS signaling pathway (KRAS, BRAF and ERBB

family), and chromatin remodeling (ARID1A).

Wang et al. [24, 25] carried out two studies to characterize genetic features of gas-

tric cancer. The earlier study performed exome sequencing on a small cohort in 2011

and discovered frequent ARID1A mutation in the MSI and Epsterin-Bar virus (EBV) sub-

groups. The recent one, based on whole genome sequencing of 100 paired tumor and

normal samples, identified new driver mutations (MUC6, CTNNA2, GLI3, RNF43, ZIC4

and others), in addition to previously known TP53, ARID1A, and CDH1 [25]. Specifi-

cally, authors found 6 RHOA mutations with the whole genome sequencing data, and

another 7 in a cohort of 67 diffuse-type tumors, which were recurrent hot spot muta-

tions and caused defective RHOA signaling.

1.1.2 LUNG CANCER

There are two histological subtypes of lung cancer: small-cell lung cancer (SCLC) and

non-small-cell lung cancer (NSCLC). NSCLC if further classified into squamous cell car-

cinoma (SCC), adenocarcinoma and large-cell carcinoma subtypes, with adenocarci-
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noma being the most common subtype of NSCLC. Exome and genome sequencing of

183 tumor/normal pairs revealed high somatic mutation rate as 12 mutations per mega-

base [26]. Mutations including recurrent somatic mutations in the splicing factor gene

U2AF1, RBM10, and ARID1A, as well as exonic alteration within EGFR and SIK2 kinases

were identified, and may be therapeutically targeted [26]. Another independent study

carried out in Korea consisted of RNA sequencing of 200 lung adenocarcinoma and iden-

tified novel driver mutations such as LMTK2, ARID1A, NOTCH2, and SMARCA4 [27]. A

comprehensive genetic profile was also generated from 178 lung SCC samples. A study

by the Broad Institute found 260 exonic mutations, 165 genomic rearrangements, and

323 segments of copy number alteration per tumor [28]. Further more, Vignot et al.

[29] carried out targeted NGS assay on primary and matched metastatic tumor pairs

NSCLC samples from 15 patients (8 with adenocarcinoma, 2 with large-cell carcinoma,

2 with basaloid and 3 with SCC), in which 63 known recurrent and 248 novel (likely

passenger) mutations were discovered.

SCLC is an aggressive lung tumor subtype with frequent metastasis and early death.

Rudin et al. [30] and Peifer et al. [31] independently reported exome, whole genome,

transcriptome and copy number alteration data from a total of more than 100 primary

SCLC tumors. Both studies found frequent inactivation of TP53 and RB1 [32]. Rudin

et al. identified 22 significantly mutated genes including genes encoding kinases (i.e.

STK38, LRRK2, PRKD3, and CDK14), Ras family regulators (i.e. RAB37, RASGRF1, and

RASGRF2) and chromatin-modifying proteins or transcriptional regulators (i.e. EP300,

DMBX1, MLL2, MED12L, TRRAP, and RUNX1T1). Peifer et al. [31] found recurrent mu-

tations in the PTEN, SLIT2, EPHA7, CREBBP, EP300, and MLL genes as well as FGFR1

amplifications.
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1.1.3 ADRENOCORTICAL CARCINOMAS

Adrenocortical carcinomass (ACCs) are rare and progressive cancers originating in the

cortex of adrenal gland. Assié et al. [33] reported alterations in known driver genes

(CTNNB1, TP53, CDKN2A, RB1, and MEN1) [34, 35] as well as new ones (ZNRF3, DAXX,

TERT, and MED12) by exome sequencing and Single Nucleotide Polymorphism (SNP)

array analysis of 45 ACCs samples. Specifically, a cell surface E3 ubiquitin ligase gene,

ZNRF3, was frequently mutated and is a potentially new tumor suppressor gene in-

volved in β-catenin pathway.

1.1.4 ESOPHAGEAL SQUAMOUS CELL CARCINOMA

Esophageal squamous cell carcinoma (ESCC) is a subtype of esophageal cancer and

particularly common in China. Lin et al. [36] identified several new mutated genes

such as FAT1, FAT2, ZNF750, and KMT2D in addition to those already known such as

TP53, PIK3CA, and NOTCH1 by whole exome or targeted deep sequencing of 139 paired

ESCC along with CNVs of over 180 ESCC samples.

1.1.5 UROTHELIAL BLADDER CARCINOMA

Urothelial bladder carcinoma is the most common type of bladder cancer and so far

no molecularly targeted agents have been approved for the treatment of this disease.

As part of TCGA project, a very recent study (March 2014, [37]) analyzed 131 high-

grade muscle-invasive urothelial carcinomas to characterize genetic alterations with

data including DNA copy number, somatic mutations, mRNA and microRNA expres-

sion, protein and phosphorylated protein expression, DNA methylation, transcript splice

variation, gene fusion, viral infection, pathway perturbation, clinical correlates and

histopathology. 32 recurrent mutated genes were identified, which involve in cell-cycle

regulation (e.g. CDKN1A), epigenetic regulation (e.g. MLL2, ARID1A, KDM6A, and

EP300), and kinase signaling pathways (e.g. PIK3CA). Out of these 32 genes, 9 of them
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with> 5% frequency have not been reported as significantly mutated in any other TCGA

cancer types, which are CDKN1A, ERCC2, RXRA, ELF3, KLF5, FOXQ1, RHOB, PAIP1, and

BTG2.

1.1.6 UTERINE LEIOMYOMAS

Uterine leiomyomas is a benign smooth muscle neoplasm but affects the health of

women. Mehine et al. [38] performed whole genome sequencing and gene expression

profiling on 38 uterine leiomyomas from 30 women and investigated clonal origin of tu-

mors from different patients, driver events in Complex Chromosomal Rearrangements

(CCRs) and candidate targets of chromosome 7q deletion. Identical or shared variants

among separate tumor nodules suggested the same origin of those nodules and addi-

tional rearrangements could suggest the relation of clonal evolution among nodules.

Surprisingly, interconnected CCR resembling chromothripsis, which is often associated

with advanced stage of cancers and a poor prognosis in other studies [39], was ob-

served frequently among these benign nodules. Finally, authors proposed a potential

mechanism model for leiomyoma development including events such as MED12 muta-

tion, biallelic loss of FH, translocation of the HMGA2 and RAD51B loci and aberrations

at the COL4A5/COL4A6 locus.

1.1.7 MANTLE CELL LYMPHOMA

Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin lymphoma5.

Whole transcriptome sequencing (RNAseq) of 18 primary tissue and 2 cell line, and

exome sequencing of 56 primary tissue samples respectively in two studies have found

novel recurrent mutations in NOTCH1, RB1, WHSC1, POT1, and SMARCA4 in addition

to ATM, CCND1, MLL2, and TP53 [38, 40]. Zhang et al. [38] further carried out chro-

matin structure and epigenetic profiling of normal B cells and MCLs and found that

5Any of a large group of cancers of lymphocytes (http://www.cancer.gov/cancertopics/
types/non-hodgkin)
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frequent somatic mutations were associated with open chromatin.

1.1.8 CHRONIC LYMPHOCYTIC LEUKEMIA

Chronic lymphocytic leukemia (CLL), like other types of leukemia, has heterogeneous

clinical and biological behavior. Previously three independent whole exome and whole

genome sequencing studies [41–43] identified several mutations including TP53, ATM,

NOTCH1, MYD88 and splicing factor SF3B1. A recent study showed transcriptional

profile by performing deep RNA sequencing in different subpopulations of normal B-

lymphocytes and CLL cells from a cohort of 98 patients [44]. Higher expression of genes

involved in metabolic pathways and lower expression of genes related to sliceosome,

proteasome and ribosome were observed in CLL samples. B-cell receptor (BCR), JAK-

STAT signaling and the cytosolic DNA-sensing pathways were shown to be particularly

enriched in CLL.

1.2 GENOMIC PROFILING METHODS

In the 1970s, banding patterns of a person’s chromosomes, or the karyotype, has been

the primary tool for the clinical assessment of patients with a variety of genomic ab-

normalities. Later, methods such as fluorescence in situ hybridization (FISH) and its

derivative methods, spectral karyotyping (SKY) or multiplex-FISH (M-FISH) [45, 46]

were used to map DNA sequences to specific regions of human genomes, which allowed

a higher resolution than the standard G-banding approaches. FISH can also be used to

identify gene copy number variations by more or fewer fluorescent dots in somatic cells.

Comparative Genomic Hybridization (CGH), a more advanced, FISH-based technique,

was developed to study the gain and loss of chromosomal regions. Briefly, genomic

DNA are isolated and fragmented from both control subject and experimental subject,

and labeled with green and red fluorescence respectively. Then, two DNA samples are

pooled and hybridized with normal chromosomes (known as probes). As a result, yel-
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low fluorescence represents no alteration in experimental subject, whereas red or green

represents copy number gain and loss. By using this method, Shayeteh et al. [47] dis-

covered the amplification of PIK3CA in ovarian cancer. Useful as they have proven to

be, these methods are not suitable for large-scale, high-resolution mapping of the entire

genome.

1.2.1 ARRAY COMPARATIVE GENOME HYBRIDIZATION

Array comparative genome hybridization (aCGH) is a method that combines the princi-

ples of CGH and microarray [48]. The probe chromosomes are immobilized on a glass

slide in an ordered fashion. The size of the probes can vary from tens to thousands of

base pairs based on the areas of interest. The DNA fragmentation from a test sample

and a reference sample are directly comparable to the standard CGH procedure. After

applying two genomic DNA to the microarray, digital imaging systems are used to cap-

ture and quantify the relative fluorescence intensities of the labeled DNA. Not only did

aCGH enable the discovery of more genetic alteration types, such as sub-telomeric rear-

rangements [49] and peri-centromeric rearrangements [50], but also made the analysis

of large number of samples (e.g. 8789 clinical cases [50]) possible.

1.2.2 SANGER SEQUENCING

Developed by Sanger et al. in 1977 [51, 52], the first chain-terminating, by-synthesis

sequencing method has been widely adopted, and put in heavy use, until only recently

with the rise of NGS. Sanger sequencing relies on the addition of dideoxynucleotides

(ddNTPs), along with normal deoxynucleotides (dNTPs), so that the DNA polymer-

ization process is halted randomly after incorporating a ddNTP which lacks the 3’-OH

group to form the phosphodiester bond with the next base. Traditionally, the sequenc-

ing process is divided into four separate experiments, with each experiment containing

all the dNTPs and one specific ddNTP. After the synthesize is complete, the product of
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the experiments are loaded into separate lanes for gel electrophoresis to sort the DNA

fragments by their length. Finally, the sequence is determined by reading the bands on

the electrophoresis from short to long, based on the lane they are in. For example, a

fragment of length 10bp in the lane that represents the experiment in which ddCTP is

added indicates that the nucleotide on the 10th bp in the original sequence is G.

Based on the same principle, automated procedures [53, 54] are developed that, by

using florescent labeled ddNTPs, the DNA synthesize is carried out in one experiment,

followed by capillary electrophoresis and automated florescence color readout. The

automated procedure saw great adoption in the vast majority of sequencing projects.

Although Sanger sequencing, and its derivative methods, has the disadvantage of

high cost and low throughput, it produces significant longer sequencing reads that is

essential for certain genomic applications (e.g. de novo assembly), and is often used as

a validation method to verify the genomic variations discovered through NGS technolo-

gies.

1.2.3 NEXT GENERATION SEQUENCING

Next generation sequencing is a collection of methods that increase the throughput

of traditional Sanger sequencing by simultaneously sequence several hundred millions

of DNA fragments in parallel, utilizing either cyclic reversible terminators (Illumina,

Helicos) to reversibly terminate the process of DNA polymerization followed by im-

age capturing, quantitatively detecting the release of the pyrophosphate released by

the incorporation of dNTP (Roche/454), or use ligation instead of nucleotide addition

(SOLiD).

There are generally four steps to generate NGS data: template preparation, sequenc-

ing, imaging and data analysis [55]. DNA fragments are either clonally amplified with

emPCR6 followed by fixation onto an amino-coated glass slide by chemical cross-link

6emulsion-based PCR

10



(Life/APG SOLID) [56] or fixed onto glass slide first, and then followed by solid phase

amplification (Illumina). Either way, the procedure results in millions of spatially sep-

arated DNA molecule template clusters.

1.2.3.1 ILLUMINA

In the sequencing step of Illumina platform, fluorescent labeled dNTP, with chemical

modification on the 3’-OH group to inhibit further dNTP incorporation, are used to

proceed the DNA polymerization in single steps. Since four dNTPs are labeled with

different colors, the current nucleotide can be decided for every clonal template clus-

ter. A cleavage step is followed to remove the fluorescent group as well as the blocking

group at 3’ to enable further polymerization and sequencing [57]. In an ideal situa-

tion, all the templates in a clonal cluster should be sequenced in synchrony. However,

de-phasing will occur if more (leading-strand de-phasing) or less (lagging-strand de-

phasing) nucleotides are incorporated onto some of the templates and introduce noise

to the florescence signal. Such noise is used to calculate a probability (“base quality”)

that a specific base call is incorrect [55]. As a consequence, de-phasing will result in

limited read length due to the low quality bases aggregating at the 3’ end.

1.2.3.2 ROACH/454 PYROSEQUENCING

Pyrosequencing is another “sequence-by-synthesis” method that, instead of relying on

chain termination (Section 1.2.2, Sanger Sequencing), works by detecting the pyro-

phosphate (PPi) released during dNTP incorporation [58–60]. The experiment consists

of cycles that only one of the four dNTPs are added into the system. If the particular

dNTP is complementary incorporated onto the synthesizing strand, PPi will be released,

which is quantitatively converted to light signal through luciferase-catalyzed reaction,

allowing the system to determine the sequence.

454 Life Sciences, which has been acquired by Roach Diagnostics, developed a par-
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allelized version utilizing the same principle as pyrosequencing, taking advantage of

emPCR to clonally amplify single DNA template within water droplets suspended in an

oil solution. These clonal colonies are then transferred onto plates with picoliter-volume

wells, and standard pyrosequencing is carried out within each well [61]

1.2.3.3 SOLID

With SOLiD sequencing strategy, the DNA sequences are not determined by single ad-

dition of nucleotide, but by ligation of a short DNA probe that recognizes 2 consecutive

bases on the template strand [56]. Different florescent colors are assigned to two bases

instead of one. The sequencing process consists of the incorporation of 8-mer florescent

labeled probes by DNA ligase with the first two bases complementary to the template

sequence, color imaging, cleavage of the last 3 bases of the 8-mer, and incorporation

of the next 8-mer. An entire cycle of such procedure will give raise to a color sequence

representing the base change of every 2 bases separated by 3 bases. To cover the entire

sequence, the procedure will need to be repeated 3 more times, each time with a +1

base shift. As a result, every base is interrogated twice, and SNV will be easy to identify

since substitution of one base will result in color changes of two consecutive positions.

Sequencing errors are also easier to identify due to the fact that color changes with

different inner bases are invalid.

1.3 NGS DATA PROCESSING AND VARIANT DISCOVERY

A common pattern of the current in-production NGS technologies is that they produce

giga base-pairs of genomic sequencing data, but each individual sequencing read is

relatively short [55]. Because the sequencing reads do not retail the knowledge as in

where in the genome did they originated from, a common practice is to map all the

reads to a reference genome scaffold to identify their location of origin. Heng et al.

[62] reviewed the latest software packages designed to tackle this issue, with various
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algorithmic approaches and adaptations to specific sequencing technologies.

Many types of genomic variations can then be identified from the alignments, either

by measuring the amount of reads covering a certain region (read coverage) to identify

CNV events [63–68], interrogating the raw sequences to discover SNV events [69, 70],

or utilizing properties of the alignment reads (e.g. fragment length or orientation with

paired-end reads) to uncover CNV and structural variations [66–68].

An important aspect of variant discovery regarding cancer samples is that, due to the

existence of normal tissue mix-in and intratumoral heterogeneity, certain assumptions

made for germline variation discovery may no longer hold true. For example, when only

normal tissue is concerned, the allele frequency (AF) of a mutant allele at a specific locus

is either 0% (when the subject does not have the variation), 50% (when the subject is

heterozygous mutant) or 100% (when the subject is homozygous mutant). As a result

of heterogeneity or copy number alteration, somatic events in cancer samples do not

follow this trimodal distribution necessarily [71–73]. Methods have been developed to

tailor for these specific conditions [74–81]. Xu et al. [82] reviewed the performance of

these methods, and Kim et al. [83] proposed a strategy of combining multiple tools to

increase overall call quality.

1.4 STUDIES REVEAL INTRA-TUMOR GENOMIC HETEROGENEITY

Cancer has been known to be heterogeneous long before the arrival of high throughput

genomic profiling methods [84–105]. NGS, and more recently single cell sequencing

(SCS), enabled the elucidation of subclone structure into unprecedented level. Here I

briefly summarize the latest studies, utilizing NGS on bulk sample or SCS, that identified

intratumoral heterogeneity in various types of cancer.
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1.4.1 STUDIES BASED ON NGS

1.4.1.1 MYELOMA

Three studies [106–108] performed genome-wide analysis for the clonal landscape rep-

resenting the heterogeneity in multiple myeloma (MM). Keats et al. [106] traced genetic

changes over the entire disease course in a high-risk patient at 7 time points and iden-

tified 2 competing subclones. A Vk*MYC transgenic mouse was used to model the

competition of these two subclones. An important lesson learned in this animal model

was that the eradication a sensitive clone will probably resulted in the dominance of the

other refractory clone. Thus the authors suggested that combination therapies targeting

all co-existing subclones in the tumor would be more beneficial than sequential single-

agent therapy. Egan et al. [107] performed whole genome sequencing on 4 time-points

samples over tumor progression: diagnosis, first relapse, second relapse and end-stage

secondary plasma cell leukemia (sPLC) in a t(4; 14) MM patient. Results showed that

diagnostic and second relapse clones shared most SNVs, while the first relapse and the

sPLC clones have some unique SNVs, which “suggested greater evolutionary divergence

over time and disease aggressiveness”. Walker et al. [108] compared a group of MM

patient samples with t(4; 14). Only 3% of mutations, including driver mutations in

RAS/MAPK pathway, were shared by both group and, in addition, RAS pathway muta-

tions were not always present in the dominant clone, but instead in minor subclones in

half of the samples.

Recently, two more studies looked at the heterogeneity of genomic evolution in MM

[109, 110]. Bolli et al. analyzed 84 myeloma samples by whole exome sequencing and

copy number profiling. Melchor et al. also used whole exome sequencing in addition

to single cell qPCR7. Both studies identified linear and branching phylogenies, which

contained 5 to 6 subclones. A very important observation was made that in some of the

7quantitative real time PCR
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parallel evolution situations, two subclones independently “activated the RAS/MAPK

pathway through RAS mutations”, which resulted in distinct subclonal lineages [110].

1.4.1.2 BREAST CANCER

Nik-Zainal et al. [111] applied novel algorithms developed by the same group to 21

breast tumors. Dominant subclonal linage (defined as more than 50% of tumor cells)

was observed in every tumor and authors reasoned that hundreds and thousands of mu-

tations were accumulated in one cell lineage before it expanded into the dominant sub-

clone with the acquisition of “driver mutations”. In another study, Shah et al. [112] dis-

covered, with 104 triple-negative breast cancer (TNBC) cases and deep re-sequencing of

2,414 somatic mutations, that TNBC clonal structures vary drastically from case to case,

and concluded that “understanding the biology and therapeutic responses of patients

with TNBC will require the determination of individual tumor clonal genotypes”.

1.4.1.3 LEUKEMIA

Relapse caused the death of most acute myeloid leukemia (AML) patients [113]. By

comparing of genomes from primary tumor and relapse, two main clonal evolution

patterns were associated with relapse: either the major primary clones, or a minor

surviving subclone in primary from initial chemotherapy gained mutations and evolved

into the relapse [113]. Another group independently investigated clonal evolution of

preleukemic hematopoietic stem cells (HSCs). By using targeted exome sequencing, Jan

et al. [114] identified cellular and genomic path from HSCs to the dominant presenting

leukemic clone.

1.4.1.4 CHRONIC LYMPHOCYTIC LEUKEMIA

Schuh et al. [115] monitored the disease progression in 3 CLL patients by sampling at

5 time points over up to 7 years. Whole genome sequencing results on the collected
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samples showed that each sample had up to 5 distinct subpopulations. The mutation

profiles at different time points revealed the clonal evolution process, which was rep-

resented by the dynamics of subclones that declined or expanded over time.

Another intratumoral heterogeneity study was conducted by Landau et al. in 149 CLL

cases [73]. Cell frequencies of somatic mutations were generated from whole exome

sequencing and copy number analysis. Some driver mutations, such as MYD88, trisomy8

12 and del(13q) were found to be predominantly clonal, signaling early acquisition,

whereas others such as SF3B1 and TP53 were found to be subclonal, representing later

events.

1.4.1.5 MYELOPROLIFERATIVE NEOPLASMS

Lundberg et al. [116] did comprehensive analysis in a cohort of 197 myeloproliferative

neoplasm (MPN) patients by targeted NGS of 104 genes. A strong correlation was

found between the total number of somatic mutations and survival and risk of leukemia

transformation. Clonal analysis was carried out by genotyping DNA from signal colonies

grown in methylellulose and genes focused in this study were epigenetic modifiers.

Mutation profiles of TET2, DNMT3A, JAK2, V617F, ASXL1, EZH2, and IDH1 revealed 8

types of clonal structures.

1.4.1.6 MANTLE CELL LYMPHOMA

Beá et al. [117] reported a whole genome and/or exome sequencing study on 29 MCL

and normal tissue pairs, and identified some recurrent mutations which then were in-

vestigated by targeted NGS in an independent 172 MCL cases. Sequencing data of two

tumor samples were obtained from two different topographic sites or at two time points

from each patient were used to establish 4 types of subclonal architectures in MCL.

8having three instances of a particular chromosome, instead of the normal two
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1.4.1.7 RENAL CARCINOMAS

Gerlinger et al. [118] performed exome sequencing, chromosome aberration analysis,

and ploidy9 profiling on “multiple spatially separated” primary and associated metastatic

renal carcinoma samples, and revealed branching evolution pattern in tumor growth.

Tumor suppressor genes, such as SETD2, PTEN, and KDM5C exhibited convergence

evolution, “underwent multiple distinct and spatially separated inactivating mutations

within a single tumor”. Ploidy heterogeneity was also observed in two of four tumors.

1.4.1.8 PANCREATIC CANCER

Yachida et al. [119] carried out genomic sequencing of primary and metastatic cancers

to assess their clonal relationships in 7 pancreatic cancer patients. They found that dis-

tant metastasis clones were originally within the primary carcinoma, which were non-

metastatic clones. The authors also generated a time-line of metastasis initiation and

occurring that at least 10 years for the tumor initiation, 5 years for the arise of parental

metastatic clones, and then about 2 more years till decease. Another study was con-

ducted by Compbell et al. [120] with parallel paired-end sequencing on 13 pancreatic

adenocarcinoma patients. Besides identifying somatic mutations and rearrangements,

they also investigated phylogenetic relationships, and confirmed that certain clones in

the primary tumor had the ability to initiate metastasis. In addition, they discovered

that organ-specific branching patterns of phylogenetic trees. The authors suggested

two explanations: particular genotypes might drive metastasis to a particular organ; or,

metastatic clones may expand in a stepwise process.

9The number of copies of a complete genome in a cell. Normal cells have two copies, thus diploid.
Tumor cells with copy number variation could potentially contain three copies, or triploid, or more.
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1.4.2 STUDIES BASED ON SINGLE CELL SEQUENCING

1.4.2.1 BREAST CANCER

A method of combining flow-sorted nuclei, whole genome amplification, and NGS was

able to accurately quantify genomic copy number changes within an individual nucleus

[121]. By utilizing this method, Zik-Zainal et al. analyzed two sets of 100 single cells,

and identified three distinct clonal subpopulations in a poly-genomic tumor and a single

clonal expansion forming the primary tumor and seeded the metastasis in a mono-

genomic primary tumor and its liver metastasis [121].

1.4.2.2 MYELOPROLIFERATIVE NEOPLASMS

A high-throughput whole genome single cell sequencing method was developed by Hou

et al. [122]. This method was of high sensitivity and had a distinct genomic distribution

from tissue sequencing that GC extremely enriched regions had lower amplification ef-

ficiency. This method was used to sequence 90 cells from a JAK2-negative MPN patient,

and identified a monoclonal evolution pattern in this patient sample.

1.5 CHALLENGES

As it was made clear by the studies mentioned above, tumor samples are highly hetero-

geneous in terms of the genomic profiles of the constituting cancer cells. The hetero-

geneity itself contributes to the complexity of tumor genome, and hinders the investiga-

tion of mechanisms, such as tumorigenesis or metastasis, through traditional means. To

make things worse, the problem of delineating each individual genomic profile within

a tumor mass is fundamentally different from phylogenetic tree constructing since each

individual genome cannot be observed separately. Thus it calls for novel computational

methods to elucidate the number of different genomes, and their specific profiles, from

various signals that represent the mixture of them all.
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2
Linear evolution model

O
NE OF THE CHALLENGES in analyzing cancer sequencing data was that the

tumor sample used for sequencing would often have normal cells mixed

in, or “normal contamination”. For example, when a tumor is surgically

removed, the surgeon will also remove the surrounding normal tissues as well to ensure

maximum removal of tumor cells. Macrophage invasion and blood can also be sources

for normal contamination. We started to design computational methods to estimate

the level of contamination by looking for signals that separate the normal “clone” that

all share the germline genome from tumor clone that all have the mutated somatic

genome. Soon, however, we realized that the clonal structure is far more complex than
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this binary segregation.

2.1 TUMOR IS HETEROGENEOUS

As part of a collaboration with Baylor College of Medicine, we gained access to the

The Cancer Genome Atlas (TCGA) Ovarian Cancer dataset primary alignment data in

the format of BAM1 files. Although many studies had been published on the topic of

estimating normal contamination, as well as extracting Copy Number Variation (CNV)

features, with Single Nucleotide Polymorphism (SNP) array data [123–130], only a few

methods were able to utilize Next Generation Sequencing (NGS) data [131–133], and

none of which was considering normal contamination. We performed our own copy

number analysis procedure on whole genome sequencing samples that consisted of the

following steps to estimate normal contamination:

1. The read depth (RD), number of sequencing reads starting within a region, was

scanned through the entire genome by a 10kb non-overlapping moving window

(Figure 2.1.1 A, B).

2. The read depth in normal and tumor were separately normalized by the total

number of reads in each sample.

3. The read depth ratio (RDR), with the definition that RDR = RDT
RDN

, was calculated

for every corresponding window, and a histogram was generated (Figure 2.1.1

C). This step also effectively filtered out any germline (inherited) events to allow

the subsequent steps to only consider somatic (acquired) events.

4. The histogram envelope signal was extracted using Fast Fourier Transform (FFT),

and low pass filtered to reduce high frequency noises (Figure 2.1.2 A, B, note that

the sample is different from Figure 2.1.1).

1A binary file format widely used for storing sequencing reads alignments.
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Figure 2.1.1: The procedure to calculate read depth ratio, RDR, from paired tumor-normal
samples. A) Read depth measured in a 10kb moving window on the whole genome sequenc-
ing data of patient TCGA-06-0152 primary tumor sample. B) Read depth measured in a 10kb
moving window on the whole genome sequencing data of patient TCGA-06-0152 normal sam-
ple. C) Read depth ratio between the tumor and normal sample of patient TCGA-06-0152.

21



Figure 2.1.2: The procedure to estimate. A) The histogram of RDR. Peak shape is very ob-
vious B) FFT de-noised histogram envelope. Black line represents identified copy number 2
peak, while blue line represents identified copy number 1 peak. Based on these two lines, lo-
cation of copy number 3 and 4 are estimated with the knowledge of contamination (red and
dark red lines). C) Plot of RDR along chromosome locations with identified and estimated
ratio of specific copy numbers drawn as horizontal lines (definition is the same as in B)
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5. Global maximum was identified and assumed to be copy number 2 with corre-

sponding ratio denoted as R2 (Figure 2.1.2 B, black line).

6. The first local maximum on the left side of R2 was identified, and assumed to

be copy number 1 and denoted as R1 (Figure 2.1.2 B, blue line). In a simple

model where only two genomes, tumor and mixed-in normal, are considered, the

contamination level α could then be estimated by these two values

1× (1−α) + 2×α
2

=
R1

R2

α= 2×
R1

R2
− 1 (2.1)

7. With α estimated, the corresponding RDR of copy number 3,4, . . . , n can be cal-

culated with Equation 2.2 (Figure 2.1.2 B, red and dark red lines).

Rn

R2
= [n(1−α) + 2α]/2 (2.2)

As shown in Figure 2.1.2 this approach worked relatively well within the boundary

of a single chromosome for the specific individual TCGA-04-1371. Using the estimated

contamination level α, the RD peak for copy number 3 and 4 were predicted accurately.

However, once we looked at all the chromosomes in the entire genome, it turned out

that different chromosome resulted in different α estimation (Figure 2.1.3 A). This did

not make sense because the normal contamination should reflect the amount of nor-

mal cell mixed within the tumor sample, which should be identical across the entire

genome. More interestingly, the estimated α values for all the chromosomes seemed to

cluster into three distinct groups. The only way to rationalize the observation was that

(Figure 2.1.3 B)
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Figure 2.1.3: Normal contamination estimation based on all chromosomes in the pri-
mary tumor sample in patient TCGA-04-1371, and its parsimonious subclone structure.
A) The estimation values from different chromosomes are grouping into three clusters, with
α = 0.2,0.5, and 0.8 respectively. B) The parsimonious subclone structure that explains the
data. The events that resulted in lower α estimation, which represents higher tumor purity,
exist in more subclones.
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• The tumor cells, instead of sharing the same genome, actually were comprised of

different subgroups, or subclones.

• The cells within the same subclone share the same genome.

• Genomic variations exist in at least one, but possibly more subclones. The sub-

groups which do not contain a specific variation would “act” like normal cells,

and contribute to the estimated α, at the location of that variation.

2.2 PARSIMONIOUS SOLUTION BASED ON LINEAR EVOLUTION MODEL

Based on the observation we made in Section 2.1, we rationalized that, one way to

model the multi-level α estimation based on the copy number data is that, for n different

levels of distinct α, there exist at least n tumor subclones (hence parsimonious) plus 1

contaminating normal clone. The tumor subclones follow a linear evolutionary model,

in which the events resulting in the lowestα estimation emerged in tumor tissue cells the

earliest, and expanded into the initial tumor subclone population. One of the cell in the

tumor population further gained mutations, and developed into another subpopulation.

But because the events acquired later only exist in a subset of the entire tumor sample,

when being interrogated alone, they will result in a higher α estimation because more

cells (normal tissue plus those tumor cells that contain the initial events, but not the

later events) would appear to be normal tissue at those specific genomic locations. New

subclone always emerges from the most mutated, existing subclone, inheriting all the

existing events, and in addition contain their own set of events.

We then developed an algorithmic procedure to reconstruct the parsimonious sub-

clone structure based on this model, to which the input is a list of CNV events, and

their associated RDR. The somatic RDR is then converted to Cell Prevalence (CP), that

describes the fraction of cells in the sequenced tumor sample that harbors a particular

event. In order to be able to compute CP, the absolute copy number (ACN) state of
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an event, i.e. the exact number of copy of DNA at the location of the event, is neces-

sary, which is often a non-trivial task to estimate. We estimate the ACN assuming that

CP follows a Uniform Distribution U(0,1), using a Maximum Likelihood method that

L (RDR|ACN) is maximized. Given an overall ploidy2 p, which can be estimated by

methods such as ASCAT [134] and ABSOLUTE[135], or assumed to be 2 if no other

information is available, the method will result in a closed form:

ACN = argmax
i

i
p
< RDR, i = 0,1, . . . (2.3)

The method can be implemented in a iterative fashion in the following steps (Fig-

ure 2.2.1)

1. Initialize the subclone structure with a single subclone that represents the normal

tissue mixture. This subclone contains no event, and its frequency f = 1

2. Identify the events in the event list that have the lowest C P = C P ′; create a new

subclone which contains all the events in the event list; set its frequency f = C P ′,

and subtract C P ′ from the frequency of the “normal” clone; remove the events

considered in this step from the event list; subtract the C P of all the events in the

event list by C P ′

3. If the event list still has events in it, repeat step 2; Otherwise, return the subclone

structure

Formally, the method is designed on the following definitions:

Definition 2.1. A chromosomal location, L, is defined as L = {chromosome, position},

which describes a location on the genome.

Definition 2.2. A chromosomal segment, S, is defined as S = {L, length}, which describes

a continuous region on the genome.
2The number of copies of a complete genome in a cell. Normal cells have two copies, thus diploid.

Tumor cells with copy number variation could potentially contain three copies, or triploid, or more.
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Definition 2.3. S contains L iff L.chromosome= S.L.chromosome, L.position≥ S.L.position,

and L.position< S.L.position+ S.L.length. We denote this as L ∈ S

Definition 2.4. Two chromosomal segments, S and S′, overlaps iff S′.L ∈ S, assuming

without loss of generality that S.L.position≤ S′.L.position

Definition 2.5. A segmental somatic CNV event (henceforth referred to as “event” if with-

out specification), e, is defined as e = {S, ACN} for a segment on the genome specified by

S, with the absolute copy number state of ACN.

Definition 2.6. An observed somatic CNV event (henceforth referred to as “observed event”

if without specification), oe, is defined as oe = {e, C P} for an event e observed in C P > εd

fraction of the total cells, with some detection sensitivity εd > 0.

Definition 2.7. An observation, O, is defined as O = {oe1, oe2, . . . , oen} for a segmented

tumor genome profile with n segments of non-modal RDR (The following discussion assume

a modal copy number being 2, thus a modal RDR = 1). The chromosomal segments, S,

of the events, e, in oei and oei+1 need not be continuous, since locations of the genome

can potentially be masked out. Observed events are identified with genomic segmentation

algorithms, which will result in non-overlapping segments.

Definition 2.8. The complete events set, E, is defined as E = {oe.e|oe ∈ O}.

Lemma 2.1. For any given genomic location L, there exist at most 1 observed event oe so

that L ∈ oe.e.S

Proof. Suppose that, for a given L, there exist two observed events oe and oe′, so that

L ∈ oe.e.S and L ∈ oe′.e.S. We denote, for simplicity, oe.e.S as S and oe′.e.S as S′. We

also assume, without loss of generality, that S′.L.position≥ S.L.position
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L ∈ S′ =⇒ L.pos ≥ S′.L.pos

L ∈ S =⇒ L.pos < S.L.pos+ S.length

=⇒ S′.L.pos < S.L.pos+ S.length

combined with the assumption that S′.L.position≥ S.L.position

=⇒ S′.L ∈ S

=⇒ S and S′overlaps

This contradicts with Definition 2.7

Corollary 2.1. For any given genomic location L, there exist at most 1 event e ∈ E so that

L ∈ e.S.

Proof. Suppose that, for a given L, there exist two events e ∈ E and e′ ∈ E, so that

L ∈ e.S and L ∈ e′.S. Due to Definition 2.8, there must exist two observed events

oe ∈ O ∧ oe.e = e =⇒ L ∈ oe.e.S and oe′ ∈ O ∧ oe′.e = e =⇒ L ∈ oe′.e.S. This

contradicts with Lemma 2.1

Definition 2.9. A subclone profile, C, is defined as C j = {G, f } j, j = 0..m, f ≥ 0, in which

C j.G ⊆ E is a set of events the j-th subclone contains. The 0-th subclone is a special one

representing the normal tissue component, thus C0.G = {}. C j. f represents the fraction

the j-th subclone occupies over the entire cell population, or subclone frequency (SF), and

that
∑m

j=0 C j. f = 1

Definition 2.10. An actual (observed) genomic profile, A, is defined as A = {Al}, l =

1,2, . . . for each unique location Ll on the genome. Since at most 1 oe exists so that
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Ll ∈ oe.e.S (Lemma 2.1), Al is calculated as following

Al =











oe.e.ACN
2

× oe.C P + (1− oe.C P) ∃!oe ∈ O : Ll ∈ oe.e.S

1 otherwise

which can be simplified as

Al =











1+
oe.e.ACN − 2

2
× oe.C P ∃!oe ∈ O : Ll ∈ oe.e.S

1 otherwise
(2.4)

Definition 2.11. A model genomic profile, M, is defined as M = {Ml}, l = 1,2, . . . for

each unique location Ll on the genome. Since for any given subclone C j, at most 1 e exists

for C j.G so that Ll ∈ e.S (Corollary 2.1), Ml is calculated as following

Ml =
m
∑

j=0











e.ACN
2
× C j. f ∃!e ∈ C j.G : Ll ∈ e.S

1× C j. f otherwise
(2.5)

Definition 2.12. A model fitness score, f i t, is defined as in Equation 2.6, which calculates

the difference between the model and actual genomic profiles.

f i t =
genomic length
∑

l=1

|Ml − Al | (2.6)

Definition 2.13. If, in a given subclone profile C with m+1 subclones, the condition that

∀ j < m : C j.G ⊆ C j+1.G is satisfied, the subclone profile is said to be according to a linear

evolution model. We say that a profile is parsimonious when the following conditions are

met

∀ j < m : C j.G ⊂ C j+1.G

∀ j ∈ [1, m] : C j. f > ε f for a given error margin ε f ≥ 0
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Definition 2.14. The problem of subclone structure reconstruction with linear evolution

model, is that given an observation O, find a subclone profile C, in which C j.G ⊂ C j+1.G, j =

0..m− 1, that minimizes f i t. We say that a subclone profile C is a solution to an obser-

vation O if, for a given error margin ε f i t ≥ 0, f i t ≤ ε f i t .

Theorem 2.1. For any given subclone structure C that is a solution to an observation O

and the implied complete event set E

m
⋃

j=1

C j.G = E

Proof. Assume that

m
⋃

j=1

C j.G = E′ 6= E

Due to the fact that ∀ j ≤ m : C j.G ⊆ E (Definition 2.9), we have

E′ ⊂ E

=⇒∃e ∈ E : e 6∈ E′

=⇒∀Ll ∈ e.S : Ml = 1 (Equation 2.5)

yet
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e ∈ E

=⇒∃oe ∈ O : oe.e = e

=⇒∀Ll ∈ e.S : Al = 1+
oe.e.ACN − 2

2
× oe.C P (Equation 2.4)

=⇒∀Ll ∈ e.S : |Ml − Al |= |1− (1+
oe.e.ACN − 2

2
× oe.C P)|

=⇒ f i t ≥ |
2− oe.e.ACN

2
× oe.C P| × e.S.length (Equation 2.6)

thus, for any given ε f i t < |
2−oe.e.ACN

2 × oe.C P| × e.S.length, C cannot be a solution to

the observation O, contradicting with the starting condition.

Theorem 2.2. For any parsimonious linear subclone profile (Definition 2.13) C with m+1

subclones that is also a solution to an observation O with n observed events, m≤ n

Proof. Note that O is with n observed events implies that E is with n events (Defini-

tion 2.8). Assume that m> n, because C is parsimonious,

∀ j < m : C j.G ⊂ C j+1.G

=⇒ |C j+1.G|> |C j.G|

=⇒ ∀ j ≤ m : |C j.G| ≥ j

=⇒ ∀ j that m≥ j > n : |C j.G| ≥ j > n

This contradicts with Definition 2.9, that ∀ j ≤ m : C j.G ⊆ E.

Definition 2.15. A set of event clusters, P, is defined as a partition over an observation

O, that, for a given error margin εP ≥ 0, satisfies
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∀p ∈ P :(∀oe ∈ p, oe′ ∈ p : |oe.C P − oe′.C P| ≤ εP)

and

∀p ∈ P, p′ ∈ P, p 6= p′ :(∀oe ∈ p, oe′ ∈ p′ : |oe.C P − oe′.C P|> εP)

Each element p ∈ P is called an event cluster. We denote p.C P =

∑

oe∈p

oe.C P

|p|
as the

cluster centroid.

We further impose, without loss of generality, that P is a sorted set, with respect to the

cluster centroids, in descending order.

∀i ∈ [1, n′], j ∈ [1, n′], i < j : pi.C P > p j.C P

Theorem 2.3. For any parsimonious linear subclone profile (Definition 2.13) C with m+1

subclones that is a solution to an observation O with n observed events being partitioned

as P with n′ ≤ n clusters, m≤ n′

Proof. P is a partition over O =⇒ |P| ≤ |O|.

If |P| = |O| =⇒ n′ = n, with Theorem 2.2, we have m ≤ n′; otherwise (|P| < |O|),

assume that m> n′

m
⋃

j=1

C j.G = E (Theorem 2.1)

⇒|
m
⋃

j=1

C j.G|> |P|
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Due to pigeonhole principle,

∃p ∈ P, |p|> 1 : {

∃ j ≤ m, j′ ≤ m, 0< j < j′ : [

∃oe.e ∈ C j.G, oe′.e ∈ (C j′ .G − C j.G) : oe ∈ p ∧ oe′ ∈ p

]}

Let

foe =
m
∑

k= j

C k. f

foe′ =
m
∑

k= j′
C k. f

Thus we have
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oe ∈ C j.G ∧ oe ∈ C j′ .G

oe′ 6∈ C j.G ∧ oe′ ∈ C j′ .G

=⇒

∀Ll ∈ oe.e.S : |Ml − Al |

= |(
j−1
∑

k=0

C k. f +
m
∑

k= j

oe.e.ACN
2

× C k. f )− (1+
oe.e.ACN − 2

2
× oe.C P)|

= |(1− foe) +
oe.e.ACN

2
× ( foe − oe.C P)− (1− oe.C P)

= |(
oe.e.ACN

2
− 1)× ( foe − oe.C P)| (2.7)

∀Ll ′ ∈ oe′.e.S : |Ml ′ − Al ′ |

= |(
j′−1
∑

k=0

C k. f +
m
∑

k= j′

oe′.e.ACN
2

× C k. f )− (1+
oe′.e.ACN − 2

2
× oe′.C P)|

= |(1− foe′) +
oe′.e.ACN

2
× ( foe′ − oe′.C P)− (1− oe′.C P)

= |(
oe′.e.ACN

2
− 1)× ( foe′ − oe′.C P)| (2.8)

Assume that, at all other genomic locations, |M−A|= 0, for some small value ε1 ≥ 0,

the following conditions must hold

|
oe.e.ACN

2
− 1| × | foe − oe.C P|< ε1

|
oe′.e.ACN

2
− 1| × | foe′ − oe′.C P|< ε1

in order for C to be a solution of O, with ε f i t > (oe.e.S.length+ oe′.e.S.length)× ε1.

Because ∀oe : oe.e.ACN ∈ N ∧ oe.e.ACN 6= 2 (Definition 2.7), | oe.e.ACN
2 − 1| ≥ 0.5, the

above can be rewritten, with ε′ = 2ε1, as

34



| foe − oe.C P|< ε′

| foe′ − oe′.C P|< ε′

combined with the fact that |oe.C P − oe′.C P| < εP , under the worst case scenario

that foe > oe.C P, oe.C P > oe′.C P, and foe′ < oe′.C P, with ε1 > εP , we have

foe − oe.C P < ε′

oe′.C P − foe′ < ε
′

oe.C P − oe′.C P < ε′

when added together, we have

foe − foe′ < 3ε′

Recall that

foe =
m
∑

k= j

C k. f

foe′ =
m
∑

k= j′
C k. f

0< j < j′ ≤ m

We have

j′−1
∑

k= j

C k. f < 3ε′
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However, this cannot be by Definition 2.13, when ε f ≥
3

j′− jε
′.

Theorem 2.4. For any parsimonious linear subclone profile (Definition 2.13) C with m+1

subclones that is a solution to an observation O with n observed events being partitioned

as P with n′ ≤ n clusters, m≥ n′

Proof. Assuming that there exists one subclone profile C with m < n′ that is a solution

to O, due to pigeonhole principle, ∃p ∈ P, p′ ∈ P,∃ j ≤ m,∃oe ∈ p, oe′ ∈ p′, that

oe.e 6∈ C j−1.G ∧ oe′.e 6∈ C j−1.G

oe.e ∈ C j.G ∧ oe′.e ∈ C j.G

Similar to the proof of Theorem 2.3, if we let

foe =
m
∑

k= j

C k. f

foe′ = foe

we have
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∀Ll ∈ oe.e.S : |Ml − Al |

= |(
oe.e.ACN

2
− 1)× ( foe − oe.C P)| (2.9)

∀Ll ′ ∈ oe′.e.S : |Ml ′ − Al ′ |

= |(
oe′.e.ACN

2
− 1)× ( foe′ − oe′.C P)|

= |(
oe′.e.ACN

2
− 1)× ( foe − oe′.C P)| (2.10)

Assume that, at all other genomic locations, |M−A|= 0, for some small value ε2 ≥ 0,

the following conditions must hold

|
oe.e.ACN

2
− 1| × | foe − oe.C P|< ε2

|
oe′.e.ACN

2
− 1| × | foe − oe′.C P|< ε2

in order for C to be a solution of O, with ε f i t > (oe.e.S.length+ oe′.e.S.length)× ε2.

Because ∀oe : oe.e.ACN ∈ N ∧ oe.e.ACN 6= 2 (Definition 2.7), | oe.e.ACN
2 − 1| ≥ 0.5, the

above can be rewritten, with ε′ = 2ε2, as

| foe − oe.C P|< ε′

| foe − oe′.C P|< ε′

under the worst case scenario that foe > oe.C P, foe < oe′.C P, with ε2 <
1
4εP , we have
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foe − oe.C P < ε′

oe′.C P − foe < ε′

when added together, we have

oe′.C P − oe.C P < 2ε′ < 4ε2 < εP

However this contradicts with Definition 2.15, that

∀p ∈ P, p′ ∈ P, p 6= p′ : (∀oe ∈ p, oe′ ∈ p′ : |oe.C P − oe′.C P|> εP)

Corollary 2.2. If there exists a parsimonious, linear subclone profile C, which is also a

solution to an observation O with a clustering partition P having n′ clusters, there are ex-

actly n′+1 subclones in C (Theorem 2.3 and Theorem 2.4) with the following relationships

among the error margins, for some constant C1 > 0, C2 > 0, C3 > 0 and some small value

ε1 ≥ 0,ε2 ≥ 0

C1ε f i t > ε1

C2ε f i t > ε2

C3ε f > ε1

ε1 > εp > 4ε2

Theorem 2.5. A parsimonious, linear subclone profile C with exactly n′+1 subclones that

is a solution to an observation O with a clustering partition P having n′ clusters always
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exists, and can be constructed as the following

∀ j ≤ n′ : C j.G =











{} j = 0

{oe.e|oe ∈
⋃ j

i=1 pi} otherwise
(2.11)

∀ j ≤ n′ : C j. f =



























1− p1.C P j = 0

p j.C P − p j+1.C P 0< j < n′

p j.C P j = n′

(2.12)

We then prove that the subclone profile C is linear, parsimonious, and a solution to O.

Proof. C is linear

∀ j < n′ : C j.G = {oe.e|oe ∈
j
⋃

i=1

pi}, C j+1.G = {oe.e|oe ∈
j+1
⋃

i=1

pi}

=⇒ C j+1.G − C j.G = {oe.e|oe ∈ pi+1}

∵P is a partition over O

∴pi+1 6= ;

=⇒ C j.G ⊂ C j+1.G (2.13)

=⇒ C j.G ⊆ C j+1.G

Proof. C is parsimonious

∀ j < n′ : C j.G ⊂ C j+1.G has already been proven by Equation 2.13.

When j = n′, C j. f = p j.C P > εd (Definition 2.6);
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When 0< j < n′,

C j. f = p j.C P − p j+1.C P

> εp (Definition 2.15)

Thus ∀ j ∈ [1, n′] : C j. f > ε f as long as ε f <min(εd ,εp)

Proof. C is a solution to the observation O.

∀Ll over the entire genome, one of the two following things can happen

• ∀oe ∈ O : Ll 6∈ oe.e.S (case 1)

• ∃oe ∈ O : Ll ∈ oe.e.S (case 2)

In case 1, Ml =
∑n′

j=0 C j. f = 1 (Definition 2.9); Al = 1 (Equation 2.4); |Ml − Al | =

0≤ ε f i t for any ε≤ 0.

In case 2, ∃! j ≤ n′ : oe ∈ p j =⇒ oe.e ∈ C j.G, C j+1.G, . . . , Cn′ .G.

Ml =
j−1
∑

k=0

1× C k. f +
n′
∑

k= j

oe.e.ACN
2

× C k. f

= (1−
n′
∑

k= j

C k. f ) +
oe.e.ACN

2
×

n′
∑

k= j

C k. f

Al =
oe.e.ACN

2
× oe.C P + (1− oe.C P)

= (1− oe.C P) +
oe.e.ACN

2
× oe.C P

Consequently
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|Ml − Al |= |(
oe.e.ACN

2
− 1)× [

n′
∑

k= j

C k. f − oe.C P]|

= |(
oe.e.ACN

2
− 1)| × |

n′
∑

k= j

C k. f − oe.C P|

Because

n′
∑

k= j

C k. f =(p j.C P − p j+1.C P)

+ (p j+1.C P − p j+2.C P)

+ · · ·

+ (pn′−1.C P − pn′ .C P) + pn′ .C P

=pk.C P

We have

|Ml − Al |= |(
oe.e.ACN

2
− 1)| × |p j.C P − oe.C P|

Combine case 1 and case 2 together, over the entire genome, we have
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f i t =
genome length
∑

l

|Ml − Al |

=
n
∑

i=1

[oei.e.S.length× |(
oei.e.ACN

2
− 1)| × |pi′ .C P − oei.C P|] (in which oei ∈ pi′)

≤
n
∑

i=1

[oei.e.S.length× |(
oei.e.ACN

2
− 1)| × ε3]

in which ε3 ≥ 0 is the largest difference between any cluster centroid and the CP

value of their member observed events, or, formally

∀p ∈ P : ∀oe ∈ p : ε3 ≥ |p.C P − oe.C P|

∴ for any ε f i t ≥
n
∑

i=1

[oei.e.S.length× |(
oei.e.ACN

2
−1)| ×ε3], we have f i t ≤ ε f i t .

The method, which is outlined in Listing 2.1, implements Equation 2.11 and Equa-

tion 2.12 described in Theorem 2.5, albeit starting with the event cluster that has the

lowest cluster centroid. It modifies P and O so that the SF of the newly introduced sub-

clone is always determined by the third case in Equation 2.12. A toy example is shown

in Figure 2.2.1, in which those nodes that have a genotype and frequency label besides

them are the subclones in the model.

2.3 ANALYSIS OF OVARIAN SERIOUS CARCINOMA COPY NUMBER VARIA-

TION DATASET

2.3.1 INTRODUCTION

High grade serous ovarian cancer is a highly aggressive and lethal disease. While most

patients achieve an initial clinical remission, approximately 80% of patients recur within

a five year period. Continuing advancements in sequencing technologies allow stud-
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Input: P = P[1], P[2], ..., P[n’]
Input: O = O[1], O[2], ..., O[n]

Initialize C with one subclone , C[0]
C[0].f = 1; C[0].G = {}

for i = n’ .. 1 :
newC.f = P[i].CP
newC.G = { oe.e for oe in O }
C[0].f -= newC.f
insert newC after C[0]

// update P and O due to the introduction of newC
P = P - {P[i]}
n’--
for j = 1 .. n’ :

P[j].CP -= newC.f
end -for

O = O - {oe for oe in P[i]}
n = n - size(P[i])
for j = 1 .. n :

O[i].CP -= newC.f
end -for

end -for
Listing 2.1: Pseudo code of the linear model algorithm.
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Figure 2.2.1: Illustration of the parsimonious method to reconstruct the subclone structure
with a linear heritage model. New subclones are introduced into the model stepwise, each
time explaining the least prevalent events completely, until the observation (actual) can be
entirely explained by the model.
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ies of the tumor genome in ever increasing detail. Improving knowledge on intratu-

moral heterogeneity and the identification of the clonal structure of tumor samples, by

sequencing of single cells or sequencing of tumors at very high coverage levels, may

provide important new insights into mechanisms of tumor evolution and progression

[89, 121, 136, 137].

To gain insight into the mechanisms used by tumor cells to evade the cytotoxic effects

of chemotherapy, and taking advantage of the highly standardized nature of treatment

regimens for ovarian serous carcinoma, we participated in a joint effort to characterize

the genomes of the primary and relapse tumors of seventeen patients with ovarian car-

cinoma, using a combination of whole genome sequencing, whole exome sequencing,

DNA copy number, methylation and gene expression profile. We applied the method

described in Section 2.2 in an attempt to provide insights into the mechanism of tumor

relapse in ovarian cancer.

Please refer to Table 4.0.1 for a summary of input data types and major conclusions.

2.3.2 RESULTS

2.3.2.1 CLONAL STRUCTURE RECONSTRUCTION

First, we used the precise and linear measurements of copy number level established

by whole genome sequencing to reconstruct each of the ten whole gnome samples into

a set of subclones. Next we assessed the distance between each primary and matching

relapse subclone to derive a model of tumor progression in each patient.

To establish the clonal structure of a tumor sample, we removed all loci of copy num-

ber gain, and kept only segments with equal to or less than the modal copy number.

Next, all remaining copy number segments were clustered into discrete levels, with the

requirement for each cluster to contain DNA segments covering at least 10 mega-bases.

In a simplified model of a diploid4 tumor genome, three possible ACN categories exist

4Having two copies of the complete genome.
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A 

B 

C 

D 

Figure 2.3.1: Inferring subclones through clustering of copy number levels. A) Whole
genome copy number profile is quantified by calculating, for each 10kb non-overlapping mov-
ing window, the log 2 ratio of the number of reads initiating within a specific window (RD) in
the tumor sample relative to the read depth in the paired-normal sample. B) The log 2 ratio
is subjected to circular binary segmentation [138] for identifying continuous regions with the
same underlying copy number state. C) The identified segments are clustered to find discrete
levels. D) A parsimonious subclone structure is generated with a biologically motivated model
that late subclones inherited the mutations existed in earlier subclones. Blue regions represent
heterozygous deletion.
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A 

B 

Figure 2.3.2: Schematic representation of clonal evolution in a single primary-relapse tu-
mor pair. A) The development of primary and relapse tumor from the cell of origin is depicted
over time. Using copy number levels inferred from whole genome sequencing data, four sub-
clonal populations were predicted to be present at time of diagnosis. One of the subclones
was found in the relapse tumor, combined with two new clones that were derived from an
ancestral tumor cell population that was too small to be detected in the primary tumor. The
percentages (in white) reflect the fraction of tumor cells for each subclone. B) Using copy
number levels obtained from the Agilent3 1M platform, three subclones were found in the pri-
mary tumor. One subclonal population was found again in the relapse tumor, while two novel
subclones developed from ancestral cells. The percentages (in white) reflect the fraction of
tumor cells for each subclone.
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after removal of all chromosomal regions of copy number gain: 1. Diploid / wild-type;

2. Heterozygous loss; 3. Homozygous loss. Any levels deviating from this model were

likely resulted from the presence of copy number alterations in subclonal tumor cell

populations. We obtained tumor purity and tumor ploidy of all samples using ASCAT

[134] with microarray CNV data and default parameters. Using the whole genome se-

quencing derived segmented copy number data from the primary tumor sample of pa-

tient TCGA-29-1707, we inferred the presence of five copy number level clusters, which

are explained by four tumor subclones and one normal tissue component. Similarly, we

found three clones in the TCGA-29-1707 relapse tumor (Figure 2.3.1, Figure 2.3.2 A).

Next, a distance matrix of all possible primary-relapse clone pairs was generated, using

Pearson correlation as a distance metric, to establish the evolutionary trajectory from

primary tumor to regrowth (data not shown). Genome correlation was assessed by

comparing absolute levels of gains and losses across the entire genome. In the example

TCGA 29-1707, a subset of copy number levels and alterations were found in all clones

suggesting that all primary and relapse clones were derived from a common ancestor

cell. Two clones in the relapse sample lacked copy number changes found in all primary

clones, and must therefore originate from an ancestral tumor cell that was present in the

primary tumor but at levels that we were unable to detect. The third relapse subclone

harbored alterations also found in the first primary clone, but not other primary clones,

and we therefore suggest that the first primary subclone is the founder population that

gave rise to the third relapse subclone.

Using whole genome sequencing of primary and relapse tumor pairs, the tumor

progression structure of two additional ovarian carcinomas was reconstructed (Fig-

ure 2.3.3). Of note, a substantial fraction of ovarian cancer is thought to harbor highly

aneuploid5 genomes, resulting in a modal number of chromosomes of three or higher

[134, 135]. We predicted tumor ploidy for each sample using ASCAT [134] and ac-

5Having a ploidy that is other than 2
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counted for triploid6 genomes by allowing the cluster structure to contain three pos-

sible chromosome levels. Two cases for which whole genome sequencing data were

available were excluded from the analysis, due to complicating factors. Sample TCGA-

24-2852 was predicted by ASCAT [134] to harbor tetraploid7 genomes in both tumors,

whereas a difference in ploidy between primary and relapse tumor was predicted for

TCGA-61-1916.

As whole genome sequencing data was available on five of seventeen triplets8, but Ag-

ilent 1M array based copy number levels were generated for all triplets, we compared

the results of clonal structure reconstruction of array based clonal subsets to whole

genome sequencing based tumor clones. A similar pattern of primary and relapse sub-

clones were observed, with the primary subclone 3 and 4 identified using whole genome

sequencing data, being grouped into a single clone 3 when evaluating array based copy

numbers (Figure 2.3.2 B, Figure 2.3.3). We thus concluded that the DNA copy number

profiles obtained using arrays are able to provide reliable subclone reconstruction, but

with lower granularity than whole genome sequencing.

2.3.2.2 CLONAL EVOLUTION PATTERNS ASSOCIATE WITH CLINICAL RESPONSE

Using the Agilent array data, we generated clonal structures and tumor progression

models for thirteen of seventeen triplets. At least two different subclones, representing

at least 10% of the tumor cell population, were detected in eleven of thirteen primary

tumors. Similarly, we found that eleven of thirteen relapse tumors consisted of at least

two subclones (data not shown). The number of subclonal populations in the primary

tumor was not predictive of the number of clones identified in the relapse sample. In-

terestingly, subclones in all thirteen relapse tumors were found to have evolved from

ancestral cells from which the primary tumor had also been derived.

6Having three copies of the complete genome.
7Having four copies of the complete genome.
8A set of samples consisting of the normal, primary tumor and relapse tumor biopsies.
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Figure 2.3.5: Patient survival after second surgery. Kaplan-Meier curve of survival from the
time of second surgery.
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The number of clonal populations may be indicative of the level of intratumoral het-

erogeneity that is present in a specific tumor sample. We did not observe a difference in

the number of subclones between tumors that relapsed within 24 months after surgery

(n = 5) and tumors that relapsed later than 24 months post surgery (n = 8). How-

ever, we noticed that four out of five tumor pairs displaying an increase in the number

of subclonal populations resulted in a relapse tumor that was subsequently resistant

to platinum therapy9, whereas all eight tumors in which the number of subclones was

similar or less than the number observed in the primary tumors responded to subse-

quent platinum administration (Figure 2.3.4). As a result, the overall survival after

the last surgery between these two groups trended towards statistical significance, de-

spite the small number of patients included in the analysis (p-value = 0.09, n = 13,

Figure 2.3.5).

2.3.2.3 DISCUSSION

We performed our parsimonious subclone structure reconstruction on a set of seventeen

matching primary and relapse ovarian carcinomas and showed that intratumoral het-

erogeneity plays in important roles in this disease. Through an approach of clustering

copy number segments into bins of similar magnitude, we identified multiple subclones

in all primary and relapse samples. Comparative analysis of the number of relative pro-

portion of clonal subpopulations in primary and relapse tumor samples enabled us to

construct hierarchical trees of tumor progression in thirteen of seventeen cases. Inter-

estingly, all relapse tumors that showed an increase in clonal complexity relative to the

primary tumor were found to be resistant to chemotherapy, regardless of the number

of subclonal populations found in the primary tumor.

The implications of this findings for treatment may be multi-fold. In an era with

an increased interest in individualized therapies, our results suggest that the adequate

9Chemotherapy with cisplatin as the anti-neoplastic reagent
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choice of a therapeutic modality should depend on the molecular profiling of each tumor

sample separately, and the relative level of genomic complexity pre- and post-treatment.

Importantly, precision medicine may only be able to be curative when targeting genomic

abnormalities found in all tumor subclones. We showed that as a result of surgical re-

section and cytotoxic chemotherapy, some subclones are lost whereas others remain

and result in tumor relapse. We demonstrated that each tumor follows a unique path

of disease relapse and tumor progression. These observations confirm previous results

obtained in pediatric acute lymphoblastic leukemia and acute myeloid leukemia (AML)

[71, 139]. Our results extend previous studies of pre- and post-treatment ovarian car-

cinomas which showed intra- and inter-patient genomic diversity but that were limited

by small sample sizes and single genomic platforms [140, 141].

2.4 ANALYSIS OF INTRACRANAL GERM CELL TUMOR LOSS OF HETEROZY-

GOSITY DATASET

2.4.1 INTRODUCTION

Intracranal Germ Cell Tumors (IGCT) are a group of rare heterogeneous brain tumors

that are clinically and histologically similar to the more common gonadal GCTs. IGCTs

show great variations in their geographical and gender distribution, histological com-

position and treatment outcomes [142–148]. We have participated in an in-depth anal-

ysis of the genetic abnormalities of IGCTs through the collaboration with the Wheeler’s

group (Baylor College of Medicine, Huston, TX 77030), performed subclonal structure

reconstruction based on genome-wide SNP array probe intensity data. Here we mostly

focus on the aspect of subclone analysis. Please refer to Appendix Section A.2.2 for

methods regarding data acquisition, and Linghua et al. Nature (2014) [149] for a de-

tailed report.

This experiment procedure resulted in two data tracks, B allele frequency (BAF),
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which describes the amount of heterozygosity, and probe intensity log2 R ratio (LRR),

which describes the total amount of DNA, at each probed location. For germline alleles

that are present in all cells, BAF can either be 0, if the two copies of the allele are all

reference, or homozygous reference; 0.5, if one of the two copies of the allele is different

from the reference, or heterozygous; and 1.0, if the two copies of the alleles are all

different from the reference, or homozygous alternate. The fact that BAF segments

that are of other values than these three have been observed suggests that the tumor

samples contain subclones. Through processes such as balanced loss-of-heterozygosity

(LOH), in which a cell lose a segment of its chromosome, and then later repaired by

copying the corresponding region from its homologous chromosome, such region could

appear to be all either homozygous reference or alternate, effectively shifting the BAF

segment away from 0.5 if such events are not present in all cells. We took advantage of

this signal to construct the parsimonious subclonal structure.

Please refer to Table 4.0.1 for a summary of input data types and major conclusions.

2.4.2 METHODS

The fact that Equation 2.11 and Equation 2.12 do not care about data type specific

properties, such as e.ACN , makes the method expandable to other data types as well.

Here we give an expansion to LOH events based on microarray BAF data.

Definition 2.16. BAF is defined as

BAF=
Non-Reference Allele Count

Total Allele Count

Lemma 2.2. For a heterozygous region in a diploid genome, E{BAF}= 0.5; for a homozy-

gous region in a diploid genome, E{BAF}= 0 or E{BAF}= 1.

Proof. In a heterozygous region,
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E{(Non-Reference Allele Count)} = 0.5(Total Allele Count)

=⇒

E{BAF} = 0.5

In a homozygous region,

E{(Non-Reference Allele Count)} = 0

or

E{(Non-Reference Allele Count)} = (Total Allele Count)

=⇒

BAF = 0

or

BAF = 1

Definition 2.17. mirrored B allele frequency (mBAF) is defined as

mBAF=











BAF BAF≥ 0.5

1− BAF BAF< 0.5
(2.14)

Corollary 2.3. For a heterozygous region in a diploid genome, E{mBAF} = 0.5; for a

homozygous region in a diploid genome, E{mBAF}= 1. (Lemma 2.2 and Definition 2.17)
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Definition 2.18. A segmental somatic LOH event, eLOH, is defined as eLOH = {S} for a

segment on the genome, specified by S, whose heterozygosity has been lost (mBAF= 1).

Definition 2.19. An observed somatic LOH event, oeLOH, is defined as oeLOH = {eLOH, C P}

for a LOH event eLOH observed in C P > εd fraction of the total cells, with some detection

sensitivity εd > 0.

Definition 2.20. An observation, OLOH, is defined as OLOH = {oeLOH
1 , oeLOH

2 , . . . , oeLOH
n } for

a segmented mBAF profile with n segments of mBAF 6= 0.5. Observed somatic LOH events

are identified with genomic segmentation algorithms, which will result in non-overlapping

segments. The CP for any oeLOH, with a segmental mBAF mean (u, output of segmentation

algorithm), can be calculated by the following equation

∵ 1 · C P + 0.5 · (1− C P) = u

∴ C P = 2u− 1 (2.15)

Definition 2.8 and Definition 2.9 remain the same, thus Lemma 2.1 and Corollary 2.1

remain true.

Definition 2.21. An actual (observed) genomic profile, ALOH, is defined as ALOH = {ALOH
l }, l =

1,2, . . . for each unique location Ll on the genome. Since at most 1 oeLOH exists so that

Ll ∈ oeLOH.eLOH.S (Lemma 2.1), ALOH
l is calculated as following

ALOH
l =











1× oeLOH.C P + 0.5× (1− oeLOH.C P) ∃!oeLOH ∈ OLOH : Ll ∈ oeLOH.eLOH.S

0.5 otherwise
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which can be simplified as

ALOH
l =











0.5(1− oeLOH.C P) ∃!oeLOH ∈ OLOH : Ll ∈ oeLOH.eLOH.S

1 otherwise
(2.16)

Definition 2.22. A model genomic profile, M LOH, is defined as M LOH = {M LOH
l }, l = 1, 2, . . .

for each unique location Ll on the genome. Since for any given subclone C j, at most 1 eLOH

exists for C j.G so that Ll ∈ eLOH.S (Corollary 2.1), M LOH
l is calculated as following

Ml =
m
∑

j=0











1× C j. f ∃!eLOH ∈ C j.G : Ll ∈ eLOH.S

0.5× C j. f otherwise
(2.17)

All other definitions remain the same as the case for CNV events, and theorems,

lemmas, and corollaries can be proven in similar fashions. A subclone profile can thus

be constructed, using the same method as described by Equation 2.11, Equation 2.12,

and Listing 2.1.

First, the whole genomic BAF data of a tumor sample was filtered to exclude those

locations that were identified as “homozygous” in the paired-normal sample to generate

somatic LOH event profile (Figure 2.4.1 A), and from it a mBAF (Figure 2.4.1 B) [150]

profile was calculated by the following rules:

The mBAF profile was then subjected to segmentation with Circular Binary Segmen-

tation algorithm [151] (Figure 2.4.1 C, D), and the CP values are calculated with Equa-

tion 2.15 (Figure 2.4.1 E).

Next, CP values were clustered to further reduce noise by assigning each cluster a

centroid value (Definition 2.15). A subclone profile was then constructed (Figure 2.4.1

F) according to the parsimonious model described in Section 2.2.
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Figure 2.4.1: Clonality analysis of a representative case (N10, an immature teratoma10). A)
The somatic BAF. The BAF data is filtered to only retain those that are heterozygous in its nor-
mal sample. B) The mBAF. The mBAF data is acquired by mapping all BAF data points smaller
than 0.5 to 1 - BAF. C) The segmented mBAF frequency. The mBAF is then subjected to circu-
lar binary segmentation so that continuous segments of LOH can be identified. D) The copy
number probe log 2 ratio track of the microarray is shown to illustrate that there is no ob-
servable copy number alteration that is correlating with the observed LOH pattern, indicating
that the multi-level LOH is a result of multi-clonality. E) The segmented mBAF values are con-
verted to CP. CP represents, for any given LOH event, what is the fraction of cells that are har-
boring the event, out of the entire cell population measured. F) Utilizing the CP, a subclone
profile is constructed according to a linear heritage model, in which more prevalent events are
present in earlier clones, on which less frequent events are accrued.
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2.4.3 RESULTS

The analysis revealed that 71% of all the investigated IGCT genomes are subclonal. It

also verified that SNP array BAF track can be a viable source for subclonal analysis.

More details about this study can be found in Linghua et al. Nature (2014) [149].

2.5 CONCLUSION

In this chapter, I described our initial efforts to attempt the recovery of the underlying

subclonal structure from genomic profiling data. The data clearly indicated that the

cell populations found in a tumor sample are more complex than a simple normal +

tumor segregation. Using the signals, we were able to reconstruct linear parsimonious

subclonal structures from CNV measurements in the form of RDR, as well as LOH events

derived from BAF. We showed examples that NGS, as well as array assay, can all be

viable sources for identifying clonality, although NGS has been shown to provide higher

resolution. This work was to our knowledge the first attempt to tackle this issue, and our

method was presented at TCGA 1st Annual Scientific Symposium as an oral presentation

(Nov, 2011).

However, an important aspect of the described method, which should not be dis-

missed easily, is that the linear parsimonious subclonal structure, although motivated

by a sound biological modal that the more mutated a genome is, the more unstable it

would become and the easier to produce more mutations, may not be the only possible

structure that is able to explain the observation. This is largely due to the fact the the

widely used whole genome profiling techniques, such as array or NGS, require tissue

homogenization and DNA fragmentation as part of the sample preparation process, ef-

fectively losing the linkage information as in whether two events were originally from

the same cell. In the case that the CP of two events are all greater than 50%, the linear

heritage model IS in fact the only possibility, as, due to pigeon hole principle, they can-
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not separately exist on different cell populations whose fractions sum up to be greater

than 100%. But for low frequency events, this ambiguity would be present. Consider

two events A and B, with CP values of 20% and 40% respectively, the linear parsimo-

nious method would result in a structure that subclone 1 containing only B derived

form the normal cells, taking up 20% of the entire population; and subclone 2 derived

from subclone 1, inheriting the event B, but in addition also contains event A, taking

up 20% of the entire population. An alternative structure would be that, irregardless

of biological feasibility, subclone 1 and subclone 2 are independently derived from the

normal tissue, containing event B and A respectively, and each takes up 40% and 20%

of the entire population respectively. Mathematically, these two structures will result in

exactly the same observation, yet they represent fundamentally different tumorigene-

sis mechanisms (E.g. in model 1, B could be the driver event; In model 2, the patient

might be genetically pre-exposed to cancer, and A and B are separate, second hits to an

already weakened tumor suppressing pathway). In the next chapter, I will describe an

improved method that enumerate all possible structures, instead of just the linear one.
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3
Exhaustive Enumeration

I
N THE PREVIOUS CHAPTER, I described a method that is able to reconstruct

the linear parsimonious subclone structure based on somatic Copy Num-

ber Variation (CNV) or loss-of-heterozygosity (LOH) data. Yet the diffi-

culty still remains that the Cell Prevalence (CP) of individual events measured in a

large population of tumor cells, as is the case in “bulk” tumor sequencing or microarray

genotyping experiments, do not retain the underlying linkage information that exists

between individual somatic events i.e. whether or not two or more mutation events

are present within the same cell. Unfortunately, given n mutation events, there are in

total n! possible subclone structures, and often a large number of these can account
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for the CP measurements equally well. This makes it very difficult or impossible to un-

ambiguously reconstruct subclonal evolution from per-locus CP observations. Recently,

computational methods have been developed to reconstruct clonal structures that ei-

ther exploit specific biological assumptions [152] to choose between mathematically

equivalent structures (most importantly, the assumption of “Shallowness”, which dic-

tates that the depth of the evolutionary tree is minimal, would be in favor of branching

structures); or by using Markov Chain Monte Carlo (MCMC) sampling based Bayesian

inference [153] to explore the solution space of highly possible phylogenies with a

Dirichlet process prior. Both of these methods require high-precision allele frequency

(AF) measurements of one specific variant type: Single Nucleotide Variation (SNV).

For a comparison of performance, please refer to Appendix Section A.1. Even more re-

cently, several new method have published that either estimate model parameters with

Expectation Maximization (EM) while take advantage of physically separated samples

[154]; or provide the ability to integrate multiple data types (e.g. CNV, LOH, SNV), and

jointly estimate the subclone profile. Both of these methods do not explicitly maintain

the constraint that the subclones fit within a consistent phylogeny [155]; or model the

potentially multi-furcating tumor phylogeny with a bifurcating tree, without the abil-

ity to consider multiple tumors from a single patient (such as primary / relapse pairs)

[156].

3.1 INTRODUCTION

Based on our experience working with two similar yet distinct data types: CNV and

LOH, we came to realize that the fundamental signal for subclone structure reconstruc-

tion is not tied to any specific data type, but the CP value that describes the fraction of

cells harboring a somatic event. Here we discuss a more general approach that is able

to accept many types of somatic variation data (e.g. SNVs, CNVs from either microar-

ray or Next Generation Sequencing (NGS), LOH, etc.) as input. Moreover, the method
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enumerates all possible subclone structures that are consistent with the bulk CP mea-

surements from the input. It is capable of reducing this solution space significantly, often

to a single, unique solution when data from multiple tumor biopsies, such as primary

and relapse from the same patients, are available. In the event that more than a single

alternative subclone structure still remains after such trimming, it is often possible to

derive high-confidence linkage information between subsets of loci based on the con-

sensus of all remaining structures. In such cases, we focus not on efforts to disambiguate

mathematically equivalent solutions, but rather on using the complete set after pruning

procedure in a statistical framework to determine e.g. the probability that two given

mutations are present within the same subclone (mutation co-localization), or that

whether one mutation pre-dates another (mutation ordering). Such co-localization

information may reveal e.g. that two distinct mutations that each sensitizes the cancer

cells to specific drugs are, in fact, present in a single subclone. Given the high incidence

and therapeutic challenges posed by chemoresistant tumors, knowledge of mutation

co-localization may allow for more accurate and potentially more efficacious targeted

therapeutics aimed at countering or preventing chemoresistance. Moreover, if such a

novel mutation in a chemoresistant tumor is present in every cell of the relapse sample,

it may be a top candidate in the search for driver mutation in chemoresistance (variant

prioritizing).

3.2 METHODS

A full implementation of the described method is freely available under the MIT li-

cense at https://github.com/yiq/SubcloneSeeker. At the time this dissertation

is written, the code repository is at commit e01e9b.

An overview of the entire workflow of subclone structure reconstruction using Sub-

cloneSeeker is as the following:
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1. Depending on the type of input data, mutation events and their associated allele

frequencies are called by detection methods (Chapter 1, Section 1.3)

2. The allele frequencies of events are converted into CP values, and then subjected

to clustering. If more than one sample is available, the clustering will be done

in a multidimensional space, in which the number of dimensions is equal to the

number of samples.

3. The resulting somatic event clusters (clustered by CP) serve as the input to the

exhaustive enumeration based subclone structure reconstruction algorithm “Sub-

cloneSeeker”. This will result in a set of solutions that are biologically plausible,

and mathematically consistent with the input.

4. Further trimming can be performed on the solution set, such as trying to merge

multiple samples into a unified evolution tree.

5. Mutation (cluster) co-localization can be inferred from the trimmed solution set.

3.2.1 A UNIFIED FRAMEWORK FOR SUBCLONE STRUCTURE RECONSTRUCTION THAT IN-

CORPORATES ALL TYPES OF GENOMIC VARIANTS

We define a subclone as a collection of cells in the tumor sample that harbor the same set

of genomic variants, including SNVs, Structural Variations (SVs), CNVs, LOHs, etc. The

only requirement for a data type to be included in the analysis is the ability to derive

the fraction of the cells within the tumor sample in which the mutation is present, a

quantity that has also been referred to as “cell prevalence” or CP [157]. In a simplified

example, a heterozygous SNV in a copy number neutral region with an AF of 30%

would correspond to a CP of 60% (Figure 3.2.1 A). It is worth mentioning that the

estimation of CP is no trivial task, and should be given ample consideration. Situations

such as SNVs in CNV regions will need correction techniques. The same CNV region,

interpreted with different absolute copy number (ACN) states, would also results in
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ambiguity. A number of tools have been developed to facilitate CP estimation, including

ASCAT [134] and ABSOLUTE [135], which estimates the absolute copy number states of

CNV regions, and PyClone [157], which jointly estimates the CP of SNVs. Our method

requires as input CP measurements, regardless whether these measurements represent

SNVs, CNVs, or some other type of genetic variation, allowing it to consider each such

variant type, or any combination of them from a given sample. We note that, as a

preprocessing step, our method clusters together variants with the same (or similar) CP

values to minimize measurement uncertainties, and assumes a priori that clusters are

the smallest independently inherited unit (i.e. all variants in each such cluster are co-

localized in the same genomes). The input to our downstream methods is an ordered

list of CP values, corresponding to those clusters.

3.2.2 DATA PREPARATION OF VARIOUS GENOMIC VARIATION TYPES

Various types of raw data are processed, in data-type specific ways, into somatic events.

Whole genome copy number measurements This is done either by whole genome

sequencing (WGS) or Array comparative genome hybridization (aCGH) measure-

ment on paired tumor-normal samples from a cancer patient. In the case of

WGS, read depth (RD) is measured within large genomic window (e.g. 10kb). For

aCGH, hybridization probe intensities are measured, and often averaged across

multiple probes. Relative copy number (RCN) measurement is obtained by nor-

malizing tumor read depth or hybridization intensity first to the total amount of

DNA per sample (e.g. the total number of reads), followed by normalization to the

corresponding measurements in the normal sample. These normalization steps

eliminate germline events shared by both the tumor and the normal genomes,

and keep only the somatic events

Whole genome LOH measurement The procedure to work with LOH measurement

has been described in Chapter 2, Section 2.4.2.
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Segmentation The RCN derived from CNV or mirrored B allele frequency (mBAF) mea-

surements in LOH dataset is then subjected to segmentation algorithms, such as

DNAcopy [138, 151] or HMMSeg [158], to identify continuous regions with the

same underlying copy number or LOH state, and to delineate event boundaries

of the corresponding events.

SNV AF estimation Ultra deep sequencing SNV data does not need to be segmented,

however their AF needs to be accurately estimated, e.g. using PyClone [157],

which also performs CP estimation

3.2.2.1 CELL PREVALENCE CALCULATION

CP is defined as in what percent of all the cells being examined does one specific event

exist. Different data types require different techniques to perform this calculation.

Whole Genome CNV events: For whole genome CNV events derived from either WGS

RD or aCGH probe intensity data, it is important to have a good estimation, or better

yet, direct measurement, on the ploidy1 (p). Various software packages already exist

to estimate p, such as ASCAT [134], CNAnorm [159] and ABSOLUTE [135]. Moreover,

an ACN needs to be called for every CNV event from RCN that is usually in the form of

log2(Tumor/Normal ratio). In the examples shown in this chapter, the ACNs are called

with the same Maximum Likelihood Estimation detailed in Chapter 2, Section 2.4.2. In

the case of WGS, log 2 ratio of read depths are obtained as described in Section 3.2.2.

For microarray, since the probe intensity (PI) is often already in log 2 ratio form to some

common reference sample, the tumor to normal ratio is calculated with subtraction in-

stead of division.

Assuming that at any genomic location where a CNV event is identified, a cell either

does or does not have the event, with ACN estimated, the CP can then be calculated as

1The number of copies of a complete genome in a cell. Normal cells have two copies, thus diploid.
Tumor cells with copy number variation could potentially contain three copies, or triploid, or more.
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∵ ACN · C P + 2 · (1− C P) = RCN

∴ C P =
RCN− 2
ACN− 2

(3.1)

Whole genome LOH events: Please refer to Chapter 2. Section 2.4.2

SNVs: With accurate allele frequency estimation made available by ultra-deep se-

quencing and software advancements [157], CP can also be derived from SNVs along

with allele specific copy number quantifications. For example, in diploid2 regions,

C P = 2 · AF for heterozygous SNVs, and C P = AF for homozygous SNVs.

3.2.2.2 CLUSTERING

Because the measurement of CP is potentially noisy, we attempt to mitigate its effect

through clustering on CP to identify distribution modes. Examples shown in this chapter

are clustered with the kernel density function in R, with its bandwidth calculated by

the Pilot Estimation of Derivatives [160]. Users can choose to substitute with more

advanced techniques, such as MCLUST [161]. When multiple samples are available, it

is important to perform clustering on multi-dimensional space, in which the dimensions

equal the number of samples, to identify independently inherited clusters.

3.2.3 SUBCLONE STRUCTURE RECONSTRUCTION

Given n somatic events (or clusters, referred to as clusters henceforth; see Definition 3.3

and Definition 3.7), each with an associated, distinct CP value, we enumerate all pos-

sible “evolution trees” where mutation events occurring along the tree branches give

raise to new subclones in a successive fashion (Figure 3.2.1 B). For n clusters, this pro-

cedure results in n! distinct subclone structures (Theorem 3.5) assuming that 1) cells

2Having two copies of the complete genome.
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in a tumor mass are derived from normal tissue cells or existing tumor cells through

mitosis, in which recombination is unlikely to occur; and 2) the same mutation event

does not spontaneously occur in two different subclones, nor does a mutation get lost

from a subclone. Each subclone structure contains exactly n distinct subclones with

associated subclone frequency (SF), plus a “null” subclone without any mutation, rep-

resenting the normal tissue component within the tumor sample (and its SF the “normal

tissue contamination”). SF is assigned to each subclone so that all subclones within a

given structure, when put together, give rise to the same cluster CP list as the input.

In order to satisfy this condition, our procedure may need to assign negative SF values

to one or more subclones; such subclone structures are not biologically plausible, and

are removed from further consideration. As demonstrated later (Figure 3.3.2), only a

small fraction of the structures are biologically plausible (we term these “viable sub-

clone structures”).

3.2.3.1 FORMAL DEFINITION OF SUBCLONE RECONSTRUCTION PROBLEM

Definition 3.1. A chromosomal location, L, is defined as L = {chromosome, position},

which describes a location on the genome.

Definition 3.2. A chromosomal segment, S, is defined as S = {L, length}, which describes

a continuous region on the genome.

Definition 3.3. A somatic event (henceforth referred to as “event” if without specification),

e, is a general symbol representing any genomic variation presented in the tumor sample,

that is not found in the paired normal sample. e can be one of the following:

• A segmental somatic CNV event, eCNV, which is defined as eCNV = {S, ACN} for a

segment on the genome specified by S, with the absolute copy number state of ACN.

• A segmental somatic LOH event, eLOH, which is defined as eLOH = {S} for a segment

on the genome, specified by S, whose heterozygosity has been lost (mBAF= 1).
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• A somatic SNV event, eSNV, which is defined as eSNV = {L, GT} at a position on the

genome, specified by L, with a genotype, specified by GT, either being “heterozygous”

or “homozygous alternate” in the case of diploid genome, or other more complex

genotypes in the case of aneuploid3 genome.

Definition 3.4. An observed somatic event (henceforth referred to as “observed event” if

without specification), oe, is defined as oe = {e, C P} for an event e observed in C P > εd

fraction of the total cells, with some detection sensitivity εd > 0.

Definition 3.5. An observation, O, is defined as O = {oe1, oe2, . . . , oen} for a tumor

genome with n detected events. The detection process if data-type specific. In any case,

oe.C P should be, or can be derived, from the output of the detection process (Section 3.2.2.1).

Definition 3.6. The complete events set, E, is defined as E = {oe.e|oe ∈ O}.

Definition 3.7. A set of event clusters, P, is defined as a partition over an observation O,

that, for a given error margin εP ≥ 0, satisfies

∀p ∈ P :(∀oe ∈ p, oe′ ∈ p : |oe.C P − oe′.C P| ≤ εP)

and

∀p ∈ P, p′ ∈ P, p 6= p′ :(∀oe ∈ p, oe′ ∈ p′ : |oe.C P − oe′.C P|> εP)

Each element p ∈ P is called an event cluster. We denote p.C P =

∑

oe∈p

oe.C P

|p|
as the

cluster centroid.

We further impose, without loss of generality that, P is a sorted set, with respect to the

cluster centroids, in descending order.

3Having a ploidy that is other than 2
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∀i ∈ [1, n′], j ∈ [1, n′], i < j : pi.C P > p j.C P

Definition 3.8. A subclone profile, C, is defined as C j = {B, f } j, j = 0..m, in which

C j.B = {b1, b2, . . . , bn′} j is a row vector whose value b j
i indicates whether the j-th subclone

contains the somatic events belonging to the event cluster pi. The 0-th subclone is a special

one representing the normal tissue component, thus C0.B = {0, 0, . . . , 0}. ∀ j ≤ m, j′ ≤

m, j 6= j′ : C j.B 6= C j′ .B. C j. f represents the fraction the j-th subclone occupies over the

entire cell population, or SF, and that
∑m

j=0 C j. f = 1.

Definition 3.9. For any given subclone profile C, it is said that

• C is biologically plausible, if ∀ j ≤ m : C j. f ≥ 0.

• C is not biologically plausible, if ∃ j ≤ m : C j. f < 0.

Definition 3.10. A subclone profile C with m+1 subclones is a solution to an observation

O with a clustering partition P having n′ clusters when the following is satisfied

[C1. f , C2. f , . . . , Cm. f ]×

















b1
1, b1

2, · · · b1
n′

b2
1, b2

2, · · · b2
n′

...
... . . . ...

bm
1 , bm

2 , · · · bm
n′

















= [p1.C P, p2.C P, . . . , pn′ .C P]

Definition 3.11. A subclone structure, SS, over a given subclone profile C, is defined as a

multi-furcating tree whose nodes are individual subclones in C. It is apparent that all SS

over a given C with m+ 1 subclones have exactly m+ 1 nodes. If C j ∈ SS is the parent

node to another node C j′ ∈ SS, such relationship is denoted as C j ⇒ C j′ or C j′ ⇐ C j; If C j

is an ancestral (not necessarily direct parent) node to another node C j′ , such relationship
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is denoted as C j → C j′ or C j′ ← C j. If neither C j nor C j′ is an ancestral node to the other,

such relationship is said as “C j and C j′ are parallel”, and denoted as C j‖C j′ .

Due to the unique biology of tumorigenesis, we make the following assumptions

• Cells in a tumor mass are derived from germline cells or parental, existing tumor

cells through mitosis, in which recombination is unlikely to occur.

• The same event (with respect to a boundary resolution) would not spontaneously

occur in two subclones without a descendant relationship, nor would pre-existing

events revert back to the normal state in a descendant subclone

Definition 3.12. A subclone structure SS over a given subclone profile C is said to be

evolutionary, if the following conditions are satisfied

• ∀C j, C j′ , C j → C j′ : ∀b j
i = 1 : b j′

i = 1

• ∀C j, C j′ , C j ⇒ C j′ : ∀b j
i = 0, b j′

i = 1 : ∀C j′′‖C j′ : b j′′

i = 0

• ∀C j, C j′ , C j ⇒ C j′ : ∀b j
i = 0, b j′

i = 1 : ∀C j′′ → C j : b j′′

i = 0

We term ∃C j, C j′ , C j ⇒ C j′ : ∃b j
i = 0, b j′

i = 1 as “Event cluster pi first appeared in

subclone C j′”

We term ∃C j, C j′ , C j → C j′ : ∃b j
i = 0, b j′

i = 1 as “Event cluster pi appeared after subclone

C j”

Theorem 3.1. For any given C over which evolutionary subclone structures exist, only one

evolutionary subclone structure exists.

Proof. Assume that there are two subclone structures, SS1 and SS2, over the same sub-

clone profile C , that are both evolutionary. Due to Definition 3.12
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∃C p1, C p2, C j :























































C p1⇒ C j in SS1 =⇒











∀bp1
i = 1 : b j

i = 1

∀b j
i = 0 : bp1

i = 0

C p2⇒ C j in SS2 =⇒











∀bp2
i = 1 : b j

i = 1

∀b j
i = 0 : bp2

i = 0

C p1.B 6= C p2.B 6= C j.B

Lemma 3.1. ∀bp1
i = 0, b j

i = 1 : bp2
i = 0

Proof. Assume that

∃bp1
i = 0, b j

i = 1 : bp2
i = 1

Due to Definition 3.12, the only possible relationship between C j and C p2 in SS1 is

that C j → C p2 =⇒ ∃bp2
i = 1 : b j

i = 0. However, this contradicts with the condition

that C p2⇒ C j in SS2 =⇒ ∀bp2
i = 1 : b j

i = 1.

Lemma 3.2. ∀bp2
i = 0, b j

i = 1 : bp1
i = 0

Proof is similar to Lemma 3.1

Combine Equation 3.1, Lemma 3.1, and Lemma 3.2, we have

∀b j
i = 0 : bp1

i = 0, bp2
i = 0

∀b j
i = 1 : (bp1

i = 0, bp2
i = 0)∨ (bp1

i = 1, bp2
i = 1)

Thus we have

∀i : bp1
i = bp2

i

This contradicts with the condition that C p1.B 6= C p2.B
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Definition 3.13. The problem of subclone structure reconstruction, is that given an obser-

vation O, along with a clustering partition P with n′ event clusters, find all evolutionary

subclone structures SS whose corresponding, biologically plausible, subclone profiles C are

solutions to O with clustering partition P.

Theorem 3.2. For a given evolutionary subclone structure SS whose corresponding sub-

clone profile C is biologically plausible and a solution to a given observation O with a

clustering partition P having n′ clusters, let C pi denote the subclone in which pi first ap-

peared, the following condition is true

∀pi ∈ P : pi.C P = C pi . f +
C pi→C j
∑

C j

C j. f

Proof. Because pi first appeared in C pi , from Definition 3.12 we have

bpi
i = 1

∀C j ← C pi : b j
i = 1

∀C j′ → C pi ∨ C j′‖C pi : b j′

i = 0

Because C is a solution to O with clustering partition P, from Definition 3.10, we

have

pi.C P =
∑

C j

C j. f × b j
i

=
C j→C pi∨C j‖C pi
∑

C j

C j. f × b j
i + C pi . f × bpi

i +
C j←C pi
∑

C j

C j. f × b j
i

= C pi . f +
C pi→C j
∑

C j

C j. f
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We define cC j as

cC j = C j. f +
C j→C j′
∑

C j′

C j′ . f

which represent the sum of the subclone frequencies of all nodes in the subtree with C j

being the root.

Corollary 3.1. For a given evolutionary subclone structure SS whose corresponding sub-

clone profile C is biologically plausible and a solution to a given observation O with a

clustering partition P having n′ clusters, if pi ∈ P first appeared in subclone C pi , pi′ ∈ P

first appeared in subclone C pi′ , C pi → C pi′ , then we have pi.C P ≥ pi′ .C P

Proof. From Theorem 3.2, we have

pi.C P =ÓC pi

= C pi . f +
C pi→C j
∑

C j

C j. f

pi′ .C P =dC pi′

= C pi′ . f +
C pi′→C j
∑

C j

C j. f

Because ∀C j ← C pi′ : C j ← C pi

pi.C P − pi′ .C P ≥ C pi . f

pi.C P ≥ pi′ .C P

76



Corollary 3.2. For a given evolutionary subclone structure SS whose corresponding sub-

clone profile C is biologically plausible and a solution to a given observation O with a

clustering partition P having n′ clusters, ∀pi ∈ P, pi′ ∈ P, pi.C P < pi′ .C P, The subclone C j

that contains pi but not pi′ cannot be an ancestral node to a subclone that contains pi′

Proof. C j → C j′ implies that pi first appeared either in C j or some subclone C k →

C j, and pi′ first appeared in C j′ , according to Corollary 3.1, pi.C P ≥ pi′ .C P, which

contradicts with the condition that pi.C P < pi′ .C P

Theorem 3.3. For a given evolutionary subclone structure SS whose corresponding sub-

clone profile C, having m+ 1 subclones, is biologically plausible and a solution to a given

observation O with clustering partition P, having n′ clusters, it is true that m≥ n′.

Proof. Assume that m< n′. Due to pigeonhole principle,

∃C j : ∃pi ∈ P, pi′ ∈ P : pi and pi′ both first appeared in C j

Thus

pi.C F = pi′ .C F =cC j

This contradicts with Definition 3.7

Theorem 3.4. For a given evolutionary subclone structure SS whose corresponding sub-

clone profile C, having m+ 1 subclones, is biologically plausible and a solution to a given

observation O with clustering partition P, having n′ clusters, it is true that m≤ n′.

Proof. Assume that m> n′. Due to pigeonhole principle,

∃C j 6= C0 : ∀pi ∈ P : pi first appeared in a subclone C j′ 6= C j

Thus, ∃C k⇒ C j : C k.B = C j.B, which contradicts Definition 3.8
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Corollary 3.3. For a given evolutionary subclone structure SS whose corresponding sub-

clone profile C, having m+ 1 subclones, is biologically plausible and a solution to a given

observation O with clustering partition P having n′ clusters, from Theorem 3.3 and Theo-

rem 3.4, we have m= n′.

Corollary 3.3 states that, for a given evolutionary subclone structure SS whose sub-

clone profile C is biologically plausible and a solution to a given observation O with

clustering partition P having n′ clusters, there are exactly n′ + 1 subclones in C .

Theorem 3.5. For a given observation O with clustering partition P having n′ clusters,

there are at most n′! different subclone structures that are evolutionary and their corre-

sponding subclone profiles are biologically plausible and solutions to O.

Proof. First, we denote an evolutionary subclone structure SS with m nodes SSm.

Base case: when |P|= 1, there is only one SS1, C0⇒ C1, that p1 first appeared in C1.

Induction: assume that when |P|= k, the total number of SSk is k!. We introduce pk+1

into |P|, and assume without loss of generality that ∀pi ∈ P : pi.C P > pk+1.C P. SSk+1

can be derived by attaching a new node C k+1, in which pk+1 first appeared, onto existing

SSk. From Theorem 3.2, in any given SSk+1, C k+1 cannot be the parent of any subclones

in SSk, leaving the only possible placement for C k+1 to be a child of the existing k + 1

subclones in SSk. Therefore, the number of possible SSk+1 is k!× (k+1) = (k+1)!

3.2.3.2 EXHAUSTIVE ENUMERATION METHOD

An exhaustive enumeration algorithm is designed to derive all possible structures in

the similar fashion as described in the induction step of the proof to Theorem 3.5, and

outlined as Listing 3.1.

The function “treeEnum(T, P)” enumerate all SSk+1 from all SSk, exactly as described

in the proof of Theorem 3.5, through a recursive call to itself when P is not exhausted,
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Initialize a tree T with a root that contains no event
treeEnum(T, P);

function treeEnum(T, P):
p = first_elem(P) ; the event cluster with highest CP
for n in all existing nodes of T:

create a new node n’
n’. first_event = p
add n’ to T as a child of n
if P.size == 1:

Evaluate(T)
else:

treeEnum(T, P-{p})
end -if
remove n’ from T

end -for
end -function

function Evaluate(T):
for n in post -order -traverse(T):

if n is leaf:
n.SF = n.first_event.CP

else:
n.SF = n.first_event.CP - sum(n.children.SF)

end -if
if(n.SF < 0) abort

end -for
output T

end -function
Listing 3.1: Pseudo code of the exhaustive enumeration algorithm.
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and evaluate whether the subclone profile, to which the resulting structure T corre-

sponds, is biologically plausible and a solution to the observation O with clustering

partition P.

The function “Evaluate(T)” will, through a post-order tree traverse, try to assign a

SF ( f as mentioned in Definition 3.8) value to each of the tree nodes so that at the end

the subclone structure is a solution to the observation(O, P). If the function visits a leaf

node, it will assign the CP of the event clusters first appeared in the node; If the function

visits an internal node, it will assign the CP of the event clusters first appeared in the

node, minus the sum of the SF of all its descendant nodes (because they all inherit those

events). It it can do so without assigning any node a less-than-zero SF, the subclone

profile C the specific tree structure corresponds to is biologically plausible, and the tree

structure is recorded as a feasible solution.

This method will result in a tree-set, which contains all the possible subclone struc-

tures whose subclone profile is a solution to the observation, and the phylogeny between

the subclones. One can choose to further trim the set by external or internal linkage

information, or perform coexistence prediction. An example of all the resulting struc-

tures, along with the assigned CP values, when three event clusters are considered is

given in Figure 3.2.1B.

3.2.3.3 TRIMMING THE SPACE OF VIABLE SUBCLONE STRUCTURES.

Often there are more than one viable subclone structures in the resulting solution set,

corresponding to multiple alternative subclone evolutions. However, if additional “link-

age” data is available, further trimming is usually possible. Such linkage informa-

tion may be either directly observed, such as in the case of spectral karyotype images

[46, 162, 163], single cell colony assays, or single cell sequencing; or indirectly inferred

from e.g. primary and relapse tumor from the same patient. Because typically, the re-

lapse tumor is derived from the primary tumor, they share mutations originating from
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common ancestor subclones, and through such shared evolutionary history the primary

and relapse subclones can be merged into one unified subclone structure, while satis-

fying the following two conditions:

1. After merging, for any given non-leaf node, its children node must have all the

mutations presented in the node itself (extra relapse specific mutations are al-

lowed).

2. No two branches shall have the same mutation simultaneously without sharing a

common parent node who has that mutation.

These two conditions assure the fundamental assumptions concerning tumorigenesis

aforementioned are met. Through this process, if a specific primary (or relapse) tree

cannot be merged with any relapse (or primary) tree, that specific tree is then an invalid

solution, and can be discarded. Figure 3.2.1 C shows examples of two compatible pri-

mary / relapse structures (left) as well as two incompatible ones (right). In the latter

example, the relapse subclone R2 contains two mutations that are found in different

branches on the primary tree (P1 and P3), violating the assumptions above. Any struc-

ture in the primary that has no compatible structure in the relapse, or vice versa, is

discarded from consideration, reducing the solution space.

Figure 3.2.1 (following page): SubcloneSeeker Method Overview. A) Data Preparation: Ge-
nomic variation data (SNVs, CNVs, etc.) is converted into the corresponding CP values, and
clustered into distinct groups. B) Structure Enumeration: Based on the identified CP clusters,
all possible subclone structures, represented as branching tree structures where one subclone
is derived from its “predecessor” by the addition of a mutation (or cluster of mutations), are
visited. During the visit, each subclone on the tree structure is assigned a SF value so that the
implied total CP values for mutations are in agreement with the input CP values. Those struc-
tures with negative SF values are removed from the solution set. C) Solution Trimming: The
aim of this procedure is to merge the subclone structures from the relapse tumor (orange cir-
cles) those from the primary tumor (blue circles) from the same patient. Left Panel: Example
showing a compatible pair of relapse/primary structures. Right Panel: Example showing a
pair of incompatible relapse/primary subclone structures. A subclone in the relapse, R2, can-
not be positioned anywhere within the primary subclone structure because it contains muta-
tions found in separate primary subclones (P1 and P3.), and therefore cannot be derived from
either one or the other.
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3.2.4 MUTATION CO-LOCALIZATION PREDICTION

Useful knowledge can be derived even in cases where there are multiple alternative

subclone structures. Although one cannot determine the precise subclone evolution

with certainty in such cases, the collection of all possible solutions can be used to predict

whether or not two mutations are present in the same cell, i.e. whether or not they are

co-localized within the same subclone. This prediction is based on the fraction of all

viable subclone structures in which two mutations (or more generally, a given set of

mutations) are present in at least one subclone. Such information could potentially

be important in e.g. designing personalized chemotherapy treatment plans. Given n

clusters, there are in total C2
n (n choose 2) unique, unordered cluster pairs, each of

which is assigned a status of either “co-localized”, “not co-localized”, or “ambiguous”

(Figure 3.2.2). Furthermore, for two events that are localized in the same subclone, the

timing of the mutations can be easily determined: the event with the higher CP value

appeared earlier, and the event with the lower CP value emerged later.

For any given pairs of somatic event clusters, a co-localization frequency matrix (CLF)

can be calculated as

C LF =
# of solutions
∑

i=1

PSi · C L (3.2)

in which PSi is the probability that solution i is the correct solution, which in case no

prior knowledge is available, can be estimated as

PSi =
1

# of solutions
(3.3)

C L is a binary variable that describes whether a given pair of event clusters co-localize

in solution i, which can either be 1, if in at least one subclone the event clusters co-

localize, or 0 if in none of the subclones the event clusters co-localize. This framework

allows us to estimate co-localization giving all structures equal probability to be true,

83



CLF$

100%$

67%$ 33%$

With$a$cutoff$of$70%,$$$$$$$$$$and$$$$$$$$$$$is$likely$to$be$in$the$same$subclone;$
Cannot$determine$the$coAlocalizaCon$relaConship$in$the$other$two$pairs.$
$
With$a$cutoff$of$50%,$$$$$$$$$$and$$$$$$$$$,$as$well$as$$$$$$$$$$and$$$$$$$$$are$likely$to$
be$in$the$same$subclone,$$$$$$$$$and$$$$$$$$$$are$unlikely$to$be$in$the$same$
subclone.$

NonAUnique$SoluCon$Set$

CoAlocalizaCon$frequency$matrix$

Figure 3.2.2: Predicting mutation co-localization. In cases where there are multiple viable
subclone structures, we count the fraction of all structures within which two mutation events
are co-localized. This fraction is the probability that the two events are present in the same
subclone. One can also make a “co-localization call” by declaring that two events are co-
localized, if this probability is above a pre-defined threshold.
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or weight towards, or against, specific structures. (e.g. one can reasonably argue that

it is generally unlikely for a patient to develop two, separate tumor subclones without

related by a common ancestor which contains the initial driver mutations, thus placing

a lower prior on those structures in which multiple subclones are derived directly from

the normal tissue.)

3.2.5 SUBCLONE STRUCTURE SIMULATION PROCESS

In order to understand the behavior of our subclone reconstruction algorithm, we de-

signed a tumor subclone structure simulator. The simulator initialize in a state that it

only contains one subclone with no somatic event. This “null” subclone logically rep-

resents the normal tissue before tumor expansion, and mathematically represents the

normal tissue contamination usually found in tumor sample. We also assign a “viability”

value of 100 to this null subclone. The viability value represent the ability for a certain

subclone to grow, and will ultimately determine the SF of each subclone. The simulator

will then repeat the following steps exactly m times to simulate one subclone structure

with m+ 1 subclones

1. From the existing subclones, a “parent” subclone is selected randomly by sampling

from a roulette wheel. The proportion of each subclone on the roulette wheel is

determined by the viability value of the subclone.

2. A new subclone is created, with one additional mutation, and attached as a chil-

dren node to the parent subclone. The mutation is only symbolic, so that allele

frequency can be calculated at the end

3. The viability value of the new subclone is determined by randomly sampling from

a uniform distribution with a range of (0.5×ViabilityParent, 2×ViabilityParent), sig-

nifying that a mutation can be beneficial, detrimental, or neutral to the growth

advantage.
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The process is not meant to accurately model the actual tumor micro-evolution, but

to create a large number of subclone structures with varying topology and CP values.

After the structure is created, each subclone is assigned a SF proportional to its viability

value

C j. f =
Viability j
∑

Viability
(3.4)

The CP value for each of the introduced mutations is then calculated, which will serve

as the input to the subclone reconstruction algorithm, as

C Pi =
j≤m
∑

j=0

C j. f · b j
i ; b j

i =











1 subclone j contains mutation j

0 otherwise
(3.5)

The output of the simulation procedure will be a subclone structure, along with the

CP value of all the mutations. The CP values will be used as input to the reconstruc-

tion algorithm, and the subclone structure will be used to check if, among the results

produced by reconstructing, the correct structure has been found.

3.3 RESULTS

3.3.1 THE METHOD ALWAYS CAPTURE THE CORRECT STRUCTURE

We generated simulated tumor samples (Section 3.2.5) comprising 3,4, . . . , 8 mutation

events with distinct CP values (from our experience, we usually see less than 6 subclones

in a clinical tumor sample). For each of these “tumor samples”, we produced a random

subclone structure serving as a “true” structure. We repeated this procedure 1,000

times. In every case, SubcloneSeeker was able to reproduce the “true” subclone struc-

ture as one of the solutions in the complete solution set of viable subclone structures.

This “sanity check” was necessary to ensure that our software worked appropriately for

86



simulated datasets.

3.3.2 THE NUMBER OF BIOLOGICALLY PLAUSIBLE SUBCLONE STRUCTURES IS LOW

We also found that the number of viable subclone structures is very low compared to

the number of all possible structures. As Figure 3.3.1 illustrates, the expected number

of viable subclone structures is far less than the theoretical upper-limit (n! for n distinct

CP values, Theorem 3.5).

3.3.3 NORMAL CELL COMPONENT ESTIMATION PROCEDURE IS ACCURATE

As described above, our subclone structure reconstruction method provides in each its

resulting structures a null subclone with no mutations. This is the normal cell com-

ponent of the tumor biopsy, and its fraction the normal cell fraction. We investigated

the accuracy with which our method estimates the normal cell fraction in experimental

data. We applied our method to a dataset created by mixing 10%,20%, . . . , 90%,95%

and 100% sequencing reads from a SNUC cell line sample [164], with reads sequenced

from paired normal tissue (Figure 3.3.2). In this dataset, the non-branching, stepwise

mutation accumulation model (red-cross), a parsimonious solution that always exists

(Chapter 2), produced very accurate estimate for normal cell content among all alter-

native structures (R2 = 0.9705395 to the line y = x).

3.3.4 OUR ALGORITHMIC PROCEDURE IMPROVES ON INTERPRETATION IN PREVIOUSLY

PUBLISHED DATA

In a recent study, Ding, et al. [113] investigated clonal evolution in eight acute myeloid

leukemia (AML) patients. To ensure comparability with the published results, we started

with the somatic mutation clusters and AF values provided in the study (Table 3.3.1),

rather than re-computing them ourselves. With two exceptions, SubcloneSeeker pro-

duced the same subclone structures, and with one exception, came to the same conclu-
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Figure 3.3.2: Normal cell content estimated by subclone reconstruction in a controlled mix-
ing experiment. Dataset is generated by mixing sequencing reads from a Sinonasal Undiffer-
enciated Carcinoma (SNUC) cell-line and matched normal tissue. Data points corresponding
to the subclone structure representing linear mutation accumulation are shown with a red
cross.
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sions (Table 3.3.2). Please refer to Table 4.0.1 for a summary of input data types and

major conclusions.

In the case of patient UPN933124, the primary sample contained two low frequency

clusters, which resulted in a total of 6 different viable subclonal structures, including

the one reported in the original study. However, only one of these was compatible with

the sole viable subclone structure in the relapse, and the resulting single primary /

relapse subclone structure was in agreement with the model presented in the original

paper (Figure 3.3.3 A). In the case of patient UPN758168, the relapse sample yielded

two possible structures, both of which were compatible with the primary structure.

However, the tumor expansion model suggested by either of these structures disagrees

with the expansion model described in the original paper as “a minor clone carrying the

vast majority of the primary tumor mutations survived and expanded at relapse”. Our

subclone structures (Figure 3.3.3 B) suggest, in contrast, that both primary subclones

survived in the relapse. The difference between the two relapse models is which primary

subclone expanded with extra mutations.

3.3.5 ANALYSIS OF WHOLE-EXOME SEQUENCING DATA FROM CHEMORESISTANT vs. PRI-

MARY OVARIAN TUMORS DEMONSTRATES THAT OUR METHOD CAN BE USED TO PRI-

ORITIZE SOMATIC MUTATIONS FOR FURTHER FOLLOW-UPS

We are investigating how high-grade serous ovarian cancers become chemoresistant by

applying SubcloneSeeker to whole exome sequencing datasets on normal, primary tu-

mor and chemoresistant relapse tumor tissue samples from the same patient. Please

refer to Table 4.0.1 for a summary of input data types and major conclusions. Fig-

ure 3.3.4 shows our analysis workflow for prioritizing mutations observed in patients

“S15” and “S17”. Somatic mutations were first clustered in the “Primary AF — Relapse

AF” space to identify discrete modal values, corresponding to distinct subclones (Fig-

ure 3.3.4 A, B, D, E). The allele frequencies of these clusters were then converted to CP
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UPN Cluster Primary AF (%) Relapse AF (%)

933124 Cluster1 46.86 42.23
933124 Cluster2 24.89 0.24
933124 Cluster3 17 40.04
933124 Cluster4 2.39 38.53
933124 Cluster5 0.04 39.65

758168 Cluster1 45.5 44.8
758168 Cluster2 41.8 26
758168 Cluster3 0 17

400220 Cluster1 44.6 36.6
400220 Cluster2 0 13.3

426980 Cluster1 45.4 41.3
426980 Cluster2 45.4 11.5
426980 Cluster3 45.4 0
426980 Cluster4 18.2 0
426980 Cluster5 0 30.1

452198 Cluster1 45.4 18
452198 Cluster2 36 0
452198 Cluster3 11 0
452198 Cluster4 0 18

573988 Cluster1 41.7 14.3
573988 Cluster2 0 21.7

869586 Cluster1 45.4 20
869586 Cluster2 23.3 0
869586 Cluster3 16.4 20
869586 Cluster4 0 20

Table 3.3.1: Summary of data published in Ding et al. [113] that were used in the analysis of
the same AML dataset.
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12.74%!

53.12%!

29.04%!

5.10%!

5.19%!

94.81%!

UPN933124!

Primary! Relapse!

8.13%$

91.87%$

41.96%$

20.09%$

37.95%$

4.02%$

37.95%$58.04%$

UPN758168!
Primary! Relapse 2!Relapse 1!

A$ B$

Figure 3.3.3: Our re-analysis of published primary/relapse AML dataset in Ding et al. Pri-
mary, relapse, and merged subclone structures for two patients, reconstructed with Subclone-
Seeker. A) SubcloneSeeker analysis found 6 alternative primary subclone structures for pa-
tient UPN933124. Only one is compatible with the relapse subclone structure, and the pair is
in agreement with the original study. B) Each of the two viable merged primary/relapse sub-
clone structures for patient UPN75816 suggests that the two primary subclones made it to the
relapse tumor, and further expanded.

Patient ID Primary tumor Relapse tumors Compatible Same conclusion
structures structures structure pairs as Ding, et al.

933124 6 1 1 Yes

758168 1 2 2 No

400220 1 1 1 Yes

426980 1 1 1 Yes

452198 1 1 1 Yes

573988 1 1 1 Yes

804168 1 1 1 Yes

869586 2 1 1 Yes

Table 3.3.2: Summary of the re-analysis results of AML patient samples reported in Ding, et
al.
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values, and subjected to subclone structure reconstruction. In the case of “S15”, both

the primary and the relapse sample yielded a unique structure; these are compatible

with each other (Figure 3.3.4 C). The mutations in cluster “C4” are early events in the

primary, present in every cell of the relapse, and likely contain the driver mutation re-

sponsible for initial tumor expansion. On the other hand, in the relapse sample, the

vast majority (93%) of tumor cells contain the mutations that make up cluster “C3”.

This makes it likely that the mutation(s) conferring the tumor phenotype are part of

this cluster.

In the case of sample “S17”, the primary sample yielded two viable subclone struc-

tures, both compatible with the sole structure in the relapse (Figure 3.3.4 F). Similarly

to sample “S15”, cluster “C4” is likely to contain the initial driver mutation(s), and

cluster “C3”, which is present in all relapse subclones, is likely to contain the mutation

leading to chemoresistance. In both samples, the use of subclone analysis resulted in

information that one can use for variant prioritization, in order to narrow down the

set of somatic events in the search for the causative mutation, both for initial tumor

expansion, and for chemoresistance.

3.3.6 SIMULATION STUDIES DEMONSTRATES THAT OUR STATISTICAL FRAMEWORK IS ABLE

TO ACCURATELY PREDICT WHETHER TWO SOMATIC MUTATIONS, OR CLUSTERS, ARE

LOCALIZED IN A SUBCLONE TOGETHER

To understand the behavior of our methods predicting co-localization of mutations

within subclones, we simulated tumors with 5, 6, and 7 subclones (in each case, 1000

replicates), performed our subclone reconstruction procedure, and carried out muta-

tion co-localization analysis (Section 3.2.4). We used threshold values of 0.7 and 0.5

to call whether two mutations are co-localized, not co-localized, or that the results are

ambiguous (see Figure 3.3.5 for 6 subclones, and Figure 3.3.6 for the complete set). Im-

portantly, at a call threshold of 0.7, our method calls co-localized and not co-localized
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Figure 3.3.5: Performance of mutation co-localization prediction on simulated data. A) Co-
localization prediction statistics on simulated dataset with 6 subclones in each tumor sam-
ple, and a threshold of 0.7. SI — Combined Sensitivity; PPV — Combined positive predictive
value; B) Co-localization prediction statistics on simulated dataset with 6 subclones in each
tumor sample, and a CLF threshold at 0.5.
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Figure 3.3.6: Performance statistics over the complete set of mutation co-localization predic-
tion performance on simulated data. Values plotted are median over 1000 simulations in each
case.
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pairs with 70% sensitivity and nearly 100% positive predictive value (PPV, the fraction

of correct calls in all the calls made). At a threshold of 0.5, sensitivity goes up to nearly

100%, while PPV drops to 80%.

3.3.7 RE-ANALYSIS OF BULK vs. SINGLE CELL COLONY ASSAY DATA DEMONSTRATES THAT

WE ARE ABLE TO ACCURATELY IDENTIFY MUTATIONS THAT ARE PRESENT IN THE

SAME SUBCLONE

In a recent study by Jan et al. [114], hematopoietic stem cell (HSC) from several AML

patients were sequenced to>20,000 depth to measure somatic mutation allele frequen-

cies at several targeted loci. In addition, colonies grown from single cells separated from

the sample were subjected to allele-specific SNV TaqMan assay4 at the same SNV sites,

resulting in direct observations of subclones within the tissue. We used the bulk AF val-

ues obtained from the sequencing data as input to our subclone reconstruction method,

followed by our mutation co-localization prediction procedure. We then compared our

co-localization predictions to the colony assay results. Please refer to Table 4.0.1 for

a summary of input data types and major conclusions. Among four patient samples

for which colony assay data was available, SU030 and SU008 did not yield conclu-

sive results because the AFs at the tested sites were so low (well below 1%) that they

were indistinguishable from measurement noise (Table 3.3.3). SU070 yielded a unique

subclone structure that is in agreement with the structure identified by colony assay

(Figure 3.3.8). SU048 (Figure 3.3.7) produced a result set of 48 viable subclone struc-

tures. Every structure supports that TET2-E1375STOP is the earliest event, followed by

SMC1A and ACSM1 (Figure 3.3.7 A, Table 3.3.4). With a co-localization calling thresh-

old of 0.5, TET2-D1384V, OLFM2 and ZMYM3 co-localize with TET2-E1375STOP and

SMC1A, which is in agreement with the conclusion in the original analysis by Jan et al.

that AML precursor HSC cells contain double mutations (presumably forming a com-

4A quantitative PCR technique, using the TaqMan probe, for genotyping.
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Figure 3.3.7: Analysis results on patient SU048 HSC sample in Jan et al. A) Our model of
subclone evolution constructed based on co-localization probabilities. Left: Consensus struc-
ture supported by all subclone structures. Right: Consensus structure supported by at least
50% of subclone structures. B) Model of subclone evolution reported in Jan et al. constructed
based on colony assay results.
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Figure 3.3.8: Reported and Analysis results on patient SU070 HSC sample in Jan et al. A)
Colony assay results reported in Jan et al. B) Evolution Model reported in Jan et al. based on
the colony assay results. C) The unique evolution tree constructed from the deep sequencing
results on heterogeneous HSC sample
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pound heterozygote) in the TET2 gene. According to our analysis, TET2-E1375STOP

and SMC1A are the two early events, and the two TET2 mutations are already present

in the same, early subclone. This is biologically sensible given that TET2 is involved

in DNA demethylation [165] and SMC1A in chromosome structure maintenance [166].

In addition, the depletion of TET2 in mouse model leads to HSC expansion [167, 168],

and the lack of SMC1A protein predicts poor survival in AML [169]. On the other hand,

the relatively low co-localization probabilities among ACSM1, TET2-D1384V, OLFM2

and ZMYM3 suggest a branching structure for these mutations (Figure 3.3.7 A), rather

than linear mutation accumulation consistent with the colony assay for this patient (the

colony assay found one cell in which all these mutations are present). This points out

the relatively weak power of our method to resolve co-localization among mutations

with very low allele frequencies, as such low frequency mutations can be placed with

relative freedom on multiple branches of the evolutionary tree.

3.4 DISCUSSION

In this chapter I present a novel algorithm to elucidate tumor subclonal structure using

as input CP values of individual, unlinked somatic mutations. This method is able to

analyze many different types of genomic variant data, as long as AF measurements

can be converted into CP values. Because bulk mutation frequency measurements from

fragmentary sequence data or per-site microarray measurements do not retain “linkage”

across such somatic variant sites, often there are many alternative subclone structures

that can account for the input measurements. This method exhaustively enumerates all

such viable subclone structures, tackling the short-comings of the parsimonious method

described in Chapter 2. We were able to show that the number of solutions is usually

much smaller than the theoretical upper limit. Often tumor tissues from multiple phases

of tumor development (e.g. primary and relapse biopsies) are available. In such cases,

the number of subclone structures that are not only consistent with the respective input
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Patient Mutation Variant Allele Reference Allele Variant AF
Read count Read count

SU008 SKP2 45937 624754 0.068492048
SU008 ELP2 1915 504335 0.003782716
SU008 PDZD3 161 100433 0.001600493
SU008 CNDP1 2238 475621 0.00468339
SU030 KCTD4 116061 2090267 0.052603693
SU030 SLC12A1 7754 1163598 0.006619701
SU048 ACSM1 16819 110087 0.132531165
SU048 NPM1 30 11079 0.002700513
SU048 OLFM2 13717 108695 0.112056008
SU048 PYHIN1 16 12952 0.001233806
SU048 SMC1A 181167 477095 0.275220201
SU048 TET2-D1384V 1797 15854 0.101807263
SU048 TET2-E1357STOP 7416 12117 0.379665182
SU048 ZMYM3 18518 288810 0.060254842
SU070 TET2-Y1649STOP 7732 8419 0.478731967
SU070 CXOFF36 3503 4537 0.435696517
SU070 CACNA1H 12083 12775 0.48608094
SU070 TET2-T1884A 4218 4552 0.480957811
SU070 CXOFF66 3678 4466 0.451620825
SU070 SCN4B 5086 11273 0.310899199
SU070 NCRNA00200 9199 16212 0.362008579
SU070 GABARAPL1 1648 3344 0.330128205
SU070 DOCK9 3382 5285 0.390215761
SU070 CTCF 10529 19561 0.349916916
SU070 PXDN 78 4712 0.016283925
SU070 TMEM20 157 14986 0.010367827
SU070 TMEM8B 69 7791 0.008778626

Table 3.3.3: Somatic Variations used in the re-analysis of the HSC targeted deep sequencing
dataset in Jan et al.

TET2-E1357STOP SMC1A ACSM1 OLFM2 TET2-D1384V
SMC1A 1
ACSM1 1 1
OLFM2 0.67 0.67 0.33

TET2-D1384V 0.75 0.5 0.25 0.25
ZMYM3 0.75 0.5 0.25 0.25 0.25

Table 3.3.4: Mutation co-localization frequency matrix for patient SU048 HSC targeted deep
sequencing data from Jan et al. Mutations are sorted in descending order by AF.
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frequency data but also across e.g. the primary and the relapse is lower, further trimming

the “solution space”, often to a single, unique structure. Using both simulations and

experimental data, we have extensively characterized and validated our methods. We

have illustrated with a number of datasets that this approach is often able to identify

key patterns underlying tumor progression and relapse, including information to guide

mutation prioritization.

In the case that the solution space cannot be further trimmed, we provide methods

to derive useful knowledge, in terms of mutation cluster co-localization and timing.

Our subclone structure enumeration procedure is exhaustive, and is free from the bi-

ases introduced by the choice of parameters or prior distributions often required for

statistical sampling of the subclone structure solution space. We demonstrated that the

co-localization and timing of mutations predicted from the HSC bulk targeted sequenc-

ing (Jan et al.) correlate well with their function, and can be used in a similar fashion

to prioritize functional study.

The analysis of previously published datasets and our own datasets suggests that

SubcloneSeeker will be applicable for a number of clinical / biological problems. Using

serous ovarian cancer as an illustrative example, we have demonstrated that chemore-

sistance and relapse in this disease is a clonally driven process, and that such clones

can be either present in the primary tumor or “arise” during progression or relapse.

The patterns of temporal mutational order and cellular co-localization provide clini-

cally relevant insight into the genomic basis for chemoresistance. In ovarian cancer,

80% of tumors are classified as chemosensitive while 20% of cancers progress during

or recur shortly after platinum-based adjuvant chemotherapy. Unfortunately, there are

no known genetic markers at present that can reliably predict inherent or acquired

chemoresistance. This is likely the result of the complex and multi-factorial biological

basis for this phenotype. However, whereas one or a small number of them may not

be informative, analysis of many resistant clones and identification of the correspond-
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ing mutational order and cellular co-localization may lead to a better understanding of

chemoresistance, and form a rational basis for targeting the chemoresistant clones.

We envision similar utility for this type of analysis in advancing the current under-

standing of genomic alterations involved in the pre-malignant phases of cancer. Once

again using ovarian cancer as a prototypical case, it has been established that TP53 mu-

tations are ubiquitous and early events in serous ovarian carcinogenesis [170]. How-

ever, the prevalence of other relapse somatic mutations is about 10% or less [170]

suggesting that the additional requirements for transformation may be met through a

combination of more diverse co-localized or temporally related somatic mutations (plus

possible contributions from epigenetics and other molecular alterations, etc.). Thus ge-

nomic investigation of putative precursor lesion for serous carcinoma using approaches

presented here is likely to identify subclonal hierarchies whose constituent mutations

define cooperative classes on oncogenic event whose sum total results in malignant

transformation.
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4
Summary & Future Prospect

D
ESPITE DECADES OF EFFORT, cancer still remain as one of the deadliest dis-

eases mankind struggles with. With the onset of high throughput genomic

profiling technologies, we were granted, for the first time, the power to

glimpse into the inner working of cancer genomics. However, it gradually became clear

that a cancer biopsy, much in contrast to normal tissues, exhibits high intra-tumoral ge-

nomic heterogeneity, as in the cells in an entire tumor sample are divided into groups of

genetically different subpopulations, or subclones. As it was indicated by several recent

studies (Section 1.4), the interrogation of the degree of the heterogeneity, the genomic

profiles of each subclone, and the evolution dynamics between samples (e.g. primary
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and relapse) often holds the key to the further understanding of tumorigenesis, drug

resistance, or metastasis.

We realized this challenge early on (Section 2.1), and designed method to reconstruct

tumor subclone structure with a simplifying model that was biologically motivated (Sec-

tion 2.2). The method always returns a parsimonious solution that represents a linear

subclonal heritage. Although certain ambiguity exists, the method will result in accu-

rate structure for somatic events that are existing in more than 50% of the tumor cells.

Two dataset representing different cancer types, ovarian serious carcinoma (OV) and

Intracranal Germ Cell Tumors (IGCT), were analyzed with the method, and the results

are presented in Section 2.3 and Section 2.4. In the case of the OV dataset, based on

whether the relapse sample contained more subclones than the primary, the patients

were classified into two groups with trending significant difference in survival after the

second surgery. For the IGCT dataset, the analysis helped elucidating the complexity

of this rare disease [149]. This work was to our knowledge the first attempt to tackle

the subclonality issue with whole genome microarray and Next Generation Sequencing

(NGS) dataset, and our method was presented at The Cancer Genome Atlas (TCGA) 1st

Annual Scientific Symposium as an oral presentation (Nov, 2011).

One apparent weakness of the method mentioned above is that it only return one

structure, when in fact multiple structures may result in the same input data that is

the observed somatic events. We developed an extended version of the method to enu-

merate all possible structures followed by trimming (Section 3.2). Given n somatic

mutations (or mutation clusters), there are in total n! potential structures. Not all of

them are biologically plausible, as in order to achieve the same cell prevalence val-

ues found in the observation, some subclones in some structures need to be assigned

a negative subclone frequency (SF). These structures are discarded from any further

consideration. Simulation study showed that the size of the solution space is tightly

restricted by this property (Section 3.3.2).
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Realizing that related samples, such as the primary and relapse tumor samples from

the same patient, often represent different time points of the same evolution process,

we take advantage of these extra samples to further trim the solution space (Sec-

tion 3.2.3.3). The reanalysis of published dataset showed a successful example in which

the primary data alone resulted in 6 equivalent structures, yet only 1 of them was com-

patible to the unique relapse structure (Section 3.3.4). Utilizing a similar approach,

we showed that how subclone structure can be of potential help in identifying the “top”

candidates, among many somatic events, in the search for driver mutations which result

in chemoresistance (Section 3.3.5)

In cases when the solution space cannot be reduced to a single, unique solution, we

have developed a statistical framework to treat all the remaining structures as a distribu-

tion, and identify the probability any two mutations (or mutation clusters) co-localizing

in the same subclone. We showed an example in which our prediction of co-localization

correlated well with the biological functions of the mutated genes (Section 3.3.7), and

provided discussion in how it could be of value in understanding chemoresistance, and

in designing personalized treatments (Section 3.4).

That concludes all the constituents that are part of this dissertation work. The rest of

this chapter will be devoted to my thoughts regarding the future of cancer subclonality

research.

4.1 MORE ACCURATE SUBCLONE STRUCTURE RECONSTRUCTION

As it was pointed out in Chapter 3, often there exist multiple mathematically equiv-

alent and biologically plausible subclone structures for the same observation data. In

some situations, further trimming with extra samples (Section 3.2.3.3), or deriving mu-

tation co-localization knowledge (Section 3.2.4) is possible, but ultimately it would be

desirable to reduce this ambiguity to the minimal. Due to the fact that the linkage in-

formation is lost during large scale genomic profiling (Section 2.5), this is impossible
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with a pure mathematically approach. However, new experiments should be designed

with intra-tumoral heterogeneity in mind, and gather as much information as possible

regarding cellular linkage.

4.1.1 COLLECT ADDITIONAL DATA TYPES FROM THE SAME SAMPLE

In Chapter 3, the concept of Cell Prevalence (CP) was introduced as in what percent of

all cells does a specific somatic variation exist. Since the method heavily relies on the

clusters identified with the CP values, it is thus crucial to have accurate CP estimations,

something that is not easily achieved. Imagine that a SNV with 40% reads supporting

the alternate allele would corresponds to 80% CP, yet it is only true in copy number

neutral region in which two copies of the locus exist in all cells. The same observation

would correspond to 40% CP should the SNV fall within a heterozygous deletion region

where only one copy of the locus exists. With this instance, it is made clear that the copy

number information at the locus of the SNV in question, or allele specific copy number

state, will be of tremendous value in correcting the CP estimation. Consequently, data

gathered without copy number estimation in mind, such as exome sequencing, would

suffer from difficulties in CP correction. It is therefore important, for future cancer

genomic profiling experiments, to incorporate as many types of data as possible. The

same sample, being investigated simultaneously by whole genome sequencing, whole

exome sequencing, and Array comparative genome hybridization (aCGH), would yield

much better and conclusive results in subclone structure reconstruction, as it allows

better correction of CP values, as well as more data points be observed given the unified

framework (Section 3.2.1).

4.1.2 DESIGN EXPERIMENTS THAT SPECIFICALLY CONSIDER TUMOR SUBCLONALITY

Often the amount of cells used for DNA sample preparation is minuscule compared to

the entire tumor biopsy. It is therefore difficult to guarantee that the DNA sample pro-
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vides an accurate representation of the distribution of all (if not only partial) subclones.

There have been studies based on multiple spatially separated samples [118]. Other

studies took serial samples at multiple time points throughout the course of the disease

[106, 109, 115]. These spatially and / or temporally segregated samples, when pooled

together, or analyzed separately before merging, would provide much representative

view on the tumor subclone dynamics with much greater resolution.

Single cell colony assay is another fruitful path when it comes to mutation timing. In

Section 3.3.7, we utilized a dataset by Jan et al. [114], which contains targeted deep

sequencing on single cell colonies of HSCs, to demonstrate how our method was able to

correctly predict the co-localization of mutations. Genomic profiling on colonies derived

from single cells would allow direct observation on the linkage between mutations, and

would consequently provide valuable inputs to the solution trimming (Section 3.2.3.3)

step.

4.2 THE IMPACT OF NEW TECHNOLOGIES ON THE PROBLEM OF SUBCLONE

RECONSTRUCTION

Before the dawn of large scale genomic profiling techniques, such as aCGH and NGS, it

was impossible to interrogate cancer genomes into finer details, let alone the realization

and attempts to reconstruct the subclone structure. A wave of new technologies are

now on the horizon that promises further advancement. Two specific techniques, single

molecule sequencing and single cell sequencing, are of particular interest.

4.2.1 SINGLE MOLECULE SEQUENCING

One of the fundamental sources of ambiguity during subclone structure reconstruction

comes from the loss of linkage information as in whether two independently identified

variation events were from the same cell. A potential remedy, albeit with limited power,
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is to check if a single sequencing read spans the loci of both events. If the reads spanning

the loci either contain both events or none of them, the events were from the same cells.

Otherwise, if the events were mutually exclusive on the same read, chances are that

different subclones independently harbor one of these events. However, limited by the

length of the current generation of NGS, which is no longer than 250 bp [171], and the

somatic mutation rate of ~1 to ~100 per Mb in the whole exome [9], the number of

reads spanning two somatic events is too low to be of any practical use.

However, with the emergence of single molecule sequencing [172–177]methods that

promise much longer reads (> 1000 bp), the significance of the aforementioned signal

would be much more applicable. In addition, longer reads would also enable modified

versions of de novo genome assembly algorithms to assemble subclone genomes directly

from the sequencing data. New methods will need to be developed to handle mapping,

assembling, variant calling, and subclone structure reconstructing problems with the

unique properties of the new sequencing data types, but the result will be much more

accurate and less ambiguous.

4.2.2 SINGLE CELL SEQUENCING

Further up the culprit of uncertainty in structure reconstruction is the fact that the

cells, which are the ultimate unit of asexual inheritance, are broken down before ge-

nomic profiling. It is akin to the problem of phylogenetics, only the individual “species”

are mixed together, and from which a single observation is obtained. Should we be

able to obtain genomic profiles of individual cells, or “species”, we would then be able

to tap into the vast knowledge in the field of molecular phylogenetics [178, 179] and

phylogenomics [180, 181]. Single cell sequencing (SCS) [182–187], an emerging tech-

nology, provides just the mean. Several studies that utilizing SCS to investigate tumor

heterogeneity were mentioned in Section 1.4, and there have already been reports on

methods that reconstruct evolution history of tumors using SCS data [188–190].
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Although success stories are many, SCS could pose a different type of inaccuracy.

In most of the studies, the number of cells investigated is between 20 to 100, which

cannot guarantee an unbiased sampling on the underlying tumor population that often

contain cells orders of magnitude more. Each individually determined genome, though,

would serve as good source of confirming or denying whether events co-localize in the

same cell, and help in the process of trimming equivalent structures resulting from the

analysis of bulk sequencing data.

4.3 CONCLUDING REMARKS

Cancer is a formidable foe the humanity faces together. 40 years after the declaration

of “War on Cancer” by then U.S. President Richard Nixon [191–194], it still remains

as a terminal disease. According to the 2010 United States Cancer Statistics [195],

the combined incidence rate among the top 10 cancer types is 458.2 per 100,000, or

roughly 1 in every 200 people, and the death rate is 1 in every 1,000. With the explosion

of high throughput genomic profiling technologies, we are starting to peek behind the

curtain and for the first time realizing the complexity of cancer genome. It is to my most

sincere wish that the work this dissertation presented, along with many others, would

be ultimately of help in shedding lights on the mystery of tumorigenesis, metastasis,

drug resistance, and other cancer related mechanisms, as well as facilitate the push in

advancing cancer treatments, such as personalized therapeutic strategy design, so that

mankind could ultimately be rid of the dire fate cancer brings.
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A
Supplemental Materials

Materials that are relevant to this work, yet don’t really fit anywhere else, are organized

here.

A.1 COMPARISON OF PERFORMANCE AMONG TRAP, PHYLOSUB AND SUB-

CLONESEEKER, AND EXAMPLE OF SUBCLONESEEKER UTILIZING CNV

DATA BASED ON MICROARRAY

As mentioned in Chapter 3, while all three methods (TrAp, PhyloSub, and Subclone-

Seeker) attempt subclone reconstructions, TrAp and PhyloSub require as input raw al-
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lele counts at individual Single Nucleotide Variation (SNV) sites, whereas Subclone-

Seeker expects Cell Prevalence (CP) estimates, ideally of clusters of variants with a

shared CP value. Using each method as prescribed by their authors, TrAp and Sub-

cloneSeeker are both able to refine the results originally published by Ding et al. [113];

PhyloSub and SubcloneSeeker were both used to analyze the hematopoietic stem cell

(HSC) bulk sequencing + single cell colony assay dataset from Jan et al. [114] and

produced comparable results.

We further tested and compared the performance of these packages on a dataset

consisting of ultra-deep sequencing based read count data at a set of 21 validated SNVs

from primary / relapse ovarian tumor samples with matched normal tissues. As TrAp

and PhyloSub are designed to work on the “raw” allele count measurements, we first

provided this input to each of these methods. The TrAp method ran out of memory,

and provided no output, which we assume is because the method is not able to handle

such high number of individual SNVs. PhyloSub did produce output that, we fear, was

minimally informative to a user wishing to understand the resulting subclone structures

(Figure A.1.1).

A.1.1 SUBCLONE RECONSTRUCTION BY TRAP AND PHYLOSUB, USING RAW 454 SEQUENC-

ING READ COUNTS FOR EACH SNVS

We first attempted to perform subclone reconstruction using the raw read counts of

21 validated somatic SNVs with 738x median and 1080x mean coverage, as this is the

format these packages are designed to take as their input. However, TrAp[152] (v0.3)

issued an OutOfMemory error with 4G memory allocated to the JVM, and PhyloSub

[153] (commit 540fdfb003, as of Jun 17, 2014) produced a partial order plot that

made little sense due to the high number of nodes and edges. The data used for the

analysis is shown in Table A.1.1
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A.1.2 SUBCLONE RECONSTRUCTION BY SUBCLONESEEKER, USING SNV CLUSTERS

We clustered the same 21 SNVs in Primary allele frequency (AF) — Relapse AF space,

and identified 4 clusters (Figure A.1.2). SubcloneSeeker produced two structures with

the primary clusters and one solution with the relapse clusters. One of the primary

structures was trimmed away during the primary / relapse tree merging, resulting in a

unique subclone structure for this patient.

A.1.3 SUBCLONESEEKER’S UNIQUE ABILITY TO PERFORM STRUCTURE RECONSTRUCTION

ON ADDITIONAL DATA TYPES

We obtained Copy Number Variation (CNV) segments from TCGA-13-0913 microarray

level 2 probe intensity data, and clustered them in Primary CP — Relapse CP space. The

reconstruction result (Figure A.1.3) suggests the same conclusion as the SNV data does

(Figure A.1.2, ancestral, as well as more recent, subclones in the primary are present in

the relapse.), although the exact structure for the primary tumor sample differs. This

is potentially due to that, although these two datasets were from the same patient, the

DNA samples are different preparations, resulting in different sampling on the under-

lying tumor cell population, and consequently would not necessarily correspond to the

same subclone structure / fraction distribution, or that each could be providing a partial

view on the overall subclone structure.

A.2 ADDITIONAL MATERIALS AND METHODS

A.2.1 SEQUENCING PROCEDURE FOR THE TCGA OVARIAN SERIOUS CARCINOMA DATASET

A.2.1.1 ILLUMINA LIBRARY CONSTRUCTION

DNA samples were constructed into Illumina Paired-end libraries according to a modi-

fied version of the manufacturer’s protocol (Paired-End Sample Preparation Guide, Part
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Figure A.1.2: Subclone structure reconstruction results based on SNV clusters of TCGA-13-
0913. Top) The clusters, as well as their centroid allele frequency values. Bottom) The pri-
mary, relapse, and merged primary / relapse pair structures identified by SubcloneSeeker.
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no. 1005063). Briefly, 500ng of native DNA was sheared into 200-500 bp fragments by

nebulization followed by end-repair, 3’-end adenylation and ligation of the Illumina PE

adapters using the Illumina Paired-End DNA Sample Prep Kit (Part no. PE-102-1001).

Fragments with sizes between 290 and 350 bps were selected using 2% agarose gel

electrophoresis. Ligation Mediated-PCR was performed for 18 cycles of amplification

using primers and enzyme mix supplied in the sample preparation kit. Purification

was performed with the QIAquick PCR purification kit (Qiagen, Part no. 28106) after

enzymatic reactions. Following the final PCR purification, quantification and size distri-

bution of the PCR products were determined using the Agilent Bioanalyzer 2100 DNA

7500 chip.

A.2.1.2 ILLUMINA DNA SEQUENCING

Library templates were prepared for sequencing using Illumina’s cBot cluster generation

system with TruSeq PE Cluster Generation Kits (Part no. PE-401-1001). Briefly, these

libraries were denatured with sodium hydroxide and diluted to 3-6 pM in hybridization

buffer in order to achieve a load density of ~800K clusters / mm2. Each library was

loaded in 3 lanes of a flow cell, and each lane was spiked with 2% phiX control library for

run quality control. The sample libraries then underwent bridge amplification to form

clonal clusters, followed by hybridization with sequencing primer. Sequencing runs

were performed in paired-end mode using the Illumina HiSeq 2000 platform. Using

the TruSeq SBS Kits (Part no. FC-401-1001), sequencing-by-synthesis reactions were

extended for 101 cycles from each end. Real Time Analysis software was used to process

the image analysis and base calling. Sequencing runs generated approximately 80-120

million successful reads (2x100bp) on each lane of a flow cell, yielding ~60Gb per

sample.
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A.2.1.3 ILLUMINA READ MAPPING

Illumina reads were aligned to Human NCBI Build 36 using BWA (bwa-0.5.9rc1). De-

fault parameters are used for alignment except for a 40 bp seed sequence, 2 mismatches

in the seed, and a total of 3 mismatches allowed. BAM files generated from alignment

of Illumina sequencing reads were preprocessed using GATK to recalibrate and locally

realign reads.

A.2.2 SUPPLEMENTAL METHODS REGARDING DATA ACQUISITION FOR THE IGCT SNP AR-

RAY DATASET

DNA copy number analysis were performed using the high resolution Illumina Human-

Omni2.5-8 (Omni2.5) BeadChip Kit (Illumina). In brief, 200ng genomic DNA was first

denatured by NaOH. After nebulization of the sample, isothermal whole genome am-

plification was conducted to uniformly increase the DNA amount. The amplified DNA

was enzymatically fragmented and hybridized to BeadChip for 16–24 h at 48 ◦C. After

washing off unhybridized and non-specifically hybridized DNA fragments, allele-specific

single-base extension reaction was performed to incorporate labeled nucleotides into

the bead-bound primers. Following multi-layer staining to amplified signals from the

labeled extended primers and final washing and coating, beadchips were imaged using

the Illumina iScan system. SNV calls were collected using the Illumina GenomeStudio

Version 2011.1 Genotyping Module 1.9.4. For improved CNV analysis, B allele frequen-

cys (BAFs) were calculated and probe intensity log2 R ratios (LRRs) were extracted after

re-clustering the raw data by applying the GenomeStudio clustering algorithms.
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Glossary

Agilent The company that produces Human

Genome CGH Microarrays. Details regard-

ing the Agilent 1M and 415K platform can be

found at http://www.genomics.agilent.

com/. 47, 49, 50

aneuploid Having a ploidy that is other than

2. 48, 71

angiogenesis The development of new blood

vessels. 2

BAM A binary file format widely used for stor-

ing sequencing reads alignments.. 20

chromothripsis a catastrophic phenomenon

that the chromosomes appear to be shattered

and then stitched back together. 3

diploid Having two copies of the complete

genome.. 45, 55, 56, 69, 71

emPCR emulsion-based PCR. 10, 12

ER-positive Endocrine receptor (estrogen or

progesterone receptor) positive. 3

kataegis a hypermutation region character-

ized by multiple base substitutions. 3

non-Hodgkin lymphoma Any of a large

group of cancers of lymphocytes (http://

www.cancer.gov/cancertopics/types/

non-hodgkin). 7

platinum therapy Chemotherapy with cis-

platin as the anti-neoplastic reagent. 53

ploidy The number of copies of a complete

genome in a cell. Normal cells have two copies,

thus diploid. Tumor cells with copy num-

ber variation could potentially contain three

copies, or triploid, or more.. 17, 26, 48, 50,

68

qPCR quantitative real time PCR. 14
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TaqMan assay A quantitative PCR technique,

using the TaqMan probe, for genotyping.. 97

teratoma a tumor composed of tissues not

normally presented at the site (http://en.

wikipedia.org/wiki/Teratoma). 59

tetraploid Having four copies of the complete

genome.. 50

triplet A set of samples consisting of the nor-

mal, primary tumor and relapse tumor biop-

sies.. 50, 108

triploid Having three copies of the complete

genome.. 50

trisomy having three instances of a particular

chromosome, instead of the normal two. 16
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List of Abbreviations

ACC Adrenocortical carcinomas. 6

aCGH Array comparative genome hybridiza-

tion. 9, 67, 68, 109, 110

ACN absolute copy number. 25, 26, 45, 66, 68

AF allele frequency. 13, 64, 66, 68, 87, 90, 97,

100, 108, 117

AID activation-induced deaminase. 3

AML acute myeloid leukemia. 15, 54, 87, 97,

100, 108

APOBEC apolipoprotein B mRNA-editing en-

zyme catalytic polypeptide-like. 3

BAF B allele frequency. 54–56, 58–60, 121

BI Broad Institute. 2

CCR Complex Chromosomal Rearrangement.

7

CGH Comparative Genomic Hybridization. 8,

9

CLF co-localization frequency matrix. 83

CLL Chronic lymphocytic leukemia. 8, 15, 16

CNV Copy Number Variation. 2, 6, 13, 20, 25,

27, 48, 49, 58, 60, 63, 64, 66–68, 70, 81, 108,

117, 121

CP Cell Prevalence. 25, 26, 42, 57–61, 63–70,

80, 81, 83, 86–88, 90, 93, 100, 109, 114, 117

CRC colorectal carcinoma. 4

ddNTP dideoxynucleotide. 9, 10

dNTP deoxynucleotide. 9–11

EM Expectation Maximization. 64

ESCC Esophageal squamous cell carcinoma. 6

FFT Fast Fourier Transform. 20

FISH fluorescence in situ hybridization. 8

HGP Human Genome Project. 2

HSC hematopoietic stem cell. 15, 97, 100,

102, 108, 110, 114

ICGC International Cancer Genome Consor-

tium. 2
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IGCT Intracranal Germ Cell Tumors. 54, 60,

106, 108

INDEL Insertion or Deletion. 2

LOH loss-of-heterozygosity. 55, 57–60, 63, 64,

66–70, 108

LRR probe intensity log2 R ratio. 55, 121

M-FISH multiplex-FISH. 8

mBAF mirrored B allele frequency. 56–59, 68

MCL Mantle cell lymphoma. 7, 16

MCMC Markov Chain Monte Carlo. 64

MM multiple myeloma. 14

MPN myeloproliferative neoplasm. 16

NCI National Cancer Institute. 2

NGS Next Generation Sequencing. 2, 5, 9, 10,

12, 13, 16, 18, 20, 60, 64, 106, 110, 111

NSCLC non-small-cell lung cancer. 4, 5

OV ovarian serious carcinoma. 106, 108

PI probe intensity. 68

PPi pyrophosphate. 11

RCN relative copy number. 67, 68

RD read depth. 20, 23, 46, 67, 68

RDR read depth ratio. 20, 23, 25, 60

SCC squamous cell carcinoma. 4, 5

SCLC small-cell lung cancer. 4, 5

SCS single cell sequencing. 13, 111, 112

SF subclone frequency. 28, 42, 70, 72, 80, 81,

85, 86, 106

SKY spectral karyotyping. 8

SNP Single Nucleotide Polymorphism. 6, 20,

60

SNUC Sinonasal Undifferenciated Carcinoma.

87, 89

SNV Single Nucleotide Variation. 2, 12–14, 64,

66–69, 71, 81, 97, 108, 109, 114, 117, 121

sPLC secondary plasma cell leukemia. 14

SV Structural Variation. 66

TCGA The Cancer Genome Atlas. 4, 6, 7, 20,

60, 106

TNBC triple-negative breast cancer. 15

WGS whole genome sequencing. 67, 68, 108
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