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Abstract 

Establishment and maintenance of cell polarity has become an increasingly 

interesting biological question in a diversity of cell types and has been found to play a 

role in a variety of biological functions. Previously, it was thought that the echinoderm 

embryo remained relatively unpolarized until the first asymmetric division at the 16cell 

stage of development. However, there is mounting evidence to suggest that polarity is 

established much earlier. I analyzed roles of the cell polarity regulators, the PAR 

complex proteins, and how their disruption in early development affects later 

developmental milestones such as blastula formation. I found that PAR6 along with 

aPKC and CDC42 localize to the apical cortex (free surface) as early as the 2cell stage of 

development and this localization is retained through the gastrula stage. Interestingly, 

PAR1 also colocalizes with these apical markers through the gastrula stage, despite the 

formation of a polarized epithelium and a series of asymmetric divisions.  Additionally, 

PAR1 was found to be in complex with aPKC, but not PAR6, during these developmental 

stages. PAR6, aPKC, and CDC42 are anchored in the cortex by assembled myosin; 

however, a clear role for myosin assembly in PAR1 localization could not be determined. 

Furthermore, myosin assembly was found to be necessary to maintain proper PAR6 

localization through subsequent cleavage divisions. Interference with myosin assembly 

prevented the embryos from reaching the blastula stage, while transient disruptions of 

either actin or microtubules did not have this effect.   Similarly, inhibition of aPKC 
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activity during early cleavage stages impeded blastula formation; however, aPKC is not 

involved in the regulation of the first asymmetric division at the 16cell stage in sea urchin 

embryos.  These observations suggest that disruptions of the polarity complex in the early 

embryo can have a significant impact on the ability of the embryo to reach later critical 

stages in development.   
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Chapter 1. Introduction: Mechanisms of Polarity 

1.1. Overview of Polarity 

1.1.1. Establishment and Maintenance of Polarity 

The establishment and maintenance of polarity is now a well-studied biological 

phenomenon because it is required for such a vast array of biological processes.  

Biological polarity is defined by segregation of molecules into discrete domains and it is 

this segregation that produces distinct functionality in different regions.  Some examples 

of biological polarity include migrating cells, maintenance of neuronal asymmetries, and 

asymmetric distributions of developmental determinants during embryogenesis.  These 

examples highlight the necessity of a differential distribution of cellular components in 

order to carry out specialized functions, such as the release of a neurotransmitter or the 

development of filopodia. The signaling components required for these polarity events 

are well conserved across a wide array of organisms and biological activities. 

The establishment of polarity can be broken into four primary components: 

breaking symmetry, establishing cortical landmarks, polarizing the cytoskeleton, and 

amplifying and maintaining the polarized state (McCaffrey and Macara, 2009).  

Maintenance of the polarized state or its disassembly then becomes essential for carrying 

out various functions. While embryos may only need to maintain a signal for 

endomesoderm specification for a short duration in development, neurons need to be able 

to maintain the signal for their dendritic and axonal processes throughout the lifetime of 

the cell.   The maintenance of polarity is carried out by a variety of cellular factors such 

as the cytoskeleton and endocytic machinery. These cellular components are then utilized 

for a range of processes including translocation, anchoring, active exclusion, and positive 
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feedback loops (McCaffrey and Macara, 2012). The asymmetric distribution of cellular 

components can then ensure that cellular events only occur in the particular regions in 

which all the necessary factors are properly localized. 

1.1.2. Types of Polarity: Cell, Embryonic, and Planar Cell 

There are three main types of biological polarity: embryonic, cell, and planar cell 

polarity (PCP).  All of these types of polarity exhibit asymmetric distribution of RNAs, 

lipids, and proteins that allow for the development of a specialized function in one region 

over another. Neurons are a common example of a highly polarized cell; their axons 

function to transmit signals and dendrites are found on the opposing end to receive those 

signals (Nishimura et al., 2005).  In addition to neurons, epithelial cells are also 

frequently studied models of polarity.  Epithelial cells are widely present throughout the 

body and polarize to form epithelial sheets that are responsible for lining organs and 

ensuring that transcellular transport occurs in the correct direction (McCaffrey and 

Macara, 2012;St Johnston and Ahringer, 2010).   Embryonic polarity, on the other hand, 

refers to the asymmetric distribution of regulators of different developmental fates. These 

developmental determinants must reach the right location at the right time during 

development; any errors in this precision could be extremely detrimental to the 

developing embryo.   Dishevelled is a common example of embryonic polarity as its 

accumulation in the vegetal pole of sea urchins, among other species, is known to 

regulate endomesoderm formation (Weitzel et al., 2004;Wikramanayake et al., 1998). 

Planar cell polarity, on the other hand, is used to describe the orientation of cells along an 

axis within the plane of an epithelium (Vladar et al., 2009).  A typical model of planar 

cell polarity is the convergent extension movement that occurs during gastrulation, as 
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blastomeres from the blastula stage alter their phenotype and begin their migration into 

the blastocoel in order to form the three primary germ layers. An example of this can be 

seen during zebrafish gastrulation when planar cell polarity is required for cell elongation 

and mediolateral alignment (Dohn et al., 2013). While these three different types of 

polarity polarize an organism in distinct ways, there is a core group of proteins that are 

often utilized by all three to regulate polarity. 

 

1.2. The Discovery of the PAR Proteins 

1.2.1. Initial Findings in C. elegans Embryos 

The PAR proteins are a core group of signaling proteins that are major regulators 

of cell polarity. They were first discovered by Kempues and colleagues in a screen of 

maternal embryonic lethal genes in Caenorhabditis elegans (Kemphues, 2000;Kemphues 

et al., 1988). The first division following fertilization is asymmetric in C. elegans 

embryos and the PAR proteins were found based on their involvement in the regulation 

of this first division. Since their initial discovery each of the PAR proteins has been 

further characterized (Figure 1.2.1.).  PAR1 and PAR4 have both been identified as 

serine-threonine kinases (Guo and Kemphues, 1995;McCaffrey and Macara, 2009;Watts 

et al., 2000). PAR2 is a nematode specific PAR protein; it is a RING (Really Interesting 

New Gene) finger domain protein that functions as an E3 ubiquitin ligase (Boyd et al., 

1996;Levitan, et al., 1994). PAR3 and PAR6 are both PDZ (post synaptic density protein 

(PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein 

(zo-1)) domain proteins that act as scaffolding proteins for the other PAR proteins as well 

as for other polarity regulators, such as aPKC (atypical protein kinase C) (Etemad-
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Moghadam et al., 1995;Hung and Kemphues, 1999;Tabuse et al., 1998;Watts et al., 

1996).  Lastly, PAR5 is a 14-3-3 protein that is recruited to phosphorylated serine and 

threonine residues (Morton et al., 2002).    While PAR1 and PAR2 become enriched at 

the posterior cortex, PAR3 and PAR6 are enriched in the anterior cortex in C. elegans 

embryos (Kemphues, 2000).   PAR4 and PAR5 are then symmetrically localized in both 

the cortex and the cytoplasm (Goldstein and Macara, 2007).   Localization of the 

posterior proteins is necessary for the exclusion of the anterior proteins and vice versa 

(Kemphues, 2000).  These mutual exclusion events ensure proper segregation of the PAR 

proteins and help to maintain the polarized domains found in the C. elegans embryo 

(Figure 1.2.1.). Asymmetry is not established until after fertilization in C. elegans 

embryos when the PAR proteins help to coordinate the localization of the mitotic spindle 

and cause asymmetric division (Ahringer, 2003).  

1.2.2. The Role of the PAR Complex 

In addition to the PAR proteins, the kinase aPKC and the GTPase CDC42 (Cell 

division control protein 42 homolog) have been found to play a significant role and 

function along with the PAR proteins in the establishment and maintenance of polarity 

(Figure 1.2.1.).  PAR3, PAR6, and aPKC are known to interact in what is referred to as 

the PAR complex (Joberty et al., 2000;Lin et al., 2000;McCaffrey and Macara, 

2009;Suzuki et al., 2001;Welchman et al., 2007).  This PAR complex is one of the major 

regulators of polarity across a diversity of cell types and organisms (Figure 1.2.2.).  The 

PAR complex is utilized to regulate polarity in anterior or apical domains, depending on 

the organism (McCaffrey and Macara, 2012).  CDC42 was later found to act upstream of 

the PAR complex through its interaction with PAR6 (Joberty et al., 2000;Lin et al., 
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2000a;McCaffrey and Macara, 2009).  aPKC is known to inhibit PAR6 activity, but 

through its association with CDC42, this repression is partially relieved (Goldstein and 

Macara, 2007).  CDC42 has also been shown to be necessary for the proper localization 

of the PAR complex in the cell cortex (Goldstein and Macara, 2007).  CDC42 can be 

used to recruit the PAR complex to regions of the cortex where CDC42 is activated 

(McCaffrey and Macara, 2012).  Before the discovery of its interaction with the PAR 

complex, CDC42 was already a known polarity protein as this small GTPase is a major 

regulator of the actin cytoskeleton (Iden and Collard, 2008).  aPKC activity maintains the 

anterior domain through phosphorylation events that exclude other proteins from the 

anterior domain.  aPKC phosphorylates PAR1, which both inhibits the kinase activity of 

PAR1 and causes its disassociation from the membrane (Hurov et al., 2004).  The self-

oligomerization of PAR3 is additionally necessary for the formation of higher-order 

complexes and maintenance of the polarized state (Dawes and Munro, 2011;Feng et al., 

2007).  The PAR complex, however, is not a constitutive complex; the interaction of 

PAR3, PAR6, and aPKC is regulated by numerous GTPases, kinases, and other binding 

partners (McCaffrey and Macara, 2012).  The sometimes transient nature of the 

interactions of the PAR complex allow for an additional level of regulation of polarity.   

1.2.3. The Role of the Posterior PAR Proteins 

 PAR1 and PAR2 function to regulate polarity in the posterior end of the C. 

elegans embryo (Figure 1.2.1).  PAR1 is a well-conserved kinase that was independently 

discovered as microtubule-associated-regulatory-kinase (MARK), which is known to 

phosphorylate microtubule-associated-proteins (MAPs) such as Tau and MAP4 (Hurov 

and Piwnica-Worms, 2007). Depending on the organism, these phosphorylation events 
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serve to either stabilize or destabilize microtubules (Doerflinger et al., 2003).   Similar to 

aPKC in the anterior cortex, PAR1 functions to maintain polarity in posterior cortex 

through phosphorylation events.  PAR3 is a known target of PAR1 and its 

phosphorylation causes the dissociation of PAR3 from the cortex.  Interestingly, par-1 

mutants in C. elegans embryos do not show severe defects in polarity (Boyd et al., 

1996;Nance and Zallen, 2011).   

PAR2 has to date only been identified in the C. elegans embryo.  In these 

embryos it is not required for the establishment of polarity, but is needed to maintain the 

polarized state of the zygote.  PAR2 functions to antagonize PAR3 recruitment of 

myosin, which allows for cortical flow towards the anterior (Zonies et al., 2010).  

Although PAR2 and PAR1 both localize the posterior cortex, it is not known if they 

regulate each other (Nance and Zallen, 2011).  Furthermore, both of these proteins 

independently bind to the cortex (Boyd et al., 1996).  While PAR2 expression has only 

been verified in the C. elegans embryo, another protein lethal giant larvae (LGL) is 

believed to function redundantly with PAR2 (Beatty et al., 2010;Hoege et al., 2010).  

While it not yet known how LGL regulates polarity, LGL is known to bind to myosin and 

to be involved in vesicle trafficking (Nance and Zallen, 2011;Strand et al., 1994).   

1.2.4. The Role of the Cytoplasmic PAR Proteins 

 While the PAR complex proteins and the posterior PAR proteins have been 

extensively studied, there is significantly less research on the roles of PAR4 and PAR5.  

Unlike the other PAR proteins, PAR4 and PAR5 are symmetrically localized following 

fertilization in the C. elegans embryo (Figure 1.2.1.) (Morton et al., 1992;Morton et al., 

2002;Watts et al., 2000).  The 14-3-3 protein PAR5 is known to shuttle the other PAR 
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proteins to their respective domains, following phosphorylation events (McCaffrey and 

Macara, 2012). PAR5 recognizes and binds proteins with certain phosphorylated serine 

residues (Macara, 2004).  In addition, binding of PAR3 with PAR5 prevents 

oligomerization of PAR3, which is required for its localization (Benton and Johnston, 

2003).  In the absence of PAR5, the anterior and posterior PAR proteins are not properly 

segregated and become intermixed (Morton et al., 2002). PAR5 is also involved in the 

regulation of cell cycle timing and in WNT signaling during early development in the C. 

elegans embryo (Aristizábal-Corrales et al., 2013).  The targets of the kinase PAR4, 

however, to date remain relatively unknown (Nance and Zallen, 2011).  PAR4 is required 

for polarization during oogenesis in C. elegans, which occurs prior to the establishment 

of the anterior-posterior axis.  This suggests that PAR4 functions to prepare the oocyte 

for polarization (Morton et al., 1992).  Further work has shown that PAR4 mutations 

reduce nonmuscle myosin contractility through its regulation of annilin (Chartier et al., 

2011).  Additional data in Drosophila have shown that PAR4 regulates apical-basal 

polarity under normal conditions (Martin and St Johnston, 2003).  Future work will more 

clearly elucidate the functions of these proteins in the establishment and maintenance of 

polarity. 

1.2.5. Cytoskeletal Regulation of the PAR Proteins Localization and Function 

 The cytoskeletal regulation of the PAR proteins has been an intensive area of 

study.  In the C. elegans embryo the PAR proteins have been found to segregate to their 

anterior and posterior domains following fertilization due to changes in the actomyosin 

cortex.  Polarization of the PAR proteins can be blocked by the knockdown of myosin 

and the inhibition of actin (Cowan and Hyman, 2007;Gonczy and Rose, 2005).  



  8 

Following fertilization the sperm centrosome moves to the pole closest to the site of 

sperm entry and specifies this region as the posterior.  Non-muscle myosin II and actin 

are initially distributed throughout the cortex and contract with no net directionality. 

Once the embryo begins polarization, however, contractile cortical ruffles become limited 

to the anterior.  This leaves the posterior cortex smooth and the PAR proteins localize to 

distinct anterior and posterior domains (Nance and Zallen, 2011). Actomyosin flow is 

directed towards the anterior and induces the translocation of PAR3, PAR6, and aPKC 

(Munro et al., 2004).   Advective flow causes the anterior PAR proteins to be passively 

transported to the anterior domain and clear from the posterior domain (Goehring et al., 

2011).  Myosin first begins to clear in the posterior adjacent to the sperm centrosome; 

centrosome ablation experiments have shown that the anterior PAR domain will not form 

in the absence of the sperm centrosome (Cowan and Hyman, 2004b;Munro et al., 

2004;Nance and Zallen, 2011).  The sperm centrosome can initiate polarity from any 

position within the embryo; however, increased distance from the cortex increases the 

time needed to initiate polarity (Bienkowska and Cowan, 2012).  It is not yet known if a 

polarity cue emanates from the centrosome and the involvement of microtubules in the 

polarization of the PAR proteins remains controversial (Nance and Zallen, 2011).   Rho 

GTPases such as CDC42 and RHO-1/RhoA also play important roles in the maintenance 

of polarity (Aceto et al., 2006;Schonegg and Hyman, 2006).   Their interactions with 

actin, myosin, and the PAR proteins help to generate positive feedback loops that are 

required for maintenance of the polarized state (McCaffrey and Macara, 2012).  This 

dependence on the actomyosin cortex for the polarization of the PAR proteins is 
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conserved in other model systems such as Drosophila, and mice (David et al., 

2010;Leibfried et al., 2013;Simões et al., 2010;Solinet et al., 2011).   

1.2.6. The Role of the PAR Proteins in Cells, Cancer, and Embryos 

 Since their initial discovery in the C. elegans embryo, the PAR proteins have been 

found to be a well conserved group of proteins that regulate polarity in wide variety of 

multicellular eukaryotes (Figure 1.2.2.).  The PAR proteins are involved in many 

different biological processes at multiple times in both development and disease.  The 

manner in which the PAR proteins polarize and control polarity in all of the various 

biological processes, however, is well maintained.    Here their roles in the polarity of 

cells, cancer, and embryos are examined. 

 The PAR proteins regulate polarity in variety of mature cell types, including 

epithelial and neuronal cells. Neurons are a classic example of a polarized cell. They 

must be able to form and maintain both dendritic and axonal processes at opposing ends 

of the cell so that they can receive and then transmit neurological signals from one 

synapse to the next.  The PAR proteins are essential for maintaining neuronal 

asymmetries.  PAR3 and PAR6 are involved in axon formation in hippocampal neurons, 

while PAR1 function is needed for dendrite formation (Shi et al., 2003;Terabayashi et al., 

2007).  PAR3 has subsequently been found to regulate microtubule stability, which is 

necessary for axon specification whereas PAR1 is needed for microtubule growth (Chen 

et al., 2012;Hayashi et al., 2011a).   

Epithelial cells must also be able maintain apical-basal polarity in order to carry 

out their barrier and transport functions.  The apical domain faces the outer surface of the 

surrounding tissue, while the basolateral domain is defined as regions of cell contact and 
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the site of adherens junctions.  The PAR proteins have been found to have important roles 

in the establishment and maintenance of polarity in the epithelial tissue as well as in 

spindle orientation during their divisions.  In the epithelium of Drosophila PAR6 and 

aPKC regulate polarity in the apical marginal zone, while PAR3 regulates polarity at the 

adherens junctions (Doerflinger et al., 2010;Morais-de-Sá et al., 2010).  Experiments in 

epithelial cell tissue culture demonstrated the involvement of PAR3, PAR6 and aPKC in 

the orientation of the mitotic spindle (Durgan et al., 2011;Hao et al., 2010).  In C. 

elegans, the intestinal epithelial cells require PAR3 to recruit adherens junction proteins 

like E-cadherin to the apical surface during apical junction maturation (Achilleos et al., 

2010).  The posterior PAR protein, PAR1, also plays a significant role in the regulation of 

epithelial cell polarity.  For example, PAR1 is involved epithelial lumen polarity and 

spindle orientation through its regulation of microtubules, myosin-II, E-cadherin, and 

LGN (Leucine-Glycine-Asparagine)-NuMA (Nuclear mitotic apparatus protein 1)(Cohen 

et al., 2004;Cohen et al., 2007;Lázaro-Diéguez et al., 2013).  

 Many cancers are derived from epithelial tissue and there is mounting evidence to 

suggest that a loss of polarity is a hallmark feature of cancerous tissues (McCaffrey and 

Macara, 2012).  As the PAR proteins are known to regulate both polarity and spindle 

orientation, particularly in epithelial tissue, their involvement in cancer development and 

progression has begun to be studied.  PAR6 and aPKC have been found to upregulated in 

certain cancers (Eder et al., 2005;Nolan et al., 2008).  aPKC has also been found to be 

mislocalized from the apical membrane in both breast and ovarian cancers (Kojima et al., 

2008). PAR6 activity is required for proper tight junction formation and aPKC 

localization, which becomes misregulated in breast cancer (Cunliffe et al., 2012).  PAR3, 
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on the other hand, has been shown to have both tumor-suppressive and tumor-promoting 

properties depending on the type of tumor in skin cancer, while loss of PAR3 promotes 

tumor progression and metastasis in breast cancer (Iden et al., 2012;McCaffrey et al., 

2012).  Mutations in PAR4 are also known to cause the heritable Peutz-Jegers syndrome, 

which elevates risks of multiple types of cancer including pancreatic and liver cancer 

(Wodarz and Näthke, 2007).  Collectively, these results highlight that, depending on the 

mutations in particular cancers, the PAR proteins can either contribute to tumor 

suppression or progression.  A better understanding of how the PAR proteins function in 

cancer development is required before these proteins can be utilized as possible drug 

targets and therapeutic interventions. 

The PAR proteins have been found to play a conserved role in polarity during 

development across a multitude of species including Drosophila, Xenopus, mice, and 

humans (McCaffrey and Macara, 2009) (Figure 1.2.2.). PAR6 along with aPKC and 

CDC42 have been shown to regulate neuroblast polarity in Drosophila (Atwood et al., 

2007). Drosophila also requires the presence of aPKC in order to properly form adherens 

junctions around the apical domain during gastrulation (Harris and Peifer, 2007).  In 

mouse embryos PAR3 and aPKC become polarized at the 8 cell stage of development 

and help to regulate cell divisions (Plusa et al., 2005;Vinot et al., 2005).  PARD6B also 

plays a role in trophoectoderm formation in the mouse embryo and aPKC is involved in 

endoderm maturation (Alarcon, 2010;Saiz et al., 2013).  Additionally, in Xenopus PAR1 

along with aPKC and 14-3-3 (PAR5) are critical for gastrulation (Hyodo-Miura et al., 

2006;Kusakabe and Nishida, 2004).  Other studies have also shown that aPKC is 

involved in polarized cell divisions during the blastula stage of development (Chalmers et 
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al., 2003;Chalmers et al., 2005;Saiz et al., 2013). Further work has shown that the apical 

localization of the PAR complex proteins is required for the asymmetric division at the 8 

cell stage in ascidian embryos (Patalano et al., 2006). While the PAR proteins have been 

extensively studied for their roles in early polarity in protostome embryos, less is known 

about their role during the early development of the deuterostomes. 

1.2.7. Conclusions 

 There has been an explosion in research on the PAR proteins since their initial 

discovery in the C. elegans embryo.  This has been in large part because of their 

involvement in so many different processes that are well conserved across a variety of 

multicellular eukaryotes.  The manner in which they polarize to anterior/posterior 

domains or apical/basolateral domains seems to be both well conserved and necessary for 

their regulation of polarity.   The localization of the PAR proteins is dependent on a 

number of factors including the active exclusion of opposing PAR proteins and the 

activity of the actomyosin cortex.  The PAR proteins are required for a number of 

different cellular processes. They are key regulators of spindle orientation in both 

symmetric and asymmetric divisions.  They are also needed to maintain cellular 

asymmetries in mature cell types such as epithelial cells and neurons.  Their 

misregulation is now known to contribute to the development and progression of several 

different types of cancer. The role of the PAR proteins during the development and 

embryogenesis of many model organisms is well established. However, while the PAR 

proteins involvement throughout embryogenesis and oocyte maturation in protostomes is 

well known, research on deuterostome development has largely focused on later 

developmental events such as gastrulation and apical constriction.     
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1.3. Sea Urchin Embryos as a Model of Deuterostome Development 

1.3.1.  Historical Perspective on Sea Urchins as a Model System 

The sea urchin embryo has long been used as model system of deuterostome 

development (Ernst, 2011). The sea urchin embryo has been a classic model organism for 

the study of cellular and developmental biology since the 1800s because of the numerous 

advantages this system has in the laboratory. Their gametes are easy to obtain and some 

species have large, optically clear embryos that are perfectly suited for live cell imaging.   

A single adult urchin also produces copious amounts of gametes that readily allow for 

biochemical analysis and the generation of large data sets.  Additionally, although they 

are not a genetic model system like Drosophila and C. elegans, they are a genomic 

system and thus molecular components can be identified (Cameron et al., 2009;Sodergren 

et al., 2006).  Recent work has also developed a pantropic retrovirus transduction tool in 

the sea urchin embryo, which can be utilized to study molecular components in later 

development (Core et al., 2012).  Their development following fertilization is 

synchronous, which additionally allows for greater analysis of specifically timed events, 

either during the cell cycle or during embryogenesis.  Sea urchin embryos also have 

external development and develop very similar to higher order vertebrates and mammals 

through gastrulation.  The combination of all of these factors has allowed for significant 

analysis of biological processes in the sea urchin embryo. 

There have been numerous seminal contributions to the fields of cellular and 

developmental biology through the observation of sea urchin embryos. Oskar Hertwig 

first utilized echinoderm and frog eggs to assess the role of the mitotic spindle in 
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positioning the cleavage plane.  He created what would become known as “Hertwig’s 

rules” (Hertwig, 1884).  He pioneered the idea that cells divided perpendicular to their 

longest axis, which worked well to explain the division plane of symmetrically-dividing, 

cleavage stage echinoderm embryos. Hertwig also was the first to observe the fusion of 

the sperm and egg nuclei following fertilization in sea urchin embryos (Ernst, 2011). 

Later work by Ray Rappaport further expanded the experiments of Hertwig and the 

prediction of the division plane. Rappaport performed experiments that changed the 

shape of the normally spherical echinoderm embryo into various shapes including cigars, 

ice cream cones or dumbbells.  Through these experiments he found that that although 

most divisions followed Hertwig’s rules, there are some instances of unusual sites of 

furrow formation.  In these cases, Rappaport observed that a normal furrow that bisected 

the spindle formed, but a second additional furrow ingressed at one pole where an aster 

intersected (Rappaport, 1996).  These would later become known as Rappaport furrows. 

Rappaport also classically demonstrated that there existed a positive cue that emanated 

from the astral microtubules, which stimulated contraction during cytokinesis 

(Rappaport, 1996). 

Theordor Boveri famously found that chromosomes located in the nucleus were 

the determinants for development (Boveri, 1902). Later work by Jean Brachet helped to 

establish what was considered the central dogma of molecular biology that is that DNA 

(deoxyribonucleic acid) codes for RNA (ribonucleic acid), which codes for protein.  

Brachet discovered that chromosomes were made of DNA, RNA was found in the 

cytoplasm, and that RNA regulated protein synthesis (Brachet, 1950;Brachet et al., 

1963;Ernst, 2011). Other contributions to the field from work in sea urchin embryos 
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include the discovery of long-lived maternal RNAs, polyadenylation of mRNAs 

(messenger RNA), and the cloning of the first eukaryotic gene (Gross and Cousineau, 

1963;Kedes et al., 1975;Slater et al., 1973;Wilt, 1973).   It was not until 2002, however, 

that a Nobel Prize was won for work using sea urchin embryos.  Tim Hunt shared the 

Nobel Prize for the discovery of cyclins, which are critical for the regulation of the cell 

cycle (Evans et al., 1983). These early experiments greatly contributed to our knowledge 

of cellular and molecular biology.   

There have additionally been significant discoveries in developmental biology 

using sea urchin embryos.  Driesh showed that the blastomeres separated up to the 4 cell 

stage were able to make normal plueteus larvae, demonstrating the potency of an 

individual blastomere.   He also found that causing the normally equatorial third division 

(Figure 1.3.1.) to become meridional forced nuclei that would have normally produced 

dorsal structures to be in ventral cells.  These experiments found that the fate of the 

nucleus depended on its location in the embryo. The combination of these data revealed 

that sea urchin embryos undergo both regulative development and conditional 

specification (Driesch, 1892;Gilbert, 2006). Further work by Sven Hörstadius examined 

the developmental potential of different regions of the embryo.  His data showed that if 

the animal half of the embryo was isolated at the 60cell stage of development, the embryo 

developed into a ciliated ball of ectoderm.  However, if the animal half was also 

combined with micromeres a normal larva formed.  A secondary gut could additionally 

be formed if the micromeres were transplanted to the animal half of the embryo 

(Hörstadius, 1939).  The ability to form a secondary axis has been an area of intensive 

investigation since Hörstatius’ initial experiments (McClay et al., 2000;Ransick and 
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Davidson, 1993;Ransick and Davidson, 1995). Recent work by Eric Davidson has 

pioneered the examination of the gene regulatory networks in the sea urchin embryo and 

his work on the specification of the endomesoderm network has made the sea urchin 

embryo the most well annotated gene regulatory network (Davidson et al., 

2002a;Davidson et al., 2002b;Ernst, 2011).  This collective work has demonstrated the 

impact the study of sea urchin embryos has had on our current understanding of cellular 

and developmental biology.   

1.3.2. Previous Views and Findings of Early Polarity in the Sea Urchin Embryo 

The sea urchin embryo was previously thought to remain relatively unpolarized 

until at least the 16 cell stage of development, the first time that they undergo asymmetric 

division (Schroeder, 1987) (Figure 1.3.1.). At this stage β catenin becomes nuclear only 

in the micromeres of the vegetal pole, which is critical for endomesoderm specification 

during gastrulation (Weitzel et al., 2004;Wikramanayake et al.; 2004;Wikramanayake et 

al., 1998).  These micromeres have also recently been found to be germ line precursors 

(Juliano et al., 2006;Yajima and Wessel, 2012).  Classic experiments by Driesch had 

already revealed that the blastomeres of these embryos can be separated up until the 4 

cell stage and produce viable adults, demonstrating that developmental determinants are 

still symmetrically segregating during the first two divisions (Driesch, 1892).  Examples 

of later polarity in the sea urchin embryo have been well established.  At the blastula 

stage the sea urchin embryo forms a polarized epithelium.  Here the embryo has hatched 

from its fertilization envelope and has become free swimming, using the cilia that now 

line the free cell surface (Lepage et al., 1992)(Figure 1.3.1.).  Significant work has also 

investigated the 60 cell stage of development in these embryos, which has generated a 
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developmental fate map for these embryos.  At this stage each blastomere has been 

reversibly committed to a particular cell fate.  The animal half of the embryo will give 

rise to ectoderm, while the vegetal tiers will give rise to the endoderm and mesoderm 

(Logan and McClay, 1997) (Figure 1.3.1.).  Even later in development during 

gastrulation, the sea urchin embryo exhibits the classic planar cell polarity movements of 

convergent extension in order to form the archenteron or primitive gut (Martins et al., 

1998). Thus, while there are examples of polarity later in development in the sea urchin 

embryo, polarity during the early cleavage stages has remained largely ignored.   

However, there is now mounting evidence to suggest that these embryos polarize 

earlier than originally thought (Figure 1.3.2.). For example, lectin receptors have been 

shown to have an apical surface localization (McCaig and Robinson, 1982).  Schroeder 

also demonstrated that the apical surface is enriched in microvilli, whereas the basolateral 

surface is relatively free of these actin protrusions even upon dissociation (Schroeder, 

1988). Additionally, cadherin localization polarized to new sites of cell-cell contact 

(Miller and McClay, 1997).  More recently Burke and colleagues have shown that βC 

integrins are found only on the outer surface that is exposed to the extracellular matrix as 

early as the 2 cell stage of development and that these integrins associate with focal 

adhesion kinase, which is necessary for proper cortex formation (Burke et al., 2004;Chan 

et al., 2013). Lipid rafts are additionally polarized to the free cell surface following the 

first cleavage in sea urchin embryos (Alford et al., 2009;Ng et al., 2005).  Developmental 

determinants such as dishevelled have also been found to have polarized localization in 

the vegetal cortex in the unfertilized egg (Leonard and Ettensohn, 2007;Weitzel et al., 
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2004).  These examples highlight that there is an early establishment of polarity in the sea 

urchin embryo, despite symmetric cleavages. 

1.3.3. The PAR Proteins in the Sea Urchin Embryo 

Although the PAR proteins have been examined across a wide variety of species, 

it was not until recently that they were explored in sea urchins (Alford et al., 

2009;Pruliere et al., 2011;Shiomi and Yamaguchi, 2008;Shiomi et al., 2012). The PAR 

proteins were utilized to show that the sea urchin embryo exhibits polarity following the 

first cleavage (Figure 1.3.2.).  PAR6, aPKC, and CDC42 all localize to the apical cortex 

as early as the 2 cell stage of development in these embryos and this apical polarity was 

found to be functional, as endocytosis was only observed on the apical surface even upon 

dissociation of the blastomeres (Alford et al., 2009). PAR6, aPKC, and PAR1 were also 

cloned in Hemicentrotus pulcherimmus and their expression pattern was examined 

through in situ hybridizations and RT-PCR.  PAR6, aPKC, and PAR1 were uniformly 

distributed along the animal-vegetal (AV) axis throughout early cleavage stages.  PAR1 

becomes transiently vegetal following hatching, while aPKC was restricted to the primary 

mesenchyme cells and the vegetal plate at the blastula stage (Shiomi and Yamaguchi, 

2008). Additional work has shown through morpholino knockdown of PAR6 expression, 

PAR6 is required for skeletogenesis and gut differentiation at the larval stage of 

development.  The authors suggest that PAR6 plays a role in the deposition of 

biominerals in the syncytial cable and are necessary to stabilize the skeletal rods (Shiomi 

et al., 2012).  Other work in the Paracentrotus lividus species of sea urchin embryos has 

found that aPKC activity is required for both ciliogensis and swimming starting at the 

blastula stage of development (Pruliere et al., 2011).   These initial findings in the sea 
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urchin embryo suggest that the PAR proteins could play an important role in early 

development and that their activity during the early cleavage stages could be required for 

the later developmental processes that are already known to involve the PAR proteins.  

1.3.4. Conclusions 

 The sea urchin embryo has long stood as a model for deuterostome development. 

Scientists have utilized these embryos since the 1800s and they have been upheld as a 

classic model organism to present day.  The numerous advantages of the sea urchin 

embryo have allowed them to remain relevant to current science, despite the fact that they 

are not a genetic system.  While once thought to remain unpolarized until the first 

asymmetric division at the 16 cell stage of development, there is now growing evidence 

to suggest that these embryos polarize during earlier cleavage stages.  Additionally, 

although the PAR proteins have been extensively studied for their roles in the 

development of protostomes such as C. elegans and Drosophila, their role during the 

early development of deuterostome embryos has not been thoroughly reviewed.  The 

PAR proteins are now known to be imperative for later developmental events in the sea 

urchin embryo, but their role in early cleavage stages has not been well characterized 

(Pruliere et al., 2011;Shiomi et al., 2012).  Here I will examine the role and polarization 

of the PAR proteins during early development and how disruptions in these proteins 

during early cleavage stages affect later developmental events. 

 

1.4. Specific Aims 

1.4.1. Studies on the Impact of Disruptions in Early Polarity on Later Development 
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 Previous studies from our lab have shown that PAR6, aPKC, and CDC42 localize 

to the apical cortex as early as the 2 cell stage of development in the sea urchin embryo, 

while other groups have examined the role of these proteins during later development 

(Alford et al., 2009;Pruliere et al., 2011;Shiomi and Yamaguchi, 2008;Shiomi et al., 

2012). The goal of this project was to determine what role the establishment of early 

polarity plays in later development.  Specifically, I examined how disruptions in the 

localization of PAR6, aPKC, and CDC42 affect later polarity dependent events in 

development, such as the formation of a polarized epithelium at the blastula stage.  My 

hypothesis was that these embryos required the early polarized localization of the PAR 

complex in order for development to proceed normally.  I found that PAR6, aPKC, and 

CDC42 remain localized to the apical cortex through the gastrula stage of development 

and that these proteins are anchored in the cortex specifically by myosin assembly as 

disruption of myosin light chain kinase (MLCK) activity led to the cytoplasmic pooling 

of these proteins.  Cell-cell contact was additionally needed to maintain the apical, but 

not cortical, localization of PAR6, aPKC, and CDC42.  While prior work in our lab has 

found that aPKC activity is necessary for proper spindle orientation during early 

cleavages, here I found that aPKC is not involved in the first asymmetric division in the 

sea urchin embryo at the 16 cell stage.  However, aPKC activity during early cleavage 

stages is essential for blastula formation.  Similarly, perturbations of MLCK activity 

severely impeded the ability of the embryos to reach the blastula stage. These data 

demonstrate the importance of early polarity in deuterostome embryos and the significant 

functional impact it has on later developmental events. 
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1.4.2. A Closer Examination of the role of PAR1 in Sea Urchin Development 

 The second aim of this project was to determine what role the traditionally 

posterior PAR protein, PAR1, plays in the establishment of polarity in the sea urchin 

embryo.  Prior to this work, the mRNA transcript expression pattern of PAR1 was 

examined in sea urchins and was found to be expressed throughout embryogenesis, only 

becoming more vegetal in localization following the hatching of the embryo from the 

fertilization envelope (Shiomi and Yamaguchi, 2008).  Here I found that the PAR1 

protein colocalizes with the apical markers, PAR6, aPKC, and CDC42 in the cortex of 

cleavage stage embryos.  The colocalization of these proteins is maintained through the 

first asymmetric division at the 16 cell stage and is further retained at the blastula stage 

after the formation of the polarized epithelium.  Furthermore, PAR1 remains colocalized 

with the PAR complex proteins at the gastrula stage, well after hatching from the 

fertilization envelope, and after the embryo has undergone the PCP movements of 

convergent extension during gastrulation.  Through co-immunoprecipitation assays, 

PAR1 was also found to be in complex with aPKC during these developmental stages.  

While PAR1 was found to be dependent on cell-cell contact to maintain its apical 

localization similar to the PAR complex proteins, which cytoskeletal components anchor 

PAR1 in the cortex remains to be determined.  Additionally, I generated a DNPAR1 

(dominant negative) construct to be used for microinjection into the sea urchin embryos 

in order to assess what role PAR1 may play in spindle orientation during early 

development.  These insights into PAR1 function in the sea urchin embryo highlight a 

unique localization pattern that may be required for proper development.  
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B. 

 

 

Figure 1.2.1. The signaling pathway of the PAR proteins. (A) Schematic diagram of the 

protein domains and interactions of each PAR protein (McCaffrey and Macara, 2012).  

The Phox and Bem1 domain (PB1) is found in both aPKC and PAR6 and forms both 

homodimers and heterodimers.  aPKC additionally has a zinc finger domain (Zn) and a 

kinase domain.  PAR6 and PAR3 act as scaffolding proteins through their PSD95, Dlg1, 

ZO-1 domains (PDZ).  PAR3 also has atypical protein kinase C binding domain 

(aPKCBD), which is utilized in PAR complex formation, and a conserved region domain 
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(CR1), which is required for self-oligomerization.  PAR1 proteins contain a kinase 

domain, ubiquitin-associated domain (UBA), and kinase-associated domain (KA).  (B) 

Schematic diagram of the signaling pathway of the PAR proteins (Macara, 2004).  After 

receiving an unknown polarization cue, CDC42 becomes activated by a guanine 

nucleotide exchange factor (GEF).  Activated CDC42 recruits PAR6 and aPKC to the cell 

cortex, which is needed for PAR3 recruitment and phosphorylation.  PAR3 can also be 

phosphorylated by PAR1 in the lateral domain, which promotes its association with 

PAR5.  PAR5 then shuttles PAR3 back to the apical surface where it associates with the 

PAR complex.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  25 

 

 

1.2.2. The localization pattern of the PAR proteins during development.  Schematic 

representation of the polarization of the PAR proteins in several different model 

organisms (Ohno, 2001).  Anterior or apical PAR proteins (PAR3, PAR6, and aPKC) are 

outlined in red.  Posterior PAR proteins (PAR1) are outlined blue. The asymmetric and 

polarized distribution of the anterior and posterior PAR proteins has been conserved in a 

variety of multicellular eukaryotes and for a variety of biological processes. 
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Figure 1.3.1. Normal development of the sea urchin embryo. (A) Lytechinus pictus 

embryos undergo stereotypic symmetric cleavages until the 8 cell stage of development.  

The first asymmetric division does not occur until the 16 cell stage. At the end of the 

cleavage stage of development the blastula is formed, which consists of the first polarized 

epithelium surrounding the blastocoel.  It is not until gastrulation that sea urchin embryos 

exhibit planar cell polarity movements like convergent extension that allow for the 

migration of cells at the vegetal pole into the blastocoel and the formation of the 

archenteron. (B) Schematic diagram of the first 6 divisions of the sea urchin embryo 

(Gilbert, 2006). Direction of the cleavage plane and the formation of tiers are outlined.  

Future ectoderm is designated in blue, endoderm in yellow, and mesoderm in red.  (C) 

Schematic diagram of the fate map and cell lineage of the sea urchin embryo at the 60 

cell stage of development (Gilbert, 2006).  Future ectoderm, endoderm, and mesoderm 

derived cells are outlined.  Each of these examples highlights the polarity dependent 

processes that were known to occur later in development in the sea urchin embryo.  
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Figure 1.3.2. Examples of early polarity in the sea urchin embryo.  There are now several 

examples of early polarity in the sea urchin embryo.  β-C integrins, PAR6, aPKC, and 

CDC42 all localize to the apical cortex at the 2 cell stage of development (red).  At this 

stage microvilli are only found at the free cell surface (blue), cadherins localize to sites of 

cell-cell contact (yellow), and the developmental determinant, dishevelled, is partitioned 

to the vegetal cortex (green).   
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Chapter 2. Early Disruptions in Polarity Impede Later Development 

2.1. Introduction 

Polarization of a developing embryo is critical to ensure proper segregation of 

developmental determinants throughout embryogenesis. Since their initial discovery in 

the C. elegans embryo the PAR proteins have been found to play a vital role in 

polarization during the embryogenesis of a variety of different model organisms 

(Kemphues et al., 1988;McCaffrey and Macara, 2009).  They regulate a variety of 

processes during development ranging from spindle orientation, junction formation, 

gastrulation, and tissue development (Alarcon, 2010;Chalmers et al., 2003;Etemad-

Moghadam et al., 1995;Hao et al., 2010;Harris and Peifer, 2007;Kemphues et al., 

1988;Niessen et al., 2013;Watts et al., 1996).   The PAR proteins consist of a core group 

of signaling proteins that cooperatively function to control polarity in embryos. The 

scaffolding proteins PAR3 and PAR6 along with the kinase aPKC form the PAR 

complex and are regulated upstream by the GTPase CDC42 (McCaffrey and Macara, 

2009).  The collective action of these proteins controls polarity in the anterior or apical 

domain of embryos.  The kinase PAR1, along with either the E3 ubiquitin ligase PAR2 or 

the tumor suppressor LGL, is required for polarity in either the posterior or basolateral 

domains (Nance and Zallen, 2011).  

The role of the PAR proteins in the development of the sea urchin embryo has 

only recently begun to be explored (Alford et al., 2009;Pruliere et al., 2011;Shiomi and 

Yamaguchi, 2008;Shiomi et al., 2012). PAR6, aPKC, and CDC42 have all been 

annotated in the genome of Strongylocentrotus purpuratus through both GLEAN 

predictions and RNAseq data (Cameron et al., 2009).   Each of these annotations contains 
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the predicted conserved domains of each of these proteins.  PAR6 is predicted to contain 

the classical PB1 and PDZ domains. aPKC includes a kinase domain, and CDC42 is 

predicted to have the P-loop containing nucleoside triphosphate hydrolases superfamily 

domain, which is typically found in G proteins (Cameron et al., 2009).  In addition, 

immunofluoresence assays show that PAR6, aPKC, and CDC42 all localize to the apical 

cell cortex at the 2 cell stage of development in these embryos.  Further analysis 

demonstrated the functionality of this apical polarity as endocytosis was only observed on 

the apical surface even upon dissociation of the blastomeres (Alford et al., 2009).  Other 

studies have focused on the roles of PAR6 and aPKC during later development.  aPKC 

activity was required for  ciliogenesis at the blastula stage, while PAR6 was found to be 

needed for skeletogenesis at the larval stage (Pruliere et al., 2011;Shiomi et al., 2012). 

These observations on the roles of the PAR proteins during the blastula and larval stages 

of development highlight the utilization of these proteins for polarization during the 

embryogenesis of the sea urchin embryo.  However, similar to other deuterostome 

embryos, a clear role for the PAR proteins during early development has not been 

elucidated.   

In this study I further examine the role of the PAR proteins during the early 

development of the sea urchin embryo. In particular, I examined how the polarization of 

the PAR proteins during early cleavage stages is required for later developmental 

processes.  Following first cleavage, the apical localization of the PAR complex proteins 

is retained through the blastula stage. I find that these proteins are anchored in the apical 

cortex specifically by assembled myosin and that perturbations in their localization 

during early cleavage stages severely impeded later development.  While aPKC activity 
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was not found to be required for the first asymmetric division at the 16 cell stage, its 

activity during early cleavage stages was necessary for blastula formation.  These data 

demonstrate the importance of early polarity establishment in deuterostome embryos and 

the significant functional impact it has on later developmental events.  

 

2.2. Results 

2.2.1. The PAR Complex Proteins Localize to the Apical Cortex Through the Blastula 

Stage 

Previous studies have shown that PAR6, aPKC, and CDC42 localize to the apical 

cortex as early as the 2 cell stage of development in the sea urchin embryo (Alford et al., 

2009).  These observations suggest that the early polarization of these proteins may be 

important for the proper development of the sea urchin embryo, similar to their role in 

other model systems (Nance and Zallen, 2011).  In order to investigate further, I first 

examined the localization pattern of these proteins through the early cleavage stages of 

Lytechinus pictus embryos using immunofluoresence assays.  I found that PAR6, aPKC, 

and CDC42 remain localized to the apical cortex through the 16 cell stage of 

development, the first asymmetric division in sea urchins (Figure 2.2.1.).   As aPKC was 

recently found to be involved in ciliogenesis in the sea urchin embryo (Pruliere et al., 

2011), I also determined the localization of PAR6, aPKC, and CDC42 at the blastula 

stage of development.  At the blastula stage, in addition to the presence of cilia, embryos 

have formed an epithelium and junctions are present.  I found that these polarity proteins 

remain localized to the apical or free cell surface at the blastula stage (Figure 2.2.1.).   
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Additionally, under high magnification these proteins can be observed in the cilia, similar 

to the aPKC localization that was seen previously (Pruliere et al., 2011) (Figure 2.2.1.). 

2.2.2. aPKC Does Not Regulate the First Asymmetric Division, but is Necessary for 

Blastula Formation 

 The PAR proteins were initially discovered based on their involvement in the 

regulation of the first asymmetric division in the C. elegans embryo and have since been 

found to regulate the divisions of many other organisms at various stages of development 

(Chalmers et al., 2003;Etemad-Moghadam et al., 1995;Hao et al., 2010;Kemphues et al., 

1988;Niessen et al., 2013;Watts et al., 1996).  Previous results have shown that treatment 

with a specific peptide inhibitor of PKCζ resulted in the formation of multipolar spindles, 

short asters, and improper spindle rotation during early cleavages (Alford et al., 2009).  

This peptide inhibitor is able to interfere with aPKC activity because it is a 

pseudosubstrate sequence modeled from the human PKCζ (amino acids 113-125:N-

SIYRRGARRWRKL-C) that has been completely conserved in rabbit, rat, mouse and 

Xenopus. The N-terminus has also been myristoylated to allow for cell permeability 

(Enzo Life Sciences).   This peptide sequence is mostly conserved in the sole aPKC 

predicted in the S. purpuratus genome with a single amino acid substitution of serine to 

asparagine at the N-terminus (amino acids 38-50) (Cameron et al., 2009;Samanta et al., 

2006).  Here I investigated if aPKC is involved in the first asymmetric division in the sea 

urchin embryo, at the 16 cell stage of development.  I found that, in both intact and 

dissociated blastomeres, treatment with the specific peptide inhibitor of PKCζ at the 8 

cell stage did not affect the formation of mesomeres, macromeres, or micromeres at the 

16 cell stage (Figure 2.2.2.A, B.). 



  34 

 Because the inhibition of aPKC during early cleavage stages resulted in misplaced 

spindle alignment and asymmetric divisions, I next investigated if aPKC activity during 

early cleavage stages was required for later development.  In these assays, embryos were 

treated the specific peptide inhibitor of PKCζ at the fertilized egg, 2 cell, 4 cell, 8 cell, 

and 16 cell stages of development.  The embryos were raised until controls had reached 

the blastula stage of development (24 hours post fertilization). Embryos that were treated 

with the specific peptide inhibitor of PKC at the 16 cell stage had the greatest percentage 

of embryos reach the blastula stage (>60%), while those that were treated at the fertilized 

egg stage had the smallest percentage (<10%) (Figure 2.2.2.C.).  In addition, the embryos 

treated at the 16 cell stage that were able to reach the blastula stage had an altered 

phenotype.  They appeared to be highly compacted compared to controls (Figure 2.2.2.C. 

inset).  These data suggest that aPKC activity is critical during early cleavage stages in 

sea urchin embryos as the earlier the treatment with the specific peptide inhibitor of 

PKCζ the less likely the embryos reached the blastula stage.  This highlights the 

importance of early polarity for later developmental events.  

2.2.3. Myosin Assembly and Cell-Cell Contact are Required for the Localization of the 

PAR Complex to the Apical Cortex 

In order to assess what anchors the PAR complex proteins in the apical cortex, I 

tested a series of small molecule inhibitors of the cytoskeleton.  I first assessed inhibitors 

of the acto-myosin cortex as its involvement in the localization of the PAR complex has 

been well documented (Cowan and Hyman, 2004a;Munro et al., 2004;Munro, 2006).   

Additionally, prior research has found that polarized plasma membrane rafts in sea urchin 

embryos, marked by the ganglioside GM1, are dependent on myosin filament assembly 

(Alford et al., 2009;Gudejko et al., 2012;Ng et al., 2005).   Embryos were treated with the 
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various inhibitors at the 2 cell stage of development, after the PAR complex proteins had 

polarized to the apical cortex.  I used specific small molecule inhibitors in order to dissect 

the different functions of myosin.  Phosphorylation of serine19 on myosin light chain 

results in both bipolar filament assembly and an enhancement of the actin activated 

ATPase activity (Bresnick, 1999). The effects of each activity can be determined through 

the use of specific inhibitors. 

First, 2 cell stage embryos were treated with either ML-7 or ML-9, which are 

inhibitors of myosin light chain kinase (MLCK) and thus bipolar filament assembly 

(Saitoh et al., 1987).  ML-7 and ML-9 act as ATP (adenosine triphosphate) competitors 

in order to inhibit MLCK activity.  Blocking MLCK activity then blocks a variety of 

cellular activities including the formation of the contractile ring during cytokinesis 

(Uehara et al., 2008).  Treatment with either ML-7 or ML-9 resulted in the cytoplasmic 

pooling of PAR6, aPKC, and CDC42 (Figure 2.2.3.A.).  To test the specificity of the role 

of MLCK, I also treated the embryos with H1152, a Rho kinase (ROCK) inhibitor, as 

ROCK is also indirectly involved in the phosphorylation of myosin light chain by the 

phosphorylation and thus the inhibition of myosin phosphatase (Kosako et al., 2000). 

H1152 acts as an ATP competitor to block ROCK activity (Sasaki et al., 2002).  

Treatment with H1152 had no effect on the localization of PAR6, aPKC, or CDC42 

(Figure 2.2.3.A.).  I further dissected the role of myosin in the localization of the PAR 

complex, by treating with blebbistatin, an inhibitor of myosin motor function. 

Blebbistatin preferentially binds to the ATPase intermediate of myosin with ADP and 

phosphate bound at the active site.  It then slows down the release of the phosphate. 

Blebbistatin interferes with neither the binding of myosin to actin nor with the ATP-
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induced actomyosin dissociation, instead, it blocks the myosin heads in a conformation, 

which has low actin-affinity (Kovacs et al., 2004).  Unlike treatment with ML-7, ML-9 or 

H1152, which block the formation of the contractile ring, treatment with blebbistatin 

inhibits constriction of the contractile ring during cytokinesis (Miyoshi et al., 2006).  

Here, treatment with blebbistatin did not perturb the apical or cortical localization of the 

PAR complex proteins (Figure 2.2.3.A.).  Because blebbistatin was not found to have an 

effect on the PAR complex, these results demonstrate that it is bipolar filament assembly 

and not the ATPase activity of myosin that is necessary for the PAR complex 

localization. 

 Myosin motors along with actin filaments are the dominant structural proteins in 

the cellular cortex.  Recent data demonstrate that assembled myosin forms clusters that 

act as network nucleators to organize and remodel the cortex (Ideses et al., 2013).  

Additional evidence suggests that inhibition of myosin can affect actin turnover because 

myosin motors are able to dissemble actin filaments (Haviv et al., 2008;Murthy and 

Wadsworth, 2005;Salbreux et al., 2012). As the other dominant structural protein in the 

cortex, and because of its regulation by myosin, actin involvement was also analyzed by 

the inhibition of actin polymerization with latrunculin B. Latrunculin B is a structurally 

unique marine toxin (isolated from the red sea sponge) that is 10- to 100-fold more potent 

than cytochalasins. Whereas cytochalasin D induces dissolution of F-actin and stress fiber 

contraction in fibroblasts in culture, latrunculin B causes a shortening and thickening of 

stress fibers (Schatten et al., 1986;Spector et al., 1983;Wakatsuki et al., 2001). 

Cytochalasin D was also tested (data not shown) to determine if a different mechanism of 

actin inhibition affected the PAR proteins; however, because it was not reversible in sea 
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urchin embryos, I did not continue experiments with this drug. I found that treatment with 

neither latrunculin B nor cytochalasin D affected the localization pattern of the PAR6, 

aPKC, or CDC42 (Figure 2.2.3.A.). 

In another series of experiments, I also inhibited microtubules with either 

urethane or nocodazole to assess what role another major cytoskeletal component may 

play in anchoring the PAR complex within the apical cortex (Strickland et al., 2005).   

Astral microtubules are known to be involved in the maintenance of cortical PAR 

domains in C. elegans, although the role of microtubules in PAR polarization remains 

somewhat controversial (Ai et al., 2011;Nance and Zallen, 2011). Treatment with 

urethane shortens and destabilizes astral microtubules and promotes astral microtubule 

catastrophe. This disrupts the ability of the microtubules to contact the cortex and furrow 

formation is not initiated (Strickland et al., 2005).   Nocodazole, on the other hand, is a 

microtubule depolymerizer and antimitotic agent that disrupts microtubules by binding to 

β tubulin and preventing the formation of one of the two interchain disulfide linkages, 

thus inhibiting microtubule dynamics, causing disruption of mitotic spindle function and 

fragmentation of the Golgi complex (Jordan et al., 1992;Luduena and Roach, 

1991;Storrie and Yang, 1998;Vasquez et al., 1997). Treatment with nocodazole arrests 

cells at the G2/M phase in the cell cycle.  Similar to cytochalasin D, further experiments 

with nocodazole were not continued because its effects were not reversible in sea urchin 

embryos (data not shown).  Treatment either urethane (Figure 2.2.3.A.) or nocodazole 

(data not shown) did not affect the localization of PAR6, aPKC, or CDC42, confirming a 

specific role for assembled myosin in PAR complex localization.   



  38 

Once I determined that myosin bipolar filament assembly was involved in 

anchoring the PAR complex in the apical cortex, I next analyzed the stability of these 

disruptions in PAR complex localization by MLCK inhibition.  I treated embryos at the 

fertilized egg stage of development with a 15 minute pulse of ML-7 and allowed the 

embryos to divide to the 2 cell stage before fixation and staining for PAR6, which I used 

as a marker of the PAR complex (Figure 2.2.3.B.).  I found that treatment with ML-7 at 

the fertilized egg stage resulted in the same cytoplasmic pooling of PAR6 as it does at the 

2 cell stage (Figure 2.2.3.B.ii. and iv.).  Additionally, I find that the pulse treatment with 

ML-7 at the fertilized egg stage causes PAR6 to remain cytoplasmic through the next cell 

division to the 2 cell stage (Figure 2.2.3.B.v.).  This suggests that the initial disruption is 

maintained because after only a short disruption in myosin assembly during the fertilized 

egg stage PAR6 did not return to the cortex at the 2 cell stage. 

Previous studies had shown that PAR6 localization is dependent on calcium 

mediated cell adhesion (Alford et al., 2009).  Here embryos were dissociated with gentle 

pipetting in CaFSW (calcium free sea water) and PAR6 along with aPKC, and CDC42 

were examined in intact and dissociated 2 cell stage embryos.  Like PAR6, aPKC and 

CDC42 become evenly distributed throughout the cortex upon dissociation (Figure 

2.2.4.).   

2.2.4. Myosin Light Chain Kinase Activity During Early Cleavage Stages is required for 

Blastula Formation 

 After determining that the PAR complex proteins were anchored in the cortex by 

assembled myosin and that these disruptions in localization could be maintained through 

the next division, I analyzed the effects of disruptions in PAR complex localization on 

later development.  I pulse treated L. pictus embryos with the same cytoskeletal inhibitors 
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(ML-7, ML-9, H1152, latrunculin B, urethane, and blebbistatin) for 15 minutes at the 

fertilized egg, 2 cell, 4 cell, 8 cell, and 16 cell stages of development and then monitored 

the progression of the embryos. Pulse treatments were done instead of continuous 

treatments because each of these cytoskeletal inhibitors causes cells to arrest either during 

mitosis and cytokinesis.  Therefore, experiments with continuous treatments of these 

inhibitors would have assessed cell cycle defects, rather than developmental deficiencies.  

All inhibitors used in these experiments were found to be reversible in sea urchin 

embryos; they could be washed out and the embryos would continue through the cell 

cycle normally (data not shown).   A 15 minute pulse of ML-7 or ML-9 was determined 

to be sufficient to disrupt the localization of PAR6, aPKC, and CDC42 (Figure 2.2.3.A.). 

Embryos that were pulse treated with either ML-7 or ML-9 continued to cleave normally, 

but failed to reach the blastula stage when pulse treated at these early cleavage stages.  

Embryos underwent apoptosis prior to forming the polarized epithelium that is 

characteristic of the blastula stage (Figure 2.2.5.).  This effect appears to be specific to 

assembled myosin, as cleavage stage embryos pulse treated with the other cytoskeletal 

inhibitors were able to reach the gastrula stage successfully (Figure 2.2.6.).  Embryos 

pulse treated with latrunculin B, urethane, or blebbistatin underwent normal gastrulation, 

similar to controls (Figure 2.2.6.).  Embryos pulse treated with H1152 still reached the 

gastrula stage, although there was slight variation in morphology as compared to controls 

(Figure 2.2.6.A, B.).   
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2.3. Discussion 

The development of an embryo is a tightly regulated process by which an entire 

organism is generated from a single fertilized egg.  While the sea urchin embryo has long 

been used as a model to study this process, little was known until recently about its 

polarization during early cleavage stages. The PAR proteins have been extensively 

studied for their roles in polarity; however, a specific role for these proteins in the early 

development of deuterostome embryos had not been fully illuminated. Here I find that the 

polarization of the PAR proteins during early cleavage stages also is critical for proper 

development of the sea urchin embryo.  

The PAR complex proteins, PAR6 and aPKC, as well as its upstream regulator, 

CDC42, colocalize to the apical cortex as early as the 2 cell stage of development in sea 

urchin embryos (Alford et al., 2009). I now find that these proteins retain their apical 

localization in the cortex through the blastula stage of development.  While others have 

shown that aPKC is excluded from the vegetal pole at the 16 cell stage of development in 

the Hemicentrotus pulcherrimus species of sea urchin, I find that the PAR complex retain 

their apical localization in both the micromere and macromeres of the vegetal pole 

(Pruliere et al., 2011).  The colocalization of PAR6, aPKC, and CDC42 mirrors the 

results seen in other model organisms (McCaffrey and Macara, 2012;Nance and Zallen, 

2011).  

The cleavage to the 16 cell stage is an imperative step in the development of the 

sea urchin embryo.  It is the time of the first asymmetric division and it lays down some 

important foundational work for later developmental events.  At this stage β-catenin 
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becomes nuclear only in the micromeres of the vegetal pole, which is critical later during 

gastrulation for endomesoderm specification (Weitzel et al., 2004;Wikramanayake et al., 

2004;Wikramanayake et al., 1998).  These micromeres have also recently been found to 

be germ line precursors (Juliano et al., 2006;Yajima and Wessel, 2012).  aPKC has been 

found to regulate a number of other asymmetric divisions and I was interested in 

determining its involvement in the sea urchin embryo (Chalmers et al., 2003;Durgan et 

al., 2011;Niessen et al., 2013;Suzuki et al., 2002).  While prior research has shown that 

inhibition of aPKC at early cleavages stages resulted in several spindle defects (Alford et 

al., 2009), I find here that it does not appear to regulate the first asymmetric division in 

sea urchin embryos.  Given these data it may be that other polarity proteins besides aPKC 

are involved in this particular asymmetric division.  Candidates include LGL, Scribble, 

Pins, Crumbs, and CDC42 (McCaffrey and Macara, 2012).  

While aPKC activity may be not necessary for proper micromere formation at the 

16 cell stage, it was already known to be required for normal symmetric cleavages prior 

to the 16 cell stage (Alford et al., 2009).  The data here also suggest that aPKC activity is 

additionally required for blastula formation; demonstrating a clear role for early polarity. 

At the blastula stage, sea urchin embryos have formed a polarized epithelium that 

surrounds a fluid-filled cavity, the blastocoel.  In other models, aPKC activity is required 

at the blastula stage for junction formation and polarized cell divisions (Chalmers et al., 

2003;Harris and Peifer, 2007).  These data suggest that the polarity that is established by 

aPKC during early cleavage stages may be the beginning of the polarization of the sea 

urchin embryo that is required later for junction formation at the blastula stage. 
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 Previously, MLCK activity was shown to be important in maintaining the stability 

of polarized plasma membrane domains in sea urchin embryos (Alford et al., 

2009;Gudejko et al., 2012;Ng et al., 2005).  Here I have demonstrated the importance of 

MLCK activity in maintaining the localization of the PAR proteins at the apical cortex, as 

treatment with ML-7 or ML-9 resulted in the cytoplasmic pooling of these proteins.  This 

disruption in localization by inhibition of myosin assembly is sustained through the next 

division.  Additionally, assembled myosin was found to be required during these early 

cleavage stages in the embryo in order to reach the blastula stage.  Pulse treatments with 

ML-7 or ML-9 resulted in apoptosis of the embryos prior to becoming blastula.  In 

contrast, treatment with other small molecule inhibitors of the actin or microtubule 

cytoskeleton did not perturb the localization of the PAR proteins nor did it alter the 

embryos’ ability to reach the gastrula stage of development.  These data demonstrate the 

specificity of the MLCK activity and its necessity during early cleavage stages for normal 

development.   

The reliance of calcium dependent adhesion to maintain the apical localization of 

PAR6, aPKC, and CDC42 highlights the importance for these proteins to remain cortical, 

but not necessarily apical for proper development.  Driesch showed in his classic 

experiments that the early blastomeres of sea urchin embryos could develop into normal, 

albeit smaller, adults (Driesch, 1892).  However, here I have shown that the cortical 

reorganization of the PAR proteins after myosin filament disruption results in apoptosis 

prior to blastula formation.  These results also mirror my data that established a specific 

role for aPKC during early development as early cleavage stage embryos treated with a 
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specific peptide inhibitor of aPKC were also unable to reach the blastula stage (Alford et 

al., 2009).   

 Interestingly, recent data has found that perturbations in MLCK activity during 

early cleavage stages in sea urchin embryos do not disrupt myosin localization, but rather 

actin localization in the cortex (Gudejko, 2013).  These results support the idea that 

assembled myosin acts a molecular scaffold that can regulate cortical dynamics (Ideses et 

al., 2013;Murthy and Wadsworth, 2005;Salbreux et al., 2012).  The formation of Arp 2/3 

nucleated actin comets by treatment with ML-7 or ML-9 can be seen in both live and 

fixed embryos (Gudejko, 2013).  These changes in the structure of the cortex may be 

responsible for the cytoplasmic pooling of the PAR proteins that are observed with the 

same drug treatments.  

These studies on the sea urchin embryo have explored how and when polarity is 

established and the impact of disturbing this polarity during stages of critical 

developmental decisions.  From these data there is a clear role for the PAR proteins 

during the early development of the sea urchin embryo.  The polarization of PAR6, 

aPKC, and CDC42 to the apical cortex as well as aPKC activity during early cleavage 

stages is essential for blastula formation. These insights into the generation and 

maintenance of polarity are crucial to our understanding of how a developing embryo 

properly partitions components to ensure that the right function occurs in the correct 

location.  
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Figure 2.2.1. PAR6, aPKC, and CDC42 colocalize at the apical cortex through the 

blastula stage. L. pictus embryos were fixed and then stained for PAR6 and aPKC (A and 

C) or CDC42 (B and D).  Cleavage stage embryos (A and B) were additionally stained 

with phalloidin to label F-actin and Hoescht to label DNA.  PAR6, aPKC, and CDC42 

maintain the apical localization pattern initially seen at the 2 cell stage through the 16 cell 

stage (A and B). This colocalization at the apical surface is further retained at the blastula 

stage after an epithelium has formed and junctions are present (C and D). Expression of 

PAR6, aPKC, and CDC42 is additionally found in the cilia at the blastula stage of 

development under high magnification and zoom (C and D).  For scaling reference L. 

pictus embryos are approximately 120 µm in diameter. 
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Figure 2.2.2. aPKC does not regulate the first asymmetric division in the sea urchin 

embryo, but is required for blastula formation. 4 µM PKCζ peptide inhibitor was added 

at the 8 cell stage of development in intact and dissociated embryos through the 

subsequent division to the 16 cell stage (A).  No effect was observed on the formation of 

micromeres, macromeres, or mesomeres compared to controls in trials of 100 embryos 

each (n=6).  Normal 16 cell embryo formation is quantified (B) in controls (92.5±5.4%) 

and treated groups (88.8±5.7 %) (mean ± SD). 4 µM PKCζ peptide inhibitor was added 

at the fertilized egg, 2 cell, 4 cell, 8 cell, and 16 cell stages of development (C).  Embryos 

were raised until control embryos had reached the blastula stage of development (Alford 

et al., 2009).  The earlier the PKCζ peptide inhibitor was added the less likely the 
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embryos reached the blastula stage.  Treatment at the 16 cell stage additionally resulted in 

compaction at the blastula stage (inset). For scaling reference L. pictus embryos are 

approximately 120 µm in diameter. 
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Figure 2.2.3. Myosin assembly is required for maintaining the cortical localization of the 

PAR complex proteins.   L. pictus embryos were fixed at the 2 cell stage after treatment 

with various inhibitors for 15 minutes (A).   Fixed embryos were stained for PAR6, 

aPKC, and CDC42.  PAR6, aPKC, and CDC42 are apically localized in the cortex of the 

sea urchin embryo at the 2 cell stage of development. Inhibition of myosin light chain 

kinase (MLCK) by ML-7 resulted in cytoplasmic pooling of these cell polarity regulators.  
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To a lesser extent this same effect was observed with ML-9, a less specific MLCK 

inhibitor. Treatment with a general Rho kinase inhibitor, H1152, an actin polymerization 

inhibitor, latrunculin B, an astral microtubule inhibitor, urethane, or a myosin ATPase 

inhibitor, blebbistatin did not effect the cortical localization of these proteins.  L. pictus 

embryos were fixed and then stained for PAR6 (B).  PAR6 localizes to the cortex and 

apical cortex at the fertilized egg and 2 cell stages (i and iii). Treatment with ML-7 at 

both the fertilized egg and 2 cell stages for 15 minutes resulted in cytoplasmic pooling of 

PAR6 (ii and iv). Pulse treatment with ML-7 for 15 minutes at the fertilized egg and 

analysis of PAR6 localization at the next cleavage (2 cell) reveals that PAR6 remains 

cytoplasmic (v). For scaling reference L. pictus embryos are approximately 120 µm in 

diameter. 
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Figure 2.2.4. PAR6, aPKC, and CDC42 are reliant upon calcium dependent cell adhesion 

for apical localization. L. pictus embryos were fixed and stained for PAR6 and aPKC (A) 

or CDC42 (B) in both intact and dissociated 2 cell embryos.  All proteins were found to 

have a uniform distribution in the cortex upon dissociation. For scaling reference L. 

pictus embryos are approximately 120 µm in diameter. 
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Figure 2.2.5. Assembled myosin is required during early cleavage stages for blastula 

formation. 100 embryos were treated with a 100 µM ML-7 (A) (n=12), or 120 µM ML-9 

(C) (n=6) pulse for 15 minutes at various cell stages as indicated and allowed to develop 

until the control embryos had reached the gastrula stage (≥90% of controls reached 

gastrulation). Results are quantified (B and D) (mean±SD). Embryos treated with the 

MLCK inhibitors, ML7 and ML-9, failed to reach the hatched blastula stage. For scaling 

reference L. pictus embryos are approximately 120 µm in diameter. 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Figure 2.2.6. Rho kinase, actin, microtubules, and myosin ATPase activity during early 

cleavage stages are not required for blastula formation. 100 embryos were treated with a 

2.5 µM H1152(A) (n=6), 25 nM latrunculin B(C) (n=6),  40 mM urethane(E) (n=6), or 30 

µM blebbistatin(G) (n=6) pulse for 15 minutes at various cell stages as indicated and 

allowed to develop until the control embryos had reached the gastrula stage (≥90% of 

controls reached gastrulation). Results are quantified (B, D, F, and H) (mean±SD). 

Embryos treated with either the Rho kinase inhibitor (H1152) reached the gastrula with 

an abnormal morphology. Embryos treated with the actin inhibitor (latrunculin B), the 

astral microtubule inhibitor (urethane), or the myosin ATPase inhibitor (blebbistatin) 

reached the gastrula stage and had similar morphology to controls. For scaling reference 

L. pictus embryos are approximately 120 µm in diameter. 
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Chapter 3. PAR1 Polarizes in a Distinct Pattern in the Sea Urchin Embryo 

3.1. Introduction 

 PAR1 is a serine/threonine kinase that was discovered because of its involvement 

in the first asymmetric division in the C. elegans embryo (Guo and Kemphues, 1995).  

Unlike the PAR complex proteins, PAR1 localizes to posterior end of the C. elegans 

embryo following fertilization; the asymmetry between these proteins is well conserved 

(Benton and Johnston, 2003;Kemphues, 2000;Suzuki et al., 2004).  Since its initial 

discovery, PAR1 has been found to regulate polarity and a variety of other cellular 

processes in many other model systems.  PAR1 was also independently discovered as 

microtubule associated regulatory kinase (MARK), which phosphorylates microtubule 

associated proteins (MAPs) (Drewes et al., 1995).  PAR1 was identified in these 

experiments because it phosphorylates the MAP, Tau, which is an important component 

of the neurofibrillary tangles in Alzheimer’s disease (Drewes et al., 1995).  

Phosphorylation of MAPs can result in either the stabilization (in Drosophila) or 

destabilization (in mammals) of microtubules (Doerflinger et al., 2003).  PAR1 

specifically phosphorylates KXGS repeats in the microtubule binding domains of MAPs, 

which causes MAPs to dissociate from microtubules (Drewes et al., 1997).  PAR1 plays a 

critical role in the organization of the microtubule cytoskeleton in oocytes, developing 

embryos, neurons, and epithelial cells (Cohen et al., 2004;Cox et al., 2001;Doerflinger et 

al., 2003;Terabayashi et al., 2007).  

 In neurons, PAR1 is involved in the formation of both axonal and dendritic 

processes as well as in neuronal migration. In mouse hippocampal neurons, PAR1 is 

necessary for proper dendritic spine morphology (Hayashi et al., 2011a) and positively 
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regulates microtubule dynamics (Hayashi et al., 2011b).  Other studies have found that 

PAR1 is also needed for axon formation in hippocampal neurons (Chen et al., 2006).  

PAR1 is tightly regulated as elevated activity of this protein results in reduced axon and 

dendritic growth, while downregulation of PAR1 results in the formation of multiple 

axons (Matenia and Mandelkow, 2009).   PAR1 is also required for neuroblast migration 

to the olfactory bulb and the maintenance of microtubule dynamics in the migrating 

neurons of the cerebral cortex (Mejia-Gervacio et al., 2011;Sapir et al., 2008). 

 Additionally, PAR1 is essential for polarity in epithelial cells.  Here, PAR1 

regulates morphogenetic branching decisions by organizing the radial array of 

microtubules in nonpolarized cells into the horizontal array of polarized hepatocytes and 

the vertical arrays in columnar epithelia (Cohen et al., 2004).  Further studies suggest that 

PAR1 promotes cell-cell adhesion, regulates myosin light chain phosphorylation, and is 

involved in mitotic spindle orientation (Cohen et al., 2007;Elbert et al., 2006;Lázaro-

Diéguez et al., 2013;Slim et al., 2013). 

 There has also been significant analysis of the role of PAR1 during development. 

In addition to regulating the first asymmetric division in the C. elegans embryo (Guo and 

Kemphues, 1995), PAR1 is required later in development for vulva formation in the C. 

elegans embryo (Hurd and Kemphues, 2003).  Other studies have shown that PAR1 is 

also involved in the asymmetric divisions at the blastula and gastrula stages of 

development in Xenopus (Ossipova et al., 2007).  In Xenopus PAR1 additionally 

promotes ciliated cell differentiation, stimulates the generation of deep cell progeny from 

the superficial epithelium of the neural plate, controls gastrulation, and stimulates 

neuronal differentiation (Kusakabe and Nishida, 2004;Ossipova et al., 2007;Ossipova et 
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al., 2009;Ossipova and Sokol, 2011;Tabler et al., 2010).  In Drosophila PAR1 activity is 

required for axis formation in the oocyte, the selection of one cell in the germline cyst to 

become an oocyte, and cell polarity in the blastoderm and ectoderm (Bayraktar et al., 

2006;Cox et al., 2001;Huynh et al., 2001).  Similar to studies on the PAR complex 

proteins, the role of PAR1 has not been well reviewed in the early development of 

deuterostome embryos. 

 Here, I generated a specific antibody generated against the S. purpuratus PAR1 

protein and used the antibody to examine the localization pattern of PAR1 in the sea 

urchin embryo.  Unlike in other model organisms, PAR1 colocalizes with the PAR 

complex proteins in the apical cortex at the 2 cell stage of                                                                                                                                                                                                                                                                                                                                                                                                                        

development.  This colocalization is retained through the gastrula stage, after a series of 

asymmetric divisions, the formation of an epithelium and the convergent extension 

movements of gastrulation.  Co-immunoprecipitation assays further revealed that PAR1 

is in complex with aPKC during early development in the sea urchin embryo.  

Collectively, these data highlight a unique role for PAR1 in the polarization and 

development of the sea urchin embryo. 

 

3.2. Results 

3.2.1. Anti-PAR1 Antibody Design and Verification 

Having examined the localization of the PAR complex proteins and their 

upstream regulator, CDC42, the localization pattern of a traditionally posterior polarity 

regulator, PAR1, was studied in order to determine how it polarized in the sea urchin 

embryo.  Using the predicted PAR1 sequence, a specific antibody against the S. 
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purpuratus PAR1 protein was created (Cameron et al., 2009). Based on its annotation in 

the S, purpuratus genome, the predicted PAR1 protein contains the three conserved 

domains of PAR1 proteins: the kinase domain, the kinase associated domain, and the 

ubiquitin associated domain (Cameron et al., 2009). The antigenic sequence used for 

antibody production was specifically chosen to be outside of the three conserved domains 

of the PAR1 protein (Figure 3.2.1.A.).  Previously screens of commercial antibodies 

against mouse and human MARK proteins that were designed in conserved regions 

(usually the kinase domain) were found to be nonspecific (data not shown).  Two rabbits 

were immunized with the antigenic peptide generated by Covance.  Bleeds from days 0, 

28, 56, and 70/72 were tested against the purified antigen. Bleeds from the first rabbit on 

day 70/72 were found to have the strongest reactivity against both the target peptide and 

protein extracts of 2 cell and 4 cell stage L. pictus embryos and were subsequently chosen 

for purification against the initial target peptide (Figure 3.2.1.B. and C.).  Purified PAR1 

antibody was tested against 2 cell and 4 cell stage L. pictus embryos and was found to be 

specific and a Western blot shows a single band at the correct molecular weight of 81.5 

kD and additionally identifies PAR1 dimers at 163 kD (Figure 3.2.1.D.). 

3.2.2. PAR1 Colocalizes with the PAR complex Proteins in the Apical Cortex Through the 

Gastrula Stage 

 Immunofluoresence assays revealed that during early cleavage stages, PAR1 

colocalizes with the PAR complex proteins in the apical cortex through the 8 cell stage 

(Figure 3.2.2.A.).  Furthermore, PAR1 retains this colocalization with the apical PAR 

complex at the 16 cell stage, after the first asymmetric division, and at the blastula stage, 

after junctions have formed within the epithelium (Figure 3.2.2.A. and B.).   
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In order to determine if PAR1 polarizes to a distinctive region later in 

development in the sea urchin embryo, its localization pattern at the gastrula stage was 

examined.  mRNA transcripts of PAR1 are known to be expressed throughout 

embryogenesis, but appear to become more vegetal in localization following hatching 

from the fertilization envelope in the sea urchin species Hemicentrotus pulcherrimus 

(Shiomi and Yamaguchi, 2008).  During the gastrula stage, the embryo is laying the 

foundation for the three primary germ layers, the endoderm, mesoderm, and ectoderm, by 

undergoing massive cellular rearrangements. PAR6, aPKC, CDC42, and PAR1 retain 

their localization to the apical or free cell surface at this stage (Figure 3.2.3.A.).  

However, there is a significant downregulation of the expression of all of these proteins 

within the epithelium of the archenteron compared to both the apical tuft and the 

epithelium of the ectoderm (Figure 3.2.3.B.).  There does appear to be a slight enrichment 

of these proteins in the apical tuft compared to the epithelium of the ectoderm, but this 

was not found to be statistically significant (Figure 3.2.3.B.).  

 Because of this unique PAR1 localization, co-immunoprecipitation assays were 

performed in order to determine if PAR1 was interacting with the PAR complex proteins 

PAR6 and aPKC (Figure 3.2.4.).  Previous results demonstrated that PAR6 and aPKC, as 

in other model systems, were associated with each other (Alford et al., 2009;Joberty et 

al., 2000;Li et al., 2010;Lin et al., 2000;McCaffrey and Macara, 2009).  Co-

immunoprecipitation assays at the 2 cell (first appearance of polarization to the apcial 

cortex), 16 cell (first asymmetric division), and blastula (formation of an epithelium) 

stages were carried out in order to study the relationship of these proteins. Across all 

studied stages of development that aPKC was found to be in complex with both PAR6 
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and PAR1; however, PAR6 and PAR1 were not in complex with each other (Figure 

3.2.4.B., C., and D.).  

Several control co-immunoprecipitation assays were performed to assess the 

specificity of the Dynabeads kit (Life Technologies) and confirm the interaction of aPKC 

with PAR1 and PAR6.  First positive controls tested if antibody coupled beads pulled 

down the same protein the antibody was generated against.  For example, PAR6 coupled 

beads were used for the co-immunoprecipitation assay and then probed for the presence 

of PAR6 in the Western blot.  Positive controls were confirmed for PAR6, aPKC, and 

PAR1 (Figure 3.2.4.A.).  An additional control tested and confirmed that the magnetic 

beads of the Dynabeads kit (Life Technologies) did not non-specifically interact with 

either the PAR6, aPKC, or PAR1 proteins (Figure 3.2.4.E.).  The specificity of the 

Dynabeads was further confirmed with a control that utilized buffer instead of lysed 

embryos as the starting sample for co-immunoprecipitation assay and there were no non-

specific interactions with aPKC (Figure 3.2.4.F.).   

3.2.3. Regulation of PAR1 Localization 

 In order to evaluate the cytoskeletal regulation of PAR1 localization, the same 

series of small molecule inhibitors that were used previously to examine PAR6, aPKC, 

and CDC42 localization patterns were again utilized.  The acto-myosin cortex is involved 

in the localization of the PAR complex proteins in other model systems (Cowan and 

Hyman, 2004a;Munro et al., 2004;Munro, 2006).  Myosin assembly is known to regulate 

polarized plasma membrane rafts in the sea urchin embryo (Alford et al., 2009;Gudejko 

et al., 2012;Ng et al., 2005) and had already been confirmed to be specifically required 

for the cortical localization of the PAR complex in the sea urchin embryo (Figure 2.2.3.).  
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The MLCK inhibitors, ML-7 and ML-9, were tested to determine the role of assembled 

myosin in PAR1 localization.  2 cell stage embryos were treated for 15 minutes with ML-

7 or ML-9 immediately prior to fixation.  PAR1 localization was unpertubed in the apical 

cortex by treatment with either ML-7 or ML-9.  However, unlike previous experiments, 

CDC42 localization was also not affected by treatment with either ML-7 or ML-9 (Figure 

3.2.5.A.).  In order to investigate further, the efficacy of ML-7 and ML-9 were tested.  A 

series of dose-response assays in three different species of sea urchins (S. purpuratus, L. 

pictus, and Lytechinus variegatus) in multiple batches across several different seasons 

found that these embryos were no longer responding to ML-7 or ML-9.  In addition to no 

longer causing the cytoplasmic pooling of PAR6, aPKC, or CDC42, they also no longer 

became binucleate when the embryos were treated prior to entering mitosis and they no 

longer formed the F-actin comets that had been observed previously (Gudejko, 2013) 

(data not shown).   

  Other cytoskeletal inhibitors were still tested in order to determine if there was a 

role for ROCK, myosin ATPase, actin, or microtubules in the localization of PAR1 to the 

apical cortex.  Unlike, ML-7 and ML-9, L. pictus embryos still responded appropriately 

to each of the other cytoskeletal inhibitors.  2 cell stage embryos were treated for 15 

minutes with either H1152 (ROCK inhibitor), blebbistatin (myosin ATPase inhibitor), 

latrunculin B (actin inhibitor), or urethane (astral microtubule inhibitor).  Similar to the 

PAR complex proteins, PAR1 remained localized to the apical cortex when embryos 

were treated with the listed inhibitors (Figure 3.2.5.A.).  The cytoskeletal regulation of 

PAR1 localization thus far remains unclear.  However, a role for cell-cell contact was 

clearly elucidated for PAR1 localization.  Similar to PAR6, aPKC, and CDC42 (Figure 
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2.2.4.), PAR1 became evenly distributed throughout the cortex upon dissociation (Figure 

3.2.5.B.).   

3.2.4. DNPAR1 and PAR1 Construct Development 

 In order to evaluate both PAR1 function and PAR1 dynamics in live embryos, a 

DNPAR1 (dominant negative) and PAR1 construct were developed.  Because there are 

currently no commercial small molecule inhibitors of PAR1, a dominant negative 

construct is an alternative to inhibit PAR1.  The dominant negative construct consists of 

the full-length PAR1 protein without the N-terminal kinase domain. In this manner 

microinjection of DNPAR1 in live embryos can outcompete the native PAR1 and inhibit 

PAR1 function.  The full-length PAR1 construct was then created in order to assess 

PAR1 dynamics in live embryos by tagging it with green fluorescent protein (GFP). 

 RNA was isolated from several different batches of S. purpuratus zygotes, 30 

minutes post-fertilization.  cDNA sequences were amplified using the ProtoScript M-

MuLV Taq  RT-PCR (reverse transcriptase polymerase chain reaction) kit (NEB)  and 

primers designed against either the GLEAN prediction PAR1 sequence or the RNAseq 

prediction sequence (Table 6.6.1., Figure 3.2.6.) (Cameron et al., 2009).  Both constructs 

were successfully cloned into the bacterial expression vector pEXP5-CT (Life 

Technologies).  However, only the DNPAR1 construct was successfully expressed and 

purified from bacterial cultures (Figure 3.2.6.C).   As a control, L. pictus and L. 

variegatus were microinjected with rhodamine dextran diluted into injection buffer 

(10mM HEPES, 150mM aspartic acid, pH 7.2) during interphase.  Control embryos 

failed to enter mitosis and subsequently apoptosed (data not shown).  For these reasons 

the efficacy of the DNPAR1 construct could not be determined. 
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3.3. Discussion 

The PAR proteins have been well characterized in a number of systems and are 

strictly regulated in order to carry out diverse polarity dependent processes such as 

spindle positioning, axon formation, and gastrulation (Kusakabe and Nishida, 

2004;Lázaro-Diéguez et al., 2013;Yoshimura et al., 2010).   The manner in which they 

polarize has been well conserved among multicellular eukaryotes. While PAR6, aPKC, 

and CDC42 often colocalize to a single region, PAR1 is typically found in the opposing 

domain.  Here the data show a unique localization pattern of the PAR proteins in the sea 

urchin embryo, which despite its nontraditional pattern, may be critical for proper 

development of the embryo. 

PAR6, aPKC, and CDC42 localize to the apical cortex as early as the 2 cell stage 

of development and retain their apical localization through the blastula stage; these data 

reflect a conserved localization pattern for these proteins (McCaffrey and Macara, 

2012;Nance and Zallen, 2011).  However, the colocalization of PAR1 with these proteins 

in the apical cortex appears to be unique to the sea urchin embryo.  Despite having an 

asymmetric cell division at the 16 cell stage, forming tight junctions in an epithelium at 

the blastula stage, and undergoing convergent extension movements during gastrulation 

PAR1 remains localized to the apical surface along with the other PAR proteins. Given 

the distinctive localization pattern of PAR1 in the sea urchin embryo, determining the 

localization pattern of other traditionally posterior polarity regulators will be imperative 

to explore.  Lethal giant larvae (LGL) is known to regulate polarity in C. elegans, 

function redundantly with PAR2 in Drosophila, and is a predicted protein based on the 

sequenced sea urchin genome (Beatty et al., 2010;Beatty et al., 2013;Cameron et al., 
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2009;Hoege et al., 2010;Prehoda and Bowerman, 2010).  In sea urchin embryos, it may 

be that other posterior polarity regulators, such as LGL, function to regulate polarity in 

areas of cell-cell contact.  

The data suggest that although the PAR proteins are polarized, the manner in 

which they polarize is unique to the sea urchin embryo.  Furthermore, the downregulation 

of the expression of these proteins in the archenteron may reflect a functional 

significance, as they may be more important in the formation and maintenance of the 

epithelium that is formed at the blastula stage.  Recent data, however, has found that 

PAR6 regulates skeletogenesis and gut differentation in the Hemicentrotus pulcherrimus 

species of sea urchin (Shiomi et al., 2012).  Inhibition of aPKC did not appear to affect 

archenteron ingression or spicule formation in the Paracentrotus lividus species of sea 

urchin (Pruliere et al., 2011). Future experiments could determine if there is a species 

specific or protein specific requirement for the PAR proteins during and post gastrulation. 

Here I find that PAR1 is actually in complex with aPKC at the 2 cell, 16 cell, and 

blastula stages of development, which is surprising given the traditionally antagonistic 

behavior of these proteins (Hurov et al., 2004). Because PAR1 is a substrate of aPKC, it 

is perhaps less surprising that they are associated with one another as opposed to PAR6 

and PAR1, which are not known to interact in other systems. In other model organisms 

aPKC phosphorylates PAR1 and PAR1 phosphorylates PAR3 as a means to exclude each 

other from their respective domains (Benton and Johnston, 2003;Hurov and Piwnica-

Worms, 2007).  These typically transient phosphorylation events may be an indicator of 

why PAR1 and aPKC are found in the same complex in the sea urchin embryo.   
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While previous results had indicated that PAR6, aPKC, and CDC42 were 

anchored in the apical cortex specifically by assembled myosin, it remains to be 

determined what cytoskeletal components affect PAR1 localization. Similar to PAR6, 

aPKC, and CDC42 PAR1 does not appear to be anchored in the apical cortex by ROCK 

activity, myosin ATPase activity, actin or microtubule polymerization.  PAR1 

localization to the apical cortex is also similarly reliant upon cell-cell contact to maintain 

apical localization. However, a role for myosin assembly in PAR1 localization has not 

yet been elucidated.   

In numerous previous seasons of both L. pictus and S. purpuratus ML-7 and ML-

9 worked effectively to inhibit the activity of MLCK in these species of sea urchin 

embryos.  It was through the use of these inhibitors that MLCK activity was found to be 

required for the stability of lipid rafts in the membrane of sea urchin embryos (Alford et 

al., 2009;Gudejko et al., 2012;Ng et al., 2005). One of the major phenotypes associated 

with MLCK inhibition is the formation of binucleate cells because while mitosis can 

proceed normally, the contractile ring is unable to form without myosin assembly and 

without a contractile ring cells do not undergo cytokinesis (Mabuchi and Takano-

Ohmuro, 1990).  In sea urchin embryos it has been shown that mono-phosphorylated 

regulatory light chain is required for cleavage furrow formation as well as for contraction 

of the furrow (Uehara et al., 2008).  Additional studies have found that myosin II is 

involved in coordination of the global activation of the cortex prior to the onset of 

cytokinesis and the maintenance of contractility in the furrow only during division 

(Miyoshi et al., 2006).  These studies all utilized either ML-7 or ML-9 in order to assess 

the function of the MLCK in sea urchin embryos. However, for the past few seasons of L. 
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pictus, S. purpuratus and L. variegatus both ML-7 and ML-9 have been ineffective.  In 

addition to not causing cytoplasmic localization of PAR6, aPKC, or CDC42 and not 

resulting in the formation of actin comets (Gudejko, 2013), embryos treated with either 

ML-7 or ML-9 did not become binucleate.  Either embryos undergo cytokinesis 

normally, or they do not enter mitosis and apoptose, mostly likely to due to solvent, 

dimethyl sulfoxide (DMSO), toxicity (Mabuchi and Takano-Ohmuro, 1990).   

This switch in the efficacy of ML-7 and ML-9 may be due to several changes in 

sea urchin embryos.  All of the sea urchins used for scientific studies are wild-caught and 

are therefore not a genetically uniform system.  They are also subject to any changes in 

their environment, which cannot be precisely controlled, as they would be in a laboratory 

setting.  Sea urchins are well documented to express ATP-binding cassette (ABC) 

transporters (Campanale and Hamdoun, 2012;Shipp and Hamdoun, 2012;Whalen et al., 

2012).  There are over 100 predicted ABC transporters in the S. purpuratus genome and 

40 annotated transporters that are multidrug efflux transporters (Cameron et al., 

2009;Shipp and Hamdoun, 2012).  These multidrug efflux transporters are well-known to 

cause drug resistance in variety of diseases, including cancer (Borst and Elferink, 2002). 

While the relative expression levels of the ABC transporters in sea urchin embryos is 

unknown, it is possible that there has been a recent increase in their expression which 

may be causing certain drugs like ML-7 and ML-9 to be pumped out of the embryos and 

rendering them ineffective.  ML-7 and ML-9 are not the only inhibitors that have been 

ineffective recently.  Sea urchin embryos have also not been responding to both the 

peptide inhibitor of PKCζ (data not shown) and inhibitors of Phosphatidylinositol-4,5-

bisphosphate 3-kinase (PI3 kianse) (Sluter, personal communications).  These data 
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suggest that there may be an increased expression of the ABC transporters in the wild 

caught sea urchin population in response to a possible increase in environmental toxins 

that must be pumped out for survival. 

There may be other environmental changes that are causing the resistance to drugs 

like ML-7 and ML-9 and may also explain why the embryos in the control microinjection 

experiments failed to divide. Global warming is now contributing to rising ocean 

temperatures and carbon dioxide levels.  Because sea urchin embryos are a well-studied 

model of cellular and developmental biology, the impact of these changes in temperature 

and ocean acidification have been explored using this model system. Increases in 

temperature and carbon dioxide levels have been shown to cause widespread changes in 

gene expression in sea urchin embryos (Pespeni et al., 2013;Runcie et al., 2012).  Further 

work has demonstrated that specific genes involved in spiculogensis and 

biomineralization vary in response to changes carbon dioxide levels (Hammond and 

Hofmann, 2012).  Other studies have found that although sea urchins embryos are able to 

compensate for the acidification of the seawater, it comes at increased costs, which 

impact growth and mortality (Stumpp et al., 2012).  The long-term impact of rising 

temperatures and ocean acidification are not yet known.  While it cannot be definitively 

determined, these changes in their environment may be affecting the sea urchins used for 

my experiments.  The adult sea urchins have been noticeably less stable during their 

shipment from coastal California and in some batches the embryos have seemed less 

healthy.  It remains to be determined if the drug resistance and failed microinjection 

experiments were due to a seasonal variation in sea urchins or were an indicator of more 

long-term effects in response to environmental changes. 
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The data here demonstrate a unique localization pattern for the PAR1 protein in 

sea urchin embryos.  Unlike in other model organisms, PAR1 colocalizes with the PAR 

complex proteins in the apical cortex through the gastrula stage of development.  Further 

analysis revealed that PAR1 is in complex with aPKC at the 2 cell, 16 cell, and blastula 

stages of development. Future studies will determine the cytoskeletal regulation of PAR1 

localization as well as the function of PAR1 in cleavage stage embryos.   The polarization 

of PAR1 to the apical cortex may be an indicator of novel regulations of polarity in the 

sea urchin embryo. 
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A.  

MDLHDDSTNSGSSRSRGRTGDDQPHVGKYRLIKTIGKGNFAKVKLAKHIPTGKE
VAIKIIDKTQLNPSSLQKVYREVKIMKLLDHPNIVKLFEVIETDKTLYLAMEYASG
GEVFDYLVAHGRMKEKEARAKFRQIVSAVQYCHQKRVVHRDLKAENLLLDKD
LNIKIADFGFSNEFTIGCKLDTFCGSPPYAAPELFQGKKYDGPEVDVWSLGVILYT
LVSGSLPFDGQNLKELRERVLRGKYRIPFYMSTDCENLLKRFLMLNPAKRAMLE
TIMKDKWMNAGFEEHELKPHQDNQEDFYDERRIETMTGMGFKRKEIEDSLRNH
KYDEHYATYLLLGRRHSDQAEDADSTSGSCLSLPQRTVSDLSSSITQSPSSQGKK
QRSIPSNQKERRFSHGGENYGQHSYKRHMDSSLKENMGNPPHRDRGRSSHGPIG
SKDSSSQSNTSNNPNQSDIPDRKAKSTPKSASKLPTKTPPGMSRRNTYVAGERDF
PGSSRTNGSSERSTRHQKSSSTSSHPVKGALLPPIDDPSNRPSTAPNKRHQIGGSPS
VRGPPVQGSNLHRGTVNRATIHGAPGRRPMFNGPASAQGSSQDTSTRNMGGPH
NISLFSKFASKFSRRSLVMAEPPSEYVKPRSLRFTFSMKTTSSKEPDSIIGEIRRVL
ESNGVDFEQRERYLLFCVHGDGRGDNLIQWEMEDSNLHQLTEDSQDSTVLLFLF
ESSEGRNMKQTPKHSTFKSSVKSPDSAHVLPE 
 
B.  
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Figure 3.2.1. PAR1 antibody design and verification. (A) The GLEAN prediction Sp-

Mark3 (PAR1) amino acid sequence of S. purpuratus.  The antigen sequence is 

highlighted. (B)Slot blot analysis of the bleeds of two rabbits from days 0, 28, 56, and 

70/72 post inoculation with the target peptide used for the PAR antibody generation.  The 

target peptide was spotted onto nitrocellulose membrane and probed with the different 

bleeds. Bleeds were tested at three different dilutions: 1:50, 1:100, and 1:500.  The bleed 

from rabbit 1 on day 70/72 was found to have the strongest reactivity and were chosen for 

antibody purification (boxed). (C) Crude serum analysis of the bleed from rabbit 1 on day 

70/72. Cell extracts isolated from 2 cell and 4 cell stage L. pictus embryos were run on a 

12% SDS-PAGE gel and probed with a 1:1000 dilution of the crude serum of the bleed 

from rabbit 1 on day 70/72.   Strong cross-reactivity was observed at 81.5kD, the 

predicted molecular weight of the PAR1 protein. (D)Western blot of L. pictus extracts 

with the purified polycloncal rabbit anti-S. purpuratus PAR1 antibody. Cell extracts 

isolated from 2 cell and 4 cell stage L. pictus embryos were run on a 12% SDS-PAGE gel 

and probed with a 1:10,000 dilution of the purified polycloncal rabbit anti-S. purpuratus 

PAR1 antibody. Western blot shows a single band at the correct molecular weight of 81.5 

kD and additionally identifies PAR1 dimers at 163 kD.
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Figure 3.2.2. PAR1 colocalizes with the PAR complex marker CDC42 at the apical 

cortex through the blastula stage. L. pictus embryos were fixed and then stained for 

CDC42 and PAR1. Cleavage stage embryos (A) were additionally stained with phalloidin 

to label F-actin and Hoescht to label DNA.  PAR6, aPKC, and CDC42 maintain the 

apical localization pattern initially seen at the 2 cell stage through the 16 cell stage 

(Figure 2.2.1.). At these early cleavage divisions PAR1 also colocalizes with these known 

apical markers(A). This unique colocalization at the apical surface is further retained at 

the blastula stage after an epithelium has formed and junctions are present (B). 

Expression of PAR1 is additionally found in the cilia at the blastula stage, similar to 

PAR6, aPKC, and CDC42 (B).  For scaling reference L. pictus embryos are 

approximately 120 µm in diameter. 
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Figure 3.2.3. The PAR complex along with PAR1 remain enriched in the apical 

epithelium of the ectoderm and are downregulated in the archenteron at the gastrula 

stage. L. pictus embryos were raised to the gastrula stage and then fixed and stained for 

PAR6, aPKC, CDC42, and PAR1 (A).  Fluorescence intensity of each protein was 

determined in three regions: the apical tuft, the archenteron, and the surrounding 

epithelium (B).  These proteins were all found to have a significant decrease in 

expression in the archenteron (ROI 2) as compared to both the apical tuft (ROI 1) (**p≤ 

0.001) and the surrounding epithelium (ROI 3) (*p≤ 0.05) (C).  The fluorescence 

intensity (pixel sum in arbitrary units (AU)) of PAR6 was 197360.4±54422.1 in the 

apical tuft, 86450.5±34162.4 in the archenteron, and 146407.6±64839.5 in the epithelium 

(n=10 embryos, mean±SD). The fluorescence intensity of aPKC was 157470.9±38619.6 

in the apical tuft, 81117.3±25727.6 in the archenteron, and 135381.9±67839.2 in the 

epithelium (n=10 embryos, mean±SD). The fluorescence intensity of CDC42 was 
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225433.3±75871.2 in the apical tuft, 88369.8±24944.3 in the archenteron, and 

173483.6±58318.1 in the epithelium (n=10 embryos, mean±SD). The fluorescence 

intensity of PAR1 was 198961.5±79431.1 in the apical tuft, 83908.9±27518.6 in the 

archenteron, and 160788.5±78914.1 in the epithelium (n=10 embryos, mean±SD). For 

scaling reference L. pictus embryos are approximately 120 µm in diameter. 
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Figure 3.2.4.  aPKC is in complex with PAR6 and PAR1 at the 2 cell, 16 cell and 

blastula stages of development. S. purpuratus embryos were grown to the stages 

indicated: 2 cell (B), 16 cell(C), and Blastula (D).  Embryos were then lysed and a co-

immunoprecipitation assay was performed using the Dynabeads kit (Life Technologies) 

with Dynabeads that had been coupled to either PAR6, aPKC, or PAR1 antibodies as 

specified (IP).  Western blots were run and samples were probed for PAR6 (1:200), 

aPKC (1:200), and PAR1 (1:10,000) as specified.  PAR6, aPKC, and PAR1 were found 
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at the correct molecular weights of 43 kD, 80 kD, and 81.5 kD, respectively.  aPKC was 

found to be in complex with both PAR6 and PAR1 at the 2 cell, 16 cell, and blastula 

stages of development.  However, PAR6 and PAR1 did not associate with each other at 

any of the examined stages. (E) S. purpuratus embryos were grown to the 2 cell stage and 

then lysed.  A co-immunoprecipitation assay was performed using the Dynabeads kit 

with Dynabeads beads that had not been coupled to an antibody. Final co-

immunoprecipitation elution, 2 cell stage S. purpuratus cell lysate, depleted 2 cell stage 

S. purpuratus cell lysate (after incubation with Dynabeads), and co-immunoprecipitation 

assay washes were run on a 12% SDS-PAGE gel.  Western blots were run and samples 

were probed for PAR6 (1:200), aPKC (1:200), and PAR1 (1:10,000) as specified. The 

Dynabeads were found to not interact with PAR6, aPKC, or PAR1. (F) A co-

immunoprecipitation assay was performed using the Dynabeads kit that utilized buffer 

only instead of lysed embryos as the starting sample. Final co-immunoprecipitation 

elution, 2 cell stage S. purpuratus cell lysate, depleted 2 cell stage S. purpuratus cell 

lysate (after incubation with Dynabeads), and co-immunoprecipitation assay washes were 

run on a 12% SDS-PAGE gel. Western blots were run and samples were probed for 

aPKC (1:200).  Non-specific interactions were not observed. 
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B.  

 

Figure 3.2.5. Calcium mediated cell adhesion is required for apical localization of PAR1, 

but the cytoskeletal regulation of PAR1 localization is unclear. (A) L. pictus embryos 

were fixed at the 2 cell stage after treatment with the various inhibitors for 15 minutes.   

Fixed embryos were stained for CDC42 and PAR1. CDC42 and PAR1 are apically 

localized in the cortex of the sea urchin embryo at the 2 cell stage of development. 

Previously, inhibition of MLCK by ML-7 or ML-9 resulted in cytoplasmic pooling of 

CDC42.  However, L. pictus embryos appear to no longer respond to these inhibitors and 

CDC42 along with PAR1 remain cortical.  Treatment with a general Rho kinase inhibitor, 

H1152, an actin polymerization inhibitor, latrunculin B, an astral microtubule inhibitor, 

urethane, or a myosin ATPase inhibitor, blebbistatin still did not effect the cortical 

localization of CDC42 or PAR1. These inhibitors were effective in L. pictus embryos. (B) 

L. pictus embryos were fixed and stained for PAR1 in both intact and dissociated 2 cell 

embryos. PAR1 had a uniform distribution in the cortex upon dissociation. For scaling 

reference L. pictus embryos are approximately 120 µm in diameter. 
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C. 

 

Figure 3.2.6. DNPAR1 and PAR1 construct development. Total RNA was isolated from 

four different batches of S. purpuratus zygotes and cDNA sequences were amplified 

using the ProtoScript M-MuLV Taq  RT-PCR kit (NEB).  Primers were designed based 

on the GLEAN prediction of S. purpuratus PAR1 or RNAseq data for the amplification 

of DNPAR1 (A) or the RNAseq data alone for the amplification of PAR1 (B) (Cameron 

et al., 2009).  Samples were run on a 2% gel for 1 hour. Positive PCR reactions were 

observed around 1266 bp for DNPAR1 using RNA isolated from each of the four 

different batches of S. purpuratus embryos and the RNAseq generated primers(A).  

Positive PCR reactions were observed around 2190 bp for PAR1 using the RNA isolated 

from two of the different batches of S. purpuratus embryos and the RNAseq generated 

primers(B).   (C) DNPAR1 was then cloned into the bacterial expression vector pEXP5-
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CT (Life Technologies). The BL21-D3pLys strain of Escherichia coli cells were then 

transformed with the pEXP5-CT-DNPAR1 plasmid and expression was induced with 

1mM IPTG overnight at 30°C.  Samples were run through a NiNT3 columns and then run 

on a 12% SDS-PAGE gel and stained with Coomasie. Isolated DNPAR1 dimers are 

observed in the first three elutions. 
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Chapter 4. How to be at the Right Place at the Right Time:  

The Importance of Spindle Positioning in Embryos, a Review 

4.1. Introduction 

 The mitotic spindle is an essential cellular apparatus that is required for cleavage 

plane determination and faithful separation of the chromosomes during mitosis.  It is a 

microtubule-based structure that must be properly positioned within a cell for successful 

embryogenesis and survival of the daughter cells.  While spindle positioning has been 

extensively studied in adult tissues, oocyte formation and unicellular organisms, it also 

plays a vital role during cell morphogenesis and the development of embryos.  During the 

development of multi-cellular organisms the coordination of the mitotic spindle and 

subsequent cleavage plane is imperative for differing developmental outcomes.  

Asymmetric and symmetric divisions are well known regulators of morphogenesis. 

Localization of a spindle to one end of developing embryo can result in the segregation of 

differing developmental determinants within the cortex and the cytoplasm of a cell 

following division.  Without precise positioning of the spindle, the formation of different 

cell and tissue types within an embryo would not be possible.   

Spindle positioning is a fundamental cellular process that has intrigued scientists 

for well over 100 years.  Oskar Hertwig first utilized echinoderm and frog eggs to assess 

the role of the mitotic spindle in positioning the cleavage plane.  He created what would 

become known as “Hertwig’s rules” (Hertwig, 1884).  His rules, as concluded by Wilson, 

stated that “1) The typical position of the nucleus (and hence the mitotic figure) tends 

towards the center of the its sphere of influence, i.e., of the protoplasmic mass in which it 

lies. 2) The axis of the spindle typically lies in the longest axis of the protoplasmic mass, 
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and division therefore tends to cut this axis transversely.” (Wilson, 1924)  This idea that 

cells divided perpendicular to their longest axis seemingly worked well to explain the 

division plane of symmetrically dividing cleavage stage echinoderm embryos. 

Experiments in the early 1900s further demonstrated that there was a clear correlation 

between the division plane and cell fate specification in ascidian embryos (Conklin, 

1905).  Later work by Ray Rappaport further expanded the experiments of Hertwig 

(Rappaport, 1996). Rapport performed experiments that changed the shape of the 

normally spherical echinoderm embryo into various shapes including cigars, ice cream 

cones or dumbbells.  Through these experiments he found that that although most 

divisions followed Hertwig’s rules, there are some instances of unusual sites of furrow 

formation.  In his famous Torus experiments, Rapport created a donut-shaped embryo by 

pressing in a glass ball and observed that a normal furrow that bisected the spindle 

formed, but a second additional furrow ingressed at one pole where an aster intersected.  

These would later become known as Rappaport furrows. Rappaport also classically 

demonstrated that there existed a positive cue that emanated from the astral microtubules 

which stimulated contractile ring formation for cytokinesis (Rappaport, 1996). Astral 

microtubules are now known to be key players in the determination of spindle positioning 

as they interact with the cell cortex and generate pulling forces against the cortex and the 

cytoplasm (For review see McNally, 2013).  Additionally, the minus end directed motor 

protein, dynein, is thought to exert the pulling forces necessary for spindle movement.  

However, there remains some debate about which forces, pushing or pulling, are required 

for spindle movement (For review see McNally, 2013). 
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These early experiments examined and helped to explain a very complex cellular 

process.  Since their discoveries, cellular and developmental biologists have now built 

upon these findings to explore the molecular machines that are responsible for these 

processes.  In this review I highlight the most current work on the important role that 

spindle positioning plays in developing embryos.  Specifically I will examine the 

molecular mechanisms of both polarized and nonpolarized divisions in the diverse array 

of model organisms in which spindle positioning has been studied, including: 

Caenorhabditis elegans, Drosophila melanogaster, sea urchin embryos, ascidians 

embryos, and Xenopus laevis.  Each model system presents its own advantages that have 

allowed for biologists to dissect the many pieces that must be coordinated to position the 

spindle at the right place and at the right time. Finally I will discuss the future directions 

of this field and the emerging importance of computer-aided mathematical modeling to 

our understanding of this intricate process. 

 

4.2. The C. elegans Embryo: A model for polarity dependent spindle positioning 

 One of the most exploited model systems utilized to study spindle positioning is 

the C. elegans embryo.  With the many genetic tools that are available for this organism, 

the C. elegans embryo is an ideal system that has allowed the identification of the 

molecular components necessary for proper spindle positioning.  Furthermore, the optical 

clarity of these embryos has readily allowed for the imaging of intricate cellular 

processes like spindle positioning. Additionally, as this embryo is a well-established 

model of polarized cell divisions, research into the C. elegans embryo has determined 

how cell polarity factors influence spindle positioning.   
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 The first division following fertilization in the C. elegans embryo is asymmetric.  

The spindle initially assembles in the center of the embryo, moving towards the posterior 

end of the embryo during metaphase and early anaphase. Genetic screens have revealed 

that a ternary complex consisting of two Gα subunits (GOA-1 and GPA-16), two 

TPR/GoLoco-domain proteins (GPR-1 and GPR-2), and the large coiled-coil protein 

LIN-5 plays a substantial role in spindle positioning in this embryo (Figure 4.2.1.) 

(Lorson et al., 2000;Gotta and Ahringer, 2001;Srinivasan et al., 2003; for review see 

Kotak and Gönczy, 2013).  Depletion studies of each of these proteins demonstrated that 

they are involved in pulling forces of the astral microtubules and without their function 

the spindle remains centered and the first cell division becomes symmetric (Lorson et al., 

2000; Gotta and Ahringer, 2001; Colombo et al., 2003).  These proteins are also known 

to regulate dynein and become concentrated at the posterior end during metaphase and 

early anaphase; it is the higher posterior concentration of the ternary complex that pulls 

the spindle to the posterior end (Grill et al., 2001; Grill et al., 2003; Park and Rose, 

2008).  Dynein activity has been proposed to be most critical during early prophase for 

proper spindle positioning  (Figure 4.2.1.) (Gusnowski and Srayko, 2011).  GPR-1 is also 

known to sense and respond to the mechanical properties of the cortex, which may be 

important for its role in spindle positioning (Bringmann, 2012).  Laser severing 

experiments have additionally shown that the pulling forces in the posterior end of the 

cell are stronger than those found in the anterior and this results in the spindle 

displacement (Grill et al., 2001; for review see Gillies and Cabernard, 2011).   Other 

studies demonstrated the importance of the CLASP proteins, which are microtubule-

associated proteins that are necessary for the astral microtubules to be able to reach the 
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cell cortex at the right time during spindle positioning (Espiritu et al., 2012).  Thus data 

from the C. elegans embryo overwhelmingly favors a role for pulling forces in generating 

the asymmetric spindle position during their first division. 

 In addition to the ternary complex, the PAR proteins play a well-known role in 

the establishment of the anterior-posterior axis and subsequent asymmetric division in the 

C. elegans embryo.  The PAR proteins were initially discovered in these embryos based 

on a genetic screen that identified these proteins based on their involvement in the 

regulation of the first division (Kemphues et al., 1988; Morton et al., 1992; Levitan, 

1994; Guo and Kemphues, 1995; Etemad-Moghadam et al., 1995; Watts et al., 1996; 

Tabuse et al., 1998; for review see McCaffrey and Macara, 2009; McCaffrey and Macara, 

2012). Following fertilization PAR-3 and PAR-6 become enriched at the anterior cortex, 

while PAR-1 and PAR-2 localize to the posterior cortex (Figure 4.2.1.) (Kemphues, 

2000). Mutual exclusion of proteins from each domain ensures proper segregation of the 

PAR proteins and is used to maintain the polarized distribution of these proteins (Cuenca 

et al., 2003; Boyd et al., 1996; Etemad-Moghadam et al., 1995; Guo and Kemphues, 

1995; Tabuse et al., 1998; Watts et al., 1996).  Once the asymmetry of these proteins has 

been established, the PAR proteins help to coordinate the localization of the mitotic 

spindle and subsequent asymmetric division (Ahringer, 2003; Galli et al., 2011; Hao et 

al., 2010).   The atypical protein kinase C, PKC-3, associates with the scaffolding 

proteins PAR-6 and PAR-3 in the PAR complex and is now known to negatively regulate 

LIN-5 by phosphorylation (Galli et al., 2011; Joberty et al., 2000; Lin et al., 2000).  

Additionally, the PAR proteins regulate the cortical localization of the GPR-1/2 to the 

posterior of the zygote during anaphase through their interactions with casein kinase I 
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and PI(4)P5-kinase (Panbianco et al., 2008).  The asymmetry that is established by the 

PAR proteins ensures that developmental determinants are properly positioned following 

the first cleavage in this embryo.  The importance of the segregation of developmental 

determinants is demonstrated by the zinc-finger proteins MEX-5/MEX-6, which are 

partitioned to the anterior cell.  The segregation of MEX-5/MEX-6 is needed for germline 

development (Schubert et al., 2000). Since their initial discovery in the C. elegans 

embryo the PAR proteins have been shown to be involved in the regulation of many other 

divisions in higher order eukaryotes (Hao et al., 2010; Lázaro-Diéguez et al., 2013; Slim 

et al., 2013; Dormoy et al., 2012; Durgan et al., 2011).  

C. elegans embryos have thus proven to be a powerful tool for analyzing the 

proteins that control the localization of the spindle and the subsequent site of division. 

Work on these embryos also highlights the fact that cell polarity proteins can play a 

central role in spindle positioning that overcomes the simple geometrical ideas originally 

put forth by Hertwig.  

 

4.3. The Drosophila melanogaster Embryo: A model for stem cell renewal  

 The Drosophila embryo has been an excellent model for studying spindle 

positioning in specific cell types.  Like the C. elegans embryo, powerful genetic tools are 

available for use in Drosophila as a model. Drosophila embryos are an excellent model 

for the study of the mechanisms of spindle positioning in stem cells, especially in the 

study of neuroblast formation, as well as in early embryogenesis (Baena-López et al., 

2005; da Silva and Vincent, 2007; for review see Gillies and Cabernard, 2011). Here, 

however, we will focus on the asymmetric divisions found in neuroblast cells.   



  99 

Through asymmetric cell divisions neuroblasts are able to maintain one self-

renewing, undifferentiated cell and one cell that will begin differentiating into a neuron 

based on the developmental determinants that are inherited following cell division. 

Numerous molecular components are required for this asymmetric division and this work 

has supplemented our understanding of stem cell generation in vertebrates (For review 

see Williams and Fuchs, 2013).  Drosophila neuroblasts orient their spindles along an 

internal polarity axis, which sets up the division plane so that cell fate determinants such 

as Miranda, Numb, Brain tumor (Brat), and Prospero (Pros) are only segregated to the 

developing neuron and not into the self-renewing stem cell (Figure 4.2.1.) (Gillies and 

Cabernard, 2011; Doe, 2008; Cabernard and Doe, 2009).  The spindle rotates 90 degrees 

prior to division only during the first neuroblast cell cycle; subsequent cycles rely on the 

attachment of the centrosome to the apical cortex in order to determine spindle 

orientation (Kaltschmidt et al., 1999; Rebollo et al., 2009; Rebollo et al., 2007; Rusan and 

Peifer, 2007).  Recent data also suggests that there is an asymmetry between mother and 

daughter centrioles in interphase Drosophila neuroblasts and that the daughter centriole 

retains the pericentriolar material and organizes the aster that is required for asymmetric 

division (Januschke et al., 2013).  Furthermore, these neuroblasts must also remain 

associated with neuroepithelial cells in order to maintain their division axis as 

dissociation resulted in random division (Siegrist and Doe, 2006).  Thus, in neuroblasts 

there are cellular cues (centrosomes or centriole) that are the primary control of spindle 

positioning that override simple cell geometry as the mechanism of controlling spindle 

positioning and thus the cell division plane. 
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The molecular machinery that is required for these divisions has been investigated 

using various mutants.  Mushroom body defect (mud), an ortholog of the vertebrate 

nuclear mitotic apparatus (NuMa), is necessary for the asymmetric division of 

neuroblasts; mud mutants divide symmetrically as a result of a misaligned spindle to 

produce two neuroblast cells instead of a neural progenitor and a differentiating neuron 

(Cabernard and Doe, 2009).  Mud colocalizes with Pins (LGN ortholog) in the apical 

cortex through metaphase, and becomes symmetrically distributed to both ends at 

anaphase (Figure 4.2.1.) (Bowman et al., 2006; Izumi et al., 2006; Siller et al., 2006).  It 

has been proposed that the Pins/Mud/GαI complex interacts with dynein; however, a 

physical interaction between dynein and Mud has yet to be demonstrated (Figure 4.2.1.) 

(Gillies and Cabernard, 2011).  Mud interaction with molecular motors may then generate 

pulling forces on the mitotic spindle; however, a direct role for these pulling forces has 

yet to be established.  Genetic examination of two dynein associated proteins, Lis1 and 

Glued, have resulted in similar spindle defect phenotypes as mud mutants (Siller and 

Doe, 2008).  Another microtubule motor, kinesin Khc73, has been shown to connect Dlg 

(Discs large), a PDZ protein, with Pins and act a linker between the astral microtubules 

and Pins (Siegrist and Doe, 2005; Johnston et al., 2009).  In this Mud independent 

pathway, Pins recruits Dlg to the cortex and Dlg then anchors microtubules in the cortex 

via Khc73 in order to position the spindle (Gillies and Cabernard, 2011).  While 

Pins/Mud/GαI appears to play a role in microtubule pulling, this Pins/Dlg/Khc-73 

pathway is more actively involved in microtubule anchoring (Morin and Bellaīche, 

2011).  These differing microtubule-based forces must both contribute to the asymmetric 
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spindle positioning that generates the progenitor and daughter cells and may suggest that 

there are multiple forces that actively position the spindle. 

Similar to the C. elegans embryo, Drosophila neuroblasts also require the PAR 

complex to regulate their asymmetric division (For review see Nance and Zallen, 2011).  

In these cells Par3 (Bazooka), Par6, and aPKC localize to the apical cortex from late 

interphase onward.  Par3 recruits Insc (Inscuteable) to the apical cortex, which then 

interacts with Pins/GαI.  Analysis of Pins and GαI mutants have shown that these 

interactions are necessary for mitotic spindle orientation and for the apical localization of 

Par3, aPKC, and Incs  (Figure 4.2.1.) (For review see Morin and Bellaīche, 2011).  The 

association of the PAR proteins with stem cell divisions has been evolutionarily 

conserved as recent data suggests aPKC is involved in the division orientation of the self-

renewing epithelium in mice (Niessen et al., 2013).   

The Drosophila neuroblasts have thus proven to be an excellent model for 

studying the process of stem cell regeneration and differentiation.  It is from this model 

that that we have learned how spindle components, molecular motors, and polarity factors 

work together to accurately orient the mitotic spindle and following division produce two 

distinct cell types: a progenitor cell and a differentiating cell.  Further work will establish 

whether pulling forces and the location of these forces, play a key role in spindle 

orientation in this system. 

 

4.4. The Sea Urchin Embryo: A model for studying cell shape 

 The sea urchin embryo has long been utilized as a model for cellular and 

developmental biology (For review see Ernst, 2011).  Their gametes are easy to obtain 
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and some species have large, optically clear embryos that are perfectly suited for live cell 

imaging.  Additionally, although they are not a genetic model system like Drosophila and 

C. elegans, the genome of Stronglyocentrotus purpuratus has been sequenced and thus 

molecular components involved in spindle positioning can be identified (Cameron et al., 

2009; Sodergren et al., 2006).  Following fertilization, the first few divisions of the sea 

urchin embryo are symmetric; the first asymmetric division does not occur until the 16 

cell stage (Schroeder, 1987). While cell polarity has now been shown to emerge 

following the first cleavage in the sea urchin embryo, the first division remains 

unpolarized and thus can be studied to determine how spindles become oriented without 

the influence of polarity cues (Figure 4.4.1.) (Ng et al., 2005; Alford et al., 2009). Classic 

experiments by Driesch revealed that the blastomeres of these embryo can be separated 

up until the 4 cell stage and produce viable adults; demonstrating that developmental 

determinants are still symmetrically distributed during the first two divisions (Driesch, 

1892). 

 The symmetric division of the first cleavage in the sea urchin embryo is a well-

suited model for the study of the influence of cell geometry on spindle positioning.  The 

role of mitotic shape and an apparent requirement for cell rounding prior to division has 

been garnering attention as mechanism in which to properly construct the spindle and 

ensure proper segregation of both the chromosomes and cellular components (For review 

see Cadart et al., 2014).  Pioneered as an experimental system by Hertwig and later by 

Rappaport, sea urchin embryos can be easily manipulated and forced into different shapes 

in order examine how spatial cues influence the mitotic spindle (Hertwig, 1884; 

Rappaport, 1996).  Further work, modeled after Rappaport’s experiments, has shown that 
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both membrane curvature and fluid membrane movements also play a role in the 

positioning of the cleavage furrow (Yoshigaki, 2001; Yoshigaki, 2002; Yoshigaki, 2003). 

Recent experiments using microfabricated molds have further explored the original 

findings of Hertwig (Figure 4.4.1.) (Minc et al., 2011).  The ability to replicate these 

experiments and produce large data sets using embryos fit into molds allowed for critical 

analysis of Hertwig’s rules.  Although the site of division in the sea urchin embryos 

followed Hertwig’s rules in most shapes examined, there were a few that “broke” his 

rules.    An example can be seen in embryos that were placed in the rectangular molds 

and subsequently divided along instead of perpendicular to the longest axis of symmetry.  

This suggests that there may be more complexity to determining the site of furrowing 

than simply placing the division site perpendicular to the longest axis.  The embryos 

appeared to set their division axis in early prophase before nuclear envelope breakdown 

when long microtubules emanated from the duplicated centrosomes that exert balanced 

pulling forces on the nucleus (Minc et al., 2011).  Modeling was then used to determine 

that these microtubules sense the geometric space and exert pulling forces that are scaled 

to the cube of their length. Shape sensing was proposed to be due to the longest 

microtubules generating the greatest pulling forces.  These pulling forces were likely 

generated by dynein that is found on particles dispersed in the cytoplasm rather than on 

the cell cortex (Minc et al., 2012).  Thus multiple molecular motors in different locations 

may provide the force that is required to pull on the spindle.  However, these ideas have 

yet to be formally tested. These studies did provide new insight into how a spindle is 

positioned in a non-adherent embryonic cell that does not have traditional polarity cues. 
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Other work has investigated the molecular components involved in spindle 

positioning in the sea urchin embryo. From Rappaport’s famous Torus experiments, we 

know that sea urchin zygotes can be induced to form an artificial secondary “Rappaport” 

furrow (Rappaport, 1996).  From these types of experiments, cues emanating from the 

spindle can be separated from other microtubule populations, such as astral microtubules, 

in order to determine which are required for furrow formation and positioning 

(Rappaport, 1996). Centralspindlin and the chromosomal passenger complex (CPC) 

organize the central spindle and are both involved in furrow positioning; recently their 

roles in Rappaport furrows were examined (Argiros et al.,  2012). While in mononucleate 

zygotes mitotic-kinesin-like-protein1 (MKLP1), a member of the Centralspindlin 

complex, and Survivin, a member of the CPC, were localized to the central spindle upon 

anaphase onset and subsequently spread towards the equatorial cortex, neither protein 

was detected on the secondary Rappaport furrows in binucleate cells unless chromosomes 

were abnormally localized between opposing astral arrays (Argiros et al., 2012).   These 

data show that in mononucleate zygotes components of the central spindle are localized 

to the tips of astral microtubules concurrent with furrow initiation and are thus are the 

right place at the right time to be part of the signaling pathway that specifies furrow 

position. Despite the fact that MKLP1 and Survivin were not detected on secondary 

furrows, inhibition of another component of the CPC, aurora kinase, by the inhibitor VX-

680 revealed that CPC signaling was required for Rappaport furrows to form (Argiros et 

al., 2012).  Collectively, these data demonstrate that components of the central spindle 

are required for furrow induction and bridge the gap between our understanding of the 
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central spindle furrow specification model and Rappaport’s classic cleavage plane 

specification model. 

 The use of the sea urchin embryo has made important contributions to the field of 

spindle positioning.  It is from these embryos that the influence of cell shape and the 

ability to predict division orientations has been established.  Work on these embryos has 

also help to resolve the complex relationship between the spindle and the subsequent 

cleavage furrow that forms to divide and separate the daughter blastomeres. 

 

 4.5. Ascidian Embryos:  A model for chordate spindle positioning 

 Because of their evolutionary position between invertebrate deuterostomes, like 

sea urchins, and vertebrates, like Xenopus, and the fact that their cleavage divisions are 

stereotypically invariant, ascidians are a useful developmental model for studying the 

conserved processes between these different lineages.  Like C. elegans and sea urchin 

embryos, some ascidian embryos are transparent, which makes them optimal for imaging.  

Furthermore, they undergo rapid embryogenesis, have well-documented cell lineages, 

have invariant cleavages, and have a relatively simple body plan.  The genome of Ciona 

intestinalis was also sequenced in 2002, which has allowed for whole-genome analysis 

(Dehal et al., 2002; Satoh et al., 2003).   

While most of the work on spindle positioning in embryos has focused on more 

established model organisms, analysis of this process in basal chordates has only begun 

to be explored.  The first asymmetric division in ascidians occurs at the 8 cell stage in the 

posterior blastomeres.  This division begins to separate the muscle cell fate and germline 

precursors (Nishida, 2002; Nishida, 2005).  A cortical structure called the centrosome 
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attracting body (CAB) is found in the posterior blastomeres at the 8 cell stage and 

regulates this asymmetric division (Hibino et al., 1998; Nishikata et al., 1999).  Recent 

data suggest that the cortical accumulation of the PAR complex in the CAB is required 

for the asymmetric division at the 8 cell stage (Patalano et al., 2006).  These researchers 

find that aPKC localization to the CAB is actin-dependent and astral microtubules make 

contact with the aPKC cortical domain (Patalano et al., 2006).  Other studies found that 

another protein, Posterior End Mark (PEM), also localizes to the CAB in the posterior 

blastomeres and is required for correct orientation of the cleavage plane.  PEM appears to 

play a role in the anchoring of microtubules between the centrosome and the cortex 

(Negishi et al., 2007).   A live 4D confocal study of microtubule dynamics during the 

asymmetric cell division at the 16 cell stage in Phallusia mammillata further 

demonstrated that one spindle pole of the mitotic spindle moves toward the CAB during 

prometaphase and it was this spindle placement that drove asymmetric division (Prodon 

et al., 2010). Collectively, these data highlight the utility of ascidian embryos to study the 

process of spindle positioning and a clear justification for their use as a model as the 

evolution of conserved processes between invertebrate and vertebrate lineages can be 

established using this model. 

 

4.6. Xenopus laevis Embryos:  A model for size scaling in spindle positioning and 

vertebrate development 

 Xenopus laevis embryos serve as an influential model of spindle positioning for 

higher vertebrates.  Their eggs are easily obtained in the laboratory and can be 

microinjected for analysis of the roles of various molecular components.  Additionally, 
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fixed embryos can be used for immunofluoresence assays, and cell-free extracts can be 

made form Xenopus eggs, which can be used for biochemical and physical manipulations.  

These eggs are also large in size (1200µm), cleave completely and have a fast cell cycle 

(20-30 minutes following the first division) (Mitchison et al., 2012).     

 Because of the large size of Xenopus eggs, they have been utilized to assess the 

role of size scaling and the spindle (Figure 4.6.1.).  The regulation of aster size during the 

cell cycle has important implications for the spatial organization of the embryo 

(Mitchison et al., 2012).   The spindle in early blastomeres of Xenopus embryos is 

centered, yet because of the large size of the blastomeres astral microtubules are unable 

to reach the cortex (Wühr et al., 2009; Wühr et al., 2010).  In smaller embryos, the astral 

microtubules have contact with the cell cortex at prophase and metaphase and can thus 

position the spindle as the chromosomes align at the metaphase plate; however, it is not 

until anaphase onset that the asters are able to reach the cell cortex in Xenopus embryos  

(Figure 4.6.1.) (Wühr et al., 2010).  In Xenopus embryos it was found that interphase 

asters preposition the centrosomes using dynein motors and the spindle is then positioned 

between these centrosomes.  Dynein motors, most likely anchored to organelles, must 

then pull on sites in the bulk cytoplasm, rather than the cortex, to orient the centrosomes 

(Wühr et al., 2010). These data highlight that microtubule pulling forces can still be 

generated in embryos that are too large to reach cortical sites.   

 Additional studies have investigated the role of size scaling in Xenopus embryos 

by examining how spindle length and cytoplasmic volume are related with spindle length 

increasing with larger cytoplasmic volumes to a limit (Wühr et al., 2008; Hazel et al., 

2013).  During embryogenesis, Xenopus embryos are rapidly dividing without any 
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accompanying growth, decreasing the diameter of individual blastomeres 100-fold. The 

cellular components in these individual blastomeres must then adapt to these increasingly 

smaller volumes.  While it was initially thought that spindle size would scale with cell 

size, experiments using Xenopus embryos at multiple stages of development and thus at 

multiple cell sizes, have shown that there is an upper limit of 60µm for the mitotic 

spindle. This was largest size the mitotic spindle would reach to in these embryos, which 

suggests that spindle length is both independent of cell length and determined by 

mechanisms intrinsic to the spindle (Wühr et al., 2008).  Recent work then explored if it 

was a developmental program or cell size and shape that determined the spindle size 

during embryogenesis.  Interestingly, by placing Xenopus extracts in engineered cell-like 

compartments of defined sizes, researchers were able to find that cytoplasmic volume 

regulated the size of the spindle (Good et al., 2013; Hazel et al., 2013).  This scaling trend 

demonstrated that in a cell free system spindle size scaled with compartment volume 

rather than shape or developmental cues.  Similar observations of size scaling and spindle 

alignment in large embryos have been made in zebrafish embryos, further confirming an 

evolutionary conserved mechanism of spindle positioning during vertebrate development 

(Wühr et al., 2008; Wühr et al., 2009; Wühr et al., 2010). 

  Spindle alignment is important in later development in Xenopus embryos.  

Polarized blastomeres of Xenopus embryos at the blastula stage have spindles that orient 

themselves based on the shape of the cells (Strauss et al., 2006).  These polarized 

blastomeres are utilized to generate the inner and outer cells with different fates in the 

blastula.  While cell shape was previously thought to be the default mechanism, isolated 

blastomeres from these embryos oriented randomly unless introduced into an 
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experimentally long axis early in the cell cycle.  These experiments demonstrated the 

importance of cell shape in the generation of cell fate diversity (Strauss et al. 2006).  The 

polarity of these blastomeres was regulated by aPKC, Crumbs3, and Lgl2 as has been 

shown in invertebrate embryos (Chalmers et al., 2005).  Other studies have also shown 

that geometric constraints result in perpendicularly oriented divisions that are necessary 

for the formation of superficial, epithelial cells and non-epithelial deep cells (Chalmers et 

al., 2003).  

 Xenopus embryos have also been utilized to demonstrate that the symmetric cell 

divisions during epiboly are controlled by an apically directed cortical flow of F-actin 

and myosin-2 and a basally directed force that is generated by microtubules and myosin-

10 (Woolner and Papalopulu, 2012).  Myosin-10 and F-actin had already been shown to 

associate with the spindle and were additionally necessary for the regulation and 

maintenance of spindle length (Woolner et al., 2008).  Similarly F-actin was shown to be 

necessary to maintain the central localization of the spindle in mouse zygotes (Chew et 

al., 2012) and has been garnering attention as another manner in which spindle 

positioning is regulated in a number of cell types (Bezanilla and Wadsworth, 2009).  

These studies highlight the roles of actin and myosin in spindle regulation as opposed to 

just the regulation of microtubule-based forces and continue the debate over pushing vs. 

pulling mechanisms of spindle movement.  

 Our knowledge of spindle positioning during both early and later embryogenesis 

has been greatly supplemented by experiments in Xenopus embryos and extracts.  These 

embryos have demonstrated that the importance of regulating spindle positioning applies 
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to many stages of development that require different molecular components at different 

times of development. 

 

4.7.  The Mouse Oocyte: A unique mechanism for asymmetric spindle positioning 

The mouse oocyte offers an unusual case of spindle positioning that is 

accomplished in a seemingly unique manner as it is independent of both polarity and 

geometric cues.  Studies utilizing the mouse oocyte has illuminated the roles of F-actin 

and myosin-II in generating the forces required for asymmetric spindle positioning in a 

system that lacks both astral microtubules and centrosomes.   The formation of 

mammalian oocytes is an imperative process to understand as it begins the segregation of 

developmental determinants prior to fertilization.  There is much known on the 

positioning of the meiotic spindle in mouse oocytes (For review see Chaigne et al., 2012; 

Almonacid et al., 2014). Some have proposed that F-actin along with a myosin II motor 

may be pulling on the spindle towards the cortex (Shchuh and Ellenberg, 2008), while 

others have postulated that the F-actin cloud surrounding the chromosomes, may actually 

push the spindle towards the cortex (Li et al., 2008).  Additional studies have shown that 

the asymmetric division in mouse oocytes that results in polar body formation also 

requires a soft cortex and a dynamic actin network (Schuh and Ellenberg, 2008; Azoury 

et al. 2008; Chaigne et al., 2013).  Other work using live cell imaging has demonstrated 

that the actin network becomes dense during prophase I before undergoing remodeling 

and destabilization during meiosis.  These dynamics appear to be the cue for symmetry 

breaking in the mouse oocyte (Azoury et al., 2011).  The actin filament nucleator, 

Formin-2, organizes the actin network, while myosin activity regulates spindle movement 
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(Schuh and Ellenberg, 2008; Azoury et al., 2008).  These data highlight the utilization of 

other cytoskeletal components, apart from microtubules, that can orient the meiotic 

spindle and ensure the proper segregation of chromosomes along with maternal storage 

RNAs and proteins into the oocyte. 

 

4.8. Conclusions and Future Directions: 

 The work reviewed here has examined the importance of spindle positioning in a 

number of different developmental model organisms and how that positioning is 

accomplished.  Genetic model organisms such as C. elegans and Drosophila embryos 

have been utilized to assess the roles of varying molecular components that influence 

spindle positioning.  Studies in these organisms have identified roles for proteins in the 

ternary complex and the PAR complex, as well as molecular motors like kinesin and 

dynein and how they override simple cell geometry and the long axis rule to position 

spindles.  Further experiments have found how the polarity inducing factors influence the 

placement of the spindle and the developmental impact that they have on processes such 

as embryogenesis and stem cell renewal. Experiments in ascidian embryos have further 

supplemented our knowledge of the conserved role the PAR proteins play in asymmetric 

divisions in development in deuterostomes. On the other hand, the sea urchin embryo has 

been a historical model system for the study of the influence of cell shape on spindle 

positioning and remains the model system with which to further analyze the long axis 

rule and the molecular basis and location of pulling forces that position the future spindle.  

Xenopus embryos have been employed in the study of size scaling and examining how 

such a large embryo is able to correctly orient a spindle with astral microtubules that do 
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not reach the cortex until anaphase onset (Wühr et al., 2010).  Further work in the mouse 

oocyte has demonstrated the roles of F-actin and myosin-II as an alternative force 

generator in asymmetric spindle positioning. All of the models discussed here have 

greatly supplemented our knowledge of spindle positioning and demonstrated the 

importance of correct spindle orientation for proper development. 

An emerging trend in the field of spindle positioning is the use of mathematical 

modeling.  The combination of computational and experimental approaches allows for 

predictions to be both produced and tested in a quantitative manner.  By generating 

computational models developed with experimentally tested parameters scientists will 

obtain more quantitative data leading to a greater understanding of this biological 

process. It will also allow for the examination of more complicated models of spindle 

positioning such as the coordination of multiple spindles during tissue morphogenesis 

(Minc and Piel, 2012).  Modeling may also allow for further analysis of the influence 

individual cytoskeletal elements have on the position of the spindle.  The regulation of 

pushing vs. pulling forces and microtubule vs. actin-based mechanisms may be more 

clearly elucidated in models that can tease apart each individual component, providing a 

framework for future experimental design.  Although there remains debate about which 

forces are most imperative for positioning the spindle, reality may be that in fact both 

pushing and pulling mechanisms must work simultaneously through multiple signaling 

pathways and cytoskeletal elements in order to properly orient the spindle.  Which of 

these forces is most dominant may then vary in different organisms or at different times 

during development.  This complexity may be required to ensure that the spindle is at the 

right place at the right time. 
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The process of spindle positioning has long fascinated scientists and continues to 

be a significant field of study.  It plays an important role in embryos as the determination 

of the placement of the spindle has a significant impact on subsequent development. In 

the future it will be imperative to be able to establish how all of the different factors – cell 

shape, molecular motors, the cytoskeleton and polarity proteins – work together to 

establish the position of the spindle.   
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Figure 4.2.1. Asymmetric divisions in the C. elegans zygote and the Drosophila 

neuroblast.  (A) The cortical organization of the C. elegans zygote during the first round 

of mitosis following fertilization influences the asymmetric placement of the spindle 

(Morin and Bellaīche, 2011). The PAR complex proteins (Par-3/Par-6/PKC-3) regulate 

polarity at the anterior end of the zygote, while Par-1/Par-2 regulate polarity in the 

posterior end.  The ternary complex member GPR-1/2 is symmetrically distributed 

throughout both anterior and posterior ends.   (B) Similar to the C. elegans zygote the 

Drosophila neuroblast has an asymmetric distribution of the cellular components that 

regulate spindle positioning (Morin and Bellaīche, 2011). The PAR complex proteins 

(Baz/aPKC/Par6) localize to the apical end of the neuroblast, while the cell fate 

determinants (Brat/Pros/Numb/Miranda) segregate to the basal end.  Mud is enriched at 
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the apical end through metaphase and becomes symmetrically distributed in both the 

apical and basal ends at anaphase.  (C) The pathways for both the C. elegans zygote and 

the Drosophila neuroblast are outlined.  Both utilize a combination of polarity factors, 

spindle positioning proteins, and molecular motors to cause an asymmetric division that 

results in two daughter cells with different developmental fates. 
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A. 

 

B. 

 

Figure 4.4.1. Spindle positioning in the sea urchin zygote.  (A) Normal spindle 

positioning and cell division in a sea urchin embryo outside of a microfabricated mold. 

(B)  Division patterns observed in sea urchin embryos placed in different shape 

microfabricated molds (Minc et al., 2011).  The embryos in the top row followed 

Hertwig’s rules, while the embryos in the bottom row had a division plane that violated 

Hertwig’s rules. Red lines are used to indicate the predicted division plane based on 

Hertwig’s rules. 
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Figure 4.6.1. Size scaling in Xenopus embryos.  Drosophila neuroblast, C. elegans 

zygote, sea urchin zygote, and  Xenopus zygote are drawn to scale.  Xenopus embryos are 

utilized as a model in order to address questions of size scaling.  Because of their large 

size Xenopus embryos must center their spindles without astral microtubule contact with 

the cortex.  During interphase astral microtubules pull on dynein in the cytoplasm to 

orient the centrosomes.  The spindle is then centered between the centrosomes during 

metaphase.  It is not until anaphase onset that the astral microtubules make contact with 

the cortex.   
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Chapter 5. Conclusions and Future Directions 

The sea urchin embryo is a classic model organism for the study of the cellular 

and developmental biology.  Because of their numerous experimental advantages and a 

developmental pattern that is similar to vertebrates through gastrulation, sea urchin 

embryos serve as useful models of early deuterostome development.  Here sea urchins 

embryos were utilized to study the role of the PAR proteins in the establishment of 

polarity in an early deuterostome embryo.  While the PAR proteins were initially 

discovered in the C. elegans embryo and have been subsequently studied for their roles in 

the polarity of cells and embryos, there was little data on the role of the PAR proteins in 

the early development of deuterostome embryos (McCaffrey and Macara, 

2009;McCaffrey and Macara, 2012;Nance and Zallen, 2011).  The data here find both the 

anterior polarity proteins PAR6, aPKC, and CDC42 along with the posterior polarity 

protein, PAR1 localize to the apical cortex at the 2 cell stage of development and that this 

colocalization is retained through the gastrula stage.  While this polarization pattern is 

unique to the sea urchin embryo, it does appear to be required for proper development. 

PAR6, aPKC, and CDC42 are anchored in the cortex by myosin assembly and further 

analysis found that there was a clear role for assembled myosin during early cleavage 

stages. These data demonstrate that deuterostomes, like protostomes, polarize early in 

development and that this polarity is required for normal development. 

Future studies will be necessary to more fully understand the role of early polarity 

in the sea urchin embryo.  Here the data suggest that myosin assembly anchors the PAR 

complex proteins and is additionally needed for blastula formation.  While inhibition of 

MLCK was actually found to disrupt actin and not myosin localization (Gudejko, 2013), 
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it remains to be determined if the resulting actin comets actually cause the cytoplasmic 

pooling of the PAR proteins.  The cortical reorganization caused by inhibition of myosin 

assembly would best be studied in live embryos in order to assess the effects in real time.  

Previous experiments have successfully microinjected sea urchin embryos with the F-

actin-binding probe, Lifeact-GFP (Gudejko, 2013;Riedl et al., 2008).  Future experiments 

could co-inject Life-act-GFP and differentially tagged PAR proteins into ML-7 or ML-9 

treated embryos and then examine if the PAR proteins become cytoplasmic as a result of 

the F-actin restructuring in the cortex.   Although an initial disruption in PAR6 

localization was maintained through a single division, future experiments are required to 

determine how long these disruptions are maintained.  Embryos could again be pulse 

treated with MLCK inhibitors in order to resolve the number of divisions that the PAR 

proteins remain cytoplasmic and then how the subsequent cytoplasmic localization 

impacts development.   

The first true asymmetric division in the sea urchin embryo occurs at the 16 cell 

of development. This is a key event in sea urchin development as this begins 

endomesoderm specification as well as the generation of germline precursors (Juliano et 

al., 2006;Weitzel et al., 2004;Wikramanayake et al., 2004;Wikramanayake et al., 

1998;Yajima and Wessel, 2012).  aPKC activity was not directly involved in the 

asymmetric division at the 16 cell stage, but inhibition of aPKC has been shown to cause 

the normally symmetric cleavage from the 2 cell to the 4 cell stage of development to 

become asymmetric (Alford et al., 2009).  While the cytoplasmic pooling of the PAR 

complex proteins caused by MLCK inhibition may have an impact on spindle 

positioning, initial observations suggest that the cytoplasmic pooling of these proteins 
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does not impact the asymmetric division at the 16 cell stage, furthering support that a 

different protein most likely regulates micromere formation.  However, aPKC activity 

and myosin assembly during early cleavage stages are both required for blastula 

formation, suggesting a link between proper cortical organization and polarity in the early 

development of a deuterostome embryo. 

The specific effects of aPKC activity need to be more fully explored in the sea 

urchin embryo.  While aPKC activity in early cleavage stage embryos appears to be 

essential for blastula formation, further analysis of its role in later development is needed.  

aPKC is required for ciliogenesis (Pruliere et al., 2011), but aPKC involvement in 

gastrulation and the planar cell polarity movements that occur during convergent 

extension and archenteron formation remains to be determined.  Embryos could be 

treated with the peptide inhibitor of PKCζ at the blastula stage of development and 

observed to see if gastrulation proceeds normally.  It would also be interesting to examine 

how aPKC effects actin and myosin localization during early cleavage stages since aPKC 

regulates these cytoskeletal proteins in other systems (David et al., 2010;McCaffrey and 

Macara, 2012;Röper, 2012). aPKC activity could be required for the cortical integrity 

during early cleavages as a mechanism for both the establishment and maintenance of 

polarity.  Again embryos could be treated with the peptide inhibitor of PKCζ and any 

changes in actin and myosin localization patterns could be observed by 

immunofluoresence assays and live cell probes. Given the traditionally antagonistic 

relationship between PAR1 and aPKC it would also be imperative to examine how aPKC 

activity influences PAR1 localization.  In most other model systems studied thus far 

aPKC and PAR1 polarize to distinct domains and it is in fact the segregation of these 
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proteins that controls polarity (McCaffrey and Macara, 2012).  Conventionally, aPKC 

phosphorylates PAR1, which causes PAR1 dissociation from aPKC and subsequent 

binding to PAR5, which then shuttles PAR1 to an opposing domain (Benton and 

Johnston, 2003;Hurov and Piwnica-Worms, 2007).  However, in the sea urchin embryo 

PAR1 not only colocalizes with aPKC, but is also found within the same complex. 

Embryos could be treated with the peptide inhibitor of PKCζ and the localization of the 

PAR1 could be determined in immunofluoresence assays. Further analysis could explore 

whether or not each of these proteins are phosphorylated during early cleavage stages and 

if they are phosphorylated by each other. These experiments would address the activity 

level of aPKC during early cleavage stages and what influence aPKC has on PAR1 in the 

sea urchin embryo. 

In addition to aPKC, the specific function of PAR1 activity should be explored in 

the sea urchin embryo.  Given its unique localization pattern, PAR1 may have a very 

distinct function in these embryos.  Although microinjections have thus far been 

unsuccessful, future seasons of L. pictus and L. variegatus may be better suited for this 

type of experiment and allow for normal division of control-injected embryos.  

Microinjections of either the DNPAR1 protein or the antibody generated against the S. 

purpuratus PAR1 protein may be utilized to inhibit the native PAR1 since there are 

currently no commercially available small molecule inhibitors of PAR1.  These 

experiments could then examine in real time the effects of PAR1 inhibition.  PAR1 may 

regulate cellular events such as microtubules dynamics, myosin organization, or spindle 

orientation and site of cell division or PAR1 may regulate developmental events such as 

gastrulation, axis formation, or cell fate specification (Cohen et al., 2007;Cox et al., 
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2001;Kusakabe and Nishida, 2004;Lázaro-Diéguez et al., 2013;Ossipova et al., 

2007;Slim et al., 2013).  Additional microinjection experiments with a GFP tagged PAR1 

could then observe PAR1 dynamics in live embryos.  These studies would thus expound 

the function of PAR1 in the sea urchin embryo. 

Because of the unique localization pattern of PAR1 in the sea urchin embryo, 

future studies could examine if other proteins regulate polarity in the basolateral domain 

(areas of cell-cell contact) in the sea urchin embryo.  Cadherins have already been found 

in regions of cell-cell contact during early cleavage stages in sea urchin embryos and are 

required for the epithelial to mesenchymal transition at the gastrula stage of development 

(Miller and McClay, 1997).  However, their role in the polarization in the early embryo 

has yet to be clearly elucidated.  In mouse embryos, E-cadherin is needed for epithelial 

integrity in pre-implantation embryos; however, E-cadherin does not appear to be 

involved in the initial polarization (Stephenson et al., 2010).  In the C. elegans embryo 

PAR1 and PAR2 function to regulate polarity in the posterior domain; however, PAR2 is 

a nematode specific protein and thus far has not been identified in any other model 

system (Levitan, et al., 1994;McCaffrey and Macara, 2009).  Another protein, LGL, 

however, has been found to function redundantly with PAR2 and is a predicted protein 

based on the sea urchin genome (Beatty et al., 2010;Beatty et al., 2013;Cameron et al., 

2009;Hoege et al., 2010;Prehoda and Bowerman, 2010).  LGL is often associated with 

two other proteins, discs large (Dlg) and Scribble (Scrib) in basolateral domains and both 

Dlg and Scrib are predicted proteins in the sea urchin genome (Cameron et al., 

2009;Elsum et al., 2012).  Originally identified in Drosophila because of their 

involvement in epithelial organization and the proliferation of both the imaginal discs and 
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larvae, LGL, Dlg, and Scrib have now been implicated in junction formation and cell 

polarity in other model systems such as C. elegans, zebrafish and mammalian tissue 

culture (Elsum et al., 2012).   Pins is another possible candidate for the regulation of 

polarity in the basolateral domains in the sea urchin embryo and is also annotated as a 

predicted protein in the sea urchin genome (Cameron et al., 2009).  Pins helps to control 

spindle orientation in both epithelial tissues and Drosophila neuroblasts by attaching 

astral microtubules to the cortex (McCaffrey and Macara, 2012).  Similar to PAR1, both 

Pins and LGL are actively excluded from the apical cortex by aPKC activity (McCaffrey 

and Macara, 2012;Yamanaka et al., 2003;Yamanaka et al., 2006).  There are clearly a 

number of candidates that may regulate the polarity in the regions of cell-cell contact in 

the early sea urchin embryo and further work will be required to determine which, if any, 

of these proteins are involved in this process. 

How the PAR proteins, critical regulators of cell polarity, interact and influence 

embryonic regulators of polarity, such as dishevelled, remains an important question to 

address.  Dishevelled has been documented to interact with PAR proteins in Xenopus, C. 

elegans, and in cultured cells (Dollar et al., 2005;Ossipova et al., 2005;Schlessinger et al., 

2007;Sun et al., 2001;Terabayashi et al., 2008;Wharton, 2003).   In sea urchins, 

dishevelled has been extensively studied because of its vital importance for β-catenin 

signaling and endomesoderm specification. In canonical signaling, dishevelled first 

becomes active at the 16 cell stage of development, which is when β-catenin becomes 

nuclear in the micromeres of the vegetal pole (Kumburegama and Wikramanayake, 

2007).  The crosstalk between dishevelled and the PAR proteins may occur in early 

development in order to establish axis specification before individual blastomeres have 
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committed to their respective cell fates.  Others have examined the role of dishevelled in 

early cleavages stages in sea urchin embryos (Peng and Wikramanayake, 2013). Their 

results suggest that the actin cytoskeleton anchors dishevelled in the vegetal cortex.  

However, in their studies embryos were treated with cytochalasin for a very extended 

time period, far beyond normal treatments for actin disruption, which may have caused 

additional effects.  I had wanted to determine if perturbations in the myosin scaffold in 

early cleavage stages additionally affected developmental determinants like dishevelled. 

However, in our hands I had very inconsistent immunostaining and reactivity in a 

Western blot with their sea urchin specific dishevelled antibody and could not resolve the 

role myosin assembly played in dishevelled localization or determine if dishevelled 

interacted with any of the PAR proteins through co-immunoprecipitation assays and 

Western blot analysis. Insights into the communication between these pathways will 

broaden our knowledge of the mechanisms that lead to the generation of a polarized state.   

Embryogenesis is a complex, well-organized, and precisely timed process that 

must ensure that every sequence of events in development occurs on time and in the 

correct location.  Subtle changes can have significant impacts on developing embryo.  

The sea urchin embryo has long served as useful model for the study of embryogenesis.  

While originally thought to remain relatively unpolarized until at least the 16 cell stage of 

development, the evidence presented here adds to a growing list of polarized factors in 

early cleavage stage sea urchin embryos.  PAR6, aPKC, CDC42, and PAR1 have all been 

found to colocalize in the apical cortex from the 2 cell stage of development through 

gastrulation.  Additionally, aPKC activity was found to be required for symmetric 

cleavages and for proper blastula formation.  Similarly, assembled myosin anchored the 
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PAR proteins in the apical cortex and was needed during early cleavage stages for 

blastula formation.  Collectively, these data highlight the importance of polarity during 

the early development of a model deuterostome embryo and demonstrate that disruptions 

in this polarity can have a significant impact on later development.  Future work will 

delve deeper in the specific roles of the PAR proteins throughout the development of the 

sea urchin embryo as well as illuminate the roles of other polarity factors in the 

establishment and maintenance of polarity during early cleavage stages.  The findings 

presented here shed light on the role of the PAR proteins and assembled myosin in early 

polarity in the development of deuterostome embryos. 
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Chapter 6. Materials and Methods 
 

6.1. Sea Urchin Embryo Culture 

Lytechinus pictus and  Stronglyocentrotus pupuratus  (Marinus Scientific, Long 

Beach, CA) gametes were obtained by intracoelomic injection of 0.5M KCl.  Eggs were 

shed into artificial seawater (ASW) and sperm was dry collected.  Eggs were swirled 

twice to expand the jelly coat.  Sperm was diluted 1:1000 in ASW prior to use and added 

to a culture of eggs in ASW for fertilization.  Fertilization was monitored by the 

formation of the fertilization envelope.  In order to remove the fertilization envelope, L. 

pictus eggs were cultured in 4mM para-aminobenzoic acid (PABA) and run through a 

118 µm nytex.  Fertilized embryos were then cultured in either ASW, filtered seawater 

(FSW) or calcium-free seawater (CaFSW) as indicated at 15°C.    Embryos were treated 

with 100 µM ML-7 (Sigma-Aldrich), 120 µM ML-9 (Tocris Bioscience), 2.5 µM H1152 

(Alexis- Biochemicals), 4 µM myristolated protein kinase c zeta peptide (PKCζ) inhibitor 

(Enzo Life Sciences), 25 nM latrunculin B (Sigma-Aldrich), 40 mM urethane (Sigma-

Aldrich), or 30 µM blebbistatin (Sigma-Aldrich) for 15 minutes at various cell stages as 

indicated. Embryos were stained with Hoescht (1:10,000; Life Technologies) as indicated 

and then imaged using either a Nikon TE 200 inverted microscope or a Nikon TE2000 

inverted microscope with a Yokogawa spinning disk head, both controlled by Metamorph 

software.   
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6.2. PAR1 Antibody Generation 

6.2.1. Antibody Design 

The GLEAN prediction Sp-Mark3 amino acid sequence of S. purpuratus was 

utilized to generate a specific antibody against the PAR1 protein (Cameron et al., 2009). 

KFSRRSLVMAEPPSEYVKPR was used as the antigenic sequence for antibody 

production.  Antibody generation in rabbits and purification using the target antigen was 

performed by Covance and then verified through both Western blot and 

immunofluoresence analysis.   

6.2.2. Slot Blot Analysis of Crude Serum Against Target Peptide for PAR1 Antibody 

Lyophilized target peptide was resuspended in a resuspension buffer (50mM Tris 

HCl, 150mM NaCl, pH 7.5) to final concentration of 1 mg/mL.  The resuspended peptide 

solution was spotted onto nitrocellulose membrane and blocked in 5% milk in TBS-T for 

1 hour at room temperature in the slot blot.  Day 0, Day 28, Day 56, and Day 70/72 crude 

serums of 2 rabbits (designated 1 and 2) were added at 3 different concentrations: 1:50, 

1:100, and 1:500 and incubated overnight at 4°C.  Blots were washed 3 times with Tris 

buffered saline with 0.1% Tween (TBS-T) and then incubated in a 1:10,000 dilution of 

horseradish peroxidase(HRP) conjugated donkey-anti-rabbit (Amersham Bioscience) in 

5% milk in TBS-T for 1 hour at room temperature. Blots were washed with TBS-T three 

times before the addition of the HRP substrate. 

6.2.3. Crude Serum Analysis in PAR1 Antibody Extracts of 2 cell and 4 cell Stage L. 

pictus Embryos 

L. pictus were raised in ASW until the 2 cell or 4 cell stage of development and 

then lysed in Laemmli’s SDS-Sample Buffer (250 mM Tris-HCl, pH 6.8, 8% SDS, 40% 
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glycerol, 8% βME, and 0.02% Bromophenol Blue) .  Lysed samples were then spun 

down for 2 minutes at 13,000 x g and run on a 12% sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and then were transferred to an 

Immobilon-P membrane (Millipore) for Western blot analysis.  Blots were blocked in 5% 

nonfat dry milk in Tris-buffered saline (TBS) with 0.1% Tween-20 (TBS-T) for 1 hour at 

room temperature.  Blots were then incubated with the crude serum from Day 70/72 of 

rabbit 1 in 5% milk in TBS-T overnight at 4°C.  Blots were washed 3 times with TBS-T 

and then incubated in a 1:10,000 dilution of HRP conjugated donkey-anti-rabbit 

(Amersham Bioscience) in 5% milk in TBS-T for 1 hour at room temperature.  Blots 

were washed with TBS-T three times before the addition of the HRP substrate. 

 

6.3. Fixation and Immunofluorescence 

L. pictus embryos were treated with inhibitors as indicated and then incubated in 

fixation buffer (3.2% formaldehyde, 0.125% glutaraldehyde, 0.2 M NaH2PO4H2O, 0.136 

M NaCl) for 45 minutes.  Following fixation, embryos were permeabilized in fixation 

buffer with 0.1% NP-40 for an additional 20 minutes and treated with 50 mM glycine for 

15 minutes.  Embryos were washed three times with phosphate buffered saline (PBS).  

Primary antibody, polyclonal goat anti-PARD6A(1:100;  Santa Cruz, sc-14405), 

polycloncal goat anti-Cdc42 (1:50; Santa Cruz, sc-87), polyclonal rabbit anti-PKCζ 

(1:100; Santa Cruz, sc-216), or polyclonal rabbit anti- S.purpuratus PAR1 (1:100) 

antibody were added in PBS+0.1% Triton (PBT) overnight at 4°C(Alford et al., 

2009;Gudejko et al., 2012).  Fixed embryos were then washed three times with PBT for 

20 min.  Secondary antibody, Alexa 488-conjugated donkey anti-goat (1:1000) (for anti-
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PAR6 and Cdc42 primary antibodies) or Alexa 647 or 555-conjugated donkey anti-rabbit 

(1:1000) (for anti-PKCζ and PAR1 primary antibodies) were added in PBT and incubated 

for 3 hours at room temperature (Life Technologies).  For some fixations, Alexa 546 

conjugated phalloidin (1:500) and Hoescht (1:10,000) were added simultaneously with 

the secondary antibodies (Life Technologies).  Fixed embryos were again washed three 

times with PBT for 20 minutes, resuspended in mounting media (50:50 glycerol:PBS) 

and imaged on a Leica DM I 6000 inverted microscope equipped with the Leica TCSSP5 

confocal system.   

For immunofluoresence assays of gastrula stage embryos, a region of interest 

(ROI) of 6.488 x 26.199 µm2 was utilized to analyze the pixel intensity of three regions 

using the Leica LAS AF software: the apical tuft, the archenteron, and the epithelium.  

These data were analyzed in Microsoft Excel and GraphPad Prism.  Statistical 

significance between each ROI was then determined using an unpaired t-test and a P-

value of ≤ 0.05 was considered significant.   

 

6.4. Co-immunoprecipitation Assays 

Co-immunoprecipitation assays were performed using the Dynabeads Co-

immunoprecipitation Kit (Life Technologies).  Polyclonal rabbit anti-S. purpuratus 

PAR1, polyclonal goat anti-PARD6A, and polyclonal rabbit anti-PKCζ antibodies were 

coupled to the Dynabeads per the manufacturer’s instructions. Each antibody was 

coupled to the Dynabeads at a final concentration of 10 µg/ml.  S. purpuratus embryos 

were raised to the desired developmental stages as indicated, pelleted, washed once with 

PBS, and then lysed in extraction buffer B (100 mM MgCl2, 1X IP buffer, 150 mM NaCl, 
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1 mM DTT, and 500 µM PMSF) for 15minutes on ice.  The embryo lysis suspension was 

centrifuged at 2600 x g for 5 minutes at 4°C.     1.5 mg of antibody-coupled beads were 

washed with extraction buffer B, resuspended in the embryo lysate, and rotated for 30 

minutes at 4°C.  Beads were then washed 3 times with extraction buffer B and once with 

the last wash buffer for 5 minutes (1xLWB, 0.02% Tween 20) at room temperature.  

Lastly, the beads were incubated with the elution buffer for 5 minutes at room 

temperature.  The eluted supernatant was analyzed by SDS-PAGE and Western blot.   

 Several control coimmunoprecipitation assays were performed in order to 

determine if the Dynabeads themselves interact with any of the antibodies or proteins 

examined here.  First an antibody diluent solution (0.1% sodium azide, 0.1% gelatin) was 

used as the coupling agent to Dynabeads per manufacturer’s instructions.  The co-

immunoprecpitation assay was performed as described above with cell lysates from 2 cell 

stage S. purpuratus embryos and the eluted supernantant was analyzed by SDS-PAGE 

and Western blot.  An additional control was performed that utilized Dynabeads that had 

been coupled with polyclonal rabbit anti-S. purpuratus PAR1 to a final concentration of 

10µg/ml; however, instead of using a cell lysate made from embryos, the co-

immunoprecipitation assay was performed using just extraction buffer B as described 

above. The eluted supernatant was again analyzed by SDS-PAGE and Western blot. 

 

6.5.Western Blot Analysis of Purified PAR1 Antibody and Coimmunoprecipitation 

Samples 

L. pictus embryos were lysed in Laemmli’s SDS-Sample Buffer for polycloncal 

rabbit anti-PAR1 verification Western blots.  These lysates or the co-

immunoprecipitation samples were run on a 12% SDS-PAGE and then transferred to an 
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Immobilon-P membrane (Millipore) for Western blot analysis.  Blots were blocked in 5% 

nonfat dry milk in TBS-T for 1 hour at room temperature.  Blots were then incubated 

with polyclonal rabbit anti-S. purpuratus PAR1 (1:10,000), polyclonal goat anti-

PARD6A (1:200), or polycloncal rabbit anti-PKCζ(1:200) in 5% milk in TBS-T 

overnight at 4°C.  Blots were washed 3 times with TBS-T and then incubated in a 

1:10,000 dilution of HRP conjugated donkey-anti-rabbit or donkey-anti-goat secondary 

antibody (Amersham Bioscience) in 5% milk in TBS-T for 1 hour at room temperature.  

Secondary antibodies were preincubated with a cold acetone extraction of S. purpuratus 

eggs prior to use in order to minimize cross-reactivity.  Blots were washed with TBS-T 

three times before the addition of the HRP substrate.   

 

6.6. DNPAR1 and PAR1 Construct Development 

6.6.1. RNA Isolation 

RNA was isolated as previously described (Ettensohn et al., 2004).  Fertilized 

eggs of S. purpuratus were raised for 30 minutes post fertilization, hand centrifuged, and 

resuspended in a 10x volume of Tri-reagent.  Following a 5 minute incubation at room 

temperature, samples were spun down at 12,000 x g at 4°C for 10 minutes.  The 

supernatant was collected and 0.2 mL of cholorform/mLstarting volume of Tri-reagent 

was added to each sample and shaken vigorously.  Samples were incubated at room 

temperature for 10 minutes and then centrifuged at 12,000 x g for 15 minutes at 4°C to 

separate the phases.  The aqueous phase was transferred and 0.25 mL isopropanol and 

0.25 mL of RNA precipitation solution  (1.2 M NaCl, 0.8 M disodium citrate) was added 

for each 1 mL of initial Tri-reagent used. The samples were again shaken vigorously, 
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incubated at room temperature for 10 minutes, and centrifuged at 13,000rpm for 10 

minutes at 4°C.  To the pellet, 1 mL of 75% ethanol/mL of Tri reagent was added.  This 

wash was repeated and the ethanol was allowed to evaporate.  Pellets were resuspended 

in TE buffer (10 mM Tris, 1 mM EDTA) and purity was determined using the A260/A280 

ratio.    

6.6.2. RT-PCR of DNPAR1 and PAR1 

 DNPAR1 and PAR1 cDNA sequences were amplified from RNA isolated from S. 

purpuratus using the ProtoScript M-MuLV Taq RT-PCR kit (NEB) according to the 

manufacture’s instructions. Primer sequences were designed using the different predicted 

PAR1 sequences from the S. purpuratus genome based on either the GLEAN predictions 

or RNAseq data (Table 6.6.1) (Cameron et al., 2009). 

 DNPAR1 and PAR1 were then TOPO cloned into the bacterial expression vector 

pEXP5-CT (Life Technologies). Proper insertion of each sequence was determined using 

restriction digestion and sequence analysis.  The BL21-D3pLys strain of Escherichia coli 

cells were then transformed with the pEXP5-CT-DNPAR1 plasmid and expression was 

induced with 1 mM IPTG overnight at 30°C. His-tagged DNPAR1 was purified using 

NiNT3 columns. Samples were run a 12% SDS-PAGE and stained with Coomasie.   

Protein concentrations were determined suing a Bradford Assay (Pierce) and purified 

DNPAR1 was then dialyzed to 1 mg/ml in injection buffer (10 mM HEPES, 150 mM 

aspartic acid, pH 7.2).   
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Table 6.6.1.  Primers for DNPAR1 and PAR1 constructs. DNPAR1 primers were 

designed based off both the GLEAN prediction sequences and RNAseq data sequences of 

S. purpuratus PAR1 and were designed to amplify the full-length PAR1 sequence 

without the N-terminal kinase domain.  PAR1 primers were designed based on the 

RNAseq data sequence of the full-length S. purpuratus PAR1 (Cameron et al., 2009).  An 

EcoRI site was added to the 5’ end of the forward primer and a HindIII site was added to 

the reverse primer. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 Forward Primer (5’→3’) Reverse Primer (5’→3’) 

DNPAR1; 
GLEAN 
Prediction 
Sequence 

ATGGCTGGGTTTGAGGAGCAT CTCAGGTAAGACATGAGCAGAAT 

DNPAR1; 
RNAseq 
data 

ATGGCTGGGTTTGAGGAGCAT CAAGCACAGTTCATTGGAAATCT 

PAR1; 
RNAseq 
data 

GAATTCATGTCCAGGATGCCCAAC AAGCTTCAAGCACAGTTCATTGGAAATCT 
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