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Abstract 
 

Expanding the horizons of next generation sequencing with RUFUS 
 

J. Andrew R. Farrell 

Dissertation advisor: Gabor T. Marth 

 

 To help improve the analysis of forward genetic screens, we have developed 

an efficient and automated pipeline for mutational profiling using our reference 

guided tools including MOSAIK and FREEBAYES. Studies using next generation 

sequencing technologies currently employ either reference guided alignment or de 

novo assembly to analyze the massive amount of short read data produced by 

second generation sequencing technologies; the far more common approach being 

reference guided alignment due to the massive computational and sequencing costs 

associated with de novo assembly.  The success of reference guided alignment is 

dependent on three factors; the accuracy of the reference, the ability of the mapper 

to correctly place a read, and the degree to which a variant allele differs from the 

reference.  Reference assemblies are not perfect and none are entirely complete. 

Moreover, read mappers can only map reads in genomic locations that are unique 

enough to confidently place reads; paralogous sections, such as related gene 

families, cannot be characterized and are often ignored.  Further, variant alleles that 

drastically alter the subject’s DNA, such as insertions or deletions (INDELs), will not 

map to the reference and are either entirely missed or require further downstream 

analysis to characterize.  Most importantly, reference guided methods are restricted 

to organisms for which such reference genomes have been assembled.  The current 
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alternative, de novo assembly of a genome, is prohibitively expensive for most labs 

requiring deep read coverage from numerous different library preparations as well 

as massive computing power. 

 To address the shortcomings of current methods, while eliminating the costs 

intrinsic to de novo sequence assembly, we developed RUFUS, a novel, completely 

reference-independent variant discovery tool.  RUFUS directly compares raw 

sequence data from two or more samples and identifies groups of reads unique to 

one or the other sample.  RUFUS has at least the same variant detection sensitivity 

as mapping methods, with greatly increased specificity for SNPs and INDEL 

variation events.  RUFUS is also capable of extremely sensitive copy number 

detection, without any restriction on event length. By modeling the underlying k-

mer distribution, RUFUS produces a specific copy number spectrum for each 

individual sample. Applying a Bayesian detection method to detect changes in k-mer 

content between two samples, RUFUS produces copy number calls that are equally 

as sensitive as traditional copy number detection methods with far fewer false 

positives.  Our data suggest that RUFUS’ reference-free approach to variant 

discovery is able to substantially improve upon existing variant detection methods: 

reducing reference biases, reducing false positive variants, and detecting copy 

number variants with excellent sensitivity and specificity. 

  



RUFUS: Expanding the horizons of next generation sequencing  

 
Andrew Farrell   Page | iv  
7/15/14 

Acknowledgements 
 
 

 I’d like to thank Marc Jan Gubbels and his entire lab for performing the 

laboratory work in this project; particularly Bradley Coleman, Keith Eidell, and 

Brian Benenati.   

   

 I’d like to thank everyone in the Marth lab, particularly Alistair Ward, as well 

Erik Garrison for help with FREEBAYES and for running experiments with Velvet. 

   

 A special thanks to Gabor Marth for allowing me to work in his lab and being 

my mentor.  Thank you for the guidance and giving me the freedom to pursue my 

own ideas, no matter how crazy they were.   

 

 Finally, and most importantly, I would like to especially thank my parents for 

all of the support over the last 5 years, and in my entire scientific carrier.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



RUFUS: Expanding the horizons of next generation sequencing  

 
Andrew Farrell   Page | v  
7/15/14 

1: Introduction ........................................................................................................................... 1 

    1.2 Toxoplasma gondii ........................................................................................................... 4 

    1.3 Creation of the F-P2 mutant ........................................................................................ 7 

 

2: Mutational Profiling  ......................................................................................................... 10 

    2.1 Introduction....................................................................................................................... 10 

        2.1.1 Second generation sequencing ........................................................................... 11 

        2.1.2 De novo assembly ..................................................................................................... 16 

        2.1.3 Reference guided assembly/mapping ............................................................. 20 

        2.1.4 Variant discovery ..................................................................................................... 22 

        2.1.5 Toxoplasma gondii genome .................................................................................. 22 

    2.2 Mutational profiling pipeline development .......................................................... 23 

        2.2.1 Illumina sequencing ............................................................................................... 23 

        2.2.2 Reference guided alignment ................................................................................ 24 

        2.2.3 Variant calling and filter development ............................................................ 25 

        2.2.4 Final variant calls ..................................................................................................... 28 

        2.2.5 Computational controls ......................................................................................... 31 

    2.3 Final mutational profiling pipeline ........................................................................... 32 

    2.4 Reference guided mutational profiling conclusions .......................................... 34 

 

3: RUFUS ........................................................................................................................................ 35 

    3.1 Motivation .......................................................................................................................... 35 

        3.1.1 Reference limitations ............................................................................................. 36 

        3.1.2 Mapping algorithm limitations ........................................................................... 40 

    3.2 RUFUS .................................................................................................................................. 42 

        3.2.1 RUFUS concept explained ..................................................................................... 44 

        3.2.2 K-mer histogram analysis .................................................................................... 45 

    3.3 RUFUS methods ............................................................................................................... 49 

        3.3.1 RUFUS.model ............................................................................................................. 50 

        3.4.2 RUFUS.build ............................................................................................................... 52 

        3.4.4 RUFUS.filter................................................................................................................ 54 



RUFUS: Expanding the horizons of next generation sequencing  

 
Andrew Farrell   Page | vi  
7/15/14 

        3.4.5 RUFUS.overlap .......................................................................................................... 54 

        3.4.6 Mutation discovery ................................................................................................. 57 

    3.5 RUFUS results ................................................................................................................... 61 

        3.5.1 K-mer size selection................................................................................................ 62 

        3.5.2 Run statistics ............................................................................................................. 63 

        3.5.3 Insertion/deletion detection ............................................................................... 67 

        3.5.4 Copy number detection ......................................................................................... 69 

        3.5.5 Variation detection in unmappable genomic regions ............................... 70 

        3.5.6 SNV detection ............................................................................................................ 71 

        3.5.7 Comparison with NIKS .......................................................................................... 72 

    3.6 RUFUS Conclusions ......................................................................................................... 74 

 

4. Concluding Remarks and Future Applications with RUFUS ......................... 76 

    4.1 Projects currently in development ........................................................................... 77 

        4.1.1 Human Trio Analysis .............................................................................................. 77 

        4.1.2 Bayesian RUFUS in diploid organisms (Human) ......................................... 83 

        4.1.3 RUFUS  for population based analysis ............................................................. 85 

        4.1.4 Genomes with non-standard GC content ........................................................ 87 

 

Appendix A: “A DOC2 Protein Identified by Mutational Profiling is Essential for 

Apicomplexan Parasite Exocytosis” ..................................................................................... 90 

 

Appendix B: “Whole genome profiling of spontaneous and chemically induced 

mutations in Toxoplasma gondii” .......................................................................................... 99 

 

Appendix C: Toxoplasma gondii BLASTN Hits for Contigs Assembled from Reads 

Unaligned in Toxoplasma gondii Reference Guided Alignment ................................ 115 

 

Appendix D: Complete list of Varients Between F-P2 and EMS7.5 ........................ 126 

 

 



RUFUS: Expanding the horizons of next generation sequencing  

 
Andrew Farrell   Page | 1  
7/15/14 

Chapter 1: 

Introduction and motivation 

 
 In 1908 Thomas H. Morgan published a paper challenging the theory that 

genetic information, or “factors”, were passed from parent to offspring through 

germ cells.  He believed that Mendelian inheritance theories were far too simplistic, 

were not based in fact, and invented to merely explained the data being observed1.  

To prove his ideas he set out working with Drosophila melanogaster and instead 

definitively confirmed Mendel’s ideas, defined genetic linkage, and set the stage for 

modern-day genetic research.  He chose Drosophila melanogaster for its extremely 

short generation time, and its numerous visible traits that could be easily screened 

in the lab for phenotypic differences.  He used both laboratory selection 

experiments and various mutagens in an effort to create novel visible traits that 

could be easily tracked in the lab in order to study their inheritance patterns2.    

 Historically, the most notable phenotype identified was the white eye trait, 

initially identified in a male fly. Crossing the male mutant with a wild type, red-eyed, 

female produced offspring will all red eyes.   Subsequently, inbreeding of this 

generation (f1) produced a 3:1 ratio of red to white-eyed flies in the next generation 

(f2) exactly as expected based on Mendelian genetics. However, there were no 

white-eyed female flies; all white-eyed individuals were male.  Subsequent crossing 

experiments showed that the white eye trait was not lethal to female flies, but 

instead was inherited in conjunction with sex determination (Figure 1).  This 

suggested that the factors that determined sex and eye color were in some way 
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inherited together on the same 

molecule, supporting the 

chromosomal inheritance theory3 .   

 Further work by Morgan on 

other sex linked factors showed that 

certain factors appeared to always 

be inherited together, thus linked.  

Other factors showed incomplete 

linkage; frequently occurring 

together but would occasionally 

separate.  This led Morgan to 

theorize that genes were physically 

connected on chromosomes like 

“beads on a string”, and further it 

had been observed that the chromosomes wrap around each other during division.   

He theorized that when pulled apart, these strings may break and rejoin the sister 

chromosome, thus allowing cross-over during sexual reproduction producing new 

combinations of traits.   This suggested that the physical distance between genes 

would thus determine the probability, and thus the rate, that a crossover would 

occur4.   Morgan’s student, Alfred H. Sturtevant, used this information to create the 

first ever genetic map, showing the physical arrangement of traits on a chromosome 

and defining distances between the genes in map units (later renamed centimorgan) 

5, shown in Figure 2.       

Figure 1: Depicts a cross between a white- 
eyed male and a red-eyed female of D. 
melanogaster. The sex chromosomes are 
indicated by the rods. A black rod indicates 
that the chromosome carries the factor for red; 
the open chromosome carries the factor for 
white eye color. Reprinted from Morgan, T. H. 
191950 
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 Morgan’s work not only proved the chromosomal theory of inheritance, it 

also laid the groundwork for what is now known as the classical, or forward genetic 

method.  Simply stated, Forward Genetics links a trait (phenotype) to a specific DNA 

sequence (genotype).  In order to link specific traits to a particular genotype, 

mutations are introduced into the genome of interest using various methods such as 

X-rays, chemical mutagens, or laboratory evolution.  Individuals are then screened 

for a desired phenotype and mutants are identified and isolated.  A variety of 

methods are then used to identify the exact mutation that caused the given 

phenotype, along with its location.  One of the most direct methods, still used today, 

is to perform crosses to measure the given phenotype’s linkage with known genetic 

markers, exactly as Sturtevant did.  The difficulty with forward genetics is that the 

mutations are generated at random throughout the genome and thus identifying the 

mutations can be costly and extremely time consuming.   

 The more modern approach, reverse genetics, takes the opposite approach.  

Methods specifically developed for a given model organism are used to directly 

introduce targeted DNA mutations into an organism.  The resulting phenotype is 

Figure 2: Sturtevant’s original linkage map showing the relative ordering of 6 traits 
based on linkage frequency.  Sturtevant defined the traits as follows: (B) black body 
color factor (black/yellow),  (C) eye color factor (red/white), (O) second eye color 
variant (red/eosin), (P) third eye color (red/vermilion).  (R) and (M) wing 
development producing either miniature or rudimentary wings. Reprinted from 
Sturtevant, A. H. 1913 5. 
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then observed.  These methods have the advantage in that the location of the 

mutation is known. However, it can be difficult to specifically target a given 

phenotype of interest.  These methods are also often limited to model organisms for 

which specific genetic methods have previously been developed.  The advantage of 

forward genetics is that it allows the discovery of genes that directly contribute to a 

specific trait of interest with little or no prior knowledge required.  This makes 

forward genetics particularly attractive when studying non-model organisms, with 

unique traits that are driven by completely unknown genes.   As our knowledge of 

basic cell processes has grown, it has become increasingly attractive to widen the 

scope of research and directly study more biologically relevant non-model 

organisms that have a direct human health impact.   

 For this work, we have focused on the parasite Toxoplasma gondii in 

collaboration with the Gubbels lab.  Of particular interest is the invasion/egress 

phenotype which has no known homology to any other studied organism and is 

crucial to its virulence in humans.   

 

1.2 Toxoplasma gondii 

 Toxoplasma gondii is a member of the protozoan phylum Apicomplexa, which 

includes numerous important human pathogens such as Plasmodium spp. (the 

causative agent of malaria) and Cryptosporidium spp. (severe enteritis).    

Toxoplasma gondii can infect and undergo asexual reproduction in any warm-

blooded vertebrate, while only being able to undergo sexual reproduction in cats; its 

definitive host.  Infection of intermediate hosts consists of a short acute phase 
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followed by a life-long maintained chronic phase678.  Toxoplasma is wide-spread in 

the U.S. with a current prevalence of 22.5% 9.  Its high prevalence, with relatively 

low public knowledge, is due largely to the fact that most acute infections pass with 

mild or no symptoms and in healthy individuals the chronic phase shows no 

symptoms. However, severe disease can occur in immune-compromised patients10-

13.  Toxoplasmosis can also occur if a pregnant mother passes on an infection to the 

fetus.  This may result is progressive vision loss or serious developmental damage to 

Figure 3: Life Cycle of Toxoplasma gondii. The only known definitive hosts 

for Toxoplasma gondii are members of Felidae family such as the domestic cat. 

Oocysts are shed in the cat’s feces (1). Intermediate hosts (including birds, 

rodents, as well as any other warm-blooded animal) become infected after 

ingesting contaminated soil, water or plant material (2). Oocysts transform into 

tachyzoites shortly after ingestion and localize in neural and muscle tissue and 

develop into cysts (3). Cats become infected after consuming intermediate 

hosts (4). Humans can become infected by direct contact with fecal oocysts (7), 

eating undercooked meat (6), organ transplantation or blood transfusion (8) or 

though transplacentally from mother to fetus (9).  Reprinted from CDC.org 
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the unborn child12.  In the U.S., one in 5,000 pregnancies shows complications due to 

T. gondii infections. In Europe, these numbers are slightly higher7,8.   

 Upon injection by a host, T. gondii parasites differentiate into tachyzoites.  

Tachyzoites replicate rapidly causing the acute state of infection resulting in flu-like 

symptoms, along with tissue death.  The tachyzoites invade a host cell by creating a 

vacuole containing a parasite Tachyzoites replicate quickly inside this vacuole until 

the cell is depleted. They then lyse the cell and escape, a process known as egress.  

In a healthy individual, the immune system will suppress the tachyzoites, 

stimulating them to differentiate into bradyzoites.  Bradyzoites create tissue cysts, 

hiding from the host’s immune system within the host cells, where they divide 

slowly, characterizing the chronic phase of the infection14.  During this phase, 

Toxoplasma has little effect on the host and has generally been considered benign.  

However, recent research suggests that long term infection may be linked to 

schizophrenia and possibly other psychological disorders15,16.  To date, 

pharmaceuticals developed to treat Toxoplasma strictly target the acute stage of 

infection9,17.  There are currently no drugs targeting the chronic phases of the 

infection.  Although generally considered benign, the correlations drawn between 

chronic Toxoplasma infection and severe psychological disorders demand a better 

understanding of the mechanisms involved in infection, such as host cell invasion. A 

more in depth understanding of Toxoplasma’s life cycle could contribute to the 

development of novel wide-acting drugs.  

 

 



RUFUS: Expanding the horizons of next generation sequencing  

 
Andrew Farrell   Page | 7  
7/15/14 

1.3 Creation of the F-P2 mutant 

  Central to T. gondii infection and life cycle is its ability to invade a host cell, 

multiply, and egress from the host cell causing cell death (Figure 4).  In order to 

identify genes specifically involved in this process, Dr. Gubbels created a 

temperature sensitive screen to detect mutants that showed limited growth due to 

mutations in various stages of the cell cycle18.  The F-P2 mutant was identified using 

this screen in 2001.  F-P2 lacks the ability to escape from a host cell (egress) at the 

restrictive temperature 40°C but is fully capable at 38°C19.  Dr. Gubbels has 

previously shown that mutations identified in this screen can be genetically 

Figure 4: T. gondii lytic cycle.  During infection, free tachyzoites invade host cells 
creating a vacuole.  The parasite divides using the cells resources until the cell is 
depilated.  The parasites then egress and the freed parasites begin the cycle again.   
Reprinted with permission from Dr. Marc Jan Gubbels 
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complemented and identified by transfecting using a wild-type cosmid library18.  

However, after 30 independent transfection experiments the F-P2 egress deficient 

phenotype could not be rescued, indicating that the mutation may be dominant.  To 

test this, Dr. Gubbels constructed a 130-fold genomic coverage cosmid library from 

the F-P2 mutant.  The library was successfully verified by transfecting it into a strain 

with a known deletion of the HXGPRT gene, with 4 out of 5 transfections successful.  

However, after ten transfections of the F-P2 cosmid library into the parent line the 

F-P2 phenotype could not be replicated.   

The inability to complement this phenotype in the years since its 

identification led Dr. Gubbels to pursue mutational profiling in collaboration with 

the Marth lab.  Mutational profiling is enabled by second generation whole genome 

sequencing technologies.  The goal of the method is to completely sequence the 

genome of both the mutant and the parent, creating a complete catalog of all 

differences between the two samples.  This has numerous benefits over traditional 

forward genetic methods of identifying causative mutations.  Second generation 

sequencing is extremely fast, and it can be completed in under one week for almost 

any organism.  This allows detection of mutations far faster than performing labor 

intensive back crossing and linkage analysis experiments.  Further, sequencing can 

be performed on any organism, enabling forward genetic screens on a wide array of 

organisms that may not be practical for extended work in the laboratory.  

Additionally, by identifying specific regions of interest in the genome, researchers 

can focus work on specific sequences, which may have been missed due to possible 

biases in other methods.   
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The Marth Lab has extensive experience in second generation sequencing, 

with a focus on tool development for sequence analysis and alignment, variant 

calling, visualization, and sequence interpretation.  We are involved in numerous 

projects that use and challenge our methods such as the 1000 Genomes and TCGA 

cancer genome atlas project.  Using the F-P2 mutant, we have successfully used our 

tools and experience to develop a mutational profiling pipeline specifically designed 

to identify novel mutations in forward genetic studies.   
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Chapter 2: 

Mutational Profiling 

  

2.1 Introduction 

Mutational profiling is used to identify all mutations that exist between two 

samples in an effort to identify possible causative mutation or mutations of a given 

phenotype.  Mutational profiling is enabled by second generation whole genome 

sequencing technologies, which facilitates complete sequencing of both mutant and 

parent genomes.  The resulting sequence data are then aligned to a reference, 

variants are called, and sequence differences between the two samples are 

identified.  There are numerous challenges that must be overcome to accomplish 

this successfully.   The variant calls must be of extremely high quality and 

confidence, in order to minimize time wasted by researchers pursuing false 

positives.  Conversely, the calls must be extremely sensitive to ensure that no 

variants are missed that may be biologically relevant.  We have used our expertise 

with computational methods to develop a complete pipeline for mutational 

profiling. 

 Here we focus on the initial development of our mutational profiling pipeline, 

in collaboration with the Gubbels lab at Boston College.  This pipeline was 

developed while analyzing whole genome sequence data from the Toxoplasma 
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gondii mutant DOC2 (also referred to as F-P2), published in Farrell et al Science 

2013 19.  This method has since been used on over 20 laboratory samples including 

human, Toxoplasma gondii, and Plasmodium berghei.  

 

2.1.1 Second generation sequencing  

 All next generation sequencing methods (more recently termed second 

generation) are characterized by massively parallel, short-read, shotgun sequencing, 

which enables relatively inexpensive sequencing of an organism’s entire genome in 

a matter of days.  The Illumina technology has emerged as the dominant second-

generation sequencing technology and was utilized for this research.  The current 

Illumina iteration is the HiSeq 2500, which offers up to 1 terabase of sequence in as 

little as 6 days using a read length of 125 bp20.  Recently, read length has been 

extended out to 250 bp, further increasing the throughput.     

 The workflow of the Illumina has been designed to be as automated as 

possible, reducing both laboratory costs and human error.  The process is 

comprised of 3 steps; library prep, cluster generation, and sequencing (Figure 5).  

Illumina offers numerous library prep kits for a wide range of applications, such as 

Whole genome, RNA, Chip-seq, and exome capture.  Here, we will focus on whole 

genome sequencing; however the basic principles involved are shared between all 

kits.  Purified genomic DNA is sheered using sonication and size selected to ensure a 

uniform fragment length.  Illumina specific adapters are ligated to the ends of the 
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fragments, producing a library of labeled DNA fragments (Figure 5.1).  From this 

point forward all work is automated.  Sequencing is performed on flow cell; each cell 

contains 8 separate sequencing lanes.  The flow cell is made from a glass microscope 

slide with a “lawn” of DNA oligos bound to the glass surface, which are 

complementary to the adapters ligated to the DNA strands.  During cluster 

generation, the cluster station denatures the library and “flows” the DNA sample 

across the lawn.   The DNA fragments anneal to random locations on the lawn via 

their ligated adapters.  This specific arrangement of oligos is the heart of the 

Illumina sequencer, as it creates a lawn of spatially-separated, individual fragments 

that can then be sequenced in a single parallel run.  This creates a situation 

analogous to parallel capillary sequencing in a 96 or 384 well plate, however with 

over 3 billion separate reactions.  The individual fragments then undergo a step 

known as bridge amplification (Figure 5.2).  At a specific temperature the fragments 

will bend and the free end will anneal to a second anchor bound to the slide, 

producing a “bridge”.  When this fragment is extended it creates a complementary 

strand, whose end is physically bound to the slide and  
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Figure 5: The Illumina sequencing method.  (1) Libaray prep adds Illumina 
specific adapters to genomic DNA. (2) Cluster generation binds DNA fragments 
to a flow cell, and creates clustyers of clonal fragments to increase sequencing 
signal.  (3) Sequencing is performed by extending each fragment with a 
fluorescently labeled reversibly terminated dNTP.  Reprinted from Illumina Inc. 
Promotional materials 2008.   
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cannot be washed off.  Multiple rounds of PCR amplify the fragments, creating a spot 

of clonal DNA fragments, thereby amplifying the signal.  Following amplification, the 

flow cell is loaded into the sequencer.  Sequencing is performed using PCR with 

fluorescently labeled dNTPs with a chemically blocked 3’-OH group, preventing 

extension (Figure 5.3).  Each nucleotide, A, C, T, and G are labeled with a different 

fluorophore.  For each round of base incorporation, all 4 nucleotides are flowed 

across the cell simultaneously and for each strand a single base is extended.  The 

amplified clonal clusters produce enough fluorescent signal that each spot’s newly 

incorporated nucleotide can be read with a high resolution camera and the new 

base recorded.  The fluorophore and block on the 3’-OH are cleaved off and a new 

round of nucleotides are added to read the second base.  The cycle is repeated, 

reading each base until a set number of cycles is reached.   

 If paired-end sequencing is desired, all amplified DNA fragments produced in 

the first round of sequencing are denatured, and the process is started again from 

the other end of the fragment.  This can be used to both increases the total volume of 

sequence, as well as increase confidence in both assembly and read mapping.  By 

sequencing both ends of a fragment, it 

can be assumed with high confidence 

that the two mates, or mate pair, exist 

on the same fragment.  The distance 

between the two fragments can be 

estimated by the fragment size 

Figure 6:  Mate pair sequencing.  A single DNA 
molecule can be sequenced from both ends, labeled 
Mate 1 and Mate 2.  Note the opposite orientations 
of the reads depicted by the direction of the 
arrows.  The center of the reads sequence is 
unknown and is referred to as the insert sequence 
is depicted in blue.  Image reprinted with 
permission from Dr. Alistair Ward 
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selected in library prep.   If one sequences a library with a fragment size of 500bp, it 

can be assumed that the two 100bp sequenced mates have roughly 300bp of 

sequence between them.  However, the method used to size select the DNA will 

affect the stringency of the insert size and may result in skew towards smaller or 

larger fragments. 

 The efficiency of nucleotide incorporation limits the read length of this 

technology, and defines the error profile.  Nucleotide incorporation, like any 

chemical reaction, is neither 100% efficient or accurate.  Each cluster on the slide, 

while representing a single sequence, is made up of approximately 1 million 

amplified fragments.  Each round, a given proportion of the fragments will not 

incorporate a base and lag behind (phasing), while others may incorporate extra 

bases (pre-phasing), the greater the number of cycles in a run, the greater the 

number of strands that will have fallen out of sync.  This will increase the 

Figure 7: Error Profile of Illumina Reads. (A) Quantification of the total number of bases in an 
Illumina 36bp data set that did not match the reference when aligned.  A negligible fraction may 
represent genetic variants. (B) Quantification of the error types from the mismatch set in A.  
Unpublished work performed by Derek Barnett (Boston College).   

B A 
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background noise effectively drowning out the sequencing signal.   Errors tend to 

cluster at the end of sequence reads and tend to be in the form of substitutions, i.e. 

misread bases.  Insertions or deletion errors are extremely rare (Figure 7).  In 

addition to phase and pre-phasing, any PCR errors that occur early in cluster 

formation will propagate, resulting in base substitution errors as well.    

 The result of all second generation sequences is a FASTA formatted text file 

containing a single sequence, and base quality scores, for each cluster identified by 

the machine.  The bioinformatician’s task is to interpret these raw shotgun data and 

to build a complete genomic picture of the organism, accounting for all 

contamination and error.  There are two methods currently employed to analyze 

whole genome shotgun data, de-novo assembly and reference guided assembly (also 

referred to as mapping).   

 

2.1.2 De novo assembly 

  De novo assembly attempts to construct a complete genome using 

short sequence reads in the same way a puzzle is put together without knowing the 

complete picture beforehand.  The earliest, and conceptually most straight-forward, 

methods for de novo assembly use an overlap-layout consensus algorithm.  These 

methods were used to create the first human genomic assemblies21,22.  Overlap 

based methods used the entire read and attempt to construct longer contigs by 

finding overlapping sequencing regions between reads and combining them to 
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produce longer contigs (Figure 8b). However, these methods are extremely 

computationally intensive as they must load the entire data set into memory and 

compute complete overlap scores between all read combinations.  These methods 

were sufficient for assembling the hundreds of thousands of BAC sequences used to 

create the first drafts of the human genome.  However, due to the fact that these 

methods increase massively in computational time as the numbers of reads are 

increased, it is physically impossible to use these earlier algorithms to assemble the 

billions of reads produced by a single Illumina run.  23 

Figure 8: Assembly Algorithms. (A) 10 theoretical reads.  (B) Example of an overlap assembly, each 
read is ordered based on its sequence overlap with the other reads.  Solid arrows depict direct read 
overlaps, dotted arrows shows secondary read overlaps.   (C) Example of de Bruihjn Graph assembly, 
the reads have been hashed into 3bp k-mers, and collapsed as nodes.   A graph has been constructed 
though the nodes based on the relationship of the k-mers within the reads.  Reprinted from Schatz,M.C. 
2010 

23
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 Assemblers designed specifically for next generation sequencing data tend to 

use a graph or tree structure24,25.  These assemblers break reads into smaller 

sections called hashes or k-mers.  Exact hashes are combined into nodes.  A graph is 

then constructed linking the nodes based on their association in each original reads.  

The graph is then analyzed for the most likely path through the reads to produce the 

final assembly (Figure 8c).  The factors that separate different graph assembly 

methods are usually how they handle repeats and errors. 

 Producing an accurate assembly for any organism is, unfortunately, not 

practical for most applications including mutational profiling.  Assemblies are 

limited by the read length, the complexity of the genome, and the volume of data 

produced by second generation sequencers.  Reads from second generation 

sequencers are relatively error prone which interfere with assembly; either 

confusing the assembler or producing spurious branches in the graph.  In addition 

to the error rate, the coverage of second generation sequencing reads is not uniform 

across a genome.  At best, the probability of a specific fragment of DNA annealing to 

the Illumina slide and producing a sequence is random, resulting in a Poisson 

coverage distribution.  However, there are well known biases in PCR due to the fact 

that DNA polymerase will slow down based on certain DNA motifs and GC content, 

further skewing coverage across a genome26.  To counter these two challenges, de 

novo assembly requires extremely deep coverage, often totaling over 300 fold 

coverage27 in order to ensure each region of the genome has adequate coverage to 

both  reduce the impact of random errors and to construct a complete contig 

through the region.  Further, genomes are not comprised of completely random 
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sequence; they are instead enriched for highly repetitive stretches of DNA, such as 

pseudo-genes, transposable elements, gene families, and centromeres.  The short-

reads produced by second generation sequencing technologies do not provide 

enough information to span these regions and confidently place them in a genome.  

Data from paired end sequencing can be used to alleviate this problem.  By using 

multiple sequencing libraries with varied insert sizes, large repeats can be spanned 

and the assembly improved.  The Allpaths method outlines a specific recipe to 

assemble various genome sizes, though they all require up to 4 separate library 

preparations and coverage greater than 400 fold27 (Table 1).  In addition to the 

sequencing expense, assembly is massively computationally expensive.   Even the 

most effect graph based 

assemblers take over 500GB of 

ram and days of runtime to 

assemble a 1GB genome25.  Though 

de novo assembly does not require 

an assembled genome, they are 

unfortunately far too expensive for 

most applications.   27  

 

 

 

Table 1: Allpahts recipe. The sequencing recipe 
suggested by Allpaths to produce the best possible de 
novo assemblies 27. 
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2.1.3 Reference guided assembly/mapping  

 Reference guided assembly is a far more practical approach to whole genome 

analysis, more frequently termed alignment or mapping.  Mapping methods are 

enabled by the published reference sequences of numerous genomes, using them as 

a guide.  Like assembly, mapping methods are analogues to a puzzle, though now the 

original picture is known and can be used as a guide.  Hundreds of aligners have 

been developed by different groups and almost all of them follow the same basic 

two steps.  The aim of mapping is to take each sequence read and finds its most 

likely placement in the reference genome.  To find the true highest scoring 

alignment for a read, one could perform a full Smith Waterman28 alignment for each 

read against the reference genome; however this would be prohibitively slow on an 

Figure 9: Reference guided alignment. Reference guided alignment (mapping) is completed in two 
steps.  Depicted here, a read is hashed up into k-mers.  Exact matches to the k-mers are identified in 
the genome to identify candidate locations.  Image reprinted with permission from Dr. Alistair Ward 
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entire Illumina data set.  Instead, modern aligners use a two-step process to limit 

the use of expensive pairwise alignment.  Candidate regions in the reference are 

identified using an exact string match (Figure 9).  Aligners differ on how they 

accomplish this, the two main methods being to perform a Burrows-Wheeler 

transform, or to create a hash Table of the reference.  Both of these methods will 

produce the same final result.  For both, a given k-mer is chosen that is shorter than 

the read length.  For a given read, every k-mer is generated and their exact matches 

are identified in the genome and the location of each match is recorded.  These hits 

are then used as a seed, to begin a more sensitive local alignment, such as a Smith-

Waterman28 or Needleman–Wunsch29.   In this manner, sensitive alignment can be 

quickly focused to highly similar regions of the genome, vastly reducing the time 

required over a global alignment.  For this work we have used the hash-based 

aligner MOSAIK30, developed in our lab by Wan-Ping Lee and Michael Stromberg 

and extensively used in the 1000 genomes project. 

 Mapping has numerous advantages over de novo assembly.  Firstly, it is far 

less computationally intensive; MOSAIK uses less than 15GB of ram to align an 

entire human dataset.   For the purposes of variant detection, there is no need for 

multiple libraries, or hundreds of fold coverage. Confident variant detection can be 

achieved in regions with as little as 1 read, though 10X per chromosome is usually 

considered a conservative minimum to ensure completely confident genotyping31.  

These characteristics make mapping based methods a far more attractive option for 

most labs, and make whole genome sequencing experiments a viable option for 

almost any lab.   
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2.1.4 Variant discovery 

 There have been numerous software packages developed to detect variants 

in reference guided alignment data.    For this work we have used FREEBAYES32,33, 

developed by Gabor Marth and Erik Garrison.  FREEBAYES uses a Bayesian 

algorithm that takes into account previous knowledge on the rate of mutation with a 

population to detect small polymorphisms, specifically SNPs (single-nucleotide 

polymorphisms), indels (insertions and deletions), MNPs (multi-nucleotide 

polymorphisms), and complex events (composite insertion and substitution events) 

smaller than the length of the reads.  

 

2.1.5 Toxoplasma. gondii genome 

 Toxoplasma has a haploid genome consisting of 14 chromosomes totaling 64 

MB with 52.1% GC content.  Ninety percent of all Toxoplasma isolates fall within 

three genotypes, Type I, II and III34. ToxoDB has draft-quality assembled genome 

sequences available for representatives of all three lines35.  For this work we used 

the Type I strain GT1, whose reference has been sequenced at 8-fold capillary read 

coverage and has been assembled into 402 sequence scaffolds. GT1 is the closest 

related reference strain to the laboratory strain used for these experiments, RH.  

The estimated divergence between GT1 and RH is estimated to be only 0.01%36. It is 

predicted that Toxoplasma contains roughly one gene per 7.4 kb, totaling 7,817 

genes with an average of 4 introns per gene.  
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2.2 Mutational profiling pipeline development  
 

 F-P2 exhibits a temperature sensitive egress-deficient phenotype with 

normal intracellular growth.  The mutant was identified in a screen of ENU treated 

mutants in 2001, and subsequent experiments to complement the phenotype have 

proved unsuccessful (described in section 1.3 and appendix A).  The analysis of this 

sample was used to develop the methods implemented in our final mutational 

profiling analysis pipeline.    

 

2.2.1 Illumina sequencing 

 Purified DNA from the F-P2 strain and the parent were sent to The Broad 

Institute for Illumina whole genome sequencing.  The samples were sequenced at 

the Broad by their technicians using the following protocol.  Genomic DNA (3μg) 

was sheared to ~400 bp in size using the Covaris E210 instrument (Covaris, MA).  

Fragmented DNA was end-repaired with T4 DNA polymerase (NEB, MA), 

phosphorylated with T4 polynucleotide kinase (NEB, MA) and 3’ adenylated with 

Klenow fragment (NEB, MA) using standard protocols.  DNA fragments were ligated 

with Illumina paired-end adaptors according to the manufacturer’s protocol 

(Illumina, CA).  All enzymatic steps were cleaned up using Qiagen min-elute columns 

(Qiagen, CA).  Adapter ligated fragments were purified via gel electrophoresis (4% 

agarose, 85 volts, 3 hours) and a single band in 500-550 bp size range was excised 
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resulting in a library with insert averaging 400 bp in size.  DNA was extracted from 

the gel using Qiagen min-elute columns (Qiagen, CA).  Purified library fragments 

were enriched via PCR amplification using Illumina paired-end PCR primers 

(Illumina, CA) and Phusion polymerase (NEB, MA). Enriched libraries were 

quantified using standard SYBR green qPCR protocols, using primers specific to the 

Illumina paired-end adapters.  Libraries were normalized to 2nM and denatured 

using 0.1 N NaOH.  Denatured libraries were cluster amplified on V2 flowcells using 

V2 chemistry according to manufacturer’s protocol (Illumina, CA).  Flowcells were 

sequenced on Genome Analyzer II’s, using V3 Sequencing-by-Synthesis kits and 

analyzed with the Illumina’s v1.3.4 pipeline following manufacturer’s protocol 

producing paired end 75bp reads (Illumina, CA).  

 

2.2.2 Reference guided alignment 

 MOSAIK was used to align the Illumina reads to a reference genome 

containing both the Toxoplasma gondii GT1 Genomic reference v5.0 and the Human 

genome reference build 37.  Due to the fact that the parasites are cultured in human 

cells, including the human reference in the alignment is a necessary step to remove 

any possible contamination.  Both of the samples did show significant human 

sequence.  For the F-P2 sample 90.1% of the sequenced reads successfully aligned to 

the combined reference genome.  Of those reads, 32.2% aligned to the human 

reference and 67.8% aligned to Toxoplasma gondii.  The Parent sample had a total 

read alignment of 90.5%.  Of the aligned reads, 49.4% aligned to the Human 
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reference and 50.6% of the reads aligned to Toxoplasma gondii.  Despite the large 

proportion of human DNA in the sample, there was still adequate coverage across 

the Toxoplasma gondii genome.  The average coverage was over 30X for both 

samples, and the alignments covered greater than 96% of the known genome in 

both samples at a minimum coverage of 5x.   

 

2.2.3 Variant calling and filter development 

 Variants were called separately in each of the two samples using BAMBAYES, 

and the resulting calls were intersected to identify variant calls unique to the 

mutant.  Using a minimum coverage threshold of 5x, BAMBAYES reported a total of 

1841 SNVs in the F-P2 sample and 1728 in the Parent sample.  The minimum allele 

coverage of 5X is lower than the standard 10X31.   We felt using a lower coverage 

was an acceptable tradeoff to increase sensitivity and avoid missing any valuable 

possibly SNVs.  Using SNVs with lower coverage will increase the chances of calling 

a false positive, but reduce the false negative rate.  A simple comparison of the SNVs 

identified 1469 SNVs shared between the two samples and 292 unique to F-P2.  

Upon further inspection, it became apparent that the majority of the SNVs were 

spurious calls, and appeared in locations where the alignments appeared to be 

heterozygous (Figure 10). Given that Toxoplasma gondii is haploid in the life cycle 

used in this research, this is not possible.  We believe this suggests that reads from 

multiple sections of the genome are piling up in the same area on the reference.  

This can be caused by either gene duplications that have arisen between RH and 
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GT1, though more likely, these are errors in the GT1 reference assembly where 

similar genes, or gene families, have been incorrectly placed on top of each other.  

This is a common problem in assembly algorithms.  No allelic variation was seen 

between parent and mutant at these sites, so we elected to filter these areas out for 

this study.  To clean up the calls we developed a filtering algorithm that excluded 

any variants whose major allele call comprised less than 70% the total number of 

bases at that position.  This removes 0.008% of the genome (4,976 bp), but 

accounted for over 88% of the unique SNVs. After filtering we showed 997 SNVs 

shared between the two samples (which are likely Single Nucleotide Polymorphisms 

or SNPs) and 33 SNVs unique to F-P2, which are all candidates as the causative 

mutation resulting in the F-P2 phenotype. 
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Figure 10: Incorrect genome assembly regions.  (A)  IGV screen shot showing alignment of a region with 
heterozygous sequence.  (B) IGV screen shot showing clear pileup of reads over the location of the ROP5 gene 
which is known to exist in multiple copies (GT1 reference V6) 
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2.2.4 Final variant calls 

We developed and applied an automated program to categorize the 33 

candidate SNVs, using information from the annotated reference available through 

ToxoDB (Table 2).  There were 8 SNVs in coding regions; 7 missense changes, and 

one silent mutation.  Additionally, there were 6 intronic SNVs, and 19 SNVs that had 

no reference annotations.  All 33 SNVs, as well as 14 of the filtered-out SNVs, were 

confirmed using PCR and Sanger sequencing.  31 of the SNVs unique to F-P2 were 

positively confirmed.  Of the two that were not confirmed, both showed less than 

10X coverage; one of these was the result of a duplication in a microsatellite that 

caused a nonexistent SNV to be called at the end of that region.  The second was the 

result of a heterozygous area that was skewed enough to pass our filter at low 

coverage.  This gives a false positive rate of 6.06%.  If we had raised our cutoff to 

10X it would have excluded these two calls, but would have removed one of our 

Figure 11: Results of paired-end Illumina re-sequencing of parent and F-P2 genomes. (A) 
Summary statistics from sequencing, alignment and SNV calling. Total reads aligned refers to total 
reads that aligned to both the human and GT1 references. All other stats are in reference to the GT1 
reference only. (B) Genome coverage of Illumina reads across the chromosomes of parent and F-P2. 
Fold coverage is averaged over a 100 kb window. The chromosomal localization of the 33 called SNVs 
SNVs between parent and F-P2 are shown, differentiated by confirmed and false SNV calls. The 
validated, causative, SNV is highlighted in red. Reprinted from 19. 
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confirmed SNVs.  As we expected, none of the 14 filtered-out SNVs were confirmed 

as true variations.  Of the 14, 12 produced good sequence and correctly confirmed 

showing the reference allele in both samples, supporting our decision to filter these 

out.  The two SNVs that could not be sequenced were in unaligned contigs and did 

not produce PCR products.  This is likely due to the fact that these extra contigs have 

not been reliably assembled and may not represent truly contiguous sequence in the 

genome.  

The causative mutation was confirmed by the Gubbels lab as an A to G 

mutation at chrVI:1579375.  It resulted in a Phenylalanine to Serine substitution in 

the theoretical protein, TGGT1_049850, annotated as a C2 domain-containing 

protein, (for specific details see Appendix A).  It was concluded that cosmid-library 

complementation mediated rescue of the F-P2 mutation failed due to the fact, that 

by random chance, there was only a single 40kb cosmid that contained the entire 

gene sequence.  This experiment shows the power that mutational profiling can 

offer in instances where traditional means have failed.    
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____________________________________________________________________________________ 
Chromosomal  SNP Gene Name AA change Validation Gene Annotation 
Location            
 
Missense 
chrIb-1893131 A to T TGGT1_064370 Asp to Val  Confirmed conserved hypothetical  
         protein  
chrVI-1579375 A to G TGGT1_049850 Phe to Ser  Confirmed C2 domain-containing  
         protein 2C putative 
chrVIII-1544385 T to C TGGT1_115970 Ser to Pro  Confirmed DEAD_2 domain-  
         containing protein 
chrVIII-4001335 G to A TGGT1_111590 Asp to Asn Confirmed casein kinase II beta  j 

       chain 2C putative 
chrIX-2830729 A to T TGGT1_032520 Ile to Phe  Confirmed hypothetical protein 
 
chrX-2661681 C to T TGGT1_079790 Gly to Asp  Confirmed kinesin motor domain- 
         containing protein  
         putative 
chrXII-2880600 G to T TGGT1_026590 Glu to Asp  Confirmed phospholipase D active  
         site motif domain-  
         containing protein 2C  
         putative 
Sense  
chrIV-1438411 A to T TGGT1_122960 Thr to Thr  Confirmed conserved hypothetical  
         protein   
 
Intronic  
chrVIIa-847497 G to A TGGT1_062210 N/A  Confirmed conserved hypothetical  
         protein 
chrX-2171807 C to T TGGT1_080660 N/A  Confirmed conserved hypothetical  
         protein 
chrX-2889629 A to G TGGT1_079320 N/A  Confirmed GTP-binding protein 2C  
         putative 
chrXI-5635171 A to T TGGT1_097900 N/A  Confirmed hypothetical protein 
chrXII-1242572 A to G TGGT1_029900 N/A  Confirmed conserved hypothetical  
         protein 
chrXII-1736436 A to G TGGT1_028920 N/A  Confirmed kinesin 2C putative 
 
No Information (intergenic)  
chrIa-921699 A to G N/A  N/A  False call  
chrIII-1992039 A to T N/A  N/A  Confirmed  
chrIV-79513 A to G N/A  N/A  Confirmed  
chrIV-1886744 A to T N/A  N/A  Confirmed   
chrV-3081061 T to C N/A  N/A  Confirmed  
chrVI-2430153 T to A N/A  N/A  Confirmed  
chrVIIa-2939045 G to C N/A  N/A  Confirmed  
chrVIIb-2603496 A to C N/A  N/A  Confirmed  
chrVIIb-3906142 C to T N/A  N/A  Confirmed 
chrVIII-2892685 T to C N/A  N/A  Confirmed  
chrVIII-5399013 T to C N/A  N/A  Confirmed  
chrVIII-5569348 T to C N/A  N/A  Confirmed   
chrIX-127509 G to A N/A  N/A  False call  
chrIX-2188760 A to G N/A  N/A  Confirmed 
chrX-2057265 A to G N/A  N/A  Confirmed  
chrXII-76471 A to C N/A  N/A  Confirmed  
chrXII-345599 A to C N/A  N/A  Confirmed 

  

Table 2: Genome localization of SNP calls, annotation and validation. 
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2.2.5 Computational controls 

 We have two primary computational controls which support the accuracy of 

our SNV calls; the frequency of unique SNVs in the parent line as compared to F-P2, 

and the nucleotide frequency of the ENU induced mutations.  The mutant F-P2 line 

was created by treating the parent strain with ENU, thus we would expect to find 

numerous point mutations in the mutant F-P2 that are not in the parent.  

Conversely, we would not expect to find any SNVs that are unique to the parent 

strain.  The parent strain only showed 2 SNV calls that pass our filters and are 

unique to the parent with respect to F-P2.  These calls are located adjacent to each 

other at the beginning Chromosome 1A at positions 7601 and 7602.  These SNVs 

exhibit the same characteristics as the other heterozygous calls that passed our 

filter and we do not believe them to be real.  Unfortunately, this area is highly 

repetitive, and we cannot successfully PCR this location to confirm this SNV.  In 

subsequent whole genome sequencing runs on this sample, these two SNPs no 

longer appear.  Based on this, we conclude that our parent strain does contain zero 

novel SNVs when compared to the F-P2 strain, as expected. 

 Additionally, we looked at the allele frequency of the ENU induced mutations.  

It has been shown in the literature that in other species ENU tends to preferentially 

mutate A/T nucleotides, but not exclusively37.  Taking this into account, we would 

expect our list of 31 confirmed SNVs in the F-P2 background to be skewed towards 

mutation events at A/T bases.  Of the 31 confirmed SNVs, 77% were a mutated A/T 

base and 23% were C/G, suggesting that ENU was likely the cause of these SNVs.  
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We compared this number to the list of shared SNVs between the 2 samples.  These 

SNVs accrued over time due to random mutation events, and thus should not have 

the same skew in allele balance.  As expected, these SNVs exhibit a significantly 

more even distribution; A 23%, T 22%, C 26%, G29%.  These findings support the 

accuracy of our SNV calls and the effectiveness of this method at accurately 

identifying SNVs between a parent and mutant offspring line.   

2.3 Final mutational profiling pipeline 

The final pipeline for mutational profiling is outlined in Figure 12.  The 

pipeline was designed to be as hands off as possible to enable a lab technician, with 

limited computational training, to create an accurate set of annotated variant calls 

from raw Illumina data.   The user simply provides paired-end FASTQ files for two 

samples, a mutant and parent, as well as a Genbank (GFF) format reference for the 

organism of interest.  If desired they can supply a list of FASTA formatted sequence 

files of known contamination sequences that will be included in the alignment to 

reduce mis-mappings.  At this point all future steps are hands-off and automated.  

The pipeline will align reads with MOSAIK, call variants with FREEBAYES, filter the 

resulting variant calls as described above, annotate, and prioritize them with no 

user input.  The resulting report is a tab separated Table that contains the list of 

filtered and annotated variants, separated into groups based on their possible 

impact. The pipeline has been updated to include our most recent software versions, 

MOSAIK 2.030 and FREEBAYES32.  
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Figure 12: Final automated mutational profiling pipeline.  Boxes indicate data 
files; red boxes indicate are input files, blue intermediate files, and black represent 
final output files.  
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2.4 Reference guided mutational profiling conclusions 

 The pipeline developed here has been used successfully to analyze over 20 

samples.  We have recently published an analysis of 15 of these samples along with 

a detailed analysis and description of the laboratory methods used to aid future 

research in Toxoplasma gondii38, included in appendix B.  This pipeline has also been 

used in 3 other publications; the DOC2 paper discussed extensively in this section 

and included in appendix A, as well as two papers published with collaborators Ira J 

Blader “Forward Genetic Screening Identifies a Small Molecule That Blocks T. gondii 

Growth by Inhibiting Both Host- and Parasite-Encoded Kinases.” and Jeroen Pj Saeij 

“Genetic basis for phenotypic differences between different T. gondii type I strains.”   

 The mutational profiling methods outlined here offer the ability to identify 

mutations in samples identified in forward genetic screen.  The entire method, from 

DNA extraction to final variant calls can be completed in as little as 3 weeks, far 

faster and cheaper than many standard laboratory methods.  Further, as was the 

case with DOC2, these methods are able to identify mutations that have been missed 

by traditional methods.  Every researcher working in genetics has heard of research 

where a mutant screen has produced a strain with interesting phenotypes, whose 

causative mutation has eluded identification with traditional means.   There are, 

unfortunately, no conclusive data on how many such cases are out there as these go 

largely unpublished.   Even so, the methods and pipeline we have outlined in this 

Chapter could breathe new life into these studies, giving researchers a new angle to 

attack stubborn mutations and possibly identify the causative variants.    
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Chapter 3: 

RUFUS 

 

3.1 Motivation 

 Traditionally, studies using whole genome sequencing, such as mutational 

profiling, employ reference based mapping; sequencing reads are aligned to a 

reference genome, and variant callers are used to determine variations between the 

sample and a reference.  As discussed in the previous Chapter, we developed such a 

mapping-based method to identify causative variations in strains of Toxoplasma 

gondii derived by chemical mutagenesis, to identify genes involve in the poorly-

understood apicomplixan parasitic cell invasion and egress process119,38  

(Appendices A and B).  This pipeline is based on the reference guided aligner 

MOSAIK30 and variant caller FREEBAYES32,33, developed in our lab.  This method has 

proven very effective; we have used it successfully to analyze mutations in over 15 

Toxoplasma gondii mutants19,38. 

 Despite the success of these methods, we have encountered numerous 

challenges associated with mapping-based approaches that may limit the success of 

these methods in future projects.  These methods are inherently limited by three 

factors: the existence and accuracy of a reference, the ability of the mapper to 

correctly place a read, and the degree to which a variant allele differs from the 

reference.  These methods are extremely effective when analyzing small mutations 
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in organisms with extremely high quality reference sequences.   This restricts whole 

genome analysis to well-studied organisms with pre-assembled high quality 

reference sequences, and can potentially cause valuable mutations to be missed.     

 

3.1.1 Reference Limitations   

 The most significant limitation of mapping-based mutation detection 

methods is the requirement of a reference genome.  This restricts genomic studies 

to well-studied model organisms with previously assembled reference genomes.  

Model organisms are generally chosen, not for their biological significance, but for 

their ease of use in the lab.  This makes it impossible to directly study many 

important biological processes that are unique to other species, as they lack the 

basic genetic tools that are required to perform such analyses.     

 If a reference is available, the quality of the reference will have a direct 

impact on the success of mapping methods.  No reference sequence is entirely 

complete, and as discussed in section 2.1.2, assemblers can have difficulty 

assembling contigs in, and around, repetitive regions of the genome.   Many of these 

repetitive regions are often omitted from the genome, either intentionally to 

improve alignments, or through assembly artifacts. These regions are not comprised 

solely of uninformative repetitive DNA.  One such case that has been well-

characterized is the Toxoplasma gondii ROP5 gene, which is known to exist in 

numerous copies and has been linked to virulence39,40.  The GT1 reference sequence 



RUFUS: Expanding the horizons of next generation sequencing  

 
Andrew Farrell   Page | 37  
7/15/14 

has been assembled with all copies of ROP5 collapsed to a single locus.  Therefore, 

all of the sequence reads for each copy of ROP5 pile up on this single locus, pooling 

their respective sequence, making variant discovery in this important gene family 

impossible with normal alignment and SNV calling methods (discussed in Chapter 2 

and shown in Figure 10).  For mapping based methods it is important that the 

reference contains the entire genome, as any genomic regions omitted will be 

completely ignored and lead to false negative calls.   

 We can attempt to quantify the amount of genome sequence in our RH strain 

that has been either omitted from the GT1 reference, or unique to RH.  As discussed 

in section 2.2.1, the Illumina sequencer’s power is its ability to indiscriminately 

sequence all DNA in a sample.  Therefore, the full set of reads sequenced on the 

instrument will represent the total genome of the sample, plus some amount of 

machine-specific error and human contamination.  We can attempt to quantify the 

amount of the T. gondii genome that is not in the reference by analyzing the 

proportion of reads that have not aligned to the assembled sections of the GT1 

reference or the human genome (Figure 14).  Using one of our highest quality 

sequencing samples (nF-P2 described in section 3.5 and Appendix B), 90.9% of the 

total reads sequenced align to the 14 assembled chromosomes, covering greater 

than 99.87% at a depth of 10 or greater.  The GT1 reference contains an additional 

328 un-aligned contigs, who have not yet been confidently placed in one of the 

chromosomes.  For this sample, 5.7% of the reads align to these unaligned contigs, 

indicating these contigs may account for a significant proportion of the genome.  In 

addition, the aligner could not place 2.03% of the reads in either the GT1 T. gondii or 



RUFUS: Expanding the horizons of next generation sequencing  

 
Andrew Farrell   Page | 38  
7/15/14 

human hg19 reference.  These reads could belong to omitted regions of the genome, 

or alternatively, may surface from simple machine or library prep errors.  Some 

proportion of unaligned reads are expected, previous studies report alignment 

percentages from 70% to 94% 41-44.  In an effort to separate random error from high 

quality reads, we assembled the unaligned reads with RUFUS.overlap (described in 

section 3.4.5), producing 2084 contigs with a read depth greater than 30 fold.  423 

contigs are longer than 1 kb, the longest being 4.9 kb, with a total length of 712 kb.  

This indicates a significant amount of unaligned reads that may represent DNA from 

contiguous genomic regions and not due to random error.  Using BLASTN to align 

the reads longer than 1 kb against the NCBI nucleotide database, 329 contigs have 

significant sequence homology to know regions of other T. gondii strains, including 

numerous known genes (Appendix C).  These results suggest that the current 

reference has omitted sections of genomic DNA that could be of biological 

importance.  

 In addition to genomic sequence that is missing from the reference, 

misassembled regions within the genome will further hinder variant detection.  Of 

the 14 assembled chromosomes, there are numerous regions where our RH samples 

alignment show greater than the expected coverage.  This indicates that either RH 

contains additional copies of these sequences, or more likely, these regions 

represent assembly errors in the reference where multiple gene families have been 

collapsed on top of each other.  These regions have been shown to contribute a vast 

number of false positive variant calls, and must be filtered out in order to reveal true 

variants.  In our DOC2 paper, 259 of the 292 called variants were false positives 
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contributed by these regions.  We can attempt to quantify the amount of genetic 

information that is lost to these areas by analyzing the alignment coverage, 

illustrated within the graph shown in Figure 13.  For this sample, the average 

coverage for unique regions of the genome is 120 fold.  A peak of duplicated DNA 

can be seen at an average coverage of 240X.  As a rough estimate, we can take the 

point between these two peaks, at 180X, and consider any point below this as 

correctly assembled as 1X sequence, and all points above it to represent duplicated 

sequence. This yields an estimation of 

97.4 % of the assembled genome that is 

correctly represented as haploid DNA, 

and 2.59% as collapsed higher copy 

regions.    In total, of the original 83 

million reads, 5.75% are in unassembled 

contigs, 2.02% are from regions missing 
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Figure 13: T. gondii Coverage Frequency Plot. Distribution of coverage depths per base in a 
MOSAIK alignment of F-P2 against the Toxoplasma gondii GT1 genome.  Regions of the genome 
predicted to be correctly represented as haploid DNA are highlighted in green, regions that appear at 
higher copy number highlighted in red. Sample used was nF-P2, total reads 83,487,194. 

Figure 14: Sequence Read Placement.  
Quantification of the alignment location of 
Illumina whole genome reads aligned to the T. 
gondii GT1 reference.  Sample used was nF-P2, 
total reads 83,487,194. 
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from the genome, and another 2.35% are mapped to duplicated regions.  This gives 

a total of up to 10.2% of the genome that may be missed by current mapping based 

methods.  

 

3.1.2 Mapping algorithm limitations 

 Reference-based mapping methods themselves introduce both limitations 

and bias to sequence analysis.  As discussed in Chapter 2, all current mapping-based 

methods used in second generation sequencing use a similar two-step alignment 

method.  First, an exact string match using a fixed-length hash to the reference is 

used to define candidate regions.  After candidate regions are defined, a more 

sensitive local alignment is used to place the read, allowing for substitutions and 

insertions or deletions.  This method works extremely well when placing unique 

reads in the genome with few to no errors or mutations.  However, if a read is non-

unique, or contains significant sequence variation from the reference, it will hinder 

mapping.  If a read cannot be placed confidently in the genome, it cannot be used in 

variant calling and thus its sequence is ignored.   

 Many regions of the genome have extremely similar or identical sequence, as 

is the case with many gene families.  Sequence reads from these regions will have 

almost identical DNA, and when aligned, will contain multiple regions with similar, 

or exactly the same, alignment scores. Most aligners, including MOSAIK, will exclude 

reads that have more than one equally-possible alignment.  This leads to many 
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regions of the genome where variant discovery is simply impossible.  Additionally, 

the hashing step may return thousands of candidate locations for a given read.  To 

prevent these reads from bogging down alignment, most aligners will randomly pick 

a subset of candidate regions to perform a full alignment.  This can cause a higher 

scoring alignment to be missed entirely, causing the read to be misplaced or 

excluded.  Two other methods used to handle the multiple alignment problem are to 

place the read randomly to one of the possible locations, or to place a copy of the 

read in every location to which it maps. All three of these methods have their 

advantages, but all of them will ultimately make variant discovery in these regions 

impossible.  Frequently, in some projects (such as the 1000 Genomes), repetitive 

regions are simply masked-out and completely ignored to improve confidence in the 

final call set.    

 Using a reference introduces a bias towards the reference in both steps of 

alignment that can hinder mutation detection.  The first bias occurs in the hashing 

step, where alignment candidate regions are identified.  In this step, the read is 

divided up into fixed length k-mers, and each k-mer’s exact matches in the reference 

are recorded.  If a read contains a variation, even a single nucleotide change, all k-

mers that overlap that region will no longer match to their appropriate location in 

the genome.  This immediately reduces the chances of finding the true location 

where the read belongs in the genome.   The most drastic case of this is when two 

SNPs occur spaced apart equal to the k-mer size.  In this case all k-mers in this read 

would be completely missed and the read would never be aligned, even though its 

alignment score would be quite high.  Furthermore, once candidate regions are 
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determined, alignment algorithms introduce another level of bias.  When aligning a 

read to the genome, the best score possible is a perfect match.  Any difference in a 

read compared to the reference sequence will reduce the overall alignment score, 

and decreases the chance that the read’s map score will be high enough to consider 

it an acceptable alignment.  If the sample has true variation with respect to the 

reference, reads that represent this variation will inherently have a reduced 

probability of mapping.  The bias against mapping is increased even further the 

larger the variation from the reference making it difficult to find insertions or 

deletions in mapping based methods.   

 These limitations in reference-guided assembly introduce inherit bias against 

finding variation.  In our opinion, aligning to a reverence genome and then calling 

variants is a case of putting the cart before the horse.  Alignment is inherently 

biased against mutations, it would be far better to first identify variations in a data 

set, and only after that, determine the sequence context of that variation.  This 

would remove bias that limits mutation discovery and restricts analysis to the 

mappable genome.     

 

3.2 RUFUS 

 We set out to develop a variant discovery tool to address the limitations 

associated with reference guided alignment by creating a tool that does not use an 

assembled reference sequence, and, as opposed to whole genome assembly, can be 
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run on a computer with similar hardware and time requirements as required for 

current mapping methods.  To fulfill these goals, we developed RUFUS; a k-mer 

based reference-free method for identifying variants in Next Generation sequencing 

data.  RUFUS compares raw Illumina whole-genome sequence data from multiple 

samples in order to identify specific sequences that differ between the samples, 

thereby identifying reads that represent mutation events between the two samples.  

Unbeknownst to us, a similar tool, NIKS, was simultaneously developed at the Max 

Plank Institute in Germany45 which uses a similar k-mer based approach to identify 

mutations between closely-related samples. Both of these methods have numerous 

advantages over mapping based methods; there is no need for a reference sequence 

so variation can be identified in any organism, in any sequence.  There is no 

possibility of misalignment, which is the major contributor of false positive and false 

negative variant calls.  Additionally, variant detection is not limited to a mappable 

genome; variants can be identified in missing and hard to map sequence.  The lack of 

reference bias increases the chances of identifying rare variants and removes bias 

against large events such as insertions and deletions.  While NIKS method uses a 

coverage cutoff approach, and is applicable to homozygous/haploid sequence 

mutations in unique (i.e. non-repetitive) sequence, RUFUS goes further using a 

Bayesian detection method to analyzing changes in specific k-mer frequencies 

between the samples.  This allows RUFUS to detect all types of variation including 

SNVs, insertion/deletions, translocations and mobile elements, copy number 

variants, and will find both homozygous and heterozygous events.  The greatest 

collective benefit of these reference-free methods is that they will enable 
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sequencing research in organisms that have either a very poor reference or none at 

all.  It will also improve detection of highly variable and repetitive genomes that are 

difficult to analyze with current methods, such as Plasmodium spp.   

 

3.2.1 RUFUS concept explained  

If one were to compare all of the DNA sequence between two closely related 

samples, the vast majority of sequence will be identical between them, and thus 

relatively uninformative with respect to variant detection.  Using expensive 

computation, such as alignment or assembly, on the majority of the data is a waste 

of resources, and will only serve to confuse the final results.  However, any mutation 

between samples will create a unique stretch of DNA sequence between the two 

samples.  Comparing the raw reads would not work, as the read may contain errors 

preventing simple string matching, and the probability that a complementary read 

starts at the same location in the second sample is extremely low.  Instead the reads 

can be broken into k-mers.  These k-mers can then be compared between the 

samples to identify specific sequences unique to either sample.  Using this basic 

principle, RUFUS is able to identify variations without the need to map reads to a 

reference, or assemble the entire genome.  We have extended this idea to detect 

changes in the abundance of sequences, and applied a Bayesian algorithm able to 

detect copy number and heterozygosis variations as well.   
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3.2.2 K-mer histogram analysis 

To generate k-mer counts, we use Jellyfish46, an extremely fast and memory 

efficient program developed at the University of Maryland.  Jellyfish will count the 

occurrence of every k-mer in a FASTQ file of a given length.  To visualize the data in 

a manner, k-mer counts can be represented as histogram showing the abundance of 

each k-mer count in the sample, Figure 15.  This histogram is the basis of RUFUS.  

Due to the overlapping nature of whole genome sequence reads, k-mers derived 

from error free sequence will pile up, producing high frequency k-mers that reflect 

the genome of the sample.  Illumina sequencing has a pseudo-normal coverage 

distribution, and genomic k-mers will largely exist as a single peak, seen in Figure 

15A between 50 and 150.  The shape and location of this peak will change between 

different sequencing samples, its center determined by the average coverage of the 

sequence reads, and the width of the peak will reflect the variability of the coverage.  

Conversely, sequencing errors will produce rare k-mers that exist at low frequency, 

particularly singleton k-mers that comprise over 76% of the k-mers sequences in 

Figure 15A.   

The k-mer histogram also contains copy number information about the 

sample sequenced.  Unique, single copy, regions within the genome produce k-mers 

with similar depths, duplicated regions of the genome will produce k-mers with 

twice the depth of unique sequence.  This effect is evident in the k-mer frequency 

histogram when viewed on a log scale (Figure 15B).  Each peak in this graph 
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represents k-mers from DNA sequences at successively higher copy number within 

the sample. 
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To demonstrate these principles experimentally, the draft reference 

sequence for Toxoplasma gondii GT1 can be used to bin the k-mers based on their 

occurrence in the reference genome (Figure 16A).  Using the first inflection point as 

a reference point (depth = 50), over 99.95% of the k-mers to the right of this point 

exist in the reference sequence.  Conversely, over 99.53% of the k-mers that are not 

present in the reference genome are below this point, suggesting that low frequency 

k-mers are in fact derived from sequence errors and contamination.   Of the k-mers 

that are unique in the reference sequence, and thus represent single copy DNA, 

99.2% exist within an interval of 50 to 150.  This supports our claim that unique 

DNA will produce k-mers with similar counts and produce a contiguous single peak.  

As the coverage increases, this trend continues, though there is a clear increase in 

variance as the copy number increases. 2 copy k-mers show 77.2% of the reads 

within 150 to 250, and 3 copy k-mers show 58.2% of their reads in the interval 250 

to 350.  Peaks in the wrong location indicate differences between the reference and 

the sample sequenced.  For example, in Figure 16A the bin of single copy k-mers 

shows a second peak centered at 200 where there should only be duplicated k-mers.  

This indicates sequences where the reference contains a single copy, though in the 

sample this k-mer is in fact duplicated.  Additionally, the Novel K-mers show a peak 

at 100.  This is due to variants between the sample and the reference, such as SNPs 

which will produce k-mers that are not in the reference.  Thus, the full k-mer 

frequency histogram gets its’ periodic shape from the fact it is actually the sum of a 

series of independent distributions; one for each copy number state in the sample as 

well as a distribution that describes the error of the machine.    
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We can model the underlying distributions that create the k-mer histogram 

(Figure 16B), and leverage this model to detect variants between samples.  By 

detecting specific k-mers whose count in each sample lie on different distributions, 

we can detect both mutations, such as SNVs and insertion/deletion events, as well 

as copy number changes in a single pass variant detection method.    

 

3.3 RUFUS methods 
 
 An overview of the RUFUS pipeline for mutation detection is outlined in 

Figure 17.  This pipeline is designed to perform mutation detection on a pair of 

samples, such as mutant and its parent.   Initially jellyfish is run on each sample to 

produce k-mer counts for each sample, as well as a histogram of the k-mer 

Figure 17: Overview of the RUFUS Workflow.  Jellyfish is used to create k-mer frequency Tables 
for both samples (1).  RUFUS.model is used to model each sample, and RUFUS.build uses these 
models to filter the original FASTQ reads (2).  RUFUS.overlap is then  used to assemble the filtered 
reads into contigs that represent variation (3).  The assembled contigs are  compared in to detect 
variation.  



RUFUS: Expanding the horizons of next generation sequencing  

 
Andrew Farrell   Page | 50  
7/15/14 

frequencies.  Here we will cover the concepts behind each step in RUFUS.  For 

detailed information on the algorithms the source code is available on the Marth Lab 

website ( http://bioinformatics.bc.edu/marthlab/ ).   

 

3.3.1 RUFUS.model 

RUFUS.model takes the raw k-mer 

frequency histogram, produced by Jellyfish, 

and fits models of the underlying copy 

number distributions to the raw k-mer 

histogram for each sample.  First, contamination is estimated by fitting a curve using 

equation 1 to the portion of the frequency histogram to the left of the first inflection 

point.  As discussed in section 3.2.2, the majority of the reads in this region will be 

due to contamination and errors.  The error model is subtracted from the original k-

mer histogram and the resulting histogram is used to fit the genomic k-mer model.  

Genomic k-mers are modeled as a series of asymmetrical normal distributions with 

ErrorModel =
1

𝑖𝑥
∗ 𝑆𝑘 

Equation 1: Error model.  i is equal to the 
k-mer count, x is the fitted constant, and Sk 
is the count for unique k-mers in the 
sample taken from the histogram. 

GenomicKmerModel =  𝑁 𝜇 ∗ 𝑖,𝜎 +   𝑖 − 1) ∗ 𝑓)) ∗ 𝑘𝑖

𝑐𝑛𝑢𝑚

𝑖=1

 

𝑖𝑓  𝑥 < 𝜇 ∗ 𝑖){𝜎 =  𝜎 +   𝜇 − 𝑥) ∗ 𝑠𝑘)𝑝 

Equation 2: Genomic k-mer model.  N indicates the normal distribution with parameters mean 
and variance, μ average coverage for the single copy peak, σ standard deviation for the single copy 
peak, i is the copy number state from 1 to ∞.  sk, f and p are variable factors that are fit by 
RUFUS.model to account for the skew of Illumina data toward lower coverage.  f determines the 
rate at which the standard deviation increase with each copy number increase, sk determines the 
magnitude of left hand skew on the normal distribution, and p corrects the slope of that skew.  K is 
the total number of k-mers present at the given copy number denoted by i.    
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increasing variance for each successive copy number (equation 2).  RUFUS 

iteratively fits each of the 5 parameters in equation 2 to produce the final model, 

examples shown in Figure 20B.   

Initially a random walk was used to fit the model, however this often resulted 

in parameters becoming stuck in local minima and producing poor final fit.  Instead 

the following method was developed which improves parallelization and avoids 

local minima.  This method uses a 3 pass algorithm, where in each pass values are fit 

for each of the values in equation 2 in this order, f, μ, σ, sk, and p.   The order of 

parameter fitting is based on their perceived impact on the model, from greatest to 

smallest.  For the given parameter, a low and high range is set.  Then in parallel, 10 

independent models are generated, using 10 evenly spaced values for the given 

parameter between the high and low values.  The value with the lowest sum of 

squares is chosen.  New high and low values are selected using the newly selected 

best value ± 10%.  The loop is run until the high and low values are within 0.1% of 

each other.  This both allows extremely efficient multithreading, and reduces the 

possibility of becoming stuck in a local minima by testing a wide range of values 

each pass and by allowing the values to range both above and below the original 

high and low values.   The initial values for μ and σ are calculated from the k-mer 

histogram.  μ is taken as the k-mer depth with the largest value after the first 

inflection point. σ is calculated by finding the k-mer depth, whose value is e-1/2 the 

value of μ.  The values for the shape factors range as follows; 1 ≤ f < ∞ with 1 and 20 

as the initial high and low, 0 < sk < ∞ with .000001 and 2 as initial values, and 1 ≤ p 

< ∞ with 1 and 5 set as initial values.   
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Using the best fit model, RUFUS.model produces an estimate of the genome 

size, as well as the proportion of the genome that exists at each copy number.  Data 

likelihoods are saved for each of the distributions separately to be used by 

RUFUS.filter.  A model is generated for each sample independently, allowing sample 

specific estimations of the error, expected coverage’s for each copy number, and the 

variation of copy number.   

 

3.4.2 RUFUS.build 

 Using data likelihoods created by RUFUS.model, RUFUS.build intersects k-

mer frequency Tables for a subject and reference sample, to identify k-mers that 

represent either mutations or copy number variants between the two samples.  For 

each sample, RUFUS.build takes a Jellyfish k-mer count Table and data likelihoods 

generated by RUFUS.model, as well as prior probability for mutation events, a prior 

probability for a copy number change, and a P-value cutoff.   To reduce memory, the 

two Jellyfish Tables are read in simultaneously and each k-mer is only stored in 

memory until its match is seen in the other sample.  The memory for this step can be 

reduced to almost zero by pre-sorting the hash Tables.  However as RUFUS.build 

often takes far less memory than jellyfish this is usually not done for Toxoplasma 

gondii.  For each k-mer, a Bayesian algorithm is applied that calculates the posterior 

probability that the k-mers count in each sample indicate that the k-mer represents 

either a copy number event or a mutation, equations 3 and 4.  If the posterior 

probability that the k-mer represents either type of variation is greater than the 
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supplied Pvalue, the k-mer is saved as either a mutation event or copy number 

event.  RUFUS.build creates two files; a file containing k-mers that represent 

mutation events, and a file containing k-mers that represent copy number events.    
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3.4.4 RUFUS.filter 

 RUFUS.filter identifies reads in the original FASTQ that represent either 

mutations or copy number events between the two samples.  RUFUS.filter requires a 

FASTQ file for the sample to be filtered, as well as the Mutation.HashTable and 

CopyNumber.HashTable files produced by RUFUS.build.  For each read in the sample 

FASTQ, RUFUS.filter compares each k-mer in that read with the Tables identified by 

RUFUS.build to determine if the read contains variant k-mers.  If any k-mer matches 

are detected the read is a candidate for a mutation.  To increase stringency a 

minimum number of variant hashes can be set for both mutations (default 3) and 

copy number (default 30), within a given window (default 10bp for mutations and 

30 for copy number).  If greater than the minimum number of hashes is identified as 

variant, within the given window in a read, the read is saved as either a mutation or 

copy number event read.  RUFUS.build and RUFUS.filter are run as separate steps to 

improve parallelization and distribution of filtering to a cluster with minimal 

memory.  

3.4.5 RUFUS.overlap 

 Once the set of reads that represent variation have been separated from the 

total genomic reads by RUFUS.filter, they are assembled into contigs that represent 

variant sequence between the two samples.  The assembly can be performed using 

any available assembler; however the sensitivity of the assembly will determine the 

sensitivity of the final mutation discovery. The current state of the art graph based 

assemblers, Velvet24 and Minimus47 , generated assemblies in a matter of seconds on 
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the reduced set of filtered reads.  However, they dropped out contigs from known 

variants during assembly.  In order to generate assemblies in useful timeframes 

sophisticated assemblers, such as these, use heuristics to increase the assembly 

speed.  However, many of these heuristics are no longer needed due to the fact that 

the overwhelming majority of reads have been filtered out by RUFUS.  In many cases 

these heuristics cause valuable reads to be rejected leading to a reduction in variant 

detection sensitivity. To address this we developed RUFUS.overlap, a simple greedy 

overlap assembler, which uses an iterative process to build contigs.   

 RUFUS.overlap performs assembly using a 4 step process, using two versions 

OverlapHASH and OverlapRegion.  Both versions work in essentially the same way.  

First, all reads are loaded into memory.  Due to the vast reduction in reads this is 

now possible with very little memory.  A read is taken, and compared to all other 

reads.  For each comparison the reads are slid across each other, in both the forward 

and reverse complement orientation, calculating the number of bases that match 

between the reads in every configuration, if two bases do not match whose quality 

score is over 10, the overlap is not considered.  This prevents heterozygous 

sequences from being collapsed and masking variation.  The highest scoring match 

is selected and the reads are collapsed.   

 In the first two steps, the reads are assembled with OverlapHASH.  

OverlapHASH reads in each raw read, converting any base with a quality less than 5 

to an N, and subsequently trimming all leading and trailing N’s.  Reads are 

overlapped described above, using a hashing method to target overlaps and increase 
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speed.  On this first pass reads are only collapsed if the similarity of sequence is over 

98%, a minimum overlap of 50 bases and a hash size of 24.  The hash size of 24 does 

not limit the assembly, as any overlap of at least 50 bases with 98% identity would 

have at least 24 contiguous identical bases between them, this simply reduces the 

number of useless calculations.  As a second pass the reads are again read into 

OverlapHASH, preserving the depth of the contigs at each base.  For contigs that 

were overlapped in the last pass (any contig with at least one base with depth 

greater than 1), hanging ends with a depth of 1 are trimmed off, this eliminates 

reads with high base quality singleton errors from blocking extension.  Overlap is 

performed again, further extending the contigs, this time requiring 98% match, 

minimum overlap of 30 bases.  Now only read reads that have found at least one 

overlap match are reported.  At this stage, to correct for internal singleton error 

bases of high quality that will prevent two contigs whose belong together from 

overlapping, all base qualities are replaced with the sequence depth.  Now, 

OverlapRegion is run twice to collapse any additional contigs.  For both passes a 

minimum match of 95% is used and minimum overlap of 30 bp.  OverlapRegion is 

similar to OverlapHASH though it does not use a hash method to seed assembly, 

thus ensuring that any possible overlap is considered.   

 This method works extremely well for assembling RUFUS data into contigs.  

It would be far too slow for whole genome assembly, but due to the fact that the 

majority of data has been removed, this method completes in a reasonable amount 

of time.  Additionally all repetitive regions of the genome have been removed, 

leaving only the variant sequences.  This method will also preserve heterozygous 
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sequences with as little as one base difference between them, an advantage over 

many other assemblers designed for whole genome data.   

 

3.4.6 Mutation discovery 

 Mutation discovery can be achieved in multiple ways and will differ 

depending on the organism and specific research goals.  Here we will cover the two 

chief methods we employ; BLASTN based Reference Free and mapping based 

Reference Assisted.    

 Reference Free:  Blastn is used to align assembled contigs produced by 

RUFUS.overlap between the two samples.  This will produce a blastn report that 

describes the relationship between variant contigs in the samples.  In the case of a 

SNV or indell (with unique sequence) this will show two overlapping contigs with 

the variant in the center (Figure 18A).  In the case of structural events, or insertions 

where the inserted sequence is not unique, breakpoints will be identified, if the 

inserted/deleted sequence is unique within the genome the entire region will be 

assembled (Figure 18 B and C).  This method is capable of identify any variation 

where there is at least one base pair different between the two samples including 

SNVs, insertion/deletions, translocations, inversions, copy number, etc.  This 

method should be used if no reference is available.  If a reference is available this 

method can be used to detect variants in regions that may be missing from the 

reference as well to improve the detection of structural events and indels. 
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 Reference assisted: If a reference sequence is available, SNVs and other small 

variants that will map well can be identified by mapping the assembled contigs to 

the reference to detect regions with variation within the known genome.  This has 

two advantages over traditional mapping methods; the assembled contigs are up to 

two times longer than the original reads for a SNV, increasing mapping accuracy and 

quality in ambiguous regions of the genome.  If desired the read pair mates can be 

added into the assembly to increase the size of the contigs further.  Secondly, 

filtering limits analysis to reads that contain variation, reducing false positives that 

occur due to incorrect mapping of reads in difficult regions of the genome.  The 

reference-assisted method will not work well for detecting larger mutations as the 

contigs will differ greatly from the reference.  If detection of larger variations is 

desired the contigs should be analyzed with the reference free method outlined 

above.  
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YFP and LacZ 
reporter  

plasmids inserted 

ENU: 29 PCR 
confirmed 
SNVs 

HXGPRT gene knockout 

 

RH 

 

2F-1-YFP 

 

DOC2 

 

HXGRPT2-KO  

 

RH7.5  

EMS: 
39 SNVs 

231 Total SNVs 
31 Microsatellite 

expansion/contractions 
2 Plasmid Insertions 

1 Gene Deletion 

 

163 spontaneous SNVs 
31 Microsatellite expansion/contractions 

Figure 19: Relationship between DOC2 and RH7.5. DOC2 and RH7.5 are both derived from the RH 
strain.  Both mutants were generated by chemical mutagenesis of their respective parent strains.   
Expected mutations, and the relative time of the events, are depicted by light blue arrows.  The final 
expected mutations between RH7.5 and DOC2 are shown as a labeled red arrow.  
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3.5 RUFUS results  

 Here we show results using RUFUS compared to the mapping based 

approach described in Chapter 2.  To test RUFUS on a biological set with a variety of 

variants, we compared the well characterized Toxoplasma gondii mutant strain F-P2 

to the mutant sample EMS7.5 from a closely related laboratory strain HXGPRT-KO 

(Figure 19).  The samples were sequenced in separate lanes on the same Illumina 

HiSeq run using 100 bp reads (sample detail in Table 3) as described in Farrell et al 

2014 (Appendix B).  A detailed list of mutations is shown in Appendix D.  Mapping 

based methods called a total of 263 SNVs between the two strains, of these 40 have 

been confirmed with PCR.  It is important to note that mapping based methods call 

an additional 3952 variants in regions of the genome that appear to represent 

reference errors and incorrect mappings and have thus been filtered out using 

methods described previously.  None of the filtered SNVs tested have been 

confirmed by PCR indicating that they are false positives.  In addition we expect 3 

structural mutations between these strains; a known deletion of HXGRPT2 on 

chrVIII from 6,800,848 to 6,802,278, as well as 2 previously un-characterized 

reporter plasmid insertions in the F-P2 strain that mapping and assembly have thus 

far failed to identify.  
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3.5.1 K-mer size selection 

 When using RUFUS care should be taken to select an appropriate k-mer size 

for the genome sequenced.  A very large k-mer will increase the percentage of the 

genome that is unique; however it will reduce the effective sequence coverage and 

increase the memory required.  With no prior knowledge of the genome sequenced, 

optimal k-mer size can be estimated using the k-mer frequency histogram.  Figure 

20 shows a comparison of k-mer frequency histograms for the DOC2 sample with k-

mers from 12 to 30.  The average k-mer coverage for each copy number peak 

corresponds to the center of each copy number peak and decreases as k-mer size is 

increased.  The ratio of unique to non-unique k-mers can be calculated based on the 

area under the single copy peak as compared to the area under all subsequent copy 

 

Figure 20: Comparison of k-mer size. Comparison of multiple k-mer frequency histograms for k-
mer sizes from 12 to 30.  As k-mer size is increased, the graph shows the trend towads greater k-mer 
uniqness with a corosponding decrease in coverage for each copy number peak.  K=20, highlighted in 
blue, was selected as the optimal choice and was used for this research.   

K-mer frequency 
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number peaks.  As the k-mer size is increased this ratio will trend towards more 

unique k-mers.  The k-mer size should be set to maximize the uniqueness of k-mers 

in the genome while not unnecessarily reducing the effective coverage.  In this 

example, for k-mers larger than 20 the average coverage continues to decrease 

while the ratio of unique to non-unique k-mers does not continue to improve.  This 

indicates that a k-mer size of 20 is likely the largest k-mer that should be used for 

this genome; larger k-mers will lower the effective coverage and will not improve 

the unique fraction of k-mers.  A smaller k-mer size will increase the effective 

coverage, but regions which may be unique at a larger k-mer will now appear non-

specific, and variations in these regions will now appear as copy number variations 

as opposed to mutations.  These K-mer characteristics will remain constant across 

samples from the same genome and does not need to be run on every sample from 

the same species with the same read length. 

 

3.5.2 Run Statistics 

 RUFUS was run to compare the F-P2 sample to the EMS7.5 sample using the 

following parameters; k-mer size of 20, prior probability of a mutation as 3.0*10-6 

(or 200 SNVs/65,000,000 bp), and a prior for copy number 1*10-5.  Complete run 

statistics are listed in Figure 21 and Table 3.  In total, RUFUS completed in less than 

4 hours using a maximum of 16 processors and with a maximum memory 

requirement of 446 Mb*.  One important note when running RUFUS, as discussed 

section 3.2.2, the vast majority of k-mers exist as singletons, likely created by 
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sequencing random base substitution.  These k-mers do not improve variant 

detection and can be ignored with no effect on specificity or sensitivity.  Using a 

lower k-mer cutoff of 3 (eliminating counts of 1 and 2) reduces the memory needed 

to run RUFUS on this data to 446 Mb from 20.7 Gb with no effect on final results.  We 

strongly recommend using a cutoff of 3 when running RUFUS on most data sets.  The 

lower k-mer cutoff could also be used to reduce the effect of cross contamination 

between samples.  P-value histograms from Bayesian k-mer count comparison in 

RUFUS.build are plotted in Figure 21c and show excellent separation between 

mutation events and uninformative k-mers. RUFUS.filter identified 286,780 F-P2 

reads, and 26,741 EMS7.5 reads as candidates that may contain variation, reducing 

the number of reads that require analysis by 99.5% for F-P2 and over 99.9% for 

EMS7.5.  The more modest reduction in reads in F-P2 is due to the higher level of 

human contamination in that sample, resulting in a larger proportion of human 

reads which by random chance were sampled at high depth and appear to be 

genomic. Of the F-P2 filtered reads, 52.4% align to the human genome.  In contrast, 

1.1% of the RH filtered reads align to the human genome.  Contaminating DNA 

sequence will not affect mutation detection; if one uses a mapping based analysis 

method contamination is easily filtered out, and in the case of reference free 

analysis described above, the other sample will not contain a complementary 

sequence and will there for not produce a complementary contig.  If significant 

contamination is expected from an organism with a known genome, contamination 

can be filtered out by aligning the filtered reads to the genome of the contaminating 

organism.  Removing contamination reads will speed up the downstream analysis 
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by removing uninformative reads, though this will likely not affect the final results 

and is not required. Contigs were assembled for F-P2 and EMS7.5 using 

RUFUS.overlap and blastn was used to compare the libraries.     

 
Table 3: Sample Details and RUFUS run statistics. Detailed sequencing statistics for nF-P2 and 
RH7.5.  Mapping based substitution rate is calculated off MOSAIK alignments.  Times are listed as 
mm:ss.00. Memory usage is listed to the left of run times for selected memory intensive steps.  
*RUFUS.Build-Min3 indicates RUFUS.build run with minimum k-mer count of 3, as opposed to the full 
Table.  This does not affect the final results but greatly reduces the memory required.  

Sample Details 
 

nFP2 
 

EMS7.5 
Total reads sequenced   83,487,194   71,395,882 

%Toxo   96.67   97.96 
%Human   1.3   0.06 

%unaligned   2.02   1.97 
Mapping based substitution rate 0.003213   0.003455 

  
  

 
  

RUFUS Run statistics  
 

Time Elapsed 
 

Time Elapsed 
Jellyfish count 2.66G 03:56.0 2.66G 03:32.5 
Jellyfish histo   0:24.79     0:29.51 
RUFUS.model    01:43.4   00:30.9 
Jellyfish dump   04:27.0   03:53.2 

  
  

 
  

RUFUS.Build – full 20.7G 47:45.5 20.7G 48:45.5 
    *RUFUS.Build - Min3 0.446G 14:36.8 0.407G 18:16.0 
RUFUS.Filter mate1 0.020G 68:18.0  0.020G 57:41.7 
RUFUS.filter mate2 0.020G 61:06.0 0.020G 52:09.7 

Filtered Mutant Reads  
 

286,780 
 

26,741 
Filtered CopyMut Reads  

 
71,023 

 
15,113 

%reduction 
 

99.5% removed 
 

99.9% removed 

  
  

 
  

RUFUS.overlap    28:11.9   00:41.5 
Contigs   573   255 
     RUFUS.overlap.CopyNumber 

 
03:21.5 

 
00:18.5 

Contigs 
 

22 
 

16 
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3.5.3 Insertion/deletion detection 

 In contrast to mapping methods that must first align reads to the reference, 

creating bias towards the reference and hindering detection of indels, RUFUS 

identifies variant reads by their dissimilarity, increasing the likelihood of identifying 

variations the more drastically they differ between the samples. This is an 

advantage over traditional methods as it removes bias towards the reference and 

increases the likelihood of identifying variants, in particular variants which differ 

drastically between samples making RUFUS ideally suited for detecting 

insertion/deletion events and structural events.  RUFUS identified all of the 

expected structural events between F-P2 and EMS7.5.  Of particular interest are the 

two plasmid insertions that have eluded paired end mapping analysis methods due 

to the plasmids high similarity with the T. gondii genome; gra1LacZ contains 1,599 

bp out of 5.5 kb, and tubYFP contains 3,380 bp of 9.9 kb that are a perfect match to 

the T. gondii reference at a k-mer size of 100 bp.  This significant homology with the 

reference, as well as the poor quality of the draft T. gondii genome, caused paired 

end methods to detect a staggeringly high number of false positives (over 600) 

making identification of the true events impossible.  However, RUFUS accurately 

identified the breakpoints where the insertions occurred without any false positive 

calls; these have been confirmed by PCR (Figure 22).  For the HXGRPT2 deletion 

RUFUS assembles the entire 1.6 kb deleted section and correctly identifies the break 

point as a single 186 bp contig in EMS7.5 whose ends perfectly match the 1.6 kb 

contig in F-P2 section in the other sample (Figure 18).    
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Figure 22: Plasmid Insertion Detection and Confirmation. (A) IGV screen shot showing and 
example of one of the two plasmid insertion locations in the original MOSAIK alignment.  (B) IGV 
screen shot showing alignment of the individual reads identified by RUFUS as variations.  (C) 
Schematic of the structure identified by BLASTN.  (D) Schematic of the primer design used to confirm 
the insertions.  3 primer pairs were designed at each location, a pair flanking the entire region which 
only amplifies in the absences of the insertion in EMS7.5 (PCR1), shown in E and F.  PCR2 and PCR3 
use the same forward and reverse used in PCR1 but each uses a new primer complementary to insert 
sequence.  PCR2 and PCR3 only amplify in F-P2.   
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3.5.4 Copy number detection 

 By utilizing the k-mer frequency plot, and the corresponding model produced 

by RUFUS.model, RUFUS is capable of making accurate copy number predictions 

that take into account both the copy number of the sample as well as the variability 

of coverage within that sequence, possibly reducing the rate of false positives.  As a 

positive control for copy number events, there are 5 regions from the inserted 

plasmids in DOC2 that are exact copies of the T. gondii genome (discussed in section 

3.4.3).  These regions present as copy number events between F-P2 and EMS7.5 and 

can be used as a bench mark for copy number detection.  These regions range in size 

from 425 bp to 2,842 bp and total 5811 bp, giving a per base prior probability of 

roughly 1*10-5.  Using this prior and a minimum contig length of 400 bp, RUFUS 

identified all of these regions accurately, with zero false positives.  RUFUS 

additionally detected a novel 5 kb event on chromosome VIIa that we were not 

previously aware of.  This event shows one feature that will be the hallmark of true 

copy number event; as with any structural event, a novel breakpoint should be 

created at the ends of the duplicate region linking them together.  RUFUS identifies 

such a break point for this event that matches both ends of duplicated region, 

indicating a rolling circular structure (Figure 18).  Interestingly, this event shows up 

in every sequencing run we have for F-P2, however it does not show up in any of the 

other strains, indicating that this duplication occurred during ENU treatment.   

 Removing the length restriction introduces 14 additional copy number calls, 

10 of which do appear to be simple false positives caused by short local variations in 
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coverage.  The other 4 however call SNVs that exist in DNA present in multiple 

copies in both samples, and are effectively heterozygous.  These can be called by 

using blast to compare the unmatched mutation calls from each sample with the 

unmatched copy number calls from the other sample.  True heterozygous variants 

will show as a match between an unmatched mutation contig and a copy number 

event, copy number calls due to random coverage fluctuations will not find a match 

with a mutant contig and will not cause a false positive.  By extending RUFUS.model 

to diploid genomes, this will allow the detection of heterozygous events in diploid 

organism, this is currently being tested in human samples with promising results.   

 

3.5.5 Variation detection in unmappable genomic regions 

  Possibly the greatest advantage RUFUS has over mapping based methods is 

that it is not limited a reference genome, allowing RUFUS to identify variants in 

completely novel DNA sequences, as well as highly repetitive regions.   RUFUS finds 

8 SNVs between these samples that mapping methods could not detect.  Two of 

these calls are in sequence missing from the GT1 reference but present in other T. 

gondii reference genomes and have been confirmed by PCR.  One variant is in a 

novel stretch of DNA that does not match the T. gondii genome or any sequence in 

the NCBI nucleotide database and has been confirmed by PCR indicating that it is 

not simply an assembly artifact.  The final 5 variants are in low complexity regions, 

often differing by only 1 or 2 bp per 100 bp from dozens of other sites in the T. 

gondii genome.  One of these was successfully confirmed by PCR; however the other 
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4 would not produce clean PCR reactions likely due to their high similarity to other 

regions.  We do believe they are true variants but with current technologies these 

cannot be confirmed at this time.   

 

3.5.6 SNV detection 

In addition to drastic changes to DNA sequence, RUFUS detects single 

nucleotide variants (SNV) with greater precision than the mapping based methods 

employed in our previous work, calling 0 of the almost 4 thousand false positives 

that required filtering.  RUFUS is ideally suited for the random variations induced by 

mutagenesis, successfully calling all of the variants induced by mutagenesis; the 29 

ENU induced variants in DOC2 and the 39 EMS induced mutations in RH7.5.  The 

remaining 194 SNV calls can be split into two groups, 163 that represent a true SNV, 

and 31 that represent expansions or contractions of microsatellite regions. Of the 

163 true SNVs, RUFUS identified all of the variations using the reference added 

method outlined above.  Using the completely Reference free method RUFUS called 

161 SNVs, the remaining 2 depict an interesting rare situation where, at the given k-

mer size, a mutation creates k-mers that matches a different region of the genome.  

In these instances a mutant contig is identified in one sample as a mutation and 

either missed in the second sample or detected as a copy number event and thus 

classified as a heterozygous call.  Spontaneous mutations that have arisen during the 

strains separate passage in the lab are enriched for expansions and contractions of 

microsatellite regions.  While RUFUS will detect SNVs within highly repetitive 



RUFUS: Expanding the horizons of next generation sequencing  

 
Andrew Farrell   Page | 72  
7/15/14 

regions, RUFUS will not detect expansions and contractions in microsatellites longer 

than the k-mer length as these regions will produce no unique k-mer.  31 of the 194 

spontaneous SNVs are expansion/contractions in microsatellites longer than the k-

mer size and, as expected, RUFUS did miss all of these.  Some of these 

expansion/contraction events are recovered by running RUFUS with a larger k-mer 

size, however read length and k-mer size will limit the upper bound of microsatellite 

length polymorphisms. 

 

3.5.7 Comparison with NIKS 

 NIKS is a similar k-mer based detection method, simultaneously developed at 

the Max Plank Institute in Germany45.  NIKS was specifically designed to find 

homozygous mutations in mutagenized rice strains identified with forward genetic 

screens.   It uses a similar k-mer comparison method as RUFUS to identify k-mers 

that represent novel sequences between two samples.  NIKS detection is based on 

static cutoffs, where as RUFUS use a Bayesian detection method, thus NIKS will only 

detect homozygous/haploid mutations between two samples.  NIKS is not capable of 

detecting any of the copy number variations or heterozygous variations detected by 

RUFUS.  

 To compare the sensitivity when detecting SNVs, NIKS was run with similar 

settings as RUFUS, k-mer size of 20, to compare the F-P2 mutant and EMS7.5.  NIKS 

completed in 5.5 hours using 10 processors, more than double the time require for 
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RUFUS.  Of the 226 SNV calls where RUFUS and Freebayes agree, NIKS correctly 

called 219 SNVs, identified a variant contig in both samples.  There are two sources 

of false negatives shared by both of these methods; firstly if the k-mer detection 

method does not identify a difference between the samples for a given k-mer that 

represents a mutation, the method will not identify any reads that span the 

mutation.  Secondly, the assembly method may fail to assemble a contig, which will 

also result in a false negative in that region.  Of the 7 missed called, one of them 

NIKS did not identify any of the reads that span the mutation.  The remaining 6 false 

negatives, NIKS did correctly identify the reads that spanned the mutation in both 

samples, however one of the contigs in either sample was lost in the Velvet 

assembly. For the microsatellite expansion/contraction events that RUFUS missed, 

NIKS too missed every one of these.  With regards to the 8 novel SNVs detected by 

RUFUS NIKS identifies 6, missing 2.  It is possible that a more sensitive assembler 

may improve detection by reducing assembly error.  If we use RUFUS.overlap to 

assemble the reads identified by NIKS, 4 of the missed calls are recovered leading to 

a total score of 232 out of 234 RUFUS calls.   

NIKS did correctly exclude all of the false positives that mapping based 

methods introduced.  NIKS does produce a single unique call, however when we 

assemble with RUFUS.overlap this call is removed indicating that it likely is an 

assembly artifact associated with Velvet, further research will be required to 

confirm this.  This indicates that NIKS demonstrates the same increased specificity 

as RUFUS with similar, yet slightly lower, sensitivity.     
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3.6 RUFUS conclusions  

 The genetics community is desperately in need of tools such as RUFUS and 

NIKS.  To date, sequence analysis has not evolved significantly past the days of 

microarray analysis; currently researchers must have prior knowledge of the 

sequence they are investigating despite the fact that next generation sequencing 

technologies are capable of sequencing any DNA, regardless of its genome context or 

sequence.  To truly take full advantage of the freedom and power these new 

sequencing technologies offer, we desperately need new tools that are both efficient 

and not limited to the known genome.   

RUFUS offers completely reference free variant detection with the ability to 

detect all of the variation that mapping based methods are currently capable of.  

RUFUS analyzes the k-mer count distribution between two samples to create an 

accurate model of read coverage across the genome.  This model can then be 

leveraged to detect SNVs, Insertions and deletions, and copy number variants 

between a pair of Illumina sequenced samples.  RUFUS does not require the massive 

computing power, or multiple sequencing libraries, which are required by whole 

genome assembly methods23,25.  This makes RUFUS particularly useful for 

researchers working on organisms for which there is no reference or a very poor 

reference.  Additionally by removing the reference from mutation detection, 

reference bias is eliminated improving detection in 3 ways; Variations that occur in 
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DNA that is either missing from the reference or is unmappable can now be 

discovered, improved the detection of INDELLs as well as improving the detection of 

rare variations due to the lack of bias, and a massive improvement in specificity as 

mapping error has been completely eliminated which contributes the majority of 

false positive calls in mapping based method.   
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Chapter 4: 

Concluding remarks and future applications with 

RUFUS 

 

Second generation sequencing technologies, including the Illumina, will 

indiscriminately sequence any DNA sequence.  This appears to be a trivial 

statement; however it makes these technologies immensely powerful.  However, the 

current state of the art analysis methods, reference guided alignment or mapping, 

comply ignore this ability and limit the power of these new sequencers.  Prior to 

second generation sequencing, Micro Array analysis was the state of the art method 

for cheap and efficient genetic analysis, and is still widely used today.  In this 

method oligos are bound to an array, generally derived from assembled genomes, 

and the presence of that oligo can be identified in a sample through hybridization.  

This allows you to quickly identify known sequences in a given sample.  This limits 

detection to previously known genomes and mutations.  Next generation sequencing 

methods were supposed to free us from these limitations by allowing cheap and 

massively high throughput sequencing, allowing us to detect all mutations 

regardless of previous discovery.  However, mapping methods have limited this 

promise, barely advancing us beyond microarrays.   Methods that are independent 

of a reference can take full advantage of second generation sequencings abilities.  

However, until now the only methods for this were based on whole genome 
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assembly, which is far too costly and produces assemblies that are noisy and not 

suited to mutation detection. 

RUFUS offers the ability to extend the scope of next generation sequencing 

studies beyond what was previously possible.  Its unique ability to detect all variant 

types without a reference will enable whole genome studies in any organism with 

little or no prior work.   Further, by removing the reference and the associated 

reference bias, RUFUS is capable of detecting a wider array of mutations, including 

variations in repetitive sequence and increase sensitivity towards insertions and 

deletions.  Up to now we have only considered RUFUS as a tool for mutational 

profiling, however we believe that RUFUS is applicable to a much broader range of 

applications and its unique abilities will make it invaluable in future research.  We 

will conclude by covering some of the current applications being explored as well as 

preliminary data where available.     

 

4.1 Projects currently in development 

4.1.1 Human Trio Analysis 

With the 1000 Genomes project identifying approximately 99% of common 

SNPs in the human population, focus has shifted to understanding rare germline 

mutations and their role in human evolution and disease. Current mapping based 

methods are designed to detect common variation, at a rate of 10-3 or 3 million 
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events per individual.  Typical false discovery rates (FDR) range from 10-5 to 10-4 

per nucleotide, i.e. 30-300 thousand erroneous calls per individual. When using 

these methods to identify all variation in a human sample, on the order of 3 million 

variations, this FDR is reasonable and has little effect on the final results. However, 

research suggests that germline mutations occur a rate of 10-8   48 and thus will be 

completely drowned out by the current FDR. The errors and misalignments caused 

by reference guided alignment approaches are largely caused by differences 

between the reference and the samples (for instance, hidden CNV states in the 

family, missing contigs, etc.). Removing the reference from the process will 

eliminate such errors and make detection of putative de novo events possible.  

We used RUFUS to identify novel alleles in the child that were not inherited 

from the parents.  The parents samples were pooled, and used as a reference sample 

in RUFUS to identify novel variants in the child.  These reads were then assembled 

using RUFUS.overlap and aligned to the human genome to identify variations.   For 

this work we used one of the available Illumina Platinum Genome trio data sets; 

child NA12882, father NA12878 and mother NA1287749. We compared the RUFUS 

calls to the calls generated by GATK that Illumina provides with the data set, as well 

as ran our own analysis using FREEBAYES, Figure 23.  After identifying 

polymorphisms with genotypes unique to the child, GATK calls 215,270 (q>=100) 

germline events, consistent with a 3.18% polymorphism FDR, but orders of 

magnitude more than expected from novel mutation. FREEBAYES called far fewer 

events, 119,600.  The concordance rate between these sets was extremely low with 

less than 10% of the calls present in any of the other two sets, indicating that the 
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vast majority of these reads may be false positives.  RUFUS calls fewer events, 3,189, 

with over 93% calls present in one of the other two call sets, and 72% called in both 

the GATK and FREEBAYES call sets.  This suggests that our reference-free method is 

able to substantially cut down on false positive error, and achieve far higher 

specificity to rare events.  3,189 are far more events than the approximately 100 

that would be expected based on natural variation. We believe this is due to the fact 

that this data set was amplified for sequencing using cell lines, which may have 

introduced additional variation into the data that is not present in the original 

samples.  

168 calls were completely unique to RUFUS, Figure 24.  These calls fall into 2 

categories; correct calls in complex variants shows in Figure 26, or calls in regions 

where traditional mapping cannot confidently place reads Figure 26. There are an 

additional 110 variant contigs which align to alternate contigs of the human genome 

according to NCBI blast, regions which are currently ignored in most alignment 

based methods.   Finally, there are 92 calls that do not align to any known DNA 

sequence using NCBI blast, demonstrating the ability of our reference-free method 

to call variants in regions not represented in the current human reference which are 

completely ignored by other methods. 
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Figure 23: Analysis of SNV calls. Comparison of calls between RUUFS, FREEBAYES, and GATK for novel calls in 
the child sample NA12882 vs the parents NA12877 and NA12878.  Numbers indicate SNP call counts as indicated 
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Figure 24: Full Breakdown of RUFUS calls. RUFUS called a total of 3,189 variations unique to NA12882.  
These calls can be separated into 7 groups outlined here.    
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Variants Unique to RUFUS 

Figure 25: Examples of missed complex events.  Many of the unique RUFUS are in complex events or linked 
events where mapping based methods are incorrectly classifying the events, excluding them from the  final set of 
variants unique to the child. A shows an instance where the child has the same T allele as the father, yet in the 
father that T is always followed by an A, missing from the child making this a new haplotype. B shows an instance 
where the child is heterozygote for a variant present in both parents, however the child has lost a T upstream snp 
present in the fathers reference allele. 
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Figure 26: Improved Mapping Quality. RUFUS is additionally capable of identifying variants in regions 
where aligning short reads result in low mapping qualities.  IGV color codes reads with mapping quality 0 as 
whit contigs, gray contigs indicate a high mapping quality.  RUFUS pre assembles the reads allowing alignment 
of a longer contig with can improve mapping qualities and recover these areas.  In both A and B, novel variants 
exist in the child, yet the mapping qualities are 0, so these regions are lost as reads with 0 mapping quality are 
ignore in variant calling.  The longer RUFUS contigs (last line in each image) however aligns with a high 
mapping quality and correctly identifies the variation.    
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4.1.2 Bayesian RUFUS in diploid organisms (Human) 

 The above work analyzing a human trio was done with the simplest form of 

RUFUS that looks for novel k-mers based on static cutoffs, not the Bayesian version 

described in Chapter 3.  In this simpler method, a cutoff is set for the subject sample; 

in the trio above we used 5.  Any k-mer above 5 will be considered present in the 

genome of the subject (child), if the same k-mer is either absent from the reference 

sample (combined parents), or its count is below a specified cutoff (3), it is 

considered unique to the subject and identified as a mutation.  Read filtering in then 

performed exactly as described in 3.4.4.  This method identifies sequence mutations, 

such as SNPs, insertions, and deletions, extremely well with the similar sensitivity 

and specificity of the Bayesian RUFUS method.   However in order to detect copy 

number events, and heterozygous mutations in human samples, we will need to 

apply the Bayesian RUFUS detection method.  To do that we must be able to model 

the underlying copy number distributions for diploid samples.   

 Using the human reference to split up a human samples k-mer histogram 

shows that it follows the same pattern of overlapping copy number distributions as 

in T. gondii (Figure 28).  A unique feature of a diploid genome however is the small 

bump that occurs before the single copy DNA peak.  This bump is caused by haploid 

sequences such as heterozygous variants and the Y chromosome.  By accounting for 

this extra distribution in RUFUS.model (Figure 27), we can add heterozygous 

detection in diploid samples to the Bayesian variant detection method.    
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Figure 28: Reference Separated K-mer Histogram of NA12882: K-mer histogram of NA12882 
with each k-mer binned based on its occurrence in the human reference genome hg19.  Novel K-mers 
indicate k-mers absent from the genome 

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0 50 100 150 200

RawData

Novel K-mers

1.X

2.X

3.X

4.X

5.X

6.X

7.X

8.X

9.X

10.X

Figure 27: Heterozygous RUFUS.model. Model produced by RUFUS for human sample NA12882 
modified to account for diploid samples.    
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4.1.3 RUFUS  for population based analysis  
 

 All of the RUFUS examples to this point have been very specific and 

controlled experiments where two sets of reads are compared from individual 

closely related samples, i.e. parent and child.  This is done to ensure that RUFUS only 

identifies variations that are true mutations between the samples and not due to 

population polymorphisms or differences in experimental procedures.  This limits 

the application of RUFUS to a very limited range of experiments.  There are many 

instances in human genetics where a closely related sample is not available due 

either to experimental limitations or the cost of segueing.  Also, there are many 

instances where the researcher wants to know if a given variant is novel in a 

population, not simply in a close family trio.   

 It would be useful to use a static reference, such as human hg19.  However, 

RUFUS should never be used to compare a sequenced sample to a standard 

reference for two reasons.  Firstly, when comparing raw sequenced samples directly 

to each other, all systematic contamination (such as sequencing adapters) and error 

associated with sequencers is present in both samples, and thus removed by RUFUS.  

If you were to compare a sequence sample to the reference, all of these reads would 

be identified as novel and will drown out possible mutations.  Secondly, we have 

already shown the major advantage of RUFUS is that it eliminates false discovery 

due to errors between the reference and the sample.  A static reference does not 

account for alternate assemblies, which will not account for all of the natural 

structural variations in a population.  Using the reference as one of the samples in 
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RUFUS would reintroduce those errors and negate any advantages gained by 

RUFUS.    

 Instead of using the human reference, we can instead use the entire 1000 

genomes project as reference set, with almost no increase in time or memory 

required to analyze a sample.  We are in the process of creating a reference hash 

Table for RUFUS that includes the original Illumina sequence for every single 

sample included in the 1000 genomes study.  By hashing the raw data, this set will 

include every observed DNA sequence in these samples.  This will account for all 

alternate contigs, all genomic structures, and all variations, regardless of whether or 

not these sequences can be assembled or aligned to the human.  This will allow a 

researcher to take a new sample and simply compare it to this reference set to 

quickly identify any mutations that have are completely novel to this sample.  

Additionally this will allow detection of variations in regions of the genome, which 

up till now, have been completely ignored.  This could allow detection of novel 

variations that explain numerous diseases that have eluded genetic research.  

 This 1000G reference data set will not be appreciably larger than the k-mer 

for a single human sample, and thus will not take longer to run than the standard 

two sample human analysis.  This set will also not suffer from the n+1 problem 

associated with standard variant call sets.  The n+1 problem is caused when single 

samples calls are added to a large data set, such as the 1000G.  Bayesian SNP calling 

uses information from every sample when calculating variant probabilities.  In order 

to add a newly sequence sample, you must re-call the entire data set from scratch.  

With a hash based method, including additional samples can be accomplished by 
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merging the counts with the current set, a greatly less computational expensive 

calculation.     

 

4.1.4 Genomes with non-standard GC content. 

 Working with extremely AT rich genomes poses a challenge for all 

sequencing methods but RUFUS may offer a solution.  Working with Plasmodium 

berghei samples we noted that RUFUS.model does not do a good job predicting the 

distribution past the single copy curve (Figure 29).  We believe this is due to the AT 

rich nature of the genome.  If we look at the AT distribution for Toxoplasma gondii 

(Figure 30A) the relative ratio of GC content remain constant though all copy 

number peaks.    There is a slight associtaion between GC content and coverage, as 

would be expected due to the well known assocation between GC and the 
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Figure 29:Model prediction for Plasmodium berghei. Predicted model by RUFUS.model for a 
Plasmodium berghei sample.  RUFUS does not do a good job modeling the distributions beyond 1x. 
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amplification speed of DNA polymerase.  Despite this, the variations in coverage for 

difference GC percentages are negated by the fact that the GC bias remains constant 

across the copy number peaks in T. gondii.  However, in Plasmodium berghei the GC 

content is not consistent across the copy number peaks.  There is a bias towards 

extremely AT rich k-mers in when the copy number shifts above unique sequence 

(Figure 30B).  This causes the center of the double copy number peak to shift 

towards lower coverage, breaking the assumptions made in RUFUS.model that each 

copy number is simply a multiple of the single copy peak.  We can account for this 

effect by modifying RUFUS to bin k-mers based on their GC content when the k-mer 

tables are created.  We can then model each distribution separately, and account for 

this effect.  This may allow us to improve our call confidence in genomes with such 

biases.     
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Figure 30: K-mer Histograms divided by GC content.  A and B represent the k-mer histograms for 
two samples, with the k-mers binned based on their GC content.  The GC contents listed are +- 10 for 
each number, thus 10 includes all GC percentages from 0 to 20, 30 includes all from 21 to 40 and so 
on.   
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Appendix A: 

 
 
 
 
“A DOC2 Protein Identified by Mutational Profiling is Essential for 

Apicomplexan Parasite Exocytosis” 

 

 

This is the first published work that used the mutational profiling pipeline described 

in Chapter 2.  This project was used to both develop and test the pipeline.  
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Appendix B: 

“Whole genome profiling of spontaneous and chemically induced 
mutations in Toxoplasma gondii” 

 

 

This work outlines our experience in the lab working with 15 sequenced 

Toxoplasma strains.  It covers both the experimental procedures used in the forward 

screens and sequencing as well as findings based on the results from the mutational 

profiling pipeline outlined in Chapter 2.  
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Appendix C: 

Toxoplasma gondii BLASTN Hits for Contigs Assembled 
from Reads Unaligned in Toxoplasma gondii Reference 

Guided Alignment 

 

Spread sheet showing the top BLASTN alignment hit against all Toxoplasma 

reference sequences for each of the assembled contigs from the unaligned reads 

over 1kb.   Contigs were assembled from the unaligned reads in the Toxoplasma 

gondii sample nF-P2 to the GT1 reference sequence 7.0 and Human reference gh19 

build 37. 
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Appendix D: 

 

Complete list of variants identified in the F-P2 vs EMS7.5 comparison.  RUFUS contig 

names are listed in the first two columns according to their names assigned by 

RUFUS.overlap.  FREEBAYES SNPs are grouped by color based on their likely source, 

listed in the key on the top right of the first page.  Lines with multiple FREEBAYES 

calls indicate regions where the RUFUS contigs overlap more than one event called 

by FREEBAYES.   
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