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Investigating High Copy Suppressors of hat1∆ and rad52∆ Mutations in Fission 
Yeast 

Author: Pamela Cassiani 
Advisor: Anthony Annunziato, Ph. D. 

 

The histone acetyltransferase Hat1 is an enzyme that specifically acetylates newly 

synthesized histone H4 at positions K5 and K12 (or their homologous positions) in all 

eukaryotes. In Schizosaccharomyces pombe, the deletion of hat1 presents a mutant 

phenotype. The telomeres in a hat1∆ strain become permissive for transcription, as 

analyzed by a telomeric ura4 marker gene. In this study, we evaluate the efficacy of 

high copy suppression of this hat1 deletion. Due to high-frequency recombination 

events in the telomere, it became necessary to create a hat1-rad52 double deletion 

strain that also contains a telomeric ura4 reporter. High copy suppressor screens for 

recovery of telomeric silencing yielded several promising transformants. Multiple 

rounds of testing were performed to assess the recovery of transcriptional repression 

at the telomere. It was found that despite the anti-recombination effect of deleting 

rad52, the ura4 reporter was still lost from the telomere through recombination. 

Additional observation of the hat1∆ rad52∆ ura4-tel strain revealed a significant 

synthetic slow-growth phenotype. The double mutant displays a greatly decreased 

growth rate compared to hat1∆, as well as increased cellular length. Further study 

showed unique phenotypes on various media, and gene expression studies showed 

unique patterns of regulation in this double mutant when compared to both a wild-

type and its single mutant counterparts (hat1∆, rad52∆). In summary, the telomeric 

ura4 marker in a hat1∆ strain of S. pombe is not stable and is lost by recombination 

at a high frequency. This has led to the discovery of a double mutant (hat1∆ rad52∆) 

that displays a severe synthetically sick phenotype. 
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Introduction 

Chromatin 

Chromatin is the combination of DNA and proteins that are located in the nucleus 

of the eukaryotic cell. Chromatin plays an essential role in genomic regulation, 

mitosis, meiosis, and replication. One of its many functions is the condensation of 

DNA. To achieve proper packaging of DNA, there must be several tiers of 

chromatin structure. Chromatin fibers have been known as “beads on a string” for 

40 years, and these beads are the first order of chromatin structure; they are 

called nucleosomes. Nucleosomes are the fundamental repeating unit of 

chromatin, and they are composed of approximately 166 base pairs, or two turns, 

of DNA arranged around an octamer of proteins called histones. The octamer is 

composed of four core histones: H2A, H2B, H3, and H4. Each of these histones 

has a protein fold, or histone fold, to enable a “handshake arrangement” that 

allows the formation of H2A-H2B and H3-H4 heterodimers (3, 17). H3-H4 dimers 

then form a tetramer, about which two H2A-H2B dimers arrange (1). There is 

also a linker histone, H1, which helps organize the histone octamer into higher 

order structures. The next order of structure is the 30nm fiber, which can be 

folded into the most condensed chromatin, metaphase chromosomes.  

 

Chromatin Assembly Pathways 

The assembly of chromatin is dependent on many proteins, and there are several 

pathways by which this assembly occurs. One of these pathways is mediated by 



chromatin assembly factor 1 (CAF-1). CAF-1 associates H3 and H4 in the 

chromatin assembly complex (CAC) to assemble nucleosomes preferentially on 

replicating DNA (1). CAF-1 has been shown to associate specifically in a 

complex with H3 variant H3.1 (5). There is another chaperone, HIRA, that 

deposits the histone variant H3.3 independently of replication (5). Nucleoplasmin, 

a protein found only in eggs and oocytes, both disassembles and remodels 

sperm chromatin after fertilization of the egg (6,7). Nucleosome assembly protein 

Nap1 is another chromatin assembly factor. It is known to associate with 

H2A/H2B and act as a histone chaperone in vitro (6). Nap1 has also been shown 

in Drosophila melanogaster to associate with heterochromatin protein HP2 as 

well as NURF, a chromatin remodeling complex, which could implicate it in 

transcriptional repression (6,8). Anti-silencing function 1 (ASf1) is a part of the 

replication-coupling assembly factor complex RCAF, along with histones H3 and 

H4 (6). It has been found in both CAF-1 and HIRA complexes, and thus 

associates with both histone H3.1 and H3.3 (6). In S. cerevisiae, overexpressing 

Asf1 disrupts telomeric and mating type silencing and in the fission yeast 

Schizosaccharomyces pombe, loss of Asf1 is lethal (19).  

 

Histones and Posttranslational Modifications 

Each of the four core histones mentioned above possesses a disordered N-

terminal tail that extends away from the nucleosome, which allows the tails to 

interact with both DNA and other proteins (2,17). These N-termini are highly 
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conserved among organisms. Only one conservative amino acid substitution 

distinguishes the H3 and H4 N-termini in yeast and humans (31). The deletion of 

either the H3 or H4 amino-terminal tails in S. cerevisiae results in a viable 

mutant, but the deletion of both these tails creates a synthetic lethal (4). This 

suggests that the functions of the H3 and H4 tails are essential, but redundant for 

viability. Due to the protrusion of these tails away from the nucleosome, they are 

subject to posttranslational modifications, which affect their interactions with DNA 

and proteins.  

 

The most commonly studied modifications of the N-terminal tails include 

acetylation and methylation on the lysine residues of the tails. Posttranslational 

modifications of N-terminal histone tails are responsible for changing chromatin 

stability, increasing DNA accessibility, and for providing opportunities for more 

interactions with other proteins. These epigenetic markers have been called the 

“histone code,” and are important for both transcriptional activation and 

repression (43). Site-specific methylation of histone H3 at lysine 9 results in an 

affinity for Heterochromatin Protein 1, linking this mark to silencing activity as well 

as heterochromatin assembly (43, 44).  However, the phosphorylation of serine 

10 on the H3 tail prevents K9 methylation, and is associated with other 

acetylated positions and transcriptional activation. H3 phosphorylation has also 

been implicated in mitotic chromosome condensation, indicating that a specific 

covalent modification doesnʼt itself determine transcriptional state, but that the 
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position is important (45). In general, histone modifications include 

phosphorylation of serine and threonine, methylation of lysine and arginine, and 

acetylation and ubiquitination of lysine residues. These modifications can be 

either transient or long-term.  

 

Histone Acetylation 

It has been shown in more than one study that histone acetyltransferases are 

necessary for proper transcription, and thus the acetylation of histones has 

traditionally been associated with increased transcriptional activity (23-26). When 

the lysine residues are acetylated, their positive charge is neutralized. As a 

result, their affinity for the negatively-charged DNA is decreased, which allows 

proteins that regulate transcription to better access the DNA (27-29).  

 

Histone acetylation facilitates the communication between DNA and histones by 

regulating chromatin higher order structure, but acetylation has other roles in the 

cell.  Acetylated lysines can also act as molecular tags and are recognized by 

bromodomains (25). Bromodomains are structures found in chromatin 

remodeling complexes, as well as in other complexes that modify histones (30). 

Therefore, acetylated lysines on histones may act as transcriptional activators 

and recruit transcriptional machinery (25).  
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Acetylation is the most widely studied posttranslational modification of histones. 

When nucleosomes are assembled during S phase, newly synthesized histone 

H4 is acetylated at K5 and K12 before being deposited onto DNA (9-13). This 

acetylation pattern is highly conserved, and has been found in humans, 

Tetrahymena, and Drosophila (14). Deacetylation of this new H4 is necessary for 

the proper maturation of chromatin (6). Hat1 is the enzyme responsible for the 

acetylation of new H4 (2, 15, 16).  

 

Hat1 

Hat1 is part of the family of enzymes called histone acetyltransferases (HATs), of 

which there are two types: A and B.  Type A histone acetyltransferases are 

localized to the nucleus and can modify histones already incorporated into 

chromatin (46, 47).  Type A HATs are likely involved in gene activation (55). Type 

B HATs, however, are found in the cytoplasm as well as the nucleus, but 

acetylate free histones before incorporation into nucleosomes on newly 

replicated DNA  (16, 46, 56-61). Hat1 is a Type B histone acetyltransferase. 

 

The structure of Hat1 is composed of both α-helices and ß-pleated sheets, which 

forms a curvature. This allows the N and C terminal residues of HAT1 to lie away 

from each other, connected by an extended loop (20). The acetyl CoA molecule 

that Hat1 binds is situated at the C-terminal domain of the protein, and it makes 

contact on the concave surface of Hat1 (21). Interestingly, it has been found that 
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the C-terminal 54 residues are not necessary for catalytic function of the enzyme 

(22). It is believed that Hat1 itself does not undergo dramatic structural changes 

after binding the substrate, which leads to a proposed structure: when binding the 

H4 tail, association with Hat1 lysine-12 is thought to be positioned adjacent to the 

acetyl group of acetyl-CoA (21).  

 

Hat1∆ Mutants 

The deletion of the HAT1 gene in S. cerevisiae does not result in a visible 

phenotype under normal growth conditions (47-49). However, when this deletion 

is combined with mutations of certain acetylable lysines of H3, S. cerevisiae 

exhibits an increased sensitivity to MMS, a DNA-damaging agent (50). Previous 

studies in the Annunziato laboratory examined the evolutionary conservation of 

this phenomenon by deleting hat1 in S. pombe. While this deletion did not affect 

cell growth or doubling time, hat1∆ cells were sensitive to MMS without 

concomitant H3 mutations (18). This indicates that in fission yeast, Hat1 has a 

nonredundant function in DNA repair as compared to S. cerevisiae.  

 

Despite the typical growth observed in S. cerevisiae hat1∆ cells, this deletion has 

been shown to cause defects in DNA damage repair, as well as a reduction in 

telomeric silencing (37, 51). This derepression at the telomeres is dependent on 

concurrent mutations in the H3 N-terminal domain (38, 51). In S. pombe, 

however, the deletion of hat1 is sufficient to cause a loss in telomeric silencing 
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(37).  No abrogation of silencing was seen at the mating type locus or in 

centromeric regions (37).  There was a significant increase in acetylation of 

subtelomeric chromatin in the H4 N-terminal domain, which is consistent with a 

loss of transcriptional silencing. Treatment of hat1∆ S. pombe with the 

deacetylase inhibitor trichostatin A also caused a loss of telomeric silencing, 

further supporting that increased acetylation is responsible for the silencing loss 

(37).  

 

Telomeres 

Telomeres are regions located at both ends of chromosomes that contain 

repeated nucleotide sequences. These structures help to ensure that the 

chromosomes are completely replicated during DNA replication. Telomeres also 

protect the ends of chromosomes from degradation, as important information 

would be lost during each replication cycle without them. Additionally, telomeric 

structure prevents chromosomal ends from fusing with other chromosomes. 

Telomeres are maintained by an enzyme called telomerase, but adult cells lack 

telomerase. As a result, telomeres in adult cells become progressively shorter 

over the lifespan of a cell (32).  

 

Silencing of telomeric genes in S. cerevisiae is likely due to a different chromatin 

structural domain that starts in the telomeric region (33). This is supported by the 

fact that there are mutations in histones H3 and H4 that cause derepression at 
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the telomeres (33). While H4 is normally acetylated in actively transcribed 

regions of the genome, it is in a comparatively hypoacetylated state in the 

telomeric regions (33). Gene repression also decreases with greater distance 

from the telomere (34).  

 

The silencing of heterochromatin in yeast is due to many factors. Normally, both 

mating type loci and telomeres are silenced. In S. cerevisiae, mutations in the 

amino termini of histones H3 and H4 cause derepression of the telomeres (35). 

Additionally, chromatin assembly factor CAF-1, when deleted, also reduces 

telomeric silencing in S. cerevisiae (36). Deletion of ASF1 or HIR1 also affects 

telomeric silencing (36). It was later found that Hat1p participates in telomeric 

silencing, and the deletion of hat1 leads to telomeric derepression (37, 38).  

 

 

Schizosaccharomyces pombe 

The choice of organism in any investigation is a crucial one, and the fission yeast 

S. pombe is an ideal genetic model organism. S. pombe contains only 3 

chromosomes, as opposed to 16 in the budding yeast S. cerevisiae. Additionally, 

S. pombe shares some genes with humans that S. cerevisiae does not (39).  

 

Yeast colony size is easily monitored, and it is an important trait to note. This 

characteristic makes growth vs. non-growth very clear, and it allows the use of 

	  
9	  



auxotrophic markers as a genetic tool. The diploid sexual cycle of this yeast, 

though not unique to S. pombe, is useful for both complementation and 

recombination tests (40). The haploid life cycle is also very important, and 

haploidy permits scientists to study and utilize recessive mutations. Null 

mutations, causing a loss of function, allow the study of the normal role a gene 

plays in the cell (40). Fission yeast also accepts plasmids well, which allows 

transformation using cDNA libraries and subsequent genetic analysis.  

 

Suppression 

The study of suppression mechanisms is an important tool for genetic analysis. It 

has the ability to characterize interactions between genes that may not have 

been identified with other genetic experimental procedures. Typically, a mutation 

in a gene makes the pathway involved susceptible to study, and allows 

suppressor screens to reveal other components of that pathway (41). A common 

method for this type of investigation is the use of a plasmid library. A library that 

overexpresses wild-type genes is transformed into the mutant strain. From that 

transformation, suppressors are selected based on phenotype.  

 

To classify a gene as reversing a particular mutation would place it in the general 

category of “suppressors.” There are several different kinds of suppressors, 

which are extensively described in Gregory Prelichʼs 1999 review (41).  An 

intragenic suppressor would be a second mutation in the same gene as the 
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original mutation. The phenotype of this second mutation would ameliorate that of 

the primary mutation, and would restore the phenotype to wild-type, at least 

partially. Suppressor screens are usually performed to identify new genes or 

proteins involved with that of the original mutation, so intragenic suppressors are 

often not the goal of such screens. Informational suppressors restore function by 

affecting translation—the flow of information from RNA to protein. The other four 

suppressors characterized by Prelich are self-describing: they alter the activity or 

amount of the mutant protein, the pathway of the mutant protein, or the activity of 

a pathway other than that in which the mutant protein is involved (41). It is 

important to note that suppressors frequently do not have a direct effect on the 

mutant, but can regulate other participants in a pathway to compensate.  

 

In this investigation, we were not seeking a particular type of suppressor. Using a 

cDNA library, we were looking to identify any suppressor of the hat1∆ mutation. 

During the course of the investigation, the project transformed into the 

characterization of a new mutation, which causes synthetic sickness with hat1∆.  

 

The deletion of rad52 (formerly rad22) causes a severe slow growth phenotype, 

as well as dramatically elongated cells. This gene has been proven to be very 

important in double stranded break repair (42, 52). In line with that function, it has 

also been shown that rad52 is important for homologous recombination (52, 53).  
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It has been shown that deleting rad52 in S. pombe results in increased doubling 

time as well as cell elongation (52, 54). 

 

The following investigation is twofold. First, we searched for high copy 

suppressors of the hat1∆ mutation in S. pombe. This led to the second phase, 

where the properties and gene expression of the hat1∆-rad52∆ synthetically sick 

strains were studied. 
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Materials and Methods 

 

Transformation of S. pombe 

LiOAc 
100mM LiOAc 
10mM Tris HCl 
1mM EDTA 
 
40% PEG in LiOAc 
100mM LiOAc 
10mM Tris HCl 
1mM EDTA 
40% PEG 
 
S. pombe strains were cultured in YES liquid overnight to 107 cells/ml.  

Subcultures were made in EMM complete to target for 107 cells/ml overnight. 

Cells were washed in sterile water and 1X LiOAc/TE, and then brought to 2 x 109 

cells/ml in 1X LiOAc. 2 x 108 cells were added to boiled carrier DNA (10mg/ml) 

and transforming DNA (1:5 ratio).  Cells were incubated 10 minutes at room 

temperature, and 40% PEG/LiOAc/TE was added.  After gentle mixing, cells 

were incubated 4 hours at 30°C. DMSO was added and cells were heat shocked 

5 minutes at 42°C and then spread onto EMM-Leu media. 

 

Library Screening 

Cells plated onto EMM-Leu were grown 5 days at 30°C.  Cells were then replica 

plated onto 5FOA medium and back on to EMM-Leu. These plates were replica 

plated back to 5FOA five times, with 3 days of growth each. Well-grown colonies 

were streaked on EMM-Leu medium and grown 4 days. Colonies were then 
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patched onto YES and grown 1 day. They were then replica plated every 2 days 

for one week. Each candidate was streaked for single colonies, grown 3 days, 

replica plated on 5FOA, EMM-Leu, and YES media. Appropriate candidates were 

chosen to streak on YES, grown 3 days, and were then replica plated again onto 

5FOA, EMM-Leu, and YES.   

 

Serial Dilutions 

Each strain was diluted from 2.5x107 cells/ml in ten-fold adjustments to a 

100,000-fold dilution on both YES and 5-FOA medium.  

 

PCR of Transformants 

Master mix per reaction:  
10μl sterile H20 
12.5μl 2x Buffer G or J 
0.5μl pLEV3-Forward 
0.5μl pLEV3-Reverse 
 
TAE Buffer 
40mM Tris Buffer 
20mM Acetic acid 
1mM EDTA 
 

A pinhead of freshly grown cells was added to each tube of master mix. The PCR 

program was run as follows: 10 min at 98°C, 30 sec at 95°C, 30 sec at 59°C. As 

the machine was cooling to 58°, 1.25U of FailSafe Taq polymerase was added to 

each tube.  40 cycles were run, with a 5 minute annealing period. 



Samples were separated on a 1% agarose gel in TAE buffer for one hour at 

100V. The agarose gel was incubated in ethidium bromide at room temperature 

for 7 minutes.  

 

PCR Purification 

PCR products were purified according to the purification protocol (QIAquick®). 

DNA was eluted for 5 minutes with water. 

 

Medium Preparation 
 

YES medium 
5g/L Yeast extract 
30g/L Glucose 
0.225g/L adenine, histidine, lysine, leucine, uracil 

 

5FOA medium 
80g/L Glucose 
0.4g/L 5-FOA 
1.45g/L Yeast nitrogen base  
5.0g/L Ammonium sulfate 
2.0g/L Synthetic complete lacking uracil 
0.05g/L Uracil 

 

EMM Complete 
12.3g/L EMM 
30g/L Glucose 
0.075g/L Each adenine, histidine, lysine, uracil 
0.15g/L Leucine 
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Cell Imaging 

DIC images were taken using a Zeiss Axioplan 2 and Image J software. Cell 

measurements were taken using Fiji and analyzed in Microsoft Excel.  

 

Silencing Assay 

3mL cultures were seeded at 1.25x106 cells/mL with 10µM splitomicin or DMSO 

(vehicle). Cultures were grown for 3 doublings in splitomicin; vehicle-treated 

cultures were diluted if overgrown. Cells were resuspended at 2x106 cells/mL and 

5 5-fold serial dilutions were made. 5µL of each dilution were spotted on EMM, 

EMM-ura, 5-FOA (1g/L), and YES plates in the absence of splitomicin. Plates 

were incubated 2-3 days at 30˚C.  

 

Gene Expression Profiling 

Microarray analysis was performed as described previously (66). Strains hat1Δ, 

rad52Δ, hat1Δ–rad52Δ, and 975 were grown to an OD595 of 0.4. Gene ontology 

(GO) analysis was performed using the Princeton Gene Ontology Term Mapper 

tool. GO terms were obtained from PomBase (www.pombase.org).  
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Results 

Early High Copy Suppressor Studies 

As stated, previous data in our lab showed that deletion of hat1 in S. pombe 

results in derepression of the telomeres (37). The strain used in that study, 

KTP36, also contains a ura4 marker in the telomeric region. The goal of the 

present study is to find high copy suppressors of that deletion, in order to better 

understand the pathway(s) involved with Hat1 and telomeric silencing. There are 

multiple possibilities for the mechanism that Hat1 is involved in, two of which are 

described in Figure 1.  

 

The assay used to screen for suppressors of transcription of the ura4 marker 

gene involves use of the 5FOA system. Cells with functioning ura genes create a 

toxin when using the compound 5-fluoroorotic acid (5FOA) during the uracil 

biosynthetic pathway. However, if the ura gene is silenced, no poison is produced 

and the cells are able to grow on medium containing the compound 5FOA.  

 

To begin, the hat1∆ (referred to as KTP36, see Table 1) strain was transformed 

with two DNA libraries with the intent that the DNA inserted would suppress the 

hat1 deletion phenotype. Plating on EMM-Leu was used to screen for positive 

transformants. Subsequent replica plating on 5FOA medium permitted the 

identification of colonies whose ura4 markers were repressed. This first round of 

testing showed promising results (Figure 2). There was an important discrepancy 
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between the number of colonies that grew on EMM-Leu, and a smaller number of 

colonies that continued to grow on 5FOA. This indicated that there were a 

significant number of positive transformants, a fraction of which had the ura4 

marker silenced. Further tests, PCR, and sequencing (data not shown) revealed, 

however, that the ura4 marker was recombining and had been lost, thereby 

giving false positive results. Note that a silenced ura4 marker and a nonexistent 

ura4 gene would exhibit the same growth on 5FOA medium. 

 

Strain Construction 

The recombinatorial loss of ura4 required a solution, and the creation of a new 

strain was the most viable option for this problem. Rad52 is a protein homolog of 

the budding yeastʼs RAD52, and it is involved in recombination and binding DNA 

double-stranded breaks (42). The deletion of rad52 causes a dramatic decrease 

in recombination events in S. pombe (62). Therefore, we hypothesized that the 

introduction of this mutation would decrease loss of the ura4 marker and allow 

the study of high copy suppression. A rad52 deletion, ura4 mutant strain 

(courtesy of Tim Humphrey via Matthew Whitby) was crossed with KTP36 to yield 

CHP1619, a strain that contains hat1∆, rad52∆, and a telomeric ura4 marker 

(Table 1). There was significant difficulty in creating this strain, due the ability of 

the KTP36 strain to switch mating type. The rad52∆ strain was very sickly, and 

therefore KTP36 was more likely to switch type and mate with itself.  
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This strain CHP1619 (hat1∆-rad52∆) was tested on complete medium as well as 

5FOA medium to observe its growth characteristics (Figure 3). It was found that 

CHP1619 reverts to 5FOA resistance less frequently than KTP36, indicating that 

it can maintain the ura4 marker. This set the stage for further experimentation 

with this strain. Interestingly, a significant slow growth phenotype was observed 

for CHP1619 on complete medium, which will be discussed later.  

 

Transformation and Candidate Testing 

 A transformation was performed again with two libraries, this time with 

CHP1619. The same criteria as previous experiments were used to screen for 

candidates: growth on EMM-Leu as well as 5FOA. These strains were replica-

plated several times to 5FOA medium to weed out background growth. This is 

very important because there was a significant number of transformants in the 

first round of experiments, which was seen again with the new strain. Multiple 

rounds of 5FOA growth would allow only the colonies with true 5FOA resistance 

to remain alive. 

 

Colonies that maintained strong growth on 5FOA were chosen, and another 

round of replica plating experiments was performed. This time, however, the 

medium was rich and complete (YES), to allow for plasmid loss. This was an 

extremely important step because only colonies that contain plasmid should be 



able to grow on EMM-Leu and 5FOA. Once the plasmid is gone, these conditions 

would no longer be permissive.  

 

Plasmid loss experiments for whole colonies showed dramatic results (Figure 4). 

While strains were later streaked to allow for less widespread plasmid loss, this 

image shows how growth is lost entirely on EMM-Leu when the plasmid is lost. 

The plasmid contains a functioning leu gene, which has been mutated in the 

strains in these experiments.  

 

Unexpected Growth 

When promising candidates were allowed to lose plasmid, the growth on EMM-

Leu vs. YES yielded promising results. The growth on EMM-Leu was variable, 

indicating that plasmid had been lost from some single colonies and they could 

therefore no longer grow without a leucine supplement (Figure 5). However, as is 

visible in the right panel of Figure 5, the growth on 5FOA is robust. This indicates 

that the plasmid is not conferring growth on 5FOA medium.  

 

There were other candidates that did not show varying growth on medium lacking 

leucine, even after culturing on YES to allow for plasmid loss (Figure 6). They 

also showed uniform growth on 5FOA medium. This indicates that the plasmid 

was integrated into the strainʼs genome, which would allow the strain to retain all 
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genes necessary for growth on restrictive media after extended growth on YES. 

The 5FOA growth also indicates loss of the ura4 reporter. 

 

To test this hypothesis, multiple PCR experiments were performed with varying 

buffers to try and obtain a product. There was a weak product at approximately 

2kb (Figure 7). Sequencing for this product was unsuccessful, and further PCR 

experiments were not able to replicate the earlier results. It does not appear that 

there was an integration event based on these data. Thus, the phenomenon that 

caused the uniform growth remains unclear.   

 

While studying CHP1619 and constructing strains, it was observed that cells 

were dying frequently on MEA, a medium used to promote mating. It contains 

maltose as a carbon source, but a death phenotype has not been observed for 

most strains when doing mating experiments. To better observe this 

phenomenon, a compound called Phloxine B was incorporated into MEA 

medium. Living cells can efflux the compound, but dead cells are stained dark 

red (63).  To investigate this phenotype, another series of transformations was 

performed in search of colonies that both grow up more quickly than CHP1619 

and do not stain as darkly on MEA+Phloxine B. After screening thousands of 

colonies, PCR was performed using primers for the DNA library and several 

candidates were sequenced (Figure 8).  The samples each appeared to have a 

product at the same length of about 1.3kb. Sequencing revealed that only the 

	  
21	  



Ura3 gene was identified, which coincides with the product size. While this 

validated that the screen is functional, it did not move the project forward.  

 

To further the studies of the double mutant, a spot test was performed on several 

strains to look for a slow growth phenotype, without the Ura4 deficiency (Figure 

9).  It was observed that an ade6- strain stained much darker on MEA+Phloxine 

B, but red cells are characteristic of this mutant. While the double mutant may 

stain slightly darker than either single mutant (hat1∆ or rad52∆), the slow growth 

phenotype is distinctive. Repeating the aforementioned procedure, transformants 

were screened to look for recovery of growth as well as lighter staining on 

MEA+Phloxine B. After PCR and sequencing, three genes were identified: Yop1, 

Grx3, and a glyoxylate reductase gene, which is involved in gluconeogenesis. 

Yop1 is an ER membrane protein and Grx3 is monothiol glutoredoxin, and it 

contributes to the removal of superoxide radicals. The plasmids from these 

candidates were isolated and used to retransform the strain. This re-

transformation yielded colonies that grew more quickly and stained less darkly on 

MEA+Phloxine B than the double mutant. Further experiments showed some 

candidates did not have phenotypes conferred by the plasmid, and these genes 

did not show differential regulation in gene expression studies.  
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CHP1619 Phenotype 

As previously mentioned, the hat1∆-rad52∆ strain has a dramatically lengthened 

doubling time, compared to either hat1∆ or rad52∆. Additionally, the cells have a 

significant elongation phenotype (Figure 10). Using the studentʼs t-test, the 

average cell length of the double mutant was shown to be significantly different 

than both hat1∆ and rad52∆, with p values of 0.01 and 0.04, respectively (Table 

2). The standard deviations of both rad52 mutants are very high, indicating that 

cell length at septation varies greatly. Notably, the difference between average 

cell lengths of the single mutants was not statistically significant, indicating that 

the combination of mutations drives the phenotypic change.  

 

Splitomicin 

It has previously been established that hyperacetylation is sufficient to abolish 

telomeric silencing by treating with the HDAC inhibitor trichostatin A (TSA) (37). 

We sought to expand upon these results with the use of a different HDAC 

inhibitor. It has been shown that Sir2 is a histone deacetylase that is required to 

maintain telomeric silencing (64). Splitomicin is an HDAC inhibitor that targets 

Sir2 (65). Treating with splitomicin, however, does not appear to have the same 

effect as TSA (Figure 11).  
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Microarray Analysis 
 
Given the transcriptional derepression at the telomeres, looking at global gene 

expression was essential. A microarray was performed to look at the gene 

expression of three strains compared to a wild-type strain:  a hat1∆, rad52∆, and 

the double mutant, hat1∆-rad52∆. A broad look at gene expression showed 

varying degrees of upregulation in each strain. The hat1∆ strain had the greatest 

number of probes showing upregulation over the wild-type of twofold or greater, 

followed by rad52∆, and hat1∆-rad52∆ had the fewest (Figure 12). These gene 

expression levels are consistent with the growth rates of each of these strains.  

 

The probes that showed twofold or greater upregulation in each of the three 

strains were analyzed and separated into different genes to avoid multiple probes 

to a single gene. These were separated by strain, and then compared across 

strains. While the relative number of genes remained consistent with the number 

of probes, the proportions of unique genes were different. Over 80% of rad52∆ 

upregulated genes are shared with the other two mutants, compared to only 68% 

of hat1∆-rad52∆ and 63% of hat1∆ (Figure 13).  

 

Using Princetonʼs Gene Ontology Term Mapper, the origins of the upregulation in 

each strain were observed. The double mutant showed a significant upregulation 

in ribosome biogenesis and cytoplasmic translation, a trend that was not 

observed to the same degree for the other two strains. In the double mutant, 
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ribosome biogenesis and cytoplasmic translation each account for about 25% of 

the upregulated genes (Figure 14). One specific area of probes that localize to 

chromosome 3 showed significant upregulation, with up to an 18.5-fold increase 

in expression of rDNA over the wild-type (Figure 15).  
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Table 1. S. pombe strains 
	  
	  

Tables and Figures 
	  
	  
	  
	  
	  
	  

Strain Genotype Source 

975 h+, wild-type 67 

FY1872 h90 ade6-210 leu1-32 ura4-DS/E otrRSph1::ade6  TEL2L-ura4 68 

KTP36 h90 hat1Δ::kan ade6-210 leu1-32 ura4DS-E otr1 Rsph1::ade6 TEL2L-ura4 12C 37 

CHP1614 h+ ura4::fbp1-lacZ leu1-32 rad52Δ::ura4+ hat1Δ::kan This study 

CHP1619 h?  ura4-DS/E leu1-32 ade6-210 rad52Δ::ura4- hat1Δ::kan TEL2L-ura4+ This study 

CHP1677 h+ ura4-DS/E leu1-32 rad52Δ::ura4+ This study 
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  Table 2. Cell lengths of mutant strains 
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Strain	   Average	  Cell	  length	  (μM)	   Standard	  Deviation	  

hat1Δ	   15.49	   0.85	  

rad52Δ	   15.98	   3.07	  

hat1Δ-‐rad52Δ	   18.12	   5.53	  



Figure 1. A schematic of possible Hat1 mechanisms. This is 
a depiction of possible mechanisms of Hat1ʼs inhibition of 
telomeric transcription, and the resulting derepression upon its 
deletion. 

	  
28	  



	  
29	  



	  
30	  



	  
31	  



	  
32	  



	  
33	  



	  
34	  



	  
35	  



	  
36	  

	  	  A	   	  B	  



	  
37	  

hat1∆

	  

! !!"!
rad52∆

	  

! !!"!
hat1∆-‐rad52∆

	  

! !!"!



	  
38	  



	  
39	  



	  
40	  



	  
41	  



	  
42	  



Discussion 
 
Here, two strains of S. pombe were examined for high copy suppressors of a 

hat1 deletion through the use of a ura4 telomeric marker. After transformation, 

we chose to study colonies that grew on medium lacking leucine, which would 

show presence of the plasmid, and then select those that grew on 5FOA from 

that group. These cells would indicate regained telomeric silencing, since strains 

expressing ura4 genes produce a toxin using 5FOA as a substrate. However, the 

earliest experiments showed loss of the ura4 marker at a high frequency, which 

warranted the creation of a second strain (CHP1619) to reduce recombinatorial 

activity. Despite multiple rounds of experimentation, it was found that the ura4 

marker is simply not well maintained in the telomeric position, as judged by 

growth on 5FOA medium. 

 

While the goal of this project was to identify high copy suppressors of the hat1 

deletion, the discovery of frequent ura4 recombination is a unique phenotype in 

and of itself. The cause of this loss is uncertain, but it could be that there are 

recombination events that occur independently of the rad52 gene. 

 

During the course of this project, a second interesting phenotype was identified: 

CHP1619, the strain with a hat1-rad52 double deletion, exhibits slow growth. It 

appears that the deletions have caused synthetic sickness. Not only do these 

cells grow much more slowly than KTP36, but the cells are shaped differently. 
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They show a significant elongation in comparison to the KTP36 cells. 

Due to this unforeseen development, the focus was shifted to this synthetically 

sick phenotype. These experiments did not rely on the ura4 telomeric marker. 

While transformations and PCR yielded some colonies that grow more quickly 

and genes that were possibly responsible, the death and slow growth 

phenotypes of this strain yielded more questions than answers. Two distinct 

further courses of study were taken to try and understand both the abrogation of 

telomeric silencing and the cause of this phenotypic change. 

 

It was previously reported that the use of the histone deacetylase (HDAC) 

inhibitor TSA can cause loss of telomeric silencing, due to increased acetylation 

at the telomere (37). In an effort to expand on this result, the HDAC inhibitor 

splitomicin was tested as well. However, the same effect was not observed and it 

is a possibility that another deacetylase can compensate for the loss of Sir2p 

function at the telomere. However, it may also be that splitomicin was not 

inhibiting Sir2p under our experimental conditions. Further studies of this 

compound should include adding it to the solid media to test the effects of 

prolonged exposure. 

 

Microarray analysis of gene expression yielded significant results. First, it 

revealed a greater global increase in gene expression for the fastest-growing 

mutant, hat1∆, compared to the other two mutants. Additionally, the gene 
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expression profiling confirmed telomeric derepression in the hat1∆ strain: 

telomeric probes showed an increase in gene expression, however the same 

upregulation was not seen in the rad52∆ strain.  

 

Ontological analysis of expression data for the double mutant yielded interesting 

results. Ribosome biogenesis and cytoplasmic translation were significantly 

upregulated, however this strain grows much more slowly than either of the other 

two strains. This trend was not observed to such a heightened degree in either of 

the other two mutants. The double deletion appeared to have eliminated some 

functional redundancy in keeping ribosome biogenesis at an appropriate level.   

 

At first observation, the upregulation of ribosomal RNA genes was 

counterintuitive. Upon closer examination, however, it was found that the 

antisense transcripts are even more upregulated than the sense transcripts. The 

largest spikes in upregulation of antisense (and sense) probes correspond to the 

28S portion of the ribosome, based on position. These increases could effectively 

downregulate ribosomal RNA and ribosome biogenesis. The lack of ribosome 

production would likely lead to a severe decrease in protein production. If that 

were the case, then it may explain, in part, the ontological results as well as the 

slow growth phenotype of the double mutant strain. These findings should be 

explored further in additional gene expression studies.  
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The study of the pathway by which hat1∆ strains abrogate telomeric silencing 

transformed into a study of much wider scope investigating multiple strains and 

their characteristics. While many important observations have been made 

regarding phenotypes of the hat1∆, rad52∆, and hat1∆-rad52∆ strains, there is 

still much to learn. These results have, however, identified a novel synthetically 

sick phenotype and further studies should aim at elucidating the cause.  
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