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Abstract

We study two moduli problems involving false elliptic curves with complex multiplication (CM),

generalizing theorems about the arithmetic degree of certain moduli spaces of CM elliptic curves.

The first moduli problem generalizes a space considered by Howard and Yang, and the formula for

its arithmetic degree can be seen as a calculation of the intersection multiplicity of two CM divisors

on a Shimura curve. This formula is an extension of the Gross-Zagier theorem on singular moduli to

certain Shimura curves. The second moduli problem we consider deals with special endomorphisms of

false elliptic curves. The formula for its arithmetic degree generalizes a theorem of Kudla, Rapoport,

and Yang.
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Chapter 1

Introduction

In this thesis we study two moduli problems involving false elliptic curves with complex multiplication

(CM), generalizing theorems about the arithmetic degree of certain moduli stacks of CM elliptic

curves. The first moduli problem, and the one that occupies most of our effort in generalizing, is

the main arithmetic content of [14]. The result of that paper can be seen as a refinement of the

well-known formula of Gross and Zagier on singular moduli in [11]. We begin by describing how

the Gross-Zagier formula and the result of [14] can be interpreted as statements about intersection

theory on a modular curve. Our generalization of [14] has a similar interpretation as a result about

intersection theory, but now on a Shimura curve. The other moduli problem we study generalizes a

space considered in [16].

1.1 Elliptic curves

Let K1 and K2 be non-isomorphic imaginary quadratic fields and set K = K1 ⊗Q K2. Let F be the

real quadratic subfield of K and let D ⊂ OF be the different of F . We assume K1 and K2 have

relatively prime discriminants d1 and d2, so K/F is unramified at all finite places and OK1 ⊗Z OK2

is the maximal order in K.

Let M be the category fibered in groupoids over Spec(OK) with M (S) the category of elliptic

curves over the OK-scheme S. The category M is an algebraic stack (in the sense of [27], also known

as a Deligne-Mumford stack) which is regular and smooth of relative dimension 1 over Spec(OK)

(so it is 2-dimensional). For j ∈ {1, 2} let Cj be the algebraic stack over Spec(OK) with Cj(S)

the category of elliptic curves over the OK-scheme S with complex multiplication by OKj . When

we speak of an elliptic curve E over an OK-scheme S with complex multiplication by OKj , we are

assuming that the actionOKj → EndOS (Lie(E)) is through the structure mapOKj ↪→ OK → OS(S).

1
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The stack Cj is finite and étale over Spec(OK), so in particular it is 1-dimensional and regular. There

is a finite morphism Cj →M defined by forgetting the complex multiplication structure.

A divisor on an algebraic stack Z is an element of the free abelian group Div(Z ) generated

by the integral closed substacks of codimension 1 (the prime divisors). Even though the morphism

f : Cj → M is not a closed immersion, we view Cj as a divisor on M through the image of

f ([27, Definition 1.7]). A natural question to now ask is: what is the intersection multiplicity,

defined in the appropriate sense below, of the two divisors C1 and C2 on M ? More generally,

if Tm : Div(M ) → Div(M ) is the m-th Hecke correspondence on M , what is the intersection

multiplicity of TmC1 and C2?

If D1 and D2 are two prime divisors on M intersecting properly, meaning D1 ∩D2 = D1 ×M D2

is an algebraic stack of dimension 0 (see [27, Definition 7.9] for the definition of fiber products),

define the intersection multiplicity of D1 and D2 on M to be

I(D1,D2) =
∑

P⊂OK

log(|FP|)
∑

x∈[(D1∩D2)(FP)]

length(Osh
D1∩D2,x

)
|Aut(x)|

, (1.1.1)

where [(D1 ∩D2)(S)] is the set of isomorphism classes of objects in the category (D1 ∩D2)(S) and

Osh
D1∩D2,x

is the strictly Henselian local ring of D1∩D2 at the geometric point x (the local ring for the

étale topology). Also, the outer sum is over all prime ideals P ⊂ OK , FP = OK/P, and Spec(FP)

is an OK-scheme through the reduction map OK → FP. This number is also called the arithmetic

degree of the 0-dimensional stack D1 ∩D2 and is denoted deg(D1 ∩D2). The definition of I(D1,D2)

is extended to all divisors D1 and D2 by bilinearity, assuming D1 and D2 intersect properly (that is,

the supports of D1 and D2 intersect properly).

The intersection multiplicity I(C1,C2) relates to the Gross-Zagier formula on singular moduli as

follows. Let L ⊃ K be a number field and suppose E1 and E2 are elliptic curves over Spec(OL). The

j-invariant determines an isomorphism of schemes M/OL
∼= Spec(OL[x]), where M → Spec(OK) is

the coarse moduli scheme associated with M , and the elliptic curves E1 and E2 determine morphisms

Spec(OL)⇒ M/OL . These morphisms correspond to ring homomorphisms OL[x]⇒ OL defined by

x 7→ j(E1) and x 7→ j(E2). Let D1 and D2 be the divisors on M/OL defined by the morphisms

Spec(OL)⇒M/OL . Then

D1 ∩D2 = Spec(OL ⊗OL[x] OL) ∼= Spec(OL/(j(E1)− j(E2))).

For τ an imaginary quadratic integer in the complex upper half plane, let [τ ] be its equivalence class
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under the action of SL2(Z). As in [11] define

J(d1, d2) =

( ∏
[τ1],[τ2]

disc(τi)=di

(j(τ1)− j(τ2))

)4/(w1w2)

,

where wi = |O×Ki |. It follows from the above discussion that the main result of [11], which is a

formula for the prime factorization of the integer J(d1, d2)2, is essentially the same as giving a

formula for deg(C1 ∩ C2) = I(C1,C2).

For each positive integer m define Tm to be the algebraic stack over Spec(OK) with Tm(S)

the category of triples (E1, E2, f) with Ei an object of Ci(S) and f ∈ HomS(E1, E2) satisfying

deg(f) = m on every connected component of S. In [14] it is shown that there is a decomposition

Tm =
⊔

α∈F×
TrF/Q(α)=m

E ′α

for some 0-dimensional stacks E ′α → Spec(OK) and then a formula is given for each term in

deg(Tm) =
∑

α∈D−1,α�0
TrF/Q(α)=m

deg(E ′α),

with deg(Tm) and deg(E ′α) defined just as in (1.1.1). We will prove later (in the appendix) that

deg(Tm) = I(TmC1,C2), (1.1.2)

so the main result of [14] really is a refinement of the Gross-Zagier formula. Actually, the stacks

considered in [14] are all over Z and the Lie algebra condition in the definition of Ci is omitted. We

will next review these spaces as defined in [14] and later explain the connection with the spaces E ′α

in the above decomposition.

Let E be the algebraic stack over Spec(Z) with fiber E (S) the category of pairs (E1,E2) where

Ei = (Ei, κi) with Ei an elliptic curve over the scheme S and κi : OKi → EndS(Ei) a ring homo-

morphism. Let (E1,E2) be an object of E (S). The maximal order OK = OK1 ⊗Z OK2 acts on the

Z-module L(E1,E2) = HomS(E1, E2) by

(t1 ⊗ t2) • f = κ2(t2) ◦ f ◦ κ1(t1),

where x 7→ x is the nontrivial element of Gal(K/F ), so L(E1,E2) is an OK-module. Writing [· , ·] for
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the bilinear form on L(E1,E2) associated with the quadratic form deg, there is a unique OF -bilinear

form

[· , ·]CM : L(E1,E2)× L(E1,E2)→ D−1

satisfying [f1, f2] = TrF/Q[f1, f2]CM. Let degCM be the totally positive definite F -quadratic form on

L(E1,E2)⊗Z Q corresponding to [· , ·]CM, so deg(f) = TrF/Q degCM(f).

For any α ∈ F× let Eα be the algebraic stack over Spec(Z) with Eα(S) the category of triples

(E1,E2, f) where (E1,E2) is an object of E (S) and f ∈ L(E1,E2) satisfies degCM(f) = α on every

connected component of S. The category Eα is empty unless α is totally positive and lies in D−1.

Define the arithmetic degree of Eα to be

deg(Eα) =
∑
p

log(p)
∑

x∈[Eα(Fp)]

length(Osh
Eα,x

)
|Aut(x)|

.

Let χ be the quadratic Hecke character associated with the extension K/F and for α ∈ F×

define Diff(α) to be the set of prime ideals p ⊂ OF satisfying χp(αD) = −1. The set Diff(α) is finite

and nonempty. For any fractional OF -ideal b let ρ(b) be the number of ideals B ⊂ OK satisfying

NK/F (B) = b, where NK/F is the ideal norm from K to F . For any prime number ` let ρ`(b) be

the number of ideals B ⊂ OK,` = OK ⊗Z Z` satisfying NK`/F`(B) = bOK,`, so there is a product

formula

ρ(b) =
∏
`

ρ`(b).

The following theorem, which is [14, Theorem A], is the main result we will generalize in the first

part of this work.

Theorem 1 (Howard-Yang). Suppose α ∈ F× is totally positive. If α ∈ D−1 and Diff(α) = {p}
then Eα is of dimension zero, is supported in characteristic p (the rational prime below p), and

satisfies

deg(Eα) =
1
2

log(p) · ordp(αpD) · ρ(αp−1D).

If α /∈ D−1 or if # Diff(α) > 1, then deg(Eα) = 0.

The stack Eα being of dimension zero means the local rings Osh
Eα,x

are all of dimension zero, and

Eα being supported in characteristic p means it only has geometric points in characteristic p (if any

at all).
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1.2 False elliptic curves

Our work in generalizing Theorem 1 goes as follows. Let B be an indefinite quaternion algebra over

Q, let OB be a maximal order of B, and let dB be the discriminant of B. A false elliptic curve

over a scheme S is a pair (A, i) where A → S is an abelian scheme of relative dimension 2 and

i : OB → EndS(A) is a ring homomorphism. Any false elliptic curve A comes equipped with a

principal polarization λ : A → A∨ uniquely determined by a condition described below. If A1 and

A2 are false elliptic curves over a connected scheme S with corresponding principal polarizations λ1

and λ2, then the map

f 7→ λ−1
1 ◦ f∨ ◦ λ2 ◦ f : HomOB (A1, A2)→ EndOB (A1)

has image in Z ⊂ EndOB (A1) and defines a positive definite quadratic form, called the false degree

and denoted deg∗.

We retain the same number theoretic setup of K1, K2, F , and K as above. We also assume

each prime dividing dB is inert in K1 and K2, so in particular, K1 and K2 split B. Let S be an

OK-scheme. A false elliptic curve over S with complex multiplication by OKj , for j ∈ {1, 2}, is

a triple A = (A, i, κ) where (A, i) is a false elliptic curve over S and κ : OKj → EndOB (A) is a

ring homomorphism such that the induced map OKj → EndOB (Lie(A)) is through the structure

map OKj ↪→ OK → OS(S). Let mB ⊂ OB be the unique lattice (which is also an ideal) satisfying

mB ⊗Z Zp ∼= OB,p = OB ⊗Z Zp for all p - dB and mB ⊗Z Zp ∼= np for all p | dB , where np ⊂ OB,p
is the unique maximal ideal. Equivalently, mB ⊂ OB is the unique ideal of index d2

B . Then

OB/mB
∼=
∏
p|dB Fp2 .

Let MB be the category fibered in groupoids over Spec(OK) with MB(S) the category whose

objects are false elliptic curves (A, i) over the OK-scheme S satisfying the following condition for

any x ∈ OB : any point of S has an affine open neighborhood Spec(R)→ S such that Lie(A/R) is a

free R-module of rank 2 and there is an equality of polynomials in R[T ]

char(i(x),Lie(A/R)) = (T − x)(T − xι), (1.2.1)

where x 7→ xι is the main involution on B. The category MB is an algebraic stack which is regular

and flat of relative dimension 1 over Spec(OK), smooth over Spec(OK [d−1
B ]) (if B is a division

algebra, MB is proper over Spec(OK)). This 2-dimensional stack MB is usually referred to as (the

integral model of) a “Shimura curve”. For j ∈ {1, 2} let Yj be the algebraic stack over Spec(OK)

with Yj(S) the category of false elliptic curves over the OK-scheme S with complex multiplication

by OKj . The stack Yj is finite and étale over Spec(OK), so in particular it is 1-dimensional and
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regular. Any object of Yj(S) automatically satisfies condition (1.2.1) (see Corollary 5.2.8 below).

Therefore there is a finite morphism Yj → MB defined by forgetting the complex multiplication

structure.

Our main goal is to calculate the intersection multiplicity of the two divisors TmY1 and Y2 on

MB , defined just as in (1.1.1), where Tm is the m-th Hecke correspondence on MB . For each

positive integer m define T B
m to be the algebraic stack over Spec(OK) with T B

m (S) the category of

triples (A1,A2, f) with Aj an object of Yj(S) and f ∈ HomOB (A1, A2) satisfying deg∗(f) = m on

every connected component of S. We will show there is a decomposition

T B
m =

⊔
α∈F×

TrF/Q(α)=m

⊔
θ:OK→OB/mB

Xθ,α

for some 0-dimensional stacks Xθ,α → Spec(OK), where the inner union is over all ring homomor-

phisms θ : OK → OB/mB , so then

deg(T B
m ) =

∑
α∈D−1,α�0
TrF/Q(α)=m

∑
θ:OK→OB/mB

deg(Xθ,α).

Just as in the elliptic curve case we will show

deg(T B
m ) = I(TmY1,Y2). (1.2.2)

Our main result is then a formula for deg(Xθ,α).

A CM pair over an OK-scheme S is a pair (A1,A2) where A1 and A2 are false elliptic curves

over S with complex multiplication by OK1 and OK2 , respectively. For such a pair, set

L(A1,A2) = HomOB (A1, A2).

As before, there is a unique OF -quadratic form

degCM : L(A1,A2)→ D−1

satisfying TrF/Q degCM(f) = deg∗(f). For any false elliptic curve A let A[mB ] be its mB-torsion,

defined as a group scheme below. For any ring homomorphism θ : OK → OB/mB define Xθ to

be the algebraic stack over Spec(OK) where Xθ(S) is the category of CM pairs (A1,A2) over the
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OK-scheme S such that the diagram

OKj //

θ|OKj $$H
HHHHHHHH

EndOB/mB (Aj [mB ])

OB/mB

66mmmmmmmmmmmm

commutes for j = 1, 2, where

OB/mB → EndOB/mB (Aj [mB ])

is the map induced by the action of OB on Aj . Note that this map makes sense as OB/mB is

commutative. If B = M2(Q) then mB = OB , so any such θ is necessarily 0 (here 1 = 0 in the zero

ring OB/mB), and Xθ is the stack of all CM pairs over OK-schemes.

For any α ∈ F× define Xθ,α to be the algebraic stack over Spec(OK) with Xθ,α(S) the category of

triples (A1,A2, f) where (A1,A2) is an object of Xθ(S) and f ∈ L(A1,A2) satisfies degCM(f) = α

on every connected component of S. Define the arithmetic degree of Xθ,α as in (1.1.1) and define a

nonempty finite set of prime ideals

Diffθ(α) = {p ⊂ OF : χp(αaθD) = −1},

where aθ = ker(θ) ∩ OF . Note that aθ = OF if B = M2(Q). Our first main result is the following

(Proposition 9.1.2 and Theorems 8.3.1 and 9.1.3 in the text).

Theorem 2. Let α ∈ F× be totally positive and suppose α ∈ D−1. Let θ : OK → OB/mB be a ring

homomorphism with aθ = ker(θ) ∩ OF , suppose Diffθ(α) = {p}, and let pZ = p ∩ OF .

(a) The stack Xθ,α is of dimension zero and is supported in characteristic p.

(b) If p - dB then

deg(Xθ,α) =
1
2

log(p) · ordp(αpD) · ρ(αa−1
θ p−1D).

(c) Suppose p | dB and let P ⊂ OK be the unique prime over p. If P divides ker(θ) then

deg(Xθ,α) =
1
2

log(p) · ordp(α) · ρ(αa−1
θ p−1D).

If P does not divide ker(θ) then

deg(Xθ,α) =
1
2

log(p) · ordp(αp) · ρ(αa−1
θ p−1D).

If α /∈ D−1 or if # Diffθ(α) > 1, then deg(Xθ,α) = 0.
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The proof of this theorem consists of two general parts: counting the number of geometric points

of the stack Xθ,α (Proposition 4.1.4 and Theorem 7.3.3) and calculating the length of the local ring

Osh
Xθ,α,x

(Theorem 8.3.1). This theorem is a generalization of Theorem 1 in the following sense.

Let P ⊂ OK be a prime ideal, let α ∈ F× be totally positive, and set F = FP for this discussion.

Let p be the rational prime below P and assume p is nonsplit in K1 and K2. Define E ′α to be the

algebraic stack over Spec(OK) with E ′α(S) the category of triples (E1,E2, f) where Ej = (Ej , κj) is

an elliptic curve over the OK-scheme S with an action κj : OKj → EndS(Ej) such that the induced

map OKj → EndOS (Lie(Ej)) ∼= OS(S) is equal to the structure map, and f ∈ L(E1,E2) satisfies

degCM(f) = α on every connected component of S. The category E ′α is the same as the category Eα

except for the condition on the Lie algebra. Now take B = M2(Q) and OB = M2(Z). In this case

we claim any false elliptic curve A over F with CM by OKj is superspecial: A ∼= E2 = E × E for

some supersingular elliptic curve E over F (note that any such A is necessarily supersingular as p

is nonsplit in Kj (Lemma 3.2.6)). To see this, let αp be the usual p-th roots of zero group scheme

over F. The F-vector space HomF(αp, A) is a module over M2(Q)⊗Q F ∼= M2(F), so its F-dimension

a(A) is even. The number a(A) is known to be either 1 or 2, and equal to 2 if and only if A is

superspecial ([21, Theorem 2, Remark 3]).

There is an equivalence of categories E ′α(F)→Xθ,α(F) given by

(E1,E2, f) 7→ (A1,A2, f
′),

where Aj = (Aj , ij , κ′j) with Aj = E2
j , ij : M2(Z)→ End(Aj) ∼= M2(End(Ej)) the natural inclusion,

and κ′j = diag(κj , κj). Similarly f ′ = diag(f, f). We have degCM(f ′) = α since deg∗(f ′) = deg(f).

It follows that if we define deg(E ′α) as in (1.1.1), then Theorem 2(b) shows that if α ∈ D−1 and

Diff(α) = {p}, then

deg(E ′α) =
1
2

log(p) · ordp(αpD) · ρ(αp−1D).

This formula for deg(E ′α) agrees with the formula for deg(Eα) in Theorem 1 even though there is a

slight difference in the definitions of E ′α and Eα because of the change in the definition of arithmetic

degree between these two spaces (see [14, proof of Theorem 2.27]). In generalizing Theorem 1 we

found it more natural to include this Lie algebra condition in the definition of the moduli problem,

and it simplified the deformation theory used in calculating the lengths of the local rings of the

stack.
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1.3 Special endomorphisms

Next we will describe the second moduli problem considered in this thesis. Now let K be an

imaginary quadratic field with discriminant dK , let s be the number of distinct prime factors of dK ,

and write x 7→ x for the nontrivial element of Gal(K/Q). Let ep be the ramification index of K/Q at

a prime p. Let Z be the algebraic stack over Spec(OK) with fiber Z (S) the category of pairs (E, κ)

where E is an elliptic curve over the OK-scheme S and κ : OK → EndS(E) is an action such that

the induced map OK → EndOS (Lie(E)) ∼= OS(S) is the structure map. A special endomorphism of

an object (E, κ) of Z (S) is an endomorphism f ∈ EndS(E) satisfying

κ(x) ◦ f = f ◦ κ(x)

for all x ∈ OK . For any positive integer m let Z m be the algebraic stack over Spec(OK) with

Z m(S) the category of triples (E, κ, f) where (E, κ) is an object of Z (S) and f ∈ EndS(E) is

a special endomorphism satisfying deg(f) = m on every connected component of S. Define the

arithmetic degree of Z m to be

deg(Z m) =
∑

p⊂OK

log(|Fp|)
∑

z∈[Zm(Fp)]

length(Osh
Zm,z), (1.3.1)

where the outer sum is over all prime ideals p ⊂ OK and Fp = OK/p.

For each m ∈ Z+ define a nonempty finite set of prime numbers

Diff(m) = {` <∞ : (dK ,−m)` = −1},

where (· , ·)` is the usual Hilbert symbol. For any positive integer m let R(m) be the number of

ideals in OK of norm m. For any prime ` let R`(m) be the number of ideals in OK,` = OK ⊗Z Z` of

norm mZ`, so there is a product formula

R(m) =
∏
`

R`(m).

The following is [16, Theorem 5.15] (at least a restatement of it, in the case where −dK is prime;

the version stated here follows from our generalization below).

Theorem 3 (Kudla-Rapoport-Yang). Let m ∈ Z+ and suppose Diff(m) = {p} for some prime p.

Then the stack Z m is of dimension zero, it is supported in characteristic p, and

deg(Z m) = 2s log(p) ·R(mpep−2) · (ordp(m) + 1).
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If # Diff(m) > 1 then deg(Z m) = 0.

We continue with K an imaginary quadratic field, B an indefinite quaternion algebra over Q,

and OB a maximal order of B. We assume each prime dividing dB is inert in K. Let Y be the

algebraic stack over Spec(OK) with Y (S) the category of false elliptic curves over the OK-scheme

S with complex multiplication by OK . A special endomorphism of an object (A, κ) of Y (S) is an

endomorphism f ∈ EndOB (A) satisfying

κ(x) ◦ f = f ◦ κ(x)

for all x ∈ OK . For any positive integer m let Y m be the algebraic stack over Spec(OK) with

Y m(S) the category of triples (A, κ, f) where (A, κ) is an object of Y (S) and f ∈ EndOB (A) is

a special endomorphism satisfying deg∗(f) = m on every connected component of S. Define the

arithmetic degree of Y m just as in (1.3.1). For each m ∈ Z+ define a nonempty finite set of prime

numbers

DiffB(m) = {` <∞ : (dK ,−m)` · inv`(B) = −1},

where inv`(B) is the local invariant of B at ` (it is −1 if B is ramified at ` and 1 otherwise). For

any prime p set εp = 1 − ordp(dB) and let r be the number of primes dividing dB . The following

(Theorem 10.5.2 in the text) is our generalization of Theorem 3. The proof of this theorem is similar

to that of Theorem 2 and is carried out in the final chapter of this thesis.

Theorem 4. Let m ∈ Z+ and suppose DiffB(m) = {p}. The stack Y m is of dimension zero, it is

supported in characteristic p, and

deg(Y m) = 2r+s log(p) ·R(md−1
B p(ep−1)εp−1) · (ordp(m) + εp).

If # DiffB(m) > 1 then deg(Y m) = 0.

1.4 Eisenstein series

Theorem 1 and Theorem 3 are really only half of a larger story, one that gives a better explanation of

the definitions of the arithmetic degree of Eα and Z m and provides a surprising connection between

arithmetic geometry and analysis. To explain this in the case of the moduli space Eα, let K1, K2,

K, and F be as in Section 1.1, let D = disc(F ), and let σ1 and σ2 be the two real embeddings of F .
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For τ1, τ2 in the complex upper half plane and s ∈ C define an Eisenstein series

E∗(τ1, τ2, s) = D(s+1)/2

(
π−(s+2)/2Γ

(
s+ 2

2

))2 ∑
a∈Cl(F )

χ(a)N(a)1+s

×
∑

(0,0) 6=(m,n)∈a×a/O×F

(v1v2)s/2

[m,n](τ1, τ2)|[m,n](τ1, τ2)|s
,

where Cl(F ) is the ideal class group of F , vi = Im(τi), and

[m,n](τ1, τ2) = (σ1(m)τ1 + σ1(n))(σ2(m)τ2 + σ2(n)).

This series, which is convergent for Re(s) � 0, has meromorphic continuation to all s ∈ C and

defines a non-holomorphic Hilbert modular form of weight 1 for SL2(OF ) which is holomorphic in s

in a neighborhood of s = 0. The derivative of E∗(τ1, τ2, s) at s = 0 has a Fourier expansion

(E∗)′(τ1, τ2, 0) =
∑

α∈D−1

aα(v1, v2) · qα,

where e(x) = e2πix and qα = e(σ1(α)τ1 + σ2(α)τ2). The connection between this analytic theory

and the moduli space Eα lies in the next theorem ([14, Theorem B, Theorem C]).

Theorem (Howard-Yang). Suppose α ∈ F× is totally positive. If α ∈ D−1 then aα = aα(v1, v2) is

independent of v1, v2 and aα = 4 · deg(Eα).

There is a similar theorem about Z m which goes as follows. Let K be an imaginary quadratic

field with discriminant dK and assume q = −dK is prime. For each place ` 6 ∞ of Q define a

character ψ` : Q×` → {±1} by ψ`(x) = (x, dK)` and for any

γ =
[
a b
c d

]
∈ Γ = SL2(Z)

define

Φ−(γ) =
{
ψq(a) if q | c
−iq−1/2ψq(c) if q - c.

For τ = u+ iv in the complex upper half plane and s ∈ C with Re(s) > 1 define

E∗(τ, s) = vs/2q(s+1)/2π−(s+2)/2Γ
(
s+ 2

2

)
L(s, ψq)

∑
γ∈Γ∞\Γ

Φ−(γ)
(cτ + d)|cτ + d|s

,

where Γ∞ = {γ ∈ Γ : c = 0}. This series has meromorphic continuation to all s ∈ C and defines a
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non-holomorphic modular form of weight 1. It has a Fourier expansion

E∗(τ, s) =
∑
m∈Z

am(v, s) · e2πimτ

for some functions am(v, s) holomorphic in a neighborhood of s = 0. The following is [16, Theorem

3].

Theorem (Kudla-Rapoport-Yang). Let m ∈ Z+ and assume −dK is prime. The derivative a′m =

a′m(v, 0) is independent of v and deg(Z m) = −a′m.

It seems likely that there are theorems in the spirit of the above two for the moduli spaces Xθ,α

and Y m, but we do not pursue that direction here.

1.5 Notation and conventions

If X is an abelian variety or a p-divisible group over a field k, we write End(X) for Endk(X). If X is

a scheme or a p-divisible group over Spec(R) for some ring R and R→ R′ is a ring homomorphism,

we write X⊗RR′ for the fiber product X×Spec(R) Spec(R′). When we say “stack” we mean algebraic

stack in the sense of [27], also called a Deligne-Mumford stack. We do not use stacks in a serious

way in this work; they are merely a convenient language to use to make precise certain notions

involving moduli spaces. If E is an elliptic curve over an algebraically closed field k, we write E2 for

the product E ×E, which, in the language of schemes, is really the fiber product E ×Spec(k) E. We

write Fp for an algebraic closure of the field of p elements. For any scheme S we write Sch/S for

the category of S-schemes and we write Sets for the category of sets. By “scheme” we always mean

locally Noetherian scheme. If X is a category, we write X ∈X to mean X is an object of X .



Chapter 2

False elliptic curves

In this chapter we review the basic theory of false elliptic curves. Although this material is “well-

known”, some of the proofs we provide do not seem to explicitly appear in the literature. For the

remainder of this thesis fix an indefinite quaternion algebra B over Q and a maximal order OB of B.

We do not exclude the case where B is split, that is, where B = M2(Q). As B is split at the infinite

place∞ of Q, all maximal orders of B are conjugate by elements of B×. Let dB be the discriminant

of B.

2.1 Basic theory

Definition 2.1.1. Let S be a scheme. A false elliptic curve over S is a pair (A, i) where A→ S is an

abelian scheme of relative dimension 2 and i : OB ↪→ EndS(A) is an injective ring homomorphism.

Definition 2.1.2. Let (A1, i1) and (A2, i2) be two false elliptic curves over a scheme S. A ho-

momorphism f : A1 → A2 of false elliptic curves is a homomorphism of abelian schemes over S

satisfying i2(x) ◦ f = f ◦ i1(x) for all x ∈ OB . If in addition f is an isogeny of abelian schemes, then

f is called an isogeny of false elliptic curves.

We will see below that any nonzero homomorphism of false elliptic curves A1 → A2 is necessarily

an isogeny (which is false for a general homomorphism of abelian schemes A1 → A2). We write

HomOB (A1, A2) for the Z-module of homomorphisms of false elliptic curves A1 → A2. For each

place v of Q let invv : Br2(Qv) → {±1} be the unique isomorphism. If D is a quaternion algebra

over Q, we write invv(D) for invv(D ⊗Q Qv).

Definition 2.1.3. For each prime number p, define B(p) to be the quaternion algebra over Q

13
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determined by

invv(B(p)) =
{

invv(B) if v /∈ {p,∞}
− invv(B) if v ∈ {p,∞}.

Note that B(p) is always a division algebra because it is ramified at ∞. In particular, if B =

M2(Q) then B(p) is the quaternion division algebra ramified at p and ∞.

Proposition 2.1.4. Suppose (A, i) is a false elliptic curve over Fp. Then End0
OB (A) = EndOB (A)⊗Z

Q is either

(1) an imaginary quadratic field L which admits an embedding L ↪→ B, or

(2) the definite quaternion algebra B(p).

Furthermore, A is isogenous to E2 for some elliptic curve E over Fp, with E ordinary in case (1)

and supersingular in case (2).

Our proof follows [18, Proposition 5.2].

Proof. Let D = End0(A). Note that

End0
OB (A) = CD(B) = {d ∈ D : db = bd for all b ∈ B}

is the centralizer of B in D, via the embedding OB ⊗Z Q = B ↪→ D. First suppose A is isogenous to

E1 ×E2 for some elliptic curves E1 and E2 over Fp, with E1 supersingular. Then E1 ∼ E2 because

otherwise there is a ring homomorphism

B → End0(A) ∼= End0(E1)× End0(E2)→ End0(E1),

which is injective since B is a simple Q-algebra and thus the kernel, which is a two sided ideal

of B, is zero (it is not the zero homomorphism as 1 7→ 1). Then End0(E1) ∼= B by counting Q-

dimensions, but End0(E1) is ramified at ∞ and B is not. Hence A ∼ E2 with E a supersingular

elliptic curve, so Dp,∞ = End0(E) is the quaternion division algebra over Q ramified at p and ∞,

and D = End0(A) ∼= M2(Dp,∞). The center of D is Q, so D is a central simple algebra over Q. Let

C be the centralizer of B in D. Since B ⊂ D is a simple subalgebra, dimQ D = (dimQ B)(dimQ C)

by the double centralizer theorem. It follows that the natural map B ⊗Q C → D defined by

b ⊗ c 7→ bc is an isomorphism of Q-algebras, which means [B][C] = [D] = [Dp,∞] in Br(Q). Then

invv(B) invv(C) = invv(Dp,∞) for all v, so from

invv(Dp,∞) =
{

1 if v /∈ {p,∞}
−1 if v ∈ {p,∞},
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we have invv(C) = invv(B) for all v /∈ {p,∞} and invv(C) = − invv(B) for v ∈ {p,∞}.
Now suppose A is simple or isogenous to a square of an ordinary elliptic curve (A cannot be

isogenous to a product of two non-isogenous ordinary elliptic curves for a reason similar to that

above). Let Fq ⊂ Fp be a subfield such that A and all of its endomorphisms are defined over Fq,
and let π be the Frobenius endomorphism of A/Fq. Let L be the center of the simple Q-algebra

D = End0
Fq (A), so L is a field. More specifically, L = Q[π] in either case and in addition L = End0(E)

when A ∼ E2 for some ordinary elliptic curve E. If L has a real embedding (necessarily when A

is simple) then by the Honda-Tate theorem A is isogenous over a quadratic extension of Fq to E2

where E is a supersingular elliptic curve, a contradiction. If A is simple then again the Honda-Tate

theorem implies that 4 = 2 dim(A) = (dimLD)1/2[L : Q], so [L : Q] 6 2 because otherwise D = L is

commutative, contradicting D ⊃ B. Hence L is an imaginary quadratic field in either case.

Let C be the centralizer of B in D, so C ⊃ L. Also, let L′ be the center of C, so L′ ⊃ L.

We claim that C = L′. Suppose C ) L′ and let c ∈ C r L′. Also, since B is not commutative,

there is a b ∈ B r C. Then b and c commute, so the subalgebra R ⊂ D generated by L′, b, and

c is commutative, and dimL′ R > 4. Hence D contains a commutative Q-subalgebra of dimension

strictly larger than 4 = 2 dim(A), a contradiction since the maximal commutative Q-subalgebra has

dimension 2 dim(A). Thus C = L′. Now, if c ∈ L′ = Z(C) then c commutes with all elements of C,

so c ∈ CD(C), the centralizer of C in D. However, CD(C) = B by the double centralizer theorem (D

is a central simple algebra over L and B ⊂ D is a simple subalgebra). It follows that L ⊂ L′ ⊂ B.

But B is a central simple algebra of dimension 4 over Q, so the maximal subfield of B has degree 2

over Q, which means L′ = L. Therefore C = L is an imaginary quadratic field and L ↪→ B.

Finally, since dimLD = (dimLB)(dimL C) = 2 by the double centralizer theorem, A is not

simple because otherwise the Honda-Tate theorem implies dimLD = 4. Therefore A ∼ E2 for some

ordinary elliptic curve.

Proposition 2.1.5. If A is a false elliptic curve over C then either A is simple, in which case

End0(A) ∼= B, or A ∼ E2 for some elliptic curve E over C, with, in the case of B a division algebra,

complex multiplication by an imaginary quadratic field which splits B.

The proof is taken from [6, Proposition 52]

Proof. Suppose A is simple, so D = End0(A) is a division algebra. Write A(C) = C2/Λ for some

lattice Λ ⊂ C2. Then there is a ring homomorphismD → EndQ(Λ⊗ZQ) (the rational representation),

so Λ⊗Z Q is a free D-module, since D is a division algebra. Hence 4 = dimQ(Λ⊗Z Q) = rankD(Λ⊗Z

Q) dimQ(D), so dimQ D 6 4. However, B ↪→ D, which means D ∼= B by counting Q-dimensions.

Now suppose A ∼ E1 × E2 for some elliptic curves E1 and E2 over C. If E1 is not isogenous to
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E2 then there is an injective ring homomorphism

B → End0(A) ∼= End0(E1)× End0(E2)→ End0(E1),

a contradiction because E1 is an elliptic curve over C. Hence A ∼ E2 for some elliptic curve E, so

D = End0(A) ∼= M2(End0(E)). If B is a division algebra and End0(E) = Q, then B ↪→ M2(Q), a

contradiction. Therefore E is an elliptic curve over C with complex multiplication by some imaginary

quadratic field L, and thus D ∼= M2(L).

Finally, to show L splits B, note that since B ↪→ M2(L), B acts on an L-vector space V of

dimension 2. Then V is a free B-module of rank 1, so V ∼= B as B-modules, which means B is an

L-vector space of dimension 2. Hence L is the maximal subfield of B containing Q and therefore

L⊗Q B ∼= M2(L).

Proposition 2.1.6. If A is a false elliptic curve over C then End0
OB (A) is either Q or an imaginary

quadratic field which splits B.

Proof. As above, End0
OB (A) = CD(B), the centralizer of B in D = End0(A), via the embedding

OB⊗Z Q = B ↪→ D. If A is simple then D ∼= B, so End0
OB (A) = CB(B) = Z(B) = Q. Now suppose

A ∼ E2 for some elliptic curve E. If E does not have complex multiplication then necessarily

B = D = M2(Q) and thus End0
OB (A) = CD(B) = Z(B) = Q. If E has complex multiplication then

D ∼= M2(L) for some imaginary quadratic field L satisfying L ⊗Q B ∼= M2(L) (clearly this is still

true when B = M2(Q)). Hence

End0
OB (A) = CD(B) ∼= CL⊗QB(Q⊗Q B) ∼= CL(Q)⊗Q CB(B) = L⊗Q Q = L.

Often we can reduce the proof of a statement about false elliptic curves over an arbitrary base

scheme to the case of false elliptic curves defined over an algebraically closed field by using the

following general result.

Lemma 2.1.7. Let A → S be an abelian scheme and s : Spec(k)→ S a geometric point of S. The

natural map EndS(A )→ Endk(As), where As = A ×S Spec(k) is the geometric fiber, is injective.

Proof. See [20, Corollary 6.2].

Proposition 2.1.8. Suppose A is a false elliptic curve over a field extension L of Fp. Then End(A)

embeds into End(A′) for some false elliptic curve A′ defined over a finite extension of Fp. In

particular, End0
OB (A) embeds into an imaginary quadratic field or the definite quaternion algebra

B(p).
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Proof. First note that we may descend to the case of A defined over a field L having finite transcen-

dence degree over Fp. Now we will use induction on the transcendence degree of L over Fp. The

result is trivial if L has transcendence degree 0 over Fp, so assume the result holds for any false

elliptic curve defined over any field L′ with a fixed transcendence degree over Fp, and suppose A is a

false elliptic curve defined over a field L with transcendence degree 1 over L′. Then L is an algebraic

extension of L′(x) for some x ∈ L transcendental over L′. As before we may descend to the case of

L finite over L′(x). Let OL be the integral closure of L′[x] in L, and fix a prime p ⊂ OL of good

reduction for A. This means that there is an abelian scheme A over Spec(OL,p) whose generic fiber

is A, that is,

A ⊗OL,p Frac(OL,p) ∼= A.

Since A is an abelian scheme, it is the Néron model of its generic fiber A ([1, Corollary 1.4]), so

End(A) ∼= EndOL,p(A ) by the universal property of the Néron model. Now let

Ã = A ⊗OL,p L̃

be the reduction of A modulo p, where L̃ = OL/p. By [7, Theorem 2.1(2)] the natural map

EndOL,p(A ) → End(Ã) is injective. Since L̃ is a finite extension of L′, we have an inclusion

End(A) ↪→ End(Ã) with Ã a false elliptic curve defined over a field with transcendence degree one

less than L, the field A is defined over, so we are done by induction.

Lemma 2.1.9. Let (A1, i1) and (A2, i2) be false elliptic curves over an algebraically closed field k

and suppose A1 and A2 are isogenous as abelian varieties. Then A1 and A2 are isogenous as false

elliptic curves.

This argument is taken from [18, p. 179].

Proof. By Propositions 2.1.4, 2.1.5, and 2.1.8, the ring End0(A2) is a central simple algebra over

either Q or an imaginary quadratic field L which embeds into B, with one possible exception:

the field k has positive transcendence degree over Fp for some prime p, A2 is simple, and D =

End0(A2) ↪→ M2(Dp,∞) is a quaternion division algebra over a quadratic extension L of Q (not

necessarily imaginary; by counting dimensions this forces D ∼= B ⊗Q L and thus L does not embed

in B). Let f : A1 → A2 be an isogeny of abelian varieties and let f∗ : End0(A1)→ End0(A2) be the

corresponding homomorphism of Q-algebras defined by f∗(ϕ) = f ◦ϕ ◦ f−1, where f−1 : A2 → A1 is

the inverse of f in Hom0(A2, A1). Then we have the ring homomorphisms i2 : B → End0(A2) and

f∗ ◦ i1 : B → End0(A2), so by the Noether-Skolem theorem there is a u ∈ End0(A2)× such that

i2(x) = u ◦ (f∗(i1(x))) ◦ u−1 = u ◦ f ◦ i1(x) ◦ f−1 ◦ u−1
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for all x ∈ B. Hence i2(x) ◦ u ◦ f = u ◦ f ◦ i1(x), so the map mu ◦ f : A1 → A2 is an isogeny of false

elliptic curves, where m is an integer such that mu ∈ End(A2).

Lemma 2.1.10. Let (A, i) be a false elliptic curve over a scheme S and assume B is a division

algebra. If x ∈ OB is nonzero then i(x) ∈ EndS(A) is an isogeny of degree Nrd(x)2, where Nrd :

B× → Q× is the reduced norm.

Proof. As x is nonzero there is a y ∈ B× such that xy = yx = 1 and thus i(x)◦ i(y) = i(y)◦ i(x) = id

in End0
S(A). This shows i(x) is an isogeny. To compute its degree we may assume S = Spec(k)

for k an algebraically closed field. Applying the Noether-Skolem theorem as in Lemma 2.1.9 to the

two maps B → End0(A) given by b 7→ i(b) and b 7→ i(bι), where b 7→ bι is the main involution on

B, we find that there is an u ∈ End0(A)× such that i(b) = u ◦ i(bι) ◦ u−1 for all b ∈ B. Hence

deg(i(x)) = deg(i(xι)) and

deg(i(x))2 = deg(i(x)) deg(i(xι)) = deg(i(xxι)) = deg([Nrd(x)]) = Nrd(x)4.

Since deg(i(x)) is a positive integer, deg(i(x)) = Nrd(x)2.

The following result is needed below in defining the false degree.

Lemma 2.1.11. Positive involutions on rational division algebras are classified as follows.

(a) Suppose D is a quaternion division algebra over Q and x 7→ x′ is a positive involution on D

trivial on Z(D) = Q. If D is indefinite then x 7→ x′ is given by x′ = a−1xιa for some a ∈ D with

a2 ∈ Q negative, where x 7→ xι is the main involution. If D is definite then x 7→ x′ is the main

involution.

(b) Suppose D is a division algebra over Q of finite dimension with a positive involution not trivial

on Z(D). Then L = Z(D) is totally complex and the restriction of the involution to L is complex

conjugation. In particular, the only nontrivial positive involution on an imaginary quadratic field is

complex conjugation.

Proof. For (a) see [2, Theorem 5.5.3] and for (b) see [2, Lemma 5.5.4].

Let x 7→ xι be the main involution of B and fix a ∈ OB satisfying a2 = −dB (such an a exists

since Q(
√
−dB) splits B). Define another involution on B by x 7→ x∗ = a−1xιa. The order OB is

stable under x 7→ x∗.

If (A, i) is a false elliptic curve over S, then so is the dual abelian scheme A∨, with corresponding

homomorphism i∨ : OB ↪→ EndS(A∨) defined by i∨(x) = i(x)∨ for all x ∈ OB . If f : (A1, i1) →
(A2, i2) is a homomorphism of false elliptic curves, then f∨ : A∨2 → A∨1 is also a homomorphism of
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false elliptic curves since

i∨1 (x) ◦ f∨ = i1(x)∨ ◦ f∨ = (f ◦ i1(x))∨ = (i2(x) ◦ f)∨ = f∨ ◦ i2(x)∨ = f∨ ◦ i∨2 (x)

for all x ∈ OB .

Proposition 2.1.12. Let A be a false elliptic curve over a scheme S. There is a unique principal

polarization λ : A → A∨ such that if s is a geometric point of S, then the corresponding Rosati

involution ϕ 7→ ϕ† = λ−1
s ◦ ϕ∨ ◦ λs on End0(As) induces the involution x 7→ x∗ on OB ⊂ End(As).

Proof. See [4, p. 3] and [3, Proposition III.3.3].

The last condition in the proposition means that if i : OB → End(A) is the OB-action, then

λ−1
s ◦ i(x)∨ ◦ λs = i(x∗) for all x ∈ OB .

Let (A1, i1) and (A2, i2) be false elliptic curves over S with corresponding principal polarizations

λ1 : A1 → A∨1 and λ2 : A2 → A∨2 . Suppose f : A1 → A2 is an isogeny of false elliptic curves. Then

f induces an isogeny f∨ : A∨2 → A∨1 of false elliptic curves. Using the principal polarizations λ1 and

λ2, we obtain a map f t : A2 → A1 defined as the composition

f t = λ−1
1 ◦ f∨ ◦ λ2 : A2 → A1.

This is an isogeny of abelian schemes and is OB-linear since ij(x) = λ−1
j ◦ ij(x∗)∨ ◦ λj implies

f t ◦ i2(x) = λ−1
1 ◦ f∨ ◦ λ2 ◦ λ−1

2 ◦ i2(x∗)∨ ◦ λ2

= λ−1
1 ◦ (i2(x∗) ◦ f)∨ ◦ λ2

= λ−1
1 ◦ (f ◦ i1(x∗))∨ ◦ λ2

= λ−1
1 ◦ i1(x∗)∨ ◦ λ1 ◦ λ−1

1 ◦ f∨ ◦ λ2

= i1(x) ◦ f t

for all x ∈ OB (it sufficed to check this on geometric fibers). The isogeny f t : A2 → A1 is called the

dual isogeny to f .

Lemma 2.1.13. The map f 7→ f t satisfies the following properties.

(a) Suppose A1 and A2 are false elliptic curves and f, g : A1 → A2 are isogenies. Then (f t)t = f

and (f + g)t = f t + gt.

(b) Suppose A1, A2, and A3 are false elliptic curves and f : A1 → A2 and g : A2 → A3 are isogenies.

Then (g ◦ f)t = f t ◦ gt.
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Proof. The first claim in (a) follows from (f∨)∨ = f , once we make the identifications (A∨1 )∨ ∼= A1

and (A∨2 )∨ ∼= A2. The other claims follow immediately from (f + g)∨ = f∨ + g∨ and (g ◦ f)∨ =

f∨ ◦ g∨.

Proposition 2.1.14. Let f : A1 → A2 be an isogeny of false elliptic curves over a scheme S. The

isogeny f t ◦ f : A1 → A1 is locally on S multiplication by an integer.

What this means is that any point of S has an affine open neighborhood U such that the map

f t ◦ f : A1 ×S U → A1 ×S U is multiplication by an integer.

Proof. This can be checked on geometric fibers, so we may assume A1 is a false elliptic curve over

an algebraically closed field k. Viewing f t ◦ f ∈ End0
OB (A1), we will show f t ◦ f is fixed by the

Rosati involution and then show that the set of fixed points of the Rosati involution is Q. First, to

show f t ◦ f ∈ End0
OB (A1) is fixed by the Rosati involution corresponding to λ1, compute

(f t ◦ f)† = λ−1
1 ◦ (f t ◦ f)∨ ◦ λ1

= λ−1
1 ◦ (λ−1

1 ◦ f∨ ◦ λ2 ◦ f)∨ ◦ λ1

= λ−1
1 ◦ f∨ ◦ λ∨2 ◦ f ◦ (λ−1

1 )∨ ◦ λ1

= λ−1
1 ◦ f∨ ◦ λ2 ◦ f

= f t ◦ f.

If k has positive transcendence degree over Fp then End0
OB (A1) embeds into an imaginary

quadratic field or a definite quaternion algebra, so we are reduced to considering the following.

Since k is algebraically closed, End0
OB (A1) is one of (i) the quaternion algebra B(p) (when k = Fp),

(ii) an imaginary quadratic field L (when k is Fp or C), or (iii) the field Q (when k = C). The Rosati

involution ϕ 7→ ϕ† is a positive involution on End0
OB (A1). In case (i), we have End0

OB (A1) = B(p)

and the Rosati involution is trivial on Z(B(p)) = Q, so x† = xι is the main involution because B(p)

is definite. The set of fixed points of the main involution is Q. In case (ii), End0
OB (A1) = L and

x† = x is complex conjugation, so the set of fixed points is R ∩ L = Q. Therefore in each case

f t ◦ f ∈ Q, so f t ◦ f : A1 → A1 is multiplication by an integer.

Definition 2.1.15. If the integer in the previous proposition is constant on S, then it is called the

false degree of f , and is denoted deg∗(f).

For any f ∈ HomOB (A1, A2) and n ∈ Z, we have

deg∗(nf) = deg∗([n]A2) deg∗(f) = n2 deg∗(f).
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Using this we can extend the definition of deg∗ to Hom0
OB (A1, A2) by setting

deg∗(g) = n−2 deg∗(ng),

where n is any integer such that ng ∈ HomOB (A1, A2).

Corollary 2.1.16. Let (A1, i1) and (A2, i2) be two false elliptic curves over a scheme S and suppose

f : A1 → A2 is an isogeny of false degree n. Then the map

Φ : End0
OB (A1)→ End0

OB (A2)

defined by Φ(ϕ) = n−1f ◦ ϕ ◦ f t is an isomorphism of Q-algebras.

Here we are implicitly using that if f is an isogeny then deg∗(f) 6= 0. We prove that below in

Proposition 2.1.19.

Proof. First note that since f t ◦ f = [n] : A1 → A1, we also have f ◦ f t = [n] : A2 → A2. Indeed,

f t ◦ (f ◦ f t) = (f t ◦ f) ◦ f t = [n]A1 ◦ f t = f t ◦ [n]A2 ,

so (f ◦ f t) − [n]A2 maps A2 to the finite group scheme ker(f t) and thus (f ◦ f t) − [n]A2 = 0. Now

the corollary follows from observing that the map

Ψ : End0
OB (A2)→ End0

OB (A1)

defined by Ψ(ψ) = n−1f t ◦ ψ ◦ f is the inverse of Φ.

For any isogeny f : A1 → A2 let f−1 = f t ⊗ deg∗(f)−1 ∈ Hom0
OB (A2, A1), so f−1 ◦ f = [1]A1 in

End0
OB (A1) and f ◦ f−1 = [1]A2 in End0

OB (A2).

Corollary 2.1.17. Let A1 and A2 be false elliptic curves over a connected scheme S and suppose

f ∈ HomOB (A1, A2) is an isogeny. Then deg∗(f t) = deg∗(f) and deg(f) = deg∗(f)2.

Proof. This can be checked on geometric fibers, so we may assume S = Spec(k) for k an algebraically

closed field. Let d = deg∗(f). The first claim follows from (f t)t = f and f ◦ f t = [d]A2 . For the

second claim, since f t ◦ f = [d]A1 , we have

deg(f t) deg(f) = d4.

However, deg(f t) = deg(f∨) = deg(f), so deg(f) = d2.
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Lemma 2.1.18. Let A1 and A2 be false elliptic curves over a scheme S. Any nonzero element of

HomOB (A1, A2) is an isogeny.

Proof. Assume f ∈ HomOB (A1, A2) is nonzero. To show f is an isogeny it suffices to check that the

map on fibers fs is an isogeny for all s ∈ S ([5, 1.4.2.3]), and this further reduces to checking fs is

an isogeny for all geometric points s of S ([9, Remark 12.16]), so we may assume S = Spec(k) for k

an algebraically closed field. By Propositions 2.1.4 and 2.1.5 we see that since HomOB (A1, A2) 6= 0,

there is an isogeny of abelian varieties A1 → A2 and thus an isogeny of false elliptic curves A1 → A2

by Lemma 2.1.9. It follows that

Hom0
OB (A1, A2) ∼= Hom0

OB (A2, A1)

has the structure of a division algebra and therefore each nonzero element is an isogeny.

Proposition 2.1.19. Let A1 and A2 be false elliptic curves over a connected scheme S. The map

deg∗ : HomOB (A1, A2)→ Z is a positive definite quadratic form.

Proof. For f, g ∈ HomOB (A1, A2) let

[f, g] = deg∗(f + g)− deg∗(f)− deg∗(g).

Using the injective ring homomorphism [ · ] : Z→ EndOB (A1), we have

[[f, g]] = [deg∗(f + g)]− [deg∗(f)]− [deg∗(g)]

= (f + g)t ◦ (f + g)− f t ◦ f − gt ◦ g

= f t ◦ g + gt ◦ f.

Since this expression is additive in f and g, and [ · ] is injective, [· , ·] is bilinear. Finally, deg∗(−f) =

deg∗(f), so deg∗ is a quadratic form.

If f = 0 then clearly deg∗(f) = 0, so suppose f : A1 → A2 is an isogeny. To show deg∗(f) > 0,

it suffices to check this on geometric fibers, so we may assume A1 and A2 are false elliptic curves

over an algebraically closed field k. Define an isogeny of abelian varieties

Φ : A1 ×A2 → A1 ×A2

by Φ(x, y) = (f t(y), f(x)) (on points in k-schemes). Using the isomorphism (A1×A2)∨ ∼= A∨1 ×A∨2 ,

consider the isogeny Φ∨ : A∨1 × A∨2 → A∨1 × A∨2 . In general, if ϕ : X → Y is any homomorphism of

abelian varieties, and PX and PY are the Poincaré sheaves on X ×X∨ and Y × Y ∨, respectively,
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then ϕ∨ : Y ∨ → X∨ is the unique homomorphism such that

(idX ×ϕ∨)∗PX
∼= (ϕ× idY ∨)∗PY

as sheaves on X × Y ∨. Also, if

p : X × Y ×X∨ × Y ∨ → X ×X∨, q : X × Y ×X∨ × Y ∨ → Y × Y ∨

are the projections, then PX×Y ∼= p∗PX ⊗ q∗PY . Using these two facts it is straightforward to

check that Φ∨ is given on points by Φ∨(u, v) = (f∨(v), (f t)∨(u)).

If λj : Aj → A∨j , j = 1, 2, are the usual principal polarizations, then we get a principal polariza-

tion

λ = λ1 × λ2 : A∨1 ×A∨2 → A∨1 ×A∨2 .

The corresponding Rosati involution on End0(A1 ×A2) has the following effect on Φ:

Φ†(x, y) = (λ−1 ◦ Φ∨ ◦ λ)(x, y)

= (λ−1 ◦ Φ∨)(λ1(x), λ2(y))

= λ−1
(
f∨(λ2(y)), (f t)∨(λ1(x))

)
=
(
(λ−1

1 ◦ f∨ ◦ λ2)(y), (λ−1
2 ◦ (f t)∨ ◦ λ1)(x)

)
= (f t(y), (f t)t(x))

= Φ(x, y).

Hence Φ† = Φ, so

(Φ ◦ Φ†)(x, y) = Φ(f t(y), f(x)) = ((f t ◦ f)(x), (f ◦ f t)(y)) = deg∗(f) · (x, y),

which shows Φ ◦ Φ† = [deg∗(f)]. Since the Rosati involution is positive and Φ ◦ Φ† ∈ Q, we

have Trd(Φ ◦ Φ†) = d · deg∗(f) > 0, where Trd is the reduced trace on End0(A1 × A2) and d =

(dimL End0(A1 ×A2))1/2 > 0 (L is the center of End0(A1 ×A2)). Therefore deg∗(f) > 0.

2.2 Quaternion algebras

We conclude this chapter with a brief discussion of quaternion algebras over local fields. Let L be

a nonarchimedean local field of characteristic 0. Up to isomorphism there is a unique quaternion

division algebra D over L. Any quadratic extension of L can be embedded into D and D contains
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a unique maximal order OD, with all orders of D contained in OD. The maximal order OD is the

set of all elements of D integral over the ring of integers of L. We will encounter these objects in

two settings. First, if p is a prime dividing dB and L = Qp, then Bp = B ⊗Q Qp is the unique (up

to isomorphism) quaternion division algebra over Qp, and OB,p = OB ⊗Z Zp is its unique maximal

order.

The other setting is the following. Fix a prime number p. Let g be the unique (up to isomorphism)

connected p-divisible group of height 2 and dimension 1 over Fp, so g ∼= E[p∞] for any supersingular

elliptic curve E over Fp. Set ∆ = End(g). Then ∆ is the maximal order in the quaternion division

algebra ∆Q = ∆ ⊗Q Qp over Qp. Let Qp2 be the unique unramified quadratic extension of Qp and

let Zp2 ⊂ Qp2 be its ring of integers. An explicit description of ∆ is given by

∆ ∼=
{[
a pb
b a

]
: a, b ∈ Zp2

}
,

where x 7→ x is the nontrivial element of Gal(Qp2/Qp). Now consider the reduced norm Nrd :

∆Q → Qp, which, using the above description of ∆, corresponds to the determinant map. One

can check that x ∈ ∆×Q is in ∆× if and only if Nrd(x) ∈ Z×p . Define a function v∆ : ∆ → Z by

v∆(x) = ordp(Nrd(x)) (note that since x ∈ ∆, it is integral over Zp, so Nrd(x) ∈ Zp). Then v∆ is a

valuation on ∆ and there is an element Π ∈ ∆, called a uniformizer, with v∆(Π) = 1; namely, we

may take

Π =
[
0 p
1 0

]
.

This makes ∆ into a “noncommutative discrete valuation ring”, where ∆ has a unique maximal ideal

m∆ = {x ∈ ∆ : v∆(x) > 0}, ∆× = {x ∈ ∆ : v∆(x) = 0}, and ∆/m∆
∼= Fp2 . As a Zp2-module, we

have a decomposition ∆ = Zp2 ⊕ Zp2Π, and as a ring ∆ = Zp2 [Π], with multiplication determined

by Π2 = p and Πx = xΠ for all x ∈ Zp2 .



Chapter 3

CM pairs

3.1 CM false elliptic curves

We recall the number theoretic setup in the introduction. Let K1 and K2 be non-isomorphic imag-

inary quadratic fields with discriminants d1 and d2, and set K = K1 ⊗Q K2. Let F = Q(
√
d1d2)

be the real quadratic subfield of K, and let D be the different of F/Q. Let x 7→ x denote complex

conjugation on K, in other words, the nontrivial element of Gal(K/F ). Assume (d1, d2) = 1 so K/F

is unramified at all finite places, and OK1 ⊗Z OK2 is the maximal order in K. Also, we assume any

prime dividing dB is inert in K1 and K2. In particular, each p | dB is nonsplit in K1 and K2, which

implies K1 and K2 embed into B, or equivalently, K1 and K2 split B.

If a prime number p is inert in both K1 and K2, then p is split in F and each prime of F lying

over p is inert in K. If p is ramified in one of K1 or K2, then p is ramified in F and the unique

prime of F lying over p is inert in K.

Let S be a scheme and (A, i) a false elliptic curve over S. Let e : S → A be the identity section

of A as an abelian scheme. Since A → S is smooth of relative dimension 2, the sheaf of relative

differentials ΩA/S is a locally free sheaf of rank 2 on A, so e∗ΩA/S is a locally free sheaf of rank 2

on S. Define the Lie algebra Lie(A) to be the sheaf

(e∗ΩA/S)∨ = H omOS (e∗ΩA/S ,OS)

on S. This is a locally free OS-module of rank 2.

For each x ∈ OB there is an S-morphism i(x) : A→ A, which induces an OS-module homomor-

phism i(x) : Lie(A) → Lie(A), so Lie(A) is naturally an OB-module. We write EndOB (Lie(A)) for

the set of all morphisms of sheaves of OS-modules Lie(A)→ Lie(A) that are also OB-linear.

25
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Lemma 3.1.1. If k = C or k = Fp for p - dB, then EndOB (Lie(A)) ∼= k for any false elliptic curve

A over k.

Proof. For such a k we have OB ⊗Z k ∼= M2(k), so EndOB (Lie(A)) ∼= EndM2(k)(k2) ∼= k.

Definition 3.1.2. Let R be an order in K1 or K2 and S an OK-scheme. A false elliptic curve over

S with complex multiplication by R is a pair A = (A, κ), where (A, i) is a false elliptic curve over

S and κ : R → EndOB (A) is a ring homomorphism such that if κLie : R → EndOB (Lie(A)) is the

induced homomorphism, then the diagram

R
κLie

//

""D
DD

DD
DD

DD
EndOB (Lie(A))

OS(S)

77ppppppppppp

commutes, where R ↪→ OK → OS(S) is the structure map. We call the commutativity of this

diagram the CM normalization condition.

Note that since κ : R→ EndOB (A), we have i(x) ◦ κ(y) = κ(y) ◦ i(x) for all x ∈ OB and y ∈ R.

Also, any ring homomorphism R → EndOB (A) is automatically injective. To see this, it suffices to

show that the composition

R→ EndOB (A)→ EndOB (As)

is injective where s is any geometric point of S, so we may assume S = Spec(k) for k an algebraically

closed field. But then EndOB (A) is a torsion free Z-module, so the above map must be injective

because otherwise EndOB (A) contains a torsion Z-module. In fact, a similar proof shows that any

ring homomorphism OB → EndS(A) is injective, so we did not need to assume this in the definition

of a false elliptic curve.

When we speak of a CM false elliptic curve A over FP for some prime ideal P ⊂ OK , where

FP = OK/P, it is understood that Spec(FP) is an OK-scheme through the reduction map OK →
FP ↪→ FP. Less precisely, when we speak of a CM false elliptic curve A over Fp for some prime

number p, we really mean A is a CM false elliptic curve over FP for some prime ideal P ⊂ OK lying

over p. We will say A is defined over Fp when it is not important to specify the prime ideal P.

Suppose (A, i) is a false elliptic curve over a field with complex multiplication by an order

R ⊂ OK1 via the map κ : R → EndOB (A). Since K2 embeds in B by assumption, there is a ring

homomorphism K → End0(A) given by

x1 ⊗ x2 7→ κ(x1) ◦ i(x2) = i(x2) ◦ κ(x1),
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where we are extending κ to a map K1 = R ⊗Z Q → End0
OB (A) and viewing x2 ∈ K2 ⊂ B. This

shows A is a CM abelian variety in the traditional sense.

Definition 3.1.3. A CM pair over an OK-scheme S is a pair (A1,A2) where A1 and A2 are false

elliptic curves over S with complex multiplication by OK1 and OK2 , respectively. An isomorphism

between CM pairs (A′1,A
′
2)→ (A1,A2) is a pair (f1, f2) where each fj : A′j → Aj is an OKj -linear

isomorphism of false elliptic curves.

Given a CM pair (A1,A2) over an OK-scheme S and a morphism of OK-schemes T → S, there

is a CM pair (A1,A2)/T over T defined as the base change to T .

For every CM pair (A1,A2) over an OK-scheme S, set

L(A1,A2) = HomOB (A1, A2)

and

V (A1,A2) = L(A1,A2)⊗Z Q.

If S is connected we have the quadratic form deg∗ on L(A1,A2). Let [f, g] = f t ◦ g + gt ◦ f be the

associated bilinear form. Then OK = OK1 ⊗Z OK2 acts on the Z-module L(A1,A2) by

(x1 ⊗ x2) • f = κ2(x2) ◦ f ◦ κ1(x1). (3.1.1)

Note that (x1 ⊗ x2) • f ∈ L(A1,A2) since κ1(x1), f , and κ2(x2) are OB-linear.

Lemma 3.1.4. Suppose A is a false elliptic curve with complex multiplication by OKj via the

homomorphism κ : OKj → EndOB (A). If x ∈ OKj is nonzero then κ(x) is an isogeny and κ(x)t =

κ(x), where x 7→ x is complex conjugation on Kj. In particular, deg∗(κ(x)) = NKj/Q(x) for all

x ∈ Kj.

Proof. The homomorphism κ(x) is an isogeny for the same reason that i(b) is an isogeny for any

nonzero b ∈ OB (Lemma 2.1.10). For the rest, it suffices to assume A is defined over an algebraically

closed field. From the embedding κ : Kj ↪→ End0
OB (A) and our classification of such endomorphism

algebras over fields, either End0
OB (A) is Kj or a definite quaternion algebra over Q. It follows

that there is an embedding κ′ : Kj ↪→ End0
OB (A) such that the Rosati involution on End0

OB (A)

corresponding to the principal polarization λ : A→ A∨ restricts to complex conjugation on κ′(Kj).

Then using the Noether-Skolem theorem, there is a u ∈ End0
OB (A)× such that κ(x) = u◦κ′(x)◦u−1

for all x ∈ Kj , and hence deg∗(κ(x)) = deg∗(κ′(x)).

The Rosati involution on End0
OB (A) is given by ϕ 7→ λ−1 ◦ ϕ∨ ◦ λ = ϕt, so by construction,
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κ′(x)t = κ′(x) for any x ∈ Kj . Hence

[deg∗(κ′(x))] = κ′(x)t ◦ κ′(x) = κ′(x) ◦ κ′(x) = κ′(xx) = [NKj/Q(x)],

which means deg∗(κ(x)) = NKj/Q(x) for all x ∈ Kj . Then, for any x ∈ OKj ,

κ(x) ◦ κ(x) = [NKj/Q(x)] = [deg∗(κ(x))] = κ(x)t ◦ κ(x)

and composing both sides on the right with κ(x)t gives

[deg∗(κ(x))] ◦ κ(x) = [deg∗(κ(x))] ◦ κ(x)t.

Since End(A) is a torsion-free Z-module it follows that κ(x)t = κ(x).

Lemma 3.1.5. If L′/L is a finite separable extension of fields, then for any finite dimensional

L′-vector space V , the trace map TrL′/L induces an isomorphism HomL′(V,L′)→ HomL(V,L).

Proof. If ϕ ∈ HomL′(V,L′) is nonzero then it is surjective, so TrL′/L ◦ϕ is surjective since TrL′/L
is (as L′/L is separable). Hence, the L-linear map HomL′(V,L′) → HomL(V,L) given by ϕ 7→
TrL′/L ◦ϕ is injective. It is then an isomorphism since each space has L-dimension dimL(V ).

Proposition 3.1.6. Let (A1,A2) be a CM pair.

(a) There is a unique F -bilinear form [· , ·]CM on V (A1,A2) satisfying [f, g] = TrF/Q[f, g]CM. Under

this pairing,

[L(A1,A2), L(A1,A2)]CM ⊂ D−1.

(b) The quadratic form degCM(f) = 1
2 [f, f ]CM is the unique F -quadratic form on V (A1,A2) satis-

fying deg∗(f) = TrF/Q degCM(f).

(c) There is a unique K-Hermitian form 〈· , ·〉CM on V (A1,A2) which satisfies [f, g]CM = TrK/F 〈f, g〉CM.

Proof. (a) Let V = V (A1,A2). For any g ∈ V we have [· , g] ∈ HomQ(V,Q), so by Lemma 3.1.5,

[· , g] = TrF/Q(ϕg) for a unique ϕg ∈ HomF (V, F ). Define [f, g]CM = ϕg(f), so [· , ·]CM is an F -

bilinear form and [f, g] = TrF/Q[f, g]CM.

(b) We have

TrF/Q degCM(f) = TrF/Q( 1
2 [f, f ]CM) = 1

2 TrF/Q[f, f ]CM = 1
2 [f, f ] = deg∗(f),

and the uniqueness follows from Lemma 3.1.5.
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(c) Extending the action (3.1.1) of OK on L(A1,A2), V = V (A1,A2) is a K-vector space. We

claim that [x • f, g] = [f, x • g] for all x ∈ K and f, g ∈ V . For x = x1 ⊗ x2 ∈ K compute

[x • f, g] = (κ2(x2) ◦ f ◦ κ1(x1))t ◦ g + gt ◦ (κ2(x2) ◦ f ◦ κ1(x1))

= κ1(x1) ◦ f t ◦ κ2(x2) ◦ g + gt ◦ κ2(x2) ◦ f ◦ κ1(x1),

so as elements of End0
OB (A1),

[x • f, g] = κ1(x1)−1 ◦ [x • f, g] ◦ κ1(x1)

= f t ◦ κ2(x2) ◦ g ◦ κ1(x1) + κ1(x1)−1 ◦ gt ◦ κ2(x2) ◦ f ◦ [NK1/Q(x1)].

Hence

[f, x • g] = f t ◦ κ2(x2) ◦ g ◦ κ1(x1) + (κ2(x2) ◦ g ◦ κ1(x1))t ◦ f = [x • f, g].

For any g ∈ V we have [· , g]CM ∈ HomF (V, F ), so by Lemma 3.1.5 there is a unique ϕg ∈
HomK(V,K) such that TrK/F (ϕg) = [· , g]CM. For f, g ∈ V set 〈f, g〉CM = ϕg(f). Then 〈· , ·〉CM is

K-linear in the first entry and additive in the second, and TrK/F 〈f, g〉CM = [f, g]CM. For any x ∈ K
we have

TrK/F 〈f, x • g〉CM = [f, x • g]CM = [x • f, g]CM = TrK/F 〈x • f, g〉CM

= TrK/F (x〈f, g〉CM),

so 〈f, x • g〉CM = x〈f, g〉CM. The uniqueness again follows from Lemma 3.1.5.

3.2 Moduli spaces

Definition 3.2.1. For j ∈ {1, 2} define Yj to be the category whose objects are triples (A, i, κ),

where (A, i) is a false elliptic curve over some OK-scheme with complex multiplication κ : OKj →
EndOB (A). A morphism (A′, i′, κ′)→ (A, i, κ) between two such triples defined over OK-schemes T

and S, respectively, is a morphism of OK-schemes T → S together with an OKj -linear isomorphism

A′ → A×S T of false elliptic curves.

The category Yj is a stack of finite type over Spec(OK). In fact, the structure morphism Yj →
Spec(OK) is étale by Corollary 5.1.3 below, proper by a proof identical to that of [13, Proposition

3.3.5], and quasi-finite by Propositions 4.2.1 and 5.1.4 below, so the morphism is finite étale. Let

us recall the definition of the fiber Yj(S), a general concept for any stack. Let G : Yj → Sch/OK
be the functor sending an object of Yj over an OK-scheme S to the OK-scheme S, and sending an



CHAPTER 3. CM PAIRS 30

arrow between two objects of Yj over OK-schemes T and S to the morphism T → S in the definition

of an arrow in the category Yj . Then Yj(S) is defined to be the category whose objects are the

objects x of Yj satisfying G(x) = S, and whose arrows are the arrows f of Yj satisfying G(f) = idS .

It follows from the definitions that all arrows in Yj(S) are isomorphisms. Let [Yj(S)] denote the set

of isomorphism classes of objects in Yj(S).

For each prime p dividing dB there is a unique maximal ideal mp ⊂ OB of residue characteristic p,

and OB/mp is a finite field with p2 elements. Set mB =
⋂
p|dB mp. We have mB =

∏
p|dB mp because

for any two primes p and q dividing dB , mpmq = mqmp since these lattices have equal completions

at each prime number. Let xB be any element of mB whose image generates the principal ideal

mB/dBOB ⊂ OB/dBOB . Note that

OB/mB
∼=
∏
p|dB

Fp2

as rings, so the kernel of any ring homomorphism θ : OK → OB/mB is of the form P1 · · ·Pr

for some prime ideals P1, . . . ,Pr of OK lying over the r primes dividing dB . Also, giving such a

homomorphism θ is equivalent to giving homomorphisms θmp
j : OKj → OB/mp for j = 1, 2 and each

p | dB . Let (A, i) be a false elliptic curve over a scheme S. The dB-torsion A[dB ] is a finite flat

commutative S-group scheme with a natural action of mB/dBOB . Define the mB-torsion of A to be

A[mB ] = ker(i(xB) : A[dB ]→ A[dB ]),

which again is a finite flat commutative S-group scheme (i(xB) : A → A is an isogeny). This

definition does not depend on the choice of xB . The group scheme A[mB ] has a natural action of

OB/mB given on points by x · a = i(x)(a) for x ∈ OB/mB and a ∈ A[mB ](T ) for any S-scheme T .

All the statements of this paragraph are vacuous if B is split.

Definition 3.2.2. Let j ∈ {1, 2} and let θj : OKj → OB/mB be a ring homomorphism. Define Y
θj
j

to be the category whose objects are objects (A, i, κ) of Yj such that the diagram

OKj
κmB //

θj $$H
HHHHHHHH

EndOB/mB (A[mB ])

OB/mB

66nnnnnnnnnnnn

commutes, where κmB is the map on mB-torsion induced by κ and

OB/mB → EndOB/mB (A[mB ])
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is the map induced by i. Morphisms are defined in the same way as in the category Yj .

Note that Y
θj
j = Yj if B is split. Recall from the introduction that Cj is the stack over Spec(OK)

with Cj(S) the category of elliptic curves over the OK-scheme S with CM by OKj . We will prove

below that there is an isomorphism of stacks over Spec(OK)

⊔
θj :OKj→OB/mB

Cj → Yj (3.2.1)

inducing an equivalence of categories Cj → Y
θj
j for any θj (Theorem 5.2.6). It follows that Y

θj
j has

the structure of a stack, finite étale over Spec(OK), and Yj ∼= Cj in the case of B split.

Definition 3.2.3. Let θ : OK → OB/mB be a ring homomorphism. Define Xθ to be the category

whose objects are CM pairs (A1,A2) over OK-schemes such that Aj is an object of Y
θj
j for j = 1, 2,

where θj = θ|OKj . A morphism (A′1,A
′
2) → (A1,A2) between two such pairs defined over OK-

schemes T and S, respectively, is a morphism of OK-schemes T → S together with an isomorphism

(in the above sense) of CM pairs (A′1,A
′
2) ∼= (A1,A2)/T over T .

Definition 3.2.4. Let θ : OK → OB/mB be a ring homomorphism. For any α ∈ F× define Xθ,α to

be the category whose objects are triples (A1,A2, f) where (A1,A2) ∈Xθ(S) for some OK-scheme

S and f ∈ L(A1,A2) satisfies degCM(f) = α on every connected component of S. A morphism

(A′1,A
′
2, f
′)→ (A1,A2, f)

between two such triples, with (A′1,A
′
2) and (A1,A2) CM pairs over OK-schemes T and S, respec-

tively, is a morphism of OK-schemes T → S together with an isomorphism

g : (A′1,A
′
2)→ (A1,A2)/T

of CM pairs over T compatible with f and f ′ in the following sense. Let g = (g1, g2) where each

gj : A′j → Aj×S T is an OKj -linear isomorphism of false elliptic curves. We require that the diagram

A′1
g1 //

f ′

��

A1 ×S T

f×idT

��
A′2

g2 // A2 ×S T

commute.

As before, the categories Xθ and Xθ,α are stacks of finite type over Spec(OK). Let S be an
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OK-scheme and suppose (A1,A2, f) is an object of T B
m (S), with notation as in the introduction.

Set α = degCM(f), so TrF/Q(α) = deg∗(f) = m on every connected component of S. By (3.2.1) the

pair (A1,A2) ∈ Xθ(S) for a unique θ : OK → OB/mB , so (A1,A2, f) is an object of Xθ,α(S) and

is not an object of Xη,β(S) for any pair (η, β) 6= (θ, α). Therefore there is a decomposition

T B
m =

⊔
α∈F×

TrF/Q(α)=m

⊔
θ:OK→OB/mB

Xθ,α.

Definition 3.2.5. A false elliptic curve (A, i) over Fp is supersingular if the underlying abelian

variety A is supersingular: A is isogenous to E2 for some supersingular elliptic curve E over Fp.
A CM pair (A1,A2) over Fp is supersingular if the underlying abelian varieties A1 and A2 are

supersingular.

Lemma 3.2.6. If p is a prime dividing dB, or more generally, a prime nonsplit in Kj, then any

A ∈ Yj(Fp) is supersingular.

Proof. By Proposition 2.1.4 there are two possibilities for A up to isogeny. Suppose A ∼ E2 for

some ordinary elliptic curve E over Fp. Then End0(E) ∼= L for some imaginary quadratic field

L and End0
OB (A) ∼= L. But Kj ↪→ End0

OB (A), so L ∼= Kj . Tensoring the p-adic representation

End(E)→ EndZp(Tp(E)) with Qp gives a Qp-algebra homomorphism

Kj,p = Kj ⊗Q Qp → Qp.

This map cannot be injective by counting dimensions, so Kj,p is not a field, which means p is split

in Kj .

Proposition 3.2.7. Let k be an algebraically closed field of characteristic p > 0 and let θ : OK →
OB/mB be a ring homomorphism. Let α ∈ F× and suppose (A1,A2, f) ∈Xθ,α(k).

(a) We have p > 0 and End0
OB (A1) ∼= End0

OB (A2) ∼= B(p). In particular, if k = Fp then (A1,A2) is

a supersingular CM pair.

(b) There is an isomorphism of F -quadratic spaces

(V (A1,A2),degCM) ∼= (K,β ·NK/F )

for some β ∈ F×, with β determined up to multiplication by a norm from K×. Also, β is totally

positive.
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(c) There is an isomorphism of Q-quadratic spaces

(V (A1,A2),deg∗) ∼= (B(p),Nrd),

where Nrd is the reduced norm on B(p).

(d) If p does not divide dB then it is nonsplit in K1 and K2.

Proof. (a) Suppose p = 0, so we may assume A1 and A2 are false elliptic curves over C with complex

multiplication by OK1 and OK2 , respectively. Since deg∗(f) 6= 0 by assumption, f : A1 → A2 is an

isogeny, so it induces an isomorphism End0
OB (A1) ∼= End0

OB (A2) of Q-algebras. Also by assumption

we have embeddings κ1 : K1 ↪→ End0
OB (A1) and κ2 : K2 ↪→ End0

OB (A2). If A1, which is isogenous

to A2, is simple then End0
OB (A1) ∼= End0

OB (A2) ∼= Q, which is impossible. The other possibility is

A1 ∼ E2 for some elliptic curve E over C, in which case End0
OB (A1) ∼= End0

OB (A2) ∼= L for some

imaginary quadratic field L. But then κ1 and κ2 induce isomorphisms K1
∼= L ∼= K2, contrary to

our assumption about K1 and K2. Therefore p > 0.

If k has positive transcendence degree over Fp, then End0
OB (A1), which already contains K1,

embeds into an imaginary quadratic field or into B(p). This forces End0
OB (A1) to be an imaginary

quadratic field or B(p) (by counting dimensions over Q). The same statement holds if k = Fp. It

follows that End0
OB (A1) ∼= End0

OB (A2) ∼= B(p) because otherwise K1
∼= K2 as above.

(b) Since f : A1 → A2 is an isogeny, it induces an isomorphism of Q-vector spaces V (A1,A2)→
End0

OB (A1) defined by ϕ 7→ f t ◦ ϕ. As End0
OB (A1) ∼= B(p) has dimension 4 as a Q-vector space,

V (A1,A2) has dimension 1 over K. Therefore V (A1,A2), together with 〈· , ·〉CM, is a Hermitian

K-module of dimension 1. This means that there is a γ ∈ K× such that 〈v, w〉CM = vγw for all

v, w ∈ K, so

degCM(v) =
1
2

[v, v]CM =
1
2

TrK/F 〈v, v〉CM =
1
2

TrK/F (vvγ) = β ·NK/F (v),

where β = 1
2 TrK/F (γ) ∈ F×. This proves the existence of the isomorphism of F -quadratic spaces.

Now suppose γ′ ∈ K× is another element satisfying 〈v, w〉CM = vγ′w for all v, w ∈ K. Then

γ = uγ′u = γ′ ·NK/F (u) for some u ∈ K×, so

β =
1
2

TrK/F (γ) =
1
2

NK/F (u) TrK/F (γ′) = β′ ·NK/F (u),

where β′ is the element of F× corresponding to γ′. Finally, since deg∗ is positive, degCM is totally

positive, so β is totally positive.

(c) Under the isomorphism V (A1,A2) → End0
OB (A1) defined above, the quadratic form deg∗
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on V (A1,A2) corresponds to the quadratic form b−1 deg∗ on End0
OB (A1), where b = deg∗(f). We

claim that under the isomorphism End0
OB (A1) → B(p), the quadratic form deg∗ on End0

OB (A1)

corresponds to the quadratic form Nrd on B(p). The Rosati involution ϕ 7→ ϕ† = ϕt on End0
OB (A1)

corresponds to a positive involution on the definite quaternion algebra B(p), which must be the main

involution x 7→ xι by Lemma 2.1.11(a). Since Nrd(x) = xxι and deg∗(ϕ) = ϕ ◦ ϕt, this proves the

claim. Therefore there is an isomorphism of Q-quadratic spaces

(V (A1,A2),deg∗) ∼= (B(p), b−1 Nrd).

However, since b > 0 it is in the image of Nrd, so there is an isomorphism of Q-quadratic spaces

(B(p), b−1 Nrd) ∼= (B(p),Nrd).

(d) Suppose p - dB , so p ramifies in B(p). If p splits in Kj then, since Kj embeds in B(p), we have

B(p)⊗Q Qp ⊃ Kj ⊗Q Qp
∼= Qp×Qp. This is impossible because B(p)⊗Q Qp is a division algebra.



Chapter 4

Group actions

In this chapter we describe two group actions on the set [Yj(S)], the first of which is used in defining

a number called the orbital integral, an important tool used in counting the number of geometric

points of Xθ,α. Let Af = Q̂ = Q ⊗Z Ẑ denote the ring of finite adeles over Q. More generally,

for any number field L, L̂ = L ⊗Q Q̂ is the ring of finite adeles over L. For any Z-module M , let

M̂ = M ⊗Z Ẑ and for any Q-vector space V , let V̂ = V ⊗Q Q̂. For any prime number ` and any CM

pair (A1,A2), set

L`(A1,A2) = L(A1,A2)⊗Z Z`, V`(A1,A2) = V (A1,A2)⊗Q Q`.

For any sets Y ⊂ X we write 1Y : X → {0, 1} for the characteristic function of Y . For j ∈ {1, 2}
define an algebraic group Tj over Q with functor of points given by Tj(R) = (Kj ⊗Q R)× for any

Q-algebra R. Note that Tj is the Weil restriction ResKj/Q(Gm). Define a map νj : Tj → Gm, given

on points by νj(tj) = tjtj , and define an algebraic group T over Q with functor of points

T (R) = {(t1, t2) ∈ T1(R)× T2(R) : ν1(t1) = ν2(t2)}.

Define another algebraic group T 1 over Q with

T 1(R) = {z ∈ (K ⊗Q R)× : NK/F (z) = 1}.

There is a homomorphism ν : T → Gm given on points by ν(t) = ν1(t1) = ν2(t2) for t = (t1, t2) ∈
T (R), and there is a homomorphism η : T → T 1 defined on points by η(t) = ν(t)−1 · (t1 ⊗ t2).

35
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Let U ⊂ T (Af ) be the compact open subgroup

U = T (Af ) ∩ (Ô×K1
× Ô×K2

)

and let V = η(U) ⊂ T 1(Af ). There are factorizations U =
∏
` U` and V =

∏
` V` for some compact

open subgroups U` ⊂ T (Q`) and V` ⊂ T 1(Q`).

Lemma 4.0.8. If R is a field of characteristic 0, the ring of adeles over Q, or the ring of finite

adeles over Q, then the sequence

1→ R× → T (R)
η−→ T 1(R)→ 1

is exact, where R× → T (R) is the diagonal embedding.

Proof. See [14, Proposition 2.13].

Using this one easily shows that η : T → T 1 induces an isomorphism of groups

T (Q)\T (Af )/U ∼= T 1(Q)\T 1(Af )/V.

For j ∈ {1, 2} let Cl(OKj ) be the ideal class group of Kj and set Γ = Cl(OK1)×Cl(OK2). Define a

homomorphism

I : T (Q)\T (Af )/U → Γ

by sending (t1, t2) ∈ T (Af ) to the pair of ideal classes (a1, a2) ∈ Γ with

aj =
∏

p⊂OKj

pordp((tj)p),

where the product is over all prime ideals of OKj and (tj)p is the p-th component of the idele tj .

Note that if (t1, t2) ∈ T (Af ) then tj ∈ Tj(Q̂) = K̂×j is a finite idele of Kj .

Proposition 4.0.9. The map I is an isomorphism of groups.

Proof. See [14, Proposition 2.14].

4.1 The Serre tensor construction

For any OK-scheme S we will describe how the group Γ acts on the set [Xθ(S)] using a general

construction of Serre which we now recall. We state these results only over a commutative ring,
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which suffices for our purposes, but they hold more generally over any associative ring, but then care

must be taken in distinguishing between left and right modules. For more details see [7, Section 7].

Theorem 4.1.1. Let R be a commutative ring, M a finitely generated projective R-module (in par-

ticular, M is locally free), with dual module M∨ = HomR(M,R), and M an R-module scheme over

a scheme S (that is, M is a commutative S-group scheme together with an R-action).

(a) The functor X 7→ M ⊗R M (X) ∼= HomR(M∨,M (X)) on S-schemes is represented by a com-

mutative group scheme over S, denoted M ⊗R M or HomR(M∨,M ).

(b) Suppose M → S is a locally finite type R-module scheme. If M is smooth or proper over S,

then so is M ⊗R M . If the S-fibers of M are connected, then so are the S-fibers of M ⊗R M . In

particular, if M → S is an abelian scheme then so is M ⊗R M . Furthermore, if M has fibers over

S of dimension d and M has constant local rank r over R, then M ⊗R M has fibers of dimension

dr.

(c) Let M and N be finitely generated projective R-modules. For any two R-module schemes M and

N over a scheme S, view the group HomS(M ,N ) as an R-module via the action on N . Then the

natural map

ξN,M : N∨ ⊗R HomS(M ,N )⊗RM → HomS(HomR(M,M ),HomR(N,N )),

defined on points in S-schemes by

(ξN,M (`⊗ ϕ⊗m))(f) : n 7→ `(n)ϕ(f(m)),

is an isomorphism of R-modules. In other words,

HomS(M ⊗R M , N ⊗R N ) ∼= N ⊗R HomS(M ,N )⊗RM∨.

Now suppose (A, κ) is a false elliptic curve over an OK-scheme S with complex multiplication by

an order R in K1 or K2, and let a be a fractional ideal of R. Since there is a ring homomorphism

κ : R→ EndS(A), we may view A as an R-module scheme over S, so from a being a finitely generated

projective R-module, there is a commutative S-group scheme a⊗RA with (a⊗RA)(X) = a⊗RA(X)

for any S-scheme X. As A → S is an abelian scheme of relative dimension 2 and a is locally free

of rank 1, we see that a ⊗R A → S is an abelian scheme of relative dimension 2. Next, the ring

homomorphism i : OB → EndS(A) induces a ring homomorphism

ia : OB → EndS(a⊗R A)
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given on points by

ia(x)(a⊗ α) = a⊗ i(x)(α)

for any S-scheme X, x ∈ OB , and α ∈ A(X). In the same way, the ring homomorphism κ : R →
EndOB (A) induces a ring homomorphism

κa : R→ EndS(a⊗R A)

satisfying κa(y) ◦ ia(x) = ia(x) ◦ κa(y) for all x ∈ OB and y ∈ R.

Finally we consider the CM normalization condition. There is a natural isomorphism of OS-

modules Lie(a⊗R A) ∼= a⊗R Lie(A), which can be seen by using the following functorial definition

of Lie(A): for any S-scheme X,

Lie(A)(X) = ker(A(X[ε])→ A(X)),

where X[ε] = X ⊗Z Z[ε] and Z[ε] = Z[Y ]/(Y 2). (The connection between the two descriptions of

Lie(A) is as follows. Viewing Lie(A) as a sheaf of OS-modules, the functor X 7→ Lie(A)(X) on

S-schemes is given by

X 7→ (Lie(A)⊗OS OX)(X),

the global sections of the OX -module Lie(A)⊗OS OX . Going the other direction, viewing Lie(A) as a

functor on S-schemes as above, it defines an OS-module by restricting to open immersions X → S.)

Using this isomorphism, the induced map

κLie
a : R→ EndOB (Lie(a⊗R A)) ∼= EndOB (a⊗R Lie(A))

is given by κLie
a (y)(a⊗ t) = a⊗ κLie(y)(t) for any t ∈ Lie(A)(U) with U ⊂ S an open set. Since κLie

satisfies the CM normalization condition, it follows that κLie
a does as well. This shows a ⊗R A is a

false elliptic curve over S with complex multiplication by R.

For any OK-scheme S and any ring homomorphism θ : OK → OB/mB , we claim that the group

Γ acts on the set [Xθ(S)] by

(a1, a2) · (A1,A2) = (a1 ⊗OK1
A1, a2 ⊗OK2

A2).

(This action clearly only depends on aj through its ideal class.) We will write aj ⊗ Aj for the

false elliptic curve aj ⊗OKj Aj with complex multiplication by OKj . Let (A1,A2) ∈ Xθ(S) and
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(a1, a2) ∈ Γ. Since

(ij)aj : OB → EndS(aj ⊗Aj)

is given on points by (ij)aj (x)(a⊗α) = a⊗ij(x)(α), there is an isomorphism of OKj -module schemes

over S

(aj ⊗Aj)[mB ] ∼= aj ⊗Aj [mB ].

The map

(κmB
j )aj : OKj → EndOB/mB (aj ⊗Aj [mB ])

is then given on points by (κmB
j )aj (x)(a ⊗ t) = a ⊗ κmB

j (x)(t). Since (A1,A2) ∈ Xθ(S), it follows

that the diagram

OKj
(κ

mB
j )aj //

θj $$H
HHHHHHHH

EndOB/mB (aj ⊗Aj [mB ])

OB/mB

55lllllllllllll

commutes, which means (a1 ⊗A1, a2 ⊗A2) ∈Xθ(S).

Now let (A1,A2) be a CM pair over an algebraically closed field. Recall thatK acts on V (A1,A2)

by

(x1 ⊗ x2) • f = κ2(x2) ◦ f ◦ κ1(x1).

By restriction we see that T 1(Q) ⊂ K× acts on V (A1,A2), and by composing with the homomor-

phism η : T → T 1, T (Q) acts on V (A1,A2). This action is given by

t • f = κ2(t2) ◦ f ◦ κ1(t1)−1

for t = (t1, t2) ∈ T (Q) because

κ1(t1)−1 = κ1(t1)t ⊗ deg∗(κ1(t1))−1 = κ1(t1)⊗NK1/Q(t1)−1

in End0
OB (A1), while η(t) = NK1/Q(t1)−1 · (t1 ⊗ t2).

Now fix t = (t1, t2) ∈ T (Af ) and let (a1, a2) = I(t) ∈ Γ, with I the isomorphism in Proposition

4.0.9. For j ∈ {1, 2} there is an OKj -linear quasi-isogeny

fj ∈ HomOB (Aj , aj ⊗Aj)⊗Z Q,
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defined on points by fj(x) = 1⊗ x. Then the map

V (a1 ⊗A1, a2 ⊗A2)→ V (A1,A2)

given by ϕ 7→ f−1
2 ◦ ϕ ◦ f1 is an OK-linear isomorphism of vector spaces. This map identifies

L(a1 ⊗A1, a2 ⊗A2) with the OK-submodule

κ2(a2) ◦ L(A1,A2) ◦ κ1(a−1
1 ) ⊂ V (A1,A2).

We may extend the map κj : OKj → End(Aj) to a map Kj,` → End(Aj) ⊗Z Q` or to a map

K̂j → End(Aj) ⊗Z Q̂ by tensoring with Q` or Q̂. Then we have a K̂-linear isomorphism of F̂ -

quadratic spaces

V̂ (A1,A2) ∼= V̂ (a1 ⊗A1, a2 ⊗A2)

with L̂(a1 ⊗A1, a2 ⊗A2) isomorphic to the ÔK-submodule

t • L̂(A1,A2) = {κ2(t2) ◦ f ◦ κ1(t1)−1 : f ∈ L̂(A1,A2)}

of V̂ (A1,A2).

Definition 4.1.2. Let (A1,A2) be a supersingular CM pair over an algebraically closed field of

positive characteristic. For each prime number ` and α ∈ F×` define the orbital integral at ` by

O`(α,A1,A2) =
∑

t∈Q×` \T (Q`)/U`

1L`(A1,A2)(t−1 • f)

if there is an f ∈ V`(A1,A2) satisfying degCM(f) = α. If no such f exists then set O`(α,A1,A2) = 0.

Since T (Q`) acts transitively on the set of all f ∈ V`(A1,A2) such that degCM(f) = α, the

orbital integral does not depend on the choice of f in the definition.

Lemma 4.1.3. Let S be an OK-scheme and for j ∈ {1, 2} set wj = |O×Kj |. Every x ∈Xθ(S), viewed

as an element of the set [Xθ(S)], has trivial stabilizer in Γ and satisfies |AutXθ(S)(x)| = w1w2.

Proof. Suppose we have (a1, a2) ∈ Γ and a CM pair x = (A1,A2) ∈ Xθ(S) satisfying (A1,A2) ∼=
(a1 ⊗ A1, a2 ⊗ A2). This means that there is an OKj -linear isomorphism of false elliptic curves

Aj ∼= aj ⊗Aj for j = 1, 2. Set Oj = OB ⊗Z OKj and let HomOj (Aj , aj ⊗Aj) be the OKj -module of

OKj -linear homomorphisms Aj → aj ⊗ Aj of false elliptic curves. Then there is an isomorphism of

OKj -modules

HomOj (Aj , Aj) ∼= HomOj (Aj , aj ⊗Aj).
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By Theorem 4.1.1(c) there is an isomorphism of OKj -modules

HomOKj (Aj , aj ⊗Aj) ∼= aj ⊗OKj EndOKj (Aj),

so EndOj (Aj) ∼= aj ⊗OKj EndOj (Aj). We claim that EndOj (Aj) ∼= OKj as a ring and as an OKj -
module. By definition, EndOj (Aj) is the centralizer of OKj in EndOB (Aj). Picking any geometric

point s of S, there are inclusions

OKj ↪→ EndOB (Aj) ↪→ EndOB ((Aj)s),

the second coming from Lemma 2.1.7. By our classification of such endomorphism rings, either

EndOB ((Aj)s) ∼= OKj or EndOB ((Aj)s) is an order in a quaternion algebra, so the same is true of

EndOB (Aj). The centralizer of OKj in either such ring is OKj . Hence aj ∼= OKj as an OKj -module,

which means aj is principal. Finally, by definition, an automorphism of x in Xθ(S) is a pair of

elements (a1, a2) with aj ∈ AutOj (Aj) ∼= O×Kj , so |AutXθ(S)(x)| = w1w2.

Proposition 4.1.4. Let p be a prime number that is nonsplit in K1 and K2 and suppose (A1,A2)

is a CM pair over Fp (necessarily supersingular). For any α ∈ F× totally positive,

∑
(a1,a2)∈Γ

#{f ∈ L(a1 ⊗A1, a2 ⊗A2) : degCM(f) = α} =
w1w2

2

∏
`

O`(α,A1,A2).

Proof. The proof is formally the same as [14, Proposition 2.18], replacing the definitions there with

our analogous definitions.

This result will form part of our calculation of the number of geometric points of Xθ,α. The

other part will be to find an expression for the product of the orbital integrals, which we do below

in Theorem 7.3.3.

4.2 The Atkin-Lehner group

The other important group action on [Yj(S)] comes from the Atkin-Lehner group W0 of OB . By

definition, W0 = NB×(OB)/Q×O×B = 〈wp : p | dB〉, where wp ∈ OB has reduced norm p. As an

abstract group, W0
∼=
∏
p|dB Z/2Z. The group W0 acts on the set [Yj(S)] for any OK-scheme S as

follows: for w ∈ W0 and x = (A, i, κ) ∈ Yj(S), define w · x = (A, iw, κ), where iw : OB → EndS(A)
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is given by iw(a) = i(waw−1). Note that

EndOB (w ·A) = {f ∈ End(A) : f ◦ iw(a) = iw(a) ◦ f for all a ∈ OB}

= {f ∈ End(A) : f ◦ i(a) = i(a) ◦ f for all a ∈ OB}

= EndOB (A),

and the CM action κ : OKj → EndOB (w · A) = EndOB (A) is unchanged under the action of w,

so (A, iw, κ) still satisfies the CM normalization condition. As described above, Cl(OKj ) acts on

[Yj(S)] through Serre’s tensor construction. Clearly the actions of W0 and Cl(OKj ) commute, so

there is an induced action of W0 × Cl(OKj ) on [Yj(S)].

Proposition 4.2.1. The group W0 × Cl(OKj ) acts simply transitively on [Yj(C)].

Proof. It is shown in [15] that W ′0 × Cl(OKj ) acts simply transitively on [Yj(C)], where W ′0 ⊂ W0

is the subgroup generated by {wp : p | dB , p inert in Kj}. However, we are assuming each prime

p | dB is inert in Kj .



Chapter 5

Deformation theory I

The main result of this chapter states that any CM false elliptic curve arises from a CM elliptic curve

through the Serre tensor construction. We will use this in the next chapter to give a description,

in terms of certain coordinates, of the ring HomOB (A) ⊗Z Zp for A a CM false elliptic curve over

Fp for p | dB . Another important result of this chapter that will be needed later is that the group

W0 × Cl(OKj ) acts simply transitively on the set [Yj(FP)]. Fix a prime ideal P ⊂ OK of residue

characteristic p. Let W be the ring of integers of the completion of the maximal unramified extension

of KP, so in particular W is an OK-algebra. Let CLN be the category whose objects are complete

local Noetherian W -algebras with residue field FP, where FP = OK/P, and morphisms R→ R′ are

local ring homomorphisms inducing the identity FP → FP on residue fields.

5.1 General theory

For j ∈ {1, 2} and m > 1 an integer define Mm
j to be the category whose objects are triples (A , κ, λ),

where

(1) A → S is an abelian scheme of relative dimension m over an OKj -scheme S,

(2) κ : OKj → EndS(A ) is a ring homomorphism,

(3) λ : A → A ∨ is a principal polarization satisfying λ ◦ κ(x) = κ(x)∨ ◦ λ for all x ∈ OKj .

43
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We also require that the diagram

OKj
κLie

//

##G
GGGGGGG

EndOS (Lie(A ))

OS(S)

77ooooooooooo

commute, where OKj → OS(S) is the structure map. A morphism (A ′, κ′, λ′)→ (A , κ, λ) between

two such triples defined over OKj -schemes T and S, respectively, is a morphism of OKj -schemes

T → S together with an OKj -linear isomorphism ϕ : A ′ → A ×S T of abelian schemes over T such

that the diagram

(A ×S T )∨ ∼= A ∨ ×S T
ϕ∨ // (A ′)∨

A ×S T

λ×idT

OO

ϕ−1
// A ′

λ′

OO

commutes. The category Mm
j is a stack over Spec(OKj ).

If R̃→ R is a surjection of OKj -algebras and x = (A , κ, λ) ∈Mm
j (R), a deformation of x to R̃

is an object (Ã , κ̃, λ̃) ∈Mm
j (R̃) together with an isomorphism

ϕ : Ã ⊗R̃ R→ A

of abelian schemes compatible with κ, κ̃, λ, λ̃. This last condition means that the diagram

Ã ⊗R̃ R

ϕ

��

κ̃(a)⊗idR // Ã ⊗R̃ R

ϕ

��
A

κ(a) // A

commutes for all a ∈ OKj and the diagram

Ã ⊗R̃ R
λ̃⊗idR // (Ã )∨ ⊗R̃ R ∼= (Ã ⊗R̃ R)∨

A

ϕ−1

OO

λ // A ∨

ϕ∨

OO
(5.1.1)

commutes.

Theorem 5.1.1. If R̃→ R is a surjection of OKj -algebras with nilpotent kernel, then

(a) each A ∈Mm
j (R) admits a unique deformation to Ã ∈Mm

j (R̃),
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(b) for any A ∈Mm
j (R) and B ∈M n

j (R) the reduction map

HomOKj (Ã , B̃)→ HomOKj (A ,B)

is an isomorphism.

Proof. See [12, Proposition 2.1.2].

Another way of stating part (a) is that the structure morphism Mm
j → Spec(OKj ) is étale. This

morphism is also proper, by a proof identical to that of [13, Proposition 3.3.5].

If S is an OK-scheme and x = (A, i, κ) ∈ Yj(S) then x ∈M 2
j (S). To see this, all we need to check

is that x satisfies condition (3) above. By Proposition 2.1.12 there is some principal polarization

λ : A → A∨, and by definition, κ(y)t = λ−1 ◦ κ(y)∨ ◦ λ for any y ∈ OKj . But from Lemma 3.1.4,

κ(y)t = κ(y), and hence κ(y)∨ ◦ λ = λ ◦ κ(y) for all y ∈ OKj .

Definition 5.1.2. Suppose R̃ → R is a surjection of OK-algebras and x = (A, i, κ) ∈ Yj(R). A

deformation of x (or just a deformation of A) to R̃ is an object (Ã, ĩ, κ̃) ∈ Yj(R̃) together with an

OKj -linear isomorphism Ã⊗R̃ R→ A of false elliptic curves.

Suppose R̃ → R is a surjection of OK-algebras, (A, i, κ) ∈ Yj(R), and (Ã, ĩ, κ̃) ∈ Yj(R̃) is a

deformation of (A, i, κ). We claim it is automatic that the principal polarizations λ̃ : Ã→ (Ã)∨ and

λ : A→ A∨ defined in Proposition 2.1.12 are compatible in the sense that a diagram such as (5.1.1)

commutes, where ϕ : Ã⊗R̃ R→ A is an isomorphism. To see this, first note that λ̃ and ϕ induce a

principal polarization λ′ : A→ A∨ defined by

λ′ = (ϕ∨)−1 ◦ (λ̃⊗ idR) ◦ ϕ−1,

so we have the diagram (5.1.1) with λ′ in place of λ. Now, using the fact that

λ̃−1
t
◦ ĩ(x)∨ ◦ λ̃t = ĩ(x∗)

for all x ∈ OB and all geometric points t of Spec(R̃), and the fact that

i(x) ◦ ϕ = ϕ ◦ (̃i(x)⊗ idR)

for all x ∈ OB , a computation shows

(λ′)−1
s ◦ i(x)∨ ◦ (λ′)s = i(x∗)
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for all x ∈ OB and all geometric points s of Spec(R). By the uniqueness part of Proposition 2.1.12

we must have λ′ = λ, which proves the claim.

Let x = (A, i, κ) ∈ Yj(FP) and define a functor DefOB (A,OKj ) : CLN → Sets that assigns to

each object R of CLN the set of isomorphism classes of deformations of x to R. If R → R′ is a

morphism in CLN then the corresponding map

DefOB (A,OKj )(R)→ DefOB (A,OKj )(R′)

is defined by Ã 7→ Ã⊗R R′.

Corollary 5.1.3. The functor DefOB (A,OKj ) is represented by W , so there is a bijection

DefOB (A,OKj )(R) ∼= HomCLN(W , R),

which is a one point set, for any object R of CLN. In particular, the reduction map [Yj(R)] →
[Yj(FP)] is a bijection for any R ∈ CLN.

Proof. Let R be an Artinian object of CLN, so the reduction map R → FP is surjective with

nilpotent kernel, the maximal ideal of R. Since A ∈ M 2
j (FP), it has a unique deformation to

Ã ∈M 2
j (R) and the reduction map EndOKj (Ã)→ EndOKj (A) is an isomorphism. Therefore we can

lift the OKj -linear action of OB on A to a unique such action on Ã. This shows that each object of

Yj(FP) has a unique deformation to an object of Yj(R) for any Artinian R in CLN. Now let R be

an arbitrary object of CLN, so R = lim←−R/m
n, where m ⊂ R is the maximal ideal, and R/mn is an

Artinian object of CLN. The result now follows from the Artinian case, the bijection

HomCLN(W , R) ∼= lim←−HomCLN(W , R/mn),

and the fact that the natural map

DefOB (A,OKj )(R)→ lim←−DefOB (A,OKj )(R/mn)

is a bijection by Grothendieck’s existence theorem ([7, Theorem 3.4]).

Proposition 5.1.4. The group W0 × Cl(OKj ) acts simply transitively on [Yj(FP)].

Proof. Let Cp be the metric completion of an algebraic closure of Qp, where p is the prime below

P, and fix a ring embedding W → Cp. There is a W0 × Cl(OKj )-equivariant bijection [Yj(Cp)] →
[Yj(FP)] defined as follows. Let A ∈ Yj(Cp). Since A is a CM abelian variety over Cp, it descends

to a number field, which means there is an abelian surface A0 over L with an action of OKj , for



CHAPTER 5. DEFORMATION THEORY I 47

some number field L, and an isomorphism A0 ⊗L Cp ∼= A compatible with the actions of OKj on

each. By passing to a finite extension of L if necessary, we may assume EndL(A0) = EndL(A0),

where L is an algebraic closure of L. Now fix a prime p ⊂ OL lying over p. Passing to a further

finite extension of L, we may assume A0 has good reduction at p, since A0 is a CM abelian variety.

From [7, Theorem 2.1(1)], the natural map EndL(A0) → EndCp(A) is an isomorphism, so there

is an isomorphism EndOKj (A0) → EndOKj (A). Therefore the OKj -linear OB-action on A induces

such an action on A0, which means A0 is a CM false elliptic curve over L (the CM normalization

condition descends as well as base extends). Let A0 be the Néron model of A0 at p, so A0 is an

abelian scheme over OL,p satisfying A0 ⊗OL,p Frac(OL,p) ∼= A0. Since EndL(A0) ∼= EndOL,p(A0),

there are induced commuting actions of OB and OKj on A0, making it into a CM false elliptic curve

over OL,p. Finally, let Ã0 = A0 ⊗OL,p OL/p, so Ã0 is a CM false elliptic curve over OL/p. Define

[Yj(Cp)] → [Yj(FP)] by A 7→ Ã0 ⊗OL/p FP. This map does not depend on the abelian surface A0

or the number field L such that A0 ⊗L Cp ∼= A since we are base extending to FP in the end.

Next define a map [Yj(FP)]→ [Yj(Cp)] as the composition

[Yj(FP)]→ [Yj(W )]→ [Yj(Cp)],

where the first map is the inverse of the reduction map in Corollary 5.1.3 and the second map is

base extension to Cp. This is the inverse to the map [Yj(Cp)]→ [Yj(FP)] defined above. The result

now follows from Proposition 4.2.1.

5.2 Structure of CM false elliptic curves

Our next goal is to prove there is an isomorphism as in (3.2.1). It will be a consequence of this

isomorphism that any A ∈ Yj(S) is of the form M⊗OKj E for some E ∈ Cj(S) and some OB⊗ZOKj -
module M , free of rank 4 over Z. To prove this result, we will describe a bijection between the set

of isomorphism classes of such modules M and the set [Yj(C)].

For j ∈ {1, 2} set Oj = OB ⊗Z OKj and define Lj to be the set of isomorphism classes of

Oj-modules that are free of rank 4 over Z. Define Kj to be the set of O×B-conjugacy classes of ring

embeddings OKj ↪→ OB . We begin by examining the local structure of modules in Lj .

Lemma 5.2.1. Fix a prime p, let ∆ be the maximal order in the unique quaternion division algebra

∆Q over Qp, and fix an embedding Zp2 ↪→ ∆. There is an isomorphism of rings Zp2 ⊗Zp ∆ ∼= R1,

where

R1 =
[

Zp2 Zp2

pZp2 Zp2

]
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is the standard Eichler order of level 1 in M2(Qp2).

Proof. There is a ring homomorphism f : Zp2 → EndZp2 (∆) given by f(a)(δ) = aδ, and there is a

ring homomorphism g : ∆→ EndZp2 (∆) given by g(x)(δ) = δxι, where x 7→ xι is the main involution

on ∆Q. Note that g is multiplicative since (xy)ι = yιxι. As f and g have commuting images, there

is an induced ring homomorphism

Φ : Zp2 ⊗Zp ∆→ EndZp2 (∆) ∼= M2(Zp2)

given by Φ(a⊗x)(δ) = aδxι. Tensoring this map with Qp2 induces the natural isomorphism Qp2⊗Qp

∆Q ∼= M2(Qp2) (the maximal subfield Qp2 ⊂ ∆Q containing Qp splits ∆Q), so ker Φ is a torsion Zp-
module. However, Zp2 ⊗Zp ∆ is a torsion-free Zp-module, which means Φ is injective.

Let m∆ ⊂ ∆ be the unique maximal ideal. Then EndZp2 (m∆) and EndZp2 (∆) are distinct

maximal orders in EndQp2 (∆⊗Zp2 Qp2) ∼= M2(Qp2) and

im Φ ⊂ R′ = EndZp2 (∆) ∩ EndZp2 (m∆).

Since R′ is an Eichler order in M2(Qp2), it is conjugate to

Rn =
[

Zp2 Zp2

pnZp2 Zp2

]
for some n > 1 ([7, Lemma A.9(2)]). To show im Φ = R1, we will consider the discriminants of

the orders im Φ ∼= Zp2 ⊗Zp ∆ and R′ in M2(Qp2). By [7, Example A.13], disc(∆) = p2Zp, and thus

disc(im Φ) = disc(∆)Zp2 = p2Zp2 . By [7, Example A.12], disc(R′) = disc(Rn) = p2nZp2 . Now,

for any Zp2 -orders O ⊂ O′, we have disc(O′) | disc(O), with equality if and only if O = O′. As

im Φ ⊂ R′, p2nZp2 | p2Zp2 , so we must have n = 1 and im Φ = R′ ∼= R1.

Lemma 5.2.2. Fix a prime p and let ∆ be the maximal order in the unique quaternion division

algebra over Qp. Fix an embedding Zp2 ↪→ ∆ so that there is a decomposition ∆ = Zp2⊕Zp2Π, where

Π is a uniformizer satisfying Π2 = p and Πa = aΠ for all a ∈ Zp2 . Then any ring homomorphism

f : ∆→ M2(Zp2) is GL2(Zp2)-conjugate to exactly one of the following two maps:

f1 : a+ bΠ 7→
[
a b
pb a

]
, f2 : a+ bΠ 7→

[
a pb
b a

]
.

The proof uses the general ideas of the proof of [24, Theorem 1.4].

Proof. Let M = Zp2 ⊕ Zp2 . Then M is a left Zp2-module via componentwise multiplication, and a

right ∆-module via matrix multiplication
[
a b

]
f(x), viewing elements of M as row vectors. These
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actions commute, so M is a ∆ ⊗Zp Zp2 -module. By Lemma 5.2.1, ∆ ⊗Zp Zp2 ∼= R1 is the standard

Eichler order of level 1 in M2(Qp2) and thus a hereditary order. (A hereditary order O in a central

simple algebra over a finite extension L of Qp is an OL-order such that all left O-lattices (left O-

modules that are OL-free of finite rank) are O-projective; any Eichler order of squarefree level is

hereditary.) Any R1-module which is free of finite rank over Zp is a direct sum of copies of ∆ and

m∆, where m∆ ⊂ ∆ is the unique maximal ideal ([23, Chapter 9]). By comparing Zp-ranks, we see

that there is an isomorphism of ∆⊗Zp Zp2 -modules ϕ : M → ∆ or ϕ : M → m∆.

First suppose ϕ : M → ∆ is an isomorphism of ∆⊗Zp Zp2-modules, where ∆ is a right ∆-module

through multiplication on the right, and a left Zp2-module through multiplication on the left via the

inclusion Zp2 ↪→ ∆. Let M ′ be the group M with the same left Zp2 -action, but now a right ∆-action

given by

(x, y) · (a+ bΠ) =
[
x y

] [ a b
pb a

]
.

Then there is an isomorphism ψ : ∆→M ′ of ∆⊗Zp Zp2-modules given by ψ(a+ bΠ) =
[
a b

]
, and

thus γ = ψ ◦ ϕ : M → M ′ is a ∆ ⊗Zp Zp2-linear isomorphism. Hence γ ∈ GL2(Zp2) and since it is

∆-linear, γ(m · x) = γ(m) · x for all x ∈ ∆ and m ∈M . Therefore f = γ ◦ f1 ◦ γ−1.

Now suppose ϕ : M → m∆ is an isomorphism of ∆ ⊗Zp Zp2 -modules, where m∆ is a right ∆-

module through multiplication on the right, and a left Zp2-module through Zp2 ↪→ ∆. Let M ′ be

the group M with the same left Zp2 -action, but now a right ∆-action given by

(x, y) · (a+ bΠ) =
[
x y

] [a pb
b a

]
.

Writing m∆ = pZp2 ⊕ Zp2Π, there is an isomorphism ψ : m∆ →M ′ of ∆⊗Zp Zp2-modules given by

ψ(pa + bΠ) =
[
a b

]
. Similar to the first case, it follows that f = γ ◦ f2 ◦ γ−1, where γ = ψ ◦ ϕ ∈

GL2(Zp2).

To show f1 and f2 are not GL2(Zp2)-conjugate, first note that f1 = Tf2T
−1, where

T =
[
1 0
0 p

]
.

Suppose f1 and f2 are conjugate, so f1 = Xf2X
−1 for some X ∈ GL2(Zp2). Then conjugation by T

on f2(∆) ⊂ M2(Zp2) is equal to conjugation by X, which means X = UT for some U in the center

of f2(∆). In particular, U ∈ M2(Zp2). We then have

0 = ordp(det(X)) = ordp(det(U)) + 1 > 1,

a contradiction.
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Lemma 5.2.3. Let p be a prime number. For p - dB there is a unique isomorphism class of Oj,p-

modules free of rank 4 over Zp and for p | dB there are two isomorphism classes.

Proof. First suppose p - dB . In this case,

Oj,p ∼= OB,p ⊗Zp OKj ,p ∼= M2(OKj ,p),

and any Oj,p-module that is free of rank 4 over Zp is isomorphic to OKj ,p⊕OKj ,p, with the natural

left action of M2(OKj ,p). Now suppose p | dB , so Oj,p ∼= ∆ ⊗Zp Zp2 . By the proof of Lemma 5.2.2

there are two isomorphism classes of modules over this ring that are free of rank 4 over Zp.

Now we will show that the three sets Kj , Lj , and [Yj(C)] are all in bijection.

Proposition 5.2.4. There is a bijection Kj → Lj.

Proof. Let Θ : OKj → OB be a representative of an O×B-conjugacy class of embeddings and define

f : Kj → Lj by sending Θ to the Z-module LΘ = OB , viewed as a right OKj -module through

Θ (and multiplication on the right) and a left OB-module through multiplication on the left. The

isomorphism class of this Oj-module only depends on Θ through its O×B-conjugacy class. To show

f is injective, suppose Θ,Θ′ : OKj → OB are two embeddings and suppose ϕ : LΘ → LΘ′ is

an Oj-module isomorphism. By OKj -linearity we have ϕ(xΘ(a)) = ϕ(x)Θ′(a) for all a ∈ OKj
and all x ∈ OB . By OB-linearity we have ϕ ∈ EndOB (OB)×. There is an isomorphism of rings

Oop
B → EndOB (OB) defined by sending x to the endomorphism y 7→ yx. Therefore there is a u ∈ O×B

such that ϕ(x) = xu for all x ∈ OB , so Θ = uΘ′u−1.

There is an action of the group Cl(OKj ) on the set Kj given explicitly by the so-called “Shimura

reciprocity law” (we describe this below; see [6, Theorem 60(b)]), and under the injection f : Kj →
Lj , this action corresponds to the action a ·M = a−1 ⊗OKj M of Cl(OKj ) on Lj . To show f is

surjective, let M ∈ Lj and let Θ : OKj → OB be an embedding such that (LΘ)` ∼= M` as Oj,`-
modules for all primes ` (such a Θ exists for any M ; see the discussion below). Then there is an

Oj-linear isomorphism

LΘ ⊗OKj HomOj (LΘ,M)→M

given by x ⊗ ϕ 7→ ϕ(x), where the module on the left has the obvious left OB-action through its

action on LΘ, and HomOj (LΘ,M) is an OKj -module via the pointwise action on the images of

the homomorphisms (that this map is an isomorphism can be checked by proving it is an isomor-

phism after completion at each prime number, and using the following fact). The OKj -module

a = HomOj (LΘ,M) is a fractional ideal: for any prime number `, there is an isomorphism of OKj ,`-
modules a⊗Z Z` ∼= OKj ,`. Hence M ∼= LΘ ⊗OKj a = a−1 · LΘ is in the image of f , as Cl(OKj ) acts
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on f(Kj) ∼= Kj .

Proposition 5.2.5. There is a bijection Lj → [Yj(C)].

Proof. Let M ∈ Lj . Then V = M ⊗Z R is a 4-dimensional R-vector space with M a Z-lattice in V .

The action of OKj on M induces a map Kj ⊗Q R ∼= C→ End(V ), turning V into a C-vector space.

Define a function Lj → [Yj(C)] by sending M to the CM false elliptic curve with complex points

V/M . The inverse [Yj(C)]→ Lj is given by A 7→ H1(A(C),Z), the first homology of A(C).

Next we will describe further refinements of the sets Kj and Lj , and how the elements Θ ∈ Kj

relate to homomorphisms θj : OKj → OB/mB . Define an equivalence relation on the set Kj

according to Θ ∼ Θ′ if and only if the induced maps Θ̃, Θ̃′ : OKj → OB/mB are equal. Let K ′
j be

the set of equivalence classes under this relation. Under the bijection Kj → Lj , this equivalence

relation corresponds to the following equivalence relation on Lj : M ∼ M ′ if and only if M`
∼= M ′`

as Oj,`-modules for all primes ` (note by Lemma 5.2.3 that this really is only a condition at each

prime dividing dB). Let L ′j be the set of equivalence classes under this relation.

We know that the group W0×Cl(OKj ) acts simply transitively on the set [Yj(C)], so its natural

actions on Kj and Lj are also simply transitive (the above bijections are both equivariant with

respect to this group). Explicitly, the action of W0 on Kj is given by w · Θ = Θ′, where Θ′(a) =

wΘ(a)w−1, and the action on Lj is given by w · LΘ = Lw·Θ. The action of Cl(OKj ) on Lj is

given by a ·M = a−1 ⊗OKj M and the action on Kj is defined as follows, according to the Shimura

reciprocity law. Let a ∈ Cl(OKj ) and let Θ : OKj → OB . Then Θ(a)OB = xOB for some x ∈ OB
and a ·Θ = Θ′, where Θ′(a) = x−1Θ(a)x.

The elements of L ′j can be thought of as collections of Oj,`-modules {M`}` indexed by the prime

numbers. The action of W0 on Lj induces an action on L ′j . Explicitly, for ` | dB , the Atkin-Lehner

operator w` ∈W0 interchanges the two isomorphism classes of modules M` over Oj,` (see Proposition

7.2.7 below). It follows that under the action of W0×Cl(OKj ) on Lj , the group Cl(OKj ) acts simply

transitively on each equivalence class under ∼ and the group W0 acts simply transitively on the set

of equivalence classes L ′j . The corresponding results hold for the set Kj , so in particular #K ′
j =

|W0| = 2r, where r is the number of primes dividing dB . Since there are two ring homomorphisms

OKj → OB/mp
∼= Fp2 for each p | dB , there are 2r ring homomorphisms OKj → OB/mB , which

shows that each such homomorphism arises as the reduction of a homomorphism OKj → OB .

The equivalence relation ∼ on Kj induces an equivalence relation on the set [Yj(C)] determined

by the following: if [Θ] is the equivalence class of Θ ∈ Kj , then [Θ] is in bijection with [Y Θ̃
j (C)],

where Θ̃ : OKj → OB/mB is the map induced by Θ : OKj → OB . It follows that the natural action

of Cl(OKj ) on [Y Θ̃
j (C)] is simply transitive. The same statements hold with [Y Θ̃

j (FP)] in place of

[Y Θ̃
j (C)].
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Suppose (E, κ) is an elliptic curve over an OK-scheme S with CM by OKj and suppose M ∈ Lj .

The ring homomorphism κ : OKj → EndS(E) gives E the structure of an OKj -module scheme over

S, so from M being a finitely generated projective OKj -module, locally free of rank 2, there is an

abelian scheme M ⊗OKj E → S of relative dimension 2 with (M ⊗OKj E)(X) = M ⊗OKj E(X) for

any S-scheme X. There are commuting actions

iM : OB → EndS(M ⊗OKj E), κM : OKj → EndS(M ⊗OKj E)

given on points by

iM (x)(m⊗ z) = x ·m⊗ z, κM (a)(m⊗ z) = m⊗ κ(a)(z).

As above, M⊗OKj E inherits the CM normalization condition from E, so M⊗OKj E is a false elliptic

curve over S with complex multiplication by OKj .
If Θ : OKj → OB is a ring homomorphism and Θ̃ : OKj → OB/mB is its reduction modulo mB ,

we will sometimes write Y
[Θ]
j for the category Y Θ̃

j .

Theorem 5.2.6. Fix representatives Θ1, . . . ,Θm ∈ Kj of the m = 2r classes in K ′
j . There is an

isomorphism of stacks over Spec(OK)

f :
m⊔
d=1

Cj → Yj

defined by (E, d) 7→ LΘd ⊗OKj E. This isomorphism induces an equivalence of categories Cj → Y
[Θ]
j

for any [Θ] ∈ K ′
j .

The notation (E, d) means E is an object of the d-th copy of Cj in the disjoint union. Therefore

we obtain an isomorphism ⊔
θj :OKj→OB/mB

Y
θj
j → Yj .

In particular, any A ∈ Yj(S) is isomorphic to LΘ ⊗OKj E for some Θ : OKj → OB and some

E ∈ Cj(S). The theorem states that Θ is unique up to the equivalence relation ∼, but E and LΘ

are not necessarily unique up to isomorphism: for any nontrivial a ∈ Cl(OKj ),

LΘ ⊗OKj E ∼= (a−1 ⊗OKj LΘ)⊗OKj (a⊗OKj E),

with a−1⊗OKj LΘ 6∼= LΘ, by what we showed above, and a⊗OKj E 6∼= E by the elliptic curve analogue

of Lemma 4.1.3.
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Note that if S = Spec(FP), then A = LΘ ⊗OKj E ∼ (E′)2 for some elliptic curve E′ over FP

with E′ supersingular if and only if E is supersingular. Indeed, by Theorem 4.1.1(c) there is an

isomorphism of OKj -modules

End(A) ∼= LΘ ⊗OKj End(E)⊗OKj L
∨
Θ
∼= EndOKj (LΘ)⊗OKj End(E),

and thus there are isomorphisms of Q-algebras

M2(End0(E′)) ∼= End0(A) ∼= EndKj (B)⊗Kj End0(E) ∼= M2(End0(E)).

Proof of Theorem 5.2.6. The idea of the proof is to introduce level structure to the stacks Cj and

Yj , show that these new spaces are schemes, and then show f induces an isomorphism between these

schemes. We begin by showing f induces a bijection on geometric points. Let k = C or k = FP and

let X ⊂ [Yj(k)] be the image of the map

fk :
m⊔
d=1

[Cj(k)]→ [Yj(k)]

on k-points determined by f . The group W0 × Cl(OKj ) acts simply transitively on the set [Yj(k)]

and this action preserves the subset X. Indeed,

a⊗OKj (LΘd ⊗OKj E) ∼= LΘd ⊗OKj (a⊗OKj E) ∈ X

for any a ∈ Cl(OKj ). Next, for any w ∈W0,

w · (LΘd ⊗OKj E, iLΘd
, κLΘd

) = (M ⊗OKj E, iM , κM ),

where M = OB ∈ Lj , viewed as a left OB-module via x · y = wxw−1y and a right OKj -module

through Θd. By the proof of Proposition 5.2.4, M ∼= LΘ′ for some Θ′. Let d′ be the integer such

that [Θ′] = [Θd′ ]. Then Θ′ = a ·Θd′ for some a ∈ Cl(OKj ), so

w · (LΘd ⊗OKj E, iLΘd
, κLΘd

) ∼= a−1 · (LΘd′ ⊗OKj E, iLΘ
d′
, κLΘ

d′
) ∈ X.

This shows X = [Yj(k)], so fk is surjective. Now, it is well-known that Cl(OKj ) acts simply

transitively on [Cj(k)], and thus fk is a bijection since

#
m⊔
d=1

[Cj(k)] = m ·#[Cj(k)] = |W0| · |Cl(OKj )| = #[Yj(k)].
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Fix an integer n > 1 and set S = Spec(OK) and Sn = Spec(OK [n−1]). For n prime to dB define

Yj(n) to be the category fibered in groupoids over Sn with Yj(n)(T ) the category of quadruples

(A, i, κ, ν) where (A, i, κ) ∈ Yj(T ) and

ν : (OB/(n))T → A[n]

is an Oj-linear isomorphism of schemes, where (OB/(n))T is the constant group scheme over the

Sn-scheme T associated with OB/(n). Here we are viewing OB/(n) as a left OB-module through

multiplication on the left and a right OKj -module through a fixed inclusion OKj ↪→ OB and multi-

plication on the right. Forgetting ν defines a finite étale representable morphism Yj(n)→ Yj×S Sn,

so Yj(n) is a stack, finite étale over Sn (since Yj ×S Sn is).

We claim that for n > 3 prime to dB , any object of Yj(n) has no nontrivial automorphisms. Let

T be an Sn-scheme, let (A, i, κ, ν) ∈ Yj(n)(T ), and suppose g ∈ Aut(A, i, κ, ν). Set g′ = g − idA.

Since g = κ(a) for some a ∈ O×Kj , the morphism g′ = κ(a− 1) is an isogeny of false elliptic curves.

Then

[deg∗(g′)] = (g′)t ◦ g′ = gt ◦ g − gt − g + idA = 2 · idA−(gt + g),

so gt + g = [m], where m = 2 − deg∗(g′). Hence g is a root of the polynomial x2 − mx + 1 in

EndT (A)[x]. But g is a root of unity, which means |m| 6 2 and thus 1 6 deg∗(g′) 6 4. By definition

of g being an automorphism of (A, i, κ, ν), the endomorphism g′ kills A[n], so g′ = g′′ ◦ [n] for some

g′′ ∈ EndOB (A). Then |n2 deg∗(g′′)| 6 4 and since n > 3, we must have deg∗(g′′) = 0 and thus

g = idA. It follows from this fact, as in [4, proof of Corollary 2.3], that Yj(n) is a scheme.

For any n > 1 define Cj(n) to be the category fibered in groupoids over Sn with Cj(n)(T ) the

category of triples (E, κ, ν) where (E, κ) ∈ Cj(T ) and

ν : (OKj/(n))T → E[n]

is an OKj -linear isomorphism of schemes. The same argument as above shows Cj(n) is a scheme,

finite étale over Sn. Let Gn = AutOKj (OKj/(n)) ∼= (OKj/(n))×. There is an action of the finite

group scheme (Gn)Sn on the scheme Cj(n), defined on T -points, for any connected Sn-scheme T , by

g · (E, κ, ν) = (E, κ, ν ◦ g−1).

There is an associated quotient stack Cj(n)/(Gn)Sn → Sn, defined in [27, Example 7.17], and there
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is an isomorphism of stacks Cj(n)/(Gn)Sn → Cj ×S Sn such that the composition

Cj(n)→ Cj(n)/(Gn)Sn
∼=−→ Cj ×S Sn

is the morphism defined by forgetting the level structure.

Note that there is an isomorphism of groups

AutOj (OB/(n)) ∼= (OKj/(n))×,

so (Gn)Sn also acts on Yj(n), the action defined in the same way as above. As before there is an

isomorphism of stacks Yj(n)/(Gn)Sn → Yj ×S Sn such that the composition

Yj(n)→ Yj(n)/(Gn)Sn
∼=−→ Yj ×S Sn

is the forgetful morphism. The base change

fn = f × id :
m⊔
d=1

Cj ×S Sn → Yj ×S Sn

induces a morphism of schemes over Sn

f ′n :
m⊔
d=1

Cj(n)→ Yj(n)

given on T -points by (E, ν, d) 7→ (LΘd ⊗OKj E, ν
′), where ν′ is the composition

(OB/(n))T ∼= LΘd ⊗OKj (OKj/(n))T
id⊗ν−−−→ LΘd ⊗OKj E[n] ∼= (LΘd ⊗OKj E)[n]. (5.2.1)

Let k = C or k = FP and fix a triple (A, i, κ) ∈ Yj(k), so A ∼= LΘd ⊗OKj E for some d and some

E ∈ Cj(k), by the first part of the proof. Let X be the set of all Oj-linear isomorphisms of schemes

ν : (OB/(n))k → A[n], where two such isomorphisms ν and ν′ are considered equal in X if the objects

(A, i, κ, ν) and (A, i, κ, ν′) are isomorphic in Yj(n)(k). The group Gn acts simply transitively on X,

the action as above, and this action preserves the subset of X consisting of all ν′ of the form (5.2.1)

for some OKj -linear isomorphism ν : (OKj/(n))k → E[n] since a · (id⊗ν) = id⊗(ν ◦ma−1) for any

a ∈ (OKj/(n))×, where ma−1 is left multiplication by a−1. Combining this with the first paragraph
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of the proof, it follows that f ′n defines a bijection

(f ′n)k :
m⊔
d=1

[Cj(n)(k)]→ [Yj(n)(k)].

(Injectivity follows from the injectivity of fk and the fact that f is a fully faithful functor.) The

morphism f ′n is (Gn)Sn -equivariant, so there is a morphism of stacks

m⊔
d=1

Cj(n)/(Gn)Sn → Yj(n)/(Gn)Sn

making the diagram
m⊔
d=1

Cj(n)

��

f ′n // Yj(n)

��m⊔
d=1

Cj(n)/(Gn)Sn

∼=
��

// Yj(n)/(Gn)Sn

∼=

��m⊔
d=1

Cj ×S Sn
fn // Yj ×S Sn

commute. It follows that to show fn is an isomorphism, it suffices to show f ′n is an isomorphism. The

morphism fn is finite étale since Cj and Yj are finite étale over S. The vertical arrows in the above

diagram are finite étale, so the same is true of f ′n. As f ′n is a finite étale morphism of Sn-schemes

inducing a bijection on geometric points, it is an isomorphism by Lemma 5.2.7 below. Choosing

relatively prime integers n, n′ > 3 prime to dB , the morphisms fn and fn′ being isomorphisms

implies f is an isomorphism.

For the final statement of the theorem, let S be any OK-scheme and fix an integer 1 6 d 6 m.

It follows directly from the definitions that any CM false elliptic curve of the form LΘd ⊗OKj E for

some E ∈ Cj(S) lies in Y
[Θd]
j (S). Conversely, suppose (A, i, κ) ∈ Y

[Θd]
j (S). Then A ∼= LΘd′ ⊗OKj E

for some E ∈ Cj(S) and a unique 1 6 d′ 6 m as f is an isomorphism, so the diagram

OKj
κmB //

η
$$H

HHHHHHHH
EndOB/mB (A[mB ])

OB/mB

66nnnnnnnnnnnn
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commutes for η = Θ̃d and η = Θ̃d′ . Picking any geometric point s : Spec(k)→ S, the above diagram

still commutes with A replaced with As. But the map

OB/mB → EndOB/mB (As[mB ])

is an isomorphism by Corollary 7.2.9, proved below only using the first paragraph of this proof (that

f is a bijection on geometric points). Therefore Θ̃d = Θ̃d′ , so d = d′, which shows f defines an

equivalence of categories Cj → Y
[Θd]
j .

Lemma 5.2.7. Let S be a scheme, let X and Y be S-schemes, and suppose f : X → Y is a finite

étale S-morphism such that the induced map X(k) → Y (k) is a bijection for any geometric point

Spec(k)→ S. Then f is an isomorphism.

Proof. Since f is surjective on geometric points, f(X) has a nonempty intersection with every

connected component of Y . As f is finite flat, the set f(X) ⊂ Y is both open and closed, so

f(X) = Y . Also, there is the usual notion of the degree of f , defined as the rank of the locally free

OY -module f∗OX . To show deg(f) = 1, we can check this at a geometric point in each connected

component of S, so we may assume S = Spec(k) for k an algebraically closed field. If y ∈ Y (k),

viewed as a closed point of Y , then since X(k)→ Y (k) is injective, there is a unique point x ∈ X(k)

in the fiber f−1(y). As f is unramified and k(x) = k(y) = k, we have deg(f) = 1 ([9, Proposition

12.21]) and therefore f is an isomorphism.

Corollary 5.2.8. Suppose S is an OK-scheme and let (A, i, κ) ∈ Yj(S). Then the trace of i(x)

acting on Lie(A) is equal to Trd(x) for any x ∈ OB.

What this means is that each point of S has an affine open neighborhood Spec(R) → S such

that the trace of i(x) acting on the free R-module Lie(A/R) is equal to Trd(x) for any x ∈ OB .

Proof. We have A ∼= M ⊗OKj E for some Oj-module M and E ∈ Cj(S). Then Lie(A) ∼= M ⊗OKj
Lie(E) as Oj-modules, with OB acting on M ⊗OKj Lie(E) through its action on M . As M ∼= OB
as a left OB-module, the result easily follows.

Corollary 5.2.9. Suppose R̃ → R is a surjection of OK-algebras, x = (A, i, κ) ∈ Yj(R), and

x̃ = (Ã, ĩ, κ̃) ∈ Yj(R̃) is a deformation of x. Then x ∈ Y
θj
j (R) if and only if x̃ ∈ Y

θj
j (R̃).

Proof. First suppose x ∈ Y
θj
j (R). We know x̃ ∈ Y η

j (R̃) for a unique η : OKj → OB/mB , so the
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diagram

OKj
κ̃mB //

η
##G

GGGGGGGG EndOB/mB (Ã[mB ])

OB/mB

ĩmB

77nnnnnnnnnnnn

(5.2.2)

commutes, where κ̃mB and ĩmB are the maps induced by κ̃ and ĩ. Since x̃ is a deformation of x, it

follows that the diagram

OKj
κmB //

η
$$H

HHHHHHHH
EndOB/mB (A[mB ])

OB/mB

imB

66nnnnnnnnnnnn

(5.2.3)

commutes. But x ∈ Y
θj
j (R) implies this diagram also commutes with θj in place of η, so η = θj

as in the last part of the proof of Theorem 5.2.6. Conversely, if x̃ ∈ Y
θj
j (R̃) then (5.2.2) commutes

with θj in place of η, so as before it follows that (5.2.3) commutes with θj in place of η and hence

x ∈ Y
θj
j (R).



Chapter 6

Tate and Dieudonné modules

6.1 The Tate module

Let A be a false elliptic curve over a field k and let ` 6= char(k) be a prime number. For any x ∈ OB
the endomorphism i(x) ∈ End(A) induces an endomorphism i(x)n : A[`n] → A[`n] for each n > 1,

and these maps are compatible with the maps [`] : A[`n+1] → A[`n]. Hence there is an induced

endomorphism i(x) : T`(A)→ T`(A) on `-adic Tate modules, and thus T`(A) is a left OB-module.

Lemma 6.1.1. Let ` be a prime number and suppose A1 and A2 are false elliptic curves over Fp
for p 6= `.

(a) Suppose ` - dB and set

ε =
[
1 0
0 0

]
, ε′ =

[
0 0
0 1

]
in M2(Z`) ∼= OB ⊗Z Z`. There are isomorphisms of Z`-modules

HomOB (T`(A1), T`(A2)) ∼= HomZ`(εT`(A1), εT`(A2)) ∼= M2(Z`),

where HomOB (T`(A1), T`(A2)) is the set of Z`-linear maps T`(A1)→ T`(A2) that are also OB-linear.

If A1 = A2 then these are isomorphisms of rings.

(b) If ` | dB then there is an isomorphism of Z`-modules

HomOB (T`(A1), T`(A2)) ∼= OB,`,

which is an isomorphism of rings if A1 = A2.

59
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Proof. (a) For j = 1, 2 write Tj for T`(Aj). From Tj = εTj ⊕ ε′Tj , there is an inclusion

HomOB (T1, T2) ↪→ HomZ`(εT1, εT2)⊕HomZ`(ε
′T1, ε

′T2)

since any f ∈ HomOB (T1, T2) is M2(Z`)-linear and hence satisfies f(εx) = εf(x) and f(ε′x) = ε′f(x)

for all x ∈ T1. Denote the above map by f 7→ (fε, fε′). Now let

w =
[
0 1
1 0

]
∈ M2(Z`),

so wεw = ε′. Then for any x ∈ T1,

fε′(ε′x) = f(ε′x) = f(wεwx) = wf(εwx) = wfε(εwx),

which shows fε determines fε′ . Therefore the above map is really an inclusion

HomOB (T1, T2) ↪→ HomZ`(εT1, εT2).

To show this map is surjective, let fε ∈ HomZ`(εT1, εT2). Define fε′ ∈ HomZ`(ε
′T1, ε

′T2) by

fε′(ε′x) = wfε(εwx), and define f : T1 → T2 by f = fε ⊕ fε′ . By construction f is Z`-linear. To

see that f is M2(Z`)-linear, first note that since ε2 = ε, (ε′)2 = ε′, and εε′ = ε′ε = 0, we have

f(εx) = εf(x) and f(ε′x) = ε′f(x) for all x ∈ T1. Next,

f(ε′x) = ε′f(x) =⇒ f(ε′x) = wεwf(x)

=⇒ wf(ε′x) = εwf(x)

=⇒ f(εwx) = εwf(x)

and

f(ε′wx) = wf(εx) = wεf(x) = ε′wf(x).

As

εw =
[
0 1
0 0

]
, ε′w =

[
0 0
1 0

]
,

this shows that f is M2(Z`)-linear, and maps to fε in the above inclusion. The isomorphism

HomZ`(T1, T2) ∼= M2(Z`) comes from choosing Z`-bases for εT1 and εT2.

(b) Since ` | dB , B` is a quaternion division algebra over Q`, and from Tj = T`(Aj) being free of

rank 4 as a Z`-module, Tj ⊗Z` Q` is a free B`-module of rank 1. Choosing a generator, we obtain

an isomorphism of B`-modules Tj ⊗Z` Q`
∼= B`, which identifies Tj with a finitely generated OB,`-
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submodule of B`. Multiplying Tj by a suitably large power of ` gives an isomorphism of Tj with a

finitely generated OB,`-submodule of OB,`, that is, a left ideal in OB,`. Since all ideals of OB,` are

principal, Tj ∼= OB,` as a left OB,`-module. Hence

HomOB (T1, T2) ∼= EndOB,`(OB,`) ∼= O
op
B,`
∼= OB,`

as Z`-modules, where the isomorphism OB,` → Oop
B,` is given by the main involution.

Lemma 6.1.2. Let A1 and A2 be supersingular false elliptic curves over Fp. For any prime ` 6= p

the natural map

Φ : HomOB (A1, A2)⊗Z Z` → HomOB (T`(A1), T`(A2))

is an isomorphism of Z`-modules, and is an isomorphism of rings if A1 = A2.

Proof. For j = 1, 2 write Tj for T`(Aj), and let M = im(Φ). We claim HomOB (T1, T2)/M is a

torsion-free Z`-module. Suppose f ∈ HomOB (T1, T2) satisfies `f ∈ M . Then `f = Φ(ϕ) for some

ϕ ∈ HomOB (A1, A2)⊗Z Z`, which means ϕ vanishes on A1[`](Fp). Hence (kerϕ)(Fp) ⊃ (ker [`])(Fp),
and thus there is a ϕ′ ∈ Hom(A1, A2) such that ϕ = ϕ′ ◦ [`] = `ϕ′. (This comes from viewing

A1 as the quotient A1/ ker([`]), either in the sense of [19, §12, Corollary 1] or viewing it in the

category of fppf sheaves of abelian groups on Sch/Fp.) Note that ϕ being OB-linear implies ϕ′ is

also OB-linear. Then `Φ(ϕ′) = Φ(`ϕ′) = Φ(ϕ) = `f , so f = Φ(ϕ′) ∈ M since HomOB (T1, T2) is a

torsion-free Z`-module.

As A1 and A2 are supersingular, HomOB (A1, A2) ⊗Z Z` is a free Z`-module of rank 4 (it is a

lattice in HomOB (A1, A2) ⊗Z Q`
∼= EndOB (A1) ⊗Z Q`

∼= B
(p)
` , where the first isomorphism comes

from choosing an isogeny A1 → A2 of false elliptic curves). By Lemma 6.1.1 we see that the same

is true of HomOB (T1, T2), and therefore Φ is an isomorphism.

6.2 The Dieudonné module

Fix a prime number p and let W = W (Fp) be the ring of Witt vectors over Fp, so W is the ring

of integers in the completion of the maximal unramified extension of Qp. If A is a false elliptic

curve over Fp, we write D(A) for the covariant Dieudonné module of A (that is, the Dieudonné

module of A[p∞]), which is a module over the Dieudonné ring D , free of rank 4 over W . Recall that

there is a unique continuous ring automorphism σ of W inducing the absolute Frobenius x 7→ xp on

W/pW ∼= Fp, and D = W{F ,V }/(FV − p) where W{F ,V } is the non-commutative polynomial

ring in two commuting variables F and V satisfying Fx = σ(x)F and V x = σ−1(x)V for all

x ∈W . The action of OB on A induces an action of OB on D(A) which commutes with the action
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of D . For any false elliptic curves A1 and A2 over Fp there is an isomorphism of Z-modules

HomOB⊗ZD(D(A1), D(A2)) ∼= HomOB (A1[p∞], A2[p∞]),

which is an isomorphism of rings if A1 = A2.

If E is an elliptic curve over Fp then its covariant Dieudonné module D(E) is a D-module, free

of rank 2 over W , and there is an isomorphism

HomD(D(E1), D(E2)) ∼= Hom(E1[p∞], E2[p∞])

for any E1 and E2 over Fp. If E is a supersingular elliptic curve over Fp then the natural map

End(E)⊗Z Zp → EndD(D(E)) ∼= ∆

is an isomorphism of Zp-algebras, where ∆ is the unique maximal order in the quaternion division

algebra over Qp, by a proof very similar to that of Lemma 6.1.2.

Lemma 6.2.1. Let A1 and A2 be false elliptic curves over Fp. Suppose p - dB and set

ε =
[
1 0
0 0

]
in M2(W ) ∼= M2(Zp)⊗Zp W

∼= OB ⊗Z W . There is an isomorphism of W -modules

HomOB⊗ZW (D(A1), D(A2)) ∼= HomW (εD(A1), εD(A2)) ∼= M2(W ),

which is an isomorphism of rings if A1 = A2. In particular, if A1 and A2 are supersingular, then

HomOB⊗ZD(D(A1), D(A2)) ∼= ∆.

Proof. The proof of the first part is identical to that of Lemma 6.1.1(a), replacing Z`-linearity with

W -linearity. For the in particular statement, note that

HomOB⊗ZD(D(A1), D(A2)) = {ϕ ∈ M2(W ) : Fϕ = ϕσF , V ϕ = ϕσ
−1

V },

where ϕσ is the matrix obtained by applying σ to all of the entries. Since Aj is supersingular,

εD(Aj) is free of rank of 2 over W with basis {e1, e2} satisfying F (e1) = V (e1) = e2 and F (e2) =
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V (e2) = pe1. A computation in coordinates then shows

{ϕ ∈ M2(W ) : Fϕ = ϕσF , V ϕ = ϕσ
−1

V } =
{[
a pb
b a

]
: a, b ∈ Zp2

}
∼= ∆.

Lemma 6.2.2. If A1 and A2 are supersingular false elliptic curves over Fp, then the natural map

HomOB (A1, A2)⊗Z Zp → HomOB⊗ZD(D(A1), D(A2))

is an isomorphism of Zp-modules, and is an isomorphism of rings if A1 = A2.

Proof. The proof is very similar to that of Lemma 6.1.2, using the following fact: the group H =

HomOB⊗ZD(D(A1), D(A2)) is a free Zp-module of rank 4. To see this, consider the Qp-vector space

H ⊗Zp Qp. Since D(A1)⊗Zp Qp
∼= D(A2)⊗Zp Qp as OB ⊗Z D-modules,

H ⊗Zp Qp
∼= EndOB⊗ZD(D(A1))⊗Zp Qp.

As A1 ∼ E2
1 for some supersingular elliptic curve E1, we have D(A1) ⊗Zp Qp

∼= D(E1)2 ⊗Zp Qp as

D-modules and thus there are isomorphisms

EndD(D(A1))⊗Zp Qp
∼= M2(EndD(D(E1)))⊗Zp Qp

∼= M2(End(E1))⊗Z Qp

∼= End(A1)⊗Z Qp.

Taking centralizers of OB in each ring shows H ⊗Zp Qp
∼= EndOB (A1) ⊗Z Qp has dimension 4 as a

Qp-vector space.

6.3 CM false elliptic curves

Within the context of CM false elliptic curves we can be more specific about the Tate and Dieudonné

modules. Let A ∈ Yj(FP), so A ∼= M ⊗OKj E for some E ∈ Cj(FP) and some module M over

Oj = OB ⊗Z OKj , free of rank 4 over Z. Let p be the rational prime below P. For any prime ` 6= p

there is an isomorphism of Oj,`-modules

T`(A) ∼= M` ⊗OKj,` T`(E),

where Oj,` acts through its action on M`. Similarly, there is an isomorphism of W ⊗Zp Oj,p-modules

D(A) ∼= Mp ⊗OKj,p D(E).
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However, Mp
∼= OKj ,p ⊕OKj ,p as OKj ,p-modules and thus D(A) ∼= D(E) ⊕D(E) as modules over

W ⊗Zp OKj ,p, where OKj ,p acts on D(E) ⊕D(E) diagonally through its action on D(E). We still

have to determine the possibilities for the actions of OB,p and D on D(A). The next proposition

does this for OB,p, where p | dB .

Proposition 6.3.1. Suppose A ∈ Yj(FP) for p | dB, with A ∼= M ⊗OKj E for some supersingular

E. Fix an isomorphism OB,p ∼= ∆ and a uniformizer Π ∈ ∆ satisfying Π2 = p and Πa = aΠ for

all a ∈ Zp2 , where we are viewing Zp2 ↪→ ∆ through the CM action OKj ,p → End(E) ⊗Z Zp. Then

there is an isomorphism of rings EndOB (A)⊗Z Zp ∼= R11, where

R11 =
{[

x yΠ
pyΠ x

]
: x, y ∈ Zp2

}
⊂ M2(∆).

Proof. We have the ∆-action on D(A)

D(i) : ∆→ EndOKj⊗ZD(D(A)) ∼= M2(EndOKj⊗ZD(D(E))) ∼= M2(OKj ,p) = M2(Zp2).

Here we are viewing M2(Zp2) ⊂ M2(∆) through the inclusion Zp2 ↪→ ∆. By Lemma 5.2.2 there are

two possibilities for D(i) up to GL2(Zp2)-conjugacy, f1 and f2, and we may assume D(i) is equal to

f1 or f2 in computing

EndOB (A)⊗Z Zp ∼= EndOB⊗ZD(D(A)) ∼= CM2(∆)(∆).

First suppose D(i) = f1. Then a computation shows[
a1 + b1Π a2 + b2Π
a3 + b3Π a4 + b4Π

]
∈ M2(∆)

commutes with f1(x) for all x ∈ ∆ if and only if a1 = a4, b1 = b4 = a2 = a3 = 0, and pb2 = b3,

giving CM2(∆)(∆) = R11.

Now suppose D(i) = f2. Then a computation shows[
a1 + b1Π a2 + b2Π
a3 + b3Π a4 + b4Π

]
∈ M2(∆)

commutes with f2(x) for all x ∈ ∆ if and only if a1 = a4, b1 = b4 = a2 = a3 = 0, and pb3 = b2,

giving CM2(∆)(∆) = R22, where

R22 =
{[

x pyΠ
yΠ x

]
: x, y ∈ Zp2

}
.
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However,

T

[
x pyΠ
yΠ x

]
T−1 =

[
x yΠ
pyΠ x

]
with

T =
[
1 0
0 p

]
∈ GL2(Qp2)

and therefore R22
∼= R11 as rings.

We know that for p | dB there are two isomorphism classes of modules over W ⊗Zp Oj,p that

are free of rank 4 over W , and the proof of the previous proposition gives us explicit coordinates

for each of these modules (which we will use for the W ⊗Zp Oj,p-module D(A)). To describe this,

identify ∆ with a subring of M2(Zp2) ⊂ M2(W ) by

a+ bΠ 7→
[
a pb
b a

]
, (6.3.1)

and use this to view Zp2 ⊂ ∆ inside M2(Zp2). Then there is a basis {en} for the free of rank 4

W -module D(A) ∼= D(E)⊕D(E) relative to which the ∆-action on D(A) is given by one of the two

maps f1, f2 : ∆→ EndW (D(A)) ∼= M4(W ) of Lemma 5.2.2:

f1(a+ bΠ) =


a 0 b 0
0 a 0 b
pb 0 a 0
0 pb 0 a

 , f2(a+ bΠ) =


a 0 pb 0
0 a 0 pb
b 0 a 0
0 b 0 a

 . (6.3.2)

Note that (6.3.1) comes from choosing a basis {v1, v2} of D(E) with F = V satisfying F (v1) = v2

and F (v2) = pv1, so F = V on D(A) and

F (e1) = e2, F (e2) = pe1, F (e3) = e4, F (e4) = pe3.

The action of OKj ,p ∼= Zp2 on D(A) is necessarily given in this basis by

a 7→ diag(a, a, a, a). (6.3.3)

Furthermore, using the basis {en} to view

R11
∼= EndOB⊗ZD(D(A)) ⊂ M4(W ),

we can express any

f =
[
x yΠ
pyΠ x

]
∈ R11
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as an element of M4(W ) by

f =

 x 0 0 py
0 x y 0
0 p2y x 0
py 0 0 x

 . (6.3.4)

Combining everything, we have proved the following.

Proposition 6.3.2. With notation as above, there is a W -basis {e1, e2, e3, e4} for D(A) relative to

which the action of ∆ on D(A) is given by one of the matrices (6.3.2), the action of OKj ,p is given

by (6.3.3), the action of F = V is determined by

F (e1) = e2, F (e2) = pe1, F (e3) = e4, F (e4) = pe3,

and any f ∈ EndOB⊗ZD(D(A)) is given by a matrix of the form (6.3.4).

Proposition 6.3.1 gives a description of EndOB (A) ⊗Z Zp in terms of coordinates, which is best

suited for computations. The next result gives the abstract structure of this ring.

Proposition 6.3.3. There is an isomorphism of rings R11
∼= R2, where

R2 =
[

Zp Zp
p2Zp Zp

]
is the standard Eichler order of level 2 in M2(Qp).

Proof. This proof is identical to a calculation carried out in [8, pp. 26-27]. We will explain the

main case. For p 6= 2 write Zp2 = Zp + Zpt where t2 ∈ Z×p and t = −t. Then R11 has a Zp-basis

{e1, e2, e3, e4}, where

e1 =
[
1 0
0 1

]
, e2 =

[
t 0
0 t

]
, e3 =

[
0 Π
pΠ 0

]
, e4 =

[
0 tΠ
ptΠ 0

]
,

so e2
2 = t2I, e2

3 = p2I, and e2e3 = −e3e2 = e4. Using this basis, one shows disc(R11) = p4.

Now let R = Zp[Ej ] where E1 = e1, E2 = e2, E3 = p−1e3, E4 = p−1e4, so E2
2 = t2I, E2

3 = I,

and E2E3 = −E3E2 = E4. Then R is an order in M2(Qp) and there is an isomorphism of rings

R→ M2(Zp) given by

E2 7→
[
0 t2

1 0

]
, E3 7→

[
1 0
0 −1

]
, E4 7→

[
0 t2

−1 0

]
.
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Under this map R11 is mapped isomorphically to the order in M2(Qp) with Zp-basis[
1 0
0 1

]
,

[
0 t2

1 0

]
,

[
p 0
0 −p

]
,

[
0 pt2

−p 0

]
,

which means

R11
∼=
{[
a b
c d

]
∈ M2(Zp) : p | (a− d), p | (b− t2c)

}
.

For

M =
[

1 t
t−1 −1

]
we have

2M−1

[
a b
c d

]
M =

[
a+ t−1b+ tc+ d t(a− d) + t2c− b

t−1(a− d) + t−2(b− t2c) a− t−1b− tc+ d

]
,

so, as 2 ∈ Z×p , R11 embeds as a subring of

[
Zp2 pZp2

pZp2 Zp2

]
.

However, R11 is already a suborder of M2(Zp), so R11 must be isomorphic to a suborder of

R′ =
[

Zp pZp
pZp Zp

]
.

But disc(R11) = p4 = disc(R′), and thus R11
∼= R′. Conjugating by the matrix[
0 p−1

1 0

]
then shows R11

∼= R2. The case p = 2 is similar; see [8, p. 27] for the details.



Chapter 7

Local quadratic spaces

This chapter and the next form the technical core of this thesis. In this chapter we (essentially) count

the number of geometric points of Xθ,α. This comes from a careful examination of the quadratic

spaces (V`(A1,A2),degCM) for each prime `. The methods of the proofs follow [14] quite closely.

Fix a prime ideal P ⊂ OK of residue characteristic p, where p is nonsplit in K1 and K2, a ring

homomorphism θ : OK → OB/mB , and a CM pair (A1,A2) ∈ Xθ(FP) (necessarily supersingular),

where FP = OK/P. For j ∈ {1, 2} recall that κj : OKj → EndOB (Aj) is the CM action. Suppose `

is a prime dividing dB and let m` be the unique maximal ideal of OB with residue characteristic `,

so OB/m` is a finite field with `2 elements. Define the m`-torsion Aj [m`] as the group scheme

Aj [m`] = ker(ij(x`) : Aj [`]→ Aj [`]),

where x` is any element of m` whose image generates the principal ideal m`/`OB ⊂ OB/`OB . This

is a finite flat commutative group scheme over Spec(FP) of order

deg(ij(x`) : Aj [`]→ Aj [`]) = deg(ij(Π) : Aj → Aj) = Nrd(Π)2 = `2,

where Π ∈ OB,` is any uniformizer. There is a natural action of OB/m` on Aj [m`] given on points

by x · a = ij(x)(a) for x ∈ OB/m` and a ∈ Aj [m`](T ) for any FP-scheme T .

7.1 The case of ` 6= p

Lemma 7.1.1. Suppose (A, i) ∈ Yj(k) for k = C or k = Fp and ` 6= p is a prime dividing dB.

There is an isomorphism of OB/m`-algebras EndOB/m`(A[m`]) ∼= OB/m`.

68
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Proof. Since ` 6= p, the group scheme A[`] is étale over k, so the k-morphism i(x`) : A[`] → A[`] is

étale. It follows that A[m`] is étale over k and in particular A[m`] is reduced. As A[m`] is reduced,

and separated and finite over k, the natural map

EndOB/m`(A[m`])→ EndOB/m`(A[m`](k))

is injective. The group A[m`](k) is a vector space over OB/m`, and with Π and x` as above,

|A[m`](k)| = deg(i(x`) : A[`]→ A[`]) = Nrd(Π)2 = `2,

so A[m`](k) is of dimension 1 over OB/m`. Therefore the injection of OB/m`-algebras

EndOB/m`(A[m`])→ EndOB/m`(A[m`](k)) ∼= OB/m`

must be an isomorphism.

Proposition 7.1.2. Let ` 6= p be a prime. There is a K`-linear isomorphism of F`-quadratic spaces

(V`(A1,A2),degCM) ∼= (K`, β` ·NK`/F`)

for some β` ∈ F×` satisfying β`OF,` = D−1
` = D−1OF,` if ` - dB and β`OF,` = lD−1

` if ` | dB, where

l is the prime over ` dividing ker(θ) ∩ OF . This map takes L`(A1,A2) isomorphically to OK,`.

Proof. We will write L` and V` for L`(A1,A2) and V`(A1,A2). The isomorphism of quadratic spaces

for some β` ∈ F×` follows from Proposition 3.2.7(b). Under this isomorphism, L` is sent to a finitely

generated OK,`-submodule of K`, that is, a fractional OK,`-ideal. Then since every ideal of OK,` is

principal, there is an isomorphism V` ∼= K` inducing an isomorphism L` ∼= OK,`. The OF,`-bilinear

form

[· , ·]CM : L` × L` → D−1
`

induces an OF,`-bilinear form

OK,` ×OK,` → D−1
`

given by

(x, y) 7→ β`NK`/F`(x+ y)− β`NK`/F`(x)− β`NK`/F`(y) = β` TrK`/F`(xy).
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The dual lattice of OK,` with respect to this pairing is

O∨K,` = {x ∈ K` : β` TrK`/F`(xy) ∈ D−1
` for all y ∈ OK,`},

so

β`O∨K,` = {x ∈ K` : TrK`/F`(xy) ∈ D−1
` for all y ∈ OK,`}

= {x ∈ K` : TrK`/Q`(xy) ∈ Z` for all y ∈ OK,`}

= D−1
K/QOK,`.

Since K/F is unramified at any prime of F over `,

DK/QOK,` = DK/FOK,` ·DF/QOK,` = DOK,`,

where D is the different of F/Q. Therefore β`O∨K,` = D−1OK,`, which shows that the dual of L`
with respect to degCM is L∨` ∼= O∨K,` = β−1

` D−1OK,`.
We claim that the dual lattice

{f ∈ V` : [f, f ′]CM ∈ D−1
` for all f ′ ∈ L`}

of L` with respect to the OF,`-bilinear form [· , ·]CM : L` × L` → D−1
` (corresponding to degCM) is

equal to the dual lattice

{f ∈ V` : [f, f ′] ∈ Z` for all f ′ ∈ L`}

of L` with respect to the Z`-bilinear form [· , ·] : L` × L` → Z` (corresponding to deg∗). Since

[· , ·] = TrF`/Q` [· , ·]CM, this can be checked by proving the corresponding result for the pairings

OK,` ×OK,` → D−1
` , (x, y) 7→ β` TrK`/F`(xy) = TrK`/F`(β`xy)

and

OK,` ×OK,` → Z`, (x, y) 7→ TrF`/Q`(TrK`/F`(β`xy)) = TrK`/Q`(β`xy).

This is clear from what we showed above since the dual of OK,` with respect to both pairings is

β−1
` D−1

K/QOK,`.
First suppose ` - dB , and write Tj for T`(Aj). By Lemmas 6.1.1 and 6.1.2 there are isomorphisms

of Z`-modules

L` ∼= HomOB (T1, T2) ∼= M2(Z`).
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We claim that under this isomorphism the quadratic form deg∗ on L` is identified with the quadratic

form u · det on M2(Z`) for some u ∈ Z×` . If we choose an OB-linear isomorphism of Z`-modules

γ : T1 → T2 (which is possible since the idempotents ε, ε′ ∈ M2(Z`) ∼= OB ⊗Z Z` provide a splitting

Tj ∼= εTj ⊕ ε′Tj), there is an isomorphism of Z`-modules

HomOB (T1, T2)→ EndOB (T1)

given by f 7→ γ−1 ◦ f . Writing deg∗ for the quadratic form on HomOB (T1, T2) induced by deg∗

on L`, we have deg∗(γ−1 ◦ f) = deg∗(γ−1) deg∗(f) with deg∗(γ−1) ∈ Z×` , so it suffices to assume

A1 = A2 = A and show that under the isomorphism

L` → EndOB (T`(A))→ M2(Z`)

given above, deg∗ on L` is identified with det on M2(Z`). It is enough to show that after tensoring

this map with Q`, we obtain an isomorphism of Q`-quadratic spaces

Φ : (V`,deg∗)→ (M2(Q`),det).

Let Q be the quadratic form on M2(Q`) induced by Φ. By Proposition 3.2.7(c) there is some

isomorphism of Q`-quadratic spaces

Ψ : (V`,deg∗)→ (B(p)
` ,Nrd) ∼= (M2(Q`),det).

Note that Φ and Ψ are both ring homomorphisms. Then by Noether-Skolem there is a b ∈ M2(Q`)×

such that Ψ(v) = bΦ(v)b−1 for all v ∈ V`. Hence

Q(Φ(v)) = deg∗(v) = det(Ψ(v)) = det(bΦ(v)b−1) = det(Φ(v)),

so Q = det.

A calculation shows that the lattice M2(Z`) ⊂ M2(Q`) is self dual relative to det, which means

L` is self dual relative to deg∗. From the isomorphism

L∨` /L`
∼= β−1

` D−1OK,`/OK,`,

we find that β`OK,` = D−1OK,`, and thus β`OF,` = D−1
` as K/F is unramified over `.

Now suppose ` | dB . In the proof of Lemma 6.1.1(b) we showed that T`(Aj) ∼= OB,` as OB,`-
modules, so T`(A1) ∼= T`(A2) as OB,`-modules and thus by Lemma 6.1.2 there are isomorphisms of
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Z`-modules

HomOB (A1, A2)⊗Z Z` ∼= HomOB (T`(A1), T`(A2)) ∼= EndOB (T`(A1))

∼= EndOB (A1)⊗Z Z`.

Therefore we may reduce to the case where the CM false elliptic curves A1 and A2 have the same

underlying false elliptic curve A. By Lemmas 6.1.1 and 6.1.2 there are isomorphisms of Z`-algebras

L` ∼= EndOB (T`(A)) ∼= OB,`,

and by a proof identical to that in the case of ` - dB , this isomorphism identifies the quadratic form

deg∗ on L` with the quadratic form Nrd on OB,`. If n` ⊂ OB,` is the unique maximal ideal, so

m`OB,` = n`, then a calculation shows that the dual lattice of OB,` relative to Nrd is n−1
` . Hence

we have OK,`-linear isomorphisms

β−1
` D−1OK,`/OK,` ∼= L∨` /L`

∼= n−1
` /OB,`.

As a group, n−1
` /OB,` ∼= OB,`/n` ∼= F`2 , so [OK,` : β`DOK,`] = `2.

Recall that OK acts on L` ∼= OB,` by

(t1 ⊗ t2) • f = κ2(t2) ◦ f ◦ κ1(t1).

Fixing a uniformizer Π ∈ OB,` satisfying κ1(t1)Π = Πκ1(t1) for all t1 ∈ OK1 , for any u ∈ κ1(OK1) ⊂
OB,` we have

(t1 ⊗ t2) • uΠ−1 = κ2(t2)uΠ−1κ1(t1) = κ2(t2)κ1(t1)uΠ−1.

Since n−1
` /OB,` is generated by such elements uΠ−1, OK acts on n−1

` /OB,` through left multiplication

by the image of the composition OK → OB,` → OB,`/n`, where the first map is given by t1 ⊗ t2 7→
κ2(t2)κ1(t1). Next, under the isomorphism L` ∼= OB,`, the action

OB,` → EndOB/m`(A[m`]) ∼= OB/m`

determines an isomorphism γ : OB,`/n` → OB/m`, which allows us to identify

κm`
j : OKj → EndOB/m`(A[m`])
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with the composition

OKj
κj−→ OB,` → OB,`/n`

γ−→ OB/m`.

However, the map OK → F`2 defined by t1 ⊗ t2 7→ κm`
1 (t1)κm`

2 (t2) is equal to the map

OK
θ−→ OB/mB → OB/m`,

by definition of (A1,A2) being in Xθ(FP), and the kernel of this map is the prime L of K over l.

It then follows from the factorization of κm`
j above that any element of L acts trivially on n−1

` /OB,`
and therefore there is an OK,`-linear map OK,`/LOK,` ↪→ n−1

` /OB,` given by x 7→ x • 1. But L has

norm `2, which means

OK,`/LOK,` ∼= n−1
` /OB,` ∼= β−1

` D−1OK,`/OK,`

as OK,`-modules. It follows that β`DOK,` = LOK,` and thus β`OF,` = lD−1
` .

7.2 The case of ` = p

In order to prove a similar result for ` = p we need a few preliminary results.

Lemma 7.2.1. If (A, i) ∈ Yj(Fp) with p | dB, then EndOB,p(Lie(A)) ∼= Fp as Fp-algebras.

Proof. Fix an isomorphism OB,p ∼= ∆ and a uniformizer Π ∈ ∆. There are isomorphisms of Fp-vector

spaces

Lie(A) ∼= Lie(D(A)) ∼= D(A)/V D(A),

so End∆(Lie(A)) ∼= End∆(D(A)/V D(A)). Let {en} be a W -basis for D(A) as in Proposition 6.3.2,

so the images ẽ1, ẽ3 of e1, e3 in D(A)/V D(A) form a basis for this 2-dimensional vector space over

W/pW ∼= Fp. In the notation of (6.3.2), if D(i) = f1 then the action of ∆ on D(A)/V D(A) is given,

in the basis {ẽ1, ẽ3}, by the matrix

D(i)(a+ bΠ) =
[
ã b̃

0 ã

]
∈ M2(Fp),

where ã is the image of a in W/pW ∼= Fp. A computation shows that a matrix in M2(Fp) commutes

with D(i)(a+ bΠ) for all a+ bΠ ∈ ∆ if and only if it is a scalar matrix, and therefore

End∆(Lie(A)) ∼= End∆(D(A)/V D(A)) ∼= Fp.
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An identical computation gives the same result if D(i) = f2.

Proposition 7.2.2. Suppose (A, i) ∈ Yj(Fp) with p | dB. Under the isomorphism

Φ : EndOB (A)⊗Z Zp → R11

in Proposition 6.3.1, the Zp-quadratic form deg∗ on EndOB (A) ⊗Z Zp is identified with the Zp-

quadratic form Q on R11 given by

Q

[
x yΠ
pyΠ x

]
= xx− p2yy.

Proof. Since Φ is an isomorphism of rings and deg∗(f) = f ◦f t, we have Q(ϕ) = ϕϕ†, where ϕ 7→ ϕ†

is the involution on R11 induced by Φ from the involution f 7→ f t on EndOB (A)⊗Z Zp. Recall that

f t = λ−1 ◦ f∨ ◦λ, where λ : A→ A∨ is the unique principal polarization satisfying λ−1 ◦ i(x)∨ ◦λ =

i(x∗) for all x ∈ OB . The polarization λ then induces a map Λ = D(λ) : D(A) → D(A∨) on

Dieudonné modules. There is a canonical isomorphism of D-modules

D(A∨) ∼= D(A)∨ = HomW (D(A),W ),

where D(A)∨ is a D-module via

(F · f)(x) = σ(f(V x)), (V · f)(x) = σ−1(f(Fx)).

This map Λ induces a nondegenerate, alternating, bilinear pairing

〈· , ·〉 : D(A)×D(A)→W

defined by 〈x, y〉 = Λ(x)(y), and this pairing satisfies 〈Fx, y〉 = σ(〈x,V y〉) for all x, y ∈ D(A).

In fact, if (· , ·) is any nondegenerate, alternating, bilinear pairing D(A) × D(A) → W satis-

fying (Fx, y) = σ(x,V y) for all x, y ∈ D(A), then (· , ·) arises from a principal polarization

A[p∞] → A[p∞]∨ in this way. (Here, A[p∞]∨ ∼= A∨[p∞] is the Serre dual of A[p∞] and a prin-

cipal polarization µ : A[p∞] → A[p∞]∨ is by definition an isomorphism such that the composition

A[p∞]∨∨
∼=−→ A[p∞]

µ−→ A[p∞]∨ is equal to −µ∨. Any principal polarization A → A∨ induces a

principal polarization A[p∞]→ A[p∞]∨ ([5, 1.4.3.4]).)

Recall that x∗ = a−1xιa, where a ∈ OB is an element satisfying a2 = −dB . In the local case

of a ∈ OB ⊗Z Zp ∼= ∆, we can explicitly choose a. Since Qp2/Qp is unramified, the norm map

NQp2/Qp : Z×p2 → Z×p is surjective, so there is an a0 ∈ Z×p2 such that a0a0 = −p−1dB (note that
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ordp(dB) = 1). Let a = a0Π ∈ ∆, so a2 = pa0a0 = −dB .

Let {en} be a W -basis for D(A) as in Proposition 6.3.2. First suppose D(i) = f1, in the notation

of (6.3.2). Then for x = u+ vΠ ∈ ∆, one can compute, using xι = u− vΠ,

D(i(x∗)) = D(i(a))−1D(i(xι))D(i(a)) =


u 0 −a0a

−1
0 v 0

0 u 0 −a−1
0 a0v

−pa−1
0 a0v 0 u 0
0 −pa0a

−1
0 v 0 u

 .
Now, viewing Λ as an element of HomW (D(A), D(A)∨) ∼= EndW (D(A)) ∼= M4(W ), using that Λ is

invertible and alternating, and using that Λ◦D(i(x∗)) = D(i(x))∨ ◦Λ for all x ∈ ∆, where D(i(x))∨

is the dual linear map (so its matrix is the transpose of the matrix of D(i(x)) with respect to the

dual basis), a computation shows Λ must be of the form

Λ =


0 0 0 ba−1

0 a0

0 0 b 0
0 −b 0 0

−ba−1
0 a0 0 0 0


for some b ∈W×. The equality 〈Fe1, e3〉 = σ〈e1,V e3〉 implies b = σ(b)a0a

−1
0 , so b ∈ Z×p2 and

Λ =

 0 0 0 σ(b)
0 0 b 0
0 −b 0 0

−σ(b) 0 0 0

 .
The involution ϕ 7→ ϕ† on EndW (D(A)) ∼= M4(W ) corresponding to the Rosati involution

f 7→ λ−1 ◦ f∨ ◦ λ on End0(A) (which restricts to f 7→ f t on EndOB (A) ⊗Z Zp) is then given

by ϕ† = Λ−1ϕTΛ, where ϕT is the transpose of the matrix ϕ. A computation shows that for

ϕ = [ϕij ] ∈ M4(W ),

ϕ† =


ϕ44 bb

−1
ϕ34 −bb−1

ϕ24 −ϕ14

b−1bϕ43 ϕ33 −ϕ23 −b−1bϕ13

−b−1bϕ42 −ϕ32 ϕ22 b−1bϕ12

−ϕ41 −bb−1
ϕ31 bb

−1
ϕ21 ϕ11

 .
If

ϕ =
[
x yΠ
pyΠ x

]
∈ R11,

then viewing it as an element of M4(W ) as in (6.3.4), applying the involution †, as described explicitly
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above, and then viewing it again in R11, gives

ϕ† =
[

x −yΠ
−pyΠ x

]
.

Therefore

ϕϕ† =
[
xx− p2yy 0

0 xx− p2yy

]
,

so after identifying Zp with its diagonal image in M2(Zp2), we obtain Q(ϕ) = xx− p2yy. A similar

computation gives the same result if D(i) = f2. More specifically, we saw that in this case there is

an isomorphism of rings EndOB (A)⊗Z Zp → R22, where

R22 =
{[

x pyΠ
yΠ x

]
: x, y ∈ Zp2

}
,

and one can check that the involution † on R22 is given by

ϕ =
[
x pyΠ
yΠ x

]
7→ ϕ† =

[
x −pyΠ
−yΠ x

]
.

However, once we apply the ring isomorphism R22 → R11 given by conjugation by[
1 0
0 p

]
,

this involution † on R22 corresponds to the involution † on R11 described in the first case.

For j = 1, 2 let θj : OKj → OB/mB be a ring homomorphism and let Aj ∈ Y
θj
j (FP) for p | dB .

Then there is a unique ring isomorphism OK1,p → OK2,p making the diagram

OK1,p
//

θ1 $$J
JJJJJJJJ

OK2,p

θ2zzttttttttt

OB/mB

(7.2.1)

commute. We use this to identify the rings OK1,p and OK2,p, and call this ring OL. Then by

Proposition 6.3.2 there are W -bases {en} and {e′n} for D(A1) and D(A2) with OL acting via (6.3.3)

on both and OB,p ∼= ∆ acting on D(Aj) through one of f1 or f2 in (6.3.2).

Definition 7.2.3. With notation as above, ifD(A1) andD(A2) are isomorphic as ∆⊗ZpOL-modules,

we say that A1 and A2 are of the same type.

Note that there are two isomorphism classes of ∆ ⊗Zp OL-modules free of rank 4 over Zp, and

A1 and A2 being of the same type just means D(A1) and D(A2) lie in the same isomorphism class,
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and not being of the same type means they lie in the two separate classes. This definition is a bit

misleading because we will see below that A1 and A2 are of the same type if and only if P divides

ker(θ), where θ : OK → OB/mB is the map induced by θ1 and θ2, so this “type” is really a property

between P and θ, independent of A1 and A2. However, the above definition is the easier one to start

with in proving the next few results.

Proposition 7.2.4. Suppose (Aj , ij) ∈ Y
θj
j (FP) for j = 1, 2, where p | dB, and A1 and A2 are not

of the same type. There are isomorphisms of Zp-modules

HomOB⊗ZD(D(A1), D(A2)) ∼= HomOB⊗ZD(D(A2), D(A1)) ∼= R12,

where

R12 =
{[

px yΠ
yΠ x

]
: x, y ∈ Zp2

}
⊂ M2(∆)

and we have fixed an embedding Zp2 ↪→ ∆ such that ∆ = Zp2 ⊕ Zp2Π. Under the isomorphism

HomOB (A1, A2)⊗Z Zp
D−→ HomOB⊗ZD(D(A1), D(A2)) ∼= R12,

the Zp-quadratic form deg∗ on HomOB (A1, A2)⊗Z Zp is identified with the Zp-quadratic form u ·Q′

on R12, where u ∈ Z×p and

Q′
[
px yΠ
yΠ x

]
= p(xx− yy).

Under the isomorphism

HomOB (A2, A1)⊗Z Zp
D−→ HomOB⊗ZD(D(A2), D(A1)) ∼= R12,

the quadratic form deg∗ is identified with the quadratic form u−1 ·Q′.

Proof. There is an isomorphism of D-modules D(A1) ∼= D(A2), so

HomD(D(A1), D(A2)) ∼= EndD(D(A1)) ∼= EndD(D(E1)2) ∼= M2(∆),

where A1
∼= M ⊗OK1

E1. Hence

HomOB⊗ZD(D(A1), D(A2)) = {ϕ ∈ M2(∆) : ϕi1(x) = i2(x)ϕ for all x ∈ ∆}

and

HomOB⊗ZD(D(A2), D(A1)) = {ϕ ∈ M2(∆) : ϕi2(x) = i1(x)ϕ for all x ∈ ∆}.
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Suppose we choose bases for D(A1) and D(A2) relative to which D(i1) = f1 and D(i2) = f2 (as in

(6.3.2)). Then an easy computation gives

HomOB⊗ZD(D(A1), D(A2)) ∼= R12

and

HomOB⊗ZD(D(A2), D(A1)) ∼= R21 =
{[

x yΠ
yΠ px

]
: x, y ∈ Zp2

}
.

However, there is an isomorphism of Zp-modules R21 → R12 given by ϕ 7→ UϕU−1, where

U =
[
0 1
1 0

]
.

For any f ∈ HomOB (A1, A2) ⊗Z Zp we have deg∗(f) = f t ◦ f , where f t = λ−1
1 ◦ f∨ ◦ λ2 with

λj : Aj → A∨j the unique principal polarization satisfying ij(x∗) = λ−1
j ◦ i(x)∨ ◦ λj for all x ∈ OB .

In the proof of Proposition 7.2.2 we showed

Λj = D(λj) =


0 0 0 bj
0 0 bj 0
0 −bj 0 0
−bj 0 0 0

 ∈ M4(W )

for some bj ∈ Z×p2 satisfying bj = bja0a
−1
0 , with a0 as in that proof. In particular, b−1

1 b2 = b
−1

1 b2, so

b−1
1 b2 ∈ Z×p . We have

D(f t) = D(λ−1
1 ) ◦D(f∨) ◦D(λ2) = Λ−1

1 D(f)∨Λ2,

where D(f)∨ ∈ HomOB⊗ZD(D(A2)∨, D(A1)∨) is the dual linear map. Therefore, through the map

D, the assignment

f 7→ f t : HomOB (A1, A2)⊗Z Zp → HomOB (A2, A1)⊗Z Zp

corresponds to the assignment

ϕ 7→ ϕ† : HomOB⊗ZD(D(A1), D(A2))→ HomOB⊗ZD(D(A2), D(A1)),

where ϕ† = Λ−1
1 ϕTΛ2. If

ϕ =
[
px yΠ
yΠ x

]
∈ R12
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then a computation shows

ϕ† =
[
xu −yuΠ
−yuΠ pxu

]
∈ R21

where u = b−1
1 b2. Under the isomorphism D, the quadratic form deg∗ corresponds to some quadratic

form Q0 on R12, so for ϕ = D(f),

Q0(ϕ) = deg∗(f) = D(deg∗(f)) = D(f t) ◦D(f) = ϕ†ϕ =
[
p(xx− yy)u 0

0 p(xx− yy)u

]
,

so Q0 = uQ′. A similar computation gives the result for the isomorphism

HomOB (A2, A1)⊗Z Zp → HomOB⊗ZD(D(A2), D(A1)) ∼= R12.

Recall that (A1,A2) ∈ Xθ(FP) and for p | dB we are using θ to identify OK1,p and OK2,p as in

(7.2.1).

Proposition 7.2.5. There is a Kp-linear isomorphism of Fp-quadratic spaces

(Vp(A1,A2),degCM) ∼= (Kp, βp ·NKp/Fp)

for some βp ∈ F×p satisfying

βpOF,p =


pD−1

p if p - dB
p2D−1

p if p | dB and A1, A2 are of the same type
ppD−1

p if p | dB and A1, A2 are not of the same type,

where Dp = DOF,p, p = P∩OF , and p is the other prime ideal of OF lying over p. This map takes

Lp(A1,A2) isomorphically to OK,p.

Proof. First suppose p - dB . The proof is very similar to the ` | dB case of the proof of Proposition

7.1.2. We will write Lp for Lp(A1,A2). The proof of the existence of the isomorphism taking

Lp to OK,p is the same as for ` 6= p. We may reduce to the case where the CM false elliptic

curves A1 and A2 have the same underlying false elliptic curve A because the idempotents ε, ε′ ∈
M2(W ) ∼= OB ⊗Z W provide a splitting D(Aj) ∼= εD(Aj)⊕ ε′D(Aj), which means D(A1) ∼= D(A2)

as OB ⊗Z D-modules and thus

HomOB (A1, A2)⊗Z Zp ∼= HomOB⊗ZD(D(A1), D(A2)) ∼= EndOB⊗ZD(D(A1))

∼= EndOB (A1)⊗Z Zp.
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By Lemmas 6.2.1 and 6.2.2 there are isomorphisms of Zp-algebras

Lp ∼= EndOB⊗ZD(D(A)) ∼= ∆.

Similar to before, this isomorphism identifies the quadratic form deg∗ on Lp with the quadratic form

Nrd on ∆. If m∆ ⊂ ∆ is the unique maximal ideal then the dual lattice of ∆ relative to Nrd is m−1
∆ ,

and there are OK,p-linear isomorphisms

β−1
p D−1OK,p/OK,p ∼= L∨p /Lp

∼= m−1
∆ /∆,

so [OK,p : βpDOK,p] = p2.

If p is ramified in K1 or K2 then it is ramified in F , and the unique prime of F above p is

inert in K. From pOF = p2 and [OK,p : βpDOK,p] = p2, we must have βpDOK,p = POK,p, so

βpOF,p = pD−1
p .

Now suppose p is inert in K1 and K2. Similar to above, OK acts on m−1
∆ /∆ through left mul-

tiplication by the image of the composition OK → ∆ → ∆/m∆, where the first map is given by

t1 ⊗ t2 7→ κ2(t2)κ1(t1). Under the isomorphism Lp ∼= ∆, the action ∆ → EndOB (Lie(A)) ∼= FP de-

termines an isomorphism γ : ∆/m∆ → Fp2 which allows us to identify κLie
j : OKj → EndOB (Lie(A))

with the composition

OKj
κj−→ ∆→ ∆/m∆

γ−→ Fp2 .

However, the map OK → FP defined by t1 ⊗ t2 7→ κLie
1 (t1)κLie

2 (t2) is precisely the structure map

OK → FP ↪→ FP (this is the CM normalization condition), whose kernel is P. It then follows from

the factorization of κLie
j above that any element of P acts trivially on m−1

∆ /∆. Therefore there are

isomorphisms of OK,p-modules

OK,p/POK,p ∼= m−1
∆ /∆ ∼= β−1

p D−1OK,p/OK,p,

which shows βpDOK,p = POK,p and thus βpOF,p = pD−1
p .

Next suppose p | dB , and first assume A1 and A2 are of the same type, where Aj ∼= Mj⊗OKjEj for

some supersingular CM elliptic curve Ej over FP. As mentioned above we identify OK1,p and OK2,p,

and call this ring OL. By assumption there is a ∆⊗Zp OL-linear isomorphism f : D(A1)→ D(A2).

Then there is an isomorphism of Zp-modules

G : HomOB⊗ZD(D(A1), D(A2))→ EndOB⊗ZD(D(A1))

given by ϕ 7→ f−1 ◦ ϕ. Also, there are two maps OL ⇒ EndOB⊗ZD(D(A1)), the first being κ1 and
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the second (f−1)∗(κ2). However, since f is OL-linear,

(f−1)∗(κ2(x)) = f−1 ◦ κ2(x) ◦ f = f−1 ◦ f ◦ κ1(x) = κ1(x),

so under the isomorphism G, the two CM actions κ1 and κ2 are identified with a single action

OL → EndOB⊗ZD(D(A1)).

It follows from the above discussion that we may reduce to the case where A1 and A2 have the

same underlying false elliptic curve A ∼= M ⊗OKj E and κ1 = κ2 = κ. If we fix the embedding

OL ∼= Zp2 ↪→ ∆ ∼= EndD(D(E)), the CM action on E, then there is an isomorphism

Lp = EndOB (A)⊗Z Zp ∼= R11

with κ : OL → R11 given by κ(x) = diag(x, x), and the quadratic form deg∗ on Lp is identified with

the quadratic form Q on R11 given by

Q

[
x yΠ
pyΠ x

]
= xx− p2yy.

The dual lattice of R11 relative to Q is

R∨11 =
{[

x p−2yΠ
p−1yΠ x

]
: x, y ∈ Zp2

}
,

so [R∨11 : R11] = p4. Since there are isomorphisms of OK,p-modules

β−1
p D−1OK,p/OK,p ∼= L∨p /Lp

∼= R∨11/R11,

we obtain [OK,p : βpDOK,p] = p4.

Under the isomorphism Lp ∼= R11 there is an action R11 → End∆(Lie(A)) ∼= FP, and a compu-

tation in coordinates shows that any element of

M =
{[

px yΠ
pyΠ px

]
: x, y ∈ Zp2

}
⊂ R11, (7.2.2)

a maximal ideal of R11, acts trivially on D(A)/V D(A) ∼= Lie(A), which shows M = ker(R11 → FP).

Hence, the action R11 → End∆(Lie(A)) determines an isomorphism γ : R11/M→ Fp2 , which allows

us to identify κLie : OL → End∆(Lie(A)) with the composition

OL
κ−→ R11 → R11/M

γ−→ Fp2 .
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However, the map OK → FP defined by t1 ⊗ t2 7→ κLie(t1)κLie(t2) is the structure map OK →
FP ↪→ FP by the CM normalization condition, so its kernel is P. It follows from the factorization

of κLie above that if t1 ⊗ t2 ∈ P2 then κ(t2)κ(t1) ∈M2. But κ(tj) = diag(tj , tj), so t2t1 ∈ p2Zp2 for

t1 ⊗ t2 ∈ P2. Then for

ϕ =
[

x p−2yΠ
p−1yΠ x

]
∈ R∨11

and t1 ⊗ t2 ∈ P2, under the action of OK,p ∼= OL ⊗Z OL on Lp defined above,

(t1 ⊗ t2) • ϕ = κ(t2)ϕκ(t1) =
[

t2t1x p−2t2t1yΠ
p−1t2t1yΠ t2t1x

]
∈ R11

since t2t1 ∈ p2Zp2 . This shows P2 acts trivially on R∨11/R11, and conversely, reversing this argument

shows that any element of OK,p acting trivially on R∨11/R11 is in P2. Hence there is an OK,p-linear

map OK,p/P2OK,p ↪→ R∨11/R11 given by x 7→ x • 1. But P2 has norm p4 = [R∨11 : R11], so there are

isomorphisms of OK,p-modules

OK,p/P2OK,p ∼= R∨11/R11
∼= β−1

p D−1OK,p/OK,p.

It follows that βpDOK,p = P2OK,p and thus βpOF,p = p2D−1
p .

Next assume A1 and A2 are not of the same type, with Aj ∼= Mj ⊗OKj Ej . As before we identify

OK1,p with OK2,p and call this ring OL. Let g be the connected p-divisible group of height 2 and

dimension 1 over FP. Isomorphisms Ej [p∞] ∼= g may be chosen in such a way that the CM actions

g1 : OL → End(E1[p∞]) ∼= ∆ and g2 : OL → End(E2[p∞]) ∼= ∆ have the same image in ∆. (There

are two ∆×-conjugacy classes of ring embeddings Zp2 ↪→ ∆ interchanged by precomposing with the

nontrivial element of Gal(Qp2/Qp).) Fix an embedding Zp2 ↪→ ∆ and a uniformizer Π ∈ ∆ satisfying

Πg1(x) = g1(x)Π for all x ∈ OL. By Lemma 6.2.2 and Proposition 7.2.4 there are isomorphisms of

Zp-modules

Lp ∼= HomOB⊗ZD(D(A1), D(A2)) ∼= R12,

and the quadratic form deg∗ on Lp is identified with the quadratic form uQ′ on R12, where u ∈ Z×p
and

Q′
[
px yΠ
yΠ x

]
= p(xx− yy).

The dual lattice of R12 relative to uQ′ is

R∨12 = u−1 ·
{[

x p−1yΠ
p−1yΠ p−1x

]
: x, y ∈ Zp2

}
,
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so [R∨12 : R12] = p4. As before this gives [OK,p : βpDOK,p] = p4. Fixing ring isomorphisms

EndOB (A1)⊗Z Zp ∼= R11
∼= EndOB (A2)⊗Z Zp,

it makes sense to take the product κ2(t2)κ1(t1) in R11 for t1, t2 ∈ OL, and

κ2(t2)κ1(t1) = diag(g2(t2)g1(t1), g2(t2)g1(t1)),

where g2(t2)g1(t1) is the product in the common image of g1 and g2 in ∆. As in the case of A1

and A2 having the same type, the action R11 → End∆(Lie(Aj)) ∼= FP, for j = 1, 2, determines an

isomorphism γj : R11/M → Fp2 , which allows us to identify κLie
j : OL → End∆(Lie(Aj)) with the

composition

OL
κj−→ R11 → R11/M

γj−→ Fp2 .

As above, the map OK → FP defined by t1 ⊗ t2 7→ κLie
1 (t1)κLie

2 (t2) is the structure map OK →
FP ↪→ FP. Therefore t1 ⊗ t2 ∈ P if and only if κLie

1 (t1)κLie
2 (t2) = 0, if and only if κ2(t2)κ1(t1) ∈M.

Let P be the other prime ideal of OK lying over p, so P ∩ OF = p. Write Gal(K/Q) =

{id, τ1, τ2, τ1τ2}, where Kj = K〈τj〉 and F = K〈τ1τ2〉. If D(P|p) is the decomposition group at P for

K/Q, then since p is inert in K and Gal(K/F ) = 〈τ1τ2〉,

D(P|p) ∩ 〈τ1τ2〉 = D(P|p) = 〈τ1τ2〉,

but |D(P|p)| = 2, so D(P|p) = 〈τ1τ2〉. Hence τj(P) = P for j = 1, 2, which means t1 ⊗ t2 ∈ P =

τ1(P) if and only if t1 ⊗ t2 ∈ P. Now, for

ϕ = u−1 ·
[

x p−1yΠ
p−1yΠ p−1x

]
∈ R∨12

and t1 ⊗ t2 ∈ OK,p,

(t1 ⊗ t2) • ϕ = κ2(t2)ϕκ1(t1) = u−1 ·
[

g2(t2)g1(t1)x p−1g2(t2)g1(t1)yΠ
p−1g2(t2)g1(t1)yΠ p−1g2(t2)g1(t1)x

]
.

Therefore

(t1 ⊗ t2) • ϕ ∈ R12 for all ϕ ⇐⇒ g2(t2)g1(t1) ∈ pZp2 and g2(t2)g1(t1) ∈ pZp2

⇐⇒ κ2(t2)κ1(t1) ∈M and κ2(t2)κ1(t1) ∈M

⇐⇒ t1 ⊗ t2 ∈ P ∩P = PP.
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This shows an element of OK,p acts trivially on R∨12/R12 if and only if it is in PP. Since [R∨12 :

R12] = p4 is the norm of PP, similar to above we obtain βpOF,p = ppD−1
p .

Corollary 7.2.6. Let A ∈ Yj(Fp). For any prime number ` there is an isomorphism of rings

EndOB (A)⊗Z Z` ∼=


M2(Z`) if ` 6= p and ` - dB
OB,` if ` 6= p and ` | dB
∆ if ` = p and p - dB
R2 if ` = p and p | dB ,

where ∆ is the maximal order in the quaternion division algebra over Qp and

R2 =
[

Zp Zp
p2Zp Zp

]
.

Proposition 7.2.7. For p | dB let wp be the corresponding element of the Atkin-Lehner group W0,

so wp = Π is a uniformizer in ∆ ∼= OB,p. Let (A, i, κ) ∈ Yj(Fp) and set A′ = wp ·A ∈ Yj(Fp). Then

D(A) and D(A′) are not isomorphic as ∆⊗Zp OKj ,p-modules.

Proof. This is essentially a claim we made when discussing the action of W0 on the set L ′j defined

above, that wp interchanges the two isomorphism classes of ∆ ⊗Zp OKj ,p-modules. However, we

will include a proof for completeness. Recall that A′ = (A, i′, κ) where i′ : ∆ → End(A) ⊗Z Zp
is given by i′(x) = i(ΠxΠ−1) = i(Π) ◦ i(x) ◦ i(Π)−1. Suppose there is a ∆-linear isomorphism

D(A) ∼= D(A′) = D(A). Then there is a u ∈ EndD(D(A))× such that i′(x) = u ◦ i(x) ◦ u−1 for

all x ∈ ∆, viewing i(x) and i′(x) as their induced endomorphisms of D(A). Therefore conjugation

by u on i(∆) ⊂ EndD(D(A)) is equal to conjugation by i(Π), which means i(Π) = u ◦ z for some

z ∈ Z(i(∆)), the center of i(∆). However, i(∆) ∼= ∆ has center Zp, so z ∈ Zp ⊂ M2(∆). Viewing

i(Π), u, and z as their corresponding endomorphisms of A, we have deg(i(Π)) = Nrd(Π)2 = p2 and

deg(u ◦ z) = deg(z) = p4k for some integer k > 0 since deg([p]) = p4. This is a contradiction.

If A ∈ Yj(Fp) for p | dB and mp ⊂ OB is the unique maximal ideal of residue characteristic p,

then the mp-torsion A[mp] is defined just as A[m`].

Lemma 7.2.8. Suppose (A, i) ∈ Yj(Fp) with p | dB. There is an isomorphism of OB/mp-algebras

EndOB/mp(A[mp]) ∼= OB/mp.

Proof. We will use Dieudonné modules. Since A[p] and A[mp] are finite p-group schemes over

Spec(Fp), they have associated covariant Dieudonné modules D(A[p]) and D(A[mp]), which are

D-modules of length 4 and 2 over W , respectively. Viewing A[p] and A[mp] as fppf sheaves of
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abelian groups on Sch/Fp, there is an exact sequence

0→ A[mp]→ A[p]
i(xp)−−−→ A[p]→ 0,

where xp is any element of mp whose image generates the principal ideal mp/pOB ⊂ OB/pOB . Since

D is an exact functor, we obtain an exact sequence of D-modules

0→ D(A[mp])→ D(A[p])
i(xp)−−−→ D(A[p])→ 0.

By definition, D(A) = lim←−nD(A[pn]) where the inverse limit is with respect to the maps [p] :

A[pn+1] → A[pn]. Hence there is an isomorphism of D-modules D(A[p]) ∼= D(A)/pD(A), and

under this isomorphism the map i(xp) : D(A[p]) → D(A[p]) is identified with the map i(Π) :

D(A)/pD(A) → D(A)/pD(A), where Π ∈ OB,p is a uniformizer. It follows that D(A[mp]) ∼= Dp,

where

Dp = ker(i(Π) : D(A)/pD(A)→ D(A)/pD(A)),

and thus, since D is an equivalence of categories,

EndOB/mp(A[mp]) ∼= EndOB/mp⊗ZD(Dp).

Using a standard W -basis for D(A) as in Proposition 6.3.2, and considering the two possible

forms (6.3.2) for i, one sees that D(A[mp]) is in particular an Fp-vector space of dimension 2. A

computation in coordinates, similar to that done in Lemma 7.2.1, then shows

EndOB/mp⊗ZD(Dp) ∼= Fp2 .

Therefore the action i : OB/mp → EndOB/mp(A[mp]) is an isomorphism of OB/mp-algebras.

Corollary 7.2.9. Suppose (A, i) ∈ Yj(k) for k = C or k = Fp. There is an isomorphism of

OB/mB-algebras EndOB/mB (A[mB ]) ∼= OB/mB.

Proof. For each prime ` | dB let x` be an element of m` whose image generates the principal ideal

m`/`OB ⊂ OB/`OB . Under the isomorphism OB/dBOB →
∏
`|dB OB/`OB the ideal mB/dBOB is

sent to the ideal
∏
`|dB m`/`OB , and this principal ideal is generated by the image of xB =

∏
`|dB x` ∈

mB . There is then an isomorphism of group schemes over Spec(k)

f : A[mB ]→
∏
`|dB

A[m`],
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where the right side is an r-fold fiber product over Spec(k) (r is the number of primes dividing dB).

The map f is determined by the morphisms A[mB ]→ A[m`] given on k-points by a 7→ i(x−1
` xB)(a).

The inverse of f is given on points by (a1, . . . , ar) 7→ a1 + · · · + ar, adding in the group A[mB ](k).

The isomorphism f induces an isomorphism of OB/mB-algebras

EndOB/mB (A[mB ])→
∏
`|dB

EndOB/m`(A[m`]) ∼=
∏
`|dB

OB/m`
∼= OB/mB .

Proposition 7.2.10. Let (A1,A2) ∈ Xθ(FP) with P lying over p | dB. Then P divides ker(θ) if

and only if A1 and A2 are of the same type.

Proof. Suppose A1 and A2 are of the same type. The proof essentially follows the part of the proof

of Proposition 7.2.5 starting around (7.2.2). Since A1 and A2 are of the same type, there is an

isomorphism of Zp-modules Lp = Lp(A1,A2) ∼= R11. Fix ring isomorphisms

EndOB (A1)⊗Z Zp ∼= R11
∼= EndOB (A2)⊗Z Zp.

For j ∈ {1, 2}, under the action

R11 → EndOB/mp(Aj [mp]) ∼= EndOB/mp⊗ZD(D(Aj [mp])) ∼= Fp2 ,

any element of

M =
{[

px yΠ
pyΠ px

]
: x, y ∈ Zp2

}
⊂ R11

acts trivially on

D(Aj [mp]) = ker(ij(Π) : D(Aj)/pD(Aj)→ D(Aj)/pD(Aj)),

so M = ker(R11 → Fp2). It follows that the map R11 → EndOB/mp(Aj [mp]) determines an isomor-

phism γj : R11/M → Fp2 which allows us to identify κ
mp
j : OKj → EndOB/mp(Aj [mp]) with the

composition

OKj
κj−→ R11 → R11/M

γj−→ Fp2 .

Let Q ⊂ OK be the prime over p dividing ker(θ), so Q is the kernel of the map OK → Fp2 defined

by t1 ⊗ t2 7→ κ
mp
1 (t1)κmp

2 (t2). Now, using the factorization of κmp
j given above and following the

rest of this part of the proof of Proposition 7.2.5 (adjusting slightly for the fact that κ1 and κ2 are

not equal here, similar to what is done in the mixed type case later in that proof), we find that an

element of OK,p acts trivially on L∨p /Lp if and only if it is in Q2. However, the same is true for P
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in place of Q, so Q2 = P2 and therefore P = Q.

Now suppose A1 and A2 are not of the same type. Define a ring homomorphism η : OK →
OB/mB according to

ηm`
j : OKj → OB/m`

being defined by ηm`
j = θm`

j for all ` 6= p and j = 1, 2, ηmp
1 = θ

mp
1 , and η

mp
2 (x) = θ

mp
2 (x). Consider

the CM pair (A1,A′2), where A′2 = wp ·A2 and wp is the Atkin-Lehner operator at p. The map

(κ′2)mp : OK2 → EndOB/mp(A′2[mp]) ∼= OB/mp

is given by (κ′2)mp(x) = κ
mp
2 (x), where

κ
mp
2 : OK2 → EndOB/mp(A2[mp]) ∼= OB/mp.

The resulting map OK → OB/mp for the pair (A1,A′2) is given by

t1 ⊗ t2 7→ κ
mp
1 (t1)κmp

2 (t2),

so (A1,A′2) ∈Xη(FP) and the kernel of this map is Q, where Q is the prime over p dividing ker(θ).

As A1 and wp · A2 are of the same type (Proposition 7.2.7), Q = P by the first part of the proof

applied to (A1,A′2), so P does not divide ker(θ).

7.3 Cases combined

Let (A1,A2) ∈Xθ(FP) with P lying over some prime p, and let p = P∩OF . Set aθ = ker(θ)∩OF .

Theorem 7.3.1. For any finite idele β ∈ F̂× satisfying βÔF = aθpD−1ÔF , there is a K̂-linear

isomorphism of F̂ -quadratic spaces

(V̂ (A1,A2),degCM) ∼= (K̂, β ·NK/F )

taking L̂(A1,A2) isomorphically to ÔK .

Proof. Combining Propositions 7.1.2 and 7.2.5, and Proposition 7.2.10 proves the claim for some

β ∈ F̂× satisfying βÔF = aθpD−1ÔF , and the surjectivity of the norm map Ô×K → Ô
×
F gives the

result for all such β.

Recall the definitions of the functions ρ and ρ` from the introduction.
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Proposition 7.3.2. Let ` be a prime number. For any α ∈ F×` ,

O`(α,A1,A2) =

 ρ`(αD`) if ` 6= p, ` - dB
ρ`(αl(`)−1D`) if ` 6= p, ` | dB
ρp(αp−1l(p)−1Dp) if ` = p,

where l(`) is the prime over ` dividing aθ, with the convention that l(p) = OF if p - dB.

Proof. Using Propositions 7.1.2 and 7.2.5 in place of Lemmas 2.10 and 2.11 of [14], the proof is

identical to that of [14, Lemmas 2.19, 2.20]. Let us prove one case to give a sample of these types

of calculations. Suppose ` 6= p and ` - dB . By Proposition 7.1.2 there is an isomorphism

(V`(A1,A2,degCM) ∼= (K`, β` ·NK`/F`),

where β` ∈ F×` satisfies β`OF,` = D−1
` . It follows from Lemma 4.0.8 that there is an isomorphism

Q×` \T (Q`)/U` ∼= T 1(Q`)/V`,

so the orbital integral can be written as

O`(α,A1,A2) =
∑

t∈T 1(Q`)/V`

1OK,`(t
−1f)

if there is an f ∈ K` satisfying NK`/F`(f) = αβ−1
` , and O`(α,A1,A2) = 0 otherwise. Suppose `

is inert in K1 and K2, so Q×` \T (Q`)/U` = {1}. Then O`(α,A1,A2) = 1 if there is an f ∈ K`

satisfying NK`/F`(f) = αβ−1
` and O`(α,A1,A2) = 0 otherwise. Hence O`(α,A1,A2) = ρ`(αD`)

since both sides are equal to 1 if ordv(αβ−1
` ) is even and non-negative for both places v of F above

`, and otherwise both sides are zero (Kv/Fv is unramified and β−1
` OF,` = D`). See [14, Lemmas

2.19, 2.20] for the other cases.

Theorem 7.3.3. For any α ∈ F× we have

∏
`

O`(α,A1,A2) = ρ(αa−1
θ p−1D).

Proof. This follows from the previous proposition and the product expansion for ρ.



Chapter 8

Deformation theory II

This chapter is devoted to the calculation of the length of the local ring Osh
Xθ,α,x

, which relies on the

deformation theory of objects (A1,A2, f) of Xθ,α(FP). We continue with the notation of Chapter

5.

8.1 General theory

Definition 8.1.1. Let (A1,A2) be a CM pair over FP and R ∈ CLN. A deformation of (A1,A2) to

R is a CM pair (Ã1, Ã2) over R together with an isomorphism of CM pairs (Ã1, Ã2)/FP

∼= (A1,A2).

Given a CM pair (A1,A2) over FP, define Def(A1,A2) to be the functor CLN → Sets that

assigns to each R ∈ CLN the set of isomorphism classes of deformations of (A1,A2) to R. By

Corollary 5.1.3,

Def(A1,A2) ∼= DefOB (A1,OK1)×DefOB (A2,OK2)

is represented by W ⊗̂W W ∼= W . Given a nonzero f ∈ L(A1,A2) define Def(A1,A2, f) to be the

functor CLN→ Sets that assigns to each R ∈ CLN the set of isomorphism classes of deformations

of (A1,A2, f) to R, where a deformation is a triple (Ã1, Ã2, f̃) with (Ã1, Ã2) a deformation of

(A1,A2) to R and f̃ ∈ L(Ã1, Ã2) such that the following diagram commutes

Ã1 ⊗R FP

∼=
��

f̃⊗id // Ã2 ⊗R FP

∼=
��

A1
f // A2.

It follows easily that degCM(f̃) = degCM(f).

89
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The following is the Serre-Tate theorem for false elliptic curves.

Theorem 8.1.2. Let R ∈ CLN and suppose (A0, i0) is a false elliptic curve over FP.

(a) The rule (A, i) 7→ (A[p∞], i[p∞]) defines a bijection between the following two sets:

(1) Isomorphism classes of false elliptic curves (A, i) over R together with an isomorphism A⊗R
FP → A0 of false elliptic curves over FP;

(2) Isomorphism classes of p-divisible groups G over R with an action of OB, together with an

OB-linear isomorphism G⊗R FP → A0[p∞].

(b) With the same notation, if f0 ∈ EndOB (A0) then the rule (A, f) 7→ (A[p∞], f [p∞]) defines a

bijection between the following two sets:

(3) Isomorphism classes of pairs (A, f), where (A, i) is a false elliptic curve over R and f ∈
EndOB (A), together with an isomorphism

ϕ : A⊗R FP → A0

of false elliptic curves over FP satisfying ϕ ◦ (f ⊗ id) = f0 ◦ ϕ;

(4) Isomorphism classes of pairs (G, g), where G is a p-divisible group over R with an action of

OB and g ∈ EndOB (G), together with an OB-linear isomorphism

ψ : G⊗R FP → A0[p∞]

satisfying ψ ◦ (g ⊗ id) = f0[p∞] ◦ ψ.

Proof. (a) We will define an inverse to the map A 7→ A[p∞]. Given a p-divisible group G as in (2),

by the usual Serre-Tate theorem for abelian schemes, there is an abelian surface A over R and an

isomorphism of abelian schemes

ϕ : A⊗R FP → A0.

Now let x ∈ OB . Since the isomorphism G⊗R FP → A0[p∞] is compatible with the actions of OB
on G and A0[p∞], by the Serre-Tate theorem there is an endomorphism i(x) of A inducing i0(x) on

A0 via the isomorphism ϕ, and i(x)[p∞] defines the action of x on G. This makes A into a false

elliptic curve, and the inverse map in the bijection is given by G 7→ A.

(b) Given a pair (G, g) as in (4), by part (a) and the Serre-Tate theorem, there is a false elliptic

curve (A, i) over R, an f ∈ EndR(A) satisfying f [p∞] = g, and an isomorphism of false elliptic

curves

ϕ : A⊗R FP → A0
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satisfying ϕ ◦ (f ⊗ id) = f0 ◦ ϕ. All we need to show is that f is OB-linear. Let x ∈ OB . Using the

OB-linearity of ϕ and f0, we have

(f ⊗ id) ◦ (i(x)⊗ id) = ϕ−1 ◦ f0 ◦ ϕ ◦ (i(x)⊗ id)

= ϕ−1 ◦ f0 ◦ i0(x) ◦ ϕ

= ϕ−1 ◦ i0(x) ◦ f0 ◦ ϕ

= (i(x)⊗ id) ◦ ϕ−1 ◦ f0 ◦ ϕ

= (i(x)⊗ id) ◦ (f ⊗ id),

and thus f ◦ i(x) = i(x) ◦ f . The map (G, g) 7→ (A, f) is the inverse in the bijection.

The most useful case of part (b) for us will be the following. Let R be an object of CLN. A CM

p-divisible group with an action of OB over R is a triple (G, g0, g), where G is a p-divisible group

over R, g0 : OB → EndR(G) is an action of OB , and g : OKj → EndOB (G) is an action of OKj such

that the diagram

OKj

!!C
CC

CC
CC

C
gLie

// EndR(Lie(G))

R

99rrrrrrrrrrr

commutes, where OKj ↪→ OK → R is the structure map (the CM normalization condition).

Now let (A0, i0, κ0) ∈ Yj(FP). Then by the theorem, the map

(A, i, κ) 7→ (A[p∞], i[p∞], κ[p∞])

defines a bijection between the set of isomorphism classes of deformations of (A0, i0, κ0) to R and

the set of isomorphism classes of deformations of (A0[p∞], i0[p∞], κ0[p∞]) to R (as CM p-divisible

groups with an action of OB). The only thing to note is that (A, i, κ) satisfies the CM normalization

condition for false elliptic curves if and only if (A[p∞], i[p∞], κ[p∞]) satisfies the CM normalization

condition for p-divisible groups, since there is an isomorphism of R-modules Lie(A) ∼= Lie(A[p∞]).

Therefore if we define a functor DefOB (A0[p∞],OKj ) : CLN → Sets by sending R to the set

of isomorphism classes of deformations of (A0[p∞], i0[p∞], κ0[p∞]) to R, then there is a natural

isomorphism of functors

DefOB (A0,OKj ) ∼= DefOB (A0[p∞],OKj ).

Continuing with (A0, i0, κ0) ∈ Yj(FP), assume P lies over a prime p nonsplit in Kj . We have

A0
∼= M0 ⊗OKj E0 for some OB ⊗Z OKj -module M0 and some supersingular elliptic curve E0 over
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FP with an action g0 : OKj → End(E0) satisfying

κ0(a)(m⊗ x) = m⊗ g0(a)(x)

on points. Define a functor Def(E0,OKj ) : CLN → Sets by sending R to the set of isomorphism

classes of deformations of E0 with its OKj -action to R.

Proposition 8.1.3. There is a natural isomorphism of functors

G : Def(E0,OKj )→ DefOB (A0,OKj )

given by G (R) : E 7→M0 ⊗OKj E for any R ∈ CLN.

Proof. Let R be an object of CLN and let (E, g) ∈ Def(E0,OKj )(R), so there is an isomorphism of

elliptic curves E ⊗R FP → E0 compatible with the CM actions g and g0. Setting A = M0 ⊗OKj E,

there is an isomorphism of abelian varieties A⊗R FP → A0, such that if we define an OKj -action κ

on A through the action g on E, then this action lifts κ0 and the above isomorphism is compatible

with κ and κ0. It follows from the proof of Theorem 5.1.1 that the usual principal polarization on

A0 automatically lifts to an OKj -linear principal polarization on A, so A ∈M 2
j (R) is a deformation

of A0 ∈M 2
j (FP). Therefore the reduction map EndOKj (A)→ EndOKj (A0) is an isomorphism and

we can lift the OKj -linear action of OB on A0 to a unique such action on A, which shows A is a

deformation of A0 to R (A satisfies the CM normalization condition since E does). Define

G (R) : Def(E0,OKj )(R)→ DefOB (A0,OKj )(R)

by E 7→M0 ⊗OKj E. If R→ R′ is a morphism in CLN then the diagram

Def(E0,OKj )(R)

��

G (R) // DefOB (A0,OKj )(R)

��
Def(E0,OKj )(R′)

G (R′) // DefOB (A0,OKj )(R′)

commutes since

(M0 ⊗OKj E)⊗R R′ ∼= M0 ⊗OKj (E ⊗R R′).

Now, the main point is that G (R) is a bijection because Def(E0,OKj )(R) and DefOB (A0,OKj )(R)

are both one point sets by Theorem 5.1.1.

With the same notation as above, if we define a functor Def(E0[p∞],OKj ) : CLN→ Sets in the
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obvious way, then there is a natural isomorphism of functors

G ′ : Def(E0[p∞],OKj )→ DefOB (A0[p∞],OKj ).

This is a consequence of the above proposition and the Serre-Tate theorem (both in the usual form

and Theorem 8.1.2). Explicitly, G ′ is the composition of isomorphisms

Def(E0[p∞],OKj )→ Def(E0,OKj )
G−→ DefOB (A0,OKj )→ DefOB (A0[p∞],OKj ),

so G ′(R) : h 7→M0⊗OKj h, where M0⊗OKj h is the p-divisible group (Gn)n with Gn = M0⊗OKj Hn

(where h = (Hn)n). The ring OB acts on M0 ⊗OKj h through its action on M0. As a p-divisible

group with an action of OKj , we have M0 ⊗OKj h ∼= h× h, with OKj acting diagonally on h× h.

Let g be the unique (up to isomorphism) connected p-divisible group of height 2 and dimension

1 over FP, and set ∆ = End(g) as above. Since the functor DefOB (A0,OKj ) is represented by W ,

there is a bijection

DefOB (A0,OKj )(R) ∼= HomCLN(W , R)

for any R ∈ CLN. The unique element of DefOB (A0,OKj )(W ), which corresponds to the identity

map W → W , is called the universal deformation of A0 to W . A similar definition can be made

for the other deformation functors we have defined. Let A be the universal deformation of A0 to

W . From the above discussion, A[p∞] is the universal deformation of A0[p∞] to W , and there is

an isomorphism A ∼= M0 ⊗OKj E for some CM elliptic curve E over W lifting E0, where A0
∼=

M0 ⊗OKj E0. Let G be the universal deformation of E0[p∞] ∼= g to W (the universal deformation

with respect to the functor Def(g,OKj )). Since G is an isomorphism, E is the universal deformation

of E0 to W (with respect to Def(E0,OKj )), so E[p∞] ∼= G and therefore there is an isomorphism

A[p∞] ∼= M0 ⊗OKj G. Again, as a p-divisible group with an action of OKj , we have M0 ⊗OKj G ∼=
G×G.

In the context of the previous paragraph, suppose we are in the case of p - dB . The standard

idempotents ε and ε′ in

M2(W ) ∼= M2(Zp)⊗Zp W ∼= OB ⊗Z W

induce a splitting A[p∞] ∼= εA[p∞]× ε′A[p∞], and conjugation by[
0 1
1 0

]
∈ M2(W )
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defines an isomorphism εA[p∞]→ ε′A[p∞], so there are isomorphisms of p-divisible groups over W

G×G ∼= A[p∞] ∼= εA[p∞]× εA[p∞].

Hence G×G and εA[p∞]× εA[p∞] are both in DefOB (A0[p∞],OKj )(W ), which is a one point set,

so by the injectivity of the map G ′(W ) defined above, εA[p∞] ∼= G. By a proof similar to that of

Lemma 6.1.1, we then have

EndOB⊗ZW (A[p∞]) ∼= EndW (G).

Back to no assumption on p, let L be a quadratic field extension of Qp with ring of integers

OL and let πL ∈ OL be a uniformizer. Let WL be the ring of integers in the completion of the

maximal unramified extension of L, and choose a ring homomorphism W → WL. Viewing OL as a

Zp-subalgebra of ∆, there is an action of OL on g. By [10, Proposition 2.1] there is a unique (up to

isomorphism) deformation gL of g with its OL-action to WL, where gL satisfies the CM normalization

condition: the induced map OL → EndWL
(Lie(gL)) ∼= WL is the structure map OL ↪→ WL. For any

integer m > 1 set WL,m = WL/(πmL ), and for any p-divisible group h over WL set hm = h⊗WL
WL,m.

By [10, Proposition 3.3] the reduction map EndWL,m
(gL,m) ↪→ End(g) induces an isomorphism

EndWL,m
(gL,m) ∼= OL + πm−1

L ∆. (8.1.1)

Continuing with the notation of the previous paragraph, given any f ∈ ∆ r OL, the functor

Def(g,OL[f ]) : CLN → Sets, defined in the obvious way, is represented by WL,m, where m is

the largest integer such that f lifts (necessarily uniquely, by the injectivity of the reduction map)

to an element of EndWL,m
(gL,m). To prove this, we need to show that given a deformation (g̃, f̃)

of (g, f) to an object R of CLN, including a lift of the OL-action, there is a unique morphism

WL,m → R in CLN such that (g̃, f̃) is the reduction of (gL,m, fm) via this morphism, where fm is

the assumed lift of f . It suffices to assume R is Artinian as usual. By construction there is a unique

morphism WL → R such that g̃, with its OL-action, is the reduction of gL. Then for some n > m+1

sufficiently large, the morphism WL → R factors through ϕ : WL,n → R since R is Artinian. Set

S = Spec(WL,n), so ϕ ∈ S(R). Now by (8.1.1),

f ∈ EndWL,n
(gL,n)⊗Z Q ∼= ∆Q,

which means f is a quasi-isogeny fn : gL,n → gL,n. Then by [22, Proposition 2.9], the functor

T 7→ {ψ ∈ HomS(T, S) : ψ∗fn is an isogeny}
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on S-schemes is represented by a closed subscheme S0 ⊂ S. As f̃ is an isogeny, we have ϕ ∈ S0(R).

Since m is the largest integer such that S0(WL,m) is nonempty, the closed subscheme S0 must be

Spec(WL,m), so from ϕ ∈ S0(R) the claim follows.

8.2 Deformations of CM pairs

Fix a ring homomorphism θ : OK → OB/mB , a CM pair (A1,A2) ∈ Xθ(FP), and a nonzero

f ∈ L(A1,A2). Let p be the residue characteristic of P, let p = P ∩ OF , and assume p is nonsplit

in K1 and K2.

Proposition 8.2.1. If p - dB and p is inert in K1 and K2, then the functor Def(A1,A2, f) is

represented by a local Artinian W -algebra of length

ordp(degCM(f)) + 1
2

.

Proof. Since p - dB , the standard idempotent ε ∈ M2(Zp) ∼= OB ⊗Z Zp induces an isomorphism

Lp(A1,A2) ∼= ∆ of Zp-modules (Lemmas 6.2.1 and 6.2.2), and this isomorphism identifies the

quadratic form deg∗ on Lp(A1,A2) with the quadratic form u · Nrd on ∆ for some u ∈ Z×p .

Isomorphisms εAj [p∞] ∼= g may be chosen so that κ1 : OK1,p → EndOB (A1) ⊗Z Zp ∼= ∆ and

κ2 : OK2,p → EndOB (A2)⊗Z Zp ∼= ∆ have the same image OL ∼= Zp2 . Let L ∼= K1,p
∼= K2,p be the

fraction field of OL. Fix a uniformizer Π ∈ ∆ satisfying vΠ = Πvι for all v ∈ OL ⊂ ∆, so there

is a decomposition of left OL-modules ∆ = ∆+ ⊕ ∆−, where ∆+ = OL and ∆− = OLΠ. This

decomposition is orthogonal with respect to the quadratic form deg∗ on ∆ because if a, b ∈ OL then

deg∗(a+ bΠ)− deg∗(a)− deg∗(bΠ) = uNrd(a+ bΠ)− uNrd(a)− uNrd(bΠ)

= u(a− bΠ)− ua+ ubΠ = 0.

Define ϕ± : OK,p → OL by

ϕ+(x1 ⊗ x2) = κ2(x2)κ1(x1)

ϕ−(x1 ⊗ x2) = κ2(x2)κ1(x1),

and let Φ be the isomorphism

Φ = ϕ+ × ϕ− : OK,p → OL ×OL.
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Then the usual action of OK on ∆ is given by

x • f = ϕ+(x)f+ + ϕ−(x)f−

for f = f+ + f− ∈ ∆, because for f+ ∈ OL and f− ∈ OLΠ,

(x1 ⊗ x2) • f+ = κ2(x2)f+κ1(x1) = κ2(x2)κ1(x1)f+

(x1 ⊗ x2) • f− = κ2(x2)f−κ1(x1) = κ2(x2)κ1(x1)f−

by the choice of Π. Also, the OF,p-quadratic form degCM on ∆ takes the form

Φ(degCM(f)) = (deg∗(f+),deg∗(f−))

since

TrFp/Qp(deg∗(f+),deg∗(f−)) = deg∗(f+) + deg∗(f−) = deg∗(f+ + f−) = deg∗(f),

the second equality coming from orthogonality. Therefore if p− = p and p+ = p is the other prime

of F over p, then

ordp+(degCM(f)) = ordp(deg∗(f+))

ordp−(degCM(f)) = ordp(deg∗(f−)).

This follows from Φ(POK,p) = OL × pOL and Φ(POK,p) = pOL ×OL, where P is the prime of K

over p+, and this is a result of the equivalences

x1 ⊗ x2 ∈ POK,p ⇐⇒ κ2(x2)κ1(x1) ∈ m∆ ∩ OL = pOL

x1 ⊗ x2 ∈ POK,p ⇐⇒ κ2(x2)κ1(x1) ∈ m∆ ∩ OL = pOL

we saw in the proof of Proposition 7.2.5, where m∆ ⊂ ∆ is the unique maximal ideal. Hence, for

any integer m > 1 and any f ∈ ∆,

f ∈ OL + pm−1∆ ⇐⇒ f− ∈ pm−1OLΠ

⇐⇒ ordp(deg∗(f−)) > 2m− 1

⇐⇒ ordp(degCM(f)) + 1
2

> m,



CHAPTER 8. DEFORMATION THEORY II 97

where the second equivalence comes from deg∗(Π) = p and deg∗(p) = p2. Note that ordp(degCM(f)) =

ordp(deg∗(f−)) is odd because any f− ∈ OLΠ can be written as f− = vpkΠ for some v ∈ Z×p2 and

k > 0, and thus deg∗(f−) = p2k+1.

The functor

Def(A1,A2) ∼= DefOB (A1[p∞],OL)×DefOB (A2[p∞],OL)

∼= Def(g,OL)×Def(g,OL)

is represented by W ⊗̂W W ∼= W . As above let G be the universal deformation of g to W (with

respect to Def(g,OL)), let πK ∈ KP be a uniformizer, and set Wm = W /(πmK ). Then the p-divisible

group of the universal deformation of (A1,A2) to W is (H1,H2), where Hj ∼= G × G for j = 1, 2,

with OB acting on G × G ∼= εHj × εHj via the natural action of M2(W ). By what we showed

above, the functor Def(A1,A2, f) is represented by Wm, where m is the largest integer such that

f ∈ HomOB (A1[p∞], A2[p∞]) ∼= End(g) lifts to an element of

HomOB⊗ZWm
(H1 ⊗W Wm,H2 ⊗W Wm) ∼= EndWm

(G⊗W Wm).

Since p is inert in K1 and K2, we have KP
∼= L, so W = WL = W . If gL is the unique deformation

of g with its OL-action to W , then gL = G, so by (8.1.1),

EndWm(Gm) = EndWm(gL,m) ∼= OL + pm−1∆.

Hence Def(A1,A2, f) is represented by Wm, which is an Artinian W -algebra of length m, where m

is the largest integer such that f ∈ OL+ pm−1∆, and the formula for m follows from the calculation

above.

We will need an analogue of (8.1.1) for the p-divisible group of a false elliptic curve defined over

Fp for p | dB . This is what we prove next.

Lemma 8.2.2. Let (A, i, κ) ∈ Yj(FP) for p | dB. Set

R = EndOB (A)⊗Z Zp ∼= EndOB (A[p∞]),

let A be the universal deformation of A to W = W , and for each integer m > 1 set

Rm = EndOB⊗ZWm
(A ⊗W Wm)⊗Z Zp ∼= EndOB⊗ZWm

(A [p∞]⊗W Wm),
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where Wm = W/(pm). Then the reduction map Rm ↪→ R induces an isomorphism

Rm ∼= OL + pm−1R,

where OL = κ(OKj ,p).

Proof. We will use Grothendieck-Messing deformation theory. Let D = D(A) be the covariant

Dieudonné module of A as above and set Oj = OB ⊗Z OKj . There is an isomorphism of D ⊗Z Oj-
modules HdR

1 (A ) → D, where HdR
1 (A ) = HomW (H1

dR(A ),W ) is the first de Rham homology

group of A (which is a free W -module of rank 4). It follows that for any m > 1 there are Oj-linear

isomorphisms of Wm-modules

HdR
1 (A ⊗W Wm) ∼= D ⊗W Wm

∼= D/pmD.

For any m > 1 the surjection Wm → FP has kernel a = pW/pmW . Since a has the canonical

divided power structure, the deformations of A, as an abelian scheme, to Wm are in one-to-one

correspondence with direct summands M ⊂ H̃dR
1 (A), where H̃dR

1 (A) = HdR
1 (Ã) for any deformation

Ã of A to Wm, such that the image of M under the reduction H̃dR
1 (A) → HdR

1 (A) is Fil(A), the

Hodge filtration of HdR
1 (A). By Corollary 5.1.3, (A, i, κ) has a unique deformation to Wm, namely

Am = A ⊗W Wm. Therefore there is a unique direct summand Mm ⊂ H̃dR
1 (A), stable under the

action of Oj on H̃dR
1 (A), that reduces to Fil(A), and such that the diagram

OKj //

""D
DD

DD
DD

D EndOB⊗ZWm
(H̃dR

1 (A)/Mm)

Wm

66llllllllllllll

(8.2.1)

commutes, namely Mm = Fil(Am). The Hodge sequence for A takes the form

0→ Fil(A)→ D/pD → Lie(A)→ 0.

Using a W -basis {e1, e2, e3, e4} for D as in Proposition 6.3.2, it also defines an FP-basis for D/pD,

and

Fil(A) = ker(D/pD → D/V D)

has {e2, e4} as an FP-basis.

Any f ∈ R induces a map HdR
1 (A)→ HdR

1 (A) which lifts to a map f̃ : H̃dR
1 (A)→ H̃dR

1 (A), and
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f lifts to an element of Rm if and only if f̃(Mm) ⊂Mm. The map

f̃ : H̃dR
1 (A) ∼= D/pmD → D/pmD ∼= H̃dR

1 (A)

corresponds to the reduction modulo pm of f : D → D. Consider the Wm-submodule N =

SpanWm
(e2, e4) ⊂ D/pmD. In the basis {en}, the OKj -action on D is given by (6.3.3) and the

OB-action is given by one of the matrices in (6.3.2). Each of these maps stabilizes N , so N is an

Oj-stable direct summand of D/pmD that reduces to Fil(A) = SpanFP
(e2, e4) modulo p. Also, a

computation in coordinates shows that the diagram

OKj //

""E
EE

EE
EE

E
EndOB⊗ZWm((D/pmD)/N)

Wm

55lllllllllllllll

commutes. Hence N ∼= Mm under the isomorphism D/pmD ∼= H̃dR
1 (A). Now,

R ∼=
{[

x yΠ
pyΠ x

]
: x, y ∈ OKj ,p

}
,

where we have fixed a decomposition ∆ = OKj ,p ⊕OKj ,pΠ. Expressing

f =
[
x yΠ
pyΠ x

]
∈ R

as an element of M4(W ) as in (6.3.4), we have

f lifts to an element of Rm ⇐⇒ f̃(N) ⊂ N

⇐⇒ f : D/pmD → D/pmD stabilizes N

⇐⇒ f(e2), f(e4) ∈We2 +We4 + pmD

⇐⇒ p2y ∈ pmW and py ∈ pmW

⇐⇒ y ∈ pm−1OKj ,p

⇐⇒ f ∈ OL + pm−1R.

Proposition 8.2.3. If p | dB and P divides ker(θ), then Def(A1,A2, f) is represented by a local

Artinian W -algebra of length 1
2ordp(degCM(f)).

Proof. The proof is very similar to that of Proposition 8.2.1. As usual Aj ∼= Mj ⊗OKj Ej for some

supersingular elliptic curve Ej . Isomorphisms Ej [p∞] ∼= g may be chosen so that the CM actions
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OK1,p → ∆ and OK2,p → ∆ on E1 and E2, respectively, have the same image OL ∼= Zp2 . Fix a

uniformizer Π ∈ ∆ satisfying vΠ = Πvι for all x ∈ OL ⊂ ∆. There is an isomorphism of Zp-modules

Lp(A1,A2) ∼= R, where

R =
{[

x yΠ
pyΠ x

]
: x, y ∈ OL

}
,

and the CM actions κ1 and κ2 are identified with a single action OL → R given by x 7→ diag(x, x)

(see the proof of Proposition 7.2.5). Under the isomorphism Lp(A1,A2) ∼= R the quadratic form

deg∗ on Lp(A1,A2) is identified with the quadratic form Q on R defined in Proposition 7.2.2. There

is a decomposition of left OL-modules R = R+ ⊕ R−, with R+ = OL, embedded diagonally in R,

and R− = OLP , where

P =
[

0 Π
pΠ 0

]
,

and this decomposition is orthogonal with respect to the quadratic form deg∗. Similar to before,

define ϕ± : OK,p → OL ⊂ R by

ϕ+(x1 ⊗ x2) = κ2(x2)κ1(x1)

ϕ−(x1 ⊗ x2) = κ2(x2)κ1(x1),

and let Φ be the isomorphism

Φ = ϕ+ × ϕ− : OK,p → OL ×OL.

Then the usual action of OK on R is given by

x • f = ϕ+(x)f+ + ϕ−(x)f−

for f = f+ + f− ∈ R since Pκ1(x1) = κ1(x1)P by the choice of Π. As above it follows that

Φ(degCM(f)) = (deg∗(f+),deg∗(f−)).

Now let

M =
{[

px yΠ
pyΠ px

]
: x, y ∈ OL

}
⊂ R.

We saw in the proof of Proposition 7.2.5 that

x1 ⊗ x2 ∈ POK,p ⇐⇒ κ2(x2)κ1(x1) ∈M ∩ OL = pOL

x1 ⊗ x2 ∈ POK,p ⇐⇒ κ2(x2)κ1(x1) ∈M ∩ OL = pOL,
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and thus, as in the proof of Proposition 8.2.1,

ordp+(degCM(f)) = ordp(deg∗(f+))

ordp−(degCM(f)) = ordp(deg∗(f−)),

where p− = p and p+ = p. Since deg∗(P ) = Q(P ) = −p2, for any integer m > 1 and any f ∈ R we

have

f ∈ OL + pm−1R ⇐⇒ f− ∈ pm−1OLP

⇐⇒ ordp(deg∗(f−)) > 2m

⇐⇒ 1
2ordp(degCM(f)) > m.

The functor

Def(A1,A2) ∼= DefOB (A1[p∞],OL)×DefOB (A2[p∞],OL)

is represented by W ⊗̂W W ∼= W . Let (Ã1, Ã2) be the universal deformation of (A1,A2) to W = W .

A similar argument to above shows that the functor Def(A1,A2, f) is represented by Wm = W/(pm),

where m is the largest integer such that f ∈ HomOB (A1[p∞], A2[p∞]) ∼= R lifts to an element of

HomOB⊗ZWm(Ã1[p∞]⊗W Wm, Ã2[p∞]⊗W Wm).

Since there are OB ⊗Z OL-linear isomorphisms A1[p∞] ∼= A2[p∞] and Ãj ⊗W FP
∼= Aj , there is an

OB ⊗Z OL-linear isomorphism Ã1[p∞] ∼= Ã2[p∞] by the uniqueness of the universal deformation.

Hence

HomOB⊗ZWm
(Ã1[p∞]⊗W Wm, Ã2[p∞]⊗W Wm) ∼= Rm ∼= OL + pm−1R

in the notation of Lemma 8.2.2, and therefore m = 1
2ordp(degCM(f)) by the above calculation.

With (A1,A2) as above, suppose p | dB and P does not divide ker(θ). As usual Aj ∼= Mj⊗OKj Ej
for some elliptic curve Ej . Choose isomorphisms Ej [p∞] ∼= g so that the CM actions g1 : OK1,p → ∆

and g2 : OK2,p → ∆ on E1 and E2 have the same imageOL ∼= Zp2 . Fix a uniformizer Π ∈ ∆ satisfying

Πg1(x) = g1(x)Π for all x ∈ OK1,p. There is an isomorphism of Zp-modules Lp(A1,A2) ∼= R′, where

R′ =
{[

px yΠ
yΠ x

]
: x, y ∈ OL

}
,

and the quadratic form deg∗ on Lp(A1,A2) is identified with the quadratic form uQ′ on R′ defined

in Proposition 7.2.4. There is a decomposition of left OL-modules R′ = R′+⊕R′−, where R′+ = OLP1
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and R′− = OLP2, with

P1 =
[
p 0
0 1

]
, P2 =

[
0 Π
Π 0

]
.

Lemma 8.2.4. With notation as above, let Aj be the universal deformation of Aj to W = W , and

for each integer m > 1 set

R′m = HomOB⊗ZWm(A1 ⊗W Wm,A2 ⊗W Wm)⊗Z Zp.

Then the reduction map R′m ↪→ R′ induces an isomorphism

R′m
∼= OLP1 + pm−1OLP2.

Proof. The proof is very similar to that of Lemma 8.2.2, using the following two facts. For each

j ∈ {1, 2} there is a unique Oj-stable direct summand Mj ⊂ H̃dR
1 (Aj) whose image under the

reduction map H̃dR
1 (Aj)→ HdR

1 (Aj) is Fil(Aj), and such that a diagram such as (8.2.1) commutes,

corresponding to the unique deformation Aj⊗WWm of Aj to Wm. Any f ∈ R′ lifts to an element of

R′m if and only if f̃(M1) ⊂M2, where f̃ : H̃dR
1 (A1)→ H̃dR

1 (A2) is the unique lift of f : HdR
1 (A1)→

HdR
1 (A2).

Proposition 8.2.5. If p | dB and P does not divide ker(θ), then Def(A1,A2, f) is represented by

a local Artinian W -algebra of length

ordp(degCM(f)) + 1
2

.

Proof. The decomposition R′ = R′+ ⊕ R′− is orthogonal with respect to the quadratic from deg∗.

Fix ring isomorphisms

EndOB (A1)⊗Z Zp ∼= R ∼= EndOB (A2)⊗Z Zp,

with R as in the proof of Proposition 8.2.3. Define ϕ± : OK,p → OL ⊂ R by

ϕ+(x1 ⊗ x2) = κ2(x2)κ1(x1) = diag(g2(x2)g1(x1), g2(x2)g1(x1))

ϕ−(x1 ⊗ x2) = κ2(x2)κ1(x1) = diag(g2(x2)g1(x1), g2(x2)g1(x1))

and let

Φ = ϕ+ × ϕ− : OK,p → OL ×OL.
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The action of OK on R′ is then given by

x • f = ϕ+(x)f+ + ϕ−(x)f−

for f = f+ + f−, where we are viewing R′ as a left R-module. As before,

Φ(degCM(f)) = (deg∗(f+),deg∗(f−))

and thus

ordp+(degCM(f)) = ordp(deg∗(f+))

ordp−(degCM(f)) = ordp(deg∗(f−)),

where p− = p and p+ = p. The key difference now is that deg∗(P2) = uQ′(P2) = −up, so for any

integer m > 1 and any f ∈ R′ we have

f ∈ OLP1 + pm−1OLP2 ⇐⇒ f− ∈ pm−1OLP2

⇐⇒ ordp(deg∗(f−)) > 2m− 1

⇐⇒ ordp(degCM(f)) + 1
2

> m.

If (Ã1, Ã2) is the universal deformation of (A1,A2), then Def(A1,A2, f) is represented by

Wm = W/(pm), where m is the largest integer such that

f ∈ HomOB (A1[p∞], A2[p∞]) ∼= R′

lifts to an element of

HomOB⊗ZWm
(Ã1[p∞]⊗W Wm, Ã2[p∞]⊗W Wm) ∼= R′m

∼= OLP1 + pm−1OLP2.

The formula for m then follows from the above calculation.

Proposition 8.2.6. If p - dB and p is ramified in K1 or K2, then Def(A1,A2, f) is represented by

a local Artinian W -algebra of length

ordp(degCM(f)) + ordp(D) + 1
2

.

Proof. Suppose p is ramified in K2 and inert in K1, and let OLj be the image of κj : OKj ,p → ∆. If
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$ ∈ OK2,p is a uniformizer then π = 1⊗$ is a uniformizer of OK,p and Π = κ2($) is a uniformizer

of OL2 and of ∆. The action of π ∈ OK,p on Lp(A1,A2) ∼= ∆ is then given by π • x = Πx. By

Proposition 7.2.5 there is an OK,p-linear isomorphism

(OK,p, β ·NKp/Fp) ∼= (∆,degCM),

with βOF,p = pD−1OF,p, so by OK,p-linearity this isomorphism sends πmOK,p isomorphically to

Πm∆. Viewing f both as an element of ∆ and as an element of OK,p, we have

v∆(f) = ordπ(f)

= ordP(f)

= 1
2ordp(NKp/Fp(f))

=
ordp(βNKp/Fp(f)) + ordp(D)− 1

2

=
ordp(degCM(f)) + ordp(D)− 1

2
.

The functor

Def(A1,A2) ∼= DefOB (A1[p∞],OL1)×DefOB (A2[p∞],OL2)

∼= Def(g,OL1)×Def(g,OL2)

is represented by W ⊗̂W W ∼= W . Since p is ramified in K2, the extension KP = Kp of K2,p is

unramified, which means W = WL2 , where L2
∼= K2,p is the fraction field of OL2 . For j ∈ {1, 2}

let G(j) be the universal deformation of g, with its OLj -action, to W , and for any integer m > 1

set G
(j)
m = G(j) ⊗W W /(πm). Let (H1,H2) be the p-divisible group of the universal deformation of

(A1,A2). Since p - dB , we have seen that there is an OB-linear isomorphism Hj ∼= G(j)×G(j). The

functor Def(A1,A2, f) is represented by Wm = W /(πm), where m is the largest integer such that

f ∈ HomOB (A1[p∞], A2[p∞]) ∼= End(g) lifts to an element of

HomOB⊗ZWm
(H1 ⊗W Wm,H2 ⊗W Wm) ∼= HomWm

(G(1)
m ,G(2)

m ).

Viewing f as an element of End(g) = ∆, factor f = Πmu with u ∈ ∆× and m = v∆(f).

Suppose u lifts to a homomorphism G
(1)
m → G

(2)
m . Since u ∈ ∆×, this lift is an isomorphism, and

since Π ∈ OL2 lifts to an endomorphism of G(2), u−1 ◦ Π ◦ u lifts to an endomorphism of G
(1)
m . As

OL1
∼= Zp2 and u−1Πu generate ∆ as a Zp-algebra, every element of ∆ lifts to an endomorphism of
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G
(1)
m and thus by (8.1.1),

∆ ∼= EndWm(G(1)
m ) ∼= EndWm(G(2)

m ) ∼= OL2 + Πm−1∆.

Here we are using that W = WL2 . This shows m = 1 and therefore u lifts to a homomorphism

G
(1)
1 → G

(2)
1 , but not to G

(1)
2 → G

(2)
2 . It follows from [28, Proposition 5.2] that f = Πmu lifts to

G
(1)
m+1 → G

(2)
m+1 but not to G

(1)
m+2 → G

(2)
m+2, so Def(A1,A2, f) is represented by W /(πm+1), where

m+ 1 = v∆(f) + 1 =
ordp(degCM(f)) + ordp(D) + 1

2
.

8.3 The étale local ring

Let Z be a stack over Spec(OK) and let z ∈ Z (FP) be a geometric point. For any object R of CLN

there is an equivalence of categories between the category of morphisms of stacks Spec(R) → Z

over Spec(OK) and the category Z (R), the fiber of Z over R, by a form of Yoneda’s lemma, so we

can view a geometric point in either way. An étale neighborhood of z is a commutative diagram in

the category of stacks over Spec(OK)

U

��
Spec(FP)

z̃

::uuuuuuuuu

z
// Z

where U is an OK-scheme and U → Z is an étale morphism. The strictly Henselian local ring of

Z at z is the direct limit

Osh
Z ,z = lim−→

(U,z̃)

OU,z̃

over all étale neighborhoods of z, where OU,z̃ is the local ring of the scheme U at the image of z̃.

The ring Osh
Z ,z is a strictly Henselian local ring with residue field FP. Suppose C ⊂ W is a subring

that is étale as an OK-algebra, and let (U, z̃) be an étale neighborhood of z. Then the diagram

U ×Spec(OK) Spec(C)

��
U

��
Spec(FP)

(z̃,f)

<<yyyyyyyyyyyyyyyyyyyy
z // Z
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is an étale neighborhood of z, where f : Spec(FP)→ Spec(C) is determined by the ring homomor-

phism C ↪→ W → FP. This shows Osh
Z ,z is a C-algebra. The union of all such C is dense in W , so

the completed strictly Henselian local ring Ôsh
Z ,z is a W -algebra.

Theorem 8.3.1. Let α ∈ F×, let θ : OK → OB/mB be a ring homomorphism, and suppose P ⊂ OK
is a prime ideal lying over a prime p. Set

νp(α) =
1
2

ordp(αpD), ν′p(α) =
1
2

ordp(α),

where p = P∩OF . For any x = (A1,A2, f) ∈Xθ,α(FP), the strictly Henselian local ring Osh
Xθ,α,x

is

Artinian of length νp(α) if p - dB or p | dB and P - ker(θ), and is Artinian of length ν′p(α) if p | dB
and P | ker(θ).

By length we mean the length of the ring as a module over itself.

Proof. Let R be an Artinian object of CLN and suppose z ∈ Def(A1,A2, f)(R). Then z is an ele-

ment of [Xθ,α(R)] whose image under the reduction map [Xθ,α(R)]→ [Xθ,α(FP)] is the isomorphism

class of x (see Corollary 5.2.9), and thus there is a commutative diagram

Spec(R)
z

%%JJJJJJJJJJ

Spec(FP)

OO

x
// Xθ,α,

where we are fixing a representative z ∈Xθ,α(R) of the isomorphism class z ∈ [Xθ,α(R)]. Given an

étale neighborhood of x,

U

��
Spec(FP)

x̃

99ssssssssss

x
// Xθ,α,

there is a unique morphism z̃ : Spec(R)→ U making the diagram

Spec(R) z̃ //

$$J
JJJJJJJJ U

��
Spec(FP)

OO

x
//

::tttttttttt
Xθ,α

commute. This follows from the closed immersion Spec(FP)→ Spec(R) being defined by a nilpotent

ideal (R is Artinian) and the étale morphism U → Xθ,α necessarily being formally étale (see [17,
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p. 30] for a proof in the case of schemes). Then z̃ induces a ring homomorphism z̃ : OU,x̃ → R,

and by varying the étale neighborhood we obtain a map z̃ : Osh
Xθ,α,x

→ R that induces the identity

FP → FP on residue fields (by the commutativity of the above diagram for each étale neighborhood).

In particular, z̃ maps the maximal ideal of Osh
Xθ,α,x

onto the maximal ideal of R and hence extends

uniquely to z̃ ∈ HomCLN(Ôsh
Xθ,α,x

, R), as R is complete. Define a map

Def(A1,A2, f)(R)→ HomCLN(Ôsh
Xθ,α,x

, R)

by z 7→ z̃.

Now let z ∈ HomCLN(Ôsh
Xθ,α,x

, R). Viewing z as a morphism

z : Spec(R)→ Spec(Ôsh
Xθ,α,x

),

consider the morphism of stacks over Spec(OK)

z′ : Spec(R) z−→ Spec(Ôsh
Xθ,α,x

)→ Spec(Osh
Xθ,α,x

)→Xθ,α.

This corresponds to an object z′ of Xθ,α(R). Since z : Ôsh
Xθ,α,x

→ R induces the identity FP → FP

on residue fields, the diagram

Spec(R)
z′

$$J
JJJJJJJJ

Spec(FP)

OO

x
// Xθ,α

commutes, so z′ ∈ Def(A1,A2, f)(R). The map

HomCLN(Ôsh
Xθ,α,x

, R)→ Def(A1,A2, f)(R)

defined by z 7→ z′ is the inverse of the map z 7→ z̃ defined above, so there is a bijection

Def(A1,A2, f)(R) ∼= HomCLN(Ôsh
Xθ,α,x

, R)

for any Artinian R in CLN. As in Corollary 5.1.3 it follows that there is such a bijection for any R

in CLN, so the functor Def(A1,A2, f) is represented by the ring Ôsh
Xθ,α,x

. The result now follows

from Propositions 8.2.1, 8.2.3, 8.2.5, 8.2.6, and the fact that length(Ôsh
Xθ,α,x

) = length(Osh
Xθ,α,x

).



Chapter 9

Final formula

9.1 Degree of Xθ,α

As in the introduction, let χ be the quadratic Hecke character associated with the extension K/F ,

so if v is a place of F then χv : F×v → {±1} is given by

χv(x) =
{

1 if x ∈ NKv/Fv (K×v )
−1 if x /∈ NKv/Fv (K×v ).

We may interpret χ as a character on ideals as follows. Since Kv/Fv is unramified for any finite

place v of F , the norm map NKv/Fv : O×K,v → O
×
F,v is surjective, so if a is a fractional OF -ideal, then

the definition χv(a) = χv(αv) is independent of the choice of αv ∈ F×v satisfying αvOF,v = aOF,v.
For any α ∈ F× totally positive and any ring homomorphism θ : OK → OB/mB , define a finite

set of prime ideals

Diffθ(α) = {p ⊂ OF : χp(αaθD) = −1},

where aθ = ker(θ) ∩ OF . It follows from the product formula
∏
v χv(x) = 1 that Diffθ(α) has odd

cardinality, and in particular is nonempty. (If v1, v2 are the two archimedean places of F , then

χv1(α
√
D)χv2(α

√
D) = −1, where D = disc(F ) and thus D =

√
DOF .) Note that if p ∈ Diffθ(α)

then p is inert in K. The only other possibility is p is split in K, in which case

Kp = Fp ⊗F K ∼= Fp × Fp

and the norm map N : Kp → Fp is just multiplication. If αaθDOF,p = ξOF,p for some ξ ∈ F×p , then

clearly ξ = N(ξ, 1), so χp(αaθD) = 1. Recall that Γ = Cl(OK1)× Cl(OK2).

108
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Lemma 9.1.1. For any prime P ⊂ OK and any ring homomorphism θ : OK → OB/mB, we have

#[Xθ(FP)] = |Γ|.

Proof. Let θj = θ|OKj . By definition, an object of Xθ(FP) is a pair (A1,A2) with Aj an object of

Y
θj
j (FP), so by what we proved in Section 5.2,

#[Xθ(FP)] = #[Y θ1
1 (FP)] ·#[Y θ2

2 (FP)] = |Cl(OK1)| · |Cl(OK2)| = |Γ|.

Proposition 9.1.2. Suppose α ∈ F× and θ : OK → OB/mB is a ring homomorphism. If

# Diffθ(α) > 1 then Xθ,α = ∅. Suppose Diffθ(α) = {p}, let P ⊂ OK be the prime over p, and

let pZ = p ∩ Z. Then the stack Xθ,α is supported in characteristic p. More specifically, it only has

geometric points over the field FP (if it has any at all).

Proof. By Proposition 3.2.7 the stack Xθ,α has no geometric points in characteristic 0. Suppose

Xθ,α(FP) 6= ∅ for some prime ideal P ⊂ OK . Fix (A1,A2, f) ∈Xθ,α(FP), and let p = P∩OF and

pZ = p ∩ Z. Any prime ideal q of OF lying over p or lying over any divisor of dB is inert in K (by

Proposition 3.2.7(d) and our assumption about the primes dividing dB), so for such a q,

χl(q) =
{
−1 if l = q
1 if l 6= q

for any prime l ⊂ OF . By Theorem 7.3.1, the quadratic space (K̂, β · NK/F ) represents α for any

β ∈ F̂× satisfying βÔF = aθpD−1ÔF . It follows that χl(α) = χl(aθpD−1) for every prime l ⊂ OF ,

so Diffθ(α) = {p}. This shows that if Xθ,α(FP) 6= ∅ then Diffθ(α) = {p}, where p = P ∩ OF .

Recall the definition of the arithmetic degree of Xθ,α from the introduction:

deg(Xθ,α) =
∑

P⊂OK

log(|FP|)
∑

x∈[Xθ,α(FP)]

length(Osh
Xθ,α,x

)

|Aut(x)|
.

Theorem 9.1.3. Let α ∈ F× be totally positive and suppose α ∈ D−1. Let θ : OK → OB/mB be a

ring homomorphism with aθ = ker(θ) ∩ OF , suppose Diffθ(α) = {p}, and let pZ = p ∩ OF .

(a) If p - dB then

deg(Xθ,α) =
1
2

log(p) · ordp(αpD) · ρ(αa−1
θ p−1D).

(b) Suppose p | dB and let P ⊂ OK be the prime over p. If P divides ker(θ) then

deg(Xθ,α) =
1
2

log(p) · ordp(α) · ρ(αa−1
θ p−1D).
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If P does not divide ker(θ) then

deg(Xθ,α) =
1
2

log(p) · ordp(αp) · ρ(αa−1
θ p−1D).

If α /∈ D−1 or if # Diffθ(α) > 1, then deg(Xθ,α) = 0.

Proof. The group Aut(A1,A2) acts on the set L(A1,A2) according to the rule

(g1, g2) · f = g−1
2 ◦ f ◦ g1

for (g1, g2) ∈ Aut(A1,A2) and f ∈ L(A1,A2). Under this action the stabilizer of f is

Stab(f) = {(g1, g2) ∈ Aut(A1,A2) : g−1
2 ◦ f ◦ g1 = f}

= Aut(A1,A2, f).

(a) Using Theorem 8.3.1, Proposition 9.1.2, Lemma 4.1.3, and the fact that |FP| = NK/Q(P) = p2,

deg(Xθ,α) = log(|FP|)
∑

x∈[Xθ,α(FP)]

length(Osh
Xθ,α,x

)

|Aut(x)|

= 2 log(p)νp(α)
∑

(A1,A2,f)∈[Xθ,α(FP)]

1
|Aut(A1,A2, f)|

= 2 log(p)νp(α)
∑

(A1,A2)∈[Xθ(FP)]

∑
f∈L(A1,A2)
degCM(f)=α

1
|Aut(A1,A2, f)|

· |Stab(f)|
|Aut(A1,A2)|

= 2 log(p)νp(α)
∑

(A1,A2)∈[Xθ(FP)]

∑
f∈L(A1,A2)
degCM(f)=α

1
w1w2

.

Now using Proposition 4.1.4, Theorem 7.3.3, and Lemma 9.1.1, we have

deg(Xθ,α) = 2 log(p)νp(α)
∑

(A1,A2)∈[Xθ(FP)]

1
|Γ|

∑
(s1,s2)∈Γ

∑
f∈L(s1⊗A1,s2⊗A2)

degCM(f)=α

1
w1w2

= log(p)
νp(α)
|Γ|

∑
(A1,A2)∈[Xθ(FP)]

∏
`

O`(α,A1,A2)

= log(p)
νp(α)
|Γ|

∑
(A1,A2)∈[Xθ(FP)]

ρ(αa−1
θ p−1D)

=
1
2

log(p) · ordp(αpD) · ρ(αa−1
θ p−1D).
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(b) Suppose p | dB . If P divides ker(θ) then a similar calculation to that in (a), replacing νp(α)

with ν′p(α), gives the desired result. If P does not divide ker(θ) then the exact same calculation as

in (a) gives the desired formula, noting that νp(α) = 1
2ordp(αp) for p | dB (since p is unramified in

F ).

The final claim follows from Proposition 9.1.2 and the fact that degCM takes values in D−1.



Chapter 10

Special endomorphisms of CM

false elliptic curves

In this chapter we prove Theorem 4 of the introduction. The method of proof follows what was done

in proving Theorem 9.1.3 and many of the proofs are very similar, but simpler. We continue with

the same notation as in the previous chapters except now let K be an imaginary quadratic field with

ring of integers OK and discriminant dK . We write x 7→ x for the nontrivial element of Gal(K/Q).

For p ⊂ OK a prime ideal, let Fp = OK/p be the residue field. We assume that each prime dividing

dB is inert in K, so in particular K embeds into B (equivalently, K splits B). Let ep and fp be

the ramification index and residue field degree of K/Q at a prime p, let s be the number of distinct

prime factors of dK , and set εp = 1− ordp(dB).

10.1 Moduli spaces

Definition 10.1.1. Define Y to be the category whose objects are triples (A, i, κ) where (A, i) is

a false elliptic curve over some OK-scheme with complex multiplication κ : OK → EndOB (A) (so in

particular, A satisfies the CM normalization condition). A morphism (A′, i′, κ′)→ (A, i, κ) between

two such triples defined over OK-schemes T and S, respectively, is a morphism of OK-schemes

T → S together with an OK-linear isomorphism A′ → A×S T of false elliptic curves.

Definition 10.1.2. Let (A, i, κ) ∈ Y (S) for some OK-scheme S. A special endomorphism of (A, κ)

is an endomorphism f ∈ EndOB (A) satisfying

κ(x) ◦ f = f ◦ κ(x)

112
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for all x ∈ OK . We write L(A, κ) for the Z-module of all special endomorphisms and set V (A, κ) =

L(A, κ)⊗Z Q.

We make L(A, κ) into a left OK-module through the action x·f = κ(x)◦f . There is the quadratic

form deg∗ on L(A, κ) and this satisfies

deg∗(x · f) = NK/Q(x) · deg∗(f)

for all x ∈ OK .

Definition 10.1.3. For any positive integer m, define Y m to be the category whose objects are

triples (A, κ, f) where (A, i, κ) ∈ Y (S) for some OK-scheme S and f ∈ L(A, κ) satisfies deg∗(f) = m

on every connected component of S. A morphism

(A′, κ′, f ′)→ (A, κ, f)

between two such triples, with (A′, i′, κ′) and (A, i, κ) CM false elliptic curves over OK-schemes T

and S, respectively, is a morphism of OK-schemes T → S together with an OK-linear isomorphism

g : A′ → A×S T of false elliptic curves such that the diagram

A′

f ′

��

g // A×S T

f×idT

��
A′

g // A×S T

commutes.

The same proofs as in Chapter 5 show that for any prime p ⊂ OK , the group W0 ×Cl(OK) acts

simply transitively on [Y (Fp)] and that for any A ∈ Y (Fp), there is an isomorphism of CM false

elliptic curves A ∼= M⊗OK E for some OB⊗ZOK-module M , free of rank 4 over Z, and some elliptic

curve E over Fp with CM by OK (supersingular in the case of the prime below p nonsplit in K).

Proposition 10.1.4. If (A, κ) ∈ Y (C) then V (A, κ) = 0 and if (A, κ) ∈ Y (Fp) then

dimK(V (A, κ)) =
{

1 if A is supersingular
0 otherwise.

Proof. First fix a homomorphism OK → C and suppose (A, κ) ∈ Y (C). Since EndOB (A) is isomor-

phic to Z or an order in an imaginary quadratic field, κ : OK → EndOB (A) is an isomorphism. It

follows that L(A, κ) = 0. Now suppose (A, κ) ∈ Y (Fp) for some prime p ⊂ OK . If A ∼= M ⊗OK E

with E ordinary, then End0
OB (A) ∼= K and L(A, κ) = 0 as above. If A is supersingular then
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End0
OB (A) ∼= B(p), where pZ = p ∩ Z. As K is a simple Q-algebra and B(p) is a central simple

Q-algebra, by the Noether-Skolem theorem applied to the two maps K → B(p) given by x 7→ κ(x)

and x 7→ κ(x), there is an f ∈ (B(p))× such that κ(x) = f ◦ κ(x) ◦ f−1 for all x ∈ K. This means

f ∈ V (A, κ), so dimK(V (A, κ)) > 1. However, the K-subspaces κ(K) and V (A, κ) in B(p) intersect

trivially, so B(p) = κ(K)⊕ V (A, κ) and dimK(V (A, κ)) = 1.

For each place ` 6∞ of Q let (· , ·)` : Q×` ×Q×` → {±1} be the Hilbert symbol. For each positive

integer m define a finite set of prime numbers

DiffB(m) = {` <∞ : (dK ,−m)` · inv`(B) = −1}.

From the product formula ∏
`6∞

(dK ,−m)` · inv`(B) = 1

and (dK ,−m)∞ ·inv∞(B) = (−1,−1)∞ ·inv∞(B) = −1, it follows that DiffB(m) has odd cardinality.

If ` is a prime number split in K then ` - dB by assumption and

Q`(
√
dK) ∼= K ⊗Q Q`

∼= Q` ×Q`.

The norm map Q`(
√
dK)→ Q` is then just multiplication, so clearly −m is a norm from Q`(

√
dK),

which means (dK ,−m)` = 1. Hence (dK ,−m)` · inv`(B) = 1, which shows ` /∈ DiffB(m) if ` is split

in K.

Proposition 10.1.5. Let p ⊂ OK be a prime ideal lying over a prime p. If Y m(Fp) 6= ∅ then

DiffB(m) = {p}.

Proof. Fix (A, κ, f) ∈ Y m(Fp). View K as a Q-subalgebra of B(p) via κ : K → B(p) and consider

the element f + f t ∈ B(p). By definition, f t = λ−1 ◦ f∨ ◦λ, where λ : A→ A∨ is the usual principal

polarization, so f t = f† where g 7→ g† is the Rosati involution on End0
OB (A) corresponding to λ.

Since f + f t is fixed by the Rosati involution, we have f + f t ∈ Z ⊂ EndOB (A). However, as f is a

special endomorphism, for any x ∈ K,

x(f + f t) = xf + xf t = xf + (x)tf t = xf + (fx)t

= fx+ (xf)t = fx+ f tx = (f + f t)x,

so from f + f t ∈ Z it follows that f + f t = 0. Hence

m = deg∗(f) = f ◦ f t = −f2.
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Setting δ =
√
dK ∈ K ⊂ B(p), the Q-algebra B(p) is generated by elements δ, f satisfying

δ2 = dK , f2 = −m, δf = −fδ,

the last relation coming from δ = −δ, so

B(p) ∼=
(
dK ,−m

Q

)
.

Therefore

(dK ,−m)` · inv`(B) = inv`(B(p)) · inv`(B) =
{

1 if ` 6= p,∞
−1 if ` = p,∞,

which means DiffB(m) = {p}.

Corollary 10.1.6. If DiffB(m) = {p} then there is a unique prime ideal p ⊂ OK over p and

Y m(Fq) = ∅ for every prime q 6= p. If # DiffB(m) > 1 then Y m = ∅.

Proof. If Y m(Fq) 6= ∅ then DiffB(m) = {q} where qZ = q ∩ Z. Hence p = q and then p = q since p

and q are nonsplit in K.

10.2 Local quadratic spaces

Let m be a positive integer, p a prime nonsplit in K, p ⊂ OK the prime over p, and (A, κ) ∈ Y (Fp).

For each prime ` set

L`(A, κ) = L(A, κ)⊗Z Z`, V`(A, κ) = V (A, κ)⊗Q Q`.

Proposition 10.2.1. If ` 6= p is a prime then there is an OK,`-linear isomorphism of quadratic

spaces

(OK,`, β` ·NK`/Q`) ∼= (L`(A, κ),deg∗)

for some β` ∈ Z` with β` = −1 if ` - dB and ord`(β`) = 1 if ` | dB.

Proof. First suppose ` - dB and let T` = T`(A) be the `-adic Tate module of A. The standard

idempotents ε, ε′ ∈ M2(Z`) ∼= OB ⊗Z Z` induce a decomposition T` = εT` ⊕ ε′T`. As the OK,`
and OB,` actions on T` commute, the Z`-module εT` is an OK,`-module. In fact, εT` is a free OK,`-
module of rank 1. Indeed, εT`⊗Z` Q` is a K`-vector space of dimension 1, so there is an isomorphism

of K`-vector spaces εT` ⊗Z` Q`
∼= K`, which identifies εT` with a finitely generated OK,`-submodule

of K`, that is, a fractional OK,`-ideal. But every ideal of OK,` is principal, so εT` ∼= OK,` as an

OK,`-module.
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There are Z`-algebra isomorphisms

EndOB (A)⊗Z Z` ∼= EndOB (T`) ∼= EndZ`(εT`) ∼= EndZ`(OK,`).

Let f0 ∈ EndZ`(OK,`) be defined by f0(x) = x. Then

EndZ`(OK,`) = OK,` ⊕OK,` · f0

and L`(A, κ) = OK,` · f0, so for any xf0 ∈ L`(A, κ),

deg∗(xf0) = −(xf0)2 = −xf0xf0 = −xxf2
0 = −NK`/Q`(x)

since f2
0 = 1. Therefore the map OK,` → L`(A, κ) given by x 7→ xf0 defines an OK,`-linear

isomorphism of quadratic spaces

(OK,`,−NK`/Q`)→ (L`(A, κ),deg∗).

Now suppose ` | dB . Viewing K as a Q-subalgebra of B(p) via κ, there is a decomposition

B
(p)
` = K` ⊕K` · f0

for any f0 ∈ V`(A, κ). Choosing f0 to be an OK,`-generator of L`(A, κ), the map x 7→ xf0 defines

an isomorphism of quadratic spaces

(OK,`, β` ·NK`/Q`)→ (L`(A, κ),deg∗)

with β` = −f2
0 = deg∗(f0). Then from

B
(p)
`
∼=
(
dK ,−β`

Q`

)

we have (dK ,−β`)` = −1 as ` | disc(B(p)).

In the proof of Proposition 7.1.2 we saw that EndOB (A) ⊗Z Z` ∼= OB,` is the unique maximal

order in B
(p)
` and the quadratic form deg∗ on EndOB (A) ⊗Z Z` corresponds to the quadratic form

Nrd on OB,`, so f ∈ B(p)
` is in EndOB (A) ⊗Z Z` if and only if deg∗(f) ∈ Z`. As (dK ,−β`)` = −1,

the element −β` ∈ Z` is not a norm from Q`(
√
dK) ∼= K`, which means ord`(−β`) = ord`(β`) is

odd (since K`/Q` is unramified). If ord`(β`) > 3 then deg∗(`−1f0) ∈ Z` since deg∗(`) = `2, so

`−1f0 ∈ L`(A, κ). But f0 is an OK,`-module generator of L`(A, κ), so this is a contradiction and
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hence ord`(β`) = 1.

Proposition 10.2.2. There is an OK,p-linear isomorphism of quadratic spaces

(OK,p, βp ·NKp/Qp) ∼= (Lp(A, κ),deg∗)

for some βp ∈ Zp satisfying ordp(βp) = 2− epεp.

Proof. There is an OK,p-linear isomorphism of quadratic spaces

(OK,p, βp ·NKp/Qp)→ (Lp(A, κ),deg∗)

given by x 7→ xf0, where f0 is an OK,p-module generator of Lp(A, κ) and βp = deg∗(f0). First

suppose p - dB . Then

B(p)
p
∼=
(
dK ,−βp

Qp

)
implies (dK ,−βp)p = −1, and EndOB (A)⊗Z Zp ∼= ∆ is the unique maximal order in B

(p)
p . Suppose

p is unramified in K, so ordp(βp) is odd. If ordp(βp) > 3 then deg∗(p−1f0) ∈ Zp, which means

p−1f0 ∈ Lp(A, κ). This is a contradiction, so ordp(βp) = 1. Next suppose p is ramified in K and let

π ∈ OK,p be a uniformizer. If ordp(βp) > 0 then deg∗(π−1f0) ∈ Zp as NKp/Qp(π) is a uniformizer of

Zp. Again this implies π−1f0 ∈ Lp(A, κ), which is a contradiction, so ordp(βp) = 0.

Now suppose p | dB , so EndOB (A)⊗Z Zp ∼= R11, with

R11 =
{[

x yΠ
pyΠ x

]
: x, y ∈ OK,p

}
,

where Π ∈ ∆ is a uniformizer satisfying Πx = xΠ for all x ∈ OK,p, and κ : OK,p → R11 is given by

κ(x) = diag(x, x). It follows that Lp(A, κ) = OK,p · f0, where

f0 =
[

0 Π
pΠ 0

]
.

Since βp = deg∗(f0) = −p2 (Proposition 7.2.2), we have ordp(βp) = 2.



CHAPTER 10. SPECIAL ENDOMORPHISMS OF CM FALSE ELLIPTIC CURVES 118

10.3 Counting geometric points

Define two algebraic groups T and T 1 over Q whose functors of points are given by

T (R) = (K ⊗Q R)×

T 1(R) = {x ∈ T (R) : NK/Q(x) = 1}

for any Q-algebra R. Define a homomorphism η : T → T 1 given on points by η(x) = x−1x. Let

U = Ô×K ⊂ T (Af ) = K̂×, so U =
∏
` U` for some groups U` ⊂ T (Q`), and let V = η(U). If R is a

field of characteristic 0 or Af , then the sequence

1→ R× → T (R)
η−→ T 1(R)→ 1 (10.3.1)

is exact, so in particular there is an isomorphism of groups

T (Q)\T (Af )/U ∼= T 1(Q)\T 1(Af )/V. (10.3.2)

Also, there is an isomorphism of groups

T (Q)\T (Af )/U → Cl(OK) (10.3.3)

given by

t 7→
∏

p⊂OK

pordp(tp).

Let p be a prime that is nonsplit in K, let p ⊂ OK be the prime over p, and let (A, κ) ∈ Y (Fp).

Recall that K acts on V (A, κ) by x · f = κ(x) ◦ f . By restriction, the group T 1(Q) ⊂ K× acts on

V (A, κ), and for any m ∈ Q×, the set

{f ∈ V (A, κ) : deg∗(f) = m}

is either empty or a simply transitive T 1(Q)-set. By composing with the homomorphism η : T → T 1,

the group T (Q) acts on V (A, κ), and this action is given by

t • f = κ(t) ◦ f ◦ κ(t)−1.

Now fix t ∈ Af and let a ∈ Cl(OK) be its image under (10.3.3). We will write a⊗A for the false
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elliptic curve a⊗OK A. There is an OK-linear quasi-isogeny

f ∈ HomOB (A, a⊗A)⊗Z Q,

given on points by f(x) = 1⊗ x. Then the map

End0
OB (a⊗A)→ End0

OB (A)

given by ϕ 7→ f−1 ◦ϕ◦f is an isomorphism of K-vector spaces, and restricting gives an isomorphism

V (a⊗A, κ)→ V (A, κ). This map identifies EndOB (a⊗A) with the OK-submodule

κ(a) ◦ EndOB (A) ◦ κ(a−1) ⊂ End0
OB (A)

and identifies L(a⊗A, κ) with κ(a) ◦ L(A, κ) ◦ κ(a−1). Therefore there is a K̂-linear isomorphism

V̂ (A, κ) ∼= V̂ (a⊗A, κ)

with L̂(a⊗A, κ) isomorphic to the ÔK-submodule

t • L̂(A, κ) = {κ(t) ◦ f ◦ κ(t)−1 : f ∈ L̂(A, κ)}

of V̂ (A, κ).

Definition 10.3.1. Let (A, κ) ∈ Y (Fp). For each prime number ` and m ∈ Q×, define the orbital

integral at ` by

O`(m,A, κ) =
∑

t∈Q×` \T (Q`)/U`

1L`(A,κ)(t−1 • f)

if there is an f ∈ V`(A, κ) satisfying deg∗(f) = m. If no such f exists, set O`(m,A, κ) = 0.

This definition does not depend on the choice of f ∈ V`(A, κ) such that deg∗(f) = m since T (Q`)

acts simply transitively on the set of all such f .

Proposition 10.3.2. Let p be a prime nonsplit in K, let p ⊂ OK be the prime over p, and suppose

(A, κ) ∈ Y (Fp). For any m ∈ Q× positive,

∑
a∈Cl(OK)

#{f ∈ L(a⊗A, κ) : deg∗(f) = m} =
|O×K |

2

∏
`

O`(m,A, κ).
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Proof. Using the isomorphisms (10.3.3) and (10.3.2), we have

∑
a∈Cl(OK)

#{f ∈ L(a⊗A, κ) : deg∗(f) = m}

=
∑

a∈Cl(OK)

∑
f∈V (a⊗A,κ)
deg∗(f)=m

1L̂(a⊗A,κ)(f)

=
∑

t∈T (Q)\T (Af )/U

∑
f∈V (A,κ)

deg∗(f)=m

1t•L̂(A,κ)(f)

=
∑

t∈T 1(Q)\T 1(Af )/V

∑
f∈V (A,κ)

deg∗(f)=m

1t•L̂(A,κ)(f).

Suppose there is an f0 ∈ V (A, κ) such that deg∗(f) = m. Since the action of T 1(Q) on the set of

all such f0 is simply transitive,

∑
t∈T 1(Q)\T 1(Af )/V

∑
f∈V (A,κ)

deg∗(f)=m

1t•L̂(A,κ)(f) =
∑

t∈T 1(Q)\T 1(Af )/V

∑
γ∈T 1(Q)

1t•L̂(A,κ)(γ
−1 • f0)

=
∑

t∈T 1(Q)\T 1(Af )/V

∑
γ∈T 1(Q)

1γt•L̂(A,κ)(f0)

= |T 1(Q) ∩ V |
∑

t∈T 1(Af )/V

1t•L̂(A,κ)(f0)

=
|O×K |

2

∏
`

O`(m,A, κ),

where we are using

T 1(Q) ∩ V ∼= (T (Q) ∩ U)/{±1} = O×K/{±1}

and the isomorphism

Q×` \T (Q`)/U` ∼= T 1(Q`)/V`

coming from the exact sequence (10.3.1). If there is no such f0 then by the Hasse-Minkowski theorem

there is some prime ` <∞ such that (V`(A, κ),deg∗) does not represent m (V∞(A, κ) does represent

m). Thus O`(m,A, κ) = 0 and both sides of the stated equality are 0.

Proposition 10.3.3. If (A, κ) is any object of Y (Fp) and m is a positive integer, then

#[Y m(Fp)] = 2r
∏
`

O`(m,A, κ),
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where r is the number of primes dividing dB.

Proof. The group Aut(A, κ) acts on the set L(A, κ) by

g · f = g−1 ◦ f ◦ g

for g ∈ Aut(A, κ) and f ∈ L(A, κ). Under this action the stabilizer of f is

Stab(f) = {g ∈ Aut(A, κ) : g−1 ◦ f ◦ g = f} = Aut(A, κ, f).

Since EndOB⊗ZOK (A) ∼= OK , we have Aut(A, κ) ∼= O×K , so an element of Aut(A, κ, f) is κ(x) for

some x ∈ O×K satisfying κ(x) ◦ f = f ◦ κ(x). But f is a special endomorphism, which means

κ(x) = κ(x) and thus x ∈ {±1}. This shows Aut(A, κ, f) = {±1} for f ∈ L(A, κ).

As the group W0 × Cl(OK) acts simply transitively on the set [Y (Fp)],

#[Y m(Fp)] =
∑

(A,κ)∈[Y (Fp)]

∑
f∈V (A,κ)

deg∗(f)=m

|Stab(f)|
|Aut(A, κ)|

· 1L̂(A,κ)(f)

=
2
|O×K |

∑
g∈W0×Cl(OK)

∑
f∈V (g·A,κ)
deg∗(f)=m

1L̂(g·A,κ)(f).

But the action of W0 on [Y (Fp)] does not change the underlying false elliptic curve or the CM

action, so V (w ·A, κ) ∼= V (A, κ) for any w ∈W0, and therefore

#[Y m(Fp)] =
2|W0|
|O×K |

∑
a∈Cl(OK)

∑
f∈V (a⊗A,κ)
deg∗(f)=m

1L̂(a⊗A,κ)(f)

= 2r
∏
`

O`(m,A, κ)

by Proposition 10.3.2.

Recall the definitions of the functions R and R` from the introduction.

Proposition 10.3.4. Let ` be a prime, m a positive integer, and (A, κ) ∈ Y (Fp). If the quadratic

space (V`(A, κ),deg∗) represents m, then

O`(m,A, κ) = e`R`(md−1
B p(ep−1)εp−1).



CHAPTER 10. SPECIAL ENDOMORPHISMS OF CM FALSE ELLIPTIC CURVES 122

Proof. Fix an f ∈ V`(A, κ) satisfying deg∗(f) = m and fix an isomorphism

(OK,`, β` ·NK`/Q`) ∼= (L`(A, κ),deg∗)

with β` as in Propositions 10.2.1 and 10.2.2. Using the isomorphism

Q×` \T (Q`)/U` ∼= T 1(Q`)/V`

we have

O`(m,A, κ) =
∑

t∈T 1(Q`)/V`

1OK,`(t
−1f).

First suppose ` is inert in K. Then Q×` \K
×
` /U` = {1}, so T 1(Q`)/V` = {1}. Hence

O`(m,A, κ) = 1OK,`(f) = R`(mβ−1
` )

since NK`/Q`(f) = mβ−1
` . Next suppose ` is ramified in K and let π ∈ OK,` be a uniformizer. Then

Q×` \K
×
` /U` = {1, π} and T 1(Q`)/V` = {1, u} where u = π−1π ∈ O×K,`, so

O`(m,A, κ) = 1OK,`(f) + 1OK,`(u
−1f) = 2R`(mβ−1

` ).

Finally suppose ` is split in K, so K`
∼= Q` ×Q`. Then

Q×` \K
×
` /U` = {(`k, 0) : k ∈ Z}

and T 1(Q`)/V` = {(`k, `−k) : k ∈ Z}. Writing f = (f1, f2) ∈ Q` ×Q`, we have

O`(m,A, κ) =
∑
k∈Z

1Z`×Z`(`
kf1, `

−kf2)

= 1 + ord`(f1) + ord`(f2)

= 1 + ord`(f1f2)

= 1 + ord`(mβ−1
` )

= R`(mβ−1
` ).

Theorem 10.3.5. Let m be a positive integer. If DiffB(m) = {p} then

#[Y m(Fp)] = 2r+sR(md−1
B p(ep−1)εp−1),
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where p ⊂ OK is the unique prime over p. Furthermore, the number #[Y m(Fp)] is nonzero.

Proof. Let (A, κ) ∈ Y (Fp), so End0
OB (A) ∼= B(p). From DiffB(m) = {p} we have

(dK ,−m)` =
{
−1 if ` | disc(B(p))
1 if ` - disc(B(p)),

so there is an isomorphism

B(p) ∼=
(
dK ,−m

Q

)
.

Hence B(p) has a Q-basis {1, δ, f, δf} satisfying

δ2 = dK , f2 = −m, δf = −fδ.

Embed K into B(p) via
√
dK 7→ δ. Then {f, δf} is a Q-basis for V (A, κ) ⊂ End0

OB (A) and Nrd(f) =

m. Thus, there is an f ∈ V (A, κ) satisfying deg∗(f) = m. Then by Propositions 10.3.3 and 10.3.4,

#[Y m(Fp)] = 2r
∏
`

O`(m,A, κ)

= 2r
∏
`

e`R`(md−1
B p(ep−1)εp−1)

= 2r+sR(md−1
B p(ep−1)εp−1).

Now we will show that this number is nonzero by showing R` = R`(md−1
B p(ep−1)εp−1) is nonzero

for each prime `. First suppose ` 6= p. If ` - dB then (dK ,−m)` = 1, which means −m ∈ NK`/Q`(K`)

and thus R` = R`(m) > 0. If ` | dB then (dK ,−m)` = −1, so −m /∈ NK`/Q`(K`). As K`/Q`

is unramified, this is equivalent to ord`(m) being odd and hence m`−1 ∈ NK`/Q`(K`), so R` =

R`(m`−1) > 0. Finally we consider ` = p. If p - dB then (dK ,−m)p = −1, so −m /∈ NKp/Qp(Kp). If

Kp/Qp is unramified then mp−1 ∈ NKp/Qp(Kp) and thus Rp = Rp(mp−1) > 0. If Kp/Qp is ramified

and π ∈ OK,p is a uniformizer, then N(πkOK,p) = mZp where k = ordp(m), so Rp = Rp(m) > 0. If

p | dB then (dK ,−m)p = 1, which implies ordp(m) is even and therefore Rp = Rp(mp−2) > 0.

10.4 Deformation theory

Let p be a prime nonsplit in K and let p ⊂ OK be the prime over p. Let W be the ring of integers

in the completion of the maximal unramified extension of Kp, so W is an OK-algebra. Let CLN

be the category of complete local Noetherian W -algebras with residue field Fp, where a morphism

R→ R′ is a local ring homomorphism inducing the identity Fp → Fp on residue fields.
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For x = (A, i, κ) ∈ Y (Fp) define a functor DefOB (A,OK) : CLN → Sets by assigning to

each R ∈ CLN the set of isomorphism classes of deformations of x to R. Just as in Corollary

5.1.3, DefOB (A,OK) is represented by W . Also, there is an isomorphism A ∼= M ⊗OK E for some

OB⊗ZOK-module M and some supersingular CM elliptic curve E over Fp, and if we define a functor

Def(E,OK) : CLN→ Sets in the obvious way, there is an isomorphism of functors DefOB (A,OK) ∼=
Def(E,OK). For (A, i, κ) ∈ Y (Fp) and f ∈ EndOB (A), define a functor Def(A, κ, f) : CLN→ Sets

by assigning to each R the set of isomorphism classes of deformations of (A, i, κ, f) to R. If R ∈
CLN, (A, κ, f) ∈ Y m(Fp), and (Ã, κ̃, f̃) is a deformation of (A, κ, f) to R, then me must have

(Ã, κ̃, f̃) ∈ Y m(R). To see this, consider the following two commutative diagrams

Ã⊗R Fp

∼=
��

f̃⊗id // Ã⊗R Fp

∼=
��

A
f // A

Ã⊗R Fp

∼=
��

κ̃(x)⊗id // Ã⊗R Fp

∼=
��

A
κ(x) // A.

It follows from the first diagram that deg∗(f̃) = deg∗(f) and combining the two diagrams with the

fact that f is a special endomorphism implies f̃ is a special endomorphism.

Now fix a positive integer m and a triple (A, κ, f) ∈ Y m(Fp).

Proposition 10.4.1. If p - dB and p is inert in K, then the functor Def(A, κ, f) is represented by

a local Artinian W -algebra of length 1
2 (ordp(m) + 1).

Proof. Since p - dB there is an isomorphism of Zp-algebras EndOB (A) ⊗Z Zp ∼= ∆. Let OL ∼= Zp2

be the image of κ : OK,p → ∆. Fix a uniformizer Π ∈ ∆ satisfying Πu = uιΠ for all u ∈ OL ⊂ ∆,

so there is a decomposition of left OL-modules ∆ = OL ⊕OLΠ. It follows that Lp(A, κ) = OLΠ, so

for any integer n > 1,

f ∈ OL + pn−1∆ ⇐⇒ f ∈ pn−1OLΠ

⇐⇒ ordp(deg∗(f)) > 2n− 1

⇐⇒ 1
2 (ordp(m) + 1) > n,

where we are using that f ∈ Lp(A, κ).

As p is inert in K, W = W . The functor Def(A, κ, f) is represented by Wn = W/(pn) where n is

the largest integer such that f ∈ EndOB (A[p∞]) ∼= End(g) lifts to an element of EndWn(G⊗W Wn),

where G is the universal deformation of g with its OL-action to W . By (8.1.1),

EndWn
(G⊗W Wn) ∼= OL + pn−1∆,
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so the result follows from the above calculation.

Proposition 10.4.2. If p | dB then Def(A, κ, f) is represented by a local Artinian W -algebra of

length 1
2ordp(m).

Proof. Fix a uniformizer Π ∈ ∆ satisfying Πu = uιΠ for all u ∈ OL ⊂ ∆, where OL is the image

of the CM action OK,p → ∆ on the elliptic curve E such that A ∼= M ⊗OK E. Then there is an

isomorphism of Zp-algebras EndOB (A)⊗Z Zp ∼= R, where

R =
{[

x yΠ
pyΠ x

]
: x, y ∈ OL

}
,

so there is a decomposition of left OL-modules R = OL ⊕ OLP , with the first factor embedded

diagonally and

P =
[

0 Π
pΠ 0

]
.

It follows that Lp(A, κ) = OLP and hence for any integer n > 1,

f ∈ OL + pn−1R ⇐⇒ f ∈ pn−1OLP

⇐⇒ ordp(deg∗(f)) > 2n

⇐⇒ 1
2ordp(m) > n.

The functor Def(A, κ, f) is represented by Wn = W/(pn) where n is the largest integer such that

f ∈ EndOB (A[p∞]) ∼= R lifts to an element of EndOB⊗ZWn
(Ã[p∞]⊗W Wn), where Ã is the universal

deformation of (A, i, κ) to W . By Lemma 8.2.2,

EndOB⊗ZWn
(Ã[p∞]⊗W Wn) ∼= OL + pn−1R,

so the result follows from the above calculation.

Proposition 10.4.3. If p - dB and p is ramified in K, then Def(A, κ, f) is represented by a local

Artinian W -algebra of length ordp(m) + 1.

Proof. There is an isomorphism of Zp-algebras EndOB (A) ⊗Z Zp ∼= ∆. Let OL be the image of

κ : OK,p → ∆. If π ∈ OK,p is a uniformizer then Π = κ(π) is a uniformizer of OL and of ∆. From

Proposition 10.2.2 there is an OK,p-linear isomorphism

(OK,p, βp ·NKp/Qp) ∼= (Lp(A, κ),deg∗)
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with βp ∈ Z×p , so by OK,p-linearity this isomorphism sends πnOK,p isomorphically to ΠnLp(A, κ).

Viewing f both as an element of Lp(A, κ) ⊂ ∆ and as an element of OK,p, we have

v∆(f) = ordπ(f)

= ordp(NKp/Qp(f))

= ordp(βpNKp/Qp(f))

= ordp(m).

There is a decomposition of left OL-modules ∆ = OL ⊕ Lp(A, κ), so for any integer n > 1,

f ∈ OL + Πn−1∆ ⇐⇒ f ∈ Πn−1Lp(A, κ)

⇐⇒ v∆(f) > n− 1

⇐⇒ ordp(m) + 1 > n.

The functor Def(A, κ, f) is represented by Wn = W /(πn) where n is the largest integer such that

f ∈ EndOB (A[p∞]) ∼= End(g) lifts to an element of

EndWn
(G⊗W Wn) ∼= OL + Πn−1∆,

where G is the universal deformation of g with its OL-action to W . The result now follows from the

above calculation.

10.5 Final formula

Theorem 10.5.1. Suppose p is a prime nonsplit in K, let p ⊂ OK be the prime over p, and let

m ∈ Z+. For any y ∈ Y m(Fp), the strictly Henselian local ring Osh
Y m,y is Artinian of length

ep ·
ordp(m) + εp

2
.

Proof. Using the same argument as in the proof of Theorem 8.3.1, the functor Def(A, κ, f) is rep-

resented by the ring Ôsh
Y m,y, where y = (A, κ, f) ∈ Y m(Fp), so the result follows from Propositions

10.4.1, 10.4.2, 10.4.3.

Theorem 10.5.2. Let m ∈ Z+ and suppose DiffB(m) = {p}. Then

deg(Y m) = 2r+s log(p) ·R(md−1
B p(ep−1)εp−1) · (ordp(m) + εp).
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If # DiffB(m) > 1 then deg(Y m) = 0.

Proof. Let p ⊂ OK be the prime over p. Since Y m(Fq) = ∅ for all primes q 6= p, for any y ∈ Y m(Fp)

we have

deg(Y m) = log(|Fp|) ·#[Y m(Fp)] · length(Osh
Y m,y)

= fp · log(p) · 2r+sR(md−1
B p(ep−1)εp−1) · ep

ordp(m) + εp
2

= 2r+s log(p) ·R(md−1
B p(ep−1)εp−1) · (ordp(m) + εp)

by Theorems 10.3.5 and 10.5.1. If # DiffB(m) > 1 then Y m = ∅.



Appendix A

Hecke correspondences

In this section we will define the Hecke correspondences Tm on M and MB , and prove the equalities

(1.1.2) and (1.2.2) in the introduction (we continue with the same notation as in Sections 1.1 and

1.2 of the introduction). We begin by reviewing some intersection theory. For any ring R we write

length(R) for lengthR(R). Suppose X is a Noetherian scheme and Z ⊂ X is a closed subscheme

of codimension 1. Let Z1, . . . , Zn be the irreducible components of Z that are of codimension 1 in

X. Set mi = length(OZ,ηi) where ηi ∈ Zi is the generic point. There is a divisor [Z] ∈ Div(X)

associated with Z, defined as

[Z] =
n∑
i=1

miZi.

In particular, [Z] = Z if Z is integral. Now suppose X is a Noetherian stack and Z is a closed

substack of codimension 1. Using an atlas on X , the previous definition for schemes can be extended

to stacks to give a divisor [Z ] ∈ Div(X ) (see [27, Definition 3.5]). Suppose h : X → X ′ is a

morphism of Noetherian stacks of the same dimension. In the case of h finite and flat there is an

induced group homomorphism

h∗ : Div(X ′)→ Div(X )

defined on prime divisors by h∗D = [D ×X ′ X ] and extended linearly to all of Div(X ′). If h is

proper and representable, there is a notion of the image of h, which is a closed substack of X ′,

defined through an atlas and the scheme-theoretic image (see [27, Definition 1.7]). For h finite, flat,

and representable, this leads to a group homomorphism

h∗ : Div(X )→ Div(X ′)

128
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defined by sending a prime divisor D to deg(D/D ′) · [D ′], where D ′ is the image of D under h and

deg(D/D ′) is the degree of the morphism D → D ′ (see [27, Definition 3.6]).

Fix a positive integer m. Let M (m) be the category fibered in groupoids over Spec(OK) with

M (m)(S) the category of triples (E1, E2, ϕ) with Ei an object of M (S) and ϕ ∈ HomS(E1, E2)

satisfying deg(ϕ) = m on every connected component of S. The category M (m) is a stack, flat of

relative dimension 1 over Spec(OK), and there are two finite flat morphisms

M (m)
π2
//

π1 //
M

given by πi(E1, E2, ϕ) = Ei. Define the m-th Hecke correspondence

Tm : Div(M )→ Div(M )

by Tm = (π2)∗ ◦ (π1)∗.

For i ∈ {1, 2} let fi : Ci → M be the finite morphism defined by forgetting the complex

multiplication structure. Consider the fiber product D1 = C1 ×f1,M ,π1 M (m). An object of D1

is a tuple (E,E1, E2, ϕ, ψ), where E is an object of C1, (E1, E2, ϕ) is an object of M (m), and

ψ : E → E1 is an isomorphism of elliptic curves. Up to the obvious isomorphism of stacks, the

objects of D1 can be described as triples (E1, E2, ϕ) with E1 an object of C1, E2 an object of M ,

and ϕ : E1 → E2 a degree m isogeny. Now let g be the composition D1 →M (m) π2−→M . The fiber

product Z = D1 ×g,M ,f2 C2 has objects (E1, E2, E, ϕ, ψ) with E1 an object of C1, E an object of

C2, ϕ : E1 → E2 a degree m isogeny, and ψ : E2 → E an isomorphism of elliptic curves. It follows

that there is an isomorphism of stacks Z ∼= Tm, with Tm as in the introduction. Below is a diagram

of these spaces and morphisms:

Z

{{ww
ww

ww
ww

w

##H
HHHHHHHH

D1

~~}}
}}

}}
}}

##F
FFFFFFF

g

��

C2

f2

��

C1

f1   B
BB

BB
BB

B M (m)

π1
{{wwwwwwww

π2
##G

GG
GG

GG
GG

M M .

(A.0.1)

Viewing D1 as a closed substack of M (m) through the image of D1 →M (m), the divisor TmC1 on
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M is (π2)∗[D1], so to prove deg(Tm) = I(TmC1,C2), we need to show

deg(D1 ×g,M ,f2 C2) = I((π2)∗[D1], [C2]), (A.0.2)

where we are writing [C2] for the divisor on M determined by the image of f2.

Let k = FP for P ⊂ OK a prime ideal and let x ∈ M (k) be a geometric point. For any two

prime divisors Z and Z ′ on M intersecting properly, define the Serre intersection multiplicity at

x by

IM
x (Z ,Z ′) =

∑
i>0

(−1)i lengthOsh
M,x

Tor
Osh

M,x

i (Osh
Z ,x,O

sh
Z ′,x)

if x ∈ (Z ∩ Z ′)(k) and set IM
x (Z ,Z ′) = 0 otherwise. Extend this definition bilinearly to all

divisors on M . Again, if Z and Z ′ are prime divisors on M intersecting properly, there is a way

of defining a 0-cycle Z ·Z ′ on M in such a way that

Coefx(Z ·Z ′) = IM
x (Z ,Z ′),

where Coefx(Z · Z ′) is the coefficient in the 0-cycle Z · Z ′ of the 0-dimensional closed substack

determined by the image of x : Spec(k)→M (see [25, Chapter V] and [26, Chapter I]).

With notation as in (A.0.1), let D2 = M (m) ×π2,M ,f2 C2, so [D2] = (π2)∗[C2]. Also, let x ∈
M (m)(k) be a geometric point with x = (E1, E2, ϕ) where Ei is an object of Ci. We claim

Tor
Osh

M(m),x
i (Osh

D1,x,O
sh
D2,x) = 0 (A.0.3)

for all i > 0. To prove this, first consider the stack D ′1 = C1 ×f1,M ,π2 M (m). This category has

objects (E1, E2, ϕ) with E1 an object of M , E2 an object of C1, and ϕ : E1 → E2 a degree m

isogeny. It follows that there is an isomorphism of stacks D ′1
∼= D1 and

Osh
D1,x

∼= Osh
D′1,x

∼= Osh
M (m),x ⊗Osh

M,π2(x)
Osh

C1,π1(x).

We already have

Osh
D2,x

∼= Osh
M (m),x ⊗Osh

M,π2(x)
Osh

C2,π2(x),

so from π2 being flat,

Tor
Osh

M(m),x
i (Osh

D1,x,O
sh
D2,x) ∼= Osh

M (m),x ⊗Osh
M,π2(x)

Tor
Osh

M,π2(x)

i (Osh
C1,π1(x),O

sh
C2,π2(x)).

As Osh
M ,π2(x) and Osh

Ci,πi(x) are regular local rings of dimension 2 and 1, respectively, Osh
Ci,πi(x) is a
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Cohen-Macaulay Osh
M ,π2(x)-module, and thus (A.0.3) holds for all i > 0 by [25, p. 111].

There is a projection formula

((π2)∗[D1]) · [C2] = (π2)∗([D1] · ((π2)∗[C2])),

where the (π2)∗ on the right side is the induced homomorphism on the group of 0-cycles. This is

a special case of a more general formula, but it takes this form in our case since (A.0.3) holds (our

situation is complicated by M (m) not necessarily being regular; see [25, p. 118, formulas (10),

(11)]). It follows that for any y ∈M (k),

IM
y ((π2)∗[D1], [C2]) = Coefy

(
((π2)∗[D1]) · [C2]

)
= Coefy

(
(π2)∗([D1] · ((π2)∗[C2]))

)
=

∑
x∈π−1

2 ({y})

Coefx
(
[D1] · ((π2)∗[C2])

)
=

∑
x∈π−1

2 ({y})

IM (m)
x ([D1], [D2]).

Letting hi : Di →M (m) be the natural projection, there is an isomorphism of stacks

D1 ×h1,M (m),h2 D2 = D1 ×h1,M (m),h2 (M (m)×π2,M ,f2 C2) ∼= D1 ×g,M ,f2 C2.

Also, by (A.0.3) we have

IM (m)
x ([D1], [D2]) = lengthOsh

M(m),x
(Osh

D1,x ⊗Osh
M(m),x

Osh
D2,x)

= length(Osh
D1,x ⊗Osh

M(m),x
Osh

D2,x).

Note that there is no distinction here between length of a ring over itself and length as a module

over Osh
M (m),x or Osh

M ,π2(x) because these rings have residue field k which is algebraically closed.

Therefore, for any y ∈M (k),

∑
x∈π−1

2 ({y})

length(Osh
D1×g,M,f2C2,x) =

∑
x∈π−1

2 ({y})

length(Osh
D1×h1,M(m),h2D2,x)

=
∑

x∈π−1
2 ({y})

IM (m)
x ([D1], [D2])

= IM
y ((π2)∗[D1], [C2]).
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Since C2 is regular and the local ring at y of any prime divisor appearing in (π2)∗[D1] is a 1-

dimensional domain, hence Cohen-Macaulay, the Tori terms appearing in the sum IM
y ((π2)∗[D1], [C2])

are zero for all i > 0. Multiplying both sides of the above equality by log(|FP|)/|Aut(y)| and sum-

ming over all y and over all P then gives the equality (A.0.2).

Now we move to the false elliptic curve case. Fix a positive integer m. Let MB(m) be the

category fibered in groupoids over Spec(OK) with MB(m)(S) the category of triples (A1, A2, ϕ)

with Ai an object of MB(S) and ϕ ∈ HomOB (A1, A2) satisfying deg∗(ϕ) = m on every connected

component of S. The category MB(m) is a stack, flat of relative dimension 1 over Spec(OK), and

there are two finite flat morphisms

MB(m)
π2
//

π1 //
MB

given by πi(A1, A2, ϕ) = Ai. Define the m-th Hecke correspondence

Tm : Div(MB)→ Div(MB)

by Tm = (π2)∗◦(π1)∗. The proof of the equality (1.2.2) in the introduction is exactly the same as the

proof of (1.1.2) we just gave because all we used were formal properties of the stacks M ,M (m),C1,

and C2, and the corresponding stacks MB ,MB(m),Y1, and Y2 have these same properties.
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