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Abstract

We study two moduli problems involving false elliptic curves with complex multiplication (CM),
generalizing theorems about the arithmetic degree of certain moduli spaces of CM elliptic curves.
The first moduli problem generalizes a space considered by Howard and Yang, and the formula for
its arithmetic degree can be seen as a calculation of the intersection multiplicity of two CM divisors
on a Shimura curve. This formula is an extension of the Gross-Zagier theorem on singular moduli to
certain Shimura curves. The second moduli problem we consider deals with special endomorphisms of
false elliptic curves. The formula for its arithmetic degree generalizes a theorem of Kudla, Rapoport,

and Yang.
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Chapter 1

Introduction

In this thesis we study two moduli problems involving false elliptic curves with complex multiplication
(CM), generalizing theorems about the arithmetic degree of certain moduli stacks of CM elliptic
curves. The first moduli problem, and the one that occupies most of our effort in generalizing, is
the main arithmetic content of [14]. The result of that paper can be seen as a refinement of the
well-known formula of Gross and Zagier on singular moduli in [11]. We begin by describing how
the Gross-Zagier formula and the result of [14] can be interpreted as statements about intersection
theory on a modular curve. Our generalization of [14] has a similar interpretation as a result about
intersection theory, but now on a Shimura curve. The other moduli problem we study generalizes a

space considered in [16].

1.1 Elliptic curves

Let K; and K3 be non-isomorphic imaginary quadratic fields and set K = K; ®g K. Let F' be the
real quadratic subfield of K and let ® C Op be the different of F. We assume K; and Ky have
relatively prime discriminants d; and ds, so K/F is unramified at all finite places and Ok, ®z Ok,
is the maximal order in K.

Let .4 be the category fibered in groupoids over Spec(Of) with . (S) the category of elliptic
curves over the Og-scheme S. The category .# is an algebraic stack (in the sense of [27], also known
as a Deligne-Mumford stack) which is regular and smooth of relative dimension 1 over Spec(Ok)
(so it is 2-dimensional). For j € {1,2} let €; be the algebraic stack over Spec(Ok) with €;(S)
the category of elliptic curves over the Og-scheme S with complex multiplication by Of,. When
we speak of an elliptic curve E over an Og-scheme S with complex multiplication by Ok, we are

assuming that the action O, — Endg (Lie(£)) is through the structure map Ok, — O — Os(S).

1
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The stack € is finite and étale over Spec(Ok ), so in particular it is 1-dimensional and regular. There
is a finite morphism €; — .# defined by forgetting the complex multiplication structure.

A divisor on an algebraic stack % is an element of the free abelian group Div(%’) generated
by the integral closed substacks of codimension 1 (the prime divisors). Even though the morphism
f € — A is not a closed immersion, we view %; as a divisor on .# through the image of
f (127, Definition 1.7]). A natural question to now ask is: what is the intersection multiplicity,
defined in the appropriate sense below, of the two divisors %1 and %3 on .#7 More generally,
if T,,, : Div(.#) — Div(.#) is the m-th Hecke correspondence on .#, what is the intersection
multiplicity of T;,%1 and %27

If 21 and %5 are two prime divisors on . intersecting properly, meaning %1 N\ Do = D1 X gy Do
is an algebraic stack of dimension 0 (see [27, Definition 7.9] for the definition of fiber products),

define the intersection multiplicity of 21 and P» on .# to be

length(ﬁ?zh D x)
I, %)= Y log(|Fy)) > |Aut(;r;| = (LL11)
PCOK z€[(21ND2)(Fyp)]

where [(Z1 N 22)(5)] is the set of isomorphism classes of objects in the category (21 N 22)(S) and
ﬁ%hm%@ is the strictly Henselian local ring of 21 N %» at the geometric point x (the local ring for the
étale topology). Also, the outer sum is over all prime ideals P C Ok, Fp = O /B, and Spec(Fy)
is an Og-scheme through the reduction map O — Fg. This number is also called the arithmetic
degree of the 0-dimensional stack 21 N P, and is denoted deg(Z; N Z5). The definition of I(Z;, Z»)
is extended to all divisors 2 and %, by bilinearity, assuming 2, and %, intersect properly (that is,
the supports of 2, and %, intersect properly).

The intersection multiplicity (%}, ) relates to the Gross-Zagier formula on singular moduli as
follows. Let L D K be a number field and suppose E; and Es are elliptic curves over Spec(Op). The
J-invariant determines an isomorphism of schemes M,», = Spec(OL[z]), where M — Spec(Ok) is
the coarse moduli scheme associated with .#, and the elliptic curves F; and E5 determine morphisms
Spec(Or) = M,o, . These morphisms correspond to ring homomorphisms Op[z] = O, defined by
r — j(Ep) and @ — j(E2). Let Dy and Dy be the divisors on M/, defined by the morphisms
Spec(Or) = M,p, . Then

Dy N Dy = Spec(Or, @0, 2] OL) = Spec(OL/(j(Er) — j(E2)))-

For T an imaginary quadratic integer in the complex upper half plane, let [7] be its equivalence class
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under the action of SLy(Z). As in [11] define

4/(wiwz)
J(dl,dg) = ( H (.7(7—1) _j(7-2))> ’

dibetr) 2,
where w; = |Of |. Tt follows from the above discussion that the main result of [11], which is a
formula for the prime factorization of the integer J(di,d2)?, is essentially the same as giving a
formula for deg(%1 N 62) = I(61,%>).
For each positive integer m define .7, to be the algebraic stack over Spec(Ok) with 7,(S)
the category of triples (E1, Es, f) with E; an object of %;(S) and f € Homg(E1, E>) satisfying

deg(f) = m on every connected component of S. In [14] it is shown that there is a decomposition

Im= || &

acF*
Trr/g(a)=m

for some 0-dimensional stacks &, — Spec(Ok) and then a formula is given for each term in

deg(Tm) = > deg(&)),

ae®717a>>0
Trp/g(a)=m

with deg(.Z,,) and deg(&),) defined just as in (1.1.1). We will prove later (in the appendix) that
deg(Tm) = 1(Tm%1, %2), (1.1.2)

so the main result of [14] really is a refinement of the Gross-Zagier formula. Actually, the stacks
considered in [14] are all over Z and the Lie algebra condition in the definition of €; is omitted. We
will next review these spaces as defined in [14] and later explain the connection with the spaces &,
in the above decomposition.

Let & be the algebraic stack over Spec(Z) with fiber &(S) the category of pairs (Eq, E2) where
E; = (E;, k;) with E; an elliptic curve over the scheme S and «; : Ok, — Endg(E;) a ring homo-
morphism. Let (Eq,Ez) be an object of £(S). The maximal order O = Ok, ®z Ok, acts on the
Z-module L(E;,Es) = Homg(F1, E2) by

(t1 @ta) @ f = Ka(ta) o fori(t1),

where x — T is the nontrivial element of Gal(K/F), so L(E;, Es) is an Og-module. Writing [-, -] for
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the bilinear form on L(E;, E5) associated with the quadratic form deg, there is a unique Op-bilinear
form

[' N ’]CM : L(El,EQ) X L(El,EQ) — @71

satisfying [f1, fo] = Trp/qlf1, foJom. Let degeyy be the totally positive definite F-quadratic form on
L(E1, Ez) ®z Q corresponding to [-, Jom, so deg(f) = Trp/q degen(f)-

For any a € F* let &, be the algebraic stack over Spec(Z) with &,(S) the category of triples
(E1,Eq, f) where (E1, E5) is an object of &£(S) and f € L(E1, E2) satisfies degey(f) = « on every
connected component of S. The category &, is empty unless « is totally positive and lies in ® 1.

Define the arithmetic degree of &, to be

length(ﬁz@i’x)
| Aut(z)]

z€[Ea(Fp)]

deg(&a) =) log(p) Y

Let x be the quadratic Hecke character associated with the extension K/F and for o € F*
define Diff () to be the set of prime ideals p C O satisfying x,(a®) = —1. The set Diff () is finite
and nonempty. For any fractional Op-ideal b let p(b) be the number of ideals B C O satisfying
Ng,r(B) = b, where N, p is the ideal norm from K to F. For any prime number £ let p,(b) be
the number of ideals B C Ok, = Ok ®z Zy satisfying Ng, /r, (B) = bOg ¢, so there is a product

formula

p(6) =[] pe(b).
4

The following theorem, which is [14, Theorem A], is the main result we will generalize in the first

part of this work.

Theorem 1 (Howard-Yang). Suppose o € F* is totally positive. If « € D=1 and Diff(a) = {p}
then &, is of dimension zero, is supported in characteristic p (the rational prime below p), and
satisfies

deg(&y) = %log(p) -ordy (ap®D) - plap™'D).
If a ¢ D71 or if # Diff () > 1, then deg(&,) = 0.

The stack &, being of dimension zero means the local rings ﬁ’;% . are all of dimension zero, and
&, being supported in characteristic p means it only has geometric points in characteristic p (if any

at all).
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1.2 False elliptic curves

Our work in generalizing Theorem 1 goes as follows. Let B be an indefinite quaternion algebra over
Q, let Op be a maximal order of B, and let dg be the discriminant of B. A false elliptic curve
over a scheme S is a pair (A,7) where A — S is an abelian scheme of relative dimension 2 and
i : Op — Endg(A) is a ring homomorphism. Any false elliptic curve A comes equipped with a
principal polarization A : A — AV uniquely determined by a condition described below. If A; and
Ag are false elliptic curves over a connected scheme S with corresponding principal polarizations A;

and Az, then the map
freAtofYodof:Homp, (A, Az) — Ende, (A))

has image in Z C Endp, (A1) and defines a positive definite quadratic form, called the false degree
and denoted deg™.

We retain the same number theoretic setup of Ky, K5, F, and K as above. We also assume
each prime dividing dp is inert in K; and Ks, so in particular, K; and Ky split B. Let S be an
Ogk-scheme. A false elliptic curve over S with complex multiplication by Ok, for j € {1,2}, is
a triple A = (A,i,x) where (A,i) is a false elliptic curve over S and s : Ok, — Endp,(4) is a
ring homomorphism such that the induced map Ok; — Endo, (Lie(A)) is through the structure
map O, — O — Os(S5). Let mp C Op be the unique lattice (which is also an ideal) satisfying
mp ®z Zy, = Op, = Op ®z Zy for all p{ dp and mp ®z Z, = n, for all p | dg, where n, C Op,
is the unique maximal ideal. Equivalently, mg C Op is the unique ideal of index dQB. Then
Op/mp =[,4, Fpe-

Let .# P be the category fibered in groupoids over Spec(Of) with .#?(S) the category whose
objects are false elliptic curves (A4,7) over the Og-scheme S satisfying the following condition for
any x € Op: any point of S has an affine open neighborhood Spec(R) — S such that Lie(4,r) is a

free R-module of rank 2 and there is an equality of polynomials in R[T]
char(i(z), Lie(A/g)) = (T — x)(T — z*), (1.2.1)

where x — x* is the main involution on B. The category .#” is an algebraic stack which is regular
and flat of relative dimension 1 over Spec(Of), smooth over Spec(O[dz']) (if B is a division
algebra, .4 is proper over Spec(Ox)). This 2-dimensional stack .#? is usually referred to as (the
integral model of) a “Shimura curve”. For j € {1,2} let %, be the algebraic stack over Spec(Ok)
with #;(S) the category of false elliptic curves over the Og-scheme S with complex multiplication

by Ok;. The stack %; is finite and étale over Spec(Of ), so in particular it is 1-dimensional and
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regular. Any object of #;(S) automatically satisfies condition (1.2.1) (see Corollary 5.2.8 below).
Therefore there is a finite morphism %; — .#% defined by forgetting the complex multiplication
structure.

Our main goal is to calculate the intersection multiplicity of the two divisors T,,%; and % on
M B defined just as in (1.1.1), where T}, is the m-th Hecke correspondence on .#%. For each
positive integer m define 7,2 to be the algebraic stack over Spec(Ox) with .7,5(S) the category of
triples (A1, Ao, f) with A; an object of #;(S) and f € Homp,, (A1, As) satisfying deg™(f) = m on

every connected component of S. We will show there is a decomposition

7e= | ] 26«

aeF> 0:0x—0Op/mp
Trp/g(a)=m

for some 0O-dimensional stacks 2y, — Spec(Ok), where the inner union is over all ring homomor-

phisms 0 : O — Op/mp, so then

deg(Z20) = Y. > deg(Zia)-

a€® 1 a>00:0xk—0p/mp
Trp/g(a)=m

Just as in the elliptic curve case we will show

deg(7B) = I(T,, %1, %). (1.2.2)

m

Our main result is then a formula for deg(%Zp,q«)-
A CM pair over an Og-scheme S is a pair (A1, Ay) where A; and A, are false elliptic curves

over S with complex multiplication by Ok, and Og,, respectively. For such a pair, set
L(A1,A2) = Homp, (A1, As).
As before, there is a unique Op-quadratic form
degeyy : L(AL, Ap) — D71

satisfying Trg/q degey(f) = deg™(f). For any false elliptic curve A let Almpg] be its mp-torsion,
defined as a group scheme below. For any ring homomorphism 6 : O — Op/mp define 2y to

be the algebraic stack over Spec(Ok) where 23(S) is the category of CM pairs (A, Ag) over the
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Ok-scheme S such that the diagram

OKj EndOB/mB (A] [mB])

(’)B/mB

commutes for j = 1,2, where

OB/mB - EndOB/mB (AJ [mB])

is the map induced by the action of Op on A;. Note that this map makes sense as Op/mp is
commutative. If B = My(Q) then mp = Op, so any such 6 is necessarily 0 (here 1 = 0 in the zero
ring Op/mp), and 2 is the stack of all CM pairs over Og-schemes.

For any o € F'* define Zp , to be the algebraic stack over Spec(Og) with Zp (S) the category of
triples (A1, Ag, f) where (A1, Ay) is an object of Zy(S) and f € L(A1, Ay) satisfies degoy(f) = o
on every connected component of S. Define the arithmetic degree of 2y, asin (1.1.1) and define a

nonempty finite set of prime ideals
Diffg(a) = {p C Op : xp(aay®) = —1},

where ag = ker(6) N Op. Note that ag = Op if B = M(Q). Our first main result is the following
(Proposition 9.1.2 and Theorems 8.3.1 and 9.1.3 in the text).

Theorem 2. Let o € FX be totally positive and suppose o € D=L, Let §: O — Op/mp be a ring
homomorphism with ag = ker(6) N Op, suppose Diffg(a) = {p}, and let pZ = p N Op.
(a) The stack Zp,q is of dimension zero and is supported in characteristic p.

(b) If ptdp then
1 1 _
deg(Zp.a) = 3 log(p) - ord, (ap®D) - p(aay 'p~'D).

(¢) Suppose p | dp and let P C Ok be the unique prime over p. If P divides ker(0) then
deg(2i ) = 3 log(p) - ordy (@) - plasy'p'D).

If P does not divide ker(0) then
deg(2i ) = 3 loa(p) - ordy(ap) - plag; 'p D).

If a ¢ D71 or if # Diffg(a) > 1, then deg(Zy.o) = 0.
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The proof of this theorem consists of two general parts: counting the number of geometric points
of the stack Zp, (Proposition 4.1.4 and Theorem 7.3.3) and calculating the length of the local ring
ﬁ%e,a,x (Theorem 8.3.1). This theorem is a generalization of Theorem 1 in the following sense.
Let P C Ok be a prime ideal, let « € F* be totally positive, and set F = Fy for this discussion.
Let p be the rational prime below 8 and assume p is nonsplit in K7 and K. Define &, to be the
algebraic stack over Spec(O ) with &(S) the category of triples (E1, Eo, f) where E; = (Ej, k;) is
an elliptic curve over the Og-scheme S with an action ; : Ok, — Endg(E;) such that the induced
map Ok, — Endg,(Lie(E;)) = O5(S) is equal to the structure map, and f € L(E;, Ey) satisfies
degei(f) = a on every connected component of S. The category & is the same as the category &,
except for the condition on the Lie algebra. Now take B = M3(Q) and Op = M2(Z). In this case
we claim any false elliptic curve A over F with CM by Og; is superspecial: A = E? = E x E for
some supersingular elliptic curve E over F (note that any such A is necessarily supersingular as p
is nonsplit in K; (Lemma 3.2.6)). To see this, let «, be the usual p-th roots of zero group scheme
over F. The F-vector space Homp(ap, A) is a module over M2(Q) ®q F = My (F), so its F-dimension
a(A) is even. The number a(A) is known to be either 1 or 2, and equal to 2 if and only if A is
superspecial ([21, Theorem 2, Remark 3]).

There is an equivalence of categories &, (F) — Zp,o(F) given by
(Ela E2) f) — (Alﬂ A2) f/)a

where A; = (4;,1, Ii;) with A; = E]Z, ij : Ma(Z) — End(A4;) = Mz(End(E;)) the natural inclusion,
and k’; = diag(r;, ;). Similarly f’ = diag(f, f). We have degcy(f') = o since deg™(f') = deg(f).
It follows that if we define deg(&7) as in (1.1.1), then Theorem 2(b) shows that if « € ®~1 and
Diff (o) = {p}, then

! 1 —
deg(&.) = 3 log(p) - ord, (apD) - p(ap 19).

This formula for deg(&)) agrees with the formula for deg(&,,) in Theorem 1 even though there is a
slight difference in the definitions of &, and &, because of the change in the definition of arithmetic
degree between these two spaces (see [14, proof of Theorem 2.27]). In generalizing Theorem 1 we
found it more natural to include this Lie algebra condition in the definition of the moduli problem,
and it simplified the deformation theory used in calculating the lengths of the local rings of the

stack.
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1.3 Special endomorphisms

Next we will describe the second moduli problem considered in this thesis. Now let K be an
imaginary quadratic field with discriminant d, let s be the number of distinct prime factors of d,
and write o — T for the nontrivial element of Gal(K/Q). Let e, be the ramification index of K/Q at
a prime p. Let 2 be the algebraic stack over Spec(O ) with fiber Z°(S) the category of pairs (F, k)
where E is an elliptic curve over the Og-scheme S and k : O — Endg(FE) is an action such that
the induced map O — Endg, (Lie(E)) = 0s(S) is the structure map. A special endomorphism of
an object (E, k) of Z(S) is an endomorphism f € Endg(E) satisfying

w(@)o f = f o k(@)

for all x € Ok. For any positive integer m let 2™ be the algebraic stack over Spec(Og) with
Z™(S) the category of triples (E, &, f) where (E, k) is an object of 2°(S) and f € Endg(FE) is
a special endomorphism satisfying deg(f) = m on every connected component of S. Define the

arithmetic degree of Z™ to be

deg(2™) = 3 log(F,)) Y length(6%. ), (13.1)
PCOK ze[2m(F,)]

where the outer sum is over all prime ideals p C Ok and F, = Ok /p.

For each m € ZT define a nonempty finite set of prime numbers
Diff(m) = {{ < o0 : (dg,—m)¢ = —1},

where (-,-)¢ is the usual Hilbert symbol. For any positive integer m let R(m) be the number of
ideals in Ok of norm m. For any prime ¢ let R;(m) be the number of ideals in Ok y = O ®z Z; of

norm mZy, so there is a product formula

The following is [16, Theorem 5.15] (at least a restatement of it, in the case where —dg is prime;

the version stated here follows from our generalization below).

Theorem 3 (Kudla-Rapoport-Yang). Let m € Z* and suppose Diff(m) = {p} for some prime p.

Then the stack 2™ is of dimension zero, it is supported in characteristic p, and

deg(Z™) = 2°log(p) - R(mp~2) - (ordy(m) + 1).
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If # Diff (m) > 1 then deg(Z™) = 0.

We continue with K an imaginary quadratic field, B an indefinite quaternion algebra over Q,
and Op a maximal order of B. We assume each prime dividing dp is inert in K. Let & be the
algebraic stack over Spec(Ok) with #/(S) the category of false elliptic curves over the Og-scheme
S with complex multiplication by Og. A special endomorphism of an object (A, k) of Z(S) is an
endomorphism f € Endep,, (A) satisfying

k() o f = [fonr(T)

for all x € Og. For any positive integer m let #™ be the algebraic stack over Spec(Og) with
™ (S) the category of triples (A, k, f) where (A, k) is an object of #(S) and f € Endp,(A) is
a special endomorphism satisfying deg”(f) = m on every connected component of S. Define the
arithmetic degree of #™ just as in (1.3.1). For each m € Z* define a nonempty finite set of prime
numbers

Diffg(m) = {{ < 00 : (dr,—m)¢ - inve(B) = —1},

where invy(B) is the local invariant of B at ¢ (it is —1 if B is ramified at ¢ and 1 otherwise). For
any prime p set ¢, = 1 — ord,(dg) and let r be the number of primes dividing dp. The following
(Theorem 10.5.2 in the text) is our generalization of Theorem 3. The proof of this theorem is similar

to that of Theorem 2 and is carried out in the final chapter of this thesis.

Theorem 4. Let m € Z* and suppose Diff g(m) = {p}. The stack %™ is of dimension zero, it is

supported in characteristic p, and
deg(#™) = 2"+ log(p) - R(mdz'p'e» Vs =1) . (ord,(m) + ¢,).

If #Diff g(m) > 1 then deg(#™) = 0.

1.4 Eisenstein series

Theorem 1 and Theorem 3 are really only half of a larger story, one that gives a better explanation of
the definitions of the arithmetic degree of &, and 2™ and provides a surprising connection between
arithmetic geometry and analysis. To explain this in the case of the moduli space &,, let Ki, Ko,
K, and F be as in Section 1.1, let D = disc(F), and let o7 and o2 be the two real embeddings of F'.
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For 71,75 in the complex upper half plane and s € C define an Eisenstein series

2
. , 2 ,
B (rrais) = DOV (e (LE2)) S (@@
aceCl(F)
s/2

(v1v2)
. 2 [, ] (71, 72) [, ] (71, 72) |

(0,0)#(m,n)Eaxa/O}

where CI(F') is the ideal class group of F, v; = Im(7;), and
[m,n)(11,72) = (01(m)71 + 01(n))(02(m)72 + 03(n)).

This series, which is convergent for Re(s) > 0, has meromorphic continuation to all s € C and
defines a non-holomorphic Hilbert modular form of weight 1 for SLy(Op) which is holomorphic in s

in a neighborhood of s = 0. The derivative of E*(7y, 72, s) at s = 0 has a Fourier expansion

(B*) (11,72,0) = > aa(v1,09)-q",

ae® 1

2mix

where e(z) = e and ¢® = e(o1(a)m + o2(a)mz). The connection between this analytic theory

and the moduli space &, lies in the next theorem ([14, Theorem B, Theorem CJ).

Theorem (Howard-Yang). Suppose o € F* is totally positive. If « € D1 then aq = an(vy,v2) is
independent of v1,vy and an, = 4 - deg(&y).

There is a similar theorem about 2 which goes as follows. Let K be an imaginary quadratic
field with discriminant dx and assume ¢ = —dy is prime. For each place £ < oo of Q define a

character ¢ : Q) — {£1} by ¢¢(x) = (x,dk)¢ and for any

y = {”C‘ b] €T = SLy(2)

d
define
_ Yq(a) ifg|c
P = A .

() { —iq 1/zwq(c) if g1ec
For 7 = u + v in the complex upper half plane and s € C with Re(s) > 1 define

- +2 2 (v)

E* — u8/2,(s+1) /2, —(s+2)/2 5 I
(7,5) = v*/2q /27 5 ) Lis.va) EFZ\F o T der 15
Y oo

where I'o, = {7 € T : ¢ = 0}. This series has meromorphic continuation to all s € C and defines a
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non-holomorphic modular form of weight 1. It has a Fourier expansion

E*(1,s) = Z am(v,s) - 2T
meZ
for some functions a,, (v, s) holomorphic in a neighborhood of s = 0. The following is [16, Theorem
3].

Theorem (Kudla-Rapoport-Yang). Let m € Zt and assume —d is prime. The derivative al, =

ar.(v,0) is independent of v and deg(Z™) = —al,

m -

It seems likely that there are theorems in the spirit of the above two for the moduli spaces % o

and 2™, but we do not pursue that direction here.

1.5 Notation and conventions

If X is an abelian variety or a p-divisible group over a field k, we write End(X) for Endg(X). If X is
a scheme or a p-divisible group over Spec(R) for some ring R and R — R’ is a ring homomorphism,
we write X ®@g R’ for the fiber product X Xgpec(r)Spec(R’). When we say “stack” we mean algebraic
stack in the sense of [27], also called a Deligne-Mumford stack. We do not use stacks in a serious
way in this work; they are merely a convenient language to use to make precise certain notions
involving moduli spaces. If E is an elliptic curve over an algebraically closed field k, we write E? for
the product £ x E, which, in the language of schemes, is really the fiber product £ Xgpec(r) £ We
write Fp for an algebraic closure of the field of p elements. For any scheme S we write Sch/S for
the category of S-schemes and we write Sets for the category of sets. By “scheme” we always mean

locally Noetherian scheme. If 2 is a category, we write X € 2 to mean X is an object of 2 .



Chapter 2

False elliptic curves

In this chapter we review the basic theory of false elliptic curves. Although this material is “well-
known”, some of the proofs we provide do not seem to explicitly appear in the literature. For the
remainder of this thesis fix an indefinite quaternion algebra B over (Q and a maximal order Opg of B.
We do not exclude the case where B is split, that is, where B = M3(Q). As B is split at the infinite
place oo of Q, all maximal orders of B are conjugate by elements of B*. Let dg be the discriminant

of B.

2.1 Basic theory

Definition 2.1.1. Let S be a scheme. A false elliptic curve over S is a pair (A, %) where A — S is an

abelian scheme of relative dimension 2 and i : Op < Endg(A) is an injective ring homomorphism.

Definition 2.1.2. Let (A1,i1) and (As,i2) be two false elliptic curves over a scheme S. A ho-
momorphism f : A7 — As of false elliptic curves is a homomorphism of abelian schemes over S
satisfying is(x) o f = foiy(z) for all z € Op. If in addition f is an isogeny of abelian schemes, then

f is called an isogeny of false elliptic curves.

We will see below that any nonzero homomorphism of false elliptic curves A; — Ay is necessarily
an isogeny (which is false for a general homomorphism of abelian schemes A; — Aj). We write
Home,, (A1, A3) for the Z-module of homomorphisms of false elliptic curves Ay — As. For each
place v of Q let inv, : Bra(Q,) — {£1} be the unique isomorphism. If D is a quaternion algebra
over Q, we write inv, (D) for inv, (D ®g Q).

Definition 2.1.3. For each prime number p, define B® to be the quaternion algebra over Q

13



CHAPTER 2. FALSE ELLIPTIC CURVES 14

determined by

. o [ invy(B) if v ¢ {p, o0}
IDVU(B( )) = { —inv,(B) ifv € {p,o0}.

Note that B® is always a division algebra because it is ramified at co. In particular, if B =

M5 (Q) then B®) is the quaternion division algebra ramified at p and co.

Proposition 2.1.4. Suppose (A, 1) is a false elliptic curve over F,. Then End%B (A) = Endop, (4)®z
Q is either

(1) an imaginary quadratic field L which admits an embedding L — B, or
(2) the definite quaternion algebra B®).

Furthermore, A is isogenous to E? for some elliptic curve E over F,, with E ordinary in case (1)

and supersingular in case (2).
Our proof follows [18, Proposition 5.2].

Proof. Let D = End’(A). Note that
Endg,,(A) = Cp(B) ={d € D :db=bd for all b € B}

is the centralizer of B in D, via the embedding Op ®7Q = B — D. First suppose A is isogenous to
E, x E5 for some elliptic curves F; and Es over R,, with E; supersingular. Then E; ~ Es because

otherwise there is a ring homomorphism
B — End’(A) = End°(E;) x End®(FE,) — End’(E,),

which is injective since B is a simple Q-algebra and thus the kernel, which is a two sided ideal
of B, is zero (it is not the zero homomorphism as 1 — 1). Then End’(E;) = B by counting Q-
dimensions, but End’(E)) is ramified at oo and B is not. Hence A ~ E? with E a supersingular
elliptic curve, so Dy o = EndO(E) is the quaternion division algebra over Q ramified at p and oo,
and D = EndO(A) ~ My(Dp ). The center of D is Q, so D is a central simple algebra over Q. Let
C be the centralizer of B in D. Since B C D is a simple subalgebra, dimg D = (dimg B)(dimg C)
by the double centralizer theorem. It follows that the natural map B ®g C — D defined by
b® ¢ — be is an isomorphism of Q-algebras, which means [B][C] = [D]| = [Dp, o) in Br(Q). Then

inv,(B)inv,(C) = inv, (D, «) for all v, so from

' (1 ifué¢{p oo}
invy,(Dp oo) = { —1 ifv € {p, o0},
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we have inv, (C) = inv,(B) for all v ¢ {p, 0o} and inv,(C) = —inv,(B) for v € {p, cc0}.

Now suppose A is simple or isogenous to a square of an ordinary elliptic curve (A cannot be
isogenous to a product of two non-isogenous ordinary elliptic curves for a reason similar to that
above). Let F, C F, be a subfield such that 4 and all of its endomorphisms are defined over F,,
and let m be the Frobenius endomorphism of A/F,. Let L be the center of the simple Q-algebra
D= Endgq (A), so Lis a field. More specifically, L = Q[x] in either case and in addition L = End®(E)
when A ~ E? for some ordinary elliptic curve E. If L has a real embedding (necessarily when A
is simple) then by the Honda-Tate theorem A is isogenous over a quadratic extension of F, to E>
where F is a supersingular elliptic curve, a contradiction. If A is simple then again the Honda-Tate
theorem implies that 4 = 2dim(A) = (dimy, D)'/?[L : Q], so [L : Q] < 2 because otherwise D = L is
commutative, contradicting D O B. Hence L is an imaginary quadratic field in either case.

Let C be the centralizer of B in D, so C D L. Also, let L' be the center of C, so L' D L.
We claim that C' = L’. Suppose C' 2 L’ and let ¢ € C' . L'. Also, since B is not commutative,
there is a b € B~ C. Then b and ¢ commute, so the subalgebra R C D generated by L', b, and
¢ is commutative, and dimyps R > 4. Hence D contains a commutative Q-subalgebra of dimension
strictly larger than 4 = 2dim(A), a contradiction since the maximal commutative Q-subalgebra has
dimension 2dim(A). Thus C' = L'. Now, if c € L' = Z(C) then ¢ commutes with all elements of C,
so ¢ € Cp(C), the centralizer of C' in D. However, Cp(C') = B by the double centralizer theorem (D
is a central simple algebra over L and B C D is a simple subalgebra). It follows that L C L' C B.
But B is a central simple algebra of dimension 4 over Q, so the maximal subfield of B has degree 2
over Q, which means L' = L. Therefore C' = L is an imaginary quadratic field and L — B.

Finally, since dimy, D = (dimy, B)(dimy C) = 2 by the double centralizer theorem, A is not
simple because otherwise the Honda-Tate theorem implies dim; D = 4. Therefore A ~ E? for some

ordinary elliptic curve. O

Proposition 2.1.5. If A is a false elliptic curve over C then either A is simple, in which case
End° (A) = B, or A ~ E? for some elliptic curve E over C, with, in the case of B a division algebra,

complex multiplication by an imaginary quadratic field which splits B.
The proof is taken from [6, Proposition 52]

Proof. Suppose A is simple, so D = End’(A) is a division algebra. Write A(C) = C2/A for some
lattice A C C2. Then there is a ring homomorphism D — Endg(A®zQ) (the rational representation),
so A®zQ is a free D-module, since D is a division algebra. Hence 4 = dimg(A ®7 Q) = rankp (A ®z
Q) dimg(D), so dimg D < 4. However, B < D, which means D 2 B by counting Q-dimensions.

Now suppose A ~ E; x E5 for some elliptic curves F, and E5 over C. If E; is not isogenous to
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E5 then there is an injective ring homomorphism
B — End’(A) = End’(E;) x End®(E,) — End’(E,),

a contradiction because E; is an elliptic curve over C. Hence A ~ E? for some elliptic curve E, so
D = End’(A) = My (End’(E)). If B is a division algebra and End’(E) = Q, then B — M(Q), a
contradiction. Therefore F is an elliptic curve over C with complex multiplication by some imaginary
quadratic field L, and thus D = My (L).

Finally, to show L splits B, note that since B < My(L), B acts on an L-vector space V of
dimension 2. Then V is a free B-module of rank 1, so V & B as B-modules, which means B is an
L-vector space of dimension 2. Hence L is the maximal subfield of B containing Q and therefore

L ®g B = My(L). O

Proposition 2.1.6. If A is a false elliptic curve over C then End%B (A) is either Q or an imaginary
quadratic field which splits B.

Proof. As above, End%B (A) = Cp(B), the centralizer of B in D = End’(A), via the embedding
Op®7Q =B — D. If Aissimple then D = B, so End%B (A) = Cp(B) = Z(B) = Q. Now suppose
A ~ E? for some elliptic curve E. If E does not have complex multiplication then necessarily
B =D = M,(Q) and thus Endg,  (A) = Cp(B) = Z(B) = Q. If E has complex multiplication then
D = My(L) for some imaginary quadratic field L satisfying L ®g B = My(L) (clearly this is still
true when B = M5(Q)). Hence

Endp, (A) = Cp(B) = Creg,s(Q®q B) = CL(Q) ®g Cp(B) = L®g Q = L. O

Often we can reduce the proof of a statement about false elliptic curves over an arbitrary base
scheme to the case of false elliptic curves defined over an algebraically closed field by using the

following general result.

Lemma 2.1.7. Let & — S be an abelian scheme and s : Spec(k) — S a geometric point of S. The
natural map Endg (/) — Endy (%), where o = o x g Spec(k) is the geometric fiber, is injective.

Proof. See [20, Corollary 6.2]. O

Proposition 2.1.8. Suppose A is a false elliptic curve over a field extension L ofR,. Then End(A)
embeds into End(A’) for some false elliptic curve A’ defined over a finite extension of F,. In
particular, End%B (A) embeds into an imaginary quadratic field or the definite quaternion algebra
B,
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Proof. First note that we may descend to the case of A defined over a field L having finite transcen-
dence degree over F,. Now we will use induction on the transcendence degree of L over F,. The
result is trivial if L has transcendence degree 0 over E,, so assume the result holds for any false
elliptic curve defined over any field L’ with a fixed transcendence degree over F,, and suppose A is a
false elliptic curve defined over a field L with transcendence degree 1 over L'. Then L is an algebraic
extension of L'(x) for some x € L transcendental over L'. As before we may descend to the case of
L finite over L'(z). Let Of be the integral closure of L’[z] in L, and fix a prime p C Of, of good
reduction for A. This means that there is an abelian scheme . over Spec(Oy, ,) whose generic fiber
is A, that is,
9 ®o, , Frac(Op ) = A.

Since &7 is an abelian scheme, it is the Néron model of its generic fiber A ([1, Corollary 1.4]), so

End(A) = Endo, , (&) by the universal property of the Néron model. Now let
Z = ®(9L1p Z

be the reduction of & modulo p, where L = Op/p. By [7, Theorem 2.1(2)] the natural map
Endo, , (%) — End(A) is injective. Since L is a finite extension of L/, we have an inclusion
End(A) — End(A) with A a false elliptic curve defined over a field with transcendence degree one

less than L, the field A is defined over, so we are done by induction. O

Lemma 2.1.9. Let (Ay,41) and (A, i) be false elliptic curves over an algebraically closed field k
and suppose A1 and Ao are isogenous as abelian varieties. Then Ay and As are isogenous as false

elliptic curves.
This argument is taken from [18, p. 179).

Proof. By Propositions 2.1.4, 2.1.5, and 2.1.8, the ring EndO(AQ) is a central simple algebra over
either Q or an imaginary quadratic field L which embeds into B, with one possible exception:
the field k has positive transcendence degree over F, for some prime p, A, is simple, and D =
End’(Az) < My(D, ) is a quaternion division algebra over a quadratic extension L of @ (not
necessarily imaginary; by counting dimensions this forces D = B ®g L and thus L does not embed
in B). Let f : A} — Ay be an isogeny of abelian varieties and let f, : End’(A4;) — End"(As) be the
corresponding homomorphism of Q-algebras defined by f.(¢) = fopo f~1, where f~1: Ay — A; is
the inverse of f in Hom®(As, A;). Then we have the ring homomorphisms iy : B — End®(A4,) and
fxoip : B — End’(Ay), so by the Noether-Skolem theorem there is a u € End’(A3)* such that

ig(z) = uo (fu(ir(z)) ou ™t =uo foiy(x)o flou™?
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for all x € B. Hence is(x)ouo f =wuo foiy(z), so the map muo f: Ay — A, is an isogeny of false

elliptic curves, where m is an integer such that mu € End(Ajy). O

Lemma 2.1.10. Let (A,i) be a false elliptic curve over a scheme S and assume B is a division
algebra. If x € Op is nonzero then i(x) € Ends(A) is an isogeny of degree Nrd(x)?, where Nrd :

B* — Q* s the reduced norm.

Proof. As x is nonzero there is a y € B* such that xy = yx = 1 and thus i(z) oi(y) = i(y)oi(z) = id
in End%(A). This shows i(x) is an isogeny. To compute its degree we may assume S = Spec(k)
for k£ an algebraically closed field. Applying the Noether-Skolem theorem as in Lemma 2.1.9 to the
two maps B — End”(A) given by b — i(b) and b +— i(b*), where b — b* is the main involution on
B, we find that there is an v € End(A4)* such that i(b) = woi(b*) ou~" for all b € B. Hence
deg(i(x)) = deg(i(x*)) and

deg(i(x))® = deg(i(z)) deg(i(z")) = deg(i(za")) = deg([Nrd(w)]) = Nrd(z)".

Since deg(i(x)) is a positive integer, deg(i(z)) = Nrd(x)?. O
The following result is needed below in defining the false degree.

Lemma 2.1.11. Positive involutions on rational division algebras are classified as follows.

(a) Suppose D is a quaternion division algebra over Q and x — ' is a positive involution on D
trivial on Z(D) = Q. If D is indefinite then x +— 2’ is given by 2’ = a~*a‘a for some a € D with
a’® € Q negative, where x — x* is the main involution. If D is definite then x — ' is the main
involution.

(b) Suppose D is a division algebra over Q of finite dimension with a positive involution not trivial
on Z(D). Then L = Z(D) is totally complex and the restriction of the involution to L is complex
conjugation. In particular, the only nontrivial positive involution on an imaginary quadratic field is

complex conjugation.
Proof. For (a) see [2, Theorem 5.5.3] and for (b) see [2, Lemma 5.5.4]. O

Let x — z* be the main involution of B and fix a € Op satisfying a® = —dp (such an a exists
since Q(v/—dp) splits B). Define another involution on B by z — z* = a~'z‘a. The order Op is
stable under z +— z*.

If (A, 4) is a false elliptic curve over S, then so is the dual abelian scheme AV, with corresponding
homomorphism ¥ : Op — Endg(AY) defined by i¥(z) = i(z)" for all x € Op. If f: (A1,i1) —

(As, i) is a homomorphism of false elliptic curves, then f¥ : AY — AY is also a homomorphism of
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false elliptic curves since

if () o f¥ =ir(x)" o f¥ = (foir(x)” = (ia(x) o )V = f¥ 0iz(x)” = [ oy (x)
for all z € Op.

Proposition 2.1.12. Let A be a false elliptic curve over a scheme S. There is a unique principal
polarization X : A — AV such that if 5 is a geometric point of S, then the corresponding Rosati

involution ¢ — ©f = A-1 0 ¥ 0 Ag on End"(As) induces the involution = +— x* on Op C End(Ag).
Proof. See [4, p. 3] and [3, Proposition III1.3.3]. O

The last condition in the proposition means that if i : Op — End(A) is the Op-action, then
At oi(x)Y o Ag =i(x*) for all x € Op.

Let (Aj,41) and (Asg,i2) be false elliptic curves over S with corresponding principal polarizations
A1 A — AY and Ay : As — AY. Suppose f: A} — As is an isogeny of false elliptic curves. Then
f induces an isogeny f¥ : Ay — AY of false elliptic curves. Using the principal polarizations A; and

A2, we obtain a map f?: Ay — A; defined as the composition
fr=2tofYod: Ay — Ay
This is an isogeny of abelian schemes and is Opg-linear since i;(z) = )\;1 oij(xz*)Y o A; implies

floig(z) =Atof ooyt oig(z*) 0o
=7t o (ia(z") o )Y o Ao
=A\to(foir(z)Y oA
=Mooz or oA o fY o

=iy(x)o f*

for all 2 € Op (it sufficed to check this on geometric fibers). The isogeny f*: As — A is called the
dual isogeny to f.

Lemma 2.1.13. The map f — f? satisfies the following properties.

(a) Suppose A1 and As are false elliptic curves and f,g : Ay — As are isogenies. Then (f*)t = f
and (f +9)" = f* +¢".

(b) Suppose Ay, As, and Az are false elliptic curves and f : Ay — Ag and g : As — Az are isogenies.
Then (go f)t = ftogt.
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Proof. The first claim in (a) follows from (fV)Y = f, once we make the identifications (AY)Y = A,
and (AY)Y = Ay. The other claims follow immediately from (f + ¢)¥ = f¥ +¢¥ and (go f)V =
frog”.

O

Proposition 2.1.14. Let f : Ay — Ay be an isogeny of false elliptic curves over a scheme S. The

isogeny fto f: Ay — Ay is locally on S multiplication by an integer.

What this means is that any point of S has an affine open neighborhood U such that the map
ftof: Al xsU — Ay x5 U is multiplication by an integer.

Proof. This can be checked on geometric fibers, so we may assume A; is a false elliptic curve over
an algebraically closed field k. Viewing fto f € End%B (A1), we will show f?o f is fixed by the
Rosati involution and then show that the set of fixed points of the Rosati involution is Q. First, to

show fto f ¢ End%B (A;) is fixed by the Rosati involution corresponding to A;, compute

(ffo Nt =AT"o(ffof) 0N
=Ato(AtofYorof)Y ol
=XNltofYoXofo(AHYoN
=XA'ofYoXof
=flof.

If k has positive transcendence degree over F, then End%B (A1) embeds into an imaginary
quadratic field or a definite quaternion algebra, so we are reduced to considering the following.
Since k is algebraically closed, End%B (A;) is one of (i) the quaternion algebra B() (when k =TF,),
(ii) an imaginary quadratic field L (when k is F,, or C), or (iii) the field Q (when k = C). The Rosati
involution ¢ — ' is a positive involution on EndOOB (A1). In case (i), we have End%B (A;) = B®W
and the Rosati involution is trivial on Z(B®) = Q, so 2T = #* is the main involution because B®)
is definite. The set of fixed points of the main involution is Q. In case (ii), End%B(Al) = L and
2zt = Z is complex conjugation, so the set of fixed points is RN L = Q. Therefore in each case

ftofeQ,so flof: A — A is multiplication by an integer. O

Definition 2.1.15. If the integer in the previous proposition is constant on S, then it is called the
false degree of f, and is denoted deg”(f).

For any f € Homp, (A1, A2) and n € Z, we have

deg”(nf) = deg”([n]a,) deg™ (f) = n* deg™(f).
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Using this we can extend the definition of deg* to Hom%B (Ay, As) by setting
deg*(g) = n~? deg*(ng),

where n is any integer such that ng € Homp, (A1, As).

Corollary 2.1.16. Let (A1,i1) and (As,i2) be two false elliptic curves over a scheme S and suppose

f Ay — Ay is an isogeny of false degree n. Then the map
D End%B (41) — End%B (Ag)

defined by ®(p) =n~1f oo ft is an isomorphism of Q-algebras.

Here we are implicitly using that if f is an isogeny then deg®(f) # 0. We prove that below in
Proposition 2.1.19.

Proof. First note that since f'o f = [n] : Ay — Aj, we also have fo f* =[n]: Ay — As. Indeed,
fro(fof)y=(ffof)of =[nla, of =f'oln]a,

so (f o f!) — [n]a, maps Ay to the finite group scheme ker(f*) and thus (f o f*) — [n]a, = 0. Now

the corollary follows from observing that the map
v End%B (A2) — EndOOB (A1)

defined by W(1)) = n~1ft oo f is the inverse of . O

For any isogeny f: Aj — Ay let f~! = ft @ deg(f)~! € Hom%B (A, Ay), 50 f~Lo f=[1]a, in
Endg (A1) and fo f~! = [1]4, in Endg,, (A2).

Corollary 2.1.17. Let A1 and Ay be false elliptic curves over a connected scheme S and suppose
f € Homp, (A1, As) is an isogeny. Then deg*(f!) = deg”(f) and deg(f) = deg™(f)?.

Proof. This can be checked on geometric fibers, so we may assume S = Spec(k) for k an algebraically
closed field. Let d = deg”(f). The first claim follows from (f*)! = f and f o f* = [d]a,. For the

second claim, since f!o f = [d]4,, we have
deg(f*) deg(f) = d".

However, deg(f!) = deg(f") = deg(f), so deg(f) = d>. O
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Lemma 2.1.18. Let Ay and As be false elliptic curves over a scheme S. Any nonzero element of

Homp,, (A1, As) is an isogeny.

Proof. Assume f € Home, (A1, As) is nonzero. To show f is an isogeny it suffices to check that the
map on fibers fs is an isogeny for all s € S ([5, 1.4.2.3]), and this further reduces to checking f5 is
an isogeny for all geometric points 5 of S (]9, Remark 12.16]), so we may assume S = Spec(k) for k
an algebraically closed field. By Propositions 2.1.4 and 2.1.5 we see that since Home, (47, A2) # 0,
there is an isogeny of abelian varieties A; — A5 and thus an isogeny of false elliptic curves Ay — Ag

by Lemma 2.1.9. It follows that
HomOOB (A1, A2) = HomOOB (A, A7)

has the structure of a division algebra and therefore each nonzero element is an isogeny. O
Proposition 2.1.19. Let Ay and As be false elliptic curves over a connected scheme S. The map

deg” : Homp, (A1, A2) — 7Z is a positive definite quadratic form.

Proof. For f,g € Homp, (41, A2) let

[f,g] = deg™(f + g) — deg™(f) — deg™(g)-

Using the injective ring homomorphism [-] : Z — Ende, (A1), we have

[[f, 9] = [deg™(f + g)] — [deg™ (f)] — [deg"(g)]
=(f+9)'o(f+g) —flof—g'og

=flog+g'of.

Since this expression is additive in f and g, and [-] is injective, [-, -] is bilinear. Finally, deg*(—f) =
deg”(f), so deg” is a quadratic form.

If f = 0 then clearly deg*(f) = 0, so suppose f : A — Aj is an isogeny. To show deg*(f) > 0,
it suffices to check this on geometric fibers, so we may assume A; and As are false elliptic curves

over an algebraically closed field k. Define an isogeny of abelian varieties
(I)ZA1XA2—>A1XA2

by ®(z,y) = (f'(y), f(x)) (on points in k-schemes). Using the isomorphism (A1 x A3)Y = AY x AY,
consider the isogeny ®V : AY x AY — AY x AY. In general, if ¢ : X — Y is any homomorphism of

abelian varieties, and Zx and Py are the Poincaré sheaves on X x XY and Y x YV, respectively,
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then v : YV — XV is the unique homomorphism such that
(idx x"Y)* Px = (p x idyv )* Py
as sheaves on X x Y. Also, if
P X XY xXVxYY 5 XxXY, ¢: XxYxX"xY¥Y-YxYV

are the projections, then Px«y = p*Px ® ¢*FPy. Using these two facts it is straightforward to
check that ®V is given on points by ®V (u,v) = (f¥(v), (f1)V(u)).
IfA: A5 — AJV, j = 1,2, are the usual principal polarizations, then we get a principal polariza-
tion
A=A X Ay : AY x Ay — AY x AJ.

The corresponding Rosati involution on EndO(A1 x As) has the following effect on ®:

O (z,y) = A Lo dY o N\ (z,y)
= (Ao @) (A (), Xa(y))
AT e ), ()Y @)

Hence & = @, so

(@0 @) (z,y) = @(f'(y), f(x)) = ((f* o f)@), (f o [)(y)) = deg"(f) - (),

which shows ® o @7 = [deg*(f)]. Since the Rosati involution is positive and ® o &7 € Q, we
have Trd(® o ®1) = d - deg*(f) > 0, where Trd is the reduced trace on End’(A4; x Ay) and d =
(dimy, End®(A; x A3))Y/2 >0 (L is the center of End®(A; x Aj)). Therefore deg*(f) > 0. O

2.2 Quaternion algebras

We conclude this chapter with a brief discussion of quaternion algebras over local fields. Let L be
a nonarchimedean local field of characteristic 0. Up to isomorphism there is a unique quaternion

division algebra D over L. Any quadratic extension of L can be embedded into D and D contains
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a unique maximal order Op, with all orders of D contained in @p. The maximal order Op is the
set of all elements of D integral over the ring of integers of L. We will encounter these objects in
two settings. First, if p is a prime dividing dg and L = Q,, then B, = B ®qg Q, is the unique (up
to isomorphism) quaternion division algebra over Q,, and Op , = Op ®z Z, is its unique maximal
order.

The other setting is the following. Fix a prime number p. Let g be the unique (up to isomorphism)
connected p-divisible group of height 2 and dimension 1 over E,, so g & E[p™] for any supersingular
elliptic curve F over F,. Set A = End(g). Then A is the maximal order in the quaternion division
algebra Ag = A ®g Q, over Q,,. Let Q,2 be the unique unramified quadratic extension of Q, and
let Z,> C Q2 be its ring of integers. An explicit description of A is given by

~ J o pbl.
a={s #) ez,

where x +— T is the nontrivial element of Gal(Q,2/Q,). Now consider the reduced norm Nrd :
Ag — Qp, which, using the above description of A, corresponds to the determinant map. One
can check that € Ag is in A if and only if Nrd(z) € Z;. Define a function va : A — Z by
va(z) = ord,(Nrd(z)) (note that since x € A, it is integral over Z,, so Nrd(x) € Z,). Then va is a

valuation on A and there is an element IT € A, called a uniformizer, with va(II) = 1; namely, we

= {(1) g} :
This makes A into a “noncommutative discrete valuation ring”, where A has a unique maximal ideal
ma = {z € A:wva(z) >0}, A ={z € A:va(z) =0}, and A/ma = F2. As a Zj,2-module, we
have a decomposition A = Z,2 @ Z,211, and as a ring A = Z,»[II], with multiplication determined

by I1? = p and Ilz = ZII for all z € L2

may take



Chapter 3

CM pairs

3.1 CM false elliptic curves

We recall the number theoretic setup in the introduction. Let K; and K5 be non-isomorphic imag-
inary quadratic fields with discriminants d; and da, and set K = K; ®g K2. Let F' = Q(\/@)
be the real quadratic subfield of K, and let © be the different of F//Q. Let 2 — T denote complex
conjugation on K, in other words, the nontrivial element of Gal(K/F). Assume (d1,d2) = 1so K/F
is unramified at all finite places, and Ok, ®z Ok, is the maximal order in K. Also, we assume any
prime dividing dp is inert in K7 and Ks. In particular, each p | dp is nonsplit in K; and Ks, which
implies K7 and K5 embed into B, or equivalently, K7 and K5 split B.

If a prime number p is inert in both K; and Ko, then p is split in F' and each prime of F' lying
over p is inert in K. If p is ramified in one of K; or Ks, then p is ramified in F' and the unique
prime of F' lying over p is inert in K.

Let S be a scheme and (A, ) a false elliptic curve over S. Let e : S — A be the identity section
of A as an abelian scheme. Since A — S is smooth of relative dimension 2, the sheaf of relative
differentials 24,5 is a locally free sheaf of rank 2 on A, so €*Q,4,g is a locally free sheaf of rank 2
on S. Define the Lie algebra Lie(A) to be the sheaf

(e*QA/S)V = %Omﬁs (e*QA/S» ﬁS)

on S. This is a locally free &s-module of rank 2.
For each x € Op there is an S-morphism i(x) : A — A, which induces an &s-module homomor-
phism i(x) : Lie(A) — Lie(A), so Lie(A) is naturally an Op-module. We write Endp, (Lie(A)) for

the set of all morphisms of sheaves of €s-modules Lie(A) — Lie(A) that are also Op-linear.

25



CHAPTER 3. CM PAIRS 26

Lemma 3.1.1. If k=C or k =TF, for ptdg, then Endo, (Lie(A)) = k for any false elliptic curve
A over k.

Proof. For such a k we have Op ®z k = My(k), so Endo, (Lie(A)) = Endy, () (k) = k. O

Definition 3.1.2. Let R be an order in K; or Ky and S an Og-scheme. A false elliptic curve over
S with complex multiplication by R is a pair A = (A, k), where (A4,1) is a false elliptic curve over
S and x : R — Ende,(A) is a ring homomorphism such that if ¢ : R — Ende, (Lie(A)) is the
induced homomorphism, then the diagram

Lie

R = Endp, (Lie(A))

N

O5(95)

commutes, where R «— O — 0Og(S) is the structure map. We call the commutativity of this

diagram the CM normalization condition.

Note that since x : R — Endp, (A), we have i(z) o k(y) = k(y) o i(z) for all z € Op and y € R.
Also, any ring homomorphism R — Ende, (A) is automatically injective. To see this, it suffices to

show that the composition
R — Endp, (4) — Endp, (4s)

is injective where § is any geometric point of S, so we may assume S = Spec(k) for k an algebraically
closed field. But then Endp,(A) is a torsion free Z-module, so the above map must be injective
because otherwise Ende, (A) contains a torsion Z-module. In fact, a similar proof shows that any
ring homomorphism Op — Endg(A) is injective, so we did not need to assume this in the definition
of a false elliptic curve.

When we speak of a CM false elliptic curve A over Fg for some prime ideal 3 C O, where
Fy = Ok /B, it is understood that Spec(Fy) is an Og-scheme through the reduction map O —
Fyp — Fm. Less precisely, when we speak of a CM false elliptic curve A over E, for some prime
number p, we really mean A is a CM false elliptic curve over Fy for some prime ideal 3 C Ok lying
over p. We will say A is defined over Fp when it is not important to specify the prime ideal ‘B.

Suppose (A,7) is a false elliptic curve over a field with complex multiplication by an order
R C Ok, via the map k : R — Endp, (A4). Since K3 embeds in B by assumption, there is a ring
homomorphism K — End’(A) given by

T @ 9 = K(21) 0i(x2) = i(w2) 0 K(21),
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where we are extending x to a map K1 = R®z Q — End%B (A) and viewing x5 € Ky C B. This

shows A is a CM abelian variety in the traditional sense.

Definition 3.1.3. A CM pair over an Og-scheme S is a pair (A, As) where A; and A, are false
elliptic curves over S with complex multiplication by Ok, and Og,, respectively. An isomorphism
between CM pairs (A7, Aj) — (Ay, Ag) is a pair (f1, f2) where each f; : A7 — Aj is an O -linear

isomorphism of false elliptic curves.

Given a CM pair (A1, Ay) over an Og-scheme S and a morphism of Ok-schemes T — S, there
is a CM pair (A, Ay),r over T defined as the base change to T'.
For every CM pair (A1, Az) over an Og-scheme S, set

L(x&l7 A2) = HOHIOB (Ah AQ)

and
V(A1,Az) = L(A1,A2) @2 Q.

If S is connected we have the quadratic form deg® on L(A1,As). Let [f,g] = ffog+ g’ o f be the
associated bilinear form. Then O = Ok, ®z Ok, acts on the Z-module L(A1, Az) by

(21 ®@ z2) @ f = Ka(x2) 0 f 0 K1 (T1). (3.1.1)

Note that (z1 ® x2) @ f € L(A1, As) since k1(T1), f, and ka(z2) are Op-linear.

Lemma 3.1.4. Suppose A is a false elliptic curve with complex multiplication by Ok, wvia the
homomorphism k : Ok, — Endo,(A). If x € Ok, is nonzero then r(x) is an isogeny and k(x)" =
#(T), where x + T is complex conjugation on Kj. In particular, deg”(k(z)) = Nk, o(x) for all

$€Kj.

Proof. The homomorphism «(z) is an isogeny for the same reason that i(b) is an isogeny for any
nonzero b € Op (Lemma 2.1.10). For the rest, it suffices to assume A is defined over an algebraically
closed field. From the embedding x : K; — End% , (A) and our classification of such endomorphism
algebras over fields, either End%B (A) is K; or a definite quaternion algebra over Q. It follows
that there is an embedding «’ : K; — Endg,_ (A) such that the Rosati involution on Endyp,  (A)
corresponding to the principal polarization A : A — AV restricts to complex conjugation on &'(Kj).
Then using the Noether-Skolem theorem, there is a u € End%B (A)* such that k(r) = uor/(z)ou™!
for all z € K, and hence deg”(k(z)) = deg”™(x'(2)).

The Rosati involution on End%B (A) is given by ¢ — AL oY o X = ¢, so by construction,
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K/ ()t = K'(F) for any z € K;. Hence
[deg™ (' (2))] = ()" 0 &'(2) = K'(T) o K/ (z) = K'(T2) = [Nk, s ()],
which means deg”(k(z)) = N, q() for all z € K. Then, for any = € Ok,
k(@) o r(z) = [Nk, jo(@)] = [deg” (k(2))] = r(z)" o r(x)
and composing both sides on the right with x(z)! gives
[deg™ (r(2))] © () = [deg" (r(x))] © ()"

Since End(A) is a torsion-free Z-module it follows that x(z)! = k(7). O

Lemma 3.1.5. If L'/L is a finite separable extension of fields, then for any finite dimensional

L'-vector space V', the trace map Trr,,p, induces an isomorphism Homp/(V, L") — Homp(V, L).

Proof. 1f ¢ € Homp/(V, L) is nonzero then it is surjective, so Trz, 1, op is surjective since Trz.
is (as L'/L is separable). Hence, the L-linear map Homy (V,L’) — Hompg(V,L) given by ¢ —

Trzs /1, op is injective. It is then an isomorphism since each space has L-dimension dimz (V). O

Proposition 3.1.6. Let (A1, As) be a CM pair.
(a) There is a unique F-bilinear form [-,-lcm on V (A1, As) satisfying [f, 9] = Trpqlf, glem. Under
this pairing,

[L(A1,Az), L(A1, Ay)lem C D

(b) The quadratic form degey(f) = %[f, flewm is the unique F-quadratic form on V (A4, Ag) satis-
fying deg™ (f) = Trp/q degem(f)-
(c) There is a unique K -Hermitian form (-,-)cm on V (A1, Ay) which satisfies [f, glcm = Trg/p(f, 9)om-

Proof. (a) Let V' = V(A1,As). For any g € V we have [-,g] € Homg(V,Q), so by Lemma 3.1.5,
[,9] = Trp/g(pgy) for a unique ¢, € Homp(V, F'). Define [f,glcm = wq(f), so [, ]om is an F-
bilinear form and [f, g] = Trp/q[f, glcm-

(b) We have

Trrg degen(f) = Trpso(3Lf, flem) = 3 Tresglf, flem = 31f, f] = deg™(f),

and the uniqueness follows from Lemma 3.1.5.
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(c) Extending the action (3.1.1) of Ox on L(A1, As), V =V (A1, As) is a K-vector space. We
claim that [z e f,g] = [f,Teg] for all zx € K and f,g € V. For x = 21 ® 3 € K compute

[z e f,g] = (ka(x2) 0 forki1(T1)) 0 g+ g" o (ka(x2) 0 f ok (T1))

= r1(z1) o f' o ka(T2) 0 g+ g' 0 Ka(wa) o f 0 k1 (T1),

so as elements of End%B (Aq),

[z e f,g] = ki(z1) " o[z e f,g]ori(x1)

= f'oka(T2) 0 goki(w1) + k1 (x1) " 0 g' o ka(z2) o f o [Nk, jgla1)]-

Hence

[f, T egl = f'ora(Ts)ogori(er)+ (ka(Ta) o gori(ar)) of =[zefgl

For any g € V we have [-,glcm € Homp(V,F), so by Lemma 3.1.5 there is a unique ¢, €
Hompg (V, K) such that Trg/r(@y) = [, glom. For f,g € V set (f,g)om = @4(f). Then (-,-)cm is
K-linear in the first entry and additive in the second, and Trg/r(f, 9)cm = [f, glom. For any x € K

we have
Tri/r(f,z0g)om = [f,z e glom = [T f,glom = Trx p(T e f,9)cm
= Trr/r(@(f, 9)cm),
so (f,z e g)om = T(f,g9)cm. The uniqueness again follows from Lemma 3.1.5. O

3.2 Moduli spaces

Definition 3.2.1. For j € {1,2} define %; to be the category whose objects are triples (A, 1, k),
where (A,1) is a false elliptic curve over some Of-scheme with complex multiplication  : O, —
Endp, (4). A morphism (A’,4', k') — (A, 1, k) between two such triples defined over Og-schemes T
and S, respectively, is a morphism of Ok-schemes T' — S together with an Ok;-linear isomorphism

A’ — A xg T of false elliptic curves.

The category % is a stack of finite type over Spec(Ok). In fact, the structure morphism %; —
Spec(Of) is étale by Corollary 5.1.3 below, proper by a proof identical to that of [13, Proposition
3.3.5], and quasi-finite by Propositions 4.2.1 and 5.1.4 below, so the morphism is finite étale. Let
us recall the definition of the fiber %;(S), a general concept for any stack. Let G : %; — Sch/Ok

be the functor sending an object of %; over an Og-scheme S to the Og-scheme S, and sending an
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arrow between two objects of %; over Ox-schemes 1" and S to the morphism 7" — S in the definition
of an arrow in the category %;. Then %;(S) is defined to be the category whose objects are the
objects x of % satisfying G(x) = S, and whose arrows are the arrows f of %; satistying G(f) = ids.
It follows from the definitions that all arrows in %;(S) are isomorphisms. Let [#;(S)] denote the set
of isomorphism classes of objects in %;(5).

For each prime p dividing dp there is a unique maximal ideal m,, C Op of residue characteristic p,
and Op/m, is a finite field with p? elements. Set mp =

m,. We have mp =[], m, because

pldp pldp

for any two primes p and ¢ dividing dg, mpym,; = mym, since these lattices have equal completions
at each prime number. Let xp be any element of mp whose image generates the principal ideal
mp/dpOp C Op/dpOp. Note that

Op/mp = [ Fp

plds
as rings, so the kernel of any ring homomorphism 6 : O — Op/mp is of the form Py --- P,
for some prime ideals By, ..., B, of Ok lying over the r primes dividing dg. Also, giving such a
homomorphism 6 is equivalent to giving homomorphisms 0}“” : Og; — Op/my, for j = 1,2 and each
p | dg. Let (A,i) be a false elliptic curve over a scheme S. The dp-torsion A[dg] is a finite flat

commutative S-group scheme with a natural action of mp/dpOp. Define the mp-torsion of A to be
Almpg] = ker(i(xzp) : Aldp] — Aldg]),

which again is a finite flat commutative S-group scheme (i(xg) : A — A is an isogeny). This
definition does not depend on the choice of zp. The group scheme A[mg] has a natural action of
Op/mp given on points by T - a = i(z)(a) for T € Op/mp and a € Amp](T) for any S-scheme T

All the statements of this paragraph are vacuous if B is split.

Definition 3.2.2. Let j € {1,2} and let §; : Ox, — Op/mp be a ring homomorphism. Define Z’/jej
to be the category whose objects are objects (A, 14, k) of %} such that the diagram

k™B

OKj EndOB/mB (A[mB])

OB/mB

commutes, where k™5 is the map on mp-torsion induced by x and

OB/mB — End@B/mB (A[mB])
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is the map induced by 7. Morphisms are defined in the same way as in the category %;.

Note that @jej = %; if B is split. Recall from the introduction that 4 is the stack over Spec(Ok)
with €(5) the category of elliptic curves over the Ox-scheme S with CM by Of,. We will prove

below that there is an isomorphism of stacks over Spec(Ok)

L] € — Y, (3.2.1)
G_j:OKjHOB/mB

inducing an equivalence of categories €; — Z?/jej for any 6; (Theorem 5.2.6). It follows that ?!/jej has

the structure of a stack, finite étale over Spec(Ok), and #%; = € in the case of B split.

Definition 3.2.3. Let 0 : Ox — Op/mp be a ring homomorphism. Define 2y to be the category
whose objects are CM pairs (A1, Ag) over O-schemes such that A; is an object of @jej forj=1,2,
where 0; = 9|OK]_. A morphism (A%, A}) — (A1, Az) between two such pairs defined over Og-
schemes T and S, respectively, is a morphism of Og-schemes T" — S together with an isomorphism

(in the above sense) of CM pairs (A, A5) = (A4, Ay)p over T

Definition 3.2.4. Let § : Ox — Op/mp be a ring homomorphism. For any a € F* define Zy o to
be the category whose objects are triples (A1, Ag, f) where (A1, As) € Zu(S) for some Ok-scheme
S and f € L(A1, Ay) satisfies degcy(f) = @ on every connected component of S. A morphism

(A'/17 /27f/)_)(A17A27f)

between two such triples, with (A}, A}) and (A;, Ay) CM pairs over Ok-schemes T and S, respec-

tively, is a morphism of Og-schemes T'— S together with an isomorphism
g1 (A}, AY) — (A Ag)r

of CM pairs over T' compatible with f and f’ in the following sense. Let g = (g1, g2) where each

g; A;- — Ajx 5T is an Ok;-linear isomorphism of false elliptic curves. We require that the diagram

g1

All A1 XsT
f/l J/fxidq-
Al Y s Ay xgT

commute.

As before, the categories Zp and 2y, are stacks of finite type over Spec(Ok). Let S be an
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Ox-scheme and suppose (A1, Ag, f) is an object of .72 (S), with notation as in the introduction.
Set a = degcy(f), so Trp/g(a) = deg™(f) = m on every connected component of S. By (3.2.1) the
pair (A1, Az) € Zp(S) for a unique 0 : Ox — Op/mp, so (A1, As, f) is an object of Zy o(S) and
is not an object of Z;, 3(5) for any pair (n,8) # (6, «). Therefore there is a decomposition

78=|] L] 2.

a€eF* H:OK—>OB/mB
Trp/g(a)=m
Definition 3.2.5. A false elliptic curve (A4,4) over F, is supersingular if the underlying abelian
variety A is supersingular: A is isogenous to E? for some supersingular elliptic curve E over Fp.
A CM pair (Aq, As) over F, is supersingular if the underlying abelian varieties A; and Ay are

supersingular.

Lemma 3.2.6. If p is a prime dividing dp, or more generally, a prime nonsplit in K;, then any

A€ %;(F,) is supersingular.

Proof. By Proposition 2.1.4 there are two possibilities for A up to isogeny. Suppose A ~ E? for
some ordinary elliptic curve E over R,. Then EndO(E) = [ for some imaginary quadratic field
L and End?gB(A) = L. But K; — End%B (A), so L = K;. Tensoring the p-adic representation
End(E) — Endz, (T,(F)) with Q, gives a Q,-algebra homomorphism

Kjp=K; ®Qp — Qp.
This map cannot be injective by counting dimensions, so K, is not a field, which means p is split
in Kj. D

Proposition 3.2.7. Let k be an algebraically closed field of characteristic p > 0 and let § : O —
Op/mp be a ring homomorphism. Let o € F* and suppose (A1, A, f) € Zp.o(k).

(a) We have p >0 and Endy,, (A1) = Endy,, (A2) =2 BW). In particular, if k =T, then (A1, As) is
a supersingular CM pair.

(b) There is an isomorphism of F-quadratic spaces
(V(A17 A2)7 degCM) = (K7 6 : NK/F)

for some B € F*, with B determined up to multiplication by a norm from K*. Also, [ is totally

positive.
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(c) There is an isomorphism of Q-quadratic spaces
(V(A1’ A2)7 deg*) = (B([)), NI‘d),

where Nrd is the reduced norm on B®.

(d) If p does not divide dp then it is nonsplit in K1 and K.

Proof. (a) Suppose p = 0, so we may assume A; and Ay are false elliptic curves over C with complex
multiplication by Ok, and Og,, respectively. Since deg”(f) # 0 by assumption, f : A; — As is an
isogeny, so it induces an isomorphism Endy, L(A1) = End}, . (A2) of Q-algebras. Also by assumption
we have embeddings k1 : K1 — EndOOB (A1) and Ky : Ky — End?gB (A2). If Ay, which is isogenous
to Ao, is simple then End%B (A)) = End%B (A2) = Q, which is impossible. The other possibility is
Ay ~ E? for some elliptic curve E over C, in which case End%B(Al) & End%B(AQ) = L for some
imaginary quadratic field L. But then k1 and ko induce isomorphisms K; & L = K», contrary to
our assumption about K7 and K>. Therefore p > 0.

If k£ has positive transcendence degree over va then End%B (A1), which already contains K7,
embeds into an imaginary quadratic field or into B®). This forces End%B (A1) to be an imaginary
quadratic field or B® (by counting dimensions over Q). The same statement holds if k = F,. It
follows that Endg, (A1) = Endy, , (As) = B® because otherwise K; 22 K as above.

(b) Since f : Ay — Az is an isogeny, it induces an isomorphism of Q-vector spaces V(Aq, Ag) —
End%B (A1) defined by ¢ — ftop. As End%B (A1) = B® has dimension 4 as a Q-vector space,
V (A1, As) has dimension 1 over K. Therefore V (A1, Ay), together with (-, -)cn, is a Hermitian
K-module of dimension 1. This means that there is a v € K* such that (v,w)cm = vyw for all
v,w € K, so

1 1

degem(v) = 5[”»U]CM = 3 TrK/F('UvU>CM = B TYK/F(’U@V) =p- NK/F(”),

where § = %Tr x/F(y) € F*. This proves the existence of the isomorphism of F-quadratic spaces.
Now suppose 7' € K* is another element satisfying (v, w)cy = vy/'w for all v,w € K. Then

v =uyw=7"-Ng/p(u) for some u € K*, so

B = %TrK/F(’Y) = %NK/F(“) Tri r(7') = 8" Ny (u),

where 3 is the element of F* corresponding to 4. Finally, since deg”™ is positive, degq,, is totally
positive, so 3 is totally positive.

(¢) Under the isomorphism V (A, Ay) — End%B (A1) defined above, the quadratic form deg”
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on V (A1, Ay) corresponds to the quadratic form b~! deg® on End%B (A1), where b = deg™(f). We
claim that under the isomorphism End%B (A;) — B® the quadratic form deg* on End%B (A1)
corresponds to the quadratic form Nrd on B®). The Rosati involution ¢ +— ¢f = ¢! on End% 5 (A1)
corresponds to a positive involution on the definite quaternion algebra B(®), which must be the main
involution = +— z* by Lemma 2.1.11(a). Since Nrd(z) = xz* and deg”(p) = ¢ o ¢!, this proves the

claim. Therefore there is an isomorphism of Q-quadratic spaces
(V(A1, Ay),deg®) = (B® p~! Nrd).
However, since b > 0 it is in the image of Nrd, so there is an isomorphism of Q-quadratic spaces
(B® p~'Nrd) = (B® Nrd).

(d) Suppose p t dg, so p ramifies in B®). If p splits in K then, since K; embeds in B®) we have
BP) ©qQ, > K;®9Q, = Q, x Q,. This is impossible because B®) @ Q, is a division algebra. [
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Group actions

In this chapter we describe two group actions on the set [#;(.5)], the first of which is used in defining
a number called the orbital integral, an important tool used in counting the number of geometric
points of Zp . Let Ay = @ = Q®z Z denote the ring of finite adeles over Q. More generally,
for any number field L, L=1L ®q @ is the ring of finite adeles over L. For any Z-module M, let
M=M Rz 7 and for any Q-vector space V, let V=V ®q @ For any prime number ¢ and any CM
pair (A, Ag), set

Ly(A1,A2) = L(A1,A2) ®7 Zg, Vi(A1,Az) =V(A1,Az) ®g Qy.

For any sets Y C X we write 1y : X — {0, 1} for the characteristic function of Y. For j € {1, 2}
define an algebraic group 7T; over Q with functor of points given by T;(R) = (K; ®g R)* for any
Q-algebra R. Note that T} is the Weil restriction Resg, /g(Gm). Define a map v; : Tj — Gy, given
on points by v;(t;) = t;t;, and define an algebraic group T over Q with functor of points

T(R) = {(tl,tQ) S Tl(R) X TQ(R) : Vl(tl) = 1/2(t2)}.
Define another algebraic group 7' over Q with

T'(R) = {2 € (K ®g R)* : Ng/p(2) = 1}.

There is a homomorphism v : T' — Gy, given on points by v(t) = v1(t1) = va(te) for t = (t1,t2) €
T(R), and there is a homomorphism 7 : T — T defined on points by n(t) = v(t)~! - (t; @ t2).

35



CHAPTER 4. GROUP ACTIONS 36

Let U C T(Ay) be the compact open subgroup
U =T(As) N (O, x O,)

and let V =n(U) C T*(Ay). There are factorizations U = [[, U, and V =[], V, for some compact
open subgroups U, C T(Qy) and V, C T*(Qy).

Lemma 4.0.8. If R is a field of characteristic 0, the ring of adeles over Q, or the ring of finite

adeles over Q, then the sequence
1—R*—-T(R)LTYR) —1

is exact, where R* — T(R) is the diagonal embedding.
Proof. See [14, Proposition 2.13]. O

Using this one easily shows that 1 : T — T induces an isomorphism of groups
T(Q\T(Af)/U = THQ\T (Af)/V.

For j € {1,2} let Cl(Ok;) be the ideal class group of K; and set I' = Cl(Of, ) x Cl(Ok,). Define a
homomorphism
I T@\T(Af)/U —T

by sending (t1,t2) € T(Ay) to the pair of ideal classes (a1,az) € I' with

a; = H pordw((tj)p)7

pPCOK;

where the product is over all prime ideals of Ok, and (t;), is the p-th component of the idele ;.

Note that if (t1,t2) € T(Ay) then t; € Tj(@) = IA(]-X is a finite idele of K.
Proposition 4.0.9. The map I is an isomorphism of groups.

Proof. See [14, Proposition 2.14]. O

4.1 The Serre tensor construction

For any Og-scheme S we will describe how the group I' acts on the set [Z5(S)] using a general

construction of Serre which we now recall. We state these results only over a commutative ring,
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which suffices for our purposes, but they hold more generally over any associative ring, but then care

must be taken in distinguishing between left and right modules. For more details see [7, Section 7].

Theorem 4.1.1. Let R be a commutative ring, M a finitely generated projective R-module (in par-
ticular, M is locally free), with dual module MV = Hompg(M, R), and .# an R-module scheme over
a scheme S (that is, A is a commutative S-group scheme together with an R-action).

(a) The functor X — M ®p #(X) =2 Homg(M", # (X)) on S-schemes is represented by a com-
mutative group scheme over S, denoted M @ .# or Homg(M", ).

(b) Suppose M — S is a locally finite type R-module scheme. If .4 is smooth or proper over S,
then so is M ®gr A . If the S-fibers of M are connected, then so are the S-fibers of M @pr M. In
particular, if # — S is an abelian scheme then so is M Qg # . Furthermore, if .# has fibers over
S of dimension d and M has constant local rank r over R, then M Qg .# has fibers of dimension
dr.

(c) Let M and N be finitely generated projective R-modules. For any two R-module schemes .# and
N over a scheme S, view the group Homg (.4, A") as an R-module via the action on A . Then the

natural map
fN,M :NY QR HOms(%,z/V) Qr M — HOIHS(HOIHR(M, %),HOIHR(N, JV)),
defined on points in S-schemes by

Enm(t@p@m))(f):n = Ln)p(f(m)),

is an isomorphism of R-modules. In other words,
Homg(M @g M4 ,N @r N) = N @ Homg (M, N) @ M".

Now suppose (4, k) is a false elliptic curve over an O-scheme S with complex multiplication by
an order R in K or K5, and let a be a fractional ideal of R. Since there is a ring homomorphism
k: R — Endg(A), we may view A as an R-module scheme over S, so from a being a finitely generated
projective R-module, there is a commutative S-group scheme a®p A with (a®g A)(X) = a®r A(X)
for any S-scheme X. As A — S is an abelian scheme of relative dimension 2 and a is locally free
of rank 1, we see that a g A — S is an abelian scheme of relative dimension 2. Next, the ring

homomorphism i : Op — Endg(A) induces a ring homomorphism

iq: Op — Endg(a®g A)
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given on points by

ia(r)(a®a) = a®i(z)(a)

for any S-scheme X, x € Op, and « € A(X). In the same way, the ring homomorphism « : R —

Endp,(A) induces a ring homomorphism
Kq: R — Endg(a®pr A)

satisfying kq(y) 0 iq(x) = iq(x) 0 ka(y) for all x € Op and y € R.

Finally we consider the CM normalization condition. There is a natural isomorphism of Og-
modules Lie(a @ g A) = a @ Lie(A), which can be seen by using the following functorial definition
of Lie(A): for any S-scheme X,

Lie(A)(X) = ker(A(X[e]) — A(X)),

where X[e] = X ®7 Z[e] and Z[e] = Z[Y]/(Y?). (The connection between the two descriptions of
Lie(A) is as follows. Viewing Lie(A) as a sheaf of &s-modules, the functor X — Lie(A)(X) on
S-schemes is given by

X (Lie(A) ®gs Ox)(X),

the global sections of the &x-module Lie(A) ® g5 Ox. Going the other direction, viewing Lie(A) as a
functor on S-schemes as above, it defines an @g-module by restricting to open immersions X — S.)

Using this isomorphism, the induced map
kM R — Endo, (Lie(a @ A)) = Endo,, (a @ Lie(A))

is given by kM¢(y)(a ®t) = a ® k1¢(y)(t) for any t € Lie(A)(U) with U C S an open set. Since ¢
satisfies the CM normalization condition, it follows that xLi® does as well. This shows a®@p A is a
false elliptic curve over S with complex multiplication by R.

For any Og-scheme S and any ring homomorphism 6 : O — Op/mp, we claim that the group

T acts on the set [Zy(S)] by
(a1,02) - (A1, Az) = (a1 @0y, A1,02 @0y, A2).

(This action clearly only depends on a; through its ideal class.) We will write a; ® A; for the
false elliptic curve a; ®o, Aj with complex multiplication by Ok,. Let (A;,Az) € Zp(S) and
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(Cll, 0.2) e I'. Since
(i)a, : Op — Endg(a; @ Aj)

is given on points by (i;)a, (z)(a®®) = a®i;(x)(a), there is an isomorphism of O ,-module schemes
over S

(a; ® Aj)[mp] = a; @ Aj[mp].

The map

(H?B)aj : OKj — End(’)B/mB(aj ® Aj[mB])

is then given on points by (k}'7?)q; (z)(a ® t) = a ® 57 (2)(t). Since (A1, Az) € 2y(9), it follows
that the diagram

mp
("‘{j )aj

Endo, /my (a4 @ 4;[mg])

OB/mB

commutes, which means (a; ® A1, a2 ® Ay) € Zy(5).
Now let (A1, Az) be a CM pair over an algebraically closed field. Recall that K acts on V(Aq, Az)
by
(11 ® 22) @ f = Ka(w2) o f o K1 (T1).

By restriction we see that T1(Q) C K* acts on V(Aj, As), and by composing with the homomor-
phism 7 : T — T, T(Q) acts on V(Aj, Ay). This action is given by

tef=ro(ts)ofor(ty)?
for t = (t1,t2) € T(Q) because
k1(t1) " = k1(t1)" ® deg™ (k1 (t1)) " = k1(f1) @ N, jolt1) ™"
in Endp, (A1), while n(t) = Ng, o(t1) ™! (t1 @ t2).
Now fix t = (t1,t2) € T(Ay) and let (a1,a2) = I(t) € I', with I the isomorphism in Proposition

4.0.9. For j € {1,2} there is an Ok;-linear quasi-isogeny

f; € Homop, (A5,0; ® Aj) ®z Q,
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defined on points by f;(z) =1 ® z. Then the map
V(Cll RA, a0 ® Az) — V(Aq, A2)

given by ¢ — fy Yo po fy is an Og-linear isomorphism of vector spaces. This map identifies

L(a; ® Aj,09 ® Ay) with the Og-submodule
HQ(CQ) o L(Al, AQ) o K',l(lll_l) C V(A1, Ag)

We may extend the map ; : Ok, — End(4;) to a map K;, — End(4;) ®z Q¢ or to a map
IA(j — End(4;) @z @ by tensoring with Q, or (@ Then we have a K-linear isomorphism of F-
quadratic spaces

V(AL Ag) 2 V(e @ Ay ay ® Ay)

with E(al ® A1,02 ® Ag) isomorphic to the (5K—submodule
to L(A1,Ay) = {ka(ts) o fory(t))™ s f € L(A1, Ay)}

of V(A1, Ay).

Definition 4.1.2. Let (A1, A3) be a supersingular CM pair over an algebraically closed field of

positive characteristic. For each prime number ¢ and o € F,;* define the orbital integral at £ by

O, Ay, Ag) = Z 1o, (a,a)(t "o f)
t€Q\T(Qe)/Us

if there is an f € V3(Aq, Az) satisfying degey(f) = . If no such f exists then set Op(cr, A1, A2) = 0.

Since T(Qy) acts transitively on the set of all f € Vy(Aj, Ay) such that degqy(f) = a, the

orbital integral does not depend on the choice of f in the definition.

Lemma 4.1.3. Let S be an Ok -scheme and for j € {1,2} set w; = |(9[X(j|. Every x € Zy(S), viewed

as an element of the set [Z5(S)], has trivial stabilizer in I' and satisfies | Aut g, () ()| = wiws.

Proof. Suppose we have (aj,a2) € I' and a CM pair z = (A, Ag) € Zp(9) satisfying (Aq, Ay) &
(a1 ® Aj,02 ® Ay). This means that there is an OKj—linear isomorphism of false elliptic curves
Aj=a;® A for j =1,2. Set O; = Op ®z Ok, and let Homp, (A;,a; ® A;) be the Ok,;-module of
Ok;-linear homomorphisms A; — a; ® A; of false elliptic curves. Then there is an isomorphism of
(’)Kj—modules

Homop, (A, Aj) =2 Homoe, (Aj,a; ® Aj).
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By Theorem 4.1.1(c) there is an isomorphism of O -modules
HOInOKj (Aj, a; ® AJ> =y ®(9Kj End@Kj (Aj),

so Endp, (4;) = a; ®ox, Endo,(A4;). We claim that Ende,(4;) = Ok, as a ring and as an Og;-
module. By definition, Endp; (A;) is the centralizer of O, in Endp,(A;). Picking any geometric
point 5 of S, there are inclusions

Ok, — Endo,(4;) — Endo, ((4;)s),

the second coming from Lemma 2.1.7. By our classification of such endomorphism rings, either
Endo ((A))s) = Ok, or Endo,((A;)s) is an order in a quaternion algebra, so the same is true of
Endo, (A4;). The centralizer of O, in either such ring is O,. Hence a; = Ok, as an O;-module,
which means a; is principal. Finally, by definition, an automorphism of x in %£5(S) is a pair of

elements (a1, a2) with a; € Auto, (4;) = Of , so | Aut g, (s)(2)| = wiws. O

Proposition 4.1.4. Let p be a prime number that is nonsplit in K1 and Ko and suppose (A1, Ag)

is a CM pair over F,, (necessarily supersingular). For any o € F* totally positive,

wiw
> #{feLla @A a® Ag) : degoy(f) = o} = 12 2T Ocla, Ay, As).
(a1,a2)el’ ¢
Proof. The proof is formally the same as [14, Proposition 2.18], replacing the definitions there with

our analogous definitions. O

This result will form part of our calculation of the number of geometric points of 2y . The
other part will be to find an expression for the product of the orbital integrals, which we do below

in Theorem 7.3.3.

4.2 The Atkin-Lehner group

The other important group action on [#;(S)] comes from the Atkin-Lehner group Wy of Op. By
definition, Wy = Npx (0Op)/Q*Of = (w, : p | dp), where w, € Op has reduced norm p. As an
abstract group, Wo = [[,,4,, Z/2Z. The group Wy acts on the set [#;(S)] for any Ok-scheme S as
follows: for w € Wy and = = (4,4, k) € #;(S), define w - x = (A4, iy, k), where i, : Op — Endg(A4)
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is given by i, (a) = i(waw™!). Note that

Endp, (w-A) = {f € End(A) : foi,(a) =i,(a)o f for all a € O}
={f €End(A): foi(a) =i(a)o f for all a € Op}
= EHd@B(A),

and the CM action s : Og, — Endo,(w - A) = Endp,(A) is unchanged under the action of w,
s0 (A, iy, k) still satisfies the CM normalization condition. As described above, Cl(Of;,) acts on
[%;(S)] through Serre’s tensor construction. Clearly the actions of Wy and Cl(Ok;) commute, so

there is an induced action of Wy x Cl(Ok;) on [#;(S)].
Proposition 4.2.1. The group Wy x Cl(Ok;) acts simply transitively on [%;(C)].

Proof. Tt is shown in [15] that Wy x Cl(Ok;) acts simply transitively on [#;(C)], where Wy C Wy
is the subgroup generated by {w, : p | dp, p inert in K;}. However, we are assuming each prime

p| dp is inert in Kj. O



Chapter 5

Deformation theory I

The main result of this chapter states that any CM false elliptic curve arises from a CM elliptic curve
through the Serre tensor construction. We will use this in the next chapter to give a description,
in terms of certain coordinates, of the ring Homp, (A) ®z Z, for A a CM false elliptic curve over
Fp for p | dg. Another important result of this chapter that will be needed later is that the group
Wy x Cl(Ok;) acts simply transitively on the set [#%;(Fq)]. Fix a prime ideal 8 C Ok of residue
characteristic p. Let # be the ring of integers of the completion of the maximal unramified extension
of Ky, so in particular % is an Ok-algebra. Let CLN be the category whose objects are complete
local Noetherian # -algebras with residue field Fg, where Fyy = O /B, and morphisms R — R’ are

local ring homomorphisms inducing the identity Ep — Fp on residue fields.

5.1 General theory

For j € {1,2} and m > 1 an integer define .#]" to be the category whose objects are triples (<7, k, A),

where
(1) @ — S is an abelian scheme of relative dimension m over an Of;-scheme S,
(2) k: 0Ok, — Ends(&/) is a ring homomorphism,

(3) A: o/ — &7V is a principal polarization satisfying A o k(z) = k(T)" o A for all z € Ok, .

43
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We also require that the diagram

Ok, £ Endg, (Lie(«))

J

N T

Os(S)

commute, where Ok, — Os(S) is the structure map. A morphism (&', k', \') — (&, k, ) between
two such triples defined over Ok -schemes T' and S, respectively, is a morphism of Ok -schemes
T — S together with an Ok -linear isomorphism ¢ : &/’ — &/ x g T of abelian schemes over T" such

that the diagram

(,!ZfXST)VgleVXST (J%/)v

)\XidTT T/\/
-1

,!ZZXST ,!Zfl

commutes. The category .#]" is a stack over Spec(Ok;).
If R — R is a surjection of Ok,-algebras and = = (&, K, \) € A" (R), a deformation of x to R
is an object (JZ?: ") € M (R) together with an isomorphism

¢:J®RR—>W

of abelian schemes compatible with &, &, A, X. This last condition means that the diagram

—~ k(a)®idr
@ R———"

g
x(a)

o

J@éR
&
o

commutes for all a € O K, and the diagram

A®idg

o

®I~%R
wlT
o

()Y @z R (F @5 R)V (5.1.1)

commutes.
Theorem 5.1.1. If]?E — R is a surjection of Ok, -algebras with nilpotent kernel, then

(a) each o € A["(R) admits a unique deformation to o € ///jm(é),
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(b) for any o7 € #]"(R) and % € #]'(R) the reduction map
Homo, (J@) — Homo, | (o, RB)

is an isomorphism.
Proof. See [12, Proposition 2.1.2]. O

Another way of stating part (a) is that the structure morphism .#/" — Spec(Of; ) is étale. This
morphism is also proper, by a proof identical to that of [13, Proposition 3.3.5].

If S is an Ok-scheme and ¢ = (4,4, k) € %;(S) then z € ///]2(5). To see this, all we need to check
is that x satisfies condition (3) above. By Proposition 2.1.12 there is some principal polarization
A: A — AV, and by definition, £(y)* = X! o k(y)¥ o A for any y € Ok,. But from Lemma 3.1.4,
t

k(y)" = K(7), and hence k()" o X = X o k(y) for all y € Ok, .

Definition 5.1.2. Suppose & — R is a surjection of Ox-algebras and 2 = (A,i,k) € Z;(R). A
deformation of x (or just a deformation of A) to R is an object (E,Z R) € Z’/](fi) together with an

Ok;-linear isomorphism A® 7 B — A of false elliptic curves.

Suppose R — R is a surjection of Ok-algebras, (4,1, k) € %;(R), and (Z,Z K) € %(}N%) is a
deformation of (A, 4, k). We claim it is automatic that the principal polarizations A A (A)Y and
A: A — AV defined in Proposition 2.1.12 are compatible in the sense that a diagram such as (5.1.1)
commutes, where ¢ : A 5 R — Ais an isomorphism. To see this, first note that X and © induce a

principal polarization ' : A — AV defined by
N=(") o (A@idr)ep ™,
so we have the diagram (5.1.1) with A’ in place of A\. Now, using the fact that

X{l og(x)v o Xg :Z(x*)

for all x € Op and all geometric points ¢ of Spec(R), and the fact that

i(x)op = o (i(r) ®idg)

for all x € Op, a computation shows
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for all € Op and all geometric points § of Spec(R). By the uniqueness part of Proposition 2.1.12
we must have ' = A, which proves the claim.

Let © = (A,i,x) € %;(Fy) and define a functor Defo, (4, Ok,) : CLN — Sets that assigns to
each object R of CLN the set of isomorphism classes of deformations of x to R. If R — R’ is a
morphism in CLN then the corresponding map

Def@B (A, OKJ)(R) — DefoB (A, OKJ)(R/)

is defined by A— A®rR.

Corollary 5.1.3. The functor Defo, (A, Ok;) is represented by W', so there is a bijection
Defo,, (A, OKj)(R) =~ HomeLn (7, R),

which is a one point set, for any object R of CLN. In particular, the reduction map [%;(R)] —

[%;(F)] is a bijection for any R € CLN.

Proof. Let R be an Artinian object of CLN, so the reduction map R — Fg is surjective with
nilpotent kernel, the maximal ideal of R. Since A € ///f(Fqu it has a unique deformation to
Ae A7 (R) and the reduction map Endo X, (A) — Endo X, (A) is an isomorphism. Therefore we can
lift the Ok -linear action of Op on A to a unique such action on A. This shows that each object of
%;(Fyp) has a unique deformation to an object of %;(R) for any Artinian R in CLN. Now let R be
an arbitrary object of CLN, so R = anR/m”7 where m C R is the maximal ideal, and R/m" is an

Artinian object of CLN. The result now follows from the Artinian case, the bijection
HomeLn(#, R) & @HomCLN(W, R/m™),
and the fact that the natural map
Defo, (A, Ok;)(R) — lim Defo, (A, Ok, )(R/m")

is a bijection by Grothendieck’s existence theorem ([7, Theorem 3.4]). O
Proposition 5.1.4. The group Wy x Cl(Ok;,) acts simply transitively on [%;(Fy)].

Proof. Let C, be the metric completion of an algebraic closure of Q,, where p is the prime below
B, and fix a ring embedding #* — C,. There is a Wy x Cl(Ok;,)-equivariant bijection [#;(C,)] —
[%;(Fsp)] defined as follows. Let A € %;(C,). Since A is a CM abelian variety over Cp, it descends

to a number field, which means there is an abelian surface Ag over L with an action of O, for
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some number field L, and an isomorphism Ag ®;, C, = A compatible with the actions of Ok, on
each. By passing to a finite extension of L if necessary, we may assume End;(A4y) = Endz(Ao),
where L is an algebraic closure of L. Now fix a prime p C Op, lying over p. Passing to a further
finite extension of L, we may assume A has good reduction at p, since Ay is a CM abelian variety.
From [7, Theorem 2.1(1)], the natural map End;(4¢) — Endc,(A) is an isomorphism, so there
is an isomorphism Endo, (4p) — Endo,, (A). Therefore the O, -linear Op-action on A induces
such an action on Ap, which means Aj is a CM false elliptic curve over L (the CM normalization
condition descends as well as base extends). Let 7 be the Néron model of Ay at p, so o is an
abelian scheme over Oy, satisfying . ®o, , Frac(Or,p) = Ag. Since Endz(A¢) = Endo, , (40),
there are induced commuting actions of Op and Of; on &%, making it into a CM false elliptic curve
over O ,. Finally, let Ay = o ®o.., OL/p, so Ay is a CM false elliptic curve over Or,/p. Define
[%;(Cp)] — [%(Fgp)] by A — Ao ®0, /p Fy. This map does not depend on the abelian surface Ag
or the number field L such that Ay ® C, =2 A since we are base extending to Fq«_g in the end.

Next define a map [#%;(Fyp)] — [#;(C,)] as the composition
[%5(Fp)] = [#(7)] — [%5(Cyp);

where the first map is the inverse of the reduction map in Corollary 5.1.3 and the second map is

base extension to C,. This is the inverse to the map [#;(C,)] — [%;(Fy)] defined above. The result

now follows from Proposition 4.2.1. O

5.2 Structure of CM false elliptic curves

Our next goal is to prove there is an isomorphism as in (3.2.1). It will be a consequence of this
isomorphism that any A € #;(.S) is of the form M®o,, E for some E € %;(S) and some Op ®zOf ;-
module M, free of rank 4 over Z. To prove this result, we will describe a bijection between the set
of isomorphism classes of such modules M and the set [#;(C)].

For j € {1,2} set O; = Op ®z Ok, and define .Z; to be the set of isomorphism classes of
O,-modules that are free of rank 4 over Z. Define %] to be the set of Of-conjugacy classes of ring

embeddings O, — Op. We begin by examining the local structure of modules in ;.

Lemma 5.2.1. Fiz a prime p, let A be the maximal order in the unique quaternion division algebra

Aqg over Qp, and fix an embedding Zy> — A. There is an isomorphism of rings Z,» ®z, A = Ry,
where

| Zyr iy

Rl B |:pr2 Z 2:|

p
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is the standard Eichler order of level 1 in Ma(Q,2).

Proof. There is a ring homomorphism f : Z,> — Endz , (A) given by f(a)(d) = ad, and there is a
ring homomorphism g : A — Endz , (A) given by g(x)(§) = dz*, where  — x* is the main involution
on Ag. Note that g is multiplicative since (zy)" = y*z*. As f and g have commuting images, there

is an induced ring homomorphism
D : Zp2 ®z, A — Endzp2 (A) = MQ(sz)

given by ®(a®x)(d) = adx*. Tensoring this map with Q2 induces the natural isomorphism Q> ®q,
Ag = M3(Qy2) (the maximal subfield Q,2 C Ag containing Q,, splits Ag), so ker ® is a torsion Z,-
module. However, Z,: ®z, A is a torsion-free Z,-module, which means ® is injective.

Let ma C A be the unique maximal ideal. Then Endz ,(ma) and Endgz ,(A) are distinct
maximal orders in Endg , (A ®z , Qy2) = M2(Qy2) and

im® Cc R = Endzp2 (A) n Endz]p2 (mA)

Since R’ is an Eichler order in M2 (Q,2), it is conjugate to

fin = L)%Zﬂ %2]
for some n > 1 ([7, Lemma A.9(2)]). To show im® = R;, we will consider the discriminants of
the orders im ® = Z,» ®z, A and R’ in M2(Q,2). By [7, Example A.13], disc(A) = p*Z,, and thus
disc(im @) = disc(A)Z,2 = p*Zy2. By [7, Example A.12], disc(R') = disc(R,) = p*"Z,2. Now,
for any Z,2-orders O C O’, we have disc(0’) | disc(O), with equality if and only if O = O’. As
im® C R, p*Z,2 | p*Z,2, so we must have n =1 and im® = R’ = R;. O

Lemma 5.2.2. Fiz a prime p and let A be the mazimal order in the unique quaternion division
algebra over Q. Fiz an embedding Z,> — A so that there is a decomposition A = Z,> © Z,211, where
II is a uniformizer satisfying 11> = p and Ha = @ll for all a € Z,2. Then any ring homomorphism
[+ A — My(Zy2) is GLy(Zy2)-conjugate to exactly one of the following two maps:

) a b ) a pb
fl.a+bH'—>[pb a]’ f2.a+bH>—>{b a}

The proof uses the general ideas of the proof of [24, Theorem 1.4].

Proof. Let M = Zy> ® Z,>. Then M is a left Zy>-module via componentwise multiplication, and a

right A-module via matrix multiplication [a b] f(z), viewing elements of M as row vectors. These
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actions commute, so M is a A ®z, Zy2-module. By Lemma 5.2.1, A ®z, Z,> = R, is the standard
Eichler order of level 1 in M3(Q,2) and thus a hereditary order. (A hereditary order O in a central
simple algebra over a finite extension L of Q, is an Op-order such that all left O-lattices (left O-
modules that are Op-free of finite rank) are O-projective; any Eichler order of squarefree level is
hereditary.) Any R;-module which is free of finite rank over Z,, is a direct sum of copies of A and
ma, where ma C A is the unique maximal ideal ([23, Chapter 9]). By comparing Z,-ranks, we see
that there is an isomorphism of A ®z, Zy2-modules ¢ : M — A or ¢ : M — ma.

First suppose ¢ : M — A is an isomorphism of A ®z, Z,2-modules, where A is a right A-module
through multiplication on the right, and a left Z,2-module through multiplication on the left via the
inclusion Z,> — A. Let M’ be the group M with the same left Z,2-action, but now a right A-action
given by

(2,y) - (a+bl) = [z y] [;Lb 2}

Then there is an isomorphism ¢ : A — M’ of A ®z, Z,2-modules given by 9 (a + bII) = [a b], and
thus v = Yop: M — M'is a A ®z, Zy-linear isomorphism. Hence v € GLa(Z,2) and since it is
A-linear, y(m - z) = y(m) - x for all # € A and m € M. Therefore f = yo f; oy~ L.

Now suppose ¢ : M — ma is an isomorphism of A ®z, Z,2-modules, where ma is a right A-
module through multiplication on the right, and a left Z,2-module through Z,> — A. Let M’ be

the group M with the same left Z2-action, but now a right A-action given by

(€,y) - (a+b1) = [z y] [Z ?;}

Writing ma = pZp> © Zy211, there is an isomorphism ¢ : ma — M’ of A ®z, Z,2-modules given by
Y(pa + bIl) = [a  b]. Similar to the first case, it follows that f =~ o fo0y™!, where y = ¢ o €
GL2(Zp2).

To show f; and f; are not GLy(Zyz2)-conjugate, first note that f; = Tf,T1, where

10
)
Suppose fi and f, are conjugate, so fi = X fo X! for some X € GL2(Zy2). Then conjugation by T'

on fa(A) C Ma(Zy2) is equal to conjugation by X, which means X = UT for some U in the center
of fo(A). In particular, U € My(Z,2). We then have

0 = ord,(det(X)) = ord,(det(U)) +1 > 1,

a contradiction. O
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Lemma 5.2.3. Let p be a prime number. For p{dp there is a unique isomorphism class of O; p-

modules free of rank 4 over Z, and for p | dp there are two isomorphism classes.

Proof. First suppose p1dp. In this case,
Ojp = 0B,y 2z, OKj,p = M2(0Kj )

and any Oj; ,-module that is free of rank 4 over Z,, is isomorphic to Ok; , ® Ok, p, with the natural
left action of My(Ok;, ). Now suppose p | dp, so O;, = A ®z, Z,>. By the proof of Lemma 5.2.2

there are two isomorphism classes of modules over this ring that are free of rank 4 over Z,. O
Now we will show that the three sets %, .Z;, and [#;(C)] are all in bijection.
Proposition 5.2.4. There is a bijection X; — 2.

Proof. Let © : Ok, — Op be a representative of an Op-conjugacy class of embeddings and define
[+ H; — & by sending © to the Z-module Lg = Op, viewed as a right Ok;-module through
O (and multiplication on the right) and a left Op-module through multiplication on the left. The
isomorphism class of this Oj-module only depends on © through its Oj-conjugacy class. To show
[ is injective, suppose ©,0" : Ok, — Op are two embeddings and suppose ¢ : Lo — Le/ is
an Oj-module isomorphism. By Of,-linearity we have p(z©(a)) = ©(x)0'(a) for all a € Ok,
and all z € Op. By Op-linearity we have ¢ € Endp,(Op)*. There is an isomorphism of rings
0% — Endop, (Op) defined by sending z to the endomorphism y — yz. Therefore there is a u € O}
such that ¢(z) = zu for all x € Op, so © = uO®'u~".

There is an action of the group Cl(Ok;) on the set .#; given explicitly by the so-called “Shimura
reciprocity law” (we describe this below; see [6, Theorem 60(b)]), and under the injection f : J; —
%, this action corresponds to the action a- M = a™! R0k, M of Cl(Ok,) on Z;. To show f is
surjective, let M € £ and let © : Og; — Op be an embedding such that (Le), = M, as Oj -
modules for all primes ¢ (such a © exists for any M; see the discussion below). Then there is an
Oj-linear isomorphism

Lo ®0Kj Hom(gj (L@, M) — M

given by  ® ¢ — ¢(x), where the module on the left has the obvious left Opg-action through its
action on Lg, and Homg;, (Lo, M) is an (’)Kj—module via the pointwise action on the images of
the homomorphisms (that this map is an isomorphism can be checked by proving it is an isomor-
phism after completion at each prime number, and using the following fact). The Ok;-module
a = Homp, (Le, M) is a fractional ideal: for any prime number /, there is an isomorphism of Ok ,-

1

modules a ®z Z¢ = Ok, . Hence M = Lg RO, a=0a""- Le is in the image of f, as Cl(Ok;) acts
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on f(H) = K. O
Proposition 5.2.5. There is a bijection £; — [%;(C)].

Proof. Let M € ;. Then V = M ®z R is a 4-dimensional R-vector space with M a Z-lattice in V.
The action of Ok, on M induces a map K; ®g R = C — End(V), turning V into a C-vector space.
Define a function .Z; — [#;(C)] by sending M to the CM false elliptic curve with complex points
V/M. The inverse [%;(C)] — &, is given by A — Hy(A(C),Z), the first homology of A(C). O

Next we will describe further refinements of the sets J¢; and £}, and how the elements © € J;
relate to homomorphisms 60; : O, — Op /mp. Define an equivalence relation on the set J%;
according to © ~ O’ if and only if the induced maps 0,0 : Ok, — Op/mp are equal. Let % be
the set of equivalence classes under this relation. Under the bijection .%; — £}, this equivalence
relation corresponds to the following equivalence relation on .Z;: M ~ M’ if and only if M, = M)
as Oj -modules for all primes ¢ (note by Lemma 5.2.3 that this really is only a condition at each
prime dividing dg). Let .,2’;-’ be the set of equivalence classes under this relation.

We know that the group Wy x Cl(Of; ) acts simply transitively on the set [#;(C)], so its natural
actions on % and Z; are also simply transitive (the above bijections are both equivariant with
respect to this group). Explicitly, the action of Wy on J%; is given by w - © = ©’, where ©'(a) =
wO(a)w™!, and the action on % is given by w - Lg = Ly,.e. The action of Cl(Ok;) on % is
given by a- M =a~! o, M and the action on J; is defined as follows, according to the Shimura
reciprocity law. Let a € Cl(Ok;) and let © : Ox, — Op. Then ©(a)Op = xOp for some xz € Op
and a-© = ©’, where ©’(a) = x710(a)x.

The elements of .,2’3-’ can be thought of as collections of O; ;-modules {M;}; indexed by the prime
numbers. The action of Wy on &} induces an action on .&]. Explicitly, for £ | dp, the Atkin-Lehner
operator wy € Wy interchanges the two isomorphism classes of modules M, over O; ; (see Proposition
7.2.7 below). It follows that under the action of Wy x C1(Ok;) on .Z}, the group Cl(Ok; ) acts simply
transitively on each equivalence class under ~ and the group Wy acts simply transitively on the set
of equivalence classes D%( . The corresponding results hold for the set %}, so in particular #Ji?’ =
|[Wo| = 2", where r is the number of primes dividing dp. Since there are two ring homomorphisms
Ok, — Op/m, = F . for each p | dp, there are 2" ring homomorphisms O, — Op/mp, which
shows that each such homomorphism arises as the reduction of a homomorphism Ok, — Op.

The equivalence relation ~ on J¢; induces an equivalence relation on the set [#;(C)] determined
by the following: if [©] is the equivalence class of © € .#;, then [O] is in bijection with [@jé((C)],
where © : Ok, — Op/mp is the map induced by O : Ok; — Op. It follows that the natural action
of Cl(Ok;) on [%é((C)] is simply transitive. The same statements hold with [%é (Fy)] in place of
22 ().
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Suppose (E, x) is an elliptic curve over an Og-scheme S with CM by Ok, and suppose M € .Z;.
The ring homomorphism & : Ok, — Ends(E) gives E the structure of an O, -module scheme over
S, so from M being a finitely generated projective Ok -module, locally free of rank 2, there is an
abelian scheme M @0, E — S of relative dimension 2 with (M R0k, EYX)=M R0k, E(X) for

any S-scheme X. There are commuting actions
ir : Op — Endg(M R0k, E), kn:Ogk; — Ends(M R0k, E)
given on points by
i@ (mez)=z-mz, ~ryla)(Mm®z)=mae k(a)(z).

As above, M ®¢p %, FE inherits the CM normalization condition from F, so M ®o K, FE is a false elliptic
curve over S with complex multiplication by Ok;.
Ifoe: OKJ, — (Op is a ring homomorphism and 0: OKj — Op/mpg is its reduction modulo mp,

we will sometimes write Q’/j[e] for the category Z’/jé.

Theorem 5.2.6. Fiz representatives ©1,...,0,, € J; of the m = 2" classes in %9’. There is an

isomorphism of stacks over Spec(Of)

FUe -2

d=1

defined by (E,d) — Le, Qo E. This isomorphism induces an equivalence of categories €; — %[e]
for any [©] € .

The notation (E,d) means E is an object of the d-th copy of € in the disjoint union. Therefore
we obtain an isomorphism

|_| ¥ Y.

J
Oj:OKjHOB/mB

In particular, any A € %;(S) is isomorphic to Le ®0Kj E for some © : Ok, — Op and some
E € €;(S). The theorem states that © is unique up to the equivalence relation ~, but E and Le

are not necessarily unique up to isomorphism: for any nontrivial a € Cl(Ok;),
Lo ®0,, E= (a7 @0y, Lo) R0y, (a®oy, E),

with a=! R0k, Lo % Lo, by what we showed above, and A®0y, E 2 FE by the elliptic curve analogue
of Lemma 4.1.3.
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Note that if S = Spec(Fg), then A = Lg R0k, £ ~ (E")? for some elliptic curve E’ over Fy
with E’ supersingular if and only if E is supersingular. Indeed, by Theorem 4.1.1(c) there is an

isomorphism of O -modules
End(4) = Le ®o,, End(E) ®o,, L = Endo,, (Le) ®o,, End(E),
and thus there are isomorphisms of Q-algebras
M, (End’(E’)) 2 End’(A) = Endg, (B) ®k, End’(E) = M2 (End’(E)).

Proof of Theorem 5.2.6. The idea of the proof is to introduce level structure to the stacks ¢; and
%, show that these new spaces are schemes, and then show f induces an isomorphism between these
schemes. We begin by showing f induces a bijection on geometric points. Let k = C or k = Ep and

let X C [#;(k)] be the image of the map
fo: 1€ (k)] = [%5(0)]
d=1

on k-points determined by f. The group Wy x Cl(Ok;) acts simply transitively on the set [%(k)]

and this action preserves the subset X. Indeed,

a®oy, (Lo, ®ox, E) = Lo, ®o,, (a®o, E) € X
for any a € Cl(Ok;). Next, for any w € Wy,

w - (Lo, R0k, Elire, kLe,) = (M R0k, E iy, k),

where M = Op € %, viewed as a left Op-module via z - y = wrzw ™'y and a right Ok;-module
through ©4. By the proof of Proposition 5.2.4, M = Lg/ for some ©’. Let d’ be the integer such
that [©'] = [O4]. Then ©' = a- 04 for some a € Cl(Ok; ), so

. ~ =1 .
w- (Lo, ®OK]‘ E,ZLed,HLed) =Za - (L@d, ®0Kj E,ZL@d/,/{L@dl) € X.

This shows X = [#;(k)], so fi is surjective. Now, it is well-known that Cl(Of;) acts simply

transitively on [€;(k)], and thus fi is a bijection since

##

[z

[€5(R)] = m - #[€; (k)] = [Wol - | CL(Ok;, )| = #[%;(k)]-

d=1
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Fix an integer n > 1 and set S = Spec(Of) and S,, = Spec(Ox[n~1]). For n prime to dp define
%;(n) to be the category fibered in groupoids over S,, with #;(n)(T") the category of quadruples
(A,i,k,v) where (A,i,k) € %;(T) and

v:(0p/(n))r — Aln]

is an Oj-linear isomorphism of schemes, where (Op/(n))r is the constant group scheme over the
Sp-scheme T associated with Op/(n). Here we are viewing Op/(n) as a left Op-module through
multiplication on the left and a right Ok ;-module through a fixed inclusion O, — Op and multi-
plication on the right. Forgetting v defines a finite étale representable morphism %;(n) — %; x g .Sy,
so #;(n) is a stack, finite étale over .S, (since &; x g .S, is).

We claim that for n > 3 prime to dg, any object of %;(n) has no nontrivial automorphisms. Let
T be an S,-scheme, let (A,i,k,v) € %;(n)(T), and suppose g € Aut(A,i,k,v). Set ¢’ = g —ida.
Since g = k(a) for some a € OIXQ» the morphism ¢’ = k(a — 1) is an isogeny of false elliptic curves.
Then

[deg™(9")] = (9') 09’ =g' 09— g' —g+ida =2-ida—(¢" +9),

so gt + g = [m], where m = 2 — deg*(¢’). Hence g is a root of the polynomial 2> — mx + 1 in
Endz(A)[z]. But g is a root of unity, which means |m| < 2 and thus 1 < deg*(g’) < 4. By definition
of g being an automorphism of (A4, i, k,v), the endomorphism ¢’ kills A[n], so ¢’ = ¢” o [n] for some
g" € Endp, (A). Then |n?deg*(¢”)| < 4 and since n > 3, we must have deg*(g”) = 0 and thus
g =1ida. It follows from this fact, as in [4, proof of Corollary 2.3], that %;(n) is a scheme.

For any n > 1 define €(n) to be the category fibered in groupoids over S,, with €;(n)(T") the
category of triples (E, k,v) where (E, k) € 6;(T) and

v: (Ok;/(n))r — E[n]

is an Ok;-linear isomorphism of schemes. The same argument as above shows %(n) is a scheme,
finite étale over Sp. Let G, = Auto,, (Ok,/(n)) = (Ok,/(n))*. There is an action of the finite

group scheme (G,,)sg, on the scheme €;(n), defined on T-points, for any connected S,-scheme T', by
g- (Ev"{a V) = (E’K:vljog_l)'

There is an associated quotient stack 6;(n)/(Gr)s, — Sn, defined in [27, Example 7.17], and there
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is an isomorphism of stacks €;(n)/(Gr)s, — ©; xs Sp such that the composition
(1) = ;(n)/(Gn)s, = € Xs S

is the morphism defined by forgetting the level structure.

Note that there is an isomorphism of groups
Auto, (Op/(n)) = (Ok,/(n))*,

so (Gp)s, also acts on %;(n), the action defined in the same way as above. As before there is an

isomorphism of stacks #;(n)/(G,)s, — %; Xg Sp such that the composition
#;(n) = #(1)/(Gn)s, = % Xs Sn

is the forgetful morphism. The base change

fn:ind:l_l%XSS7L—>ngSSn

d=1

induces a morphism of schemes over S,

fns L ) — 25)

d=1

given on T-points by (E,v,d) — (Le, ®0k, E, V'), where /' is the composition
(Op/(n))r = Lo, ®oy, (Ok,/(n))r 4%, Loy ®oy, Eln] = (Le, ®oy, E)[n]. (5.2.1)

Let k = C or k = Fy and fix a triple (A,i,x) € Z;(k), so A Leg, @0y, E for some d and some
E € €;(k), by the first part of the proof. Let X be the set of all O;-linear isomorphisms of schemes
v:(Op/(n))x — Aln], where two such isomorphisms v and v’ are considered equal in X if the objects
(A,i,k,v) and (A, i, k, V') are isomorphic in #;(n)(k). The group G, acts simply transitively on X,
the action as above, and this action preserves the subset of X consisting of all v’ of the form (5.2.1)
for some Of;-linear isomorphism v : (O, /(n))x — E[n] since a - (id ®@v) = id ®@(v o m,-1) for any

a € (Ok,/(n))*, where m,-1 is left multiplication by a~!. Combining this with the first paragraph
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of the proof, it follows that f/ defines a bijection

i |15 () (0)] — [25(n) (k).
d=1

(Injectivity follows from the injectivity of fi and the fact that f is a fully faithful functor.) The

morphism f], is (G, )s, -equivariant, so there is a morphism of stacks

Gn)s, = #(n)/(Gn)s,
d=1
making the diagram
" I
L] (n %,(n)
d=1

] l
|| €(n)/ (G

l

|_| i X5 Sp, In Y xg Sy

1R
IR

commute. It follows that to show f,, is an isomorphism, it suffices to show f/ is an isomorphism. The
morphism f,, is finite étale since €; and % are finite étale over S. The vertical arrows in the above
diagram are finite étale, so the same is true of f. As f; is a finite étale morphism of S,-schemes
inducing a bijection on geometric points, it is an isomorphism by Lemma 5.2.7 below. Choosing
relatively prime integers n,n’ > 3 prime to dg, the morphisms f, and f,, being isomorphisms
implies f is an isomorphism.

For the final statement of the theorem, let S be any Og-scheme and fix an integer 1 < d < m.
It follows directly from the definitions that any CM false elliptic curve of the form Leg, R0k, E for
some E € €;(S) lies in @j[@d’](S). Conversely, suppose (A, i, k) € @-[@d] (S). Then A= Lo, @0y, E

for some E € 6;(S) and a unique 1 < d’ < m as f is an isomorphism, so the diagram

k™B

Ok,

J

Endop, /m; (A[ms])

N

(’)B/mB
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commutes for n = 0,4 and n= Ou. Picking any geometric point 5 : Spec(k) — S, the above diagram

still commutes with A replaced with Az. But the map
Op/mp — Endo, /m, (Asmzs])

is an isomorphism by Corollary 7.2.9, proved below only using the first paragraph of this proof (that
f is a bijection on geometric points). Therefore éd = éd/, so d = d', which shows f defines an

equivalence of categories ¢; — %[ed]. O

Lemma 5.2.7. Let S be a scheme, let X and Y be S-schemes, and suppose f: X — Y is a finite
étale S-morphism such that the induced map X (k) — Y (k) is a bijection for any geometric point
Spec(k) — S. Then f is an isomorphism.

Proof. Since f is surjective on geometric points, f(X) has a nonempty intersection with every
connected component of Y. As f is finite flat, the set f(X) C Y is both open and closed, so
f(X) =Y. Also, there is the usual notion of the degree of f, defined as the rank of the locally free
Oy-module f,0x. To show deg(f) = 1, we can check this at a geometric point in each connected
component of S, so we may assume S = Spec(k) for k an algebraically closed field. If y € Y (k),
viewed as a closed point of Y, then since X (k) — Y (k) is injective, there is a unique point z € X (k)
in the fiber f~1(y). As f is unramified and k(x) = k(y) = k, we have deg(f) = 1 ([9, Proposition
12.21]) and therefore f is an isomorphism. O

Corollary 5.2.8. Suppose S is an O-scheme and let (A,i,k) € #;(S). Then the trace of i(z)
acting on Lie(A) is equal to Trd(x) for any x € Op.

What this means is that each point of S has an affine open neighborhood Spec(R) — S such
that the trace of i(x) acting on the free R-module Lie(A /) is equal to Trd(z) for any = € Op.

Proof. We have A= M ®o, E for some Oj-module M and E € %;(S). Then Lie(A) = M ®0k,
Lie(E) as O;-modules, with Op acting on M ®ox, Lie(F) through its action on M. As M = Op

as a left Op-module, the result easily follows. O

Corollary 5.2.9. Suppose R — R is a surjection of Ox-algebras, & = (A,i,k) € Z;(R), and
i=(A1,R) € @j(é) is a deformation of x. Then x € @jaj(R) if and only if T € @jaj(fi).

Proof. First suppose z € Z’/jgj (R). We know 7 € Z’/jn(fi) for a unique 1 : Og;, — Op/mp, so the
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diagram

Endo,, /m, (Almp)) (5.2.2)

\/

(’)B/mB

commutes, where k™2 and ™2 are the maps induced by K and i. Since 7 is a deformation of x, it

follows that the diagram

EndOB/mB (A[mB]) (523)

"~

OB/mB

commutes. But z € @ b3 (R) implies this diagram also commutes with 6, in place of 7, so n = 6,
as in the last part of the proof of Theorem 5.2.6. Conversely, if T € @ (R ) then (5.2.2) commutes
with 6, in place of 7, so as before it follows that (5.2.3) commutes with 6, in place of n and hence

v e ¥ (R). O



Chapter 6

Tate and Dieudonné modules

6.1 The Tate module

Let A be a false elliptic curve over a field k and let ¢ # char(k) be a prime number. For any = € Op
the endomorphism i(z) € End(A) induces an endomorphism i(x),, : A[¢"] — A[{"] for each n > 1,
and these maps are compatible with the maps [(] : A[("*1] — A[("]. Hence there is an induced
endomorphism i(z) : Ty(A) — Ty(A) on ¢-adic Tate modules, and thus T;(A) is a left Op-module.

Lemma 6.1.1. Let £ be a prime number and suppose Ay and As are false elliptic curves over Fp

forp#£ L.
(a) Suppose £1dp and set

1o , oo
= 1o o] ¢ T lo 1

in Mo(Zy) = Op @z Zy. There are isomorphisms of Zg-modules
Homop, (Tg(Al), TZ(AQ)) = Homy, (ET[(Al), ET[(AQ)) = 1\42(207

where Homoe , (Ty (A1), Ty (A2)) is the set of Zg-linear maps Ty(A1) — Te(Az) that are also Op-linear.
If Ay = Ay then these are isomorphisms of rings.

(b) If £ | dp then there is an isomorphism of Zg-modules
Homo,, (T (A1), Ti(Az2)) = Op.y,

which is an isomorphism of rings if Ay = As.

99
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Proof. (a) For j = 1,2 write T} for T;(A;). From T; = £T; @ €'T}, there is an inclusion
Home,, (T1,T2) — Homyg, (¢T1,eTs) & Homg, (¢'Ty,'Ts)

since any f € Home,, (T1,T%) is Ma(Z¢)-linear and hence satisfies f(ex) = ef(x) and f(e'z) = &' f(x)
for all z € Ty. Denote the above map by f +— (fe, fer). Now let

w= {(1) (1)] € Ma(Zy),

so wew = ¢’. Then for any = € T7,

fer(€'x) = f(e'z) = f(wewr) = wf(ewx) = wf.(ewz),

which shows f. determines f.,. Therefore the above map is really an inclusion
Homo,, (T1, Tz) — Homg, (eT1,eT).

To show this map is surjective, let f. € Homg, (¢T1,eT). Define f., € Homg, (e'Ty,e'Tz) by
fer (') = wf.(ewz), and define f : Ty — Ty by f = f. ® for. By construction f is Zg-linear. To
see that f is Ma(Z)-linear, first note that since €2 = ¢, (/)2 = ¢/, and e’ = €’e = 0, we have

flex) =ef(x) and f(e'x) = &' f(z) for all z € T7. Next,

fe'z) =€ f(x) = f('z) = wewf(2)
= wf(e'z) = ewf(x)

= f(ewz) = ewf(x)

and

f(e'wz) = wf(ex) = wef(z) = 'wf(x).

o 1 . oo
5’[1)—0075'[1}—107

this shows that f is Ma(Z¢)-linear, and maps to f. in the above inclusion. The isomorphism
Homy, (T1,T2) = M2(Z,) comes from choosing Z,-bases for €T and £75.

(b) Since ¢ | dp, By is a quaternion division algebra over Qy, and from T; = Ty(A;) being free of
rank 4 as a Z,-module, T; ®z, Q is a free By-module of rank 1. Choosing a generator, we obtain

an isomorphism of By-modules T; ®z, Q¢ = By, which identifies 7} with a finitely generated Op -
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submodule of B,. Multiplying T); by a suitably large power of ¢ gives an isomorphism of T} with a
finitely generated Op ¢-submodule of Op ¢, that is, a left ideal in Op . Since all ideals of Op ¢ are

principal, T = Op ¢ as a left Op ¢-module. Hence
HOH]OB (Tl,TQ) = End(’)B‘g (OB,Z) =~ O%Fjé =~ OB,K

as Z¢-modules, where the isomorphism Op ; — OF, is given by the main involution. O

Lemma 6.1.2. Let Ay and Ay be supersingular false elliptic curves over Fp. For any prime £ # p

the natural map
P }IOI'H(QB (Al7 AQ) Ry Ly — HOI’HOB (Tg(Al), Tg(Az))

is an isomorphism of Zg-modules, and is an isomorphism of rings if A1 = As.

Proof. For j = 1,2 write Tj for T;(A;), and let M = im(®). We claim Home, (T1,T2)/M is a
torsion-free Zy-module. Suppose f € Home, (T1,T2) satisfies £f € M. Then £f = ®(p) for some
¢ € Homo,, (A1, A2) ®z Zg, which means ¢ vanishes on A;[¢](F,). Hence (ker ¢)(F,) D (ker [¢])(F,),
and thus there is a ¢’ € Hom(A;, Az) such that ¢ = ¢’ o [¢(] = £¢'. (This comes from viewing
A; as the quotient A;/ker([¢]), either in the sense of [19, §12, Corollary 1] or viewing it in the
category of fppf sheaves of abelian groups on Sch/F,.) Note that ¢ being Op-linear implies ¢’ is
also Op-linear. Then (®(y') = ®(4y') = ®(p) = £f, so f = ®(¢’') € M since Homp, (T1,T>) is a
torsion-free Z,-module.

As Ay and A, are supersingular, Home, (A1, A3) ®z Z¢ is a free Zy-module of rank 4 (it is a
lattice in Home, (A1, A2) ®z Q¢ = Endp, (A1) Qz Qp & Bép), where the first isomorphism comes
from choosing an isogeny A; — As of false elliptic curves). By Lemma 6.1.1 we see that the same

is true of Homep, (T1,T%), and therefore ® is an isomorphism. O

6.2 The Dieudonné module

Fix a prime number p and let W = W (F,) be the ring of Witt vectors over F,, so W is the ring
of integers in the completion of the maximal unramified extension of Q,. If A is a false elliptic
curve over [F,, we write D(A) for the covariant Dieudonné module of A (that is, the Dieudonné
module of A[p>°]), which is a module over the Dieudonné ring 2, free of rank 4 over W. Recall that
there is a unique continuous ring automorphism ¢ of W inducing the absolute Frobenius x — zP on
W/pW = F,, and 2 = W{ZF,V}/(FV — p) where W{F, ¥} is the non-commutative polynomial
ring in two commuting variables .# and ¥ satisfying Fx = o(z)% and ¥z = o (x)? for all

2 € W. The action of Op on A induces an action of Op on D(A) which commutes with the action
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of 9. For any false elliptic curves A; and As over ?p there is an isomorphism of Z-modules
Homo,g,9(D (A1), D(A2)) = Homo,, (A1[p™], A2[p™]),

which is an isomorphism of rings if 4; = As.
If E is an elliptic curve over F, then its covariant Dieudonné module D(E) is a Z-module, free

of rank 2 over W, and there is an isomorphism
Homg (D(Ey), D(Ey)) = Hom(E,[p], E2[p™))
for any F; and Fs over Fp. If F is a supersingular elliptic curve over Fp then the natural map
End(E) ®z Z, — Endg(D(F)) = A

is an isomorphism of Z,-algebras, where A is the unique maximal order in the quaternion division

algebra over Q,, by a proof very similar to that of Lemma 6.1.2.

Lemma 6.2.1. Let Ay and As be false elliptic curves over F,,. Suppose ptdp and set
. [1 0}
0 0
in Ma(W) = Ma(Zy) @z, W = Op @z W. There is an isomorphism of W-modules
Homo,e,w (D (A1), D(A2)) = Homw (eD(A;),eD(A2)) = Mo (W),
which is an isomorphism of rings if Ay = As. In particular, if Ay and Ay are supersingular, then
Homo,@,2(D(A1), D(A2)) = A.

Proof. The proof of the first part is identical to that of Lemma 6.1.1(a), replacing Z,-linearity with

W-linearity. For the in particular statement, note that

Homo,g,2(D(A1), D(A2)) = {p € Mo(W) : Fo = o°.F, Vo= ¢ ¥},

(oa

where 7 is the matrix obtained by applying o to all of the entries. Since A; is supersingular,

eD(A;) is free of rank of 2 over W with basis {ei, es} satisfying .7 (e1) = #(e1) = ez and F (e2) =
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¥ (e2) = per. A computation in coordinates then shows

{p e Ma(W) : Fp =7 F, ”//go:(pa*“//}: {[Z I;b] :a,bGsz} >~ A, |

Lemma 6.2.2. If Ay and Ay are supersingular false elliptic curves over Fp, then the natural map
HOInOB (Al, AQ) K7, Zp — HomoB®Z@(D(A1), D(AQ))

is an isomorphism of Zy-modules, and is an isomorphism of rings if Ay = As.

Proof. The proof is very similar to that of Lemma 6.1.2, using the following fact: the group H =
Homop,g,2(D(A1), D(As2)) is a free Zy,-module of rank 4. To see this, consider the Q,-vector space
H ®z, Qp. Since D(A;) ®z, Qp = D(As2) ®z, Qp as Op ®z Z-modules,

H ®z, Qp = Endoge,2(D(41)) @z, Qp.

As A} ~ E? for some supersingular elliptic curve Ej, we have D(A;) ®z, Qp = D(E;)? ®z, Qp as

2-modules and thus there are isomorphisms

EHd@(D(Al)) ®Zp Qp = Mg(End@(D(El))) ®ZP Qp = Mg(EHd(E1)) &Kz Qp
= El’ld(Al) X7 @p.

Taking centralizers of Op in each ring shows H ®z, Q, = Endp, (A1) ®z Q, has dimension 4 as a

Q,-vector space. O

6.3 CM false elliptic curves

Within the context of CM false elliptic curves we can be more specific about the Tate and Dieudonné
modules. Let A € #%;(Fy), so A 2 M ®og, E for some E € ¢;(Fyp) and some module M over
0; = Op ®z Ok;, free of rank 4 over Z. Let p be the rational prime below B. For any prime ¢ # p

there is an isomorphism of O; ;-modules
Tg(A) = M, ®@ijé Tg(E),
where O; ¢ acts through its action on M. Similarly, there is an isomorphism of W ®z, O; ,-modules

D(A) = M, %o, , D(E).
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However, M, = Ok, , ® Ok, as Ok, p-modules and thus D(A) = D(E) © D(E) as modules over
W ®z, Ok, p, where Ok, ;, acts on D(E) @& D(FE) diagonally through its action on D(E). We still
have to determine the possibilities for the actions of Op , and 2 on D(A). The next proposition

does this for Op ,, where p | dp.

Proposition 6.3.1. Suppose A € %;(Fy) for p | dp, with A= M R0k, E for some supersingular
E. Fiz an isomorphism Op, = A and a uniformizer I1 € A satisfying 11> = p and Ila = all for

all a € Z,2

p2, where we are viewing Zy> — A through the CM action O, , — End(E) ®z Z,. Then

there is an isomorphism of rings Endo, (A) ®z Z, = Ri1, where

T II
R11: {|:pyH yCE:| :x,yEsz} CMQ(A)

Proof. We have the A-action on D(A)
D) : A — Endoy, 0,5(D(4)) = Ma(Endoy 6,5 (D(E)) = Ma(Ox, ) = Ma(Zy2).

Here we are viewing My (Z,2) C Ma(A) through the inclusion Z,> — A. By Lemma 5.2.2 there are
two possibilities for D(i) up to GLa(Zyz2)-conjugacy, fi and fs, and we may assume D(7) is equal to

f1 or fo in computing
Endo, (A) ®z Zp = Endogse,2(D(A)) = Cry(a)(A).

First suppose D(i) = fi. Then a computation shows

a1 + 6111 as + boll

as + b3Il a4 + byll € MQ(A)

commutes with fi(z) for all z € A if and only if a1 = a4,b1 = by = a3 = a3 = 0, and pby = b3,
giving CMZ(A)(A) = Ru.

Now suppose D(i) = fo. Then a computation shows

|:a1 + b1 as + boll

a5+ b5l ag+ mn} €M(4)

commutes with fo(x) for all x € A if and only if a3 = a4,b; = by = a2 = a3 = 0, and pbs = bo,

giving OMz(A)(A) = R227 where

x II
= {[j 7 o en}
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However,
i e
with
T - {(1) 2] € GL(Q,2)
and therefore Ros = Ry as rings. O

We know that for p | dp there are two isomorphism classes of modules over W ®z, O;, that
are free of rank 4 over W, and the proof of the previous proposition gives us explicit coordinates
for each of these modules (which we will use for the W ®z, O; ,-module D(A)). To describe this,
identify A with a subring of My (Z,2) C Ma(W) by

a+ bIl [‘Z Zb] , (6.3.1)
and use this to view Z,> C A inside My(Zy2). Then there is a basis {e,} for the free of rank 4
W-module D(A) = D(E) @ D(FE) relative to which the A-action on D(A) is given by one of the two
maps fi, fo : A = Endw (D(A)) 2 My (W) of Lemma 5.2.2:

a 0 b 0 a 0 pb 0O
10 @ 0 b 100 @ 0 pb

fila+ bH) = pg 0 a ol fo (a + bI1) = 50 @ o0 (632)
0 pb 0 a 0 b 0 a

Note that (6.3.1) comes from choosing a basis {v1,v2} of D(FE) with .# = ¥ satisfying .Z (v1) = v9
and .7 (v2) = pvy, so .F =¥ on D(A) and

F(e1) = e, Flea) =per, Fles)=es, F(esq)=pes.
The action of Ok, = Z,> on D(A) is necessarily given in this basis by
a — diag(a, @, a,a). (6.3.3)
Furthermore, using the basis {e,} to view
Ri; = Endoge,2(D(A)) € My(W),

we can express any
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as an element of My (W) by

0 0

- .

2, o (6.3.4)
0

]
85 oo

py 0
Combining everything, we have proved the following.

Proposition 6.3.2. With notation as above, there is a W-basis {e1,ea,e3,e4} for D(A) relative to
which the action of A on D(A) is given by one of the matrices (6.3.2), the action of Ok, p is given
by (6.3.3), the action of F =¥ is determined by

F(e1) = e, Flex) =per, Flez)=es, F(es)=pes,

and any f € Endo,g,2(D(A)) is given by a matriz of the form (6.3.4).

Proposition 6.3.1 gives a description of Endp, (A) ®z Z, in terms of coordinates, which is best

suited for computations. The next result gives the abstract structure of this ring.

Proposition 6.3.3. There is an isomorphism of rings R11 = Rs, where

/ Z
Ry = P P
2 |:p2Zp Zp:|

is the standard Eichler order of level 2 in Ma(Qp).

Proof. This proof is identical to a calculation carried out in [8, pp. 26-27]. We will explain the
main case. For p # 2 write Z,> = Z;, + Zyt where t? e Z; and ¢t = —t. Then Ry; has a Zy-basis

{61,62,63,64}, where

R [t oo [o 1 [0
U= 00 1|0 2T |0 ¢|r BT |pa of’ AT |pH1 0|
2

so e2 = 21, €2 = p%I, and ese3 = —eszea = e4. Using this basis, one shows disc(Ry) = p*.
Now let R = Z,[E;] where E1 = e1,Ey = e3,E3 = p les, By = pleq, so E3 = t?1, E? = I,
and EoF3 = —E3FEy; = E4. Then R is an order in M3(Q,) and there is an isomorphism of rings
R — Ms(Z,) given by

0 t? 1 0 0 ¢
e Rl e B e
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Under this map R;; is mapped isomorphically to the order in My (Q,) with Z,-basis
1 0 0 t2 p 0 0 pt?
1)’ 1 0’ 0 —p|’ -p 0]’

Riy g{[a Z} EMy(Z,) :p| (a—d),p| (b—t%)}.

o

which means

c
For
M= [tll ’51]
we have ) i
S R A R s e

S0, as 2 € Z*, Ry, embeds as a subring of
P g

However, Ri1 is already a suborder of My(Z,), so Ri1 must be isomorphic to a suborder of

Z, pZ
R =\ P7r|
[pr Ly }

But disc(Ry1) = p* = disc(R’), and thus Ry; = R’. Conjugating by the matrix

i

then shows Rq; = Ry. The case p = 2 is similar; see [8, p. 27] for the details. O



Chapter 7

Local quadratic spaces

This chapter and the next form the technical core of this thesis. In this chapter we (essentially) count
the number of geometric points of 2y ,. This comes from a careful examination of the quadratic
spaces (Vi(A1, As),degey) for each prime £. The methods of the proofs follow [14] quite closely.
Fix a prime ideal B C Ok of residue characteristic p, where p is nonsplit in K; and Ks, a ring
homomorphism 6 : O — Op/mpg, and a CM pair (A1, Az) € Zy(Fy) (necessarily supersingular),
where Fg = Ok /B. For j € {1,2} recall that ; : Og, — Endo,(4;) is the CM action. Suppose ¢
is a prime dividing dp and let my; be the unique maximal ideal of Op with residue characteristic ¢,

so Op/my is a finite field with ¢? elements. Define the m,-torsion A;[m,] as the group scheme
Ajlme] = ker(ij(xe) « A;[€] — A;[(]),

where z, is any element of m; whose image generates the principal ideal m;/(Opg C Op/¢Op. This

is a finite flat commutative group scheme over Spec(Fy) of order
deg(ij(we) = Aj[0] — A;[0]) = deg(i;(I1) : Aj — Aj) = Nrd(II)? = 2,

where IT € Op ¢ is any uniformizer. There is a natural action of Og/m, on A;[m,] given on points

by Z-a=i;(z)(a) for T € Op/my and a € A;[m](T) for any Fy-scheme T

7.1 The case of / #£ p

Lemma 7.1.1. Suppose (A,i) € (k) for k = C or k = F, and { # p is a prime dividing dp.

There is an isomorphism of Op /my-algebras Endep, jm, (A[me]) = Op/my.

68
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Proof. Since £ # p, the group scheme A[{] is étale over k, so the k-morphism i(xy) : A[¢] — A[{] is
étale. It follows that A[my] is étale over k and in particular A[my] is reduced. As A[my] is reduced,

and separated and finite over k, the natural map
Endop, /m, (Alme]) — Endoy /m, (Alme] (k)
is injective. The group A[my](k) is a vector space over Op/my, and with II and z, as above,
|Afme) (k)| = deg(i(zr) : Alf] — A[f]) = Ned(IT)? = ¢2,
so A[mg|(k) is of dimension 1 over Op/my. Therefore the injection of Op/my-algebras
Endo, /m,(A[m¢]) — Endo,, /m, (A[me](k)) = Op/my

must be an isomorphism. O

Proposition 7.1.2. Let ¢ # p be a prime. There is a Ky-linear isomorphism of Fp-quadratic spaces

(Ve(A1, Az),degey) = (Ko, Be - Niey/r,)

for some By € F) satisfying $eOpe = @Zl =D 'Opy if ¢1dp and B,OF, = [Z)Zl if £ | dp, where
[ is the prime over £ dividing ker(0) N Op. This map takes Ly(A1, Ag) isomorphically to Ok 4.

Proof. We will write Ly and V; for Ly(A1, As) and Vp(A1, As). The isomorphism of quadratic spaces
for some 3, € F;* follows from Proposition 3.2.7(b). Under this isomorphism, L, is sent to a finitely
generated Ok ¢-submodule of K, that is, a fractional O ¢-ideal. Then since every ideal of Ok ¢ is
principal, there is an isomorphism V,; = K, inducing an isomorphism L; = Og ¢. The Op ¢-bilinear
form

['7']CM Ly x Ly — @Zl

induces an O ¢-bilinear form

-1
OKJ X OKJ — ®€

given by

(z,y) = BeNg,/r,(x +y) — BeNg, /5, () — BeNg, /5, (y) = Be Trg, /5, (27).
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The dual lattice of O , with respect to this pairing is
OY{’E ={r e K;: B Trg,/p,(2Y) € C‘D[l for all y € Ok ¢},
SO

ﬁe@%’e ={r € K;: Trg,/p,(2y) € @[1 for all y € Ok 4}
={r € K;: Trg, g, (zy) € Zy for all y € O ¢}

-1
= QK/QOK»Z'
Since K/F is unramified at any prime of F' over ¢,
Dk /00K =Dk/rOk e Dpi0k e = DOk 4,

where © is the different of F//Q. Therefore ﬂ[@}/ﬂe = @’1(9K7g, which shows that the dual of L,
with respect to degcy is Ly = O, = B, 1D 10k .

We claim that the dual lattice
{feVi:[f,flem €D, for all f' € Ly}

of L, with respect to the Op 4-bilinear form [, Jom : Le X Ly — @[1 (corresponding to degeyy) is
equal to the dual lattice
{feVi:[f,f'1€Z for all f' € Ly}

of L, with respect to the Zg-bilinear form [-,-] : Ly x Ly — Z; (corresponding to deg”). Since

[,:] = Trr, /@, [ » -Jom, this can be checked by proving the corresponding result for the pairings

Ok x Ok — 97" (2,9) = B Trg, r, (29) = Tri, /5, (Be27)

and

O X Ok — Loy,  (2,y) = Trp,q,(Trg, /p, (Bexy)) = Trg, g, (Bexy).

This is clear from what we showed above since the dual of Ok ¢ with respect to both pairings is
—1m—1
ﬁl QK/QOK7e .
First suppose ¢ t dg, and write T for T;(A;). By Lemmas 6.1.1 and 6.1.2 there are isomorphisms
of Z,-modules
L@ = HOI’H(’)B (Tl,TQ) = MQ(Z[)
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We claim that under this isomorphism the quadratic form deg* on L, is identified with the quadratic
form w - det on My(Zy) for some u € Z,. If we choose an Op-linear isomorphism of Z;-modules
v : Ty — T3 (which is possible since the idempotents ¢,&’ € My(Z) = Op ®z Z; provide a splitting

T; = eT; @ €'T;), there is an isomorphism of Z,;-modules

Homp, (T1,T3) — Endo, (Th)

1

given by f — 71 o f. Writing deg” for the quadratic form on Home, (T1,75) induced by deg*

on Ly, we have deg”(y~! o f) = deg”(y~!) deg™(f) with deg”(y™') € Z), so it suffices to assume
A = Ay = A and show that under the isomorphism

Lg — EndoB (Tg(A)) — MQ(Z@)

given above, deg” on Ly is identified with det on Ms(Z,). It is enough to show that after tensoring

this map with Q,, we obtain an isomorphism of QQ,-quadratic spaces
O : (Vy,deg™) — (Ma(Qy), det).

Let @ be the quadratic form on Ms(Qy) induced by ®. By Proposition 3.2.7(c) there is some

isomorphism of Q/-quadratic spaces
U : (Vi,deg”) — (B Nrd) = (My(Qy), det).

Note that ® and ¥ are both ring homomorphisms. Then by Noether-Skolem there is a b € Ma(Qy)*
such that ¥(v) = b®(v)b~! for all v € V. Hence

Q(®(v)) = deg*(v) = det(¥(v)) = det(b®(v)b~ ') = det(P(v)),

so Q = det.
A calculation shows that the lattice Ms(Z;) C Ma(Qy) is self dual relative to det, which means

Ly is self dual relative to deg®. From the isomorphism
LY /Ly = B, ' D7 'Ok 1/ Ok e,

we find that 8Ok = ’}3_1(’);(7@, and thus 3,Op, = ’}3[1 as K/F is unramified over £.
Now suppose ¢ | dg. In the proof of Lemma 6.1.1(b) we showed that T;(A;) = Op as Op -

modules, so T;(A1) = Ty(Az) as Op -modules and thus by Lemma 6.1.2 there are isomorphisms of
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Zy-modules

HOl’noB (Al, Ag) Rz Ly = HOInOB (Tg(Al)7 Tg(AQ)) = EndoB (Tg(Aﬁ)
= Endp, (Al) Rz ZLy.

Therefore we may reduce to the case where the CM false elliptic curves A; and A, have the same

underlying false elliptic curve A. By Lemmas 6.1.1 and 6.1.2 there are isomorphisms of Z,-algebras
L@ = End@B (Tg(A)) = OB’g,

and by a proof identical to that in the case of £ { dp, this isomorphism identifies the quadratic form
deg® on L, with the quadratic form Nrd on Op,. If n;, C Opy is the unique maximal ideal, so
m¢Op.¢ = ng, then a calculation shows that the dual lattice of Op , relative to Nrd is n[l. Hence

we have O -linear isomorphisms
ﬁ[lg_lolge/@[gg = LZ/L@ = n;l/OByg.

As a group, n;l/(’)Byg >~ Opo/ne 2 Fpe, 50 [Ok s BiDOf ] = 2.
Recall that O acts on Ly = Op 4 by

(t1 @ta) @ f = ka(t2) o fori(tr).

Fixing a uniformizer IT € Op , satisfying 1 (1)1 = Ik (¢1) for all ¢; € Ok, , for any u € £1(Ok,) C
Op,¢ we have

(tl [ tg) [ ] UH71 = mg(tg)uﬂflm(fl) = Kg(tg)fil(tl)unil.

Since n; ' /Op ¢ is generated by such elements ull ™!, O acts on n, ' /Op ¢ through left multiplication
by the image of the composition Ox — Op ¢ — Op ¢/ne, where the first map is given by t; ® to —

ko(t2)k1(t1). Next, under the isomorphism Ly = Op ¢, the action
O, — Endo, /m, (A[my]) = Op/my
determines an isomorphism «y : Op ¢/ny — Op/my, which allows us to identify

"i?e : OKJ‘ - EndoB/me (A[mf])
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with the composition

Kj Yy
Ok, — Oy — Opy/ny — Op/my.

However, the map Ok — Fyp2 defined by t; ® to — &1 (t1)k5 ¢ (t2) is equal to the map
Ok i> OB/mB - OB/W,

by definition of (A1, As) being in 2p(Fy), and the kernel of this map is the prime £ of K over L.
m
j £
and therefore there is an O ¢-linear map O ¢/LOk ¢ — n;l/(’)Byg given by z +— z e 1. But £ has

It then follows from the factorization of «’;'“ above that any element of £ acts trivially on n[l /OB

norm ¢2, which means
Ok.t/L0Kk =0, /Op = B, "D Ok o/ Ok s

as Ok ¢-modules. It follows that 3,20k ¢ = £LOk ¢ and thus B,Op = [@Zl. O

7.2 The case of / =p

In order to prove a similar result for £ = p we need a few preliminary results.
Lemma 7.2.1. If (A,i) € %;(F,) with p | dp, then Endo,, ,(Lie(A)) = F, as F,-algebras.

Proof. Fix an isomorphism Op , = A and a uniformizer I € A. There are isomorphisms of F,,-vector
spaces
Lie(A) = Lie(D(A)) = D(A)/¥ D(A),

so Enda (Lie(A)) = Enda (D(A)/? D(A)). Let {e,} be a W-basis for D(A) as in Proposition 6.3.2,
so the images €1,€3 of ey, ez in D(A)/¥ D(A) form a basis for this 2-dimensional vector space over
W/pW = F,. In the notation of (6.3.2), if D(i) = f; then the action of A on D(A)/¥ D(A) is given,

in the basis {€1, €3}, by the matrix

D(i)(a + bIT) = [g

SRES

| €3,

where @ is the image of a in W/pW 2 F,. A computation shows that a matrix in My (F,) commutes

with D(7)(a + bII) for all a 4 bII € A if and only if it is a scalar matrix, and therefore

Enda (Lie(A)) 22 Enda (D(A)/# D(A)) =T,
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An identical computation gives the same result if D (i) = fa. O

Proposition 7.2.2. Suppose (A,i) € %;(F,) with p | dg. Under the isomorphism
® : Endo,(A) ®z Z, — R11

in Proposition 6.3.1, the Zy,-quadratic form deg” on Endo,(A) ®z Z, is identified with the Z,-
quadratic form Q on Ry, given by
T yH TS S
Q|:pyl_[ x} = 2T — P Yy.
Proof. Since ® is an isomorphism of rings and deg*(f) = fo f*, we have Q(p) = !, where ¢ s ¢f
is the involution on Rj; induced by @ from the involution f +— f* on Endp, (A) ®z Z,. Recall that
ft=X"1tofVYol where A: A — AV is the unique principal polarization satisfying A= oi(z)Y o A =
i(xz*) for all x € Op. The polarization A then induces a map A = D()\) : D(A) — D(AY) on

Dieudonné modules. There is a canonical isomorphism of Z-modules

D(AY)

Il

D(A)Y = Homy (D(A), W),
where D(A)Y is a Y-module via
(Z - Nz)=o(f(Fx), (V- fila)=0"'(f(Fx)).
This map A induces a nondegenerate, alternating, bilinear pairing
(-::): D(A) x D(A) = W

defined by (x,y) = A(z)(y), and this pairing satisfies (Fz,y) = o((z,¥y)) for all z,y € D(A).
In fact, if (-,-) is any nondegenerate, alternating, bilinear pairing D(A) x D(A) — W satis-
fying (Fx,y) = o(x,?y) for all z,y € D(A), then (-,-) arises from a principal polarization
A[p>®] — A[p™]Y in this way. (Here, A[p>]Y = AY[p™] is the Serre dual of A[p>] and a prin-

cipal polarization u : A[p>®] — A[p>]Y

is by definition an isomorphism such that the composition
Alp*VY =R Alp=] & A[p™=]Y is equal to —u¥. Any principal polarization A — AV induces a
principal polarization A[p>] — A[p>]" ([5, 1.4.3.4]).)

Recall that * = a~'z'a, where a € Op is an element satisfying a> = —dp. In the local case
of a € Op ®z Z, = A, we can explicitly choose a. Since Q,2/Q,, is unramified, the norm map

N@p2 /Qp ¢ ZZQ — Z; is surjective, so there is an ag € Z;z such that agag = —p ldp (note that
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ord,(dg) =1). Let a = aoll € A, so a® = pagap = —dp.
Let {e,} be a W-basis for D(A) as in Proposition 6.3.2. First suppose D(i) = f1, in the notation

of (6.3.2). Then for x = u+ vIl € A, one can compute, using z* = u — vII,

U 0 —aga, ‘v 0

BN R , . 0 u 0 —a,glﬁofu
D(i(x")) = D(@) " DG NDG@) = |l g v )
0 fpaoaalﬁ 0 U

Now, viewing A as an element of Homy (D(A), D(A)Y) = Endw (D(A)) = My(W), using that A is
invertible and alternating, and using that Ao D(i(2*)) = D(i(x))¥ oA for all z € A, where D(i(x))V
is the dual linear map (so its matrix is the transpose of the matrix of D(i(x)) with respect to the

dual basis), a computation shows A must be of the form

0 0 0 bay'ag
0 0 b 0
A= 0 -b 0 0
—~bag'dy 0 0 0
for some b € W*. The equality (Fei,e3) = o{e1, ¥es) implies b = o(b)agay *, so b € Z;Z, and
0 0 0 o)
0 0 b O
A=l 0 b0 o
o) 0 0 0

The involution ¢ +— ¢ on Endw (D(A)) = My(W) corresponding to the Rosati involution
f— AlofY o\ on End”(4) (which restricts to f ~— f* on Endop,(A) @z Z,) is then given
by ¢f = A=TpTA, where ¢T is the transpose of the matrix ¢. A computation shows that for
¢ = [pi;] € My(W),

P44 55_19034 —bg_1<,024 —P14
N R ¢33 —pa3 —bbprs
| b thpss —¥32 P22 b~ bpro

—P4a1 —55_19031 bB_1¢21 Y11

If
|z oyl
Y = {pyﬂ x :| S R117

then viewing it as an element of M4 (W) as in (6.3.4), applying the involution {, as described explicitly
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above, and then viewing it again in Ri1, gives

7T {—pyﬂ T ]

Therefore
— 2 —
t_ 2T —pTyy 0
pp |: 0 TT — p2yy:| ’
so after identifying Z, with its diagonal image in My (Z,2), we obtain Q(¢) = 27 — p*yy. A similar
computation gives the same result if D(i) = f5. More specifically, we saw that in this case there is

an isomorphism of rings Ende, (A) ®z Z, — Rz, where

z 11
R22{|:y1—[ pyx :| 2$,y€Zp2},

and one can check that the involution { on Ry is given by

|z pyll Pz —pyll
*DLJH x}wo[—yﬂ x}

However, once we apply the ring isomorphism Ry — Ry1 given by conjugation by
1 0
0 p|’
this involution t on Ry corresponds to the involution { on Rj; described in the first case. O

For j =1,2let 6; : Og, — Op/mp be a ring homomorphism and let A; € @jaj (Fy) for p | dp.

Then there is a unique ring isomorphism Ok, , — Ok, , making the diagram

Okyp Ok, op (7.2.1)

OB/mB

commute. We use this to identify the rings Ok, , and Ok, p, and call this ring Or. Then by
Proposition 6.3.2 there are W-bases {e,,} and {e],} for D(A;) and D(Az) with Of, acting via (6.3.3)
on both and Op , = A acting on D(A;) through one of fi or fo in (6.3.2).

Definition 7.2.3. With notation as above, if D(A;) and D(As) are isomorphic as A®z, O-modules,
we say that A; and As are of the same type.

Note that there are two isomorphism classes of A ®z, Or-modules free of rank 4 over Z;, and

A; and As being of the same type just means D(A;) and D(As) lie in the same isomorphism class,
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and not being of the same type means they lie in the two separate classes. This definition is a bit
misleading because we will see below that A; and As are of the same type if and only if B divides
ker(0), where 0 : O — Op/mp is the map induced by 6; and 65, so this “type” is really a property
between 3 and 6, independent of A; and As. However, the above definition is the easier one to start

with in proving the next few results.

Proposition 7.2.4. Suppose (A;,i;) € %6]- (Fy) for j = 1,2, where p | dp, and Ay and Ay are not

of the same type. There are isomorphisms of Z,-modules
HOIn@B@z@(D(Al)? D(AQ)) = H0m03®29(D(A2)7 D(Al)) = R,

where

€T 11
Rus _{Lz/vn yx] :x,yezpz} C My(A)

and we have fized an embedding Z,> — A such that A = L2 & Lp211. Under the isomorphism
Homoe, (A1, A2) ®z Zy D, Home,g,2(D(A1), D(A2)) = Rya,

the Zy-quadratic form deg™ on Homoe, (A1, A2) ®z Z,, is identified with the Z,-quadratic form u- Q'
on Ris, where u € Zg and

sz } = p(aT — yy).

Under the isomorphism
Homp, (A2, A1) ®z Zy D, Homp,g,2(D(A2), D(A1)) & Rya,

the quadratic form deg®* is identified with the quadratic form u=!-Q’.

Proof. There is an isomorphism of Z-modules D(A;) = D(As), so
Homg (D(A1), D(As)) = Endg(D(A1)) = Endg(D(E1)?) = My (A),
where A; = M Qoy, £1. Hence
Homoe,g,9(D(A1), D(A2)) = {p € Ma(A) : ii(x) =iz(z)p for all x € A}

and
Homop,g,9(D(Az2), D(A1)) = {p € M2(A) : ia(x) =i1(z)p for all x € A}
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Suppose we choose bases for D(A;) and D(As) relative to which D(i1) = f1 and D(iz) = f2 (as in

(6.3.2)). Then an easy computation gives
Homo,g,9(D (A1), D(A2)) = Ris

and
~ _ e oyl
Homo,e,9(D(Az2), D(A1)) = Ro1 = { [yl'[ px} tx,y € sz} .

However, there is an isomorphism of Z,-modules Ry — Ri2 given by ¢ — UpU —1 where

0 1
o]
For any f € Homop,, (A, A2) ®7 Z, we have deg*(f) = f* o f, where f* = A\{* o f¥ o Ay with

Aj + Aj — AY the unique principal polarization satisfying i;(z*) = )\j_l oi(x)Y o \j for all x € Op.

In the proof of Proposition 7.2.2 we showed

0 0 0 b
0 0 b O

AJ = D()‘J) = 0 —b; Oj 0 € M4(W)
-b; 0 0 0

for some b; € Z;z satisfying b; = Ejagdal, with ag as in that proof. In particular, bl_lbg = 5;152, SO
by 'by € Z. We have

D(f*) = D(AT") o D(f¥) o D(A2) = AT ' D(f)" As,

where D(f)Y € Homo,g,2(D(A2)Y, D(A;1)Y) is the dual linear map. Therefore, through the map

D, the assignment
f— ft: Homop, (41, 42) ®z Z, — Homoe, (Az, A1) @z Z,
corresponds to the assignment
p = ¢ Homo,e,9(D (A1), D(As)) — Homose,2(D(A2), D(A1)),

where pf = AflgoTAg. If

_ |px oyl
Tyl

]6312
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then a computation shows

where u = bflbg. Under the isomorphism D, the quadratic form deg® corresponds to some quadratic

form Qg on R2, so for ¢ = D(f),

_ * _ * _ ¢ S S p(2T — yy)u 0
Qo(p) = deg"(f) = D(deg"(f)) = D(f") o D(f) = ¢'p = [ 0 p(aT — yg)ul
so Qo = u@’. A similar computation gives the result for the isomorphism
HOIDOB (AQ, Al) KRz Zp — HOHIOB®Z@(D(A2),D(A1)) =~ Ris. O

Recall that (A1, As) € ,%(Fqg) and for p | dg we are using 6 to identify Ok, , and Ok, , as in
(7.2.1).

Proposition 7.2.5. There is a K,-linear isomorphism of Fy,-quadratic spaces
(V;)(Ah AQ)’ degCM) = (KI)’ ﬁp ’ NKP/F,,)

for some 3, € F) satisfying

pD, ! ifptds
BpOr,p = pQ’}Dp_l if p| dp and Ay, Ay are of the same type
pﬁi);l if p|dp and Ay, Ay are not of the same type,

where ®), = DO0p,, p =PNOp, and p is the other prime ideal of Of lying over p. This map takes
L,(A1,As) isomorphically to Ok p.

Proof. First suppose p1dp. The proof is very similar to the ¢ | dg case of the proof of Proposition
7.1.2. We will write L, for L,(A1,Az). The proof of the existence of the isomorphism taking
L, to Ok, is the same as for £ # p. We may reduce to the case where the CM false elliptic
curves A; and A, have the same underlying false elliptic curve A because the idempotents ¢,&’ €
My (W) =2 Op @z W provide a splitting D(A;) = eD(A;) ® e'D(A;), which means D(A;) = D(As)
as Op ®z Z-modules and thus

HomoB (Ala AQ) ®z Z;D = HOInOB@Z@(D(Al)? D(AQ)) = End@B@Z@(D(Al))
= EndoB (Al) X7z Zp.
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By Lemmas 6.2.1 and 6.2.2 there are isomorphisms of Z,-algebras
Ly = End@B@Z@(D(A)) =A.

Similar to before, this isomorphism identifies the quadratic form deg” on L, with the quadratic form
Nrd on A. If ma C A is the unique maximal ideal then the dual lattice of A relative to Nrd is my',
and there are Ok ,-linear isomorphisms

By "D Ok p/Okp = L) /Ly, = my' /A,
0 [Okp : Bp®Ok ] = p*.

If p is ramified in K; or Ky then it is ramified in F, and the unique prime of F' above p is
inert in K. From pOp = p? and Ok, : 3,00k ] = p?, we must have 3,90k, = POk ,, so
BpOr,p = pD, "

Now suppose p is inert in K7 and K5. Similar to above, Ok acts on mgl /A through left mul-
tiplication by the image of the composition O — A — A/ma, where the first map is given by
t1 ® ta — Ka(t2)k1(t1). Under the isomorphism L, = A, the action A — Ende, (Lie(A)) = Fsp de-
termines an isomorphism v : A/ma — F,2 which allows us to identify m?io : Ok, — Endo, (Lie(A))
with the composition

OK]» H—J> A — A/mA l> sz.

However, the map O — Fg defined by t; @ to — k1(t1)k5°(t2) is precisely the structure map

Ok — Fg — Fy (this is the CM normalization condition), whose kernel is 9. It then follows from
Lie
J

isomorphisms of Ok j,-modules

the factorization of k7' above that any element of 8 acts trivially on mgl /A. Therefore there are

Ok p/PBOk p = mgl/A = 5])71@7101(717/01(,177

which shows 3,90k ;, = BOk , and thus 3,0F,), = p’DIjl.

Next suppose p | dp, and first assume A; and A, are of the same type, where A; = M; R0k, E; for
some supersingular CM elliptic curve E; over Fyz. As mentioned above we identify Ok, , and Ok, ,,
and call this ring Or. By assumption there is a A ®z, Op-linear isomorphism f : D(A;) — D(As).

Then there is an isomorphism of Z,-modules
G: HomoB®z.@(D(A1)7 D(AQ)) - End@B@z.@(D(Al))

given by ¢ — f71 o . Also, there are two maps O, = Endp,g,2(D(A1)), the first being k1 and
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the second (f~1).(k2). However, since f is Op-linear,

(f7Du(k2(2)) = fHoka(@) o f = f 7 o forn(w) = ma(2),

so under the isomorphism G, the two CM actions k1 and ko are identified with a single action
OL — Endo,e,2(D(41)).

It follows from the above discussion that we may reduce to the case where A; and A, have the
same underlying false elliptic curve A = M R0k, FE and k1 = ko = k. If we fix the embedding

Or = Zy — A =Endg(D(E)), the CM action on E, then there is an isomorphism
Lp = EndoB (A) X7, Zp = Ry

with k : O, — Ry1 given by k(z) = diag(x, z), and the quadratic form deg” on L, is identified with
the quadratic form @ on R;; given by

T yH_f_Q,
Q|:pyH x}—m‘ P Yy.

The dual lattice of Ry relative to @ is

x —2yll
Rlvl:{[plyﬂ p xy }:x,yezpa},

so [RY, : R11] = p*. Since there are isomorphisms of O ,-modules

ﬂpil@iloK,p/OK,p = L;//Lp = Ri/l/th

we obtain Ok, : 3,90k ,] = p*.
Under the isomorphism L, = Ry; there is an action Ry — Enda (Lie(A4)) = Fm, and a compu-

tation in coordinates shows that any element of

pr  ylI}
m = { {pyﬂ px} — sz} C Ru, (7.2.2)

a maximal ideal of Ry1, acts trivially on D(A)/? D(A) = Lie(A), which shows M = ker(Ry; — Fyp).
Hence, the action Ri; — Enda (Lie(A)) determines an isomorphism v : Ry /9 — F,2, which allows

us to identify k"¢ : O — Enda(Lie(A)) with the composition

OL L R11 — Rll/ml)]sz.
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However, the map O — F‘B defined by t; ® to + rl€(t;)xMe(ty) is the structure map O —
Fyp — Fqg by the CM normalization condition, so its kernel is 3. It follows from the factorization
of k¢ above that if t; ® to € PB? then r(t2)r(t1) € M2 But x(t;) = diag(t;,t;), so taty € p*Zy,ye for

t1 @ty € P2. Then for
[ pyld
Y = pilyH T

and t; ® to € P2, under the action of Okp = O ®z Or on L, defined above,

} € RY;

tatiz p 2ot yll

(i1 ®@t2) o0 = lEz)orlts) = [pltztlyn tohy } € B

since oty € p*Zy,2. This shows PB? acts trivially on RY; /R11, and conversely, reversing this argument
shows that any element of O, acting trivially on RY,/Rq1 is in B2. Hence there is an Ok p-linear
map Ok ,/PB>Ok p, — RY,/Ri1 given by x — x e 1. But P2 has norm p* = [RY, : R11], so there are

isomorphisms of Ok ,-modules
OK,p/mzoK,p = RYl/Rll = ﬁp_lg_loK,p/OK,p-

It follows that 3,90k, = P*Ok p and thus 5,05, = p*D,*.

Next assume A; and Ay are not of the same type, with A; = M; R0k, Ej. As before we identify
Ok, p with Ok, , and call this ring Or. Let g be the connected p-divisible group of height 2 and
dimension 1 over Fq_;. Isomorphisms E;[p™] = g may be chosen in such a way that the CM actions
g1 : Op — End(Eq[p>]) 2 A and g2 : O — End(E3[p™]) = A have the same image in A. (There
are two A*-conjugacy classes of ring embeddings Z,> — A interchanged by precomposing with the
nontrivial element of Gal(Q,2/Q)).) Fix an embedding Z,> — A and a uniformizer II € A satisfying
IIgi(x) = g1(ZT)II for all x € Of. By Lemma 6.2.2 and Proposition 7.2.4 there are isomorphisms of
Zy-modules

L, = Homp,g,2(D(A1), D(A2)) = Ry,

and the quadratic form deg™ on L, is identified with the quadratic form u@" on Rja, where u € Zy
and

@ |n | =t ).

The dual lattice of Ry» relative to u@’ is

—1
-1 x pyll}
R¥2 = U . { |:p_1yH p_1$ :| T, Y c Zp2} s
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so [RYy : R12] = p*. As before this gives [Ok , : 8,90k ,] = p*. Fixing ring isomorphisms
EndoB (Al) ®Z Zp = Rll = End@B (Ag) ®Z Zp,
it makes sense to take the product ka(t2)k1(t1) in Ryy for t1,t2 € Op, and

Ko (te)r1(t1) = diag(g2(t2)gi(t1), g2(t2)g1(t1)),

where go(t2)g1(t1) is the product in the common image of g1 and go in A. As in the case of A;
and A, having the same type, the action Ri; — Enda(Lie(4;)) & Fy, for j = 1,2, determines an
isomorphism «y; : Ri1/9 — F,2, which allows us to identify n?ie : Or — Enda(Lie(A;)) with the
composition
Or 5 Ry — Ry /Mm% Fpe.

As above, the map O — Fy defined by t; ® to — k(t;)k5°(t2) is the structure map O —
Fo — Fg. Therefore t1 ® to € P if and only if x11°(¢1)k5(t2) = 0, if and only if ko (t2)k1(t1) € M.

Let B be the other prime ideal of Ok lying over p, so N Op = p. Write Gal(K/Q) =
{id, 71, 72, 172}, where K; = K{7) and F = K{m72), If D(B|p) is the decomposition group at 9 for
K/Q, then since p is inert in K and Gal(K/F) = (1172),

D(Blp) N (r172) = D(PIp) = (r172),
but |D(Blp)| = 2, so D(P|p) = (7172). Hence 7;(P) = P for j = 1,2, which means t; @ t2 € P =

71(B) if and only if #; ® ts € P. Now, for

x p Iyl

R v
p=u {plyﬂ iz } € Ry,

and t1 @ty € OK,p,

_ TN g2(t2)gr(t)x p~lga(ta)g(ts)yll
(t1 @ t2) @ 0 = ra(ta)pry(f1) =u~t - [p_lgz(tz)m(tl)yn v Lon(ta)gr (F)z |

Therefore

(tl ® tg) [ JOoNS Ry, for all p gg(tg)gl(tl) S pr2 and gg(tg)gl (%1) € pr2
< Kg(tg)ﬁl(tl) € M and K‘,g(tg)fil(fl) cMm
<:>t1®t2€mﬁ$=m$.
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This shows an element of Ok, acts trivially on RY,/Ri2 if and only if it is in PPB. Since [RY; :

Ri5] = p* is the norm of PP, similar to above we obtain 5,0F, = ppD,*. 0O
Corollary 7.2.6. Let A € %;(F,). For any prime number £ there is an isomorphism of rings

My(Ze) if€#pand £tdp

~ ) OBy ifl#£pandl|dg
End@B(A)(g)ZZg_ A Z‘f€=pa,’n,dp+d3
Ry if¢=pandp|dp,

where A is the mazimal order in the quaternion division algebra over Q, and

Z Z
Ro=| 52 7.
2 |:p2Zp Zp:|

Proposition 7.2.7. Forp | dg let w, be the corresponding element of the Atkin-Lehner group Wy,
so wp = 11 is a uniformizer in A = Op,,. Let (A i, k) € %(F,) and set A’ = w,- A € %;(F,). Then
D(A) and D(A") are not isomorphic as A ®z, O, p-modules.

Proof. This is essentially a claim we made when discussing the action of Wy on the set .} defined
above, that w, interchanges the two isomorphism classes of A ®z, O, ,-modules. However, we
will include a proof for completeness. Recall that A’ = (A,7,x) where i : A — End(A) ®z Z,
is given by i'(x) = i(IlzlI=1) = i(I1) o i(x) o i(I[)~1. Suppose there is a A-linear isomorphism
D(A) = D(A’) = D(A). Then there is a u € Endg(D(A))* such that i/(z) = uwoi(x) ou?! for
all z € A, viewing i(z) and /() as their induced endomorphisms of D(A). Therefore conjugation
by u on i(A) C Endg(D(A)) is equal to conjugation by i(II), which means i(II) = w o =z for some
z € Z(i(A)), the center of i(A). However, i(A) = A has center Z,, so z € Z,, C Ma(A). Viewing
i(I1), u, and z as their corresponding endomorphisms of A, we have deg(i(Il)) = Nrd(I)? = p? and
deg(u o 2) = deg(z) = p** for some integer k > 0 since deg([p]) = p*. This is a contradiction. O

If Ae %(F),) for p | dg and m, C Op is the unique maximal ideal of residue characteristic p,

then the m,-torsion A[m,] is defined just as A[my].

Lemma 7.2.8. Suppose (A,i) € %;(F,) with p | dg. There is an isomorphism of Op/m,-algebras
EndOB/mp (A[mp]) = OB/mp.

Proof. We will use Dieudonné modules. Since A[p] and A[m,] are finite p-group schemes over

Spec(F,), they have associated covariant Dieudonné modules D(A[p]) and D(A[m,]), which are
Z-modules of length 4 and 2 over W, respectively. Viewing A[p] and A[m,] as fppf sheaves of
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abelian groups on Sch/F,, there is an exact sequence
i(zp)
0 — Afm,| — Alp] —= A[p] =0,

where z,, is any element of m, whose image generates the principal ideal m,/pOpg C Op/pOp. Since

D is an exact functor, we obtain an exact sequence of Z-modules
i(wp)
0 — D(A[my]) — D(A[p]) — D(A[p]) — 0.

By definition, D(A) = lim | D(A[p"]) where the inverse limit is with respect to the maps [p] :
A[p"*t'] — A[p"]. Hence there is an isomorphism of Z-modules D(A[p]) = D(A)/pD(A), and
under this isomorphism the map i(xzp,) : D(A[p]) — D(A[p]) is identified with the map (II) :
D(A)/pD(A) — D(A)/pD(A), where Il € Op,, is a uniformizer. It follows that D(A[m,]) = D,,

where

D, = ker(i(II) : D(A)/pD(A) — D(A)/pD(A)),

and thus, since D is an equivalence of categories,

EndOB/mp (A[mp]) = EndOB/mp(@Z@(DP)'

Using a standard W-basis for D(A) as in Proposition 6.3.2, and considering the two possible
forms (6.3.2) for i, one sees that D(A[m,]) is in particular an F,-vector space of dimension 2. A

computation in coordinates, similar to that done in Lemma 7.2.1, then shows

Endo, jm,e;2(Dp) = Fpe.

Therefore the action i : Op/m, — Endo, /m, (A[m,]) is an isomorphism of Op/m,-algebras. O

Corollary 7.2.9. Suppose (A,i) € #;(k) for k = C or k = F,. There is an isomorphism of
Op/mp-algebras Endo, /m, (Almp]) = Op/mp.

Proof. For each prime ¢ | dp let xy be an element of m, whose image generates the principal ideal
my/lOp C Op/lOp. Under the isomorphism Op/dgOp — HZ\dB Op/lOp the ideal mp/dpOp is
sent to the ideal Hélds my/¢Op, and this principal ideal is generated by the image of x g = He\dB Ty €

mp. There is then an isomorphism of group schemes over Spec(k)

£ Amp] — [T Alma,

fdp
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where the right side is an r-fold fiber product over Spec(k) (r is the number of primes dividing dp).
The map f is determined by the morphisms A[mp] — A[m,] given on k-points by a — i(z, 'z5)(a).
The inverse of f is given on points by (ai,...,a,) — a1 + -+ + a,, adding in the group A[mg](k).

The isomorphism f induces an isomorphism of Op/mp-algebras

Endo, /m, (Ams]) = [[ Endoy, /m, (Alme]) = [] Op/m¢ = Op/ms. O
Z‘dB ZldB
Proposition 7.2.10. Let (A1, As) € 2y(Fy) with B lying over p | dg. Then P divides ker(0) if
and only if A1 and As are of the same type.

Proof. Suppose A; and A, are of the same type. The proof essentially follows the part of the proof
of Proposition 7.2.5 starting around (7.2.2). Since A; and As are of the same type, there is an

isomorphism of Z,-modules L, = L,(A1, A2) = Ry;. Fix ring isomorphisms
Endo, (A1) ®z Z, = Ri1 = Endo, (A2) Qz Z,,.
For j € {1,2}, under the action
Ry — Endoy jm, (45[mp]) = Endoy, jm,e,2(D(A;[my])) = Fpe,

any element of

_ | pr oyl
Dﬁ{[pyn pm:|.x,y€Zp2}CR11

acts trivially on
D(A;j[m,]) = ker(i;(TT) : D(A;)/pD(A;) — D(A;)/pD(4;)),

so M = ker(Ry; — Fp2). It follows that the map Ry — Endp, Jm, (A;j[m,]) determines an isomor-
phism 7; : Ry1/9 — Fp,2 which allows us to identify n?p : Ok, — Endog/m,(Aj[my]) with the
composition

OKj R—]> Rll - Rll/m ’Y—J> sz

Let Q C Ok be the prime over p dividing ker(#), so Q is the kernel of the map Ox — F,2 defined
by t1 ® ty +— k7 (t1)ky " (t2). Now, using the factorization of Ii;ﬂp given above and following the
rest of this part of the proof of Proposition 7.2.5 (adjusting slightly for the fact that x; and ko are
not equal here, similar to what is done in the mixed type case later in that proof), we find that an

element of Ok, acts trivially on L /L, if and only if it is in 0Q2. However, the same is true for
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in place of 9, so Q? = P2 and therefore P = Q.
Now suppose A; and Ay are not of the same type. Define a ring homomorphism 7 : O —
Op/mp according to

17;1@ : OKJ. — OB/me

being defined by 7" = 07 for all £ # p and j = 1,2, et =077, and 1y " (z) = 057 (Z). Consider
the CM pair (A1, A}), where A, = w, - Ay and w,, is the Atkin-Lehner operator at p. The map

(k)™ : Ok, — Endoy, jm, (A3[mp]) = Op/my,
is given by (k5)™ (z) = Ky " (T), where
Ky O, = Endoy, jm, (A2[my]) = Op/m,,.
The resulting map O — Op/m, for the pair (A1, A}) is given by
t1 @ty HTP (tl)ﬁ?” (t2),

so (A1, A}) € 2,(Fyp) and the kernel of this map is Q, where  is the prime over p dividing ker(6).

As Ay and w,, - Ay are of the same type (Proposition 7.2.7), Q = P by the first part of the proof
applied to (A1, AL), so P does not divide ker(6). O

7.3 Cases combined
Let (A1, As) € 2p(Fyp) with B lying over some prime p, and let p = PN Op. Set ag = ker(6) N Op.

Theorem 7.3.1. For any finite idele 5 € Fx satisfying B@F = a9p33_1(5p, there is a K -linear

isomorphism of F -quadratic spaces
(V(A1, Az), degoy) = (K, 8- Ng/r)

taking E(Al,Ag) isomorphically to @K.

Proof. Combining Propositions 7.1.2 and 7.2.5, and Proposition 7.2.10 proves the claim for some
B € F* satisfying BOp = agp®1Op, and the surjectivity of the norm map @IX( — (5; gives the
result for all such 3. O

Recall the definitions of the functions p and p, from the introduction.
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Proposition 7.3.2. Let ¢ be a prime number. For any o € F/*,

pe(aDy) ift#p, L1dp
O(e, A1, Ag) = pe(al(€)~1Dy) ift#p, L]dp
pp(ap™tl(p)~1Dy,) if L=p,
where [(£) is the prime over { dividing ag, with the convention that ((p) = O if ptdp.

Proof. Using Propositions 7.1.2 and 7.2.5 in place of Lemmas 2.10 and 2.11 of [14], the proof is
identical to that of [14, Lemmas 2.19, 2.20]. Let us prove one case to give a sample of these types

of calculations. Suppose ¢ # p and £t dp. By Proposition 7.1.2 there is an isomorphism

(Ve(A1, Ag,degoy) = (Ko, B0 - Niy /),

where Gy € F KX satisfies 5,Op ¢ = @Zl. It follows from Lemma 4.0.8 that there is an isomorphism

Q\T(Qe) /Uy = THQ0)/ Vi,

so the orbital integral can be written as

OZ(O‘aAlaAZ) - Z lox,e(tilf)
teTH(Qe)/ Ve

if there is an f € K satisfying Ng, /5, (f) = aﬁ[l, and Oy(a, A1, As) = 0 otherwise. Suppose ¢
is inert in K7 and Ky, so Q\T(Q)/Us = {1}. Then O(a, Ay, Az) = 1 if there is an f € K,
satisfying Ng, /g, (f) = aB; " and Op(a, A1, Ag) = 0 otherwise. Hence Oy, Ay, Ag) = py(aDy)
since both sides are equal to 1 if ord, (a3, 1) is even and non-negative for both places v of F' above
¢, and otherwise both sides are zero (K, /F, is unramified and 5;1(9F,e = Dy). See [14, Lemmas
2.19, 2.20] for the other cases. O

Theorem 7.3.3. For any « € F'* we have
[T 0c(c, As, As) = p(aa; 'p~'D).
¢

Proof. This follows from the previous proposition and the product expansion for p. O



Chapter 8

Deformation theory II

This chapter is devoted to the calculation of the length of the local ring ﬁ}i}e ..z» Which relies on the
deformation theory of objects (A1, A, f) of Zp,o(Fyp). We continue with the notation of Chapter
5.

8.1 General theory

Definition 8.1.1. Let (A1, A3) be a CM pair over Fz and R € CLN. A deformation of (A1, A3) to
R is a CM pair (;&1, 112) over R together with an isomorphism of CM pairs (Kl, Kg)@qg >~ (A1, Ay).

Given a CM pair (A1, Ay) over stp, define Def(A1, Ay) to be the functor CLN — Sets that
assigns to each R € CLN the set of isomorphism classes of deformations of (A1, As) to R. By
Corollary 5.1.3,

Def(A1, Ay) 2 Defo, (A1, Ok, ) X Defo,(As, Ok,)

is represented by Wy W = W. Given a nonzero f € L(A1, Ay) define Def(Aq, As, f) to be the
functor CLN — Sets that assigns to each R € CLN the set of isomorphism classes of deformations
of (A1,As, f) to R, where a deformation is a triple (111,.&2,;) with (;&1,;&2) a deformation of
(A1,A3) to R and fe L(Al, Ag) such that the following diagram commutes

~ — feid ~ _
Al ®r ]F{p — > Ay ®p IF‘B

:l l:

A1 A2~

It follows easily that degey(f) = degeam(f)-

89
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The following is the Serre-Tate theorem for false elliptic curves.

Theorem 8.1.2. Let R € CLN and suppose (Ag,io) is a false elliptic curve over Fm.
(a) The rule (A,i) — (A[p™],i[p™]) defines a bijection between the following two sets:

(1) Isomorphism classes of false elliptic curves (A,i) over R together with an isomorphism A @p

ng — Ag of false elliptic curves over F‘B;

(2) Isomorphism classes of p-divisible groups & over R with an action of Op, together with an

Op-linear isomorphism & Qg Fsp — Ag[p™].

(b) With the same notation, if fo € Endp,(Ag) then the rule (A, f) — (A[p™], f[p>]) defines a

bijection between the following two sets:

(3) Isomorphism classes of pairs (A, f), where (A,i) is a false elliptic curve over R and [ €

Endp, (4), together with an isomorphism
p: A Xr Fm — Ao

of false elliptic curves over Fy satisfying p o (f ®id) = fo o ¢;

(4) Isomorphism classes of pairs (8, g), where & is a p-divisible group over R with an action of

Op and g € Endo, (®), together with an Op-linear isomorphism
VB @pFy — Ao[p™]

satisfying ¥ o (¢ ® id) = fo[p™] 0 .

Proof. (a) We will define an inverse to the map A — A[p>]. Given a p-divisible group & as in (2),
by the usual Serre-Tate theorem for abelian schemes, there is an abelian surface A over R and an
isomorphism of abelian schemes

<p:A®RF43—>AO.

Now let x € Op. Since the isomorphism & Qg F‘ﬁ — Ay[p™] is compatible with the actions of Op
on & and Ag[p™], by the Serre-Tate theorem there is an endomorphism i(x) of A inducing ig(z) on
Ap via the isomorphism ¢, and i(z)[p>] defines the action of z on &. This makes A into a false
elliptic curve, and the inverse map in the bijection is given by & — A.

(b) Given a pair (8, g) as in (4), by part (a) and the Serre-Tate theorem, there is a false elliptic
curve (A,7) over R, an f € Endgr(A) satisfying f[p*°] = g, and an isomorphism of false elliptic
curves

@IA@RF{B—)AO
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satisfying ¢ o (f ® id) = fo o ¢. All we need to show is that f is Op-linear. Let x € Op. Using the

Op-linearity of ¢ and fy, we have

(f®id) o (i(z) ®id) = ¢~ o foo o (i(z) ®id)
=¢ o fooig(x)op
=y toig(x)o foop
=(i(z)®id)op to fyop
= (i(z) ®1id) o (f ® id),

and thus foi(z) =i(x)o f. The map (&, g) — (A, f) is the inverse in the bijection. O

The most useful case of part (b) for us will be the following. Let R be an object of CLN. A CM
p-divisible group with an action of Op over R is a triple (8, go, g), where & is a p-divisible group
over R, go : Op — Endg(®) is an action of Op, and g : Ok, — Endo, (&) is an action of Ok, such

that the diagram

Ok; —>EndR Lie(®))

N7

commutes, where O, < O — R is the structure map (the CM normalization condition).

Now let (Ag, ig, ko) € Z’/j(F;p). Then by the theorem, the map

(4,1, 1) = (A[p™],ilp™], k[p™])

defines a bijection between the set of isomorphism classes of deformations of (Ag,ig, ko) to R and
the set of isomorphism classes of deformations of (Ag[p™],io[p°], ko[p™°]) to R (as CM p-divisible
groups with an action of Op). The only thing to note is that (A, 1, k) satisfies the CM normalization
condition for false elliptic curves if and only if (A[p™],i[p™], k[p>°]) satisfies the CM normalization
condition for p-divisible groups, since there is an isomorphism of R-modules Lie(A) 2 Lie(A[p>]).
Therefore if we define a functor Defop, (Ao[p™],Ok,) : CLN — Sets by sending R to the set
of isomorphism classes of deformations of (Ag[p>],i0[p°°], kKo[p™°]) to R, then there is a natural
isomorphism of functors

Def@B (A(), OK]) = Def@B (14()[1700]7 OK])

Continuing with (Ao, io, ko) € %;(Fg), assume P lies over a prime p nonsplit in K;. We have

Ag = M, ®0K Ey for some Op ®z7 Ok;-module My and some supersingular elliptic curve Ey over
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Fy with an action go : Ok, — End(Ey) satisfying

ro(a)(m @ x) = m ® go(a)(x)
on points. Define a functor Def(Ey, Ok;) : CLN — Sets by sending R to the set of isomorphism
classes of deformations of Fy with its Ok -action to R.

Proposition 8.1.3. There is a natural isomorphism of functors
&b . Def(EO, OKj) — Def@B (Ao, OKJ)

given by 4(R) : E — M ®ox, E for any R € CLN.

Proof. Let R be an object of CLN and let (E, g) € Def(Eo, Ok, )(R), so there is an isomorphism of
elliptic curves F ®p Fcp — Fy compatible with the CM actions g and gq. Setting A = My ®og, b,
there is an isomorphism of abelian varieties A ®@ g Fqy — Ap, such that if we define an Of;-action &
on A through the action g on F, then this action lifts k¢ and the above isomorphism is compatible
with k and kq. It follows from the proof of Theorem 5.1.1 that the usual principal polarization on
A automatically lifts to an Ok -linear principal polarization on A4, so A € .. ]»2 (R) is a deformation
of Ay € .4} (Fyp). Therefore the reduction map Endo,, (A) — Endo,, (Ap) is an isomorphism and
we can lift the Ok -linear action of Op on Ay to a unique such action on A, which shows A is a

deformation of Ay to R (A satisfies the CM normalization condition since E does). Define
9(R) : Def(Eo, Ok, )(R) — Defo, (Ao, Ok; )(R)
by E +— M, R0k, E. If R — R’ is a morphism in CLN then the diagram

Def (o, Ok, )(R) — 2+ Defo, (Ao, Ok, ) (R)

b e

Def (Ey, O, )(R') —— ) Defo, (Ao, Ok, )(R')

commutes since

(Mo ®oy, E) ®r R' = Mo ®0,, (E®@r R).

Now, the main point is that ¢(R) is a bijection because Def(Ep, Ok;)(R) and Defo, (Ao, Ok, )(R)
are both one point sets by Theorem 5.1.1. O

With the same notation as above, if we define a functor Def(Ey[p™], Ok,) : CLN — Sets in the
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obvious way, then there is a natural isomorphism of functors
4’ : Def(Eo[p™], Ok;) — Defo, (Ao[p™], Ok;)-

This is a consequence of the above proposition and the Serre-Tate theorem (both in the usual form

and Theorem 8.1.2). Explicitly, ¢’ is the composition of isomorphisms
Def(Eo[p™], O,) — Def(Ey, Ok, ) - Defo,, (Ao, Ok,) — Defo, (Ao[p™], Ok, ),

so 9 (R) : h— M, R0k, b, where M, R0k, b is the p-divisible group (Gy,), with G,, = M, Qox, H,
(where h = (H,,),). The ring Op acts on My ®0p, b through its action on M. As a p-divisible
group with an action of O, we have M R0k, h = b x b, with Ok, acting diagonally on b x b.

Let g be the unique (up to isomorphism) connected p-divisible group of height 2 and dimension
1 over Fy, and set A = End(g) as above. Since the functor Defo, (Ao, Ok, ) is represented by #,
there is a bijection

DefoB (A(), OKJ)(R) = HOH’ICLN(W7 R)

for any R € CLN. The unique element of Defo (Ao, Ok, )(#'), which corresponds to the identity
map # — W, is called the universal deformation of Ag to #'. A similar definition can be made
for the other deformation functors we have defined. Let A be the universal deformation of Ay to
# . From the above discussion, A[p™] is the universal deformation of Ay[p™>] to #, and there is
an isomorphism A 2= M, R0k, E for some CM elliptic curve E over # lifting Ey, where Ay =
Mo ®oy, Eo. Let & be the universal deformation of Fy[p™>] = g to # (the universal deformation
with respect to the functor Def(g, Of;,)). Since ¢ is an isomorphism, £ is the universal deformation
of Ey to # (with respect to Def(Ey, Of;)), so E[p>*] = & and therefore there is an isomorphism
Alp™] = M, ®0y,; ©. Again, as a p-divisible group with an action of Ok, we have My R0k, & =
6 x &.

In the context of the previous paragraph, suppose we are in the case of p { dg. The standard
idempotents € and €’ in

Mo (W) = Ma(Zy) ®z, W = Op @z W

induce a splitting A[p>] = ¢ A[p™] x &’ A[p*°], and conjugation by

ﬁ (1)] € My (%)
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defines an isomorphism e A[p™] — &’ A[p>°], so there are isomorphisms of p-divisible groups over #
G x & APp™] 2 A[p™] x eA[p™].

Hence & x & and e A[p™] x eA[p™] are both in Defo, (Ao[p™], Ok, )(#'), which is a one point set,
so by the injectivity of the map ¢'(#') defined above, eA[p™] = &. By a proof similar to that of
Lemma 6.1.1, we then have

Endoge,» (A[p™]) = Endy (8).

Back to no assumption on p, let L be a quadratic field extension of QQ, with ring of integers
O, and let 7, € Op be a uniformizer. Let #7 be the ring of integers in the completion of the
maximal unramified extension of L, and choose a ring homomorphism W — #7,. Viewing Oy, as a
Zy-subalgebra of A, there is an action of Oy, on g. By [10, Proposition 2.1] there is a unique (up to
isomorphism) deformation gy, of g with its Op-action to #7,, where g, satisfies the CM normalization
condition: the induced map O, — Endy, (Lie(gr)) = #7, is the structure map O, — #7,.. For any
integer m > 1 set #, ,, = #1./(7}"), and for any p-divisible group h over #7, set b, = h Qwy, #1m.-
By [10, Proposition 3.3] the reduction map Endy, . (91,m) < End(g) induces an isomorphism

Endy, ,, (82,m) = O + 7' A (8.1.1)

Continuing with the notation of the previous paragraph, given any f € A~ Op, the functor
Def(g, O[f]) : CLN — Sets, defined in the obvious way, is represented by #7 .,, where m is
the largest integer such that f lifts (necessarily uniquely, by the injectivity of the reduction map)
to an element of Endy, , (gr,m). To prove this, we need to show that given a deformation (g, )
of (g, f) to an object R of CLN, including a lift of the Op-action, there is a unique morphism
#1L.m — R in CLN such that (g, f) is the reduction of (gz m, fm) via this morphism, where f,, is
the assumed lift of f. It suffices to assume R is Artinian as usual. By construction there is a unique
morphism #7, — R such that g, with its Op-action, is the reduction of g7. Then for some n > m+1
sufficiently large, the morphism #7, — R factors through ¢ : #7,,, — R since R is Artinian. Set

S = Spec(#1.n), so ¢ € S(R). Now by (8.1.1),
f € EndWL,n (gL,n) Kz Q = AQv
which means f is a quasi-isogeny fy : §r,n — 8r.n. Then by [22, Proposition 2.9], the functor

T — {9 € Homg(T, S) : ¥ f,, is an isogeny}
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on S-schemes is represented by a closed subscheme Sy C S. As fis an isogeny, we have ¢ € Sy(R).
Since m is the largest integer such that So(#% ) is nonempty, the closed subscheme Sy must be

Spec(#L.m), so from ¢ € Sy(R) the claim follows.

8.2 Deformations of CM pairs

Fix a ring homomorphism 6 : Ox — Op/mp, a CM pair (A1, As) € %(Fm), and a nonzero
f € L(A1,As). Let p be the residue characteristic of 3, let p = P N Op, and assume p is nonsplit
in K7 and K.

Proposition 8.2.1. If p t dg and p is inert in K; and Ko, then the functor Def(Aq, Ao, f) is
represented by a local Artinian # -algebra of length

ordp (degom(f)) +1
5 .

Proof. Since p 1 dp, the standard idempotent € € M2(Z,) = Op ®z Z, induces an isomorphism
L,(A1,As) = A of Z,-modules (Lemmas 6.2.1 and 6.2.2), and this isomorphism identifies the
quadratic form deg” on L,(A1,Ay) with the quadratic form u - Nrd on A for some u € Z).
Isomorphisms €A4,;[p™] = g may be chosen so that k1 : Ok, , — Endo, (A1) ®z Z, = A and
k2 : Ok, p — Endo, (A2) ®z Z;, = A have the same image Op, = Z,». Let L = K, = Ky, be the
fraction field of Op. Fix a uniformizer IT € A satisfying vII = IIv* for all v € O C A, so there
is a decomposition of left Op-modules A = A, & A_, where A, = O and A_ = OpIl. This

decomposition is orthogonal with respect to the quadratic form deg® on A because if a,b € Of, then

deg”(a + bIT) — deg*(a) — deg™ (bII) = uNrd(a + bIT) — uw Nrd(a) — u Nrd(bII)
= u(a — bIl) — ua + ubIl = 0.

Define ¢+ : Og, — Or by

04 (11 ® 2) = Ka(w2)k1(T1)

(71 ®@ 12) = Ka(w2)K1(71),

and let ® be the isomorphism

®=¢, xp_:0g, = 0 xOr.
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Then the usual action of Og on A is given by

e f=opi(z)fs +o_(x)f-

for f = fr + f_ € A, because for fi € Op and f_ € OII,

(11 @ z2) @ f1 = Ko(x2) frr1(T1) = ko(22)r1(Z1) f+

(T1 ®x2) ® f = Ka(w2) f-r1(T1)

ka(x2)k1(x1)f-

by the choice of II. Also, the O ,-quadratic form degcy; on A takes the form

O(degon(f)) = (deg™(f+), deg™(f-))

since

Trr, /g, (deg” (f),deg™(f-)) = deg”(f4) + deg™(f-) = deg”(f+ + f-) = deg™(f),

the second equality coming from orthogonality. Therefore if p_ = p and p, = p is the other prime

of F over p, then

ordy, (degeyi(f)) = ord, (deg* (f+))
ordy_(degan(f)) = ord, (deg” (f-)).

This follows from ®(POk ,) = O x pOr, and ®(POk ,,) = pOr, x Or, where P is the prime of K

over p, and this is a result of the equivalences

T R X0 € mOK,p = HQ(CL‘Q)Hl(JJl) emanOg :pOL

1 QX9 € ﬁOKyp S Hz(l’z)lﬁl(fl) cemaNOyp ZpOL

we saw in the proof of Proposition 7.2.5, where ma C A is the unique maximal ideal. Hence, for

any integer m > 1 and any f € A,

feOL+p" A = f_epmlOLIl
<= ordp(deg”(f-)) >2m —1

— ordp(deg(;M(f)) +1 > m,
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where the second equivalence comes from deg™(II) = p and deg™(p) = p*. Note that ord, (degen (f)) =
ord,(deg*(f-)) is odd because any f_ € OLII can be written as f_ = vp*II for some v € ZZZ and
k >0, and thus deg*(f_) = p?**1.

The functor

Def(A1, As) = Defo, (A1[p™],OL) x Defo,, (Az2[p™],Or)
= Def(ga OL) X Def(g7 OL)

is represented by # @y # = # . As above let & be the universal deformation of g to # (with
respect to Def(g, Or)), let mx € Ky be a uniformizer, and set #;, = # /(7). Then the p-divisible
group of the universal deformation of (A1, Az) to # is ($1,92), where $; = & x & for j = 1,2,
with Op acting on & x & = ¢§; x €f); via the natural action of My(#'). By what we showed
above, the functor Def(A1, Ay, f) is represented by #;,, where m is the largest integer such that
f € Homop,, (A1[p™], A2[p>°]) = End(g) lifts to an element of

Homo g, %, (91 @p W, H2 @y W) = Endy, (& @y W).

Since p is inert in Ky and Ky, we have Kp = L, so W = #;, = W. If g, is the unique deformation
of g with its Op-action to W, then g, = &, so by (8.1.1),

End"fﬂm(qsm) = Endwm (gL,m) o~ OL +p7n_1A.

Hence Def(Aq, Ag, f) is represented by #;,, which is an Artinian # -algebra of length m, where m
is the largest integer such that f € Op +p™ A, and the formula for m follows from the calculation

above. O

We will need an analogue of (8.1.1) for the p-divisible group of a false elliptic curve defined over

F, for p | dp. This is what we prove next.

Lemma 8.2.2. Let (A,i, k) € %;(Fy) forp|dp. Set
R =Endo,(A) ®z Z, = Endeo, (A[p™)),
let &7 be the universal deformation of A to W = W, and for each integer m > 1 set

Ry, = EndoB@ZWm (% QQw Wm) ®z Zp = EndoB@sz (%[poo] Ow Wm)?
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where W, = W/(p™). Then the reduction map R,, — R induces an isomorphism
Rm = OL +pm_1Ra

where O, = k(Ok; p)-

Proof. We will use Grothendieck-Messing deformation theory. Let D = D(A) be the covariant
Dieudonné module of A as above and set O; = Op ®z OKJ. There is an isomorphism of 2 ®z O;-
modules H{®(&/) — D, where H{®(&/) = Homw (Hlg (=), W) is the first de Rham homology
group of & (which is a free W-module of rank 4). It follows that for any m > 1 there are Oj;-linear

isomorphisms of W,,-modules
H™ o @w W) = D @w W, = D/p™D.

For any m > 1 the surjection W,,, — Fp has kernel a = pW/p™W. Since a has the canonical
divided power structure, the deformations of A, as an abelian scheme, to W,, are in one-to-one
correspondence with direct summands M C H{®(A), where HI®(A) = HIR(A) for any deformation
A of A to Wy, such that the image of M under the reduction H{®(A) — HIR(A) is Fil(A), the
Hodge filtration of H{F(A). By Corollary 5.1.3, (4,4, ) has a unique deformation to W,,, namely
A, = @ Ry Wy. Therefore there is a unique direct summand M,, C HI®(A), stable under the
action of O; on H{R(A), that reduces to Fil(A), and such that the diagram

O, —————— Endo, e, (H{*(A)/M,,) (8:2.1)

m

N,

commutes, namely M, = Fil(«,). The Hodge sequence for A takes the form
0 — Fil(A) — D/pD — Lie(A) — 0.

Using a W-basis {e1, ea,e3,e4} for D as in Proposition 6.3.2, it also defines an Fm—basis for D/pD,
and
Fil(A) = ker(D/pD — D/¥ D)

has {e2,e4} as an Fy-basis.
Any f € R induces a map H{R(A) — HIR(A) which lifts to a map f : H{®(A) — H{®(A), and
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f lifts to an element of R, if and only if f ( m) C My,. The map
[+ H{®(A)= D/p™D — D/p™D = H{%(A)

corresponds to the reduction modulo p™ of f : D — D. Consider the W,,-submodule N =
Spany, (e2,eq) C D/p™D. In the basis {e,}, the Ok, -action on D is given by (6.3.3) and the
Op-action is given by one of the matrices in (6.3.2). Each of these maps stabilizes N, so N is an
Oj-stable direct summand of D/p™D that reduces to Fil(A) = Spang,_ (e2,e4) modulo p. Also, a

computation in coordinates shows that the diagram

\/

commutes. Hence N 22 M,, under the isomorphism D/p™D 2 HI®(A). Now,

~ z  yllf
{2 cona)

where we have fixed a decomposition A = O, , ® Ok, pll. Expressing

((D/p™D)/N)

z oyl

f{pyﬂ fc] €K

as an element of My (W) as in (6.3.4), we have

£ lifts to an element of R,, < f(N)C N

f:D/p™D — D/p™D stabilizes N

flea), fleq) € Weg + Wey +p™D

p*y € p™W and py € p"W

y € Ok, p

feOL+p™ 'R, O

[ A

Proposition 8.2.3. If p | dg and P divides ker(0), then Def(A1, Ay, f) is represented by a local
Artinian # -algebra of length Lord,(degcy(f)).

Proof. The proof is very similar to that of Proposition 8.2.1. As usual A; = M; ®o, E; for some

supersingular elliptic curve E;. Isomorphisms E;[p>] = g may be chosen so that the CM actions
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Ok,p — A and Ok, ), — A on E; and E,, respectively, have the same image Op, = Z,». Fix a

uniformizer II € A satisfying v1I = Ilv* for all € O, C A. There is an isomorphism of Z,-modules

L,(A1,A2) = R, where
_ x  ylI|
R_{{pyﬂ x}.z,yEOL},

and the CM actions k1 and ko are identified with a single action O, — R given by x — diag(z, x)
(see the proof of Proposition 7.2.5). Under the isomorphism L,(A1, As) = R the quadratic form
deg” on L, (A1, Ay) is identified with the quadratic form @ on R defined in Proposition 7.2.2. There
is a decomposition of left Op-modules R = Ry & R_, with R, = O, embedded diagonally in R,

and R_ = Op P, where
0 1II
"= {PH 0] ’
and this decomposition is orthogonal with respect to the quadratic form deg®. Similar to before,
define ¢4 : O, — O C R by

P+ (71 @ 22) = Ka(2)K1(T1)

P (21 ® T2) = Ka(w2)r1 (1),
and let ® be the isomorphism
®=9p, xp_:0g, = 0 xOr.
Then the usual action of Ok on R is given by
zeo f=op(x)fr +o-(2)f-
for f = fy + f- € R since Pk1(ZT1) = k1(x1)P by the choice of II. As above it follows that
O(degen(f)) = (deg™(f+), deg™(f-))-

Now let

m:{[p@% Z;lﬂﬂ :x,yE(’)L}CR.

We saw in the proof of Proposition 7.2.5 that

r1 @ xy € mO[gp < I{Q(J?Q)Hl(.rl) eMmnaoy, :p(’)L

1 ® a2 € POk, < ko(22)k1(T1) €EMNOL = pOy,
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and thus, as in the proof of Proposition 8.2.1,

ordy, (degcom(f)) = ord,(deg™(f+))
ordy_ (degen(f)) = ordy(deg™(f-)),

where p_ = p and p, = p. Since deg*(P) = Q(P) = —p?, for any integer m > 1 and any f € R we

have

feO,+p" 'R = f_epmtOLP
<= ord,(deg"(f-)) = 2m

< fordy(degey(f)) = m.

The functor
Def(Al, AQ) = DefoB (A1 Lpoo]’ OL) X Def@B (A2 [pooL OL)

is represented by # @y # = W . Let (111, Ag) be the universal deformation of (A1, Ag) to # = W.
A similar argument to above shows that the functor Def(A1, Ag, f) is represented by W,,, = W/(p™),
where m is the largest integer such that f € Homep, (A1[p*], A2[p™]) = R lifts to an element of

HOInOB@ZWm (Avl [poo] Qw W, AV2 [POC] Qw Wm)~

Since there are Op ®z Op-linear isomorphisms A;[p™®] & Ay[p™] and A; @w Fy = Aj, there is an
Op ®z Op-linear isomorphism A [p™°] = Ay [p*°] by the uniqueness of the universal deformation.
Hence

Homo,e,w,, (Avl [poo] Qw Wi, A"Q[poo] Qw Wm) 2 R,=20L +pm_1R
in the notation of Lemma 8.2.2, and therefore m = ord,(degcy(f)) by the above calculation. [

With (A4, Ay) as above, suppose p | dg and P does not divide ker(). As usual A; = M; ®ox, Ej
for some elliptic curve E;. Choose isomorphisms E;[p>] = g so that the CM actions g1 : Ok, — A
and g» : Ok, p — Aon E; and E; have the same image Oy, = Z,2. Fix a uniformizer II € A satisfying

IIgi(z) = g1 (T)II for all € Ok, p. There is an isomorphism of Z,-modules L, (A1, Az) = R’, where

R'z{[gﬁ yf] :l‘,yEOL}7

and the quadratic form deg™ on L,(Aq, As) is identified with the quadratic form u@’ on R’ defined
in Proposition 7.2.4. There is a decomposition of left Or-modules R' = R/, @R’ , where R/, = O P,
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and R = O P,, with

0 0 I
n=lo v =l o)

Lemma 8.2.4. With notation as above, let &7; be the universal deformation of A; to W =W, and

for each integer m > 1 set
R, = Homo,e,w,, (9 @w Wi, oo @w Wi,) @z Zy,.
Then the reduction map R., — R’ induces an isomorphism
R, =2 OLP +p" tOLPs.

Proof. The proof is very similar to that of Lemma 8.2.2, using the following two facts. For each
j € {1,2} there is a unique O;-stable direct summand M; C HIR(A;) whose image under the
reduction map ﬁfR(Aj) — H{R(A;) is Fil(4;), and such that a diagram such as (8.2.1) commutes,
corresponding to the unique deformation o7; @w Wy, of A; to W,,. Any f € R’ lifts to an element of
R if and only if f(Ml) C M, where f: EffR(Al) — EffR(Ag) is the unique lift of f : H{F(A;) —
H{R(A,). O

Proposition 8.2.5. If p | dg and P does not divide ker(0), then Def(A1, Ag, f) is represented by
a local Artinian W -algebra of length

ordp (degon (f)) + 1
5 )

Proof. The decomposition R’ = R/ & R’ is orthogonal with respect to the quadratic from deg”.
Fix ring isomorphisms

El’ldoB (Al) K7z Zp R El’ldoB (AQ) K7z Zp,

with R as in the proof of Proposition 8.2.3. Define ¢4 : Ok ), — O C R by

1 (21 ® 22) = Ka(z2)r1(T1) = diag(ga(z2)g1(T1), ga(w2)g1(71))

o (11 ® r2) = Ka(w2)k1(21) = diag(gz(z2)g1(21), g2(72)g1 (1))

and let
¢ =9, xp_:0g, — O xOp.
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The action of Ok on R’ is then given by

e f=opi(z)fs +o_(x)f-

for f = fi + f_, where we are viewing R’ as a left R-module. As before,

®(degeni(f)) = (deg™(f4),deg™(f-))

and thus

ordp, (degew(f)) = ordy(deg™(f+))
ordp_ (degon (f)) = ordy(deg™(f-)),

where p_ = p and p, = p. The key difference now is that deg”(P2) = u@Q'(P;) = —up, so for any

integer m > 1 and any f € R’ we have

f e OLP; +pm_1OLP2 <~ f, c pm_l(’)LPg
<= ordp(deg”(f-)) >2m —1

— ordp(deg(;M(f)) +1 >m

If (Ay,A,) is the universal deformation of (Aj,Aj), then Def(A1, Ay, f) is represented by
Wy = W/(p™), where m is the largest integer such that

f € Homo,, (A;[p™], A2[p™]) = R/
lifts to an element of
Homo, 0,w,, (A1[p™] @w Wi, A2[p™] @w W) = R, = Op Py +p™ 'OLP,.

The formula for m then follows from the above calculation. O

Proposition 8.2.6. If p1dp and p is ramified in K; or Ks, then Def(A1, Aa, f) is represented by
a local Artinian W -algebra of length

ord, (degon(f)) + ordy (D) + 1
5 )

Proof. Suppose p is ramified in Ko and inert in K7y, and let O, be the image of x; : Ok, , — A. If
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w € O, , is a uniformizer then 7 = 1 ® w is a uniformizer of Ok , and II = ky(w) is a uniformizer
of Op, and of A. The action of 7 € Ok, on L,(A1,Ay) = A is then given by m e x = Ilz. By

Proposition 7.2.5 there is an O p-linear isomorphism

(Okp, 8- Nk, r,) = (A, degen),

with B8O0Fp, = p@’l(ﬁﬂp, so by Og p-linearity this isomorphism sends 7O ;, isomorphically to

II™A. Viewing f both as an element of A and as an element of Ok ,, we have

va(f) = ordx(f)
= ordg(f)

= %ordp (Ng,/r,(f))

ordy (BNk, s, (f)) +ordp(D) — 1
2
ord, (degay(f)) + ordy (D) — 1
5 .

The functor

Def(Al,Ag) = Defo, (Al[poo], OLl) x Defo,, (Ag[poo}, OL2)
= Def(g, Or,) x Def(g,Or,)

is represented by # @y # = # . Since p is ramified in K, the extension Ky = K, of Ky, is
unramified, which means # = #},,, where Ly = K, , is the fraction field of Or,. For j € {1,2}
let ) be the universal deformation of g, with its Op,-action, to #, and for any integer m > 1
set %) = 80 @, W /(@™). Let (1, 9H2) be the p-divisible group of the universal deformation of
(A1, As). Since p t dp, we have seen that there is an Op-linear isomorphism §; = ®U) x ). The
functor Def(A1, As, f) is represented by #;, = # /(m™), where m is the largest integer such that
f € Home, (A1[p™], A2[p*]) = End(g) lifts to an element of
Homo e, %, (91 @ Wi, H2 @y Wrn) = Homy,, (61, ¢2).

m

Viewing f as an element of End(g) = A, factor f = II"™u with v € A and m = va(f).
Suppose u lifts to a homomorphism e - 2 Since u € A this lift is an isomorphism, and
since II € Op, lifts to an endomorphism of &3,y oIl o w lifts to an endomorphism of 055,1). As

Or, = Zy> and u~lu generate A as a Z,-algebra, every element of A lifts to an endomorphism of
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&) and thus by (8.1.1),
A = Endy, (61) = Endy, (62) = O, + T LA,

Here we are using that # = #;,. This shows m = 1 and therefore u lifts to a homomorphism
(’551) — 652), but not to Qﬁél) — (’5(22). It follows from [28, Proposition 5.2] that f = II™u lifts to

@;}Lll — Qﬁg)ﬂ but not to 6&12 — 65,22, so Def(A1, Ao, f) is represented by #/(7™*+1), where

ord, (degoy(f)) + ordy (D) + 1
5 .

m+1l=va(f)+1= O

8.3 The étale local ring

Let 2 be a stack over Spec(Of ) and let z € Z'(Fy) be a geometric point. For any object R of CLN
there is an equivalence of categories between the category of morphisms of stacks Spec(R) — %
over Spec(Of) and the category Z(R), the fiber of & over R, by a form of Yoneda’s lemma, so we
can view a geometric point in either way. An étale neighborhood of z is a commutative diagram in

the category of stacks over Spec(Ok)

ol
Spec(Fyp) — 2

where U is an Og-scheme and U — 2 is an étale morphism. The strictly Henselian local ring of
Z at z is the direct limit
0% . = lim Oy
(U,2)
over all étale neighborhoods of z, where 0y 3 is the local ring of the scheme U at the image of Z.
The ring ﬁ’fg}’
that is étale as an Og-algebra, and let (U, %) be an étale neighborhood of z. Then the diagram

is a strictly Henselian local ring with residue field ng. Suppose C' C # is a subring

4

U ><Spec(OK) Spec(C)

|

(Z:.6) U
4

Spec(Fg)
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is an étale neighborhood of z, where f : Spec(Fg) — Spec(C) is determined by the ring homomor-
phism C' — # — Fg. This shows 05

the completed strictly Henselian local ring @%}Z is a # -algebra.

is a C-algebra. The union of all such C' is dense in #, so

32

Theorem 8.3.1. Leta € F*, let 0 : Ox — Op/mp be a ring homomorphism, and suppose P C Ok

is a prime ideal lying over a prime p. Set

1

1 /
vp(a) = §ordIJ (ap®), vy(a)= iordp (),

where p = PNOp. For any x = (A1, As, f) € Zy.a(Fy), the strictly Henselian local ring ﬁi%le L ls
Artinian of length vy() if p{dp or p | dp and B { ker(0), and is Artinian of length vy() if p | dp
and P | ker(6).

By length we mean the length of the ring as a module over itself.

Proof. Let R be an Artinian object of CLN and suppose z € Def(A1, Ag, f)(R). Then z is an ele-
ment of [ 25, (R)] whose image under the reduction map [ 25,4 (R)] — [2,o(Fg)] is the isomorphism

class of z (see Corollary 5.2.9), and thus there is a commutative diagram

Spec(R)

|

Spec(Fy) ——= Zb,a;

where we are fixing a representative z € 2y (R) of the isomorphism class z € [Zp.o(R)]. Given an

e

Spec(Fy) —— 26,0

étale neighborhood of =,

there is a unique morphism 2z : Spec(R) — U making the diagram

Spec(R) ——=U

| >

Spec(?sp) Y %,a

commute. This follows from the closed immersion Spec(Fy) — Spec(R) being defined by a nilpotent

ideal (R is Artinian) and the étale morphism U — Zp , necessarily being formally étale (see [17,
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p. 30] for a proof in the case of schemes). Then Z induces a ring homomorphism z : Oy ;z — R,
and by varying the étale neighborhood we obtain a map z : ﬁi&l}e,a,r — R that induces the identity
Fp — Fm on residue fields (by the commutativity of the above diagram for each étale neighborhood).
In particular, z maps the maximal ideal of & i;?e .. onto the maximal ideal of R and hence extends

uniquely to z € HomCLN(5%9 . R), as R is complete. Define a map
Def(A+, As, f)(R) — Homern (6%, . R)

by z — Z.

Now let z € HomCLN(ﬁ%&mm, R). Viewing z as a morphism
z : Spec(R) — Spec(ﬁ}heymw),
consider the morphism of stacks over Spec(Ok)
2 : Spec(R) = Spec(ﬁ%&mm) — Spec(ﬁ%&mm) — Zb.a-

This corresponds to an object 2’ of Zp (R). Since z : 5}?9 — R induces the identity Fyy — Fo

o

on residue fields, the diagram

Spec(R)

| >

Spec(Fy) —= Z0.a

commutes, so 2’ € Def(A1, Ag, f)(R). The map
Homern (0%, .. R) — Def(A1, Ay, f)(R)

defined by z — 2’ is the inverse of the map z — 2z defined above, so there is a bijection
Def(Ay1, Az, f)(R) 2 Homern (6%, .. R)

for any Artinian R in CLN. As in Corollary 5.1.3 it follows that there is such a bijection for any R
in CLN, so the functor Def(A;, Ao, f) is represented by the ring 555?9 ..z- The result now follows
from Propositions 8.2.1, 8.2.3, 8.2.5, 8.2.6, and the fact that length(5%9 e length(ﬁg}e L) O
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Final formula

9.1 Degree of Zy,

As in the introduction, let x be the quadratic Hecke character associated with the extension K/F,

so if v is a place of F' then y, : F* — {£1} is given by

[ 1 ifaeNg g (KY)
w={ 1y e N i)

We may interpret x as a character on ideals as follows. Since K, /F;, is unramified for any finite
place v of F', the norm map Ng /p, : O[X(’U — (’);’v is surjective, so if a is a fractional Op-ideal, then
the definition x,(a) = xu () is independent of the choice of v, € F* satisfying a,Op,, = aOp,.
For any « € F* totally positive and any ring homomorphism 6 : O — Op/mp, define a finite
set of prime ideals
Diffg(a) = {p C Op : xp(ap®) = —1},

where ag = ker(0) N Op. It follows from the product formula [], x.(z) = 1 that Diffy(a) has odd
cardinality, and in particular is nonempty. (If v1,vo are the two archimedean places of F, then
Xo; (VD) Xy, (aV/D) = —1, where D = disc(F) and thus ® = v/DOpr.) Note that if p € Diffy(a)
then p is inert in K. The only other possibility is p is split in K, in which case

K,=F,Qr K= F, x F,

and the norm map N : K}, — F}, is just multiplication. If aag®Op,y = £Op,, for some & € F,*, then
clearly £ = N(&,1), so xp(@as®) = 1. Recall that I' = Cl(Ok, ) x Cl(Ok,).

108
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Lemma 9.1.1. For any prime P C Ok and any ring homomorphism 0 : O — Op/mpg, we have

#[26(Fyp)] = L.

Proof. Let §; = 9|@K7. By definition, an object of 2(Fg) is a pair (A1, Ay) with A an object of
%9; (Fy), so by what we proved in Section 5.2,

#(26(Fyp)] = #[2" (Fp)] - #(%5 (Fy)] = | CUOx,)| - | CUOk, )| = |T. H

Proposition 9.1.2. Suppose a« € F* and 0 : Ox — Op/mp is a ring homomorphism. If
#Diffg(a) > 1 then Zpo = . Suppose Diffg(a) = {p}, let P C Ok be the prime over p, and
let pZ = pNZ. Then the stack Zy o is supported in characteristic p. More specifically, it only has
geometric points over the field Fy (if it has any at all).

Proof. By Proposition 3.2.7 the stack 2, has no geometric points in characteristic 0. Suppose
.%7,1(?:3) # & for some prime ideal P C Ok. Fix (A1, Ao, f) € %Q’Q(ng), and let p = PN Op and
pZ = p NZ. Any prime ideal q of OF lying over p or lying over any divisor of dp is inert in K (by

Proposition 3.2.7(d) and our assumption about the primes dividing dg), so for such a q,
-1 ifl=q
X[(q)—{l if 1 q
for any prime [ C Op. By Theorem 7.3.1, the quadratic space (I?,ﬁ - Nk, ) represents o for any

B € F* satistying BOr = agp®~1Op. It follows that xi(@) = x1(agp®~1) for every prime [ C OF,
so Diffg(a) = {p}. This shows that if Zp ,(Fyp) # @ then Diffg(a) = {p}, where p = PN Op. O

Recall the definition of the arithmetic degree of £y o from the introduction:

length(ﬁi%le a,a:)

deg(Zy,a) = Z log(|Fgp|) Z [Aut(z)|

PCOK €[ Xo,a(Fy)]

Theorem 9.1.3. Let a € F* be totally positive and suppose o € D71, Let 6 : Ox — Op/mp be a
ring homomorphism with ag = ker(0) N O, suppose Diffg(a)) = {p}, and let pZ = p N OF.
(a) If ptdp then

1

deg(Zp,0) = 3 log(p) - ord, (ap®) - p(aae_lpfli)).

(b) Suppose p | dp and let P C Ok be the prime over p. If P divides ker(0) then

1 1 _
deg(Zp.0) = 3 log(p) - ordy () - p(aa, 'p~'D).
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If B does not divide ker(6) then
1 1
deg(Zy.0) = 3 log(p) - ordy (ap) - p(aay, p=1m).
If a ¢ D71 or if # Diffg(a) > 1, then deg(Z2p.0) = 0.
Proof. The group Aut(A;, As) acts on the set L(A;, Ay) according to the rule

(91,92) f=g95"ofomn

for (g1,92) € Aut(A1, As) and f € L(A1, Ay). Under this action the stabilizer of f is

Stab(f) = {(g1,92) € Aut(A1,Az): g, " o fog1 = [}
= Aut(Al,AQ,f).

(a) Using Theorem 8.3.1, Proposition 9.1.2, Lemma 4.1.3, and the fact that [Fyp| = Ng/o(B) =

1ength(ﬁ% N 2)
des(200) =los(Fyl) 3 —rpooset
2€[Zo,a(Fy)]

1
= 21og(p)up () 2 KA An])
(A1,A2,f)E[Zp,a(Fp)]

3 1 [Stab(f)]

= 2log(p)vy () Z [Aut(A, As, )| ) | Aut(Aq, As)|

(A1,A2)€[Zy(Fyp)] FEL(AL,A2)

egom (f)=a
1
= 2log(p)vp(a) Z Z iy
(A1,A2)€[Zy(Foyp)] FEL(AL,A2)
degey (f)=a

Now using Proposition 4.1.4, Theorem 7.3.3, and Lemma 9.1.1, we have

deg(Zp,a) = 2log(p)vp(c) Z % Z Z wllwz

(A1,A5)€[ 26 (Fp)) (51,52)€l fEL(51®A1,520A2)
degey (f)=c

= log(p) Y (c) Z HOZ(Oé, A, Ad)

T 1
(A1,A2)€[Zo(Foyp)]

Uyl X N
—log) S plasy o)
(A1,Az)€[Zo(Fyp)]

1 1, -
=3 log(p) - ordy (ap®D) - p(aay 'p~ D).

110
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(b) Suppose p | dg. If P divides ker(#) then a similar calculation to that in (a), replacing v (o)
with v} (), gives the desired result. If 3 does not divide ker(f) then the exact same calculation as
in (a) gives the desired formula, noting that () = Lord,(ap) for p | dp (since p is unramified in

The final claim follows from Proposition 9.1.2 and the fact that degq), takes values in ®~1. O



Chapter 10

Special endomorphisms of CM

false elliptic curves

In this chapter we prove Theorem 4 of the introduction. The method of proof follows what was done
in proving Theorem 9.1.3 and many of the proofs are very similar, but simpler. We continue with
the same notation as in the previous chapters except now let K be an imaginary quadratic field with
ring of integers Ok and discriminant dx. We write x +— T for the nontrivial element of Gal(K/Q).
For p C Ok a prime ideal, let F, = O /p be the residue field. We assume that each prime dividing
dp is inert in K, so in particular K embeds into B (equivalently, K splits B). Let e, and f, be
the ramification index and residue field degree of K/Q at a prime p, let s be the number of distinct

prime factors of dg, and set €, = 1 — ord,(dp).

10.1 Moduli spaces

Definition 10.1.1. Define % to be the category whose objects are triples (4,1, x) where (A4,1) is
a false elliptic curve over some Og-scheme with complex multiplication k : O — Endep,(A) (so in
particular, A satisfies the CM normalization condition). A morphism (A’,#', k") — (4,1, k) between
two such triples defined over Og-schemes T and S, respectively, is a morphism of Og-schemes

T — S together with an Og-linear isomorphism A’ — A xg T of false elliptic curves.

Definition 10.1.2. Let (4,i,x) € #(S) for some Ok-scheme S. A special endomorphism of (A, k)
is an endomorphism f € Endp, (A) satisfying

k(z)o f = fok(T)

112
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for all x € Ok. We write L(A, k) for the Z-module of all special endomorphisms and set V(A, k) =
L(A, /Q) X7, Q

We make L(A, k) into a left Ox-module through the action - f = x(x)o f. There is the quadratic
form deg™ on L(A, k) and this satisfies

deg”(x - f) = Ng/q(x) - deg™(f)

for all z € Og.

Definition 10.1.3. For any positive integer m, define ™ to be the category whose objects are
triples (A, &, f) where (A, i, k) € #(S) for some Og-scheme S and f € L(A, k) satisfies deg”(f) =m

on every connected component of S. A morphism
(AR 1) = (Ak, f)

between two such triples, with (A’,i', k') and (A, i, k) CM false elliptic curves over Og-schemes T
and S, respectively, is a morphism of Og-schemes T' — S together with an Og-linear isomorphism

g: A" — A xg T of false elliptic curves such that the diagram

A’ AXST

f/i leidT

A’49>AXST

commutes.

The same proofs as in Chapter 5 show that for any prime p C Ok, the group Wy x Cl(Ok) acts
simply transitively on [#(F,)] and that for any A € % (F,), there is an isomorphism of CM false
elliptic curves A = M ®p, E for some Op ®7 Ox-module M, free of rank 4 over Z, and some elliptic

curve E over F, with CM by O (supersingular in the case of the prime below p nonsplit in K).

Proposition 10.1.4. If (A, k) € % (C) then V(A, k) = 0 and if (A, k) € # (F,) then

. 1 i A is supersingular
(VA ) = { o T 2o erins

Proof. First fix a homomorphism Ox — C and suppose (4, k) € #(C). Since Endp, (A) is isomor-
phic to Z or an order in an imaginary quadratic field, k : Og — Endep,(A) is an isomorphism. It
follows that L(A, x) = 0. Now suppose (4, k) € #(Fy) for some prime p C Og. If A2 M ®0, E
with E ordinary, then End%B (A) 2 K and L(A,k) = 0 as above. If A is supersingular then
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End%B (A) = BW) where pZ = pN7Z. As K is a simple Q-algebra and B is a central simple
Q-algebra, by the Noether-Skolem theorem applied to the two maps K — B®) given by z — k(x)
and x — K(T), there is an f € (B®)* such that s(x) = f o k(Z) o f~! for all 2 € K. This means
f € V(A k), so dimg(V(A,x)) > 1. However, the K-subspaces x(K) and V (A, k) in B®) intersect
trivially, so B?P) = k(K) @ V(A, x) and dimg (V (4, x)) = 1. O

For each place £ < oo of Q let (-,-) : Q) x Q; — {£1} be the Hilbert symbol. For each positive

integer m define a finite set of prime numbers
Diffg(m) = {{ < 00 : (dg,—m)¢ - inv,(B) = —1}.

From the product formula

I (dx, —m), - inve(B) =1

JASS)

and (dx, —m)oo iV (B) = (=1, —1) o - inve (B) = —1, it follows that Diff 5(m) has odd cardinality.

If ¢ is a prime number split in K then ¢t dp by assumption and

Qe(vVdr) = K ®¢ Qr =2 Qp x Q.

The norm map Q(v/dx) — Qp is then just multiplication, so clearly —m is a norm from Q,(v/dk),
which means (dx,—m)e = 1. Hence (dg, —m)¢ - inve(B) = 1, which shows ¢ ¢ Diff g(m) if £ is split
in K.

Proposition 10.1.5. Let p C Ok be a prime ideal lying over a prime p. If #™(Fy) # O then
Diffg(m) = {p}.

Proof. Fix (A, k, f) € #™(F,). View K as a Q-subalgebra of B via x : K — B® and consider
the element f+ f* € B®). By definition, f* = A=Yo f¥ o\, where A\ : A — A" is the usual principal
polarization, so f! = fT where g — g' is the Rosati involution on Endg, (A) corresponding to A.
Since f + f* is fixed by the Rosati involution, we have f + f* € Z C Endp, (A4). However, as f is a

special endomorphism, for any = € K,

o(f+f)=af +aft =xf+ @' f =af + (fz)"
=fT+@f) =fr+fz=(f+ )7,

so from f + f! € Z it follows that f + f* = 0. Hence

m=deg"(f) = fofi=—f*.
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Setting 0 = v/dg € K C B®), the Q-algebra B is generated by elements ¢, f satisfying
52:dK7 f2:_m7 5f:_f67

the last relation coming from 6 = —4, so

dg,—m
B(P)g( K )
Q

. . ) L ifl#p,
(dx, —m)¢ - invy(B) = inve(B®) - invy(B) = { -1 ;ff i§7§7

Therefore

which means Diff g(m) = {p}. O

Corollary 10.1.6. If Diff g(m) = {p} then there is a unique prime ideal p C Ok over p and
W™(Fq) = O for every prime q # p. If #Diffg(m) > 1 then ™ = 2.

Proof. If #™(F,) # @ then Diff g(m) = {q} where ¢Z = qNZ. Hence p = g and then p = q since p
and ¢ are nonsplit in K. O

10.2 Local quadratic spaces

Let m be a positive integer, p a prime nonsplit in K, p C Ok the prime over p, and (4, x) € Z (Fy).

For each prime £ set
LZ(Aa K/) = L(A7 K’) ®Z ZZa W(Aa K) = V(A? H) ®Q QZ-

Proposition 10.2.1. If { # p is a prime then there is an Ok ¢-linear isomorphism of quadratic
spaces

(Ok.e, B Nie, jg,) = (Le(A, k), deg™)
for some B¢ € Zy with By = —1 if £41dp and ordy(Be) =1 if £ | dp.

Proof. First suppose ¢ 1 dp and let Ty = Ty(A) be the ¢-adic Tate module of A. The standard
idempotents €,&’ € My(Zy) = Op ®z Z¢ induce a decomposition Ty = €Ty § €'Ty. As the O
and Op ¢ actions on Ty commute, the Zy,-module €7} is an O ¢-module. In fact, €T} is a free Ok -
module of rank 1. Indeed, 7}y ®z, Q; is a K,-vector space of dimension 1, so there is an isomorphism
of K-vector spaces €1y ®z, Q¢ = K,, which identifies €T, with a finitely generated O ¢-submodule

of Ky, that is, a fractional O ¢-ideal. But every ideal of Ok, is principal, so €Ty = Ok as an

Ok ¢-module.
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There are Zg-algebra isomorphisms
Endo, (A) ®z Z; = Endo, (Ty) = Endg, (1)) = Endz, (Okr).
Let fo € Endyz, (Ok ¢) be defined by fo(x) = Z. Then
Endz, (Ok ) = Ok e ® Ok - fo
and L¢(A, k) = Ok ¢ - fo, so for any xfy € Li(A, k),

deg™(z fo) = —(SUfo)2 = —zfoxfo = —xffg = _NKe/Qe(fE)

since f& = 1. Therefore the map Ok — Li(A k) given by x — xfy defines an Ok g-linear

isomorphism of quadratic spaces
(Ok,e, —Ng,/0,) = (Le(A, k), deg”).
Now suppose ¢ | dg. Viewing K as a Q-subalgebra of B®) via k, there is a decomposition
BY = Ki® K- fo

for any fo € Vy(A, k). Choosing fy to be an O g-generator of Ly(A, k), the map = — zfy defines

an isomorphism of quadratic spaces
(Ok0,Be - Ni, jq,) = (Le(A, k), deg”)

with 3y = — f2 = deg™(fo). Then from

B = (dK@;ﬂe>

we have (dg, —B¢)¢ = —1 as ¢ | disc(B®).

In the proof of Proposition 7.1.2 we saw that Endep, (A) ®z Z; = Op ¢ is the unique maximal
order in BtE” ) and the quadratic form deg” on Endep,(A) ®z Z corresponds to the quadratic form
Nrd on Op., so f € B is in Endo, (A) @z Zy if and only if deg*(f) € Zs. As (dx,—Be)e = —1,
the element —f3, € Z; is not a norm from Q(v/dx) = Ky, which means ord,(—03¢) = ord(3,) is
odd (since K,/Qy is unramified). If ord,(8;) > 3 then deg*(¢~1fy) € Z; since deg”(¢) = ¢2, so

071 fo € Le(A, k). But fy is an Ok g-module generator of L,(A, ), so this is a contradiction and
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hence ord,(8) = 1. O
Proposition 10.2.2. There is an Ok p-linear isomorphism of quadratic spaces
(OKﬁD’ﬁP ’ NKp/Qp) = (LP(A’ KJ)’ deg*)
for some B3, € Z, satisfying ord,(8,) = 2 — epep.
Proof. There is an O ,-linear isomorphism of quadratic spaces
(OKJ?’ 517 . NKp/Qp) - (LP(A7 H)v deg*)

given by x — zfo, where fo is an Ok ,-module generator of L,(A, k) and 5, = deg™(fy). First

(5

suppose p{dp. Then

implies (dx, —0p)p = —1, and Endp, (A) ®z Z,, = A is the unique maximal order in B;(,p). Suppose
p is unramified in K, so ord,(8,) is odd. If ord,(3,) > 3 then deg*(p~'fo) € Z,, which means
p~'fo € L,(A, k). This is a contradiction, so ord,(83,) = 1. Next suppose p is ramified in K and let
7 € Ok,p be a uniformizer. If ord,(3,) > 0 then deg™ (7' fo) € Z;, as Nk, g, (7) is a uniformizer of
Zy,. Again this implies 7! fo € L, (4, k), which is a contradiction, so ord,(8,) = 0.

Now suppose p | dg, so Endp, (4) ®z Z, = Ri1, with

T 11
(g ] o)

where II € A is a uniformizer satisfying Ilz = ZII for all x € Ok ,, and & : Og , — Ry is given by
k(z) = diag(z, ). It follows that L,(A, k) = Ok,p - fo, where
0 II

Since 3, = deg*(fo) = —p* (Proposition 7.2.2), we have ord,(3,) = 2. O
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10.3 Counting geometric points

Define two algebraic groups T and T over Q whose functors of points are given by

T(R) = (K ®q R)”
T'(R) = {z € T(R) : Ng/q(z) = 1}

for any Q-algebra R. Define a homomorphism 7 : T — T* given on points by n(z) = 7~ 'z. Let
U= @IX( CT(Ay) = K>, soU = [1, Ue for some groups Uy, C T(Qy), and let V = n(U). If R is a

field of characteristic 0 or Ay, then the sequence
1—-R*—>T(R)LTYR) —1 (10.3.1)
is exact, so in particular there is an isomorphism of groups
T(Q\T(Af)/U =THQ\T" (Af)/V. (10.3.2)
Also, there is an isomorphism of groups
T(@\T(Af)/U — Cl(Ok) (10.3.3)

given by
i H pordp(t,,).

pCOxk

Let p be a prime that is nonsplit in K, let p C Ok be the prime over p, and let (A4, k) € ¥ (F,).
Recall that K acts on V (A, k) by z - f = k(x) o f. By restriction, the group T1(Q) C K* acts on
V (A, k), and for any m € Q*, the set

{f € V(A k) : deg™(f) = m}

is either empty or a simply transitive 7" (Q)-set. By composing with the homomorphism 7 : T — T,

the group T(Q) acts on V (A, k), and this action is given by
tef=r(t)o for(t) L.

Now fix t € Ay and let a € C1(Ok) be its image under (10.3.3). We will write a ® A for the false
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elliptic curve a ®o,. A. There is an Ok-linear quasi-isogeny

f € Homp, (4,a® A) @z Q,
given on points by f(z) =1 ® z. Then the map

Endp, (a® A) — Endg, (A)

given by ¢ +— f~loyo f is an isomorphism of K-vector spaces, and restricting gives an isomorphism
V(e® A, k) — V(A, k). This map identifies Endp, (a ® A) with the Og-submodule

k(a) o Endp, (A) o k(a™t) C End%B (A)

and identifies L(a ® A, k) with x(a) o L(A, k) o k(a~!). Therefore there is a K-linear isomorphism

~ ~

V(A,k) 2V (a® A, k)
with L(a ® A, ) isomorphic to the O x-submodule
te DA k) = {w(t) o for(t): f € E(A,n)}

of V(A, k).

Definition 10.3.1. Let (4, ) € #(F,). For each prime number ¢ and m € Q*, define the orbital
integral at ¢ by

Oy(m, A, k) = > 1o, e f)
teQ; \T(Q¢)/Ue

if there is an f € Vp(A, k) satisfying deg™(f) = m. If no such f exists, set Oy(m, A, k) = 0.

This definition does not depend on the choice of f € V;(A4, k) such that deg”(f) = m since T'(Qy)

acts simply transitively on the set of all such f.
Proposition 10.3.2. Let p be a prime nonsplit in K, let p C Ok be the prime over p, and suppose

(A k) € Z(F,). For any m € Q% positive,

Z #{feLla® A, k) :deg”™(f) =m} = !HOg(m,A,H).

aeCl(Ok) ¢
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Proof. Using the isomorphisms (10.3.3) and (10.3.2), we have
S #{f € La® A x) : deg’ (f) = m)

aeCl(Ox)
> Y liwean()

a€ClOk) fEV (a®A,k)
deg™(f)=m

Z Z 1toE(A,n)(f)

teT(Q\T(Af)/U fEV(A,kK)
deg™ (f)=m

Z ltoE(A,n)(f)'

tETH(QN\T(Af)/V fEV(Ak)
deg” (f)=m

Suppose there is an fy € V(A, k) such that deg*(f) = m. Since the action of T (Q) on the set of

all such fj is simply transitive,

Z Z Leigan ) = Z Z LieZ(an) (v~ e fo)

teTH@\T (Af)/V fFEV(AR) teTH(@\T! (Af)/V v€TH(Q)

deg” (f)=m
= > Y Lk (o)

teTH(@\T* (Af)/V v€TH(Q)

THQNVE Y Lpan(fo)

teTl(Ay)/V

9 f(m7 7"{')7
£

where we are using

THQ) NV =(T(Q) NU)/{£1} = O /{£1}

and the isomorphism

QT (Qe)/Ue = TH(Q0)/ Ve

coming from the exact sequence (10.3.1). If there is no such fy then by the Hasse-Minkowski theorem
there is some prime ¢ < oo such that (V;(4, ), deg™) does not represent m (Voo (A, k) does represent

m). Thus Oy(m, A, k) = 0 and both sides of the stated equality are 0. O

Proposition 10.3.3. If (A, k) is any object of % (F,) and m is a positive integer, then

#(@™(F,)) = 2" [ Oclm, A, ),
l
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where r is the number of primes dividing dp.

Proof. The group Aut(A4, k) acts on the set L(A, k) by
g-f=glofoyg
for g € Aut(A, k) and f € L(A, k). Under this action the stabilizer of f is
Stab(f) = {g € Aut(A, k) : g o fog= f} = Aut(A4,k, f).

Since Endo,g,0, (A) = Ok, we have Aut(A, k) = O, so an element of Aut(A,x, f) is k(x) for
some r € O satisfying r(z) o f = for(z). But f is a special endomorphism, which means
k(z) = k(Z) and thus x € {£1}. This shows Aut(A, &, f) = {£1} for f € L(A, k).

As the group Wy x Cl(Of) acts simply transitively on the set [#/(F,)],

S B SN DI - . RPN

(A,r)e[# (F,)] FEV(AK)
deg™(f)=m

9
~ o7 > Y Ligeaw()

| gEWo xCl(OK) fEV(9-A,k)
deg” (f)=m

But the action of Wy on [#(F,)] does not change the underlying false elliptic curve or the CM
action, so V(w- A, k) 2 V(A, k) for any w € W)y, and therefore

#[Z™(Fp)) = 2||(;/ZO| Z Z 1E(u®A,n)(f)
K

aeClOk) fEV (a®A,k)
deg” (f)=m

=2" H O¢(m, A, K)
[
by Proposition 10.3.2. O
Recall the definitions of the functions R and R, from the introduction.

Proposition 10.3.4. Let ¢ be a prime, m a positive integer, and (A, r) € ¥ (Fy). If the quadratic
space (Vi(A, k),deg") represents m, then

O¢(m, A, k) = egRg(md;p(e”_l)sf’_l).
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Proof. Fix an f € Vy(A, k) satisfying deg”(f) = m and fix an isomorphism
(O, 80 -Ni,jq,) = (Le(A, k), deg”)
with Gy as in Propositions 10.2.1 and 10.2.2. Using the isomorphism
QN\T(Qe)/Ue = TH(Q0)/ Vi
we have
Oum, A k)= > 1o, (')
teT(Qe)/ Ve
First suppose ¢ is inert in K. Then Q,\K, /U, = {1}, so T*(Q,)/V; = {1}. Hence

Oﬁ(ma A, R) = 1OK,Z (f) = Rf(mﬁgl)

since Ng, /q,(f) = mﬂ[l. Next suppose / is ramified in K and let 7 € Ok be a uniformizer. Then
QK[ /Uy = {1,7} and TH(Qy)/Ve = {1,u} where u=7"'7 € (’)IXM, S0

Ol(m7 A7 K') = 10K,e (f) + 1(9}(,2 (U'_lf) = QRE(mﬂz_l)'
Finally suppose / is split in K, so Ky =2 Qp x Q. Then
QK[ /U = {(£F,0) : k € Z}
and TY(Qy)/Vy = {(¢F,£7F) : k € Z}. Writing f = (f1, f2) € Q¢ x Qg, we have
Oc(m, A, k) = 1z,z, (" f1, €7 f)
keZ
=1+ orde(f1) + orde(f2)
=1+ orde(f1f2)

=1+ orde(mp; ")
= Re(mp; ). =

Theorem 10.3.5. Let m be a positive integer. If Diff g(m) = {p} then

#[27"(Fy)] = 277 R(mdy'pler— Do),
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where p C Ok is the unique prime over p. Furthermore, the number #[@m(ﬁp)] 18 nonzero.

Proof. Let (A, r) € #(F,), so Endg, (A) = B®). From Diff 5(m) = {p} we have

[ =1 if ¢ disc(B®)
(dic, =m)e = { 1 if ¢4 dise(B®),

dK —m
B(P o~ (’> .
Q

Hence B(®) has a Q-basis {1,, f,5f} satisfying

so there is an isomorphism

02 =dg, f2=-m, of=—Ff5.

Embed K into B?) via v/di — 6. Then {f,5f} is a Q-basis for V (4, k) C Endp,, (A) and Nrd(f) =
m. Thus, there is an f € V (A, k) satisfying deg”(f) = m. Then by Propositions 10.3.3 and 10.3.4,

#[@m(Fp)] =27 HO@(m, A, K)
¢

—9r H egRg(md];lp(ep_l)Ep_l)
)4
_ 2T+SR(md§1p(€p71)6p71).

Now we will show that this number is nonzero by showing R, = Ry(mdg'pl»~1e»~1) is nonzero
for each prime £. First suppose £ # p. If £ { dp then (dx,—m), = 1, which means —m € N, /q, (K/)
and thus Ry = Re(m) > 0. If £ | dp then (dg,—m), = —1, so —m ¢ Ng,q,(K¢). As Ky/Qq
is unramified, this is equivalent to ord,(m) being odd and hence mf~! & Ng, /0, (Ke), so Ry =
Re(m{~1) > 0. Finally we consider £ = p. If ptdp then (dg,—m), = —1,s0 —m ¢ Ng_ g, (K,). If
K,/Qp is unramified then mp~* € Ng_ g, (K,) and thus R, = R,(mp~') > 0. If K,,/Q,, is ramified
and 7 € Ok, is a uniformizer, then N(7*Of ,) = mZ, where k = ord,(m), so R, = R,(m) > 0. If

p | dp then (dx,—m), = 1, which implies ord,(m) is even and therefore R, = R,(mp~2) >0. O

10.4 Deformation theory

Let p be a prime nonsplit in K and let p C Ok be the prime over p. Let # be the ring of integers
in the completion of the maximal unramified extension of K, so # is an Og-algebra. Let CLN
be the category of complete local Noetherian # -algebras with residue field Fy,, where a morphism

R — R’ is a local ring homomorphism inducing the identity F, — F, on residue fields.
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For = (A,i,r) € #(F,) define a functor Defo, (A, Ok) : CLN — Sets by assigning to
each R € CLN the set of isomorphism classes of deformations of x to R. Just as in Corollary
5.1.3, Defo, (A4, Ok) is represented by # . Also, there is an isomorphism A & M ®¢,. E for some
Op ®70k-module M and some supersingular CM elliptic curve E over EJ, and if we define a functor
Def(E,Ok) : CLN — Sets in the obvious way, there is an isomorphism of functors Defo, (A4, Ok ) =
Def(E, Ok). For (A,i, k) € Z(F,) and f € Endop, (A), define a functor Def(A, x, f) : CLN — Sets
by assigning to each R the set of isomorphism classes of deformations of (A,,k, f) to R. If R €
CLN, (4,k,f) € #™(F,), and (E,E, f) is a deformation of (4, k, f) to R, then me must have

(A%, f) € #™(R). To see this, consider the following two commutative diagrams

~ _ f®id ~ — ~ — R(zr)®id ~ _
A9pF, — 2 > AopF, AogpF,—— > AgsF,
A ! A A @) A

It follows from the first diagram that deg*(f) = deg™(f) and combining the two diagrams with the
fact that f is a special endomorphism implies fis a special endomorphism.

Now fix a positive integer m and a triple (A, x, f) € Z™(Fy).

Proposition 10.4.1. If ptdp and p is inert in K, then the functor Def(A, k, f) is represented by
a local Artinian # -algebra of length (ord,(m) + 1).

Proof. Since p 1 dp there is an isomorphism of Z,-algebras Endp,(A4) ®z Z, = A. Let O, = Z,»
be the image of k : Ok, — A. Fix a uniformizer II € A satisfying Ilu = «‘Il for all u € O, C A,
so there is a decomposition of left Or-modules A = O & OLIIL. It follows that L,(A, k) = OII, so

for any integer n > 1,

feEOL+p" A = fep" 'Ol
<= ordp(deg”(f)) > 2n—1

< 1(ordy(m)+1) = n,

where we are using that f € L,(A4, k).

As pisinert in K, # = W. The functor Def(A, &, f) is represented by W,, = W/(p™) where n is
the largest integer such that f € Endp, (A[p>°]) = End(g) lifts to an element of Endyw, (& @w W),
where & is the universal deformation of g with its Op-action to W. By (8.1.1),

Endwn(ﬁ Rw Wn) >~ O —|—pn_1A,
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so the result follows from the above calculation. O

Proposition 10.4.2. If p | dg then Def(A, k&, f) is represented by a local Artinian # -algebra of
length ord,(m).

Proof. Fix a uniformizer II € A satisfying ITu = u*Il for all u € O C A, where Oy, is the image
of the CM action Ok, — A on the elliptic curve E such that A = M ®o, E. Then there is an
isomorphism of Z,-algebras Endp, (4) ®z Z, = R, where

_ r oyl
R—{{pyﬂ m}.z,yEOL},

so there is a decomposition of left Op-modules R = Of & O P, with the first factor embedded
diagonally and
0 II
P [pn 0] .

It follows that L,(A, x) = OrP and hence for any integer n > 1,

feOg -l-pn_lR — fe pn_IOLP
<= ordy(deg”(f)) = 2n

< tord,(m) >n.

The functor Def (A, k, f) is represented by W,, = W/(p™) where n is the largest integer such that
f € Endo,, (A[p™®]) = R lifts to an element of Endo, g, w, (A[p™] @w W), where A is the universal
deformation of (A, 4, k) to W. By Lemma 8.2.2,

EndoB@ZWn (Av[poo] Qw Wn) =0+ pn—lR’

so the result follows from the above calculation. O

Proposition 10.4.3. If p 1 dp and p is ramified in K, then Def(A, k, f) is represented by a local
Artinian ¥ -algebra of length ord,(m) + 1.

Proof. There is an isomorphism of Z,-algebras Endp, (4) ®z Z, = A. Let Oy, be the image of
k:Okgp— A If T € Ok, is a uniformizer then II = () is a uniformizer of O, and of A. From

Proposition 10.2.2 there is an O p-linear isomorphism

(OKaP’ﬁP : NKp/Qp) = (LP(A,H)vdeg*)
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with 3, € Z, so by O p-linearity this isomorphism sends 7" O, isomorphically to 11" L, (4, ).

Viewing f both as an element of L,(A, k) C A and as an element of Ok ,,, we have

UA( )_ord (f)
= ord (NK /Qp( )
= ord,(BpNk, /0, (f))
p(

= ord,(m).
There is a decomposition of left Or-modules A = O @ L,(A4, k), so for any integer n > 1,

feEOL+T" A <= fell" 'L,(A, k)
— va(f)zn—-1

< ord,(m)+1>n

The functor Def(A, &, f) is represented by #,, = # /(n"™) where n is the largest integer such that
f € Endo, (A[p™]) = End(g) lifts to an element of

Endy, (6 @y #;,) = O + 11" 1A,

where & is the universal deformation of g with its Op-action to #'. The result now follows from the

above calculation. O

10.5 Final formula

Theorem 10.5.1. Suppose p is a prime nonsplit in K, let p C Ok be the prime over p, and let
m € Zt. Foranyy € ¥™ (Fp), the strictly Henselian local ring ﬁ%lmyy is Artinian of length

ord,(m) + €
—

€p -

Proof. Using the same argument as in the proof of Theorem 8.3.1, the functor Def(A, &, f) is rep-
resented by the ring @E}M’y, where y = (4, K, f) € #™(F,), so the result follows from Propositions
10.4.1, 10.4.2, 10.4.3. O

Theorem 10.5.2. Let m € Zt and suppose Diff g(m) = {p}. Then

deg(#™) = 2" ¢ log(p) - R(mdglp(ep_l)ap_l) - (ordp(m) + €p).
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If # Diff g(m) > 1 then deg(#™) = 0.

Proof. Let p C Ok be the prime over p. Since ™ (F,) = @ for all primes q # p, for any y € ™ (F,)

we have

deg(#™) = log(|Fy|) - #(2 ™ (Fy)] - length(G% )
ord,(m) + &,
2

= 2" log(p) - R(mdglp(ep_l)sp_l) - (ordp(m) + €p)

= f -log p) - 27'+5R mdflp(ep_l)fp_l .e
p B P

by Theorems 10.3.5 and 10.5.1. If # Diff g(m) > 1 then #™ = @. O



Appendix A

Hecke correspondences

In this section we will define the Hecke correspondences T}, on .# and .# 2, and prove the equalities
(1.1.2) and (1.2.2) in the introduction (we continue with the same notation as in Sections 1.1 and
1.2 of the introduction). We begin by reviewing some intersection theory. For any ring R we write
length(R) for lengthp(R). Suppose X is a Noetherian scheme and Z C X is a closed subscheme
of codimension 1. Let Zy,...,Z, be the irreducible components of Z that are of codimension 1 in
X. Set m; = length(0z,,) where n; € Z; is the generic point. There is a divisor [Z] € Div(X)

associated with Z, defined as
i=1

In particular, [Z] = Z if Z is integral. Now suppose £ is a Noetherian stack and % is a closed
substack of codimension 1. Using an atlas on 2", the previous definition for schemes can be extended
to stacks to give a divisor [Z] € Div(Z") (see [27, Definition 3.5]). Suppose h : 2~ — 2 is a
morphism of Noetherian stacks of the same dimension. In the case of h finite and flat there is an

induced group homomorphism
h* : Div(Z2") — Div(Z")

defined on prime divisors by h*2 = [2 X g 2] and extended linearly to all of Div(Z”). If h is
proper and representable, there is a notion of the image of h, which is a closed substack of 2",
defined through an atlas and the scheme-theoretic image (see [27, Definition 1.7]). For h finite, flat,

and representable, this leads to a group homomorphism

h, : Div(2") — Div(2")

128
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defined by sending a prime divisor 2 to deg(2/2’) - [Z'], where 2’ is the image of & under h and
deg(2/2') is the degree of the morphism ¥ — 2’ (see [27, Definition 3.6]).

Fix a positive integer m. Let .#(m) be the category fibered in groupoids over Spec(O) with
A (m)(S) the category of triples (E1, Ea, ) with E; an object of .Z(S) and ¢ € Homg(E1, Es)
satisfying deg(¢) = m on every connected component of S. The category .#(m) is a stack, flat of

relative dimension 1 over Spec(QOf), and there are two finite flat morphisms

given by m;(E1, Es, ¢) = E;. Define the m-th Hecke correspondence
T : Div(A4) — Div(4)

by T, = (m2)x 0 (m1)"

For i € {1,2} let f; : 6; — .# be the finite morphism defined by forgetting the complex
multiplication structure. Consider the fiber product 21 = 61 Xy, 4., #(m). An object of 7,
is a tuple (E, E1, Eq,¢,1), where E is an object of 41, (E1, Ea, ) is an object of .#(m), and
1 : E — Fp is an isomorphism of elliptic curves. Up to the obvious isomorphism of stacks, the
objects of 21 can be described as triples (E1, Fa, ¢) with E; an object of 41, E2 an object of .#,
and ¢ : 1 — E5 a degree m isogeny. Now let g be the composition 2y — .#(m) = .#. The fiber
product & = 1 Xg4_u,f, €2 has objects (E1, Es, E, ¢,9) with Eq an object of €1, E an object of
s, v : 1 — E5 a degree m isogeny, and ¢ : F; — E an isomorphism of elliptic curves. It follows
that there is an isomorphism of stacks & = .7,,, with .7, as in the introduction. Below is a diagram

of these spaces and morphisms:

/ff\% (A.0.1)
AN
RNIZERNY

Viewing 2, as a closed substack of .#(m) through the image of 2, — .#(m), the divisor T,,%1 on
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M is (72)[21], so to prove deg(Ty,) = (T, €1, 62), we need to show
deg(T1 Xg0.1, 62) = I((m2).| 211, [2), (4.02)

where we are writing [63] for the divisor on .# determined by the image of fs.

Let k = Fy for P C Ok a prime ideal and let z € .# (k) be a geometric point. For any two
prime divisors % and %’ on .# intersecting properly, define the Serre intersection multiplicity at
x by

Iz, 7= z:(—l)ilelrlgth@s%}},m Toriﬁi’]}’x(ﬁg}

i>0

ﬁ%’,z)

71/"

if 2 € (2N 2 (k) and set I;7(2,2') = 0 otherwise. Extend this definition bilinearly to all
divisors on .. Again, if 2 and 2" are prime divisors on .# intersecting properly, there is a way

of defining a O-cycle & - %’ on .# in such a way that
Coef (2 - 2" =I7 (%, 2",

where Coef, (2 - 2) is the coefficient in the O-cycle 2 - %’ of the 0-dimensional closed substack
determined by the image of x : Spec(k) — .# (see [25, Chapter V] and [26, Chapter IJ).

With notation as in (A.0.1), let P2 = A (M) Xny, a1, €2, S0 [Do] = (m2)*[62]. Also, let = €
A (m)(k) be a geometric point with « = (Ey, Ea, ) where E; is an object of %;. We claim

ﬁSh .
Tor, -//Z(M)«z(ﬁbg}'lhx’ ﬁ%h?’r) =0 (A.0.3)

for all ¢ > 0. To prove this, first consider the stack 2] = €1 Xy, # x, #(m). This category has
objects (E1, Ea2,¢) with Ey an object of .#, Es an object of €1, and ¢ : E; — E5 a degree m
isogeny. It follows that there is an isomorphism of stacks 2] = 2; and
h  ~ msh ~ ssh
ﬁsgl,a: =% T T ﬁjﬂ(m),l ®ﬁ*;!

sh
o (@) ﬁcglvﬂ'l (x)°

We already have

sh ~ ysh sh
00 = Ot m)e O0% 0y Pl sty
so from ms being flat,
O (m) h h h O ma(w) ( sosh h
P m),x S S ~ S. AT (T S, S
TOI“Z» (ﬁ@hxv ﬁ@z,x) = ﬁ//l(m),x ®ﬁj2,”2($) TOI‘Z- (ﬁ%lnrl(x)v ﬁ‘é’g,ﬂz(x))'

As ﬁj;}m(w) and ﬁ’%};m(l) are regular local rings of dimension 2 and 1, respectively, ﬁ%,m(w) is a
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Cohen-Macaulay ﬁj;;m( -module, and thus (A.0.3) holds for all ¢ > 0 by [25, p. 111].

)

There is a projection formula

((m2)[Z1]) - [€2] = (m2)«([Z1] - ((72)"[€2])),

where the (m2). on the right side is the induced homomorphism on the group of 0-cycles. This is
a special case of a more general formula, but it takes this form in our case since (A.0.3) holds (our
situation is complicated by .#(m) not necessarily being regular; see [25, p. 118, formulas (10),
(11)]). It follows that for any y € . (k),

L7 ((m2) <[], [62]) = Coefy, (((m2)+[1]) - [42])
— Coef, (7). (91] - (m2)"[%2])))
— Z Coefx([@ﬂ : ((7T2)*[(52]))

z€my ' ({y})

S L), (2)).

z€my ' ({y})

Letting h; : 9; — .# (m) be the natural projection, there is an isomorphism of stacks

DL Xyt (m) ks D2 = D1 X byt (m) he (A(M) Xyt 15 C2) = D1 X gt 5, Co.
Also, by (A.0.3) we have

LA ((2), (2s)) = lengthﬁj;;(m)wz(ﬁs@hl,z Qg 0%, )

h h
= length(07, , Do, Oy )-
Note that there is no distinction here between length of a ring over itself and length as a module

over ﬁj}(m)’x or ﬁj}} because these rings have residue field k& which is algebraically closed.

,7!‘2(17)

Therefore, for any y € .# (k),

Z length(ﬁsghlxg,.//l,fz%%w) = Z 1ength(6)s@hlxh1v-//l(m):h2 @2’$)
wery  ({y}) wer; ({y})

Y. LAM(2) (2]

zemy ' ({y})

= I," ((m2).|21), [%2)).
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Since @5 is regular and the local ring at y of any prime divisor appearing in (m2).[Z1] is a 1-
dimensional domain, hence Cohen-Macaulay, the Tor; terms appearing in the sum I,f‘ ((m2)«[P1], [€2])
are zero for all 4 > 0. Multiplying both sides of the above equality by log(|Fyg|)/| Aut(y)| and sum-
ming over all y and over all 8 then gives the equality (A.0.2).

Now we move to the false elliptic curve case. Fix a positive integer m. Let .#7(m) be the
category fibered in groupoids over Spec(Of) with .#2(m)(S) the category of triples (A1, As, @)
with A; an object of .#P(S) and ¢ € Homp,, (A;, A2) satisfying deg”(p) = m on every connected
component of S. The category .#F(m) is a stack, flat of relative dimension 1 over Spec(OQf), and

there are two finite flat morphisms

given by m; (A1, A2, ¢) = A;. Define the m-th Hecke correspondence
T, : Div(.#®) — Div(.# ")

by T, = (m2).0(m1)*. The proof of the equality (1.2.2) in the introduction is exactly the same as the
proof of (1.1.2) we just gave because all we used were formal properties of the stacks .#, .# (m), ¢,

and %5, and the corresponding stacks .# 2, .# " (m), %1, and % have these same properties.
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