
Persistent link: http://hdl.handle.net/2345/bc-ir:104129

This work is posted on eScholarship@BC,
Boston College University Libraries.

Boston College Electronic Thesis or Dissertation, 2015

Copyright is held by the author, with all rights reserved, unless otherwise noted.

Thermoelectric transport properties of
nanostructured FeSb2 and Ce-based
heavy-fermions CeCu6 and CeAl3

Author: Mani Raj Pokharel

http://hdl.handle.net/2345/bc-ir:104129
http://escholarship.bc.edu


Boston College 

The Graduate School of Arts and Sciences 

Department of Physics 

 

 

THERMOELECTRIC TRANSPORT PROPERTIES OF 

NANOSTRUCTURED FeSb2 AND Ce-BASED HEAVY-FERMIONS 

CeCu6 and CeAl3 

 

 

a dissertation 

by 

 

Mani R. Pokharel 

 

submitted in partial fulfillment of the requirements 

for the degree of 

 

Doctor of Philosophy 

 

January 2015 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 copyright by Mani R. Pokharel 2015 



Abstract 

Title: THERMOELECTRIC TRANSPORT PROPERTIES OF NANOSTRUCTURED FeSb2 

AND Ce-BASED HEAVY-FERMIONS CeCu6 and CeAl3 

Author: Mani R. Pokharel 

Advisor: Dr. Cyril P. Opeil, S.J. 

Committee Members: Dr. Michael J. Graf, and Dr. Stephen D. Wilson 

Thermoelectric (TE) energy conversion is an all-solid-state technology which can convert 

waste thermal energy into useful electric power and cool ambience without using harmful gases 

like CFC. Due to their several advantages over traditional energy conversion technologies, 

thermoelectric generators (TEG) and coolers (TEC) have drawn enormous research efforts. The 

objective of this work is to find promising materials for thermoelectric cooling applications and 

optimize their thermoelectric performances. Finding a material with a good value for the 

thermoelectric figure-of-merit (ZT) at cryogenic temperatures, specifically below 77 K, has been 

of great interest. This work demonstrates that FeSb2 1, CeCu6 2 and CeAl3 3, all belonging to a 

class of materials with strongly correlated electron behavior; exhibit promising thermoelectric 

properties below 77 K.  

In general, ZT of a TE material can be increased using two basic approaches: lattice 

thermal conductivity reduction and power factor (PF) enhancement.  The results of this study 

indicate that nanostructuring effectively decreases the thermal conductivity of FeSb2, CeCu6 and 

CeAl3 leading to improved ZT. The approach of introducing point-defect scattering to further 

reduce the thermal conductivity is successfully implemented for Te-substituted FeSb2 

nanostructured samples 4. A semiconductor/metal interface has long been proposed to exhibit 

enhanced thermoelectric properties. We use this technique by introducing Ag-nanoparticles in the 



host FeSb2 which further increases ZT by 70% 5.  

Additionally, a detailed investigation is made on the phonon-drag effect as a possible 

mechanism responsible for the large value of the Seebeck coefficient of FeSb2 6. We show that 

the phonon-drag mechanism contributes significantly to the large Seebeck effect in FeSb2 and 

hence this effect cannot be minor as was proposed in literatures previously.  A model based on 

Kapitza-resistance and effective medium approach (EMA) is used to analyze the thermal 

conductivities of nanostructured FeSb2 samples 7. We find a notably large value for Kapitza 

length at low temperatures indicating the dominance of inter-grain thermal resistance over bulk 

thermal resistance in determining the thermal properties of FeSb2.  
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Chapter 1: Introduction to Thermoelectricity 

 

1.1 Introduction 

Thermoelectricity involves a fundamental interplay between the electronic and 

thermal properties of a system. These effects are most often observed by measuring 

electrical quantities like voltage and current induced by thermal gradients. Although the 

thermoelectric phenomena were observed by Peltier as early as18th century, renewed 

interest in the recent decades is due to the potential application of these phenomena in 

solid state energy conversion.  The demand for energy resources in a modern world, 

particularly fossil fuels increases as the populations rise. . Simultaneously, increased 

population results in the emission of harmful gases like carbon dioxide, and 

chlorofluorocarbons etc., which contribute to the problem of global warming. In order to 

alleviate this problem for future generations some technological innovations will be 

necessary.  Direct solid-state conversion between thermal and electrical energy could be 

part of the solution to the approaching crisis in our demand for future energy. In this 

chapter the three fundamental thermoelectric principles will be introduced: the Seebeck 

effect, the Peltier effect and the Thomson effect. The factors affecting the efficiency of 

thermoelectric energy conversion, specifically material properties, will be discussed.  

 

1.2 Basic Thermoelectric Phenomena 

 

1.2.1The Seebeck Effect 

 In 1821, Thomas Seebeck discovered a phenomenon in which a voltage develops 



 

2 
 

when two different conductors are joined together and the junction is heated [1-4] as 

shown in Figure 1.1. For a pair of metals (semimetals or semiconductors) as depicted in 

Figure 1.1, the thermal emf ΔV is given by, 

                                            𝛥𝛥 = (𝑆𝐴 − 𝑆𝐵) 𝛥𝛥 =  𝑆𝐴𝐵 𝛥𝛥                                          (1.1) 

 

  

 

Figure 1.1 A junction is formed by using two dissimilar metals A and B. When the 

junction is heated an amount �T, a thermal emf is developed across the junction at the 

left.. Figure was taken from reference [5]. 

 

The quantity SAB is called the relative Seebeck coefficient and is the difference 

between absolute Seebeck coefficients of the two materials A and B. The ΔT in Fig. 1.1 is 

the temperature difference between hot and cold ends. Although the Seebeck coefficient 

becomes apparent at junctions, it is essentially a property of bulk material. A Seebeck 

voltage develops in a single bulk material when its two ends are kept at different 



 

3 
 

temperatures as shown in Figure 1.2. For a single bulk material, the relation for the 

Seebeck coefficient is given as, 

                                                      𝛥𝛥 = 𝑆 𝛥𝛥                                                                (1.2) 

where S is the absolute Seebeck coefficient of the bulk material, where ΔT represents the 

temperature difference along the sample . Polarity of the Seebeck voltage depends upon 

whether the bulk material has electron (n) or hole (p) charge carriers, normally referred to  

n-type or p-type materials (Figure 1.2).   

 

 

Figure 1.2 Both n-type and p-type thermoelectric materials are subject to a thermal 

gradient. In both the materials majority carriers (electrons: e- and holes: h+) flow from 

hot to cold side but the sign of induced Seebeck voltage is different. 

Generation of the Seebeck voltage in a material is due to the difference in carrier 

energy (entropies) at hot and cold ends. At the hot end, the energy of carriers is higher 
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with higher carrier density above Fermi level [6]. This will cause a net diffusion of 

carriers from the hot to the cold side until there is a sufficiently large electric field 

generated to stop the further diffusion. The density and energy of carriers at two ends of 

the material with temperature gradient is shown in Figure 1.3. 

The most common application of the Seebeck effect is in thermoelectric 

thermometry i.e. thermocouples, where the induced thermoelectric emf is used to 

measure temperature. This same principle can be used to produce a useful electrical 

output wherever there is a thermal differential and the material possesses a significant 

Seebeck coefficient.  

 

 

 

Figure 1.3 Schematic diagram showing density of states (DOS) at hot and cold ends of a 

thermoelectric material. The shape of the DOS at each end changes due to the 

temperature differential. Picture is taken from reference [7].   
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1.2.2 The Peltier Effect 

In 1834, the French scientist, Jean-Charles Peltier discovered a reverse effect of 

the Seebeck effect in which, when an electric current passes through the junction between 

two different conductors, heat is liberated or absorbed across that junction depending 

upon the direction of the current flow [8]. A thermodynamic circuit demonstrating this 

effect is shown below in Figure 1.4. This effect is quantified by Peltier coefficient (πAB).  

For a pair of material as shown in Figure 1.4, πAB is given by the relation, 

                                                        𝜋𝐴𝐵 = 𝜋𝐴 − 𝜋𝐵                                                   (1.3) 

Here πA and πB are absolute Peltier coefficients (equivalent to entropies) of the two 

conductors A and B respectively. Thus, the Peltier effect (like Seebeck effect) arises as a 

result of the entropy difference between the components of the junction [5]. The rate of 

heating or cooling (Q) at one of the junctions when an electric current I passes around the 

circuit is related to the Peltier coefficient, πAB, as  

                                                            𝜋𝐴𝐵 = 𝑄
𝐼
                                                            (1.4) 

  

 

2 1 
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Figure 1.4 Thermoelectric circuit connecting two dissimilar metals A and B.  An external 

electrical source drives a current through the circuit which causes liberation of heat at one 

junction and absorption at the other [5]. 

πAB is regarded as positive if junction 1 becomes heated and junction 2 becomes cooled 

when the electric current in A passes from 1 to 2 [9]. 

1.2.3 The Thomson Effect  

In 1851, W. Thomson established a relationship between the Seebeck coefficient 

and Peltier coefficient predicting a third thermoelectric phenomenon called the Thomson 

Effect [10-13]. In this effect, when a current carrying conductor is subjected to a 

temperature gradient, the conductor absorbs or emits heat as shown in Figure 1.5. This 

effect is quantified by the Thomson coefficient (τ). For a conductor carrying a current I, 

Thomson coefficient (τ) is defined as, 

                                   𝜏 = 𝑑𝑑/𝑑𝑑
𝐼 𝑑𝑑/𝑑𝑑

                                                                    (1.5) 

where dq/dx is the rate of heating per unit length and dT/dx is the temperature 

gradient.  
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Figure 1.5 A demonstration of the Thomson Effect where a temperature gradient across a 

current carrying conductor causes heat absorption and a current evolution in the 

conductor. 

 

The absorption or emission of heat depends on the direction of flow of electrical carriers 

with respect to a temperature gradient [5]. The carriers absorb heat when they are flowing 

in a direction opposite to a thermal gradient, and when flowing in the same direction as a 

thermal gradient, they liberate heat. 

 

1.2.4 Kelvin Relations 

The Thompson effect combines the Seebeck and Peltier coefficients by the 

Thompson -Kelvin relations. For a pair of materials A and B as explained above, these 

relationships are 

                                                     𝜏𝐴 − 𝜏𝐵 = 𝛥 𝑑𝑆𝐴𝐴
𝑑𝑑

                                                  (1.6) 

and 

                                                     𝜋𝐴𝐵 = 𝑆𝐴𝐵 𝛥                                                           (1.7) 
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From an experimental point of view the Seebeck coefficient can be measured directly and 

hence is more readily determined than the Peltier coefficient. The second Thompson -

Kelvin relation, Equation 1.7, is important in the sense that it shows the Peltier 

coefficient can be determined by measuring the Seeback coefficient.  

 

1.3 Thermoelectric Generation (TEG) and Thermoelectric Cooling (TEC) 

As mentioned previously, although the principle of thermoelectric phenomena 

was discovered in the 18th century, significant research in thermoelectricity and its 

applications started only after 1950 when Iofee [14] pointed out that semiconductors can 

be used as alternatives to the traditional power generation and refrigeration processes. 

Thermoelectric phenomenon can be used either to generate electrical power 

(thermoelectric generators (TEG)) utilizing waste heat or to pump heat for cooling 

(thermoelectric coolers (TEC)) below ambient temperatures [15-16].  

Figure 1.6 shows typical   model sketches for both the TEG and TEC. To improve 

efficiency, a p-type thermoelectric material is coupled with an n-type. By pairing the 

materials, the thermoelectric emfs are added and the conversion efficiency of the module 

increases. The majority carriers both in n-type (electrons) and p-type (holes) materials 

flow in the same direction to effectively increase the current. In the cooling mode (Figure 

1.6 (a)), the carriers take heat away from the top end and dump it to the lower end which 

results in cooling at the upper end. In the power generation mode (Figure 1.6 (b)), the 

majority carriers get energy from the hot end and diffuse towards the cold end. The 

Seebeck voltage developed across the two legs (n- and p-type) add up resulting in a net 

electric current in the circuit. 
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(a)                                                                              (b) 

Figure 1.6 Model sketches for thermoelectric cooling (a) and thermoelectric power 

generation (b) modes using a pair of n-type and p-type materials. Red represents hot and 

blue represents cold temperatures (From reference [17]). 

 

Thermoelectric converters (TEG and TEC) have the potential to be quite useful to 

solve the problem of energy-crisis. Since the majority of the waste energy is in the form 

of heat, TEGs can be used to recover that waste heat to produce useful electrical output. 

Specifically, utilizing the waste heat from automobile exhaust, heat generated by 

industrial furnaces (e.g. iron smelting) and geothermal sources could significantly boost 

clean energy production in the world. For this reason, recently large investments have 

been made in research on thermoelectric materials which can be used in power generation 

applications [18]. The progress made to improve the thermoelectric performance of new 
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materials can be found in several review articles [19-21]. Presently, due to low efficiency, 

thermoelectric generators are available only in niche applications, the most well-known 

being for deep space missions [18, 22].  On the other hand, the TECs based on Peltier 

effect can be used for cooling below ambient temperatures without using the harmful 

gases like CFCs. Presently there are several commercially available TE cooling devices 

employed in electronics, lasers, and even small household refrigerators [23]. 

Thermoelectric energy conversion has several advantages over conventional 

electric generators and refrigerators. They are economically friendly, can be of compact 

size, contain no moving parts, are more accurate and have low production cost. Despite 

these advantages, thermoelectric devices are not yet able to replace the conventional 

generators or refrigerators due to low energy conversion efficiency and the slow pace of 

technological innovation. 

 

1.4 Thermoelectric Figure-of-merit 

  The efficiency of a TE generator (η) and coefficient of performance (ϕ) of a TE 

refrigerator (as shown in Figure 1.6) are given by the expressions [5], 
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where T is the average temperature, TC and TH are the temperatures of the cold and hot 

reservoirs, respectively. The quantity ZT is called dimensionless figure-of-merit and for a 

single material it is defined as, 

                             TSZT 







=

κ
σ2

                                                                                (1.10) 

Here S is the Seebeck coefficient, σ is the electrical conductivity and κ is the total thermal 

conductivity of the material. The numerator S2σ is also referred as the power factor (PF). 

From the equations (1.8) and (1.9), it is apparent that both η and ϕ depend directly on ZT. 

In fact, the ZT-dependent η and ϕ relations for a given ΔT have been calculated [17].   

Figure 1.7 shows the ratio of thermoelectric efficiency (ηTE) to Carnot efficiency (ηC) as a 

function of ZT. As ZT increases, so does the η and ϕ.  While the temperature gradient (ΔT 

= TH – TC) also effects the quantities η and ϕ, the primary focus of thermoelectric 

research community at present is to find a material with large ZT.  
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Figure 1.7 Ratio of thermoelectric efficiency to Carnot efficiency as a function of ZT. 

The figure is taken from reference [17]. 

The dimensionless figure-of-merit (ZT) is material dependent. Also different 

materials exhibit their optimum ZT at different temperatures. Figure 1.8 shows several of 

the highest performing TE materials with their maximum ZT at operating temperatures. 

The time evolution of ZT values in the past few decades is also presented.  
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Figure 1.8 Maximum ZT values of some of the best TE materials and evolution of ZT 

over time in past few decades. Blue dots stands for materials suitable for cooling and red 

triangles stand for materials suitable for power generation. (From reference [19]) 

 

To be commercially competitive a ZT value of 3 is desirable while the present 

state-of-art materials possess only a ZT of ≈ 2 at their operating temperature near or 

above room temperature. At cryogenic temperatures (77 K), however, the maximum 

values of ZT are around 0.5. This is due, in part, to the reason that most thermoelectric 

research has focused on power generation applications rather than cooling applications. 

In this context, we strongly believe that more rigorous and more extensive research 

efforts in low temperature thermoelectrics are required. This thesis is the result of several 

of the research efforts to investigate several thermoelectric materials for cryogenic 
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cooling applications. 
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Chapter 2: The Theory of Thermoelectric Transport 

2.1 Introduction 

Systematic research to find thermoelectric materials with high efficiency involves 

the study of transport parameters, the Seebeck Coefficient (S), electrical conductivity (σ), 

and thermal conductivity (k) in terms of more fundamental properties such as band gap 

(Eg), carrier concentration (n), mobility (µ) and effective mass (m*). The thermoelectric 

conversion efficiency of a material is quantified by the dimensionless quantity “ZT”. 

Improving ZT of bulk materials is complex due to the interrelation among σ, S, and k. 

Under one band model [1], one can write 𝜎 = 𝑛𝑛µ so that ZT given in equation 1.10 can 

be expressed as, 

            𝑍𝛥 = (𝑆2𝑛)𝑛 �µ
𝜅
� 𝛥                                                                           (2.1) 

Here e is the electronic charge. The two quantities in brackets are counter-indicated. For 

instance, n can be increased by adding more carriers to the system, but at the same time 

the Seebeck coefficient decreases. Additionally, increased mobility of the carriers not 

only increases the electrical conductivity but also increases the thermal conductivity 

particularly if the electronic component of thermal conductivity is high with respect to 

the phonon contribution. This scenario is expressed more clearly in Figure 2.1 where σ, S, 

k, and ZT vary as a function of carrier concentration (n).  

Generally, heavily doped semiconductors show the most promising TE properties 

as indicated in Figure 2.1. As a result, the theory of thermoelectric transport is essentially 

the domain of transport in semiconductors. To optimize the thermoelectric performance 
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of a material it is desirable to have a clear understanding of the physics associated with 

the related parameters. In this chapter, the basic theoretical details of thermoelectric 

transport will be discussed.  

 

 

Figure 2.1 Seebeck coefficient, electrical conductivity, thermal conductivity, and figure-

of-merit as a function of free carrier concentration. (Figure taken from reference [2]) 

2.2 Electronic Transport 

2.2.1 Electrical Conductivity 

Boltzmann transport theory describes both electronic and thermal transport in the 

vast majority of solid materials. With the relaxation time approximation, the Boltzmann’s 

transport equation can be written as [3], 



 

18 
 

                    
τ

ff
p
fEqfv

τ
f −

=
∂
∂

•+∇•+
∂
∂ 0


                                                                (2.2) 

where f is the distribution function, E is the strength of the electric field, p is the 

momentum and τ is the relaxation time. The charge q = -e for electrons and q = +e for the 

holes. When the number of charge carriers becomes large, the carriers can no longer be 

treated as non-interacting particles and Fermi-Dirac statistics should be used. The 

equilibrium Fermi-Dirac distribution (f0) is [4],  
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Here μ is the chemical potential and kB is the Boltzmann constant. For an isotropic and 

parabolic energy band, the dispersion relation is given as [5], 
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Assuming that there is zero temperature gradient (dT/dr = 0) and zero carrier 

concentration gradient (dμ/dr = 0), and solving equations (2.2) – (2.4), one arrives to the 

following general expression for the electrical conductivity [3]. 

                          ∫
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The quantity D (E) is called the density of states. 
E
Ef

∂
∂ )(0 is non-zero only when E is 

close to µ , and can be approximated to as a delta function  

                         )()(0 µδ −−≈
∂

∂ E
E
Ef                                                                           (2.6) 

Combine equations 2.5 and 2.6, 
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We can use 2/2
FF mvE =≈µ to reduce eq. 2.7 to 
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The charge carrier concentration can be calculated as, 
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Substituting for DF in equation 2.7 using equation 2.9, we obtain 

                             Fn
m
q τσ

2

=                                                                                     (2.10) 

If we define mobility as, 

                           Fq m
q τµ =                                                                                          (2.11) 

 we obtain 

                           qnqµσ =                                                                                            (2.12) 

 This is a general expression for electrical conductivity (used in equation 2.1) of a 

material. In semiconductors, both electrons and holes contribute to the electrical 

conductivity and the following relation should be used. 

                                      𝜎 = 𝑛𝑒𝑛𝜇𝑒 + 𝑛ℎ𝑛𝜇ℎ                                                        (2.13) 

where “e” stands for electron and “h” stands for hole. 
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2.2.2 Seebeck coefficient 

The Seebeck coefficient is defined as the ratio between the voltage gradient and 

the temperature gradient for an open loop configuration with zero net current flow. In the 

case of non-zero temperature gradient and no current, the Boltzmann transport equation 

leads to an expression for the Seebeck coefficient as given below [29]. 
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In the above expression, r is the scattering parameter defined by, 

                                   rE0ττ =                                                                                     (2.15) 

where �0 is a constant independent of E. The Fermi-Dirac integral Fn (η) is, 

                                     ζζhζh dfF n
n ∫=

∞

0
0 ),()(                                                          (2.16) 

and  ζ = E/kBT is the reduced energy. 

For metals, q = - e and 0/ >>= TkBµh . In this case the Fermi-Dirac integral can 

be expressed in the form of a rapidly converging series and taking only the first two terms 

in the equation 2.14 reduces to, 
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π                                                              (2.17) 

In non-degenerate semiconductors, � is located within the band gap with a 

distance from the conduction or valence band edges larger than 3kBT so that

3>−=
− hζµ
Tk

E
B

. In this case the Fermi-Dirac integrals become a gamma function and 
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we arrive at the following formula, 
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In this equation, � is measured from the conduction band edge EC for electrons and from 

the valence band edge Ev for holes. Located within the band gap, � is negative for 

electrons, and is also negative for holes because the hole energy is higher when the 

energy level is moved further down. Also q = -e for electrons and +e for holes, so that the 

Seebeck coefficient is negative for electrons in the conduction band and positive for holes 

in the valence band.  

If � is measured from a global reference instead of the band edge as the zero 

energy point, we can express equation 2.18 for electrons and holes separately as follows. 

           ,0))2/5((1
<++−−= TkrE

eT
S Bce µ       for electrons                                  (2.19) 

          ,0))2/5((1
>++−= TkrE

eT
S Bvh µ        for holes                                          (2.20) 

The effective Seebeck coefficient in a nondegenerate semiconductor has a contribution 

coming from both electrons and holes. In this case, the total Seebeck coefficient is given 

by, 
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where n and p are electron and hole concentrations, respectively, and �e and �h the 

mobility of electrons and holes, respectively.  
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2.3 Thermal Transport 

2.3.1 Thermal Conductivity 

Thermal conductivity characterizes the heat transport in solids as electrical 

conductivity does in electric conduction. By definition, thermal conductivity ( k


) is given 

as 

                              )(
r
Tkj 



∂
∂

−=                                 (2.22) 

where j


is the heat current density flown through the material, and rT 
∂∂ /  is the 

temperature gradient in the material. Since the heat conduction in solids is carried by 

carriers and lattice vibrations (phonons), the total thermal conductivity of the material is a 

sum of both carrier and lattice contributions. 

                        carrierlaττiceτoτal κκκ +=                                         (2.23) 

The above relation is also referred to as independent approximation in the sense that it 

assumes that electrons and phonons do not interact. In a semiconductor, the carrier 

contribution to the thermal conductivity comes from both the electrons and holes. In such 

a case, the total carrier contribution is given by [7], 

              𝜅𝑐𝑐𝑐𝑐𝑐𝑒𝑐 = 𝜅𝑒 + 𝜅ℎ + (𝜎𝑒𝜎ℎ)
(𝜎𝑒+𝜎ℎ)

(𝑆𝑒 − 𝑆ℎ)2𝛥                                        (2.24) 

where “e” stands for electron and “h” stands for hole. The first two terms in the above 

equation represents independent contributions from electrons and holes. The third term 

represents bipolar contribution which manifests itself at temperatures near or exceeding 
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the energy of the band gap (Eg). At these temperatures electrons have a much higher 

probability of jumping from the valence band to the conduction band thereby creating 

electron-hole pairs, which propagate along the material and upon recombination energy is 

released in the form of photons. 

The carrier contribution to the thermal conductivity can be derived from the 

Boltzmann equation. Assuming zero electric current and non-zero temperature gradient, a 

general expression for electronic contribution to thermal conductivity can be written as 

[5], 
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When E is far away from µ , )(0 Ef  remains to be either 0 or 1 as the temperature 

changes, so that  
T
Ef

∂
∂ )(0 is non-zero only when E is close to µ . Therefore, equation 2.25 

can be approximated by taking v = vF and � = �F, i.e. the Fermi velocity and the 

scattering mean free time of Fermi electrons, 
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Here Ce is the electronic heat capacity and lF is the electron mean free path. Equation 2.25 

is essentially the kinetic theory expression of the thermal conductivity. For metals the 

expression 2.27 can be written [5, 6],  

                                FBe TTnkC /
2
1 2π=                                                                        (2.27) 

In this way, the energy of the lattice vibration is quantized and the quanta are called 

phonons. The kinetic theory expression for the lattice contribution to thermal 



 

24 
 

conductivity of a solid can be written by the approximation [8], 

                   
3

lvCk sv
laττice =                                                         (2.28) 

Here Cv is the specific heat at constant volume, vs is the average velocity of sound and l is 

the mean free path of phonons. At very low temperatures (T << θD), where θD signifies 

the Debye temperature, the behavior of klaττice is dominated by the Debye T3 law whereas 

at high temperatures (T > θD), klaττice is primarily dominated by phonon scattering 

mechanisms.  

2.3.2 Wiedemann-Franz law  

We can use equations 2.10 and 2.26 to calculate the ratio between the electron 

thermal conductivity and electrical conductivity. 
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Here it is assumed that Fτ  (mean free scattering time of electrons) is the same for the 

thermal conductivity and electrical conductivity expressions. Also, equation 2.27 can be 

rearranged as follows, 
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Combining equations 2.29 and 2.30, we obtain 
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where 

                             28-
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e
kL Bπ                                                   (2.32) 

is the Lorenz number. Equation 2.31 holds that at a given temperature the ratio of 

electronic thermal conductivity to electrical conductivity is constant for a metal. This 

relation is referred as Wiedemann-Franz Law [5] and is a valid approximation for all 

good metals.  

 

2.4 Optimizing Power Factor 

Enhancing the ZT (where ZT = S2����total) in a material can be achieved either 

by reducing thermal conductivity (�total = �electronic + �phononic) while keeping the power 

factor (PF = S2�) relatively unaffected or increasing the power factor without adversely 

effecting the thermal conductivity. Since the Seebeck coefficient and the electrical 

conductivity are predominately determined by the electronic band structure of the 

material, improving the power factor requires modification in the band structure, also 

referred to as “band structure engineering”. Current efforts target the modification of the 

electronic structure in order to achieve sharp features in the density of states function and 

strong energy dependence in the transmission coefficients. One of the initial ideas to 

improve he power factor was proposed by Hicks and Dresselhaus [9]. They suggested 

that low dimensional materials could provide improvements in the Seebeck coefficient 

and the power factor due to the sharp features in their density-of-states function. Mahan 

and Sofo [10] have predicted that infinitely large ZT values could be achieved in zero-

dimensional structures in the limit of zero lattice thermal conductivity. Another approach 

(other than reducing the dimensionality) to improve the power factor is “doping”.  For a 
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three dimensional bulk material, “doping” offers one of the easiest and most effective 

ways to modify band structure [1]. In the recent years “resonant doping” has become the 

focus of the thermoelectric research community [1, 11]. Additionally, electronic 

correlations have also shown to produce large power factor values in some compounds 

[12, 13]. In this section, some of the fundamental methods on how to improve the power 

factor will be discussed.  

 

2.4.1 Mott Relation 

The constituent parameters S and σ of the thermoelectric power factor (S2σ) are all 

functions of carrier concentration and are interrelated with each other. It is a general rule 

that a rise in thermopower implies a decrease in electrical conductivity due to decrease in 

the carrier density. As a result, it is very difficult to simultaneously achieve an increased 

S and σ. Originally, Mott and Cutler [14] proposed a dependence of S on logarithmic 

derivative of σ, known as Mott formula, given by  
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The above equation can be rewritten in expanded form as,  
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Equation 2.34 suggests that Seebeck coefficient can be increased by augmenting the 

energy dependences of carrier density and mobility. The increased energy dependence of 

n can be realized in the situations where the density of states is increased locally [1] 
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whereas any scattering mechanism that strongly depends on the energy of the charge 

carriers will increase energy dependence of the mobility [15].  

 

2.4.2 Effective Mass and Role of Correlations 

In the ground state of a system of N free electrons, the occupied energy levels of 

the system fill a sphere of radius [5], 

                                  𝑘𝐹 = �2𝑚𝐸𝐹
ћ2

                                                                            (2.35) 

where m is the free electron mass. However, when an electron in a periodic potential is 

accelerated relative to the lattice in an applied electric or magnetic field, that electron 

feels as if its mass were equal to an effective mass (m*) [5]. Then m of equation 2.35 is to 

be replaced by m*. For degenerate semiconductors [16], the Seebeck coefficient can be 

expressed in terms of effective mass m* by combining equations 2.17 and 2.35 as shown, 
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The effective mass is highly enhanced because of electron-electron interaction in strongly 

correlated rare–earth compounds including heavy Fermions. Since enhanced m* leads to 

an increased S, the correlated systems possess a potential to be a good thermoelectric at 

low temperatures.  

In the case of rare-earth compounds, the effective mass, m∗, of quasi-particles is 

enhanced mainly due to Kondo local fluctuations around each f-electron atom [17]. A 

new temperature scale called characteristic Kondo temperature (Tk) appears for these 

compounds which scales as a function of the effective mass (m*) [17]. 
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                                          𝛥𝑘~ 1
𝑚∗                                                                              (2.37) 

In these compounds, not only the Kondo interaction but also the crystal electric field 

(CEF) excitations may generate large anomalies in S (T) [18]. For a CEF level at TCEF  >> 

Tk,   theoretical calculations predict a large thermopower with an extremum at 

temperature T* [19], 

 

                                    𝛥∗ = (0.3 … . ). 6)𝛥𝐶𝐸𝐹                                         (2.38) 

     

In fact, experiments [20, 21, 22] have shown that several Ce and Yb systems show 

deviations from a simple S(T) dependence (equation 2.17) with a Kondo peak and a CEF 

peak reflecting Kondo scattering on the ground state and the excited CEF levels. 

Although the correlations seem to enhance Seebeck coefficient, due to large 

effective mass the mobility of the carriers may be reduced simultaneously. As a result, 

the gain from Seebeck coefficient may be negated by loss in electrical conductivity. 

Recently, there have been some studies concluding that correlations in some materials 

cannot lead to an increase of ZT [23]. Nevertheless, many heavy-fermion compounds 

exhibit good thermoelectric power factor at the characteristic temperature T*. 

 

2.4.3 Phonon-drag Effect 

In all of above sections, the Seebeck coefficient (S) was defined using classical 

theory of thermoelectricity which assumes that the flow of charge carriers and phonons 

can be treated independently. Under this assumption, the Seebeck coefficient arises due 

solely to spontaneous electron diffusion. However, when the flow of charge carriers and 
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phonons are linked, the effect of electron-phonon scattering should be taken into account. 

Hence, in general, the Seebeck coefficient is given as the sum of two independent 

contributions [24], 

                                       𝑆𝑑𝑇𝑇𝑐𝑇 = 𝑆𝑑 + 𝑆𝑝                                                              (2.39) 

where 𝑆𝑑 is the conventional electron-diffusion part (denoted as S in the sections above) 

and 𝑆𝑝 is the phonon-drag contribution. The diffusion part is caused by the spatial 

variation of the electronic occupation in the presence of a thermal gradient, whereas the 

drag part arises due to the interaction between anisotropic lattice vibrations and mobile 

charge carriers. Herring [24] showed that the higher than expected value of thermopower 

in germanium [25] as shown in Figure 2.2 and other semiconductors could be explained 

assuming that the carriers are preferentially scattered by the phonons toward the cold end 

of the sample. Thus the effective “drag” of some of the charge carriers along the thermal 

gradient (hence phonon-drag) gives rise to an additional thermoelectric electromotive 

force (emf). Because the additional emf and the emf induced by diffusion have the same 

sign, the overall phonon-drag effect is to increase the Seebeck coefficient. Generally, this 

effect becomes stronger at lower temperatures where the phonon mean free path becomes 

longer.  
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Figure 2.2 Comparison of observed thermoelectric power (|S|) with the theoretically 

predicted electronic contribution for p-type germanium with carrier density of 1.5 × 1014 

cm-3 [7]. Solid line represents the observed values and dashed curve represents calculated 

contribution from diffusion part. 

 

Following Herring [24], the phonon-drag thermopower for semiconductors, in the 

first-order approximation, can be written as, 

                                                               𝑆𝑝 = 𝛽𝑣𝑠𝜆𝑝𝑛𝑒
𝜎𝑑

  ,                                            (2.40) 

where vs is the velocity of sound, λp the mean free path of the interacting phonons, n the 

charge carrier density, σ the electrical conductivity, T is the absolute temperature and β is 

the dimensionless parameter with its value ranging from 0 to 1 depending upon the 

strength of the interaction. It is implied by Eq. 2.38 that a significant phonon-drag 
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contribution increases the total Seebeck coefficient.  

Since the phonon-drag component depends directly with the mean free path of 

interacting phonons, an increase in Sp would essentially imply an increase in thermal 

conductivity. Due to this fact, phonon-drag may not be useful for a good TE material. 

According to Keyes eτ al. [26], the value of the figure of merit (Zp) that can be reached 

using phonon drag is rather low. Based on their argument, H. J. Goldsmid [27] shows that 

ZpT is less than ¼ for a bulk thermoelectric material. Ivanov eτ al. [28] reported recently a 

similar conclusion for low-dimensional structures. 

 

2.5 Reducing Thermal Conductivity 

The recent trend in thermoelectric research is to reduce thermal conductivity of a 

material without adversely affecting the power factor. This is, however, a difficult task.  

For instance, a large energy band gap is generally required for a good TE material to 

minimize the effect of the minority carriers [29]. On the other hand, usually a large 

energy band gap means large lattice thermal conductivity. For doped semiconductors, not 

only the lattice contribution but also the carrier contribution to the total thermal 

conductivity is large enough to be important. The present work of this thesis is mainly 

devoted to the efforts made to reduce the lattice thermal conductivity. Therefore, 

discussions to follow will mainly focus on the lattice part. To effectively reduce the 

lattice thermal conductivity of a material, a deeper understanding of the different 

scattering mechanisms involved during heat conduction is required. In the following 

section, we discuss different scattering mechanisms associated with the heat conduction 

in a material. 
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2.5.1 Scattering mechanisms 

The physics of the lattice thermal conductivity is commonly interpreted using the 

Debye approximation [30], 

𝜅𝑇𝑐𝑇𝑇𝑐𝑐𝑒 = 𝑘𝐴
2𝜋2𝑣

�𝑘𝐴
ℏ
�
3
𝛥3 ∫ 𝜏𝑐𝑑4𝑒𝑥

(𝑒𝑥−1)2
𝑑𝑑

𝜃𝐷
𝑇

0                                                 (2.41)                                                     

where 𝑑 = ℏ𝑤
𝑘𝐴𝑑

 , w is the frequency, kB is the Boltzmann constant, ℏ is the Planck 

constant, v is the speed of sound, θD is the Debye temperature and τc is the relaxation 

time. The overall time constant (τc) is given by the Matthiessen’s rule, 

                         𝜏𝑐−1 = 𝜏𝑑𝑒𝑑𝑒𝑐𝑇−1 + 𝜏𝑢𝑚𝑘𝑇𝑐𝑝𝑝
−1 + 𝜏𝑏𝑇𝑢𝑛𝑑𝑐𝑐𝑏−1                                  (2.42) 

Here τdefecτ, τumklapp and τboundary are the relaxation times associated with the three 

scattering mechanisms: the phonon-defect scattering, the umklapp process and phonon-

boundary scattering respectively. Different scattering processes usually dominate in 

different temperature ranges with different temperature dependences as shown in Figure 

2.3. At high temperatures (T ≈ θD), umklapp is the dominant scattering mechanism. 

Boundary and point-defect scattering dominate at low and intermediate temperatures 

respectively. 

From second order perturbation theory, the relaxation time for three phonons 

Umklapp scattering is given by [29], 
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Figure 2.3 Lattice thermal conductivity as a function of temperature for ingot sample of 

FeSb2 used in this study. The different scattering mechanisms at different temperature 

regions are shown. 
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Here γ is the Gruneisen anharmonicity parameter µ is the shear modulus and V0 is the 

volume per atom and Dω is the Debye frequency.  In the case of purely diffusive 

scattering, the relaxation time for the boundary scattering assumes the well-known 

Casimir limit [29].  
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Dboundary
nτ =−1                                                       (2.44) 

where D is the average grain size,n is the group velocity of the phonon. On the other 

hand, the defect scattering process involves the scattering of phonons by a variety of 

crystal defects, impurity sites and different isotopes of the host material [29]. The phonon 

relaxation time for this type of point defect scattering is  

                   3
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14.621 γ                                                    (2.46) 

Here Mi and Ri are the mass and Pauling ionic radius of the ith impurity atom, and fi is the 

fractional concentration of impurity atoms.  

2.5.2 Mechanical Nanostructuring 

Equation 2.44 implies that the relaxation time associated with the boundary 

scattering scales with the size of the grain (or crystallite). This type of scattering becomes 

appreciable at low temperatures where the phonon mean free paths are usually large. An 

ideal case for improving ZT of a thermoelectric material would be to obtain the crystallite 

size smaller than the phonon mean free paths (lphonon) but larger than electron mean free 

paths (lelectron), i.e. 

                  𝑙𝑒𝑇𝑒𝑐𝑇𝑐𝑇𝑛 < 𝐷 < 𝑙𝑝ℎ𝑇𝑛𝑇𝑛                                                                            (2.47) 

Under above condition, the phonons are effectively scattered off the grain-boundaries 
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whereas electrons are not as shown in Figure 2.4. In other words, the thermal 

conductivity of the system decreases without affecting electronic properties (power 

factor). This situation is illustrated in the following figure. 

 

Figure 2.4 Schematic illustration of grain-boundary scattering mechanism. The long 

wavelength phonons (blue) are scattered off the boundaries.  Figure was borrowed from 

Dr. Kevin Lukas and edited. 

 In general, electron mean free paths are of the order of few nanometers whereas 

the phonons mean free paths at low temperature fall in the range of microns. One of the 

ways to achieve the condition implied in the Eq. 2.47 is to introduce nano-sized grains in 

the samples using ball-milling and hot-pressing technique, usually referred as 

“mechanical nanostructuring”.   This technique utilizes a distribution of small grain sizes 

rather than a uniformity of grain size to suppress the thermal conductivity, because the 

phonon mismatch across many grain sizes and boundaries will serve to lower the overall 

lattice thermal conductivity. 



 

36 
 

As discussed in section 3.3, original goal of nanostructuring was to increase the 

power factor by employing quantum confinement of carriers [9, 31]. However, 

experiments [32, 33, 34] have shown that the main reason for the ZT improvement in 

several nanostructured TE materials was the reduction of thermal conductivity rather than 

power factor improvement. 
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Chapter 3: Sample Preparation and Measurement 

3.1 Introduction 

In this chapter an overview of different experimental techniques e.g. TE sample 

preparation and characterization, utilized throughout this study are presented.  Sections 

3.2 and 3.3, describe the preparation techniques for stoichiometric sample ingots and how 

nanostructured sample pellets were produced.. In section 3.4, material characterization 

methods are reviewed. Section 3.5 discusses the theory of operations for a cryogenic 

refrigerator, a Physical Properties Measurement System (PPMS) manufactured by 

Quantum Design, where most of the measurements for this thesis were made. Since the 

details of the theory of operation of PPMS are given in reference [1-3], only a brief 

overview will be presented. In section 3.6, details on a home-built ac magnetic 

susceptometer will be given. 

 

3.2 Ingot Preparative Methods 

A diverse array of methods is available to synthesize solid compounds and 

metallic alloys. Some details of the synthesis methods employed in this thesis will be 

given below. Further reference information on synthesis methods can be found in the 

literature [4, 5, 6]. Some of the most important factors to be taken into account during 

synthesis are: purity of the starting materials, proper stoichiometric quantities, ensuring 

that the reaction has gone to completion, homogenization of the sample and creating a 

good vacuum in the quartz ampule to avoid oxidation states in the starting 

materials/sample. The ingot samples used for this thesis were prepared by two methods 

(quartz tube and arc melting) and will be discussed in the following sections.  
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3.2.1 Melt-quenching Method 

The ingots of FeSb2 samples used for this work were prepared by direct melting 

of the constituent elements in a furnace followed by quenching [7, 8] in water or liquid 

nitrogen. In this method, the pure starting elements with appropriate atomic percentages 

are loaded inside a quartz tube which has been sealed at one end by a hydrogen/oxygen 

torch. Nominally, the diameter of a typical quartz tube was ½” or ¾” depending on the 

volume of sample material under consideration.  The contents of the quartz tube were 

initially stoppered using an ultra-torr vacuum fitting and a needle valve assembly to 

perform the initial pump-down. Using a turbo pump the tube and the valve assembly  

 

        

(a)                                                                 (b) 
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(c)                                                                  (d) 

Figure 3.1 Shown here are the different steps and essential apparatus for material 

synthesis using the quart tube method. (a) A quartz tube with stoichiometric mixture of 

elements (FeSb2) being evacuated to 10-6 mbar. (b) A sealed quartz tube sealed for the 

furnace. Hydrogen/oxygen torch was used to melt and seal quartz tube at low pressure. 

(c) Horizontal tube furnace for melting materials. (d) Sample ingot obtained from this 

process.  

 

were pumped to the vacuum level of ~ 10-6 mbar (shown in Figure 3.1 (a)) and sealed 

(Figure 3.1 (b)). The sealed quartz tube is heated in a furnace (Figure 3.1 (c)) to a 

temperature to melt the components and consistent with the desired phase of the material. 

The quartz tube is gently shaken during the melt to improve the sample 

mixing/homogeneity. The molten samples were then rapidly quenched in cold water. 

Figure 3.1 (d) shows a typical ingot sample which resulted from this process. 
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For FeSb2, Fe (99.9%, Alfa Aesar) and Sb (99.9% Alfa Aesar) metal chunks with 

the molar ratio of 1:2 were inserted in a 1/2 inch quartz tube and the steps explained in 

the above paragraph were followed.  

The binary phase-diagram for the Fe-Sb system is as shown in the Figure 3.2 

below. The ingot sample of FeSb2 used in this work was prepared by heating a sealed 

quartz tube up to 1050 oC for 5 hrs with intermittent stirring.  

 

Figure 3.2 Binary phase diagram of Fe-Sb system. The image was taken from reference 

[9]. 

3.2.2 Arc-melting 

Arc-melting is an effective method to prepare alloys by melting the constituent 

elements together. The heat needed for this purpose is produced by discharging a voltage 

arc in the presence of a noble gas. The process consists in melting the pure elements of 

the alloy or compound in the desired stochiometry by discharging an electrical arc caused 
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by the application of a large current between two electrodes. The actual arc-melting 

furnace (you need to write the manufacturer name and number of this device) available in 

the laboratory is pictured in Figure 3.3 (a).  A continuous flow of argon gas (AR PP 300) 

is maintained through the furnace chamber at a pressure of 1-1.5 bar during the arc 

discharge and the melting process. The synthesis process consists of melting the materials 

into a button, then flipping it over and re-melting it to ensure sample homogeneity. . 

Figure 3.3 (b) shows a picture of an ingot sample (CeCu6) obtained by this process. 

The ingots of heavy-fermion compounds CeCu6 and CeAl3 were prepared by arc-

melting method as explained in the paragraph above. Stoichiometric amounts of Ce 

(99.9%), and Cu (99.999 %, Alpha Aesar), as well as, Ce (99.9%, Alpha Aesar), and Al 

(99.99%, Alpha Aesar) were mixed and arc-melted together to form the binary alloy 

samples. 

         

(a)                                                                          (b) 

Figure 3.3 (a) A view of the arc-melting furnace used in this work. (b) The ingot button 

for a typical sample obtained after melting. 
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3.3 Mechanical Nanostructuring 

Mechanical nanostructuring is a sample technique where materials are pulverized 

or powdered by mechanical means (ball-milling) to reduce the particle size and the 

resulting material (powder) is pressed together (hot-pressing) into a pellet to increase the 

material density.    The ingot samples obtained as explained in sections 3.2.1 and 3.2.2 are 

enclosed inside an air- tight ball-milling jar [25] along with stainless steel balls (Figure 

3.4 (a)). All this is done inside a glove box so the ball-milling occurs in an argon 

atmosphere. The jar is then put in the ball milling machine (SPEX 8000D) shown in 

Figure 3.4 (b) and the machine is run for a desired period of time to get the nanopowders.   

During this high energy ball milling process mechanical alloying and nanostructuring 

occurs basically through a sequence of collision events between the balls and the material 

to be ground. Average temperature inside the ball milling jar is usually less than 100 oC. 

However the local temperature can be raised to the temperature high enough to form 

some binary alloys like SiGe.    

          

                                      (a)                                                              (b) 

Figure 3.4 Stainless steel jars, balls, and a ball mill machine (8000D Dual Mixer/Mill 

from SPEX). 
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The number of ball-milling hours depends on both the brittleness of the ingot and 

the desired size of nano-grains. In this work, ball-milling time was 15 hrs for FeSb2 

whereas it was only 5 hrs for CeCu6 and CeAl3. Often the powdered materials stick to the 

walls of the jar after a certain time and limit the effectiveness of further ball-milling. The 

remedy for materials which stick to the walls is to remove the jars from the ball milling 

machine, re-introduce the jar to the glovebox and mechanically loosen the powder from 

the walls and then continue the balling milling process.  

The nanopowder obtained from ball-milling is then consolidated into dense 

pellets. This was done by using a DC-current controlled hot-press method, more 

commonly known as the “spark plasma sintering (SPS)” method. Figure 3.4 (a) show a 

schematic diagram for hot-press and Figure 3.4 (b) shows the schematic representation of 

the SPS mechanism. As shown in fig 3.4 (a), 

 

(a)                                                                             (b) 

Figure 3.5 Schematic pictures of hot-press method (a) and schematic representation of 

the SPS mechanism (b). Figure was taken from reference [10] and edited. 
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nanopowder is loaded in a cylindrical hole of a graphite die and sealed with graphite rods 

on top and bottom in a glove box. Then, the die with powder is put on a hot-press system. 

The powder is then pressed for 2 minutes for all the samples using a uniaxial pressure of 

around 78 MPa. For FeSb2 nanocomposite samples the hot-pressing temperature ranged 

from 200 oC to 600oC whereas for CeCu6 and CeAl3 it ranged from 400 oC to 800 oC. 

While pressing, a current is discharged through the material which produces both a strong 

electric field along the sample and Joule heating in the gaps of the powdered materials 

upon applying an ON-OFF DC pulse (see Figure 3.5 (b)). A rapid and thorough heat 

distribution throughout the specimen results in dense pellets with high homogeneity. The 

advantage of this technique is that it can produce a variety of grain sizes from 

nanopowders by varying the hot-pressing temperature (proportional to current and 

pressing time), and pressure.  Varying the grain size of a material and measuring its 

thermal conductivity can lead to an optimization of its thermoelectric efficiency as a 

function of grain size. In fact, major portion of this thesis involves analyzing the grain-

size dependence of thermoelectric properties of the samples obtained as explained above. 

 

3.4 Material Characterization 

Material characterization, in general, refers to the use of external techniques to 

probe into the internal structure and properties of the material. Several characterization 

techniques are available for studying materials. In this work, two of them, namely, X-ray 

diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques were 

extensively used.  
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3.4.1 X-ray Diffraction 

X-ray diffraction (XRD) is an analytical technique where one looks at X-rays 

scattered from a crystalline material. A commercially available XRD device from Bruker 

AXS shown in Figure 3.6 (a) was used. Details on the theory of operation of the XRD 

device can be found in reference [11]. Each material produces a unique X-ray fingerprint 

of intensity versus scattering angle which is characteristic of the material’s atomic 

structure. The XRD pattern shown in Figure 3.6 (b) was taken for a typical FeSb2 sample 

used in this work and corresponds to the orthorhombic crystal structure.  

 

 

  

(a)                                                                           (b) 

Figure 3.6 (a) X-ray diffraction spectrometer used in this work and (b) XRD diffraction 

pattern of a typical FeSb2 sample used in this study. 

 

The X-ray diffraction technique offers several useful applications like determining 
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lattice parameter, strain, grain size, epitaxy, phase composition, preferred orientation, 

order-disorder transformation, thermal expansion etc. As discussed above, distribution of 

peak positions in XRD pattern (intensity vs. 2θ plot) enables one to determine the 

different chemical phases present in the sample. For the purpose of this work, obtaining a 

single phase material was essential to evaluating our material for thermoelectric 

efficiency. 

 

 3.4.2 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) is one of the most versatile techniques 

available for the examination and analysis of the microstructure morphology and also for 

chemical composition characterizations. A JEOL 6340F SEM available at Boston 

College was used throughout this thesis work to determine grain size, morphology, eτc.  

The system is pictured in Figure 3.7 (a). The SEM technique uses a focused electron 

probe to extract structural and chemical information point-by-point from a region of 

interest in the sample. Due to its high spatial resolution, a wide range of specimens 

ranging from nanometer to micrometer length scales can be characterized. For 

nanostructured polycrystalline samples used in this work, SEM images provided 

information about the grain-size distribution, grain-orientation, texture and porosity. A 

typical SEM image of a polycrystalline sample used in this study is shown in Figure 3.7 

(b). 
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Figure 3.7 (a) A commercially available SEM device (JEOL 6340F) used in this work. 

(b) SEM image of a typical nanostructured FeSb2 sample. 

 

3.5 Physical Property Measurement System (PPMS) 

The thermal conductivity, electrical resistivity, Seebeck coefficient, Hall 

coefficient, Hall mobility and magnetization of the samples used in this work were 

measured by a commercially available Physical Property Measurement System (PPMS) 

from Quantum Design. The PPMS dewar available in Opeil lab, Boston College is 

pictured in Figure 3.8. The system offers accurate and precise material characterization 

[1] in a temperature range of 2 – 400 K with a magnetic field up to 9 T. Two of the 

available PPMS options, namely, thermal transport option (TTO) and AC Transport 

(ACT) were extensively utilized during this research work. The measurement procedures 

used for this work will be briefly described in the following sections. 
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Figure 3.8 Picture of physical property measurement system (PPMS) dewar located in 

Opeil lab (Higgins 130, Boston College). 

 

3.5.1 Thermal Transport Option 

The thermal transport option (TTO) of the PPMS enables measurements of 

thermal properties, including thermal conductivity and the Seebeck coefficient and 

electrical resistivity simultaneously. The option measures thermal conductivity and the 

Seebeck coefficient by applying heat from the heater shoe in order to create a user-

specified temperature differential between the two thermometer shoes [2].  The electrical 

resistivity is measured by using precision DSP current source and phase sensitive voltage 

detection. Figure 3.9 shows the schematic representation of heat and current flow across 
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the sample and different physical quantities to be taken into account during the 

measurement. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Schematic representations of heat and current flow across the sample during 

simultaneous measurement of the thermal conductivity, the Seebeck coefficient and the 

electrical resistivity in steady state method. The relevant physical parameters are also 

shown. 

The quantities κ, S and ρ are calculated based on the following basic relations. 

                              𝜅 =
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Figure 3.10 A sample of thermoelectric material mounted in a TTO puck of the PPMS in 

(a) 2-point configuration and (b) 4-point configuration. 

 

The actual experimental arrangement with a sample mounted in a TTO puck is 

pictured in Figure 3.10. Both the two-point (see Figure 3.10 (a)) and four-point (Figure 

3.10 (b)) configurations were used. Although two-point configuration is often used, a 

four-point configuration can help to minimize contact resistance. To compare the 2 and 4 

point methods the same FeSb2 sample was measured in both in configurations. It is noted 

that two datasets are highly consistent as shown in Figure 3.11. The consistency of data is 

likely due a minimization of contact resistance by using sputtered (Ti-Ni-Au layers) 

contacts and solder connections. 
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Figure 3.11 Comparison between the observed values of κ, S and ρ measured under 2-

point configuration and 4-point configuration.   

 

3.5.2 Horizontal Rotator Option 

The horizontal rotator option of the PPMS enables determination of the Hall 

coefficient (RH), which quantifies the Hall Effect for a given sample. The Hall effect is 

basic to solid-state physics and is an important diagnostic tool for the characterization of 

materials, particularly semi-conductors. It provides a direct determination of both the sign 
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of the charge carriers and their density in a given sample. The Hall coefficient RH for a 

parallelepiped shaped specimen of cross-sectional area A and width l as shown in Figure 

3.12(a) is given by,  

                               𝑅𝐻 = 𝑉𝐻𝐴
𝐼𝑇𝐵

                                                                    (3.4)      

 

  

(a)                                                                       (b) 

Figure 3.12 (a) Geometrical representation of the Hall coefficient measurement of a 

rectangular slab. (b) Actual sample mounted on the sample stage in five-point 

configuration of the horizontal rotator. 

 

where 𝛥𝐻 = 𝛥+ − 𝛥− , I is the current and B is the transverse magnetic field. The actual 

sample mounted on the horizontal rotator platform looks as shown in Figure 3.12 (b). The 

five-point configuration helps to eliminate the offset voltage created due to misalignment 

of the voltage leads. The horizontal rotator option also allows sample rotation around an 

axis that is perpendicular to the magnetic field. The Hall coefficients both in positive 

(+B) and negative (-B) magnetic fields can be measured by rotating the sample stage by 

180o. The actual Hall coefficient is then calculated as an average of the two values. 
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                           𝑅𝐻 = 𝑅𝐻(+𝐵)+𝑅𝐻(−𝐵)
2

                                                      (3.5)    

The purpose of flipping the sample and averaging the two Hall coefficient values as 

explained above is to eliminate the contribution from a magnetic field symphethetic 

component [3]. All the Hall coefficient measurements were carried out following a five-

point configuration and 180o rotation arrangements. Figure 3.13 shows temperature 

dependent Hall-coefficient values for a typical FeSb2 sample used in this work. In an 

ideal case, the two curves should lie symmetrically about the line RH = 0. 

0 50 100 150 200 250 300
-0.2

-0.1

0.0

0.1

 RH (+B)
 RH (-B)

R H (
cm

3 /C
)

T (K)

 

Figure 3.13 The Hall coefficient values as a function of temperature for a typical FeSb2 

sample. The black dots and the green triangles represent the values when the sample stage 

is set to 0o and 180 o position respectively. 
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3.6 AC magnetic susceptibility measurement 

In order to gain experience in fundamental measurement techniques in physics 

and to determine the superconducting transition temperature of experimental samples 

derived from the Meissner Effect, a device to measure AC magnetic susceptibility, also 

called a “susceptometer” was developed. The design employed here follows ref. [12] and 

the details can be found elsewhere [13, 14, 15]. A common experimental procedure used 

to characterize the magnetic susceptibility is to apply an external DC field to the sample 

and determine the induced field within the sample. This method measures DC magnetic 

susceptibility of the sample. Alternatively, an AC excitation on top of the DC external 

field is applied and the AC response of the material is measured. In this case, the complex 

magnetic susceptibility is given by, 

 

                              𝜒 = 𝜒′ − 𝑖𝜒"                                                                 (3.6) 

 

where χ’ and χ” are real and imaginary parts of the total susceptibility. A typical ac-

susceptometer often consists of a primary excitation field coil, a secondary pick-up coil 

and a secondary compensation coil as shown in Figure 3.14 (a). The coil set adapted to fit 

on a Quantum Design PPMS Multi-Purpose Probe is shown in Figure 3.14 (b). 
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(a)                                                             (b) 

Figure 3.14 (a) Schematic representation of coil configuration (Figure taken from 

reference [15]). (b) The actual coil assembly used in this work. 

 

For our device, the number of turns in secondary coils is 1100 each whereas the primary 

coil has 3000 turns. When an ac current I = Io Sin(wt) is sent through the primary, a 

voltage (Vrms) is induced across the pick-up coil which is proportional to the magnetic 

moment of the sample.  The induced voltage is related to the magnetic susceptibility by 

the equation [12], 

                                     𝜒 = 𝛼
𝜈𝑑𝐼𝑜

𝛥𝑐𝑚𝑟                                                                      (3.7) 

Here α is the calibration constant and υ is the volume fraction of the pick-up coil. 

Knowing α, υ and real (V’) and imaginary (V”) part of the induced voltages, χ’ and χ” 

can be determined using Equation 3.7.  

AC susceptibility measurement has been proven to be a useful technique to 

characterize high TC superconductors [16, 17] and to explore superparamagnetism in 
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nano-sized particles [18, 19, 20]. The original goal of this project was to separate the real 

and imaginary parts of the AC magnetic susceptibility and see the effect of grain sizes on 

magnetic properties of the samples. Since most of the samples used in this thesis are 

composed of nano-sized grains, a significant change in the magnetic moment may be 

expected due to increased surface to volume ratio of available spins [21]. The system was 

calibrated using two superconducting samples of niobium. Detail of the calibration can be 

found in Appendix A. 

Figure 3.15 shows the total induced voltage across the pick-up coil as a function 

of temperature for a 2.5 % Sb-doped Ca3Ir4Sn13 sample. This sample exhibits a 
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Figure 3.15 Temperature dependent voltage induced across the secondary coil for a 

sample of Ca3Ir4Sn13. The temperature dependent resistance of the sample was measured 

using DC resistivity option of the PPMS.  

 

superconducting transition at around 6.5 K [22] as shown in the inset. The inset data was 
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measured using DC resistivity option of the PPMS. The susceptometer data shows a 

corresponding superconducting transition derived from the Meissner effect. 

 In figure 3.16 (a), I plot the magnetic susceptibility (in arbitrary units) as a 

function of temperature for a polycrystalline gadolinium. For gadolinium an  
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(a)                                                                  (b) 

Figure 3.16 (a) Temperature dependent ac magnetic susceptibility of a gadolinium 

polycrystalline sample measured using home-built susceptometer and (b) similar data 

taken from reference [24]. 

 

antiferromagnetic transition at 293 K was reported earlier [23] which was also seen in 

work by Fukuda eτ al. [24] (shown in the inset of Figure 3.15 (b)). The data from the 

home-built susceptometer is consistent with the literature data. 

 

 

 

 



 

60 
 

 

 

 

References 

1. M.Y. Tang, Ph. D. thesis, Massachusetts Institute of Technology, (2011). 

2. Quantum Design, San Diego, CA, Physical Property Measurement System: 

           Thermal Transport Option User’s Manual, Third edition, (2002). 

3. Quantum Design, San Diego, CA, Physical Property Measurement System: AC 

Transport Option User’s Manual, Third edition, (2002).  

4. B. Cushing, V. Golub, and C. O’Connor; Journal of Physics and Chemistry of 

Solids 65, 825–829 (2004). 

5. Alloys. Preparation, Properties and Applications, edited by Fathi Habashi, Wiley 

(1998). 

6. W. Alexander and A. Street; Metals in the Service of Man (1969). 

7. H. Zhao, M. Pokharel, G. Zhu, S. Chen, K. Lukas, Q. Jie, C. Opeil, G. Chen, and  

Z. Ren, Appl. Phys. Lett. 99, 163101 (2011) 

8. M. Pokharel, H. Zhao, Z. Ren, and C. Opeil, International Journal of Thermal 

Science, 71, 32-35 (2013).  

9. The phase diagram for Fe-Sb system was taken from the website: 

http://www.himikatus.ru/art/phase-diagr1/Fe-Sb.php 

10. The picture was taken from the website 

http://www.substech.com/dokuwiki/doku.php?id=spark_plasma_sintering , and 

edited. 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?ie=UTF8&field-author=William+Alexander&search-alias=books&text=William+Alexander&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?ie=UTF8&field-author=Arthur+Street&search-alias=books&text=Arthur+Street&sort=relevancerank
http://www.himikatus.ru/art/phase-diagr1/Fe-Sb.php
http://www.substech.com/dokuwiki/doku.php?id=spark_plasma_sintering


 

61 
 

11. D2 Phaser, Bruker AXS, Diffraction Solutions manual, 

http://chemistry.harvard.edu/files/chemistry/files/d2_phaser_doc-b88-

exs017_en_high.pdf 

12. R. C. Johnson, Ph. D. Dissertation, Boston College (2012). 

13. J. K. Krause and J. R. Bergen, Superconductor Industry,  3, 23-26 (1990)  

14. C. P. Bidinosti and W. N.Hardy, Review of Scientific Instrument, 71, 10 (2000). 

15. M. Nikolo, American Journal of Physics, 63, 1 (1995). 

16. P. Laurent, J. F. Fagnard, B. Vanderheyden, N. Hari Babu, D. A. Cardwell, M. 

Ausloos and P. Vanderbemden, Meas. Sci. Technol.19, 085705 (2008).  

17. M. Zeisberger, A. M. Campbell, Wai Lo and D. A. Cardwell, IEEE 

Transactions on Applied Superconductivity, 7, 2 (1997).  

18. K. Nadeem, H. Krenn, T. Traussing, and I. Letofsky-Papst,  Journal of Applied 

Physics 109, 013912 (2011). 

19. V. B. Barbeta, R. F. Jardim, P. K. Kiyohara, F. B. Effenberger, and L. M. Rossi, 

Journal of Applied Physics, 107, 073913 (2010). 

20. S. H. Masunaga, R. F. Jardim, P. F. P. Fichtner, and J. Rivas, Physical Review B 

80, 184428 (2009). 

21. B. D. Cullity, C. D. Graham, Introduction To Magnetic Materials, John Wiley & 

Sons, Inc., Hoboken, New Jersey (2009). 

22. Kefeng Wang and C. Petrovic, Physical Review B, 86, 024522 (2012). 

23. H. E. Nigh, S. Legvold, and F.H. Spedding, Physical Review, 132, 1094 (1963).  

24. Ryan H. Fukuda, Smitha Sunny Proceedings on the National Conference on 

Undergraduate Research (NCUR) (2012). 



 

62 
 

25. Jars for our experiments were designed and machined out of O-1 tool steel 

(McMaster-Carr), hardened at 800 oC for 45 minutes, oil-quenched until 60 oC, 

and tempered at 260 oC for 2 hours.  This produced jars of Rockwell hardness ~ 

65.) 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

63 
 

Chapter 4: Thermoelectric Properties of Nanostructured FeSb2 

4.1 Introduction to FeSb2 

FeSb2 has been one of the extensively studied thermoelectric compounds in the 

past few decades [1-4]. This compound crystallizes in Pnnm orthorhombic structure as 

shown in Figure 4.1 [5] with lattice parameters a ≈ 5.8328 Ao, b ≈ 6.5376 Ao and c ≈ 

3.1973 Ao [1].  The basic structural unit is made of Fe ions surrounded by deformed Sb 

octahedra. The Sb octahedra form edge sharing chains along the c- axis, sharing corners 

between chains. 

 

Figure 4.1 Crystal structure of FeSb2. 

 

The crystal structure of FeSb2 plays a key role in the development of its electronic 

and magnetic properties at low temperatures. For example, the structural anisotropy of 
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the crystal structure leads to highly anisotropic electronic [6] and magnetic [4] properties 

in this compound as shown in Figure 4.2. Additionally, the anisotropies (Figure 4.2 (a)) of 

this compound exhibit unusual magnetic behavior. Single crystal FeSb2 is known to be 

paramagnetic; having unusual temperature dependence of magnetic susceptibility with a 

diamagnetic to paramagnetic crossover at ~ 100 K. Petrovic eτ al. [4] reported such a 

crossover for the magnetic field applied along all the three crystallographic axes whereas 

Hu eτ al. [8] reported the crossover only along the c-axis. It should be pointed out that 

that the magnetic properties exhibit weaker anisotropy when compared to the electronic 

properties. 

 

Figure 4.2 Magnetic susceptibility (a) and electrical resistivity (b) of a single crystal 

FeSb2 as a function of temperature [4]. 

 
Below 50 K, a secondary transport gap is observed in pure FeSb2 single crystals 

from temperature-dependent resistivity measurements. This gap is believed to originate 

from strong hybridization of Fe 3d orbitals with Sb 5s and 5p (sp3 hybridized) valence 

states due to the edge- and corner-sharing configurations present in the crystal structure, 

similar to what was  seen in FeSi [4,8].  Figure 4.3 shows a depiction of the hybridization 

mechanism [11].  



 

65 
 

 

Figure 4.3 Depiction of band gap formation due to hybridization between 3d and sp3 

orbitals in FeSi [11]. 

 

Optical investigations on FeSb2 give an estimated optical gap of 300 cm-1 [9] 

whereas the electrical transport gap is ~ 170 cm-1 [6]. This discrepancy is usually 

understood by assuming a small indirect gap for transport and a large direct gap for 

optical response [10]. Based on the structural analysis of marcasite by Goodenough [12], 

the magnetic and electrical properties may be accounted for by considering temperature 

induced transitions within the 3d multiplet. The five 3d orbitals split in the octahedral 

crystal field into a high energy eg doublet (𝑑𝑧2 ,𝑑𝑑2−𝑏2) and a low energy t2g triplet 

(𝑑𝑑𝑏,𝑑𝑧𝑑 𝑎𝑛𝑑 𝑑𝑏𝑧). The eg orbitals are left unoccupied above the Fermi level (EF) and the 

t2g orbitals remain below the Fermi level. 

 

4.2 Thermoelectricity of Single Crystal FeSb2 

Investigations on FeSb2 were conducted initially because of its unusual magnetic 

properties [13]. Research interests on this compound as a thermoelectric material 

emerged after Bentien eτ al. [6] reported a colossal value of the Seebeck coefficient of -
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 45,000 µVK-1.  A record high value of the power factor (PF) of 2,300 µWK-2cm-1 at 

around 10 K in single crystal samples was reported. These measurements along with its 

low resistivity suggested this material as a potential candidate for the Peltier cooling 

applications at temperatures near 10 K. Figure 4.4 shows the temperature dependent 

power factor (PF) of single crystal of FeSb2 grown by flux method [6]. The authors also 

demonstrated that the peak value of the Seebeck coefficient changes with the crystal 

orientations.  As a result, the power factor is is highly anisotropic. Also note significant 

magneto-thermopower of the sample. Despite the huge PF value, the dimensionless 

figure of merit (ZT) values for single crystal samples are limited by a very high thermal 

conductivity. As seen in the inset of Figure 4.4, κ ~ 500 Wm-1K-1 at ~ 10 K. Based on this 

data, one can calculate the temperature dependent dimensionless figure-of-merit (ZT) 

which is shown in Figure 4.5. The largest value of ZT is ~ 0.005 at low temperatures, 

much less than the state-of-art requirement for a ZT = 1 of conventional thermoelectric 

systems working above room temperature [14].    
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Figure 4.4 Power factor of single crystal FeSb2 as a function of temperature. The inset 

shows temperature dependent thermal conductivity. Figure was taken from reference [6]. 
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Figure 4.5 Dimensionless figure-of-merit (ZT) of FeSb2 single crystal sample as a 

function of temperature. The temperature dependent power factor and thermal 

conductivity were drawn from Figure 4.4 and interpolated data was used to calculate the 

ZT. 

 
Reducing the thermal conductivity without affecting the power factor of FeSb2 

system has been a real challenge. Initial attempts to reduce thermal conductivity 

employed doping or elemental substitution of FeSb2 [15, 16, 17, 18]. Significant thermal 

conductivity reduction was achieved from these efforts, which in some case reaches 10 

W/K-m below 50 K. However, other issues emerged with these doping efforts i.e. a 

semiconductor-metal transition was introduced, a modest reduction of thermal 
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conductivity, and the magnitude of the Seebeck coefficient was severely decreased, with 

its peak position shifting to higher temperature ranges. Thus, to some extent, the 

significance of ZT enhancement was degraded by its peak shifting from 12 K to above 

100 K.    

In principle, thermal conductivity suppression can be realized through impurity 

defects and lattice boundary scattering in a crystal. Indeed, for single crystal FeSb2, its 

reported electron mean free path is less than 10 nm at all temperatures, and its phonon 

mean free path was determined to be 40 μm at 15K [19]. This suggests that it would be 

advantageous to tune the material’s electrical and thermal conductivity properties by 

either doping or nano-engineering approaches. The nano composite approach, which has 

been approved as very efficient way to reduce the lattice contribution portion of thermal 

conductivity in many thermoelectric systems [20-23], appears inevitable for the ZT 

improvement of FeSb2. In a review of the literature, among all the low temperature 

thermoelectric systems, especially those working at cryogenic temperatures, materials 

like FeSi [24], RuSb2 [25], CeB6 [26],   FeAs2 [27] have not yet gone through significant 

thermal conductivity suppressions by the nanocomposite approach.  

A temperature scale called Debye temperature (θD) governs important information 

regarding dominant phonon scattering mechanisms in different temperature regions 

(2.5.1). In general,  

                                 𝜃𝐷 = �1944𝑛
𝛽

�
1
3                                                  (4.1) 

where β coefficient is derived from the low temperature heat capacity (Cp) given by,  

                                       𝐶𝑃 = 𝛾𝛥 + 𝛽𝛥3                                                           (4.2) 

 where 𝑛 denote the atom number density [28]. The minimum limit of lattice thermal 
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conductivity has been calculated as low as less than 0.3 W/m-K at 50K [29] through the 

model proposed by Cahill eτ al. [30]. Therefore a significant ZT enhancement through 

nanocomposite approach in FeSb2, which is a phonon dominated system, can be 

expected. In the following sections thermoelectric properties of nanostructured FeSb2 

samples will be discussed. 

4.3 Effect of nanostructuring 

4.3.1 Experimental 

FeSb2 nanocomposites were synthesized and processed by the procedure 

described in section 3.2.1.Further details of the sample preparation procedure can also be 

found in reference [31]. For a typical sample a total amount of 50 g of Fe and Sb metal 

pellets with the molar ratio of 1:2 of Fe to Sb was sealed in an evacuated quartz tube and 

then heated to 1050 oC in a furnace for 5 hours with intermittent stirring. Next the tube 

was removed from the furnace and quenched in water.  The resulting ingot was resealed 

in an evacuated quartz tube and annealing at 600 oC for 24 hours.  The final   annealed 

ingot was ball milled prior to hot-pressing.
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Figure 4.6 X-ray diffraction pattern of FeSb2 nanopowder obtained after 15 hours of ball-

milling 

 
 

The final powder products were characterized by X-ray diffraction (XRD, Bruker 

AXS) to determine if the desired stoichiometry was achieved. Figure 4.6 shows the XRD 

pattern obtained for the final powder. The pattern showed that all the powders were pure 

phase FeSb2 within the resolution of the equipment. All peaks of the pattern can be 

indexed as the orthorhombic Pnnm FeSb2.  

 

Table 4.1 Processing parameters, densities and IDs for the samples. 
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Powder ball  

milling time 

Press temperature 

 oC  (at 1 ton) 

Density (% of  

single crystal) 

Average grain size 

with deviations (nm) 

 

Sample ID 

10 minutes 400  95.2 5000 ± 3000 S10min-400C 

1 hour 400  96.3 300 ± 200 S1hr-400C 

15 hours 

 

 

 

 

 

200  77.2 20± 5 (Aggregates) S15hr-200C 

300  85.6 30 ± 15 S15hr-300C 

400  97.7 100 ± 20 S15hr-400C 

600  

Room temperature 

(9 ton) 

98.9 

85.4 

20,000 ± 2000 

20 ± 5 

S15hr-600C 

S15hr-room 

temperature (RT) 

 

In order to understand the role of the grain sizes in the thermoelectric properties 

of nano composite FeSb2 system, we tuned the sample grain sizes both by varying the 

ball milling time and by changing the hot pressing temperature while keeping the other 

one unchanged. We prepared the following powders with different ball milling time: 10 

minutes, 1 hour and 15 hours. DC current hot press method (as discussed in section 3.3) 

was used to prepare disk samples from the aforementioned FeSb2 powders. The pressing 

force was usually at 1 ton. For the cold-pressed (room temperature pressed) sample a nine 

ton force was used. A one ton force exerting on a 1/2” pressing die produces a uniaxial 

pressure equivalent to  
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Figure 4.7 SEM images for nano composite samples, processing parameters for each 

sample were listed in Table 1.  

 
 
 
78 MPa. The density of the palletized samples was measured by using the Archimedes 

method. Table 4.1 summarized the processing parameters, relative density and average 
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grain sizes and IDs for samples. 

The grain sizes were estimated from images (see Figure 4.7) obtained from 

scanning electron microscopy (SEM). Images were all taken from the fresh fractures of 

the broken sample pieces. SEM images show how the grain size changes as a function of 

ball milling time and hot press temperature. From the images it can be seen that samples 

pressed at higher temperatures or with shorter ball milling times have much larger grains. 

It is also noticed that unlike those samples pressed under higher temperatures, S15hr-

200C was composed of grain aggregates. The sizes of the small grain component of the 

aggregates were around 20 ± 5 nm estimated from HRSEM images. With the increasing 

of the pressing temperatures, the boundaries between small grains became clear.  

The electrical resistivity (ρ), Seebeck Coefficient (S), thermal conductivity (К) 

and Hall coefficient (RH) were all measured on a Physical Property Measurement System 

(PPMS) from Quantum Design. Thermoelectric properties ρ (T), S (T) and К (T) were 

determined with normal two point method using Thermal Transport Option (TTO). For a 

TTO sample, the ends of the samples were sputtered with three consecutive layers of 

titanium, nickel and gold.  The two sputtered ends were then soldered on disk-shaped 

gold plated copper leads. For Hall coefficient measurement, five Platinum wires were 

spark welded onto the sample as depicted in Figure 3.12(a). The Hall Effect RH (T) 

measurements were performed on samples S15hr-600C and S15hr-300C. 

4.3.2 Results and Discussions 

Figure 4.8 shows the temperature dependence of thermal conductivity for all 

samples and includes thermal conductivity of single crystals grown from vapor 

transportation and self-flux methods as reported in the literature [25]. A substantial 
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decrease of thermal conductivity was found for all samples throughout the temperature 

range. The thermal conductivity decreases as grain size decreases. For instance, the 

thermal conductivity of sample S15hr-600C is 17 W/m-K at 40K, compared with 0.34 

W/m-K for S15hr-200C at the same temperature. Such a drastic reduction is mainly 

attributed to the decrease in the lattice portion of the thermal conductivity due to 

increased scattering of the phonons off the grain boundaries. The data indicates that the 

lattice thermal conductivity decreases with decreasing hot-pressing temperature and 

increasing ball milling time.  
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Figure 4.8 Temperature dependence of thermal conductivity for nano composite samples. 

Fittings were applied to sample S10min-400C and S15hr-200C respectively. Two solid 
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curves correspond to thermal conductivity from single crystal samples, data were 

extracted from reference [25]. 

 
Sample S15hr-200C has thermal conductivity reduced to 0.4 W/m-K at 50K, which 

almost reaches the theoretical minimum as calculated for thermal conductivity by Cahill 

eτ al. [30]. The peak positions of �, which reveal the competition between the phonon-

phonon (umklapp) scattering and the grain boundary scattering (Figure 2.3), shift to 

higher temperatures and nearly disappear on samples S15hr-200C and S15hr-room 

temperature. This demonstrates that grain boundary scattering is the dominant scattering 

mechanism in samples with smaller grain sizes. Moreover, fitting the thermal 

conductivity data for temperatures below 100 K shows a shift from T2.04 to T1.31 with the 

decreasing of grain sizes, similar trends are indicated in nanocrystalline silicon [20]. This 

decreasing exponent in the temperature dependence indicates that other parameters 

besides CV such as porosity, phonon frequency (ω), and the effective mean free path (Λeff) 

also play important roles in thermal conductivity reduction. When compared with single 

crystal FeSb2, there is a reduction by more than three orders of magnitude, from 500 

W/m-K down to around 0.1 W/m-K at 20 K in the nano composite system S15hr-200C. 

In comparison with the literature, such large scale thermal conductivity suppression by 

nanostructuring had never been reported in any other thermoelectric materials. Nano 

composite p-type BiSbTe bulk alloy achieved 83% thermal conductivity reduction 

compared with its ingot counterpart at 250oC [21], half-Heuslers achieved 33% in high 

temperature ranges [23], and for p-type silicon germanium alloy, 100 % thermal 

conductivity reduction was reported through the nanocomposite approach [32]. 

Effectiveness of mechanical nanostructuring in reducing thermal conductivity of FeSb2 
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was further corroborated by calculating Kapitza resistance using effective medium 

approach (EMA) [33], to be discussed later. 
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 Figure 4.9 Electrical resistivity of the nanocomposite FeSb2 samples as a function of 

temperature. 

 

Figure 4.9 shows the temperature dependence of electrical resistivity for all the samples. 

The data was fitted using Arrhenius’ law [28], 

                               𝜌(𝛥) = 𝜌0 exp[− 𝐸𝑔
𝑘𝐴𝑑

]                                                          (4.3) 

Here ρ0 is the electrical resistivity at absolute zero, Eg is the thermally activated energy 

gap and kB is the Boltzmann constant. Sample FeSb2 S15hrs-600C has two gaps of 28.2 
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meV and 4.2 meV respectively. FeSb2 S10min-400C also has two energy gaps of 28 meV 

and 2.5-5 meV respectively.  But for sample S15hrs-300C, only one gap appears with a 

value of 21 meV. The change in the band gaps correspond to increasing crystal defects 

due to decreasing grain size. The lower temperature energy gap located in the 

temperature range of 7-20K gets completely suppressed upon decreasing grain size 

whereas the higher temperature gap depletes but does not disappear. For the sample 

pressed at room temperature, the gap is reduced to 18 meV.  
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Figure 4.10 Seebeck coefficients of the nanocomposite FeSb2 samples as a function of 

temperature. 

 
The temperature dependent Seebeck coefficients (S(T)) are shown in Figure 4.10. 
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It can be seen that the peak value of the Seebeck coefficient (Smax) goes down as ball 

milling time is increased. It is also noted that the Smax decreases as pressing temperature 

decreases. For the most part, this shows that S decreases as grain size is decreased.  This 

is not the case for S10min-400C, which has smaller grains than S15hr-600C. From the 

relationship of the resistivity and the quality of crystal, it is believed that S10min-400C 

has fewer defects than that of S15hr-600C due to the longer ball milling time. Defects 

typically increase carrier concentration, which will in turn decrease the S.  

Figure 4.11 Hall carrier concentration and Hall mobility derived from measured values of 

Hall coefficient and electrical resistivity as a function of temperature for the samples 

S15hr-600C and S15hr-300C. Note the arrows showing corresponding axes. 
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Mobility and carrier concentration measurements are shown for two samples S15hr-600C 

and S15hr-300C in Figure 4.11.  For S15hr-300C at 25 K, carrier concentration is 9.75 × 

1019 cm-3 and the mobility is 4.52 cm2/V- s. On the other hand, for S15hr-600C at 25 K, 

carrier concentration is decreased to 8.36 × 1017 cm-3 while the mobility is as high as 160 

cm2/V- s.  This directly correlates to the increase seen in the S in Figure 4.10. There is a 

cross over between the two samples in the Seebeck coefficient found at 65 K. This cross 

over is also seen in the measurements for carrier concentration at 65 K while the mobility 

remains relatively constant confirming both measurements. Since S15hr-600C has better 

crystallization, and therefore a band gap of  4.2 meV in the temperature range 7-20 K 

which is not seen in S15hr-300C, and induces higher resistivity than that of S15hr-300C 

below 50 K. For the same reason, peak values of the Seebeck coefficient of S15hr-600C, 

which is 352 μV/K at 20 K, is much larger than 117 μV/K for S15hr-300C at 35 K. 
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 Figure 4.12 Temperature dependent power factor for FeSb2 nanocomposite samples. 

Inset refers to the power factor for single crystal data taken from reference [25]. 

 
In FeSb2 systems, the relation between carrier concentration and Seebeck 

coefficient has been intensively investigated recently by Sun eτ al. [5, 16, 19]. It was 

found that an enhancement by a factor of 30 or larger could be applied to the calculated 

Seebeck coefficient based on the free-electron model thereby suggesting a strong 

electron-electron correlation as a possible cause for large value of the Seebeck coefficient 

in FeSb2. However, based on our analysis [34], a substantial phonon-drag contribution to 

the Seebeck coefficient exists in this system which will be discussed in later section. 
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Figure 4.12 shows the temperature dependence of power factor (PF) for all 

samples. The PF from single crystal samples grown by VT and SF [25] are plotted as the 

inset to Figure 4.12. It can be seen that the PF values from polycrystalline samples are far 

from comparable to their single crystal counterpart. This can be fully ascribed to the 

much lower value for S of the polycrystalline (nanocomposite) samples. As for the 

resistivity, polycrystalline samples all show typical semiconductor behavior, which is 

consistent with most reported results in the literature [5, 6, 16]. In some reports of single 

crystal FeSb2 the Kondo effect was observed [4, 13].  The b- axis of single crystal FeSb2 

exhibits a metal-semiconductor crossover around 40 K. The PF peak along b axis was 

measured to be 0.78 W/m-K2 due to the much lower resistivity [35].  

Figure 4.13 shows the temperature dependence of ZT for the nanocomposite 

samples.  It can be noted that there is significant enhancement, by a factor of more than 2, 

over that of single crystal samples. The figure of merit increases as grain size decreases 

except for the sample pressed at room temperature.  However the difference in thermal 

conductivity from S15hr-200C to S15hr-RT is negligible due to the fact that the lower 

limit of thermal conductivity has been reached. Therefore, any further reduction in grain 

size will only degrade thermopower with no enhancement in thermal conductivity 
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Figure 4.13 Dimensionless figure-of-merit (ZT) of the FeSb2 nanocomposite samples as a 

function of temperature. The thick and black curve represents temperature dependent ZT 

for single crystal sample, taken from reference [25]. 

 
leading to lower values for ZT.  The optimal ZT value from S15hr-200C which reaches 

0.013 at 50 K, is higher than ZT = 0.005 at 10 K for single crystal samples. Though the 

power factor is much less than that of the single crystal, the drastic reduction in thermal 

conductivity contributes to the increase in ZT. A ZT value greater than 0.1 at cryogenic 

temperatures (< 77 K) has rarely been reported. Single crystal FeSi has ZT of 0.01 at 50 

K, which can be slightly raised to 0.07 at 100 K by 5% Ir doping [11]. 
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4.3.3 Conclusions 

In conclusion, substantial thermal conductivity suppression for the strongly 

correlated system FeSb2 through a nano composite approach is reported. Thermal 

conductivity was reduced by more than three orders of magnitude over its single crystal 

counterpart. Through the optimization of ball milling time and pressing temperature it 

was shown that as grain size decreases from tens of microns to around 20 nm, the 

corresponding thermal conductivity decreases 50 times, reaching its minimum limit, 0.34 

W/m-K at 50 K. The optimized nanocomposite sample characteristic ZT was found to be 

0.013, compared to 0.005 for single crystal FeSb2.  Although this is small when 

considering a nominal ZT = 1 desirable for room temperature thermoelectrics, it is clear 

that  nanostructuring reduces thermal conductivity in FeSb2 and can be combined with 

other methods e.g. doping or composition adjustment to greatly increase the figure of 

merit. This method can be easily extended to other strongly correlated low temperature 

thermoelectric materials, paving the way for future cryogenic temperature cooling 

systems.  

4.4 Effect of Doping 

4.4.1 In, Te, Sn, Ru, Co and Cr-doped Fesb2 

Several attempts to optimize the thermoelectric performance of FeSb2 have been 

made previously. Some of the typical dopants were Sn [15], In [29], Se [36], Te [16, 37], 

Cr [37], Co [37]. All of the above studies were performed either in single crystal or 

polycrystalline samples. Few of these doping studies show significantly enhanced 

thermoelectric properties of FeSb2.  Furthermore, it was shown that the Seebeck 

coefficient decreases sharply upon doping and thus in turn dramatically reduced the 
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power factor (S2��. Tellurium [16, 37] was found one of the best dopants by reducing 

thermal conductivity while maintaining a reasonably large value of the power factor. In 

this work, doping was combined with the mechanical nanostructuring with the 

anticipation that the reduced thermal conductivity may lead to increased ZT values.  

Figure 4.13 Thermal conductivity of doped nanocomposite samples of FeSb2 as a 

function of temperature. All the samples are hot-pressed at same temperature of 200 oC. 

 
From the previous work (section 4.3), the lowest hot-pressing temperature of 200 

oC presents the lowest thermal conductivity and optimized ZT. Therefore, to maintain low 

thermal conductivity all the doped samples to be discussed below were pressed at 200 oC. 

The dopant concentrations were chosen from the literatures mentioned above. In our 
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substitution studies, three samples were doped on the Sb site and three were doped on the 

Fe site.  

In Figure 4.13, temperature dependent thermal conductivity of the doped 

nanostructured samples are presented. No significant change in thermal conductivity is 

induced by doping.  Co and In-doped samples exhibit increased thermal conductivity 

whereas other four samples have slightly reduced thermal conductivity when compared to 

the undoped sample. 

Figure 4.14 shows the temperature dependence of the power factor for the 

samples. When compared to the undoped samples, doped samples exhibit decreased 

values of the power factor. Additionally, for Te and In-doping the peaks in PF shift to 

higher temperature. A similar shifting of the peak in power factor with increasing Te-

content has been reported also in the litrature [16]. The decrease in Seebeck coefficient in 

doped samples is due  
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Figure 4.14 Thermoelectric power factors of doped nanocomposite samples of FeSb2 as a 

function of temperature. 

 
mainly to the increased concentration of the carriers. However, this data does not show a 

clear trend of how Fe and Sb-substitutions effect the carrier concentration. 

In Figure 4.15, calculated values of ZT as a function of temperature are shown. 

All the doped samples exhibit ZTmax values smaller than that of undoped counterpart. Te-

doped samples has a relatively tall peak in ZT when compared with other doped samples. 

Also the ZT peak for Te-doped sample is shifted to the temperature ~ 100 K when 

compared to ~ 50 K for the undoped sample. Moreover, the ZT peak in Te-doped sample 

is broader and is an important factor in terms of practical application in TE cooler.  In the 
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following section, details about the effect of Te-doping will be discussed.  . Details can 

also be found in reference [38]. 

Figure 4.15 ZT of doped nanocomposite samples of FeSb2 as a function of temperature.  
 
 
4.4.2 Optimizing Thermoelectric Properties of Te-doped FeSb2 nanocomposites 

In our earlier work [31] explained in section 4.3.2, we were able to reduce the 

thermal conductivity of FeSb2 by three orders of magnitude using the technique of 

nanostructuring. Unfortunately, the values of the Seebeck coefficient were drastically 

reduced in these nanostructured samples possibly indicating a significant phonon-drag 

contribution [34]. As a result, ZT was increased by only one order of magnitude. Data 

from our earlier work clearly showed that a significant increase in ZT of FeSb2 through 
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nanostructuring alone cannot be expected. On the other hand, studies have shown 

tellurium to be an effective dopant for improving ZT of single crystal FeSb2 by reducing 

the thermal conductivity via point defect scattering.  Sun eτ al. [16] reported a ZT value of 

~ 0.013 at around 100 K in FeSb2-xTex single crystal samples for their optimized doping 

concentration of x = 0.16. The following paragraphs discuss the combined effect of 

nanostructuring and Te-doping on the thermoelectric properties of FeSb2. To conduct this 

research, the previously reported [16] optimized Te-doped stoichiometric composition 

(FeSb1.84Te0.16 ) was used.  The thermoelectric properties of this particular stoichiometry 

were tuned by changing the hot pressing temperature.  

The sample preparation and measurement methods are similar to that explained in 

section 4.3.1 and can also be found in reference [38]. Five nanostructured samples of 

FeSb1.84Te0.16 were prepared by hot-pressing nanopowder at five different temperatures 

namely, 200, 400, 500 and 600 oC. The samples are given IDs based on their 

corresponding hot-pressing temperature. For example, FeSb1.84Te0.16  HP 200 means 

nanostructured sample of FeSb1.84Te0.16 hot-pressed at 200 o C. 
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 Figure 4.16 Thermal conductivity of the nanostructured FeSb1.84Te0.16 samples as a 

function of temperature. The data for single crystal of FeSb1.84Te0.16 (from reference [34]) 

and undoped FeSb2 sample hot-pressed at 500 oC are also shown for comparison. 

 
Figure 4.16 shows the temperature dependence of the thermal conductivity for the 

samples. The thermal conductivity values of all the nanostructured samples are 

significantly lower than the values reported for single crystal [6]. For the sample FeSb2 

HP 500, κ = 7.08 W m-1 K-1 at 100 K which is 76% lower than the value reported for 

single crystal FeSb2 (~30 W m-1 K-1 ). By doping with Te, the thermal conductivity was 

further reduced to 4.38 W m-1 K-1 in the representative sample FeSb1.84Te0.16 HP 500; a 
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reduction by 38%. In this way an overall reduction in thermal conductivity by 85% was 

achieved.  

In general, 𝜅 = 𝜅𝑐𝑐𝑐𝑐𝑐𝑒𝑐 + 𝜅𝑇𝑐𝑇𝑇𝑐𝑐𝑒. Here κcarrier and κlaττice are the carrier and lattice 

contributions respectively. Calculations based on the Wiedemann-Franz law (𝜅𝑐𝑐𝑐𝑐𝑐𝑒𝑐 =

𝐿0𝜌−1𝛥) show that more than 99% of the total thermal conductivity of FeSb2 comes from 

lattice vibrations (phonons).  Therefore any reduction in the total thermal conductivity of 

this system is due to reduction in lattice contribution. The physics of the lattice thermal 

conductivity is commonly interpreted using the Debye approximation as explained in 

Chapter 2.The reduced (by 76%) thermal conductivity in our nanostructured samples is 

due primarily to scattering of the phonons off the grain boundaries. On the other hand, 

since addition of a small amount of Te should not change the Umklapp process and grain-

boundary scattering that much, the additional reduction (by 38%) comes mainly from the 

point-defect scattering. It should be noted that the mass difference between Sb (121.75) 

and Te (127.60) is considerably small; therefore the difference in interatomic coupling 

force constants probably plays a dominant role in scattering of phonons in doped 

samples. The contributions of nanostructuring and defect scattering are depicted in Figure 

4.16. A significant reduction of thermal conductivity in Te-doped FeSb2 single crystals 

has been previously discussed in detail by Sun eτ al [16]. They attributed the thermal 

conductivity reduction to the introduced charge carriers rather than chemical disorder 

whereas Wang eτ al. [37] attributed the reduction to the enhanced point defect scattering 

caused by both the different bonding tendency and different thermal conductivities of Sb 

and Te.  
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Figure 4.17 Seebeck coefficient of the nanostructured FeSb1.84Te0.16 samples as a 

function of temperature. The data for undoped FeSb2 sample hot-pressed at 500 oC is also 

shown in the inset for comparison. 

 
Figure 4.17 shows temperature dependence of the Seebeck coefficient. At 300 K, 

the Seebeck coefficient has a small positive value (p-type) ~2 µV K-1 for all the Te-doped 

samples. This value of Seebeck coefficient is significantly less than 31 µV K-1 observed 

for undoped samples. As the temperature decreases, the Seebeck coefficient decreases 

and changes to a negative (n-type) value at ~290 K. The Seebeck coefficient assumes a 

peak value at 90 K for all the samples. The largest peak value for the Seebeck coefficient 

among our samples is ~ -107 µV K-1 for sample FeSb1.84Te0.16 HP 600 which is two 



 

92 
 

orders of magnitude less than the reported value for undoped FeSb2 single crystals [6] and 

is one-fourth of the value (~ - 400 µVK-1) for FeSb1.84Te0.16 single crystals [16]. The peak 

value of the Seebeck coefficient decreases with decreasing hot pressing temperature. This 

decrease, based on our analysis, comes from two factors: increased carrier density and 

suppression of the phonon-drag contribution due to increased grain boundary scattering at 

lower hot-pressing temperatures [34].  The inset of Figure 4.17 shows the temperature 

dependent Seebeck coefficient for representative sample FeSb1.84Te0.16 HP 500 and its 

undoped counterpart FeSb2 HP 500. Upon Te-doping, peak value of the Seebeck 

coefficient decreases and shifts to a higher temperature. A similar shifting of the Seebeck 

peak with increasing Te-content has been reported also in reference [16]. 
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Figure 4.18 Electrical resistivity (left y-axis) as a function of temperature for the five Te-

doped samples. The right y-axis corresponds to the electrical resistivity for the undoped 

sample FeSb2 HP 500.  

 
Figure 4.18 shows the temperature dependence of the electrical resistivity for the 

samples. The electrical resistivity of the sample FeSb2 HP 500 is represented by the right 

y-axis. The undoped sample exhibits semiconducting behavior throughout the 

temperature range 5-300 K with increasing resistivity as temperature decreases. A sharp 

increase in resistivity below 70 K indicates an insulating ground state. In contrast to the 

undoped FeSb2, the Te doped samples exhibit suppressed electrical resistivity with a 

metallic ground state.  The electrical resistivity decreases by one order of magnitude at 
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100 K. The semiconductor to metal transition temperature for the different samples falls 

within the range of 100 – 130 K.  

Figure 4.19 Hall carrier density and Hall mobility of the nanostructured FeSb1.84Te0.16 

samples as a function of temperature. The inset shows linear dependence of Hall 

resistance on applied magnetic field. 

Figure 4.19 shows the temperature dependence of the carrier concentration (n) 

and the Hall mobility (µ) for the undoped and doped nanostructured samples pressed at 

500 oC. n and µ were estimated from the Hall coefficient (RH) and electrical resistivity (ρ) 

measurements using n = 1/|RH|e and µ = |RH|/ρ, under the single parabolic band model. 

Here e = 1.6 ×10-19 C is the electronic charge. At 100 K, the carrier concentration of the 

doped sample is increased by one order of magnitude when compared with that of 
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undoped sample. Also, the carrier concentration is less temperature sensitive for doped 

samples, a result consistent with the metallic nature seen in the electrical resistivity data 

at lower temperatures. The Hall mobility is reduced in the doped sample. For example,  µ 

= 5.3 cm2 V-1 S-1 and 3.3 cm2 V-1 S-1 for samples FeSb2 HP 500 and FeSb1.84Te0.16 HP 

500, respectively at 100 K.  
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Figure 4.20 Thermoelectric power factor of the nanostructured FeSb1.84Te0.16 samples as 

a function of temperature.  

 
Figure 4.20 shows the temperature dependence of the power factor (S2ρ-1). When 

compared with the undoped nanostructured samples, the power factors in the Te-doped 

samples increased significantly. For example, S2ρ-1 = 9.9 × 10-4 W m-2 K-1 at 80 K for the 

representative sample FeSb1.84Te0.16 HP 500, which is an increase of 386 % from the 
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corresponding value for the undoped sample FeSb2 HP 500. Among the Te-doped 

samples, the peak values for the power factor decrease with decreasing the hot-pressing 

temperature.  

 

Figure 4.21 ZT of the nanostructured FeSb1.84Te0.16 samples as a function of temperature. 

The data for single crystal is also shown for comparison. 

 
In Figure 4.21, we have presented ZT as a function of temperature. For all the 

doped samples, the curve assumes a peak value (ZTmax) at around 100 K. For the 

optimized sample FeSb1.84Te0.16 HP 500, ZTmax = 0.022 at 100 K, this is an increase of 62 

% compared with the optimized value for the Te-doped single crystal which was 0.012 in 
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reference [16]. When compared with the ZT of FeSb2 HP 500 (ZTmax = 0.0017 at 25 K), 

the ZT values for the optimized sample FeSb1.84Te0.16 HP 500 is increased by a factor of 

11.  

In conclusion, nanostructured samples of FeSb1.84Te0.16 have been prepared using 

the hot-press method and their thermoelectric properties have been studied in the range of 

temperatures 5 – 300 K. Based on our analysis, the grain-boundary scattering and the 

point-defect scattering are the two dominant phonon scattering mechanisms that 

contributed to a significantly reduced (by 85% at 100 K) thermal conductivity in Te-

doped nanostructured samples. Te-doping in FeSb2 contributed not only to the thermal 

conductivity reduction but also to enhanced power factor by inducing a semiconductor to 

metal transition. With a decrease in hot-pressing temperature, both the thermal 

conductivity and the power factor decreased. The optimal conditions for ZT were 

observed for the doped sample hot pressed at 500 oC. The ZT value of 0.022 at 100 K was 

observed for the optimized sample FeSb1.84Te0.16 HP 500, 62% higher than the 

corresponding value for the single crystal. Therefore, it has been successfully 

demonstrated that combining the technique of doping with nanostructuring significantly 

enhances the thermoelectric performance of FeSb2 at low temperatures. This approach 

can easily be extended to improve ZT of other phonon dominated thermoelectric systems 

at low temperatures. 

 

4.5 Effect of Nanoinclusions 

Currently developed approaches to optimize thermoelectric properties of 

materials, such as nanostructures reducing lattice thermal conductivity [21, 31, 39], 
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resonant doping [40, 41, 42], band engineering [43, 44] at the Fermi level, as well as 

modulation doping providing additional electrical conductivity channels [45, 46], have 

been proven to be efficient in a few material systems. In the literature, the 

metal/semiconductor interface concept was proposed theoretically and testified 

experimentally in a few cases for their potential application in thermoelectric materials 

[47-52]. Indeed, modeling shows that, by introducing uniformly distributed metal 

nanoparticles to the three-dimensional semiconductor structure, either electronic (κe) or 

phononic (κph ) thermal conductivity, and thus the total thermal conductivity can be 

suppressed dramatically [49]. Furthermore, due to the energy barrier (VB) built between 

metal nanoparticles and the host semiconductor at the interfaces, the lower energy carrier 

could be scattered, which would result in a reduced electrical conductivity but an 

enhanced Seebeck coefficient. As a result, the power factor could be enhanced and an 

enhanced ZT could be expected. However, for a phononic thermal conductivity 

dominated system, the modeling showed that a much smaller VB than 0.03 eV is 

preferred to secure an even slightly enhanced PF [49], and zero energy barriers at the 

interface would be expected in the real case even though there is no net gain on PF. 

Overall, for a phononic thermal conductivity dominated system, the enhanced ZT could 

be expected solely from the reduced thermal conductivity through the 

metal/semiconductor nanocomposite approach. In reality, due to the difficulty matching 

the semiconductor with the right metals, there has been no convincing demonstration of 

this concept. In this section, effect of Ag and Cu nanoinclusions on the thermoelectric 

properties of FeSb2 will be discussed. 

4.5.1 Ag-nanoinclusion 
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Various numbers of Ag nanoparticles (NPs) (100 nm, Aldrich) were added to the 

synthesized FeSb2 powders with the targeted final nominal composition FeSb2Agm with 

m = 0.028, 0.056, 0.11, 0.22, and 0.33. Together with the FeSb2 nanopowder, each 

individual composition having the weight of 5 g was further mixed via ball milling for 3 

hours. The direct current (dc) hot pressing method was used to prepare disk samples from 

the final powders with different compositions. All disk samples were pressed at 200 oC 

and 80 MPa for 2 min, resulting densities in the range of 5.91– 6.01 g cm-3, about 76.8% 

–78.1% of the theoretical densities of 7.70 g cm-3. 

 

  

(a)                                                                  (b) 

Figure 4.22 (a) X-ray diffraction pattern of pure FeSb2 and FeSb2Agm (m = 0.11, 0.33). 

(b) SEM image of representative sample FeSb2Ag0.11. 

 
X–ray diffraction pattern of pure FeSb2 and FeSb2Agm (m = 0.11, 0.33). are 

shown in Figure 4.22 (a). Some of the Ag replaces Sb of FeSb2 whereas some of it reacts 

with Sb which is evidenced by the presence of a secondary phase of Ag1-ySby in 

FeSb2Agm composition. Essentially, nanostructured samples of FeSb2-xAgx with Ag1-ySby 

nanoinclusions are obtained. Because the densities and grain sizes (~30 nm) of all six 
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samples are very similar, only an SEM image for sample FeSb2Ag0.11 is shown in figure 

4.22(b). It can be seen that the sample is composed of micro-sized aggregates consisting 

of much smaller grains of 30 nm on average, which is consistent with the TEM 

observation [53]. Figure 4.23(a) is the schematic of phonon scattering due to Ag1-ySby 

nanoinclusions dispersed in FeSb2 host.   

  

 

Figure 4.23 (a) Schematic representations of Ag1-ySby nanoinclusions present in FeSb2 

host material and scattering of phonons (b) DFT convergence plot on work function of 

Fesb2. (c) Band alignment and electron diffusion.  

 
In addition to the phonon scattering by nanograins as we have reported [31], the 

interface shown in Figure 4.23 (a) between FeSb2-xAgx and Ag1-ySby can also scatter the 

medium to long wavelength phonons as predicted by theory [48, 49]. The work function 

of FeSb2 can be simply calculated by subtracting the Fermi level from the vacuum energy 
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level. The work functions of FeSb2 were calculated to be 4.514 eV for the (001) plane, 

4.852 eV for the (010) plane, and 4.723 eV for the (100) plane (as shown in Figure 4.23 

(b)). Meanwhile, the reported work functions of silver are 4.52 eV for the (110) plane and 

4.74 eV for (111) plane [31]. It is noted that Ag and FeSb2 have similar work functions in 

at least two crystal planes. Figure 4.23(c) shows the band alignment and the electron 

transport between the (110) plane of silver and (001) plane of FeSb2. Due to the similarity 

of work functions between Ag and FeSb2 in these planes, it can be argued that due to 

band alignment there is no energy barrier at the interface. Based on the model developed 

by Kim eτ al. [48], it is reasonable to speculate that the electrons transported from FeSb2 

to Ag will be minimally scattered and enhanced ZT can be expected solely from thermal 

conductivity reduction in the nanocomposite. 
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Figure 4.24 Thermal conductivity of the FeSb2-xAgx/Ag1-ySby nanocomposite samples as 

function of temperature. 

 
A significant thermal conductivity reduction for all FeSb2Agm composites is 

observed as shown in Figure 4.24. At 50 K, with the increase of Ag content, thermal 

conductivity first decreased to a minimum of 0.24 W m-1 K-1 for nanocomposite 

FeSb2Ag0.028 from 0.38 W m-1 K-1 for pure nanostructured FeSb2. The TEM and EDX 

investigations [53] for all FeSb2Agm samples revealed uniformly distributed Ag1-ySby 

nanoparticles in these nanocomposites with an average size of 20 nm. With the increase 

of Ag content, allargentum, Ag1-ySby, emerged as a significant phase in FeSb2Agm 

nanocomposite. Owing to the high thermal conductivity of Ag1-ySby metal phase, the total 
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thermal conductivity in the nanocomposite increases with the increase of Ag content, and 

reaches a maximum at 0.29 W m-1 K-1 for FeSb2Ag0.22. Meanwhile, with the increase of 

Ag, the phonon scattering from the interfaces between FeSb2-xAgx and Ag1-ySby became 

dominant and eventually outweighed the contribution of the Ag1-ySby metal phase, and 

the total thermal conductivity decreased to another low level at 0.26 W m-1 K-1 for 

FeSb2Ag0.33 nanocomposite.  
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Figure 4.25 Thermoelectric power factor of the FeSb2-xAgx/Ag1-ySby nanocomposite 

samples as function of temperature. 

 
The power factor (PF) in Figure 4.25 shows a trade-off between the Seebeck 
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coefficient and the electrical resistivity. Due to relatively less affected value of the 

Seebeck coefficient, the sample FeSb2Ag0.11 exhibits tallest peak in the power factor. The 

peak value of the power factor increases with the increasing Ag content, assumes 

maximum for m = 0.11 and decreases on further increasing m values. A further 

explanation of the Ag-nanoinclusion effect can be found in reference [53]. 
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Figure 4.26 ZT of the FeSb2-xAgx/Ag1-ySby nanocomposite samples as function of 

temperature. 

 
 Figure 4.26 shows the temperature dependent ZT of the samples with Ag 

nanoinclusions. By taking advantage of the greatly reduced thermal conductivity for all 
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FeSb2Agm nanocomposites, the peak ZT are enhanced to 0.02, which is four times higher 

than the single crystal value [6], and 70% improvement over the best undoped FeSb2 

nanocomposite discussed in section 4.3.2.  

Being a phonon thermal conductivity dominated system; the thermal conductivity 

reduction in FeSb2Agm nanocomposites is not too surprising. Inspired by the model 

proposed by L´eonard [49], the band bending and Fermi level alignment at the interface 

of FeSb2 and Ag showed there is no significant potential barriers. Reasonably, the 

electron configuration at the FeSb2-xAgx and Ag1-ySby without any need to overcome 

energy barriers, led to increased electrical conductivity for the composites. From this 

investigation an improved ZT is shown to be plausible through tuning the nature of metal 

phase, size, and distribution of the grains in the nanocomposite. These results also 

provide insight for the application of metal/semiconductor interfaces in other strongly 

correlated materials or Kondo systems for increasing ZT. 

4.5.2 Cu-nanoinclusions 

Inspired by the results, achieved with the FeSb2-xAgx/Ag1-ySby nanocomposite by 

adding Ag nanoparticles (NPs) into the FeSb2 system (section 4.5.1), the Cu nanoparticles 

were introduced. A similar approach was used in the synthesis of a SiGe alloy which 

showed significant amounts of B or P diffused easily into the parent compound [45, 46]. 

In the case of Cu nanoparticles in FeSb2 there is no evidence of diffusion.  As seen with 

Ag-nanoinclusion, the work functions of the (100) planes in FeSb2 and Cu are similar and 

therefore facilitate the electron transfer from Cu to FeSb2 at their interfaces to increase 

the electrical conductivity. 
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Figure 4.27 Schematics of (a) band aignment between FeSb2 and Cu and (b) distribution 

of Cu nanoparticles in FeSb2. Scale bar indicates that the grains of FeSb2 are around 50 

nm on average and 5 nm for Cu NPs.  

 
Figure 4.27 shows the schematics of (a) band alignment of FeSb2 and Cu and (b) 

distribution of Cu nanoparticles in host FeSb2.The FeSb2/Cux nanocomposites were 

synthesized by two procedures. For the synthesis of nanocomposites with 5nm Cu 

nanoparticle inclusions, a total of 25 grams of Fe, Sb, and Cu with the stoichiometry of 

FeSb2Cuy (y = 0.0225, 0.045, and 0.09) were mixed and sealed in vacuum in a quartz 

tube. Following a high temperature melt, quenching and 12 h of ball milling, 3 g of the 

ball milled powders with various amounts of Cu nanoparticles (NPs) were pressed at 200 

oC and 80 MPa for 2min using direct current (dc) induced hot pressing method. For the 

synthesis of nanocomposites with 100 nm Cu nanoparticle inclusion, FeSb2 nanopowders 

were first prepared, then Cu NPs (100 nm, Aldrich) were added into the powder with a 

final nominal composition of FeSb2Cu0.045. The mixed powders of 5g were further ball 

milled for 3 h. After this 3 h ball milling, some of the 100 nm Cu particles may be milled 

to smaller nanoparticles, but should still be larger than 5 nm. Disk samples were prepared 
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by the same method mentioned above. Details of sample preparation and measurements 

can also be found in reference [54]. 

Figure 4.28 shows temperature dependence of thermal conductivity for all 

FeSb2Cuy composites as well as the pure nanostructured FeSb2. First, owing to the 

interfaces between Cu NPs and FeSb2, reduced thermal conductivity was observed for 

most samples. For all nanocomposites with 5 nm Cu NPs, it is seen that with the increase 

of Cu content (inset of Fig. 4.28 (a)), thermal conductivity at 60K decreased slowly to a 

minimum of 0.39Wm-1K-1 for FeSb2Cu0.045 from 0.44Wm-1K-1 for the pure 

nanostructured FeSb2. We believe that this is due to the phonon scattering at the interface 

of FeSb2 and Cu. When the Cu volume ratio reaches 1.8% for sample FeSb2Cu0.09, 

thermal conductivity becomes comp arable to the pure nanostructured 
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Figure 4.28 Thermoelectric properties of FeSb2Cuy (y = 0, 0.0225, 0.045, 0.09) samples: 

(a) temperature dependence of thermal conductivity, inset shows the measured thermal 

conductivity versus Cu content at 60 K; (b) temperature dependence of Seebeck 

coefficients; (c) temperature dependence of electrical resistivity, inset shows the peak 

Seebeck coefficient versus electrical conductivity at corresponding temperatures; (d) 

temperature dependence of power factor, inset shows the peak value of power factor at 

60K versus Cu content; and (e) temperature dependence of ZT for FeSb2 and FeSb2Cuy 

nanocomposites.  

 
FeSb2 and even larger below 50 K, which shows that the contribution of increased 
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electron thermal conductivity outweighs the decrease of the lattice thermal conductivity. 

Seebeck coefficient results were shown in Fig. 4.28 (b). Interestingly, the Seebeck 

coefficient only slightly decreases from 102 μVK-1 to 93 μVK-1 even though the electrical 

conductivity is increased by a factor of 2 as shown is Figure 4.28 (c) for the FeSb2Cu0.045 

sample with 5 nm Cu NPs comparing to pure FeSb2. The relatively high Seebeck 

coefficients at different concentrations of Cu nanoparticles can be understood as the 

result of modulation doping since the matrix FeSb2 is not significantly affected. 

Regarding the electrical conductivity as shown in Figure 4.28 (c) we have 

achieved significant improvement by incorporating Cu NPs to the nanostructured FeSb2.  

Inset in Figure 4.28 (c) shows a peak Seebeck coefficient dependence of electrical 

conductivity for all nanocomposites with 5 nm Cu NPs inclusion. 

Because of the increased electrical conductivity and slightly reduced Seebeck 

coefficient for the FeSb2Cuy nanocomposites, we observe a significant power factor PF 

improvement below 200 K for all Cu NPs incorporated nanocomposites compared to pure 

FeSb2. As can be seen from Figure 4.28 (d) a maximum PF 1.64 × 10-4Wm-1K-2 at 60K 

was obtained for FeSb2Cu0.0225 before decreasing to 1.39 × 10-4Wm-1K-2 for FeSb2Cu0.045.  

Combined with the slight decrease of thermal conductivity, ZT of 0.027 has been 

achieved, that is 110% enhancement over 0.013 achieved in the nanostructured pure 

FeSb2 at 60 K. 

4.6 Phonon-drag Effect in FeSb2 

In earlier works explained above, we were able to reduce the thermal conductivity 

by three orders of magnitude in nanocomposite samples. However the Seebeck 

coefficient in the nanocomposites is severely degraded at low temperatures when 
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compared to that of the single crystal counterpart. For optimized sample with κ = 0.40 

Wm-1K-1 and ρ = 1.2 × 10-4 Ω-m at 50 K, a Seebeck coefficient of - 970 µVK-1 is 

required to achieve a ZT of 1. But the measured value of the Seebeck coefficient at 50 K 

was only -109 µVK-1. So it is important to know the origin of the large Seebeck 

coefficient in this system so that we can further improve the ZT.    

The classical theory of thermoelectricity is based on the assumption that the flow 

of charge carriers and the phonons can be treated independently. Under this assumption, 

the Seebeck coefficient arises due solely to spontaneous electron diffusion. However 

when the two flows are linked, the effect of electron-phonon scattering should be taken 

into account [55]. Hence, in general, the Seebeck coefficient is the sum of two 

independent contributions from spontaneous electron diffusion and phonon-drag as given 

by equation 2.39. In phonon-drag picture, the carriers are preferentially scattered or 

dragged by the phonons toward the cold end of the sample. This dragging gives rise to an 

additional thermoelectric emf. Generally, such an effect becomes stronger at lower 

temperature region where the phonon mean free path becomes longer. Since only the long 

wavelength phonons are involved, the size effect on this phenomenon becomes 

appreciable even in the large size before other phenomena start to see this effect. 

 

  The origin of enormous Seebeck coefficient of FeSb2 at low temperature has not 

been completely understood. Many authors [15 - 19] suggested a strong electron-electron 

correlation as a possible cause. However, recently there have been several authors [56, 

57] who argue for the electronic origin of the colossal value of the Seebeck coefficient in 

FeSb2.  In this section, analysis of the thermoelectric properties of the FeSb2 
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nanocomposites showing a substantial phonon-drag contribution to the huge Seebeck 

coefficient will be presented. 

Table 4.2 Sample code, pressing temperature and average grain-size for the four 

nanostrucruted samples used for phonon-drag analysis. 

 
Sample code Hot pressing temperature (°C) Average grain size (nm) 

S-300 300 30 

S-400 400 100 

S-500 500 350 

S-600 600 20,000 

 

Four nanostructured FeSb2 samples were synthesized by ball milling and hot-

pressing technique as described in chapter 3. Different pressing temperatures yielded 

different grain sizes in the samples. The average grain-size corresponding to four 

different pressing temperatures are given in Table 4.2.  The thermoelectric properties of 

the samples were measured in PPMS. 
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Figure 4.29 Temperature dependence of the Seebeck coefficient of the four samples. 

Sample S-600 was measured both at 0 and 9 Tesla magnetic fields. Inset: The grain 

size dependence of the peak value of the Seebeck coefficient (Smax) and the peak 

position (Tmax). 

 

Figure 4.29 shows the temperature dependence of the Seebeck coefficient for 

the four nanocomposite samples. Sample S-600 was measured both in magnetic fields 

of 0 and 9 Tesla. The Seebeck coefficients of all the samples are significantly smaller 

than that of single crystal at low temperature whereas at high temperature the values 

are comparable. For single crystal a room temperature value of 31 µVK-1 was reported 
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[58]. For all of our samples it is ~ 26 µVK-1. A decrease in Seebeck coefficient at low 

temperature in polycrystal [15], arsenic-substituted FeSb2 single crystals [5] and thin 

films [59] were reported earlier. As shown in the inset of Figure 4.29, the peak value of 

the Seebeck coefficient (Smax) decreases with the decreasing grain size. In phonon- 

drag picture, this is expected because the nonelectronic scattering (grain boundary 

scattering in case of nanocomposites) reduces the phonon mean free path which in turn 

decreases the phonon-drag contribution. A similar conclusion was made by authors in 

reference [57]. Weber eτ al. [60] showed, using the semiconducting point contacts of 

silicon that when the contact size becomes comparable to the mean free path of the 

relevant phonons, the phonon-drag part of the thermopower is suppressed by the 

boundary scattering. Here we also note that the temperature profile of Seebeck 

coefficient for the samples with larger grains follow the typical behavior of phonon-

drag system as suggested by Blatt [61]. 

The Seebeck peaks shift to the higher temperature when the grain size 

decreases (inset of Figure 4.29). This type of size dependent shift in Seebeck peak is 

one of the characteristics of the phonon- drag dominated systems as pointed out by 

many authors [62-64]. 

Usually, a small magnetothermopower is expected for the phonon-drag 

dominated system. For sample S-600 at 25 K, 𝑆(9𝑑)−𝑆(0𝑑)
𝑆(0𝑑)

= 0.059 was observed. Such 

a small value supports the non-electronic origin of the large Seebeck coefficient in this 

sample.   
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Figure 4.30 Temperature dependence of the thermal conductivity of the four samples. 

The fitting to the power law was applied for all the samples below 50 K. Inset: 

Seebeek coefficient as a function of thermal conductivity at 25 K and 50 K. 

 
 Figure 4.30 shows the temperature dependence of thermal conductivity (κ). 

Calculation based on Widemann-Franz law shows that more than 97% of the total 

thermal conductivity comes from the lattice contribution. For coarse-grained samples κ 

~ T2 is nearly obeyed at temperature below 50 K. As the grain size goes down, a 

gradual deviation from the T2-law occurs. Weber eτ al.[60], reported a similar T2  

behavior in silicon below 20 K which they attributed to the strong electron-phonon 

scattering. For a coarse-grained sample, the number of available phonons interacting 
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with the carriers is large and as the grain size decreases this number decreases causing 

a gradual deviation from the T2-law. Peruchhi eτ al.[7],through optical spectroscopy, 

reported a large change in phonon lifetimes across metal-insulator transition indicating 

the presence of electron-phonon coupling whereas Lazarevic eτ al.[65] suggested the 

presence of temperature dependent electron-phonon coupling below 40 K in single 

crystals.   

The inset of Figure 4.30 shows the change in Seebeck coefficient with thermal 

conductivity for temperatures 25 K and 50 K. At 25 K, the Seebeck coefficient increases 

almost linearly with the thermal conductivity. This clearly indicates that phonons play a 

significant role in determining Seebeck coefficient values of our samples at around 25 K. 

At 50 K, however the Seebeck coefficient decreases with increasing thermal conductivity 

without any obvious trend. At higher temperature, the phonon-mean free path decreases 

and the phonon-drag effect becomes weak. 

Significant phonon drag effect is expected to occur when the dominant phonons 

acquire sufficient momentum to scatter carriers across Fermi surface. In a rough 

approximation, 𝛥𝑚𝑐𝑑 ≈
1
10
𝛳𝐷 , where Tmax is the temperature at which phonon drag peak 

occurs and 𝛳𝐷 is the Debye temperature. For rutile TiO2 [66], 𝛳𝐷 is 450-780 K and the 

Seebeck peak occurs at 10-30 K. For Bismuth [63], another well-known phonon drag 

system, 𝛳𝐷 is 119 K whereas Seebeck peak occurs at 2-3 K. For FeSb2 polycrystal, 𝛳𝐷 ≈ 

330-350 K was reported in reference [15] and 256 K in reference [13]. The Seebeck peak 

in single crystal occurs at around 10 K. For our sample S-600, the peak occurs at 25 K. 

Hence comparing with the other phonon drag systems, scaling between Tmax and 𝛳𝐷 in 

FeSb2 is roughly what one would expect in phonon drag picture.    
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 Following Herring [55], the electron-diffusion part of the Seebeck coefficient, in 

µVK-1, for a semiconductor is given by, 

                      𝑆𝑑 = ∓ 86.2 �𝑙𝑛 4.7×1015

𝑛
+ 3

2
𝑙𝑛 𝑚∗

𝑚
+ |𝛥𝐸|

𝑘𝑑
+ 3

2
𝑙𝑛𝛥�                    (4.3) 

For the case of lattice scattering by long wavelength phonons, |𝛥𝐸|
𝑘𝑑

 can be approximated 

by, 

                               �𝛥𝐸
𝑘𝑑
� = 5

2
+ 𝑟                                                                                 (4.4) 

where the scattering parameter r is taken to be -1/2. Sd was calculated taking m* = m and 

using the charge carrier density (n) calculated from the Hall-coefficient measurements. 

The diffusion part was then subtracted from the total measured Seebeck coefficient to 

obtain the drag contribution as shown in Figure 4.31. For S-600 at 25 K at which the 

Seebeck peak occurs, Sd = -110 µVK-1 was found.
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Figure 4.31 Temperature dependence of the calculated value of diffusion and drag part 

for the sample S-600 based on equation (4.3) and (4.4). The carrier concentration 

obtained from the Hall coefficient data was used in the calculation. The measured total 

Seebeck coefficient is also plotted for comparison. 

 
Using equation (4.3), Sp was calculated to be -238 µVK-1. However for S-300 the 

calculated diffusion contribution turned out to be slightly greater than the measured 

values. So no significant phonon drag contribution could be expected for this sample. 

This is understandable because the phonon mean free path for S-300 sample is drastically 

reduced so that the dominant phonons do not carry sufficient momentum to scatter 
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carriers. Moreover phonon drag is expected to be weak with increase in carrier 

concentration and in fact it has been proposed that there occurs the saturation effect at 

high concentration level. The overestimation of diffusion part of Seebeck coefficient in S-

300 could be due, in part, to the approximations made during the calculations.   

 According to Herring [55], the phonon-drag thermopower for semiconductors, in 

the first order approximation, can be written as, 

                                                   𝑆𝑝 = 𝛽𝑣𝑠𝜆𝑝𝑛𝑒
𝜎𝑑

                                                            (4.5) 

where vs is the velocity of sound, λp the wavelength of the interacting phonons, n the 

charge carrier density, σ the electrical conductivity, T is the absolute temperature and β 

the dimensionless parameter with its value ranging from 0 to 1 depending upon the 

strength of the interaction. This formula can be used to find approximate values of the 

mean free path of the phonons which interact with the electrons. 𝑣𝑟= 3116 ms-1 and e = 

1.6×10-19 C were used. 𝜎 was calculated from the measured resistivity values using 𝜎 =

1
𝜌
. We chose intermediate value of β to be 0.5 because we are interested more in 

temperature dependence than in magnitude. The mean free path of an average phonon can 

also be estimated from the lattice thermal conductivity based on kinetic theory, 

                                                       𝐾𝑇 = 1
3
𝑐𝑉𝜆𝑃�𝑣𝑆                                                   (4.6) 

Where 𝐾𝑇  is the lattice thermal conductivity and  𝑐𝑉 the phonon contribution to the total 

specific heat capacity. The lattice portion of the total thermal conductivity was calculated 

assuming 𝜅𝑇𝑇𝑇𝑐𝑇 = 𝜅𝑇 + 𝜅𝑒 and 𝜅𝑒 = 𝐿𝜎𝛥, where 𝜅𝑒 is the electronic contribution to the 

total thermal conductivity. 𝑐𝑉 was calculated using 𝐶𝑃 − 𝛾𝛥 = 𝛽𝛥3 with 𝛾 = 3.98 ×

10−3 JK-2mol-1 as reported in reference [15]. 𝐶𝑃 values were obtained from the same 
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reference. Since only the long wavelength phonons interact with electrons, 𝜆𝑝is usually 

greater than 𝜆𝑃�.  
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Figure 4.32 Temperature dependence of the phonon mean free paths calculated from two 

independent calculations using equations (4.5) and (4.6). 

 
Our nanocomposite data and analysis of phonon drag do not support other 

mechanisms that might explain the large Seebeck effects reported by Bentien eτ al. [15]. 

Although one cannot preclude the presence of electron-electron correlation effects, their 

role in this phenomenon may be a minor one. The recent analysis of electron correlations 

using a hybrid functional approach of Becke [67] and Hegin’s GW functional approach 

[68] by Tomczak eτ al. [27] suggest that the high thermopower in FeSb2 should not be 

understood in the context of local correlations, but rather by utilizing vertex corrections 



 

120 
 

to the transport coefficients. Such vertex corrections describe the phonon-drag effect. The 

phonon-drag effects in FeSb2 are similar to those described in p-type Ge by Geballe and 

Hull [64]. In a similar vein the study of magnetoresistance and Hall effect by Takahashi eτ 

al. [56] concludes that the large Seebeck coefficient in FeSb2 is unlikely to originate from 

electron-electron correlations because they have an insignificant effect on the Seebeck 

coefficient in the low-temperature insulating regime. Our data on FeSb2 nanocomposite 

supports their conjecture that the phonon-drag effect plays an essential role for enhancing 

the Seebeck coefficient in the low-temperature regime, as shown in other semiconductor 

materials e.g. InSb [69] and weakly P doped Si [60]. 

 

4.7 Kapitza Resistance of FeSb2 

It is clear that FeSb2 exhibits a strong grain size dependent thermal conductivity at 

low temperatures. The model usually proposed to understand the grain size dependence 

of the thermal conductivity is the relaxation time approach of boundary scattering based 

on the Klemens-Callaway theory [70, 71]. This is a microscopic model and takes into 

account various scattering mechanisms involved in the heat conduction. A  simpler model 

for analyzing thermal conductivity of polycrystals, which avoids the microscopic details, 

is based on the combination of Kapitza resistance [72, 73] and the effective medium 

approximation (EMA) [74, 75]. In an effective medium approach, the total thermal 

conductivity of a polycrystal is the sum of the intra-grain and the inter-grain contributions 

[76].  The inter-grain component arises due to the interfacial resistance, also known as the 

Kapitza resistance, to the thermal transport. In the presence of thermal gradient, the 

Kapitza resistance results in a temperature discontinuity across the interface which was 
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first observed by Kapitza [72]. The overall effect of the Kapitza resistance is to reduce 

the thermal conductivity and the effect is more pronounced at smaller grain sizes. Based 

on the Kapitza resistance-EMA model, Nan eτ al. [77] showed that for an isotropic 

polycrystalline solid made up of spherical grains of equal size, the effective thermal 

conductivity (κ) is given by, 

                                     𝜅 (𝛥,𝑑) = 𝜅𝑖
1+

2𝑅𝑘𝜅𝑖
𝑑

                                                                (4.7) 

where κi is the intrinsic (or bulk) thermal conductivity, Rk is the Kapitza resistance and d 

is the grain size. Here κi is grain-size independent but is temperature dependent while 

𝐿𝑘 = 𝑅𝑘𝜅𝑐 and 𝐺𝑘 = 1
𝑅𝑘

 are called the Kapitza length and Kapitza conductance, 

respectively. Here 𝐿𝑘 represents the distance over which the temperature drop is the same 

as at the interface and its magnitude measures the relative importance of the Kapitza 

conductance. When the grain size in nanocomposites becomes comparable to 𝐿𝑘, 

interfaces will predominantly determine the overall thermal conductance [78]. So, to 

predict the thermal properties of the nanocomposites it is important to develop an 

understanding of the interfacial thermal conductance. 
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Figure 4.33  κ-1 plotted versus d-1. The open symbols with the dashed lines and the closed 

symbols with solid lines correspond to the left and right Y-axes respectively. The first 

point from the left was excluded during the fitting process. 

 
From the best-fit lines of the experimental data in κ-1 vs. d-1 plots predicted by 

equation 4.7, the values of Rk and Gk for the samples were determined. As seen in the 

Figure 3, a deviation from the linearity was observed at the largest grain size and those 

points were excluded during fitting process. As the temperature decreases, the trend 

becomes more linear. This suggests that the Kapitza resistance-EMA model in FeSb2 

system is more valid at low temperatures. With decreasing temperature, the slope of the 

linear fit increases monotonically. So the Kapitza resistance increases as temperature 
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decreases.  
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Figure 4.34 Temperature dependence of the Kapitza resistance (Rk) and Kapitza 

conductance (Gk) obtained from the best fit to Eq (4.7). Rk and Gk values are represented 

by left and right Y-axes, respectively. The open symbols with dashed lines represent the 

temperature dependence of the bulk thermal resistance (d/κi) as indicated by the left Y-

axis for the five samples. (Stars: (d/κi) for S-5000, Diamonds: (d/κi) for S-300, down-

pointed triangles: (d/κi) for S-100, up-pointed triangles: (d/κi) for S-30, open-circles: 

(d/κi) for S-20, filled circles: Gk as a function of temperature, filled squares: Rk as a 

function of temperature). 
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Figure 4.34 represents the temperature dependence of the Kapitza resistance (Rk) 

and the Kapitza conductance (Gk). The bulk thermal resistances for the five samples are 

also plotted for comparison.  Rk has a weak temperature dependence from 300 K down to 

50 K and increases sharply below 50 K. Fitting to the power law shows that Rk ≈ 4.0 × 

10-6 T-1.27. This is consistent with the fact that the in siτu Kapitza resistance is expected to 

follow Rk ~ T-α, where α > 0 [79]. Rk = 5.83 × 10-9 m2KW-1  and 2.68 × 10-8 m2KW-1, 

respectively, at 300 K and 50 K were observed whereas at 10 K, Rk reaches a value as 

high as 2.17 × 10-7 m2KW-1. From a microscopic point of view this is understandable 

because at low temperature, the diffusive scattering of phonons off the grain boundary is 

the dominant scattering mechanism and it becomes weak at higher temperature where 

other mechanisms like three phonon-phonon process and Umklapp-process become more 

important. We note the significant value of the Kapitza resistance in this system. For 

SiGe alloys, Nan. eτ al. [77] reported Rk = 1.1 × 10-7 to 4.98 × 10-8 m2KW-1 values at 

room temperature. Whereas for nanocrystalline yttria-stabilized zirconia (YSZ), which 

exhibits a strong grain-size dependence of the thermal conductivity, values for Rk of the 

order of 10-8 m2KW-1 at low temperature was reported by Yang eτ al.[80].  

As seen in Figure 4.34, the Kapitza conductance initially increases with 

increasing temperature and then becomes less sensitive to temperature between 100 and 

200 K. Below 200 K, Gk follows roughly the same trend as the specific heat capacity (Cp 

) does in ref [19]. In fact, Gk is expected to be proportional to Cp [80]. This indicates that 

despite the sample porosity, the error in estimating the grain size and the other 

assumptions that are made, calculations based on this simple Kapitza resistance -EMA 

model for FeSb2 nanocomposite samples are justified. The minimum value of the Kapitza 
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length was observed at room temperature, where 𝐿𝑘 = 𝑅𝑘𝜅𝑐 ≈ 38 nm. At low 

temperature, 𝐿𝑘 increases reaching a value of 390 nm at 10 K. This large value of 𝐿𝑘 at 

low temperature implies a relatively weak interfacial conductance which is consistent 

with the observed thermal conductivity. 

The calculated values for κi were found to be much smaller compared to that of 

the single crystal. For example, at 50 K, κi = 5.94 Wm-1K-1. Reduced values of κi were 

also observed by Nan eτ al. [77] in Bi2Te3/Sb2Te3 alloys and they attributed the reduced 

values of κi to the effect of porosity. 

The open symbols in Figure 4.34 represent the bulk thermal resistance (𝑑 𝜅𝑐� ) for 

these five samples. For samples S-20 and S-30, the Kapitza resistance is dominant over 

the bulk thermal resistance from 5-300 K, whereas for S-100 a crossover is observed at 

around 200 K. On the other hand, for S-300 and S-5000, the bulk thermal resistances are 

dominant throughout. This explains the two important features of the thermal 

conductivity curves that are seen from Figure 4.8.  (i)For the large grain size, the 

contribution of the bulk is dominant and the thermal conductivity curve mimics its single 

crystal counterpart with a pronounced peak. As the grain size goes down the Kapitza 

resistance becomes stronger thereby reducing the bulk nature of the curve and at the 

smallest grain size, the Kapitza resistance dominates over the bulk part completely. (ii) 

The crossover between the two resistance curves occurs at higher temperature as the 

grain size gets smaller. This is why the thermal conductivity peaks shift to higher 

temperature as the grain size decreases. 

In conclusion, calculations based on the Kapitza resistance-EMA model for FeSb2 

nanocomposite samples show a strong grain-size dependence of the thermal conductivity 
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at low temperature with a significantly large value of the Kapitza resistance. The Kapitza 

resistance was found to be the predominating factor in determining the bulk thermal 

properties below 50 K. For coarse-grained samples, the bulk thermal resistance 

dominates over the Kapitza resistance values. As the grain size decreases the Kapitza 

resistance becomes more important. A large value of the Kapitza length at low 

temperature is observed. These results suggest that the interfacial thermal resistance 

across the grain boundaries plays a significant role in determining the thermal transport 

properties of FeSb2 at low temperature.  

4.8 Magnetic Properties of Nanocomposite FeSb2 

 Single crystal FeSb2 is known to be paramagnetic, having unusual temperature 

dependence of magnetic susceptibility with a diamagnetic to paramagnetic crossover at ~ 

100 K [4,9]. Extensive efforts have been made in the past decade to explain the 

anomalous temperature dependence of the magnetic susceptibility of FeSb2. A simple 

analysis based on a free-ion model was shown to explain this behavior in Ref. [58]. It was 

also demonstrated in reference [13] that a narrow-band picture with two peaks in the 

density of states at the gap edge explains the observed data well, thereby validating the 

Kondo insulator description of a spin state transition in FeSb2. Recently, Koyama eτ al. 

[81] employed the Stoner-Wohlfath theory and the Arrot plot technique to determine the 

temperature dependence of the inverse of the fourth expansion coefficient γ for the FeSb2 

single crystal. The temperature dependence of γ they found was similar to that observed 

in FeSi reported in reference [82], which can be explained by the spin fluctuation theory.  

So far most of the previous studies have been made in single crystal samples; the 

experimental data on the magnetic properties of polycrystalline FeSb2 samples remains 
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scarce. Here I report and analyze the magnetic properties of a polycrystalline FeSb2 

prepared by hot-press method. For this, sample hot-pressed at 400 oC denoted as HP 400 

as explained in previous section 4.3.2 was chosen. A vibrating sample magnetometer 

(VSM) option of the Physical Property Measurement System (PPMS) from Quantum 

Design was used to measure the magnetic moment. The molar susceptibility was 

calculated by  𝜒 = 𝑀
𝐻

 , where M is the magnetization and H is an applied magnetizing 

field of 0.1 Tesla during measurement. The Hall coefficient (RH) was measured using the 

horizontal rotator option of the PPMS.  
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Figure 4.35 Observed magnetic susceptibility of the nanocomposite FeSb2 sample as a 

function of temperature. Inset shows fitting to the Curie-Weiss law below 30 K. 
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Figure 4.35 shows the temperature dependence of the molar susceptibility for the 

FeSb2 sample used in this study. The susceptibility values for the sample are significantly 

enhanced throughout the temperature range of 2 – 300 K when compared to the single 

crystal data reported in the literature. For example, at 300 K, χ ~ 1.2×10-2 emu mol-1 is 

two orders of magnitude higher than the estimated polycrystalline average value of 3×10-

4 emu mol-1 calculated in reference [4] and 6×10-4 emu-mol-1 reported by Fan eτ al. [2]. 

Consequently no diamagnetic to paramagnetic crossover is observed for our sample. Such 

a vertical shift of the χ (T) curve was also reported in the arsenic-substituted single 

crystals of FeSb2 [5] that they attributed to the substantial Pauli paramagnetism of the 

increased carrier concentration, which is induced by defects or impurities. We note that 

while most of the qualitative features of the susceptibility curves are preserved, a more 

pronounced Curie type of tail compared to that reported in references [2] and [4] is 

observed at low temperatures.  

The observed magnetic susceptibility (χobs) in a semiconductor is given by [83], 

                                   𝜒𝑇𝑏𝑟 (𝛥) = 𝜒0 + 𝜒𝑝 + 𝜒𝑐                                                            (4.8)                                                                                                       

where χ0 is the temperature independent susceptibility and is the sum of the contributions 

coming from the lattice, lattice defects and neutral impurities (if any), χp is the 

temperature dependent susceptibility due to paramagnetic impurities and χc is the 

magnetic susceptibility due to the free carriers.   The pronounced upturn in the 

susceptibility below 30 K indicated the presence of a substantial amount of paramagnetic 

impurities. Data below 30 K was fitted to the equation, 

                      𝜒(𝛥) = 𝜒0 + 𝜒𝑝 = 𝜒0 + 𝛾𝐶
𝑑−𝛳

                                                                   (4.9)     

Here γC is the effective Curie constant, γ being a dimensionless constant and ϴ is the 
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Weiss temperature. A satisfactory fitting (represented by solid line in the inset of Figure 

4.35) was found for the parameter values of χ0 = 1.0×10-2 emu mol-1, γC = 3.96×10-3 emu-

K mol-1 and ϴ = -1.6 K. Here we note a large value of χ0 which has the same order of 

magnitude as χobs, indicating a significant contribution from the temperature independent 

term. For single crystals, χ0 ~ -4×10-5 emu mol-1 was reported in reference [4].  

Assuming that the orbital angular momentum is quenched and only the spin 

angular momentum contributes, the Curie constant C is given by,  

                𝐶 = 𝑁𝐴𝑔2µ𝐴
2

3𝑘𝐴
[𝑠(𝑠 + 1)] = 0.125𝑔2[𝑠(𝑠 + 1)] emu-K mol-1                  (4.10) 

where NA is the Avogadro’s number, µB = 9.27×10-24 JT-1 is the Bohr magneton, g is the 

electron Lande g factor, s is the spin and kB is the Boltzmann constant. Taking s = 2 and g 

= 2.0023, C = 3.0 emu-K mol-1 is expected for Fe2+ ion.  We conclude that the Curie-like 

term below 30 K is due to ≈ 0.2 % of the Fe2+ impurities per mol. This value is less than 

the 0.5 % reported for the single crystals in reference [4]. 
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 Figure 4.36 Transverse Hall voltages as a function of excitation current for temperatures 

of 300, 180, 35, and 5 K. A magnetic field of 9T was applied. 

 
The Hall coefficient RH for a specimen of thickness τ is given by, RH = VH τ/IB, 

where VH is the Hall voltage, B is the applied magnetic field and I is the current. Figure 

4.36 shows VH plotted as a function of I at B = 9 T for some selected temperatures. The 

Hall coefficients at different temperatures were calculated from the slope of the linear fit.  

Values for free carrier density (n) were estimated from the Hall coefficient 

measurement using the single parabolic band (SPB) model, n = 1/RH e where e is the 

electronic charge. Inset of Figure 4.38 shows the temperature dependence of the carrier 

concentration. A thermally activated behavior is observed above 30 K.  
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Figure 4.37 The open triangles represent the χc values calculated using Eq. (4) for the 

nanocomposite sample as a function of temperature. The filled circles represent the 

polycrystalline average data taken from reference [4]. Inset: Temperature dependence of 

free carrier concentration obtained from Hall coefficient. 

 

In the region of intrinsic conductivity (above 30 K in this case), the magnetic 

susceptibility due to the free carriers, assuming g factor to be 2 for both electron and 

holes, can be determined as [83], 

                             𝜒𝑐 = 𝑛µ𝐴
2

3𝜌𝑘𝐴𝑑
[6 − � 𝑚

𝑚𝑛
∗ �

2
− � 𝑚

𝑚𝑝
∗�

2
                                                   (4.11)            

where n is the free carrier concentration, ρ is the density, m is the free electron mass and 
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mn
* (mp

*) are the effective masses for the electrons (holes). An approximate calculation of 

χc was performed using the n values obtained above and taking m = mn
* = mp

* and ρ = 7.5 

g cm-3.  Figure 4.38 shows the comparison between χc calculated using equation (4.11) 

and χavg = (χa + χb + χc)/3    taken from reference [4]. The increased susceptibility for the 

hot-pressed sample is due possibly to the increased carrier concentration (~ 1021 cm-3) 

due to lattice and strain defects arising from the ball milling process. For the single 

crystal samples, carrier concentration values of ~ 1017 – 1020 cm-3 were reported [2, 19].  
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Figure 4.38 Magnetic moment of the nanostrustured FeSb2 as a function of applied 

magnetic field at (a) 50 K and (b) 300 K. The insets show the region around the origin.  

 

Figure 4.39 shows the field dependence of the magnetization at 50 and 300 K. 

The magnetization increases with the applied field near the origin, changes slope at a 
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magnetic field of value around 2 kOe and then increases slowly with the increasing field. 

Presence of a weak ferromagnetism at both the temperatures (50 and 300 K) is evidenced 

by a narrow hysteresis loop as seen in Figure 4.39. A small coercivity value of ~ 100 Oe 

(inset of Figure 4.39) is observed at both the temperatures. Since pure FeSb2 is 

paramagnetic at 300 K and diamagnetic at 50 K, a narrow hysteresis loop at both the 

temperatures with nearly equal value of the coercivities indicates the presence of some 

neutral ferromagnetic phase. It is believed that, a small fraction of unreacted Iron (Fe) 

exists as a second phase in our sample. As a result the magnetic susceptibility is enhanced 

by a significant constant value, consistent with the large value of χ0 as mentioned above. 

Cullity eτ al. [84] have pointed out the effect of a small amount of ferromagnetic second 

phase (0.1% of Fe by weight) on the magnetic property of diamagnetic material (Cu). Our 

data on magnetic moment (m) versus magnetizing field (H) is very consistent with their 

data. We believe that even small amount of Fe is enough to cause such a dramatic 

enhancement of the susceptibility and therefore no second phase Fe was detected from 

the XRD pattern. 

A rough estimation of the contribution from ferromagnetic Fe phase (χFe) can be 

made calculating the susceptibility at 0.1 T from m-H curves. χFe ≈ 1.05 × 10-2 emu mol-1 

at both the temperatures (50 and 300 K). This value of χFe is in close agreement with the 

value of χ0 obtained from fitting of the Curie-Weiss law. Also the similar values of χFe at 

both the temperatures are consistent with the temperature independent nature of χ0.  

Finally, contribution from the impurities varies among samples. Therefore it is 

understandable that sample dependence of the measured values of the involved physical 

quantities might have played a role. Also the calculation was made based on one - band 
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model. Usually, in a narrow gap semiconductor like FeSb2, two types of carriers are 

involved. Nevertheless this simple model explains the observed magnetic susceptibility 

reasonably well. This report, in addition to providing data on magnetic properties of 

polycrystalline FeSb2, also provides a demonstration of how a small amount of neutral 

ferromagnetic phase masks the true magnetic behavior of a material. 
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Chapter 5 
 
Thermoelectric Properties of Heavy Fermion Compounds 
CeCu6, CeAl3 and YbAgCu4 
 
5.1 Introduction 
 

Materials with strong electron correlation behavior are the focus of increasing 

scientific and technological interest in search of a new generation of thermoelectric 

materials with higher performance and efficiency [1]. These materials exhibit a variety of 

highly enhanced electronic and magnetic properties at low temperatures which are of 

considerable interest in many technological applications. Among strongly correlated 

materials, heavy electron materials have long been the subject of extensive investigation. 

For reviews of these compounds see references [2–8]. Measurement of thermoelectric 

properties usually offers an informative approach to investigating quasiparticle excitation 

in this class of materials [9, 10]. Many heavy Fermion [65] compounds (HFCs) (for 

example CeCu6, CeCu2Si2, CeAl3) have been shown to exhibit large Seebeck coefficient 

values at low temperatures [11, 12]. Assuming one band model, the Seebeck coefficient is 

related to the effective mass by he relation
3

2
*

2

22

33
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=

n
m

e
T

S B πκπ


. Here kB = 1.38 × 10-23 

J K-1 is the Boltzmann constant, ħ = 1.05 × 10-34 J S is the reduced Planck constant, T is 

the absolute temperature and n is the carrier density. One can expect an enhanced 

Seebeck coefficient in these systems due to large effective mass at low temperature. 

Among them, a number of Ce-based compounds (CeCu6 and CeAl3) have been reported 

to exhibit two well separated maxima (minima) in the temperature dependent Seebeck 

coefficient plot [13-15]. Usually, the low-T extremum occurs around the characteristic 

temperature TK and is attributed to the Kondo scattering on the ground state doublet. The 
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high temperature peak (T > TK), results from Kondo scattering on higher multiplets which 

are split by crystal electric field (CEF) effects [11]. In addition to large Seebeck 

coefficients, many compounds of this class exhibit reasonably high electrical conductivity 

values which make them promising candidates for thermoelectric cooling applications. 

Ironically, this class of material has not yet been thoroughly investigated as potential 

thermoelectric materials. In this chapter, the thermoelectric properties of the 

polycrystalline samples of the heavy fermion compounds CeCu6, CeAl3 and YbAgCu4 

will be presented.  The effect of mechanical nanostructuring on the thermoelectric 

properties was studied for the first time and will be discussed in detail. 

 

5.2 Thermoelectric properties of CeCu6 

5.2.1 Introduction to CeCu6 

CeCu6 is a conventional heavy fermion compound with enormously enhanced 

value of γ coefficient at low temperatures (γ = 1600 mJ mol-1K-2) in the relation, 

                                𝐶 = 𝛾𝛥 + 𝛽𝛥3                                                                    (5.1) 

 This compound was first investigated by Stewart eτ al. [16] in 1984. Since then, it has 

been one of the widely studied HFCs. A great deal of interest was focused on transport 

properties of this system in the following years [17-22], owing to the Fermi liquid (FL) 

behavior at low temperature. Subsequent studies on this compound were focused on non-

fermi liquid (NFL) behavior [23, 24] and its anomalous thermopower [25-27]. In the 

recent years this compound with a small substitution of Au on the Cu site (CeCu6-xAux 

for 0.1 < x < 0.3) has been a platform to study quantum critical point (QCP) behavior 

[28]. Although there appear several reports on temperature dependence of the Seebeck 



 

143 
 

coefficient and electrical resistivity of this compound below room temperature, the 

thermal conductivity has not been thoroughly investigated.  In this work, a complete data 

set for all the thermoelectric properties of CeCu6 was obtained. The results were 

published and can be found in reference [29]. 

 

5.2.2 Experimental 

Stoichiometric amounts of Ce (99.9%, Alfa Aesar) and Cu (99.999 %, Alfa Aesar) 

were melted in an argon environment using an arc-melter (MRF Inc.). To improve 

chemical homogeneity, the melted sample was flipped over and re-melted three times. 

The resulting ingot was etched in dilute nitric acid then ball milled for five hours to create 

a nanopowder of CeCu6. The nanopowder was then hot pressed for two minutes at 450, 

600 and 800 oC under a uniaxial pressure of 80 MPa. Mass density of the pressed samples 

was determined using the Archimedes’ method (see Table 1). The mass densities for the 

ingot and the sample HP 800 are comparable. However, the densities decrease as the hot-

pressing temperature decreases. X-ray diffraction (XRD, Bruker, AXS) was performed on 

the freshly fractured surface of the samples. Scanning Electron Microscopy (SEM, JEOL 

6340F) was used to investigate the grain-size distribution of the samples. The Seebeck 

Coefficient (S) 
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Table 5.1 IDs and densities of the four CeCu6 samples used in this study. 

Sample name  Hot-pressing temperature (oC) Mass density 

(% of theoretical density) 

Ingot  90.8 

HP 800 800 91.3 

HP 600 600 80.4 

HP 450 450 79.1 

 

 

, electrical resistivity (ρ), and thermal conductivity (κ) from 5 to 300 K were measured on 

samples of typical dimensions of a 3x3x4 mm3. A 2-point method in thermal transport 

option (TTO) of the Physical Property Measurement System (PPMS) was used to 

measure the thermoelectric properties. The horizontal rotator option of PPMS was used to 

measure Hall coefficient (RH) of the samples with typical dimensions of 1×2×10 mm3. 

 

5.2.3 Results and Discussion 

The X-ray diffraction patterns are shown in Figure 5.1. The peak positions can be 

indexed confirming the orthorhombic crystal structure which also indicates that the ingot 

was alloyed in a single phase form. We note the X-ray pattern peaks are broadened only 

slightly by the ball-milling process, while the crystal structure is retained by all the hot 

pressed samples. 
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Figure 5.1 X-ray diffraction pattern for the arc melted ingot and the three hot pressed 
samples of CeCu6.  
 

Figure 5.2 shows the SEM images of the samples. No voids, within the resolution 

of the equipment, are seen for the ingot and the sample HP 800 oC. The comparable 

density values for the ingot and the sample HP 800 (Table 1) are consistent with the 

similar texture seen in the SEM images. The samples hot pressed at 450 and 600 °C show 

a distinctly different microstructure from the HP 800 sample. Sample porosity increases 

and surface texture becomes rough at the lower hot pressing temperatures. Degraded 

density with a smaller grain-size distribution at lower hot pressing temperature is typical 

trend in mechanical nanostructuring. 
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Figure 5.2 SEM images of the freshly fractured surface of CeCu6 samples.  

The electrical resistivity ��of the samples as a function of temperature are 

shown in Figure 5.3. All the samples exhibit a similar resistivity profile, typical of single 

crystal CeCu6. Below 300 K, the resistivity decreases as the temperature is lowered until 

it reaches a flat minimum. At approximately 75 K a Kondo-like behavior emerges with a 

negative value for the temperature-derivative (𝜕𝜌 𝜕𝛥⁄ ). The resistivity then reaches a 

maximum at around 15 K before declining sharply with decreasing temperature, an 

indication of Kondo coherence development. Electrical resistivity of the 800 oC hot-

pressed sample is slightly increased when compared to the ingot; this is expected due to 

the increased scattering from the nanocomposite grains.  A comparison among the hot-

pressed samples shows that the electrical properties of CeCu6 are greatly affected by 

10 μm
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varying HP temperature. With decreasing HP temperature the electrical resistivity 

increases significantly. When comparing HP 800 and 450 oC samples, we note at 60 K an 

increase in resistivity by a factor of ~ 3.4. Such a drastic increase in the electrical 

resistivity is attributed to the reduced grain size and the increased porosity.    
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Figure 5.3 Electrical resistivity as a function of temperature for the CeCu6 samples. The 

inset shows a typical resistivity profile for CeCu6 [25]. 
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Figure 5.4 Thermal conductivity as a function of temperature for the three nanostructured 

CeCu6 samples. The data for the polycrystalline sample was drawn from Ref. [30] and 

replotted for comparison.  

 

Figure 5.4 shows the total thermal conductivity (κ) for the samples as a function 

of temperature. For comparison the thermal conductivity for polycrystalline samples of 

CeCu6 was taken from reference [30] and plotted. The thermal conductivity follows 

temperature dependence similar to that reported for another HFC, CeCu4Al [31]. The 

total thermal conductivity decreases as the HP temperature decreases. At 60 K, κ was 

reduced from ~ 5 W m-1 K-1 (for ingot) to ~ 2 W m-1 K-1 (for sample HP 450), a reduction 
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by 60 %. In general, 𝜅 = 𝜅𝑇 + 𝜅𝑒, where κl and κe are the lattice and electronic 

contributions to the total thermal conductivity, respectively. Generally, phonon scattering 

by grain boundary reduces the phonon contribution (κl) whereas macroscale porosity is 

shown to reduce the electronic contribution (κe) [32, 33]. The SEM images (Figure 5.2) 

suggest that the reduction of the thermal conductivity with decreasing HP temperature 

might be attributed to the combined effect of both the contributions from grain boundary 

scattering and the porosity effect. 

In Figure 5.5, the temperature dependence of the Seebeck coefficient for the 

CeCu6 samples are shown. All the samples exhibit a positive Seebeck coefficient (p-type) 

below 300 K with a maximum at Tmax ≈ 50 K. This value for Tmax is in agreement with 

the previously reported data [32, 33]. In the context of heavy-fermions, such a peak in S 

at higher T (T > TK) is usually attributed to the Kondo scattering on higher multiplets (as 

opposed ground state doublet) which are split by crystal field effects (CEF). For T > Tmax, 

S follows an unusual temperature dependence of the form: 𝑆 ∝ −𝑙𝑛𝛥, whereas for T < 

Tmax, S follows the typical behavior of metals (𝑆 ∝ 𝛥). The Seebeck coefficient decreases 

as the HP temperature is reduced.  
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Figure 5.5: Seebeck coefficient as a function of temperature for the CeCu6 samples.  

The Hall coefficients (RH) of the samples as a function of temperature below 100 

K (temperature range at which the ZT curve peaks) were also measured. Under the 

assumption of one band model, the effective carrier density (n) and the Hall mobility (μ) 

were calculated using the formulas, 𝑛 = 1
|𝑅𝐻|𝑛�  and  𝜇𝐻 = |𝑅𝐻|

𝜌� , respectively, where e 

= 1.6 ×10-19 C is the electronic charge. RH, and μH of the samples as a function of 

temperature are shown in Figure 5.6. Our data is consistent with the previous report [34] 

with RH staying positive in the whole range of 5 – 100 K. At high temperature, RH ≈ 0 
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indicates that the electron and hole contributions to RH cancel the effect of each other. As 

the temperature decreases, the contribution from holes increases leading to a prominent 

peak at low temperature. This is taken as an indication of coherent state development, 

usually observed in heavy Fermion metals. The Hall coefficient for the ingot sample 

(5.26 × 10-4 cm3 C-1) is of the same order as reported in literature [34]. RH, and μH 

decrease by two orders of magnitude going from the ingot to the hot-pressed samples. 

This indicates increased carrier concentration in the nanostructured samples when 

compared to the ingot. The defects induced during ball-milling process might have 

contributed to such a drastic increase in carrier concentration.  
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Figure 5.6 Hall coefficient of CeCu6 samples as a function of temperature in the 

temperature range 2 – 100 K. Solid lines are just guide to eyes. Inset: Hall mobility as a 
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function of temperature. Solid lines are drawn to guide eyes. 

When compared among the hot-pressed samples, RH does not change much. However 

there is clear trend in mobility data indicating that decrease in hot-pressing temperature 

decreases the carrier mobility. 

The calculated temperature dependent dimensionless thermoelectric figure-of-

merit (ZT) is shown in Figure 5.7. The ZT values reach a peak at around 60 K for all the 

samples. The peak value of ZT for the optimized sample HP 800 is 0.024 at 60 K. Since 

the ingot and the sample HP 800 have comparable values of power factor at 60 K (Inset 

of Fig 5.7), the improved ZT is derived from the reduction in thermal conductivity. This 

ZT at this low temperature is significant when compared with other materials [35,36,37].  
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Figure 5.7 ZT as a function of temperature for the CeCu6 samples. Inset shows the power 

factor as a function of temperature. 

 

While the original goal for nanostructuring was to increase the power factor (PF) 

by employing quantum confinement of carriers [38, 39], experiments [40-42] have shown 

that the key reason for improved ZT was the reduction of thermal conductivity. Therefore, 

in recent years researchers on nanostructured thermoelectric material have focused on 

reducing the thermal conductivity, while producing minimal adverse effects on the 

Seebeck coefficient and the electrical conductivity. This approach seems to work most 

effectively in systems where the thermal transport is phonon-dominated (as opposed to 

electron-dominated). 
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Figure 5.8 Reduce Lorenz number as a function of temperature for the CeCu6 samples. L 

is defined as 𝐿 = 𝜅𝜌𝛥−1 and L0 = 2.45 ×10-8 W Ω K-2 for free electron was used in 

calculation. 

 

One of the ways to analyze the effectiveness of nanostructuring is to look at the 

values of the reduced Lorenz number (L/L0). Here L is defined as 𝐿 = 𝜅𝜌𝛥−1 and L0 = 

2.45 ×10-8 W Ω K-2 is the free-electron value. In general a value of L/L0 much greater 

than 1 implies that the phonons are the dominant mode of thermal transport. In Figure 

5.8, the temperature dependence of L/L0 is illustrated.  The shape of the L/L0 (T) curve for 

all of the samples is typical of heavy fermions, generally there is a slow monotonic rise in 

L/L0 as temperature decreases until a maximum is reached at low tempertures.  The L/L0 
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ratio decreases in the sample HP 800 when compared to the ingot showing that the lattice 

contribution to the total thermal conductivity was effectively reduced in the HP 800 

sample. However, with a further decrease in the HP temperature, L/L0 increases 

significantly. At lower HP temperatures, the thermoelectric properties are affected in such 

a way that the electronic contribution to the total thermal conductivity decreases more 

rapidly than the phononic contribution does. As a result no net gain in ZT was achieved 

by lowering the hot-pressing temperature.  

 

5.3 Thermoelectric Properties of CeAl3 

5.3.1 Introduction 
Since the first study by Andres eτ al. [43] in 1975, CeAl3 has been the subject of 

extensive research.  Like CeCu6, this compound also exhibits an extremely large 

Sommerfeld coefficient γ = 1620 mJ/(K2-mol) and A = 35 μΩ cm /K2  where A is 

associated with the Fermi liquid relation of the electrical resistivity 𝜌 = 𝜌0 + 𝐴𝛥2 [43]. 

Originally, CeAl3 was considered to be a heavy fermion without any magnetic ordering. 

However, later, it was revealed by μSR and NMR experiments [44, 45] that CeAl3 orders 

antiferromagnetically below TN = 1.2 K.  Initially, many researchers paid attention to its 

electrical transport properties [46, 47] and their pressure dependence [15]. Later, Ott eτ al. 

[48] reported the thermal conductivity in the temperature range of 0.06 – 50 K thereby 

demonstrating the validity of Wiedemann-Franz law in heavy electron systems.  

 

5.3.2 Experimental 

The synthesis procedure for CeAl3 is similar to that used for CeCu6. 

Stoichiometric amounts of Ce (99.9%) and Al (99.999 %) were mixed and arc melted 
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together on a water-cooled copper hearth in an argon atmosphere. To attain chemical 

homogeneity, the melted sample was flipped on the hearth plate and re-melted twice. 

Nanopowders of CeAl3 were prepared by ball milling the ingot for 5 hours. The 

nanopowder was then hot pressed for 2 minutes at 400, 600 and 800 oC while a uniaxial 

pressure of 80 MPa was applied. X-ray diffraction (XRD) was performed on the fresh 

fracture surfaces of the samples. The Seebeck Coefficient (S), electrical resistivity (ρ), 

and thermal conductivity (κ) from 5 to 330 K were measured simultaneously on a sample 

of typical dimensions of 2x2x8 mm3. The four-point method of thermal transport option 

(TTO) of the Physical Property Measurement System (PPMS) was used. The horizontal 

rotator option of PPMS was used to measure Hall coefficient (RH) on a sample with 

typical dimensions of 1×2×10 mm3.  

 

5.3.3 Results and Discussion 

Figure 5.9 shows the X-ray diffraction patterns for the samples. Some impurity 

phases associated with CeAl2, Ce, and Al can be seen for the ingot. However, these 

impurity phases disappear in the X-ray diffraction patterns for the hot-pressed samples at 

800 oC and the peaks can be indexed to the hexagonal Ni3Sn-type crystal structure. The 

samples become more homogeneous and show an enhanced single phase behavior after 

the ball-milling and hot-pressing process.  
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Figure 5.9 X-ray diffraction patterns of the CeAl3 samples used in this work. 

 

The results of the measurements of the temperature dependence of the total 

thermal conductivity are shown in Figure 5.10. The temperature dependence for all the 

samples are typical of heavy fermion systems and closely resemble the dependence 

reported for other HFCs such as CeB6 [49] and CeCu4Al [31]. The thermal conductivity 

values for the ingot sample are consistent with the values for the polycrystalline sample 

reported by Ott eτ al. [48]. Within the 5-330 K range, the thermal conductivity decreases 

significantly as the HP temperature decreases. As a reference, at 55 K, κ = 2.5 W m-1 K-1 

and 0.4 W m-1 K-1 for the samples HP 800 and HP 400 respectively, this represents a 
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reduction in the thermal conductivity by ~85 %. In nanostructured samples, such a 

decrease in thermal conductivity is mainly attributed to the increased scattering of 

phonons off the grain boundaries.  
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Figure 5.10 Thermal conductivity of the CeAl3 samples as a function of temperature. 

 

In general, the total thermal conductivity is the sum of two independent 

contributions from the lattice and the carriers. The relationship is described by the 

following equation: 𝜅 = 𝜅𝑐𝑐𝑐𝑐𝑐𝑒𝑐 + 𝜅𝑇𝑐𝑇𝑇𝑐𝑐𝑒 where 𝜅 is the total effective thermal 

conductivity of the system, and κcarrier and κlaττice are the carrier and lattice contributions 

respectively. A rough estimation of κcarrier can be made using the Wiedemann-Franz law, 
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𝜅𝑐𝑐𝑐𝑐𝑐𝑒𝑐 = 𝐿0𝜌−1𝛥 where L0 = 2.45 ×10-8 W Ω K-2 is the Lorenz number, 𝜌 is the 

electrical resistivity, and T is the temperature in K. The κcarrier for all the samples was 

calculated using the experimentally determined values of ρ. In Figure 5.11, we show the 

temperature dependence of 𝜅𝑇𝑐𝑇𝑇𝑐𝑐𝑒  in a log-log plot in the 6-50 K temperature range. At 

55 K, 65 % of the total thermal conductivity of the sample HP 800 comes from the lattice 

contribution. For the HP 600 and HP 400 samples, these contributions are 74 % and 78 

%, respectively. Fitting data to the power law, 𝜅 = 𝛽𝛥𝛼, shows the almost linear 

dependence of κ on T with the α values ranging from 0.83 to 1.11. Such a linear 

dependence is consistent with previous reports and is related to the fact that relevant 

phonon wavelengths are comparable to or larger than the electronic mean free paths [48].  
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Figure 5.11 Lattice thermal conductivity as a function of temperature in the range of 6 – 
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50 K. 
 

The experimental data on the electrical resistivity is shown in Figure 5.12. ρ(T) 

curves for  all the samples follow the classic shape for a strongly correlated HF metal, 

with a coherence peak at ∼35 K. While the coherence peak has been consistently reported 

to occur at around 35 K, the resistivity values for our nanostructured samples hot pressed 

at 400 and 600 oC are considerably larger than their single crystal counterparts. This is 

expected due to the increased porosity and number of defects in the nanostructured 

samples. Among the hot-pressed samples, the electrical resistivity varies significantly 

with HP temperature. At 35 K, the resistivity increases by a factor of 1.9 from the HP 800 

sample to the HP 600 sample, and from HP 600 to HP 400, it increases by a factor of 2.6. 

A similar behavior in resistivity at lower HP temperature was observed in the HFC CeCu6 

[29]. 
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Figure 5.12 Electrical resistivity of the CeAl3 samples as a function of temperature. 
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Figure 5.13 Seebeck coefficient of the CeAl3 samples as a function of temperature. 

 

Figure 5.13 shows the Seebeck coefficient as a function of temperature. For all the 

samples, the Seebeck coefficient is positive in the temperature range of 5-330 K, 

implying that the majority charge carriers are holes (p-type). The peak in Seebeck 

coefficient, which is thought to result from Kondo scattering of higher energy multiplets, 

occurs at ∼55 K. The negative peak due to the Kondo scattering of ground state doublet 

has been shown to occur at 3.5 K for CeAl3 [15] that is out of the temperature range of 

this experiment. Above 55 K, a logarithmic dependence 𝑆 ∝ −(𝑙𝑛𝛥) is followed. This 

trend is consistent with the data previously reported and is usually associated with the 
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formation of heavy charge carriers (also called the spin polarons) as a result of the DOS 

renormalization in the vicinity of the Fermi energy [27]. The maximum value of S = 36 

μV K-1 was observed for the HP 800 sample. The peaks are suppressed as Hot-Pressing 

temperature decreases.  
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Figure 5. 14 Power factor of the CeAl3 samples as a function of temperature. 

 

In Figure 5.14, we plot the power factor (PF = S2ρ-1) as a function of temperature. 

The HP 800 sample produces the highest value of PF (6.6 μWK-2cm-1) at 55 K that is less 

than the value of 15 μW K-2 cm-1 at 50 K reported by Mahan eτ al. [50]. The smaller PF 

value in our samples is due to decreased Seebeck coefficient and increased resistivity 
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brought on by the nanostructuring process. As the HP temperature decreases, PF 

decreases dramatically.  

Although reducing the HP temperature decreases the thermal conductivity of 

CeAl3, it also lowers the Seebeck Coeffient and electrical conductivity, which ultimately 

results in a decrease in ZT with decreasing HP temperature (see Figure 5.15). The highest 

ZT reported is 0.016 at 55 K in the HP 800 sample. Since at 55 K the ingot and the 

sample HP 800 have nearly the same thermal conductivity value, the improved ZT value 

for the latter comes from the improved Seebeck coefficient.  
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Figure 5.15 Thermoelectric figure-of-merit (ZT) of the CeAl3 samples as a function of 

temperature. 
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Figure 5.16 Hall Coefficient of the CeAl3 samples as a function of temperature. Inset 
shows the temperature dependent carrier concentration. 
 

Figure 5.16 shows the temperature dependence of the Hall coefficient (RH). A 

magnetic field of 9 T was applied during Hall measurements. Our data is consistent with 

previous reports [51, 52] with RH staying positive in the whole range of 5 – 330 K. At 

high temperatures, RH is small indicating that the electron and hole contributions to RH 

cancel each other. As the temperature decreases, the hole-contribution increases leading 

to a well-defined peak at T ≈ 10 K.  A rapid increase in the Hall coefficient above the 

residual value at low temperatures is typical feature of heavy fermion metals and is 

associated with the development of skew scattering by fluctuation about the coherent 
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state [47]. The Hall coefficient of the ingot sample remains significantly smaller than that 

of the hot-pressed samples throughout the temperature range of the experiment. 

Since𝑅𝐻 = 1 𝑛 𝑛� , where n is the carrier density and e is the electronic charge; this is 

indicative of a reduced carrier density in the hot-pressed as shown in the inset of Figure 

8. Among the hot-pressed samples, amplitude of RH decreases with decrease in HP 

temperature. In general, increases in carrier concentration decrease the absolute value of 

the Seebeck coefficient [53]. Therefore the decrease in S with decreasing HP temperature 

in our samples can be attributed, in part, to the increase in carrier density.  

A rough calculation of effective mass (m*) can be done using the relation

3
2

*
2

22

33
8







=

n
m

e
T

S B πκπ


. Here kB = 1.38 × 10-23 J K-1 is the Boltzmann constant, ħ = 1.05 

× 10-34 J S is the reduced Planck constant, T is the absolute temperature and n is the 

carrier density. Using experimentally determined Hall coefficient (Figure 5.16) and the 

Seebeck coefficient (Figure 5.13), calculations give m* ≈ 33 mo, 25 mo and 23 mo for 

samples HP 800, 600 and 400 respectively at 20 K (shown in inset of Figure 15.17). 

These values are slightly less than previously reported values (≈ 45 mo) in reference [10]. 

Hall mobility (μH) for the samples was calculated under the assumption of one band 

model using relation 𝜇𝐻 = 𝑅𝐻 𝜌� . Figure 9 shows the temperature dependence of the Hall 

mobility, these results were derived from resistivity measurement shown in Figure 3. 

Quantitatively, the Hall mobility values are of the same order as reported earlier [28].  
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Figure 5.17 Hall mobility of the CeAl3 samples as a function of temperature. Inset shows 

the effective mass at 20 K for all the samples. 

 

In conclusion, samples of the heavy fermion compound CeAl3 have been 

successfully synthesized by ball-milling of arc-melted ingot followed by hot-pressing. 

The thermoelectric properties of the samples have been measured and it has been shown 

that the temperature dependences of the properties are typical of the heavy fermion metal. 

The results show that variation of hot-pressing temperature results in significant changes 

in the thermal and the electronic transport properties. Mechanical nanostructuring was 

shown to be effective at decreasing the thermal conductivity of the system. The highest 
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ZT value measured was 0.016 at 55 K in the sample that was hot-pressed at 800 ℃. The 

results from the Hall coefficient measurements provide evidence for the differences in the 

carrier density and mobility among the samples. Further optimization of the 

thermoelectric properties of the heavy fermion compound CeAl3 may also be achievable 

by doping.  

5.4 Thermoelectric Properties of YbAgCu4 

5.4.1 Introduction 

YbAgCu4 comes from the family of parent compound YbCu5 which hexagonal cr

ystal structure [54-56]. Replacing of one Cu atom by Ag changes the crystal structure int

o fcc structure [57].  YbAgCu4 has been classified as moderate heavy Fermion with a Su

mmerfield coefficient 𝛾 of ~250 mJ mol-1K-2, 𝛾 =C/T where C is the electronic specific h

eat and T absolute temperature [58]. Mahan [59] mentioned a high power factor of ~ 235 

μW cm-1 K-2 on this compound. Such an attractive value for power factor makes this com

pound worth investigation. The ground state of YbAgCu4 is intermediate valence compou

nd with 8 fold degeneracy [60]. There is presence of giant Seebeck peak at 45 K that is d

ue to Kondo scattering of conduction electron from almost the full f band [61]. The therm

al conductivity of YbAgCu4 is mysteriously low below 50 K in comparison to other heav

y fermion systems that are good thermoelectric materials [62]. 

5.4.2 Experimental 

Nanostructured samples of YbAgCu4 were prepared by arc melting followed by  

mechanical alloying process. The stoichiometric ratio of 99.9% pure Ag and 99.9% Cu g-

ranular from Alfa Aesar was kept in arc melting hearth and melted to make the single pie-

ce. 99.9% pure Yb pieces with 10 % extra Yb is kept in arc melting hearth with Ag-Cu pi
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ece and melted together. The main idea for this melting approach is to avoid the direct co

ntact of arc with Yb, which is volatile in nature. The melting process is repeated for 8 tim

es by monitoring the total weight loss at each step. The ingot is polished with metal brush 

and ball milled for 6 hours in high energy ball mill machine. The powder is DC hot press

ed at 550, 650, and 750 oC at a pressure 100 MPa for five minutes to see the effect of hot 

pressing temperature on the structures and properties.  

5.4.3 Results and Discussion 

The results on thermoelectric properties are shown in Figure 5.18 below. The ther

mal conductivity of these samples decrease with temperature. The thermal conductivity o

f the samples hot pressed at 550 oC is smaller than the other two because of probably the 

smaller grain size.  

The electrical resistivity of the samples exhibits a strong metallic behavior below 

75 K, and a weak semiconductor above 75 K. This phenomenon is well understood in ter

ms of dilute Kondo scattering of conduction electron by Yb atoms. When the temperature 

decreases from 200 K to lower temperature, Kondo scattering is more prominent and hen

ce the electrical resistivity increases with decreasing temperature. When the temperature 

goes below 75 K, the dilute Kondo system transformed to Kondo lattice system with peri

odic localization of f- ion arrangement. Such a localized state forms a coherent f band wh

ere all the elastic scattering of conduction electron get vanished with sharp decrease in ele

ctrical resistivity. The electrical resistivity of the sample hot pressed at 550 oC is higher c

ompared to the other two samples. This can be understood as the result of higher defect d

ensity present in the samples, which scatters the charged carrier. Since the defects and ch

arged carrier affects the density of states, it is reasonable to have higher density of states f



 

170 
 

or the sample hot pressed at 550 oC. For the other two samples, the lines are nearly parall

el showing nearly the same density of states. 
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Figure 5.18 Temperature dependence of the thermoelectric properties of the YbAgCu4 s-

amples. 

The Seebeck coefficient for all the samples is negative from 5 K to 200 K and has 

maximum value at 45 K. The Seebeck coefficient data was analyzed to obtain the value  

of the energy gap between the Kondo peak and Fermi level to be ~3 meV [63] which ma-

tches well with the gap obtained by optical measurement reported [64]. The sample hot p-
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ressed at 550 oC has larger number of defects giving larger contribution to positive Seeb-

eck which in fact decreases our negative Seebeck coefficient. 

With the high power factor, a peak ZT of 0.11 for the sample hot-pressed at 550 o

C has been achieved at 42 K, which is notably high at this low temperature. We believe   

even higher ZT can be achieved with further effort on this material.  
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Chapter 6 

Conclusion 

6.1 Overview 

To sum up, samples of the n-type compounds FeSb2 and YbAgCu4 and p-type 

compounds CeCu6 and CeAl3 are prepared and characterized using the laboratory 

facilities of both Prof. Ren and Prof. Opeil. In some cases, the data represented the first 

attempt to explore the underlined physics behind thermoelectric phenomena in these 

compounds in the nanocomposite state. Several publications came out as a result of this 

work and can be found in Appendix B. 

Chapter 1 introduces the basics of the thermoelectric phenomena and their 

application in practical life as the energy conversion technology. 

In chapter 2, a brief description of the theory of thermoelectricity is presented. 

Different types of phonon scattering mechanisms which play key role in the 

thermoelectric properties of a material are discussed. Also some possible routes to 

achieve high ZT in cryogenic temperature are presented. 

Several techniques of material synthesis, spectroscopic characterization and 

measurement are involved in this work. Chapter 3 presents on the description of these 

techniques. Calibration and benchmarking of a home-built AC susceptometer are 

discussed in Appendix A. 

Significant improvements in the thermoelectric figure-of-merit (ZT) of the 

compound FeSb2 is achieved in this work via different routes: nanostructuring, doping 

and semiconductor/metal interface approach. Chapter 4 is the result of several systematic 

studies made to improve ZT of FeSb2. The phonon mean free path in FeSb2 (~ 40 μm) 
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being almost two orders of magnitude larger than the electron mean free path (~ 10 nm) 

at low temperature (~ 15 K), mechanical nanostructuring is shown to be very effective to 

reduce the thermal conductivity. With a dramatic reduction in thermal conductivity by 

three orders of magnitude, the ZT in nanstructured FeSb2 is increased by 160% from 

single crystal value of 0.005 to 0.013 at ~ 50 K. The concept of semiconductor/metal 

interface to improve thermoelectric properties is employed by incorporating Ag- and Cu-

nanoparticles in the host nanostructured samples of FeSb2. Ag-inclusion introduces the 

interfaces between FeSb2-yAgy and Ag1-xSbx phases in the samples. Due to the high 

electrical conductivity of the Ag1-xSbx phase, both thermal conductivity and electrical 

resistivity of the nanocomposite sample were reduced significantly in the lower 

temperature regime. This process enhanced the peak ZT to 0.020 at 60 ~ K, which is a 

70% improvement over the best value (0.013), obtained through nanostructuring alone. 

Among the several dopants including In, Cr, Co, Ru and Sn, tellurium (Te) further 

decreases the thermal conductivity of nanostructured sample by introducing the point-

defect scattering and improve the ZT value to 0.022 at 100 K. The largest value of peak 

ZT for FeSb2 achieved in this work is 0.027 at ~ 65 K which was obtained through Cu-

nanoinclusion. Calculations suggest the FeSb2 and Cu have comparable values of the 

work functions.  The highly conductive Cu helps suppress the insulating behavior of 

FeSb2 at low temperature thereby resulting improved thermoelectric power factor. 

Our study shows that the mechanical nanostructuring in FeSb2, along with a 

drastic thermal conductivity reduction, also brings on a severe suppression of the Seebeck 

coefficient values at low temperatures. Furthermore, the suppression in the Seebeck 

coefficient was found strongly associated with the reduction in the thermal conductivity. 
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Both quantitative and qualitative analysis of the data clearly indicates a presence of 

phonon-drag mechanism at low temperature. We conclude that despite having the record 

value for the thermoelectric power factor, FeSb2 does not offer much promise to be a 

good thermoelectric material at low temperature. 

The Kapitza resistance analysis based on the effective medium approach (EMA) 

turns out to be a simple macroscopic model explaining several key features seen in the 

temperature dependent thermal conductivity of nanostructured FeSb2 surprisingly well. 

Specifically, a large value of the Kapitza length (~ 390 nm at 10 K) implies the 

importance of interfacial thermal resistance over the bulk thermal properties of FeSb2.  

 Chapter 5 presents a complete set of data for the thermoelectric properties for the 

heavy-fermion compounds CeCu6, CeAl3 and YbAgCu4 and their ZT values are reported.  

The temperature dependent ZT values for these compounds are reported for the first time. 

The ZT values of 0.024 at 60 K, 0.016 at 55 K and 0.11 at 42 K are achieved for the 

compounds CeCu6, CeAl3 and YbAgCu4 respectively. The positive values for the 

Seebeck coefficient (p-type) and a peaked nature of the ZT (T) curve in the temperature 

range of interest (5 -5300 K) for the compounds CeCu6 and CeAl3 are significantly 

important. This study shows that the thermoelectric properties of these heavy-fermion 

compounds exhibit strong dependence on sample processing temperature.  The results 

indicate that mechanical nanostruturing deteriorates the electronic properties rapidly upon 

reducing grain-size thereby negating the gain obtained through the reduction of the 

thermal conductivity. 

6.2 Future Work 

While a great deal has been achieved carrying out this research, further 
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improvement in the thermoelectric performance of n-type FeSb2, and YbAgCu4 and p-

type CeCu6 and CeAl3 are possible.   

In case of FeSb2, doping is promising direction to further improve thermoelectric 

performance. Effect of hot-pressing temperature variation on thermoelectric properties of 

FeSb1.84Te0.16 is carried out in this study. However the optimal composition for 

nanostructured sample may be different. An interesting future experiment would vary the 

Te content for to improve thermoelectric performance of Te-doped FeSb2. Also Se-doping 

on Sb-site has shown to be promising but has not been studied extensively. Using 

nanostructuring in FeSb2-xSex samples could lead to improved ZT. 

The study thermoelectric properties of undoped CeCu6, CeAl3 and YbAgCu4 have 

been carried out in this thesis. Substituting Ce and Yb with other lanthanides like Ho, Yb 

etc. may be useful in reducing the thermal conductivity of these compounds by 

introducing point-defect scattering. Effect of doping on Cu and Al-sites is also worth 

investigation. 
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Appendix A 

AC Susceptometer 

A.1 Set up 

The AC susceptometer was comprised of two coaxial coils: a primary coil and a 

secondary coil. The secondary coil consisted of a pair of counter-wound coils. The 

sample to be investigated goes inside of one of the secondary coils. The counter-winding 

ensures the cancelation of any signal arising from oter than the sample itself. An AC 

signal of particular frequency generated by a frequency generator (HP 3325A) is driven 

through the primary which induces an oscillating magnetic field inside it. In the presence 

of the sample inside one of the secondary coils, a voltage is detected which is 

proportional to the effective magnteic moment of the sample. Details on the design and 

working principle of an AC susceptometer can be found in references [1-4]. A lock in 

amplifier (SR 830) was used to detect the induced voltge across the secondary. A high 

resistance of the order of 10 KΩ was used to stabilize the current through the primary 

circuit.  Figure A1 shows a block diagram showing different components of the set up. 

The primary and secondary coils were made by winding an insulated copper wire around 

a core frame made up of G10. The numbers of primary turns was 3000 whereas each coil 

in secondary contained 1100 turns. Digital multimeters (Agilent 34410A) were used to 

measure current through primary circuit and resistance of the cernox thermometer. 

Grounding loops were avoided by grounding devices properly. The open conducting parts 

of the wires and connectors were shielded with aluminum foil to minimize the noise from 

surroundings. 
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Figure A1  Block diagram representation of ac susceptometer set up. The rectangular box 

with dotted boarder line represents the coil assembly with sample mount that goes inside 

the commercial closed system cryostat (PPMS).  

The applied frequency (f), current through the primary (Irms) and the voltage 

signal detected by lock in amplifier (Vrms) are properly recorded in a datafile using 

labview software. Both the real (χ’) and imaginary (χ”) part of the ac magnetic 

susceptibility can be calculated using the relation, 

                                                 𝜒 = 𝛼
𝜈𝑓𝐼𝑟𝑟𝑟

𝑉𝑟𝑟𝑟                                                              (A1) 
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Where υ is the fraction of volume occupied by the sample and is determined as volume of 

the sample divided by volume of the sensing coil. Here α is the calibration constant to be 

determined using a sample of known magnetic susceptibility. A spherical sample of 

niobium in the superconducting state ( at 5 K) was used for calibration.  Calculations 

were made based on the assumption that χ’ = -1 and χ” = 0 in the superconducting state.  

A.2 Calibrating Cernox Thermometer 

The susceptometer coil assembly (shown in Figure 3.14 (b)) is mounted in a 

multipurpose probe and inserted inside the sample chamber of the closed system cryostat 

(PPMS). The temperature of the sample chamber is essentially controlled by the 

thermometers of cryostat itself. However, the cryostat thermometers are placed at the 

bottom of the probe which is at a distance of few centimeters from the sample. This could 

lead to a significant offset in the temperature reading of the sample. Therefore, to obtain a 

more accurate temperature of the sample, a cernox thermometer was mounted in the 

copper holder just below the sample as shown in Figure A2. Note that copper is a good 

thermal conductor and is weakly magnetic (weak diamagnetic). 
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Figure A2 Picture of copper sample holder screw with a cernox thermometer securely 

mounted on it. An alumina rod on top facilitates as a sample platform. 

To calibrate the cernox, its resistance was first determined from 350 K down to 2 

K in steps of 10 K. The temperature of PPMS was well stabilized by waiting 30 minutes 

at every step. The data was then fitted using polynomial equation based on Chebychev 

polynomials of the from [5], 

                                             𝑇(𝑋) = ∑𝑎𝑛𝑡𝑛(𝑋)                                                             (A2) 

Here T (X) is the temperature in Kelvin, tn(X) is the Chebychev polynomial and an 

represents the Chebychev coefficient. The summation over n goes from 0 to the order of 

the fit. The parameter X is defined as [5], 

                                                  𝑋 = (𝑍−𝑍𝐿)−(𝑍𝑈−𝑍)
(𝑍𝑈−𝑍𝐿)

                                                        (A3) 
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Here Z = log10(R). The superscripts L and U stand for the lower and upper limit. In this 

study, 𝑍𝐿 = 1.87842 and 𝑍𝑈 = 3.70079. tn (X) can be generated from the recursion 

relation [5], 

                                           𝑡𝑛(𝑋) = 𝑐𝑐𝑐[𝑛 ∗ 𝑐𝑐𝑐−1(𝑋)]                                               (A4) 

Fitting polynomials for three different temperature ranges are given in the table A1. The 

calculated values of the resistances fit well with the measured values as shown in Figure 

A3. 

Table A1 Fitting polynomials at three different temperature regions. 

Temperature 

range 

X range Fitting equation 

350 K > T >150 K -1 < X <-0.58721 T=256.0478-15.2331t2-

127.8612t3+27.9605t5-12.6821t7-3.3961t8 

150 K ≥ T >30 K -0.5871 ≤ X < 0.34584 T=109-141.4399t1+73.4477t2-

14.1981t3+8.5683t4+6.7318t5+1.2127t6 

30 K ≥ T ≥ 5 K 0.34584 ≤ X ≤ 1 T=14.0027-2.5473t4-6.7123t8 
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Figure A3 Temperature as a function of resistance for the cernox thermometer. The red 

open circles represent actual temperature measured by calibrated thermometer already 

installed in the cryostat. The blue dots represent the calculated temperatures using 

polynomials listed in Table A1. 

 

A.3 Determination of α and ϕ 

When expressed in terms of real and imaginary parts, Eq. A1 is written in a more 

general form by taking into account of the demagnetization factor (D) associated with the 

sample geometry and the phase angle (ϕ) as given below.  
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�  =      𝛼
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𝐼𝑒
𝑉𝑟"

𝐼𝑆
  − 𝑉𝑒"

𝐼𝑒

�                                (A5)     

Here subscripts s and e stand for sample and empty respectively. For a given frequency, 

there corresponds a phase angle (ϕ) that separates the voltages in absolute real (Channel 

1) and imaginary (Channel 2) parts. A niobium sphere (D = 1/3) was installed in the 

sample holder and the temperature of the sample was maintained at 5 K during 

calibration. The applied frequency of the AC signal through the primary was varied and 

the real and imaginary part of the voltages was measured in channel 1 and 2 respectively 

of the lock in amplifier. Figure A4 - A5 show the frequency dependence at 5 K of the 

voltages detected in Ch1 and Ch2 of the lock in amplifier. The blue triangles represent the 

data points with no sample (e) whereas the red rectangles are the data points with Nb 

sample inside the susceptometer. In Figure A6, the background is subtracted. 
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Figure A4 V’/I as a function of frequency for niobium sample at 5 K.  
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Figure A5 V”/I as a function of frequency for niobium sample at 5 K. 
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Figure A6 Background subtracted V/I as a function of frequency for niobium sample at 5 

K. 

Frequency dependence (at 5 K) of α and ϕ obtained from the calculation using 

above data are shown in the Figure A7 below.  
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Figure A7 Multiplication factor (α) and the phase angle (ϕ) as function of frequency. 

A.4 Benchmarking 

AC magnetic susceptibility measurement is often taken as a nondestructive 

technique to determine and characterize the inter-grain component in high Tc 

superconductors [6]. Bi2Sr2Ca2Cu3Oy (BSCCO) is one of the high Tc superconductors 

which have been widely studied using this technique. Once the susceptometer was 

calibrated using the niobium sample at the superconducting state (5 K), BSCCO was run 

for the benchmarking purpose. Figure A8 was taken from the work of Salamati et al. [8] 

which shows temperature dependent real and imaginary parts of the susceptibility of 

BSCCO for different magnitude of the magnetic field induced inside the primary coil.  
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Figure A8 AC magnetic susceptibilities of BSCCO sample as function of temperature for 

different amplitudes of AC magnetic field. The figure was taken from reference [6]. 

In Figure A9, we have plotted the temperature dependent susceptibilities obtained 

by using homebuilt susceptometer for two different magnetic field strengths 0.8 A/m and 

40 A/m. Qualitatively, the real and imaginary part of the susceptibilities obtained from 

the homebuilt system follow a similar temperature profile as observed in reference [6]. 

Quantitatively, the real part of the susceptibility does not drop down to -1 as it does in 

reference [6]. The system was further benchmarked by measuring the susceptibility of a 

gadolinium polycrystalline sample to reproduce data from the work of Fukuda et al. [7] 

as discussed in section 3.6 of chapter 3.  
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Figure A9 Temperature dependent susceptibilities, for two chosen amplitudes of 

magnetic fields 0.8 A/m and 40 A/m, of BSCCO sample measured in homebuilt 

susceptometer. 

The goal was to measure, quantitatively, the real and imaginary parts of the AC 

magnetic susceptibility. However, the data were reproduced only qualitatively. We came 

to the conclusion that so many factors (including noise) make it difficult to achieve a 

quantitatively precise measurement using an AC susceptometer in its simplest design. 

Construction of a very sensitive AC susceptometer requires much more effort to take into 

account of different circumtances. For example, one of the difficulties is related to the 



 

193 
 

field dependent background due to magnetic asymmetries in the coil assembly materials. 

Also, a high resolution method of voltage compensation and detection is required to 

improve the accuracy of the susceptometer. Also it is assumed that the calibration factor α 

and the phase angle for a given frequency do not change with temperature.  Temperature 

dependence of α and ϕ, if present; may cause significant offset in the calculated value of 

susceptibility. Nevertheless, our AC susceptometer is low cost and is very sensitive to 

magnetic transitions giving accurate information of the transition temperature. 
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a b s t r a c t

We present data on the heavy fermion compound CeAl3 as a potential p-type thermoelectric material at
cryogenic temperatures. Samples of CeAl3 were synthesized by arc-melting, ball milling and hot pressing
the nano-powder at different temperatures. Thermal conductivity (j), Seebeck coefficient (S), electrical
resistivity (q) and Hall coefficient (RH) of the samples were measured at temperatures ranging from 5
to 330 K. The thermoelectric properties of this compound are highly dependent on the hot-pressing
(HP) temperature. The thermal conductivity increases with increase in HP temperature which is compen-
sated by increased power factor (S2q�1). As a result the samples with higher HP temperatures exhibit
higher ZT values. The highest ZT value of 0.016 at 55 K was observed for the sample hot-pressed at
800 �C. The Hall coefficient data reflects an increase in carrier concentration and a decrease in carrier
mobility with decreasing hot pressing temperature.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thermoelectricity is the reversible conversion between thermal
and electrical energy. For a given material, the efficiency of this
process is quantified by the dimensionless figure of merit,
ZT ¼ s2

qk T where S is the Seebeck coefficient, q is the electrical resis-
tivity, j is the thermal conductivity, and T is the absolute temper-
ature [1]. Thermoelectric materials currently available for high
temperature applications typically exhibit a ZT � 2 at their peak
operating temperature. A material as this efficient below ambient
temperature has not yet been observed. There are several materials
which possess promising thermoelectric properties at cryogenic
temperatures [2]. One class of materials that we feel has been over-
looked is a class of materials called Heavy Fermion Compounds
(HFCs). While many materials included in this category have been
the subject of extensive study [3–9], as correlated electron materi-
als and quantum behavior, they have not yet been thoroughly
investigated as thermoelectric materials. Many materials that
belong to this class are known to exhibit unique correlated electron
properties at low temperatures which make them potential candi-
dates for thermoelectric cooling applications.

Measurement of thermoelectric properties usually offers an
excellent approach to investigate quasiparticle excitation in heavy
fermion materials [10,11]. Many HFCs have been shown to exhibit

large Seebeck coefficient values at low temperatures [12,13]. Among
them, many Ce-based compounds have been reported to exhibit two
well separated maxima (minima) in the temperature dependent
Seebeck coefficient [14–16]. Usually, the low-T extremum occurs
around the characteristic temperature TK and is attributed to the
Kondo scattering on the ground state doublet. The high temperature
peak (T > TK) on the other hand, results from Kondo scattering on
higher multiplets which are split by crystal electric field (CEF)
effects [12]. In addition to large Seebeck coefficients, many com-
pounds of this class exhibit relatively high electrical conductivity
values which make them promising thermoelectric materials.

In this work, we studied the thermoelectric properties of the
heavy fermion compound CeAl3. Since the first study by Andres
et al. [17] in 1975, CeAl3 has been the subject of extensive research.
This compound exhibits an extremely large Sommerfeld coefficient
c = 1620 mJ/(K2-mol) and A = 35 lX cm/K2 where A is associated
with the Fermi liquid relation of the electrical resistivity
q ¼ q0 þ AT2 [17]. Originally, CeAl3 was considered to be a heavy
fermion without any magnetic ordering. Later, it was revealed by
lSR and NMR experiments [18,19] that CeAl3 orders antiferromag-
netically below TN = 1.2 K. Initially, many researchers paid atten-
tion to its electrical transport properties [20,21] and their
pressure dependence [16]. Later Ott et al. [22] reported the thermal
conductivity in the temperature range of 0.06–50 K thereby dem-
onstrating the validity of Wiedemann-Franz law in heavy electron
systems. We focus on determining ZT of CeAl3 as a potential
material for Peltier cooling applications.

http://dx.doi.org/10.1016/j.enconman.2014.07.050
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In general, an increase in ZT can be achieved through either
power factor (S2q�1) enhancement or thermal conductivity reduc-
tion or by both. For strongly correlated systems like HFCs, the elec-
tronic transport properties (S and q) are usually found to be very
sensitive to the carrier density. Therefore it is plausible to assert
that the power factor of these systems can be effectively optimized
by tuning carrier density. In an earlier study on another strongly
correlated system, FeSb2, we showed that mechanical nanostruc-
turing (ball-milling of ingot into powder and hot pressing of the
powder into bulk pellets) not only reduces the thermal conductiv-
ity but also induces modification of the electronic band structure
which in turn changes the carrier density [23]. In this study we
employ the technique of nanostructuring in CeAl3 and investigate
the effects of varying hot-pressing (HP) temperature on its thermo-
electric properties.

2. Experimental

Stoichiometric amounts of Ce (99.9%) and Al (99.99%) were
mixed and arc melted together on a water-cooled copper hearth in
an argon atmosphere. To attain chemical homogeneity, the melted
sample was flipped on the hearth plate and re-melted twice. Nano-
powders of CeAl3 were prepared by ball milling the ingot for 5 h. The
nanopowder was then hot pressed for 2 min at 400, 600 and 800 �C
while a uniaxial pressure of 80 MPa was applied. X-ray diffraction
(XRD) and scanning electron microscopy (SEM) were performed
on the fresh fracture surfaces of the samples. The Seebeck Coeffi-
cient (S), electrical resistivity (q), and thermal conductivity (j) from
5 to 330 K were measured simultaneously on a sample of typical
dimensions of 2 � 2 � 8 mm3. The four-point method of thermal
transport option (TTO) of the Physical Property Measurement Sys-
tem (PPMS) was used. The horizontal rotator option of PPMS was
used to measure Hall coefficient (RH) on a sample with typical
dimensions of 1 � 2 � 10 mm3.

3. Results and discussion

Fig. 1(a) shows the X-ray diffraction patterns for the samples.
Some impurity phases associated with CeAl2, Ce, and Al can be seen

for the ingot. However, these impurity phases disappear in the X-
ray diffraction patterns for the hot-pressed samples at 800 �C and
the peaks can be indexed to the hexagonal Ni3Sn-type crystal
structure. The samples become more homogeneous and show an
enhanced single phase behavior after the ball-milling and hot-
pressing process. The SEM images of the freshly fractured surface
of the four samples are presented in Fig. 1(b). Clearly, texture of
the hot-pressed samples differs drastically from that of the ingot
sample with porosity increasing with decreasing pressing temper-
ature. As the hot-pressing temperature decreases, the grains tend
to agglomerate. Approximate grain-size in the hot-pressed samples
is in the order of �1 lm.

The results on the temperature dependence of the total thermal
conductivity are shown in Fig. 2. The temperature dependence for
all the samples are typical of heavy fermion systems and closely
resemble the dependence reported for other HFCs such as CeB6

[24] and CeCu4Al [25]. The thermal conductivity values for the
ingot sample are consistent with the values for the polycrystalline
sample reported by Ott et al. [22]. Within the 5–330 K range, the
thermal conductivity decreases significantly as the HP temperature
decreases. As a reference, at 55 K, j = 2.5 W m�1 K�1 and
0.4 W m�1 K�1 for the samples HP 800 and HP 400 respectively,
this represents a reduction in the thermal conductivity by �85%.
In ball-milled and then hot-pressed samples, such a decrease in
thermal conductivity is mainly attributed to the increased scatter-
ing of phonons off the grain boundaries.

In general, the total thermal conductivity is the sum of two
independent contributions from the lattice and the carriers. The
relationship is described by the following equation: k ¼ kcarrierþ
klattice where k is the total effective thermal conductivity of the sys-
tem, and jcarrier and jlattice are the carrier and lattice contributions
respectively. A rough estimation of jcarrier can be made using the
Wiedemann-Franz law, kcarrier ¼ L0q�1T where L0 = 2.45 � 10�8

W X K�2 is the Lorenz number, q is the electrical resistivity, and
T is the temperature in K. The jcarrier for all the samples was calcu-
lated using the experimentally determined values of q. In Fig 3, we
show the temperature dependence of klattice (= k – kcarrier) in a log-
log plot in the 6–50 K temperature range. At 55 K, 65% of the total
thermal conductivity of the sample HP 800 comes from the lattice
contribution. For the HP 600 and HP 400 samples, these
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Fig. 1. X-ray diffraction pattern (a) and the SEM images (b) of the samples.
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contributions are 74% and 78%, respectively. Fitting data to the
power law, k ¼ bTa, shows the almost linear dependence of j on
T with the a values ranging from 0.83 to 1.11. Such a linear depen-
dence is consistent with previous reports and is related to the fact
that relevant phonon wavelengths are comparable to or larger than
the electronic mean free paths [22].

The experimental data on the electrical resistivity is shown in
Fig. 4. q(T) curves for all the samples follow the classic shape for
a strongly correlated HF metal, with a coherence peak at �35 K.
While the coherence peak has been consistently reported to occur
at around 35 K, the resistivity values for our samples hot pressed at
400 and 600 �C are considerably larger than previously reported
values for their single crystal counterparts. This is expected due
to the increased porosity and number of defects in the hot-pressed
samples. Among the hot-pressed samples, the electrical resistivity
varies significantly with HP temperature. At 35 K, the resistivity
increases by a factor of 1.9 from the HP 800 sample to the HP
600 sample, and from HP 600 to HP 400, it increases by a factor
of 2.6. A similar behavior in resistivity at lower HP temperature
was observed in the HFC CeCu6 [26].

Fig. 5 shows the Seebeck coefficient as a function of temperature.
For all the samples, the Seebeck coefficient is positive in the temper-

ature range of 5–330 K, implying that the majority charge carriers
are holes (p-type). The peak in Seebeck coefficient, which is thought
to result from Kondo scattering of higher energy multiplets, occurs
at �55 K. The negative peak due to the Kondo scattering of ground
state doublet has been shown to occur at 3.5 K for CeAl3 [16] which
is out of the temperature range of this experiment. Above 55 K, a log-
arithmic dependence S / �ðlnTÞ is followed. This trend is consistent
with the data previously reported and is usually associated with the
formation of heavy charge carriers (also called the spin polarons) as
a result of the density of states (DOS) renormalization in the vicinity
of the Fermi energy [11]. The maximum value of S = 36 lV K�1 was
observed for the HP 800 sample. The peaks are suppressed as hot-
pressing temperature decreases.

In Fig. 6, we plot the power factor (PF = S2q�1) as a function of
temperature. The HP 800 sample produces the highest value of
PF (6.6 lW K�2 cm�1) at 55 K that is less than the value of
15 lW K�2 cm�1 at 50 K reported by Mahan et al. [27]. The smaller
PF value in our samples is due to decreased Seebeck coefficient and
increased resistivity. As the HP temperature decreases, PF
decreases dramatically.

The original goal of nanostructuring was to increase the power
factor (PF) by employing quantum confinement of carriers [28,29],
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but the experiments [30–32] have shown that the main reason for
the ZT improvement was the reduction of thermal conductivity.
Therefore in the recent years, research on nanostructured thermo-
electric materials have mainly focused on reducing the thermal
conductivity while producing only minimal adverse effects on
the Seebeck coefficient and electrical conductivity. In case of CeAl3,
although reducing the HP temperature decreases thermal conduc-
tivity of CeAl3, it also lowers the Seebeck Coeffient and electrical
conductivity, which ultimately results in a decrease in ZT with
decreasing HP temperature (see Fig. 7). The highest ZT reported
is 0.016 at 55 K in the HP 800 sample. Since at 55 K the ingot
and the sample HP 800 have nearly the same thermal conductivity
value, the improved ZT value for the latter comes from the
improved Seebeck coefficient.

Fig. 8 shows the temperature dependence of the Hall coefficient
(RH). A magnetic field of 9 T was applied during Hall measure-
ments. Our data is consistent with previous reports [33,34] with
RH staying positive in the whole range of 5–330 K. At high temper-
atures, RH is small indicating that the electron and hole contribu-
tions to RH cancel each other. As the temperature decreases, the
hole-contribution increases leading to a well-defined peak at

T � 10 K. A rapid increase in the Hall coefficient above the residual
value at low temperatures is typical feature of heavy fermion met-
als and is associated with the development of skew scattering by
fluctuation about the coherent state [21]. The Hall coefficient of
the ingot sample remains significantly smaller than that of the
hot-pressed samples throughout the temperature range of the
experiment. Under one band model, the Hall coefficient (RH) and
the carrier density (n) are related as, RH ¼ 1=ne, where n is the car-
rier density and e is the electronic charge. Carrier density calcu-
lated based on this simplified model as a function of temperature
is shown in the inset of Fig. 8. The carrier density decreases in
hot-pressed samples when compared with carrier density of the
ingot sample. Among the hot-pressed samples, amplitude of RH

(or n) decreases (or increases) with decrease in HP temperature.
In general, increases in carrier concentration decrease the absolute
value of the Seebeck coefficient [35]. Therefore the decrease in S
with decreasing HP temperature in our samples can be attributed,
in part, to the increase in carrier density.

A rough calculation of effective mass (m*) can be done using the

relation s ¼ 8p2j2
BT

3e�h2 m�ð p3nÞ
2=3. Here kB = 1.38 � 10�23 J K�1 is the

Boltzmann constant, ⁄ = 1.05 � 10�34 J S is the reduced Planck con-
stant, T is the absolute temperature and n is the carrier density.
Using experimentally determined Hall coefficient (Fig. 8) and the
Seebeck coefficient (Fig. 5), calculations give m* � 33 mo, 25 mo

and 23 mo (mo is bare mass of electron) for samples HP 800, 600
and 400 respectively at 20 K (shown in inset of Fig. 9). These values
are slightly less than previously reported values (�45 mo) in refer-
ence [11]. Hall mobility (lH) for the samples were calculated under
the assumption of one band model using relation lH ¼ RH=q. Fig. 9
shows the temperature dependence of the Hall mobility, these
results were derived from resistivity measurement shown in
Fig. 3. Quantitatively, the Hall mobility values are of the same order
as reported earlier [36]. Despite lower carrier concentration and
enhanced effective mass, the sample HP 800 has significantly small
resistivity compared to the resistivity of samples HP 600 and HP
400. This is due possibly to the decreased defect concentration at
higher pressing temperature.

In conclusion, samples of the heavy fermion compound CeAl3

have been successfully synthesized by ball-milling of arc-melted
ingot followed by hot-pressing. The thermoelectric properties of
the samples have been measured and it has been shown that the
temperature dependences of the properties are typical of the heavy
fermion metal. The results show that variation of hot-pressing
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temperature results in significant changes in the thermal and the
electronic transport properties. Mechanical nanostructuring was
shown to be effective at decreasing the thermal conductivity of
the system. The highest ZT value measured was 0.016 at 55 K in
the sample that was hot-pressed at 800 �C. The results from the
Hall coefficient measurements provide evidence for the differences
in the carrier density and mobility among the samples. Further
optimization of the thermoelectric properties of the heavy fermion
compound CeAl3 may also be achievable by doping.
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a b s t r a c t

We report on the thermoelectric performance of the heavy fermion compound CeCu6 nanocomposite
samples. Measurements of Seebeck coefficient, electrical resistivity and thermal conductivity are pre-
sented over the temperature range 5 < T < 350 K. The dimensionless figure-of-merit (ZT) was optimized
by varying the sample hot-pressing temperature. Thermal conductivity measurements show that the
lowest hot pressing temperature (450 �C) produces the lowest thermal conductivity. Electrical resistivity
is strongly influenced by hot pressing temperature and drops by a factor of �3.4 as the hot pressing tem-
perature is lowered from 800 to 450 �C. Seebeck coefficient shows a slight increase over other samples
when hot pressed at 800 �C. Our ZT calculations show a broad peak with a maximum value of 0.024 at
�60 K for the sample hot pressed at 800 �C.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, solid-state cooling based on the Peltier effect
has gained increased attention. Coefficient of performance (U) for
a Peltier cooler is given as [1,2],

ømax ¼
T1 ð1þ ZTÞ1=2 � T2=T1

h i

ðT2 � T1Þ½ð1þ ZTÞ1=2 þ 1�
ð1Þ

where T1 and T2 are the temperature of heat source and sink respec-
tively and T = (T1 + T2)/2. The quantity ZT is dimensionless thermo-
electric figure-of-merit and is defined as ZT ¼ S2q�1j�1T. Here S is
the Seebeck coefficient, q is the electrical resistivity, j is the total
thermal conductivity, and T is the absolute temperature. It is essen-
tial that high ZT materials and process methods be discovered to
build efficient Peltier coolers particularly when operating at low
temperatures. Optimizing the ZT of a material has been challenging
due to the complex and interrelated quantities: S, q and j. Current
state of-the-art materials typically possess a peak ZT in the range of
1–1.8 for different materials [3,4]. Such a system has yet to be dis-
covered for temperatures below 200 K. Correlated electron systems
are considered one of the materials which might be useful for Pel-
tier coolers below 77 K. Among the correlated systems, heavy-fer-
mion compounds (HFCs) show promising thermoelectric
properties at low temperatures, with a large S and small q [5]. In

these compounds, below some characteristic temperature Tk a
sharp peak of the density of states develops at the Fermi level (EF)
which results in highly enhanced values for both the Sommerfeld
(c) and Seebeck coefficient (S) [6].

Since the discovery by Stewart et al. [7] in 1984, CeCu6 has been
one of the widely studied HFCs. A great deal of interest was focused
on transport properties of this system in the following years
[8–13], owing to the Fermi liquid (FL) behavior at low temperature,
similar to that of CeAl3 [14]. Subsequent studies on this compound
were focused on non-Fermi liquid (NFL) behavior [15,16] and
anomalous thermopower [17–19]. In the recent years this com-
pound has been a platform for studying the quantum critical point
(QCP) behavior [20]. Although measurement of its transport
properties has long been taken as an approach to investigate
quasiparticle excitation, CeCu6 has not been heavily studied as a
thermoelectric material. In this work we studied the thermoelec-
tric properties of CeCu6 and applied the technique of mechanical
nanostructuring approach to the synthesis of the materials to
improve their ZTs.

Nanostructuring has been proven to be very effective at reduc-
ing the thermal conductivity without harming the electronic prop-
erties [3]. There have been many studies which attempted to
employ this technique to increase ZT near or above room temper-
ature. Since the phonon contribution, in general, increases with a
decrease in temperature; it is possible that nanostructuring could
lead to a reduction in the thermal conductivity of thermoelectric
material at low temperatures. In our previous work, we success-
fully enhanced the ZT of strongly correlated narrow-gap semicon-
ductor FeSb2 using nanostructuring approach [21–23]. This paper
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is a result of our continued investigation of the effectiveness of
nanostructuring at improving ZT at low temperatures (below 77 K).

2. Experimental

Stoichiometric amounts of Ce (99.9%, Alfa Aesar) and Cu (99.99%, Alfa Aesar)
were melted in an argon environment using an arc-melter. To improve chemical
homogeneity, the melted sample was flipped over and re-melted three times. The
resulting ingot was etched in dilute nitric acid then ball milled for five hours to cre-
ate a nanopowder of CeCu6. The nanopowder was then hot pressed for two minutes
at 450, 600 and 800 �C under a uniaxial pressure of 80 MPa. For simplicity, the sam-
ples are given short names. For instance, the name ‘‘HP 800’’ stands for the sample
hot-pressed at 800 �C. X-ray diffraction (XRD, Bruker, AXS) was performed on the
freshly fractured surface of the samples. Scanning Electron Microscopy (SEM, JEOL
6340F) was used to investigate the grain-size distribution of the samples. The See-
beck coefficient (S), electrical resistivity (q), and thermal conductivity (j) from 5 to
300 K were measured on samples of typical dimensions of 3 � 3 � 4 mm3. A 2-point
method in thermal transport option (TTO) of the Physical Property Measurement
System (PPMS) was used to measure the thermoelectric properties. The horizontal
rotator option of the PPMS was used to measure Hall coefficient (RH) of the samples
with typical dimensions of 1 � 2 � 10 mm3.

3. Results and discussion

The X-ray diffraction patterns are shown in Fig. 1 for the ingot
and ball milled/hot pressed samples. The peak positions confirm
the orthorhombic crystal structure and indicate that the ingot
was alloyed in a single phase form. We note the X-ray peaks are
broadened only slightly by the ball-milling process, while the crys-
tal structure is retained.

Fig. 2 shows the SEM images of the samples. No voids are seen
for ingot and the sample HP 800 �C. The nearly equal values for the
densities of the ingot and the sample HP 800 are consistent with
the SEM images. The samples hot pressed at 450 and 600 �C show
a distinctly different microstructure from the HP 800 sample. Sam-
ple porosity increases and surface texture becomes rough at the
lower hot pressing temperatures

The electrical resistivity q of the samples are shown in Fig. 3 as
a function of temperature. All the samples exhibit a similar resis-
tivity profile, typical of single crystal CeCu6. Below 300 K, the resis-
tivity decreases as the temperature is lowered until it reaches a flat
minimum. At approximately 75 K, a Kondo-like behavior emerges
with a negative value for @q/@T. The resistivity then reaches a max-
imum at around 15 K before declining sharply with decreasing
temperature, an indication of coherence development. Electrical
resistivity of the 800 �C hot-pressed sample is slightly increased

when compared to the ingot; this is expected due to the increased
scattering from the nanocomposite grains. A comparison among
the hot-pressed samples shows that the electrical properties of
CeCu6 are greatly affected by varying HP temperature. With
decreasing HP temperature the electrical resistivity increases sig-
nificantly. When comparing HP 800 and 450 �C samples, we note
at 60 K an increase in resistivity by a factor of �3.4. Such a drastic
increase in the electrical resistivity is attributed to the reduced
grain size and the increased porosity.

Fig. 4 shows the total thermal conductivity (j) for the samples
as a function of temperature. For comparison the thermal conduc-
tivity for polycrystalline samples of CeCu6 was taken from Ref. [24].
The thermal conductivity follows temperature dependence similar
to that reported for another HFC CeCu4Al [25]. The total thermal
conductivity decreases as the HP temperature decreases. At 60 K,
j was reduced from �5 W m�1 K�1 (for ingot) to �2 W m�1 K�1

(for sample HP 450), a reduction by 60%. In general, j = jl + je,
where jl and je are the lattice and electronic contributions to
the total thermal conductivity, respectively. Generally, phonon
scattering by grain boundary reduces the phonon contribution
(jl) whereas macroscale porosity is shown to reduce the electronic
contribution (je) [26,27]. The SEM images (Fig. 2) suggest that the
reduction of the thermal conductivity with decreasing HP temper-
ature might be attributed to both the contributions from grain
boundary scattering and the porosity effect.

In Fig. 5 we present the temperature dependence of the Seebeck
coefficient. All the samples exhibit a positive Seebeck coefficient
below 300 K with a maximum at Tmax � 50 K. This value for Tmax

is in agreement with the previously reported data [18,19]. In the
context of heavy-fermions, such a peak in S at higher T (T > TK) is
usually attributed to the Kondo scattering on higher multiplets
(as opposed ground state doublet) which are split by crystal effect
field (CEF). For T > Tmax, S follows an unusual temperature depen-
dence of the form: S / � ln T , whereas for T < Tmax, S follows the
typical behavior of metals. The Seebeck coefficient decreases as
the HP temperature decreases.

We also measured temperature dependent Hall coefficient (RH)
of the samples. Under the assumption of single band (SB) model,
the effective carrier density (n) and the Hall mobility (lH) were cal-
culated using the formulas, n ¼ 1=jRHje and lH ¼ jRHj=q, respec-
tively, where e = 1.6 � 10�19 C is the electronic charge. RH, and lH

of the samples as a function of temperature are shown in Fig. 6.
Our data is consistent with the previous report [28] with RH staying
positive in the whole range of 2–100 K. At high temperature, RH � 0
indicates that the electron and hole contributions to RH cancel the
effect of each other. As the temperature decreases, the hole contri-
bution increases leading to a prominent peak at low temperature.
This is an indication of coherent state development and is usually
observed in heavy fermion metals. The Hall coefficient for the ingot
sample (5.26 � 10�4 cm3 C�1 at 50 K) is of the same order as
reported in literature [28]. RH, and lH decrease by two orders of
magnitude going from the ingot to the hot-pressed samples. This
indicates increased carrier concentration in the nanostructured
samples when compared to the ingot. The defects induced during
ball-milling process might have contributed to such a drastic
increase in carrier concentration. When compared among the
hot-pressed samples, RH does not change much. However there is
clear trend in mobility data indicating that decrease in hot-press-
ing temperature decreases the carrier mobility.

The calculated temperature dependent ZT is shown in Fig. 7. The
ZT values reach a peak at around 60 K for all the samples. The peak
value of ZT for the optimized sample HP 800 is 0.024 at 60 K. Since
the ingot and the sample HP 800 have comparable values of power
factor at 60 K (Inset of Fig 7), the improved ZT is derived from the
reduction in thermal conductivity. Here we note that ZT greater
than 0.1 at cryogenic temperatures (<77 K) has rarely been
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Fig. 1. X-ray diffraction pattern for the arc melted ingot and the three hot pressed
samples of CeCu6.
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reported. FeSb2 single crystal exhibits a peak ZT value of �0.005 at
�10 K [29] which was increased to 0.013 at 50 K in nanostructured
samples [23]. Single crystal FeSi has ZT of 0.01 at 50 K, which can
be slightly raised to 0.07 at 100 K by 5% Ir doping [30].

While the original goal for nanostructuring was to increase the
power factor (PF) by employing quantum confinement of carriers
[31,32], experiments [33–35] have shown that the key reason for
improved ZT was the reduction of thermal conductivity. Therefore,
in recent years research on nanostructured thermoelectric material
has focused on reducing the thermal conductivity, while producing
minimal adverse effects on the Seebeck coefficient and the

electrical conductivity. This approach seems to work most effec-
tively in systems where the thermal transport is phonon-domi-
nated (as opposed to electron-dominated). One of the ways to
analyze the effectiveness of nanostructuring is to look at the values
of the reduced Lorenz number (L/L0). Here L is defined as L ¼ kqT�1

and L0 = 2.45 � 10�8 W X K�2 is the free-electron value. In general
a value of L/L0 much greater than 1 implies that the phonons are
the dominant mode of thermal transport. In Fig. 8, we present
the temperature dependence of L/L0. The shape of the L/L0 (T) curve
for all of the samples is typical of heavy fermions. The L/L0 ratio
decreases in the sample HP 800 when compared to the ingot

Ingot HP 800

HP 450HP 600

Fig. 2. SEM images of the freshly fractured surface of ingot and hot pressed samples.
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showing that the lattice contribution to the total thermal conduc-
tivity was effectively reduced in the HP 800 sample. However, with
a further decrease in the HP temperature, L/L0 increases signifi-
cantly. At lower HP temperatures, the thermoelectric properties
are affected in such a way that the electronic contribution to the
total thermal conductivity decreases more rapidly than the pho-
nonic contribution does. As a result no net gain in ZT was achieved
by lowering the hot-pressing temperature.

4. Conclusion

In conclusion, nanostructured samples of CeCu6 were prepared
by arc melting and ball milling the arc-melted ingot followed by
hot pressing at different temperatures. The thermoelectric proper-
ties were optimized by varying the hot pressing temperature. The
thermal conductivity decreased as the hot pressing temperature
was lowered showing that nanostructuring is an effective approach
to reduce thermal conductivity of this system. However, the elec-
trical resistivity increased and the Seebeck coefficient decreased
to decrease the power factor. Overall the ZT values improved with
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Fig. 4. Thermal conductivity as a function of temperature for the three nanostruc-
tured CeCu6 samples. The data for the polycrystalline sample was drawn from Ref.
[21] and replotted for comparison.
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an increase in hot pressing temperature. A significant value for the
ZT of 0.024 at 60 K was observed for the optimized sample HP 800.
The broad and pronounced peak in ZT highlights its potential as a
p-type thermoelectric material at low-temperature. Further ZT
improvement of this HF compound could be achieved by combin-
ing doping with a nanostructuring approach.
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Abstract Nanostructured samples of FeSb1.84Te0.16 were prepared using a hot-press
method and thermoelectric properties were studied. Nanostructured samples exhibited
significantly reduced values for the thermal conductivity. Te-doping, in addition to
enhancing point-defect scattering, also induced a semiconductor-to-metal transition
which increased the power factor value at low temperatures. Both the power factor
and the thermal conductivity were shown to decrease with a decrease in hot-pressing
temperature. The combined effect resulted in a figure-of-merit ZT of 0.022 at 100 K
for the optimized sample, a 62 % increase over the single crystal counterpart. Within
nanostructured samples, ZT increases by as much as 11 times.

Keywords Iron diantimonide · Thermal conductivity · Point-defect scattering

1 Introduction

In the past few decades, the narrow-gap semiconductor FeSb2 has been extensively
studied due to its unusual magnetic and electronic transport properties [1–3]. In more
recent years, FeSb2 has attracted considerable attention as a thermoelectric material.
Efficiency (for thermoelectric power generation) or coefficient of performance (for
Peltier cooling) of a thermoelectric material is directly related to a dimensionless
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figure-of-merit (ZT) defined by, Z T = S2T
ρκ

where S is the Seebeck coefficient, ρ is the
electrical resistivity, κ is the thermal conductivity, and T is the absolute temperature. A
ZT value of at least 1 is required for a thermoelectric material to be practically useful.
Since Z T ∼ S2, a high Seebeck coefficient is necessary for a good thermoelectric
material. Narrow-gap semiconductors are considered to be one of the best classes
of thermoelectric material and for most of these materials the value of the Seebeck
coefficient is on the order of 100 μVK−1. For FeSb2, an unusually large Seebeck
coefficient of ∼45,000 μVK−1 has been reported at ∼10 K [4] with a moderate value
for the electrical conductivity at that temperature. As a result, a record high value for
the power factor (S2ρ−1) of 0.23 W m−1 K−2 at 10 K was observed [4]. Despite the
large power factor value, the ZT values for single crystal FeSb2 are rather low due
to the high thermal conductivity. For undoped FeSb2 single crystals, the reported ZT
values are around 0.005 at ∼10 K [4].

Recently there has been a large amount of interest in reducing the thermal con-
ductivity of FeSb2 while maintaining a high Seebeck coefficient. Specifically, efforts
have been made to improve the thermoelectric performance of FeSb2 using the tech-
niques of doping[5–8], nanoinclusions [9,10], nanostructuring [11,12] and stoichio-
metric adjustment [13]. In our earlier work [11], we were able to reduce the ther-
mal conductivity of FeSb2 by three orders of magnitude using the technique of
nanostructuring. Unfortunately, the values of the Seebeck coefficient were drastically
reduced in these nanostructured samples possibly indicating a significant phonon-drag
contribution[14]. As a result, ZT was increased by only one order of magnitude. Data
from our earlier work clearly showed that a significant increase in ZT of FeSb2 through
nanostructuring alone cannot be expected. On the other hand, studies have shown tel-
lurium to be an effective dopant for improving ZT of single crystal FeSb2 by reducing
the thermal conductivity via point defect scattering. Sun et al. [6] reported a ZT value
of ∼0.013 at around 100 K in FeSb2−x Tex single crystal samples for their optimized
doping concentration of x = 0.16. In this report, we present the combined effect of
nanostructuring and Te-doping on the thermoelectric properties of FeSb2. To con-
duct our research, we used the previously reported optimized Te-doped stoichiometric
composition (FeSb1.84Te0.16) and tuned the thermoelectric properties by changing
the hot-pressing (HP) temperature. Our results showed a significant drop in thermal
conductivity and an enhanced power factor value which lead to improved ZT values.

2 Experimental

Stoichiometric amounts of Fe, Sb and Te were mixed and melted at 1,000 ◦C inside an
evacuated and sealed quartz tube. The tube was quenched in cooling water for rapid
cooling and solidification. The resulting polycrystalline ingot was ball milled for 15
hours and obtained nanopowder was DC hot pressed under a pressure of 80 MPa for
2 min at several different temperatures (200, 300, 400, 500 and 600 ◦C). The sample
disks were sputtered with gold to optimize electrical and thermal contacts and then cut
into rectangular shapes of typical dimension 2 × 2 × 8 mm3. The Seebeck Coefficient
(S), electrical resistivity (ρ), and thermal conductivity (κ) were measured using ther-
mal transport option (TTO) of the Physical Property Measurement System (PPMS).
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Fig. 1 Thermal conductivity of the samples as a function of temperature (Color figure online)

The Hall coefficient (RH ) was measured using samples with typical dimensions of
1×2×10 mm3 employing a five-point configuration on the horizontal rotator option
of the PPMS.

3 Results and Discussion

Figure (1) shows the temperature dependence of the thermal conductivity for the
samples. The thermal conductivity values of all the nanostructured samples are signif-
icantly lower than the values reported for single crystals [4]. For the sample FeSb2 HP
500, κ = 7.08 W m−1 K−1 at 100 K which is 76 % lower than the value reported for
single crystal FeSb2 (∼30 W m−1 K−1). By doping with Te, the thermal conductivity
was further reduced to 4.38 W m−1 K−1 in the representative sample FeSb1.84Te0.16
HP 500; a reduction by 38 %. In this way an overall reduction in thermal conductivity
by 85 % was achieved.

In general, κ = κcarrier + κlattice. Here κcarrier and κlattice are the carrier and
lattice contributions respectively. Calculations based on the Wiedemann-Franz law
(κcarrier = L0ρ

−1T ) show that more than 99 % of the total thermal conductivity of
FeSb2 comes from lattice vibrations (phonons). Therefore any reduction in the total
thermal conductivity of this system is due to reduction in lattice contribution. The
physics of the lattice thermal conductivity is commonly interpreted using the Debye
approximation [15,16],

κlattice = kB

2π2v

(
kB

h̄

)3

T 3

θD
T∫
0

τcx4ex

(ex − 1)2 dx (1)
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Fig. 2 Seebeck coefficient of the samples as a function of temperature. The inset shows the comparison
between the temperature dependence of the representative sample FeSb1.84Te0.16 HP 500 and an undoped
counterpart FeSb2 HP 500 (Color figure online)

where x = h̄w
kB T , w is the frequency, kB is the Boltzmann constant, h̄ is the Planck

constant, v is the speed of sound, θD is the Debye temperature and τc is the relaxation
time. The overall time constant (τc) is given by the Matthiessen’s rule,

τ−1
c = τ−1

de f ect + τ−1
umklapp + τ−1

boundar y (2)

Here τde f ect , τumklapp and τboundar y are the relaxation times associated with the
three scattering mechanisms: phonon-defect scattering, umklapp process and phonon-
boundary scattering respectively. The reduced (by 76 %) thermal conductivity in our
nanostructured samples is due primarily to scattering of the phonons off the grain
boundaries. On the other hand, since addition of a small amount of Te should not
change the Umklapp process and grain-boundary scattering that much, the additional
reduction (by 38 %) comes mainly from the point-defect scattering. Now the mass
difference between Sb (121.75) and Te (127.60) is considerably small; therefore the
difference in interatomic coupling force constants probably plays a dominant role in
scattering of phonons in doped samples. The contributions of nanostructuring and
defect scattering are depicted in Fig (1). A significant reduction of thermal conductiv-
ity in Te-doped FeSb2 single crystals has been previously discussed in detail by Sun
et al. [6] They attributed the thermal conductivity reduction to the introduced charge
carriers rather than chemical disorder whereas Wang et al. [7] attributed the reduction
to the enhanced point defect scattering caused by both the different bonding tendency
and different thermal conductivities of Sb and Te.

Figure 2 shows the temperature dependence of the Seebeck coefficient. At 300 K,
the Seebeck coefficient has a small positive value (p-type) ∼2 μV K−1 for all the
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Fig. 3 Electrical resistivity (left y-axis) as a function of temperature for the four Te-doped samples. The
right y-axis corresponds to the electrical resistivity for the undoped sample FeSb2 HP 500 (Color figure
online)

Te-doped samples. This value of Seebeck coefficient is significantly less than
31 μV K−1 observed for undoped samples. As the temperature decreases, the See-
beck coefficient decreases and changes to a negative (n-type) value at ∼290 K. The
Seebeck coefficient assumes a peak value at 90 K for all the samples. The largest peak
value for the Seebeck coefficient among our samples is ∼ -107 μV K−1for sample
FeSb1.84Te0.16 HP 600 which is two orders of magnitude less than the reported value for
undoped FeSb2single crystals [4] and is one-fourth of the value (∼ - 400 μV K−1) for
FeSb1.84Te0.16 single crystals [6]. The peak value of the Seebeck coefficient decreases
with decreasing HP temperature. This decrease, based on our analysis, comes from
two factors: increased carrier density [11] and suppression of the phonon-drag con-
tribution due to increased grain boundary scattering at lower HP temperatures[14].
The inset of Fig. 2 shows the temperature-dependent Seebeck coefficient for the rep-
resentative sample FeSb1.84Te0.16 HP 500 and its undoped counterpart FeSb2 HP 500.
Upon Te-doping, the peak value of the Seebeck coefficient decreases and shifts to a
higher temperature. A similar shifting of the Seebeck peak with increasing Te-content
has been reported also in ref. [6].

Figure 3 shows the temperature dependence of the electrical resistivity for the
samples. The electrical resistivity of the sample FeSb2 HP 500 is represented by
the right y-axis. The undoped sample exhibits semiconducting behavior throughout
the temperature range 5–300 K with increasing resistivity as temperature decreases.
A sharp increase in resistivity below 70 K indicates an insulating ground state. In
contrast to the undoped FeSb2, the Te doped samples exhibit suppressed electrical
resistivity with a metallic ground state. The electrical resistivity decreases by one
order of magnitude at 100 K. The semiconductor to metal transition temperature for
the different samples falls within the range of 100–130 K.
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Figure 4 shows the temperature dependence of the carrier concentration (n) and
the Hall mobility (μ) for the undoped and doped nanostructured samples pressed at
500 ◦C. In the inset of the Fig. 4, we have plotted the magnetic field dependence of the
Hall resistivity (Rxy) for the samples FeSb1.84Te0.16 HP 500 both below (35 K) and
above (150 K) the semiconductor to metal transition temperature. A linear relationship
as expected in single band model is observed.n and μ were estimated from the Hall
coefficient (RH ) and electrical resistivity (ρ) measurements using n = 1/|RH |e and
μ = |RH |/ ρ, under the single band model. Here e = 1.6 ×10−19 C is the electronic
charge. At 100 K, the carrier concentration of the doped sample is increased by one
order of magnitude when compared with that of undoped sample. Also, the carrier
concentration is less temperature sensitive for doped samples, a result consistent with
the metallic nature seen in the electrical resistivity data at lower temperatures. The Hall
mobility is reduced in the doped sample. For example, μ = 5.3 and 3.3 cm2 V−1 S−1

for samples FeSb2 HP 500 and FeSb1.84Te0.16 HP 500, respectively at 100 K.
Figure 5 shows the temperature dependence of the power factor (S2ρ−1). When

compared with the undoped nanostructured samples, the power factors in the Te-doped
samples increased significantly. For example, S2ρ−1 = 9.9 × 10−4 W m−2 K−1 at
80 K for the representative sample FeSb1.84Te0.16 HP 500, which is an increase of
386 % from the corresponding value for the undoped sample FeSb2 HP 500. Among
the Te-doped samples, the peak values for the power factor decrease with decreasing
the HP temperature.

In Figure 6, we have presented ZT as a function of temperature. For all the doped
samples, the curve assumes a peak value (ZTmax ) at around 100 K. For the optimized
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sample FeSb1.84Te0.16 HP 500, ZTmax = 0.022 at 100 K, this is an increase of 62 %
compared with the optimized value for the Te-doped single crystal which was 0.012
in ref. [6]. When compared with the ZT of FeSb2 HP 500 (ZTmax = 0.0017 at 25 K),
the ZT values for the optimized sample FeSb1.84Te0.16 HP 500 is increased by a factor
of 11.
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4 Conclusion

In conclusion, nanostructured samples of FeSb1.84Te0.16 have been prepared using the
hot-press method and their thermoelectric properties have been studied in the range of
temperatures 5–300 K. Based on our analysis, the grain-boundary scattering and the
point-defect scattering are the two dominant phonon scattering mechanisms that con-
tributed to a significantly reduced (by 85 % at 100 K) thermal conductivity in Te-doped
nanostructured samples. Te-doping in FeSb2 contributed not only to the thermal con-
ductivity reduction but also to an enhanced power factor by inducing a semiconductor
to metal transition. With a decrease in HP temperature, both the thermal conductivity
and the power factor decreased. The optimal conditions for ZT were observed for the
doped sample hot pressed at 500 ◦C. The ZT value of 0.022 at 100 K was observed
for the optimized sample FeSb1.84Te0.16 HP 500, 62 % higher than the correspond-
ing value for the single crystal. Therefore, it has been successfully demonstrated that
combining the technique of doping with nanostructuring significantly enhances the
thermoelectric performance of FeSb2 at low temperatures. This approach can easily
be extended to improve ZT of other phonon dominated thermoelectric systems at low
temperatures.
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We report on the magnetic properties of a hot-pressed FeSb2 sample. We find a significant increase in the magnetic susceptibility
in our sample when compared with the values previously reported for the polycrystalline sample. The pronounced Curie tail at
low temperature corresponds to 0.2% of Fe2+ impurities per mole. In the intrinsic conductivity region, the susceptibility due to
free carriers shows thermally activated behavior and is consistent with the data reported for single crystal FeSb2. Based on our
data and analysis, while the enhanced magnetic susceptibility in our sample comes mainly from a small amount of unreacted Fe,
the contribution from the enhanced carrier density due to lattice and strain defects arising from the ball milling process is also
significant. Existence of an unreacted Fe phase is evidenced by small coercivity values of ∼100 Oe observed at 50 and 300 K.

Index Terms— Hall effect, hysterisis, iron doantimonide, magnetization.

I. INTRODUCTION

FeSb2 has drawn considerable research efforts because of
its unusual electronic and magnetic properties [1]–[5].

Single crystal FeSb2 is known to be paramagnetic, having
unusual temperature dependence of magnetic susceptibility
with a diamagnetic to paramagnetic crossover at ∼100 K.
Petrovic et al. [6] reported such a crossover for the magnetic
field applied along all the three crystallographic axes whereas
Hu et al. [7] reported the crossover only along the c-axis.
It has also been demonstrated that the magnetic properties
exhibit weaker anisotropy when compared with the electronic
properties [6]. Extensive efforts have been made in the past
decade to explain the anomalous temperature dependence of
the magnetic susceptibility of FeSb2. A simple analysis based
on a free-ion model was shown to explain this behavior
in [6]. It was also demonstrated in [8] that a narrowband
picture with two peaks in the density of states at the gap
edge explains the observed data well, thereby validating the
Kondo insulator description of a spin state transition in FeSb2.
Recently, Koyama et al. [9] employed the Stoner–Wohlfath
theory and the Arrot plot technique to determine the tem-
perature dependence of the inverse of the fourth expansion
coefficient γ for the FeSb2 single crystal. The temperature
dependence of γ they found was similar to that observed in
FeSi reported in [10], which can be explained by the spin
fluctuation theory.

So far most of the studies have been made in single crystal
samples; the experimental data on the magnetic properties
of polycrystalline FeSb2 samples remains scarce. In this
paper, we report and analyze the magnetic properties of a
polycrystalline FeSb2 prepared by hot-press method. We report
a significant enhancement in the magnetic susceptibility of the
hot-pressed polycrystalline sample when compared with the
polycrystalline average predicted from the single crystal data.

Manuscript received October 4, 2013; accepted November 16, 2013. Date of
publication November 26, 2013; date of current version May 1, 2014.
Corresponding author: M. Pokharel (e-mail: pokharem@bc.edu).
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Based on our analysis, this enhancement is possibly due to a
significant temperature-independent contribution coming from
the unreacted iron (Fe) and also from lattice and strain defects
arising from the ball milling process. Thus, diamagnetic to
paramagnetic crossover, reported for the single crystals, dis-
appeared in our sample. A pronounced upturn in susceptibility
below 30 K can be attributed to Curie type of behavior coming
from paramagnetic impurities. A weak ferromagnetism is also
evidenced by a small value of coercivity at 50 and 300 K.

II. EXPERIMENT

Stoichiometric amounts of Fe and Sb were mixed and
melted at 1000 °C inside an evacuated and sealed quartz
tube. The tube was quenched in water for rapid cooling and
solidification. After solidification the ingot was ball milled for
15 h. The resulting nanopowder was densified in a dc hot
press under 80 MPa for 2 min at 400 °C to obtain the disk
of nanocomposite sample, as described in [11]. The sample
disk was then characterized using X-ray diffraction (XRD)
and scanning electron microscopy (SEM). Using Archimedes’
method, the sample density was measured to be 97.7% of the
theoretical density. A vibrating sample magnetometer option
of the physical property measurement system (PPMS) from
quantum design was used to measure the magnetic moment.
The molar susceptibility was calculated by χ = (M/H ),
where M is the magnetization and H is an applied magnetizing
field of 0.1 T during measurement. The Hall coefficient (RH )
was measured using the horizontal rotator option of the PPMS.

III. RESULTS AND DISCUSSION

Fig. 1 shows the XRD pattern of the as-prepared FeSb2 sam-
ple disk. Leaving a few small peaks coming from background,
the peak positions are consistent with the orthorhombic crystal
structure and can be indexed as shown.

Fig. 2 shows the SEM images of a fractured surface of
the sample. An estimated value of the average grain size
is ∼200 nm.

Fig. 3 shows the temperature dependence of the molar
susceptibility for the FeSb2 sample used in this paper. The sus-
ceptibility values for the sample are significantly enhanced

0018-9464 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. XRD pattern of hot-pressed FeSb2 sample.

Fig. 2. SEM images of the hot-pressed FeSb2 sample.

Fig. 3. Observed magnetic susceptibility of the FeSb2 sample
as a function of temperature. Inset: fitting to the Curie–Weiss law
below 30 K.

throughout the temperature range 2–300 K when compared
with the single crystal data reported in the literature. For
example, at 300 K, χ ∼ 1.2 × 10−2 emu/mol−1 is two
orders of magnitude higher than the estimated polycrystalline
average value of 3 × 10−4 emu/mol−1 calculated in [6]

and 6 × 10−4 emu/mol−1 reported in [2]. Therefore no
diamagnetic to paramagnetic crossover is observed for our
sample. Such a vertical shift of the χ(T ) curve was also
reported in the arsenic-substituted single crystals of FeSb2 [12]
that they attributed to the substantial Pauli paramagnetism
of the increased carrier concentration, which is induced by
defects or impurities. We note that while most of the qualita-
tive features of the susceptibility curves are preserved, a more
pronounced Curie type of tail compared with that reported in
[2] and [6] is observed at low temperatures.

The observed magnetic susceptibility (χobs) in a semicon-
ductor is given by [13]

χobs (T ) = χ0 + χp + χc (1)

where χ0 is the temperature-independent susceptibility and is
the sum of the contributions coming from the lattice, lattice
defects and neutral impurities (if any), χp is the temperature
dependent susceptibility due to paramagnetic impurities and
χc is the magnetic susceptibility due to the free carriers.
The pronounced upturn in the susceptibility below 30 K
indicated the presence of a substantial amount of paramagnetic
impurities. Data below 30 K were fitted to

χ(T ) = χ0 + γ C/T − θ (2)

where γ C is the effective Curie constant, γ being a dimension-
less constant and θ is the Weiss temperature. A satisfactory fit-
ting (represented by solid line in the inset of Fig. 3) was found
for the parameter values of χ0 = 1.0 × 10−2 emu/mol−1,
γ C = 3.96 × 10−3 emu/Kmol−1, and θ = −1.6 K. Here
we note a large value of χ0, which has the same order
of magnitude as χobs, indicating a significant contribution
from the temperature-independent term. For single crystals,
χ0 ∼−4 × 10−5 emu/mol−1 was reported in [6].

Assuming that the orbital angular momentum is quenched
and only the spin angular momentum contributes, the Curie
constant C is given by

C = (NAg2μ2
B/3kB)[s(s + 1)]

= 0.125g2[s(s + 1)] emu/Kmol−1 (3)

where NA is the Avogadro’s number, μB = 9.27 × 10−24 JT−1

is the Bohr magneton, g is the electron Lande g factor, s is
spin and kB is the Boltzmann’s constant. Taking s = 2 and
g = 2.0023, C = 3.0 emu/Kmol−1 is expected for Fe2+ ion.
We conclude that the Curie-like term below 30 K is due to
≈0.2% of the Fe2+ impurities per mol. This value is less than
the 0.5% reported for the single crystals in [6].

The Hall coefficient RH for a specimen of thickness t is
given by RH = VH t/IB, where VH is the Hall voltage, B is
the applied magnetic field and I is the current. Fig. 4 shows
VH plotted as a function of I at B = 9 T for some selected
temperatures. The Hall coefficients at different temperatures
were calculated from the slope of the linear fit.

Values for free carrier density (n) were estimated from the
Hall coefficient measurement using the single band model,
n = 1/RH e, where e is the electronic charge. Inset of Fig. 5
shows the temperature dependence of the carrier concentration.
A thermally activated behavior is observed above 30 K.
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Fig. 4. Transverse Hall voltage as a function of excitation current for
temperatures of 300, 180, 35, and 5 K. A magnetic field of 9 T was applied.

Fig. 5. Magnetic susceptibility as a function of temperature. Open
triangles (�) represent the χc values calculated using (4) for the nanocom-
posite sample as a function of temperature. The filled circles (•) represent the
polycrystalline average data taken from [6]. Inset: temperature dependence of
free carrier concentration obtained from Hall coefficient.

In the region of intrinsic conductivity (>30 K in this case),
the magnetic susceptibility due to the free carriers, assuming
g factor to be 2 for both electron and holes, can be determined
as [13]

χc = (nμ2
B/3ρkBT )[6 − (m/m∗

n)
2 − (m/m∗

p)
2] (4)

where n is the free carrier concentration, ρ is the density,
m is the free electron mass and m∗

n (m∗
p) are the effective

masses for the electrons (holes). An approximate calculation
of χc was performed using the n values obtained above and
taking m = m∗

n = m∗
p and ρ = 7.5 g cm−3. Fig. 5 shows

the comparison between χc calculated using (4) and χavg =
(χa+χb+χc)/3 taken from [6]. The increased susceptibility for
the hot-pressed sample is due possibly to the increased carrier
concentration (∼1021 cm−3) due to lattice and strain defects
arising from the ball milling process. For the single crystal

Fig. 6. Magnetic moment of the FeSb2 sample as a function of applied
magnetic field at (a) 50 and (b) 300 K. Insets: region around the origin.

samples, carrier concentration values of ∼1017 − 1020 cm−3

were reported [2], [14].
Fig. 6 shows the field dependence of the magnetization at

50 and 300 K. The magnetization increases with the applied
field near the origin, changes slope at a magnetic field of value
∼2 kOe and then increases slowly with the increasing field.
Presence of a weak ferromagnetism at both the temperatures
(50 and 300 K) is evidenced by a narrow hysteresis loop,
as observed in Fig. 6. A small coercivity value of ∼100 Oe
(inset of Fig. 6) is observed at both temperatures. Since
pure FeSb2 is paramagnetic at 300 K and diamagnetic at
50 K, a narrow hysteresis loop at both the temperatures with
nearly equal value of the coercivities indicates the presence
of some neutral ferromagnetic phase. We believe that a small
fraction of unreacted iron (Fe) exists as a second phase in
our sample. Thus, the magnetic susceptibility is enhanced by
a significant constant value, consistent with the large value of
χ0 as mentioned previously. Cullity et al. [15] have pointed
out the effect of a small amount of ferromagnetic second
phase (0.1% of Fe by weight) on the magnetic property of
diamagnetic material (Cu). Our data on magnetic moment (m)
versus magnetizing field (H) are very consistent with their
data. We believe that even small amount of Fe is enough
to cause such a dramatic enhancement of the susceptibility.
Such a small amount of Fe was not detected from the XRD
pattern.

A rough estimation of the contribution from ferromagnetic
Fe phase (χFe) can be made calculating the susceptibility at
0.1 T from m–H curves. χFe ≈ 1.05 × 10−2 emu/mol−1 at
both temperatures (50 and 300 K). This value of χFe is in
close agreement with the value of χ0 obtained from fitting of
the Curie–Weiss law. Also the similar values of χFe at both the
temperatures are consistent with the temperature independent
nature of χ0.

Finally, we emphasize that contribution from the impuri-
ties varies among the samples. Therefore, it is understand-
able that sample dependence of the measured values of the
involved physical quantities might have played a role. Also, the
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calculation was made based on one-band model. Usually,
in a narrow gap semiconductor like FeSb2, two types of
carriers are involved. Nevertheless, this simple model explains
the observed magnetic susceptibility reasonably well. This
paper, in addition to providing data on magnetic properties
of polycrystalline FeSb2, also provides a demonstration of
how a small amount of neutral ferromagnetic phase masks
the true magnetic behavior of a material. We believe that
this paper will help researchers to further understand the
magnetic behavior of FeSb2. More specifically, combining
magnetic properties with thermoelectric transport properties
of nanostructured FeSb2 might help understand the origin of
large Seebeck coefficient, which will eventually help setup
future direction to improve thermoelectric performance of this
system.

IV. CONCLUSION

To summarize, we studied the magnetization in the FeSb2
hot-pressed sample. A significant value of ∼10−2 emu/mol−1

for the temperature-independent magnetic susceptibility is
observed. A Curie type of behavior below 30 K corresponded
to 0.2% Fe2+ impurities per mole. The susceptibility above
30 K can be understood as a consequence of the thermally acti-
vated behavior of the free carrier concentration. The presence
of a weak ferromagnetic interaction is evidenced by the small
value of coercivity of ∼100 Oe. While the enhanced magnetic
susceptibility comes mainly from the moment of unreacted Fe,
contribution from the enhanced carrier density due to lattice
and strain defects arising from ball milling process is also
significant.
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a b s t r a c t

We apply the effective medium approach model to determine the Kapitza resistance across the grain
boundaries of nanostructured FeSb2 samples. A Kapitza resistance of 2.17 � 10�7 m2K W�1 at 10 K is
observed. The results suggest a competition between the bulk thermal resistance and the Kapitza
resistance. The suppression and peak shifting of the thermal conductivity to a higher temperature are
caused by the large Kapitza resistance due to the decreasing grain-size in the nanocomposite. A large
value of Kapitza length (Lk) of 390 nm at 10 K is also observed. Based on the results, it is proposed that
nanostructuring could be a viable approach to improve thermoelectric properties of FeSb2.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

FeSb2 had been one of the well-studied compounds in the past
few decades because of its unusual electronic and magnetic prop-
erties [2e7]. In the past few years, this compound has gained
considerable interest as a promising candidate for Peltier cooling
applications at cryogenic temperatures. The renewed interest on
this compound comes after Bentien et al. [8] reported a colossal
value of Seebeck coefficient atw10 K for single crystal samples. The
authors therein suggested that the huge Seebeck coefficient is a
consequence of the strong electronic correlations. This explanation
was further supported by Sun et al. [9]. There have also been
extensive studies on thermoelectric properties of doped FeSb2
single crystal samples [10e14]. Undoped single crystal of FeSb2
exhibits a very high thermal conductivity at low temperaturewhich
reaches as high as 500Wm-1 K�1 atw10 K [7]. Such a huge thermal
conductivity limits the thermoelectric efficiency far below the
value required for practical applications. A better understanding of
thermal properties of FeSb2 would help to find a more effective
technique to reduce the thermal conductivity so that the thermo-
electric performance can be improved.

Our earlier work [1] showed that FeSb2 exhibits a strong grain
size dependent thermal conductivity at low temperatures. The
model usually proposed to understand the grain size dependence
of the thermal conductivity is the relaxation time approach of

boundary scattering based on the KlemenseCallaway theory
[15,16]. This is a microscopic model and takes into account various
scattering mechanisms involved in the heat conduction. Another
simple model for thermal conductivity of polycrystals without
going into the microscopic details is based on the combination of
Kapitza resistance [17,18] and the effective medium approximation
(EMA) [19,20]. In an effective medium approach, the total thermal
conductivity of a polycrystal is the sum of the intra-grain and the
inter-grain contributions [21]. The inter-grain component arises
due to the interfacial resistance, also known as the Kapitza resis-
tance, to the thermal transport. In the presence of thermal gradient,
the Kapitza resistance results in a temperature discontinuity across
the interface which was first observed by Kapitza [17]. The overall
effect of the Kapitza resistance is to reduce the thermal conduc-
tivity and the effect is more pronounced at smaller grain sizes.
Based on the Kapitza resistance-EMAmodel, Nan et al. [22] showed
that for an isotropic polycrystalline solid made up of spherical
grains of equal size, the effective thermal conductivity (k) is given
by,

kðT ; dÞ ¼ ki=½1þ ð2Rkki=dÞ� (1)

where ki is the intrinsic (or bulk) thermal conductivity, Rk is the
Kapitza resistance and d is the grain size. Here ki is grain-size in-
dependent but is temperature dependent while Lk ¼ Rkki and
Gk ¼ 1/Rk are called the Kapitza length and Kapitza conductance,
respectively. Here Lk represents the distance over which the tem-
perature drop is the same as at the interface and its magnitude
measures the relative importance of the Kapitza conductance.
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When the grain size in nanocomposites becomes comparable to Lk,
interfaces will predominantly determine the overall thermal
conductance [23]. So, to predict the thermal properties of the
nanocomposites it is important to develop an understanding of the
interfacial thermal conductance.

The systematic study of Kapitza-resistance for a nanostructured
samples is rarely found in the literature. On the other hand, thermal
conductivity of nanostructured samples is of quite general interest
because of their practical applications both in thermoelectric po-
wer generation and thermoelectric refrigeration. In this paper, we
apply the Kapitza resistance-EMA model to the FeSb2 nano-
composites. By calculating the Kapitza resistance from the grain
size-dependence of the total thermal conductivity, we show that
the grain boundary scattering is the dominant scattering mecha-
nism at low temperature. We also show that the change in the
temperature profile of the thermal conductivity with the grain size
can be interpreted as a consequence of the competition between
the bulk thermal resistance and Kapitza resistance.

2. Experimental

Nanostructured FeSb2 samples were synthesized as reported in
Ref. [1]. The stoichiometric amounts of Fe and Sb were taken inside
an evacuated quartz tube. The mixture was then melted at 1050 �C
and then quenched in water. The ingot was ball milled to obtain
FeSb2 nanopowder. The powder was then hot pressed at 80MPa for
2 min to obtain the nanocomposite (NC) samples. Different grain
sizes were introduced by varying the ball-milling time and pressing
temperature. The disk samples were then characterized by X-ray
diffraction (XRD, BrukerAXS) for the phase identification. An
average grain size was estimated from the scanning electron mi-
croscopy (SEM, JEOL 6340F) images. Density of the samples was
determined using the Archimedes method. The codes, average
grain sizes and the corresponding processing parameters for five
different samples are given in Table 1.

To ensure better contacts, the sample disks were sputtered with
the three consecutive layers of Ti, Ni and Au. The sputtered disks
were then cut to obtain a bar-shaped sample. The typical dimension
of the sample was 3 � 3 � 4 mm3. The gold plated copper-disks
were soldered at the sputtered ends of the sample. The thermal
conductivity (k) from 5 to 300 K was measured on a Physical
Property Measurement System (PPMS) from Quantum Design. The
normal 2-point method of the thermal transport option (TTO) was
used.

3. Results and discussions

Fig. 1 shows the SEM images of the five samples. The average
grain size ranges from 20 nm to 5000 nm.

Fig. 2 shows the temperature dependence of the thermal con-
ductivity for the five samples. Assuming that the Wiedemanne
Franz law, ke ¼ L0sT, holds, the lattice contribution (kl) to k was
calculated based on the independent approximation, k ¼ ke þ kl.
Here s is the electrical conductivity and T is the absolute

temperature. s ¼ 1/r was used to calculate s. The resistivity for all
the samples was of the order of 10�4 U-m below 50 K [1]. The value
of the Lorenz number for the free electron gas,
L0 ¼ 2.45 � 10�8 WU K�2, was taken in the calculation. For all the
samples, more than 97% of the total thermal conductivity comes
from the lattice portion below 50 K. As the grain size decreases, the
peak in the thermal conductivity curve, which is characteristic of
the crystalline solid, becomes less pronounced. For the sample S-20
the peak disappears completely. This is an indication that the
crystallinity of the sample degrades as the system becomes more
andmore disorderedwith decreasing grain size. Another important
feature of the thermal conductivity curves is the shift of the peaks
to higher temperature with decreasing grain size. For example kmax
occurs at 50 K, 69 K and 95 K for samples S-5000, S-300 and S-100,
respectively.

The inset of Fig. 2 shows the thermal conductivity at different
temperatures as a function of grain size. From 10 K to 50 K, the
grain-size dependence becomes increasingly strong and at 100 K, it
becomes weaker. This suggests that the grain-boundary scattering
is appreciable below 50 K in this system and becomes small as the
temperature increases. For a given temperature, the grain size-
dependence is stronger below 300 nm whereas it is weaker
above that size. Here we note that these curves roughly follow the
trend predicted by Volckmann et al. [24].

From the best-fit lines of the experimental data in k�1 vs. d�1

plots predicted by Eq. (1), the values of Rk and Gk for the samples
were determined. As seen in Fig. 3, the data fits reasonably well for
smaller grain sizes. A deviation from the linearity was observed in
the data at the largest grain size as onemight expect for the Kapitza
resistance-EMA model since it is optimized for application at small
grain sizes. Those points corresponding to the largest grain size
were excluded during fitting process. At this point we also note that
the sample porosity may also affect the linearity. As the tempera-
ture decreases, the trend becomes more linear. This suggests that
the Kapitza resistance-EMA model in FeSb2 system is more valid at
low temperatures. With decreasing temperature, the slope of the
linear fit increases monotonically. So the Kapitza resistance in-
creases as temperature decreases.

Fig. 4 represents the temperature dependence of the Kapitza
resistance (Rk) and the Kapitza conductance (Gk). The bulk thermal
resistances for the five samples are also plotted for comparison. Rk
has a weak temperature dependence from 300 K down to 50 K and
increases sharply below 50 K. Fitting to the power law shows that
Rkz 4.0� 10�6 T�1.27. This is consistent with the fact that the in situ
Kapitza resistance is expected to follow Rk w T�a, where a > 0 [25].
Rk ¼ 5.83 � 10�9 m2K W�1 and 2.68 � 10�8 m2K W�1, respectively,
at 300 K and 50 Kwere observedwhereas at 10 K, Rk reaches a value
as high as 2.17 � 10�7 m2K W�1. From a microscopic point of view
this is understandable because at low temperature, the diffusive
scattering of phonons off the grain boundary is the dominant
scattering mechanism and it becomes weak at higher temperature
where other mechanisms like three phononephonon process and
Umklapp-process become more important. We note the significant
value of the Kapitza resistance in this system. For SiGe alloys, Nan.
et al. [22] reported Rk¼ 1.1�10�7 to 4.98� 10�8 m2KW�1 values at
room temperature. Whereas for nanocrystalline yttria-stabilized
zirconia (YSZ), which exhibits a strong grain-size dependence of
the thermal conductivity, values for Rk of the order of
10�8 m2KW�1 at low temperature was reported by Yang et al. [26].

As seen in Fig. 4, the Kapitza conductance initially increaseswith
increasing temperature and then becomes less sensitive to tem-
perature between 100 and 200 K. Below 200 K, Gk follows roughly
the same trend as the specific heat capacity (Cp) does in Ref. [10]. In
fact, Gk is expected to be proportional to Cp [26]. This indicates that
despite the sample porosity, the error in estimating the grain size

Table 1
Assigned codes, processing parameters, average grain-size and density for the five
samples.

Sample
codes

Ball milling
time (hours)

Press
temperature (�C)

Average grain
size (nm)

Density
(% of single crystal)

S-5000 1/6 400 5000 95.2
S-300 1 400 300 96.3
S-100 15 400 100 97.7
S-30 15 300 30 85.6
S-20 15 200 20 77.2
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and the other assumptions that aremade, calculations based on this
simple Kapitza resistance-EMA model for FeSb2 nanocomposite
samples are justified. Theminimumvalue of the Kapitza length was
observed at room temperature, where Lk ¼ Rkki z 38 nm. At low
temperature, Lk increases reaching a value of 390 nm at 10 K. This
large value of Lk at low temperature implies a relatively weak
interfacial conductance which is consistent with the observed
thermal conductivity.

The calculated values for ki were found to be much smaller
compared to that of the single crystal. For example, at 50 K,
ki¼ 5.94Wm-1 K�1. Reduced values of ki were also observed by Nan
et al. [22] in Bi2Te3/Sb2Te3 alloys and they attributed the reduced
values of ki to the effect of porosity.

The open symbols in Fig. 4 represent the bulk thermal resistance
(d/ki) for these five samples. For samples S-20 and S-30, the Kapitza
resistance is dominant over the bulk thermal resistance from 5 to
300 K, whereas for S-100 a crossover is observed at around 200 K.
On the other hand, for S-300 and S-5000, the bulk thermal

resistances are dominant throughout. This explains the two
important features of the thermal conductivity curves that are seen
from Fig. 2. (i)For the large grain size, the contribution of the bulk is
dominant and the thermal conductivity curve is similar to its single
crystal counterpart with a pronounced peak. As the grain size goes
down the Kapitza resistance becomes stronger thereby reducing
the bulk nature of the curve and at the smallest grain size, the
Kapitza resistance dominates over the bulk part completely. (ii) The
crossover between the two resistance curves occurs at higher
temperature as the grain size gets smaller. This is why the thermal
conductivity peaks shift to higher temperature as the grain size
decreases.

For FeSb2, an electron mean free path on the order of few nm is
reported in the literature [9]. Using that assumption for electron
mean free path, one does not expect much change in electronic
properties (Seebeck coefficient and electrical conductivity) as
crystal size is altered. However our previous work [1] showed that

Fig. 1. SEM micrographs of the five nanocomposite samples used in this study. The images for the samples S-5000 and S-300 are taken with a magnification of 30,000 whereas the
magnification for images for the samples S-100, S-30 and S-20 is 60,000.

Fig. 2. Temperature dependence of the thermal conductivity of the samples. Inset:
Grain-size dependence of the thermal conductivity at 10, 25, 50 and 100 K.

Fig. 3. k�1 plotted versus d�1. The open symbols with the dashed lines and the closed
symbols with solid lines correspond to the left and right Y-axes respectively. The first
point from the left was excluded during the fitting process.
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the absolute value of Seebeck coefficient decreased significantly
with decreasing grain size whereas the electrical conductivity was
not affected that much. Therefore, the thermoelectric figure of
merit (ZT) enhancement was solely attributed to the thermal con-
ductivity reduction.

Finally, mechanical nanostructuring is very effective to reduce
thermal conductivity, as indicated by a large value of Kapitza length
(Lk), of FeSb2. On the other hand doping has been shown to be able
to reduce thermal conductivity keeping relatively large value of
Seebeck coefficient [12]. However, the thermal conductivity
reduction through nanostructuring looks to bemuchmore effective
than point defect scattering approach used in doped samples. Based
on this, we suggest that nanostructuring combined with some
other technique like doping at the intermediate grain size level
could be the viable approach to improve ZT of this material.

4. Conclusions

Calculations based on the Kapitza resistance-EMA model for
FeSb2 nanocomposite samples show a strong grain-size depen-
dence of the thermal conductivity at low temperature with a
significantly large value of the Kapitza resistance. The Kapitza
resistancewas found to be the predominating factor in determining
the bulk thermal properties below 50 K. For coarse-grained sam-
ples, the bulk thermal resistance dominates over the Kapitza
resistance values. As the grain size decreases the Kapitza resistance

becomes more important. A large value of the Kapitza length at low
temperature is observed. Our results suggest that the interfacial
thermal resistance across the grain boundaries plays a significant
role in determining the thermal transport properties of FeSb2 at
low temperature. It can also be inferred that nanostructuring could
be a viable approach to improve thermoelectric performance of this
system taking advantage of an increased Seebeck coefficient at low
temperature.
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Abstract
We present the figure-of-merit (ZT) improvement in nanostructured FeSb2−xAgx with
Ag1−ySby nanoinclusions through a metal/semiconductor interface engineering approach.
Owing to the interfaces between FeSb2−xAgx and Ag1−ySby phases, as well as the identical
work functions, both thermal conductivity and electrical resistivity of the nanocomposites
were significantly reduced in the lower temperature regime compared with pure FeSb2.
Overall, an improvement of 70% in ZT was achieved for the optimized nanocomposite
FeSb1.975Ag0.025/Ag0.77Sb0.23 sample, in which Ag0.77Sb0.23 is about 10% by molar ratio.
The results of this approach clearly demonstrated the metal/semiconductor interface concept
and confirmed the potential of strongly correlated material systems as promising
thermoelectric materials.

(Some figures may appear in colour only in the online journal)

1. Introduction

As one of the promising technologies in waste-heat recovery
and cooling applications, solid-state conversion between heat
and electrical power using thermoelectric materials has stimu-
lated enormous efforts and enthusiasm in the last decade. The
figure of merit (ZT) of thermoelectric materials, determining
the conversion efficiency, has almost been doubled in the last
couple of years in a few traditional materials. It is well known
that ZT = (s2σ/κ)T , where S, σ, κ , and T are the Seebeck
coefficient, electrical conductivity, thermal conductivity, and
absolute temperature, respectively. The competitive nature
of these components makes it difficult to enhance the
ZT by adjusting any of the individual properties without
affecting others. The currently developed approaches, such
as nanostructures reducing lattice thermal conductivity [1–4],
resonant doping [5–7], band engineering [8, 9] at the Fermi
level, as well as modulation doping providing additional

3 These authors contributed equally to this work.

electrical conductivity channels [10, 11], have been proved
to be efficient in a few material systems. In the literature,
the metal/semiconductor interface concept was proposed
theoretically and testified experimentally in a few cases for
their potential application in thermoelectric materials [12–17].
Indeed, modeling shows that, by introducing uniformly
distributed metal nanoparticles to the three-dimensional
semiconductor structure, either electronic (κe) or phononic
(κph) thermal conductivity, and thus κtotal = κe + κph, can
be suppressed dramatically [14]. Furthermore, due to the
energy barrier (VB) built between metal nanoparticles and the
host semiconductor at the interfaces, the lower energy carrier
could be scattered, which would result in a reduced electrical
conductivity but an enhanced Seebeck coefficient. As a result,
the power factor (PF = s2σ ) could be enhanced and an
enhanced ZT could be expected. However, for a phononic
(κph) thermal conductivity dominated system, the modeling
showed that a much smaller VB than 0.03 eV is preferred to
secure an even slightly enhanced PF [14], and zero energy
barriers at the interface would be expected in the real case
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even though there is no net gain on PF. Overall, for a phononic
(κph) thermal conductivity dominated system, the enhanced
ZT could be expected solely from the reduced thermal
conductivity through the metal/semiconductor nanocomposite
approach. In reality, due to the difficulty matching the
semiconductor with the right metals, there has been no
convincing demonstration of this concept.

Low temperature thermoelectric materials are usually
semimetals or narrow bandgap semiconductors [18]. Cor-
related material and Kondo systems, such as CeB6 [19],
YbAl3 [20], FeSi [21], and FeSb2 [22–28], are promising
thermoelectric materials for cryogenic cooling applications,
although their ZT values are still too low to be considered for
real use at this point. Among them, FeSb2 shows extraordinary
large S and PF despite the variations in its magnitude reported
and the arguments of the physical origin of such a high S [22,
26, 28]. Doping and nanostructures have been adopted in
efforts to reduce its phonon dominated thermal conductivity
while trying to maintain the high S [4, 24, 25]. Although
improvements have been achieved in FeSb2 nanocomposite
and Te-doped single crystals, further progress seems elusive
because of the extreme sensitivity of the Seebeck coefficient to
its electron carrier concentrations and the difficulty in further
suppressing the thermal conductivity.

In this report, based on the identical work functions
at certain crystal faces for FeSb2 and Ag, we have found
that Ag might be the matched metal phase to fabricate
the metal/semiconductor interface for FeSb2. We designed
three-dimensional metal/semiconductor interfaces by adding
Ag nanoparticles to form Ag1−ySby nanoparticles in nanos-
tructured FeSb2−xAgx. Resulting from the chemical reaction
between Ag and Sb, a nanocomposite of FeSb1.975Ag0.025
with 10% Ag0.77Sb0.23 by molar ratio was created and
demonstrated to have much enhanced ZT , a 70% improve-
ment, in comparison with the pure nanostructured FeSb2.
This result exemplified the possible demonstration of the
concept of a metal/semiconductor interface in thermoelectric
material systems. The same approach can also be extended
to other strongly correlated materials or Kondo systems for
thermoelectric properties enhancement.

2. Experiments and methods

The FeSb2−xAgx/Ag1−ySby nanocomposites were synthe-
sized by the following procedure. First, FeSb2 nanopowder
was synthesized through high temperature melting and
quenching, followed by 12 h ball milling as we reported
before [4]. Then various numbers of Ag nanoparticles (NPs)
(100 nm, Aldrich) were added to the synthesized FeSb2 pow-
ders with the targeted final nominal composition FeSb2Agm

with m = 0.028, 0.056, 0.11, 0.22, and 0.33. Together with
the FeSb2 nanopowder, each individual composition having
the weight of 5 g was further mixed via ball milling for
3 h. The direct current (dc) hot pressing method was used
to prepare disk samples from the final powders with different
compositions. All disk samples were pressed at 200 ◦C and
80 MPa for 2 min, resulting densities in the range of

5.91–6.01 g cm−3, about 76.8%–78.1% of the theoretical
densities of 7.70 g cm−3.

The final hot pressed products were characterized by
x-ray diffraction (XRD, Bruker AXS) for phase identification,
scanning electron microscopy (SEM, JEOL 6340F) for
texturing and grain size distributions, and transmission
electron microscopy (TEM) and scanning transmission
electron microscopy (STEM) (JEOL 2010F, which is
equipped with both TEM and STEM mode) for detailed
structures of the optimized nanocomposite sample with
nominal composition FeSb2Ag0.11. The STEM samples were
prepared as follows: a small piece of disk sample was gently
hand ground, and the obtained suspension was dipped onto a
typical carbon-coated Cu grid, which can be used for STEM
observation after drying. The edge area of the grains was
selected for observations.

The temperature dependent electrical resistivity (ρ),
Seebeck coefficient (S), thermal conductivity (κ), and Hall
coefficient (RH) were measured on a Physical Property
Measurement System (PPMS) from Quantum Design using
the thermal transport option (TTO). Gold leads were soldered
onto samples with dimensions 3 × 3 × 5 mm3. The Seebeck
coefficient, thermal conductivity and electrical resistivity were
measured on a bar sample of dimensions 3 × 3 × 5 mm3.
The normal two-point TTO option of the PPMS was used.
As a check, the thermal and electrical conductivities for the
sample FeSb2 were measured in both two-point and four-point
configurations. The values from the two configurations agreed
well within the experimental error, showing negligible effect
of the contact resistances. A piece with dimensions 1 ×
3 × 10 mm3 was cut out of the same disk for Hall
coefficient measurement. All the properties were measured in
the direction perpendicular to the hot pressing direction.

The Hall coefficient RH(T) was determined under a
magnetic field 9 T and a current of 20 mA. Five platinum
wires were spark welded onto the Hall sample, and for the
four-point resistivity measurement one of the wires was left
unconnected. Within the one-band model, the charge carrier
concentration was determined by n = 1/(e|RH|). The Hall
mobility was determined by µH = |RH|/ρ. The Hall effect
RH(T) measurements were performed on all samples.

To investigate the property of the metal/semiconductor
interfaces between FeSb2−xAgx and Ag1−ySby nanoparticles,
it is necessary to know the work functions of both materials.
Since it is not trivial to extract the work function value of
FeSb2 experimentally, here we adopt an alternative approach
to roughly estimate the work function of FeSb2 via first-
principles calculation based on the density functional theory
(DFT). A standard ‘slab-supercell method’ is used [29].
Slab-supercells are constructed by stacking layers of atoms
for (001), (010), and (100) planes with 16 Å vacuum between
each two slabs. The DFT calculation is implemented using
the Quantum ESPRESSO package [30]. The Perdew–Zunger
pseudopotentials with the local density approximation (LDA)
are used, which we believe is sufficient to give a reasonable
estimation. The plane wave cut-off energy is chosen as 80 Ryd
to guarantee the convergence of the total energy and charge
density distribution, and the convergence with the k-mesh
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Figure 1. Schematics of the phonon scattering (a), DFT
convergence plot on work function for FeSb2 (b), band alignment
and electron diffusion (c) at the interface between FeSb2 and Ag in
the nanocomposites; the scale bar indicates that the grains inside the
sample are around 30 nm on average.

density is also checked. The work functions are calculated as
the difference between the vacuum level and the Fermi level
inside the slab.

3. Results and discussion

The schematic diagrams of the phonon scattering, the
calculated work functions for FeSb2, and the band alignment
and electron transport between Ag and FeSb2 in the
nanocomposite are shown in figures 1(a)–(c), respectively.
In addition to the phonon scattering by nanograins as we
have reported [4], the interface shown in figure 1(a) between
FeSb2−xAgx and Ag1−ySby can also scatter the medium to
long wavelength phonons as predicted by theory [13, 14].
The work function of FeSb2 can be simply calculated by
subtracting the Fermi level from the vacuum energy level. The

Figure 2. SEM image (a) for FeSb2Ag0.11 nanocomposite, and
XRD patterns (b) for pure FeSb2 and nanocomposites FeSb2Ag0.11
and FeSb2Ag0.33.

work functions of FeSb2 were calculated to be 4.514 eV for
the (001) plane, 4.852 eV for the (010) plane, and 4.723 eV
for the (100) plane (as shown in figure 1(b)). Meanwhile,
the reported work functions of silver are 4.52 eV for the
(110) plane and 4.74 eV for (111) plane [31]. It is noticed
that Ag and FeSb2 have rather close work functions in at
least two crystal planes. Therefore, as representative of the
band alignment at the interface between Ag and FeSb2 in
the designed nanocomposite, figure 1(c) shows the band
alignment and the electron transport between the (110) plane
of silver and (001) plane of FeSb2. Due to the roughly
identical work functions between Ag and FeSb2 in these
planes, band alignment showed there is no energy barrier at
the interface. Based on the model [13], it is reasonable to
speculate that the electron transported from FeSb2 to Ag will
not be scattered, and enhanced ZT can be expected solely from
thermal conductivity reduction in the nanocomposite.

Because the densities 6.23 g cm−3 (about 77% of the
theoretical value 8.09 g cm−3) and grain sizes (∼30 nm)
of all six samples are very similar, only an SEM image for
sample FeSb2Ag0.11 is shown in figure 2(a). It can be seen that
the sample is composed of micro-sized aggregates consisting
of much smaller grains of ∼30 nm on average, which is
consistent with the TEM observation in figure 3(a). The
porous structure is also a typical feature of the low-density
sample and is consistent with our previous report on

3

225



Nanotechnology 23 (2012) 505402 H Zhao et al

Figure 3. TEM images and STEM mappings of the selected area of
FeSb2Ag0.11 nanocomposite: (a) low magnification TEM image of a
typical area of the sample; (b) expanded view of a selected area
shown in (a), with the IFFT for the nanoinclusion as the inset; (c)
EDX showing the targeted nanoparticle in (b) is composed of Ag
and Sb with the chemical formula of Ag0.77Sb0.23; (d) image of the
STEM mapping area selected from (a); (e) mapping of Fe Kα1 ; (f)
mapping of Sb Lα1 ; (g) mapping of Ag Lα1 .

FeSb2 [4]. The small grain size and porous structure in the
samples lead to a significant thermal conductivity reduction
and enhanced figure of merit ZT in FeSb2 nanocomposite.
XRD patterns in figure 2(b) show that, with the addition of Ag
NPs, a second phase becomes visible when Ag NPs are higher
than a certain amount and can be indexed to allargentum,
Ag1−ySby (P63/mmc) [32]. Allargentum, Ag1−ySby (with y=
0.009–0.16), is a metallic compound, which formed by the
reaction between Ag and FeSb2 during the ball milling and hot
pressing process. Increasing the hot pressing temperature of
the composite would lead to the formation of another impurity
phase, Ag3Sb [33].

Figure 3 shows the STEM results on the composition
and structures of the optimized nanocomposite sample with
nominal composition FeSb2Ag0.11. The low magnification
image in figure 3(a) shows nanograins with abundant
grain boundaries, and the grain size varies from ∼10 to
∼100 nm, favorable for phonon scattering. The enlarged
image (figure 3(b)) of the selected small area shown in
figure 3(a) reveals an impurity phase; combined with its
composition (Ag0.77Sb0.23) shown in figure 3(c), the impurity
phase can be indexed to allargentum Ag1−ySby (P63/mmc)
structure by indexing its two lattice faces to (11̄2) and
(1̄01), which are parallel to the zone axis [131] as shown
by the inverse Fast Fourier transform (IFFT) as the inset of
figure 3(b). The phase indexing is consistent with our XRD
results. Figure 3(d) is the expanded image of the dotted box
area shown in figure 3(a). Figures 3(e)–(g) show the elemental
mapping results for the selected area in figure 3(d). The total
Ag content in the area of figure 3(d) is 3.2% by weight,
compared with 3.8% of the initial nominal composition. It
is noted that Ag is not uniform, suggesting that Ag is in
the form of Ag1−xSbx as a second phase in the composite.
This is very different from the scenario that Ag alloyed
into the FeSb2 lattice forming uniform Ag distribution in
the mapping, although there could be a minor concentration
in the lattice as we discussed in the following. The second
phase as nanoinclusions can be indexed to allargentum
Ag0.77Sb0.23. The size of each Ag0.77Sb0.23 grain is less than
100 nm, which is smaller than the initial 100 nm Ag NPs.
Those Ag0.77Sb0.23 nanoinclusions in the nanocomposite with
nominal composition FeSb2Ag0.11 will behave as phonon
scattering centers to reduce thermal conductivity. Here we
notice that a possible Ag doping in FeSb2 might happen
while Ag reacted with FeSb2 to form Ag0.77Sb0.23. A
solid chemical reaction can be depicted as the following:
FeSb2 + 0.11Ag→ FeSb2−xAgx + zAg0.77Sb0.23. Based on
the phase diagram, x is 0.025, and z is 0.11. Thus, the host
FeSb2 could be FeSb1.975Ag0.025. To be accurate, the as-
formed nanocomposite for nominal composition FeSb2Ag0.11
can be presented as FeSb1.975Ag0.025/Ag0.77Sb0.23 with
Ag0.77Sb0.23 of ∼10% in molar ratio.

The measured TE properties are shown in figure 4. We
observed a significant thermal conductivity reduction for all
FeSb2Agm composites as shown in figure 4(a). The inset
in figure 4(a) shows the thermal conductivity versus Ag
content for all samples measured at 50 K. It can be seen
that, with the increase of Ag content, thermal conductivity
first decreased to a minimum of 0.24 W m−1 K−1 for
nanocomposite FeSb2Ag0.028 from 0.38 W m−1 K−1 for
pure nanostructured FeSb2. The TEM and EDX investigations
for all FeSb2Agm samples revealed uniformly distributed
Ag1−ySby nanoparticles in these nanocomposites with an
average size of 20 nm. With the increase of Ag content,
allargentum, Ag1−ySby, emerged as a significant phase
in FeSb2Agm nanocomposite. Owing to the high thermal
conductivity of Ag1−ySby metal phase, the total thermal
conductivity in the nanocomposite increases with the increase
of Ag content, and reaches a maximum at 0.29 W m−1 K−1

for FeSb2Ag0.22. Meanwhile, with the increase of Ag, the
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Figure 4. Thermoelectric properties of FeSb2Agm (m = 0, 0.028, 0.11, 0.22, and 0.33) samples: (a) temperature dependence of thermal
conductivity (the inset shows the measured thermal conductivity at 50 K versus Ag content); (b) temperature dependence of Seebeck
Coefficients (the inset shows the measured electron carrier concentrations versus Ag content, as well as the peak Seebeck coefficient at 50 K
versus Ag content); (c) temperature dependence of electrical resistivity; (d) temperature dependence of power factor (the inset shows the
peak value of power factor at 50 K versus Ag content); (e) temperature dependence of ZT for FeSb2 and FeSb2−xAgx/Ag1−ySby
nanocomposites.

phonon scattering from the interfaces between FeSb2−xAgx
and Ag1−ySby became dominant and eventually outweighed
the contribution of the Ag1−ySby metal phase, and the
total thermal conductivity decreased to another low level at
0.26 W m−1 K−1 for FeSb2Ag0.33 nanocomposite.

An ideal metal/semiconductor interface in
three-dimensional structures has been theoretically predicted
to scatter phonons for reducing thermal conductivity [14].
FeSb2 has a very large lattice thermal conductivity in the total
thermal conductivity: 99.9% below 75 K [25], and ∼80%
at room temperature. Data in figure 4(a) shows the reduced
thermal conductivity for all FeSb2Agm composites compared
to pure FeSb2 in the whole temperature range. Considering
the very low electrical conductivity shown in figure 4(c), the
lattice thermal conductivity in the nanocomposite FeSb2Agm
is still dominant.

Figure 4(b) indicates the temperature dependence of
the Seebeck coefficient. Overall, the peak values are all

significantly reduced in comparison with that of single
crystals [23, 25, 26], and also lower than those of samples
with larger grain sizes [4]. We have ascribed this to the
increased carrier concentrations due to defects in FeSb2
nanocomposites [4]. The inset in figure 4(b) indicates
the Ag content dependent Seebeck coefficient and carrier
concentration for all samples at 50 K. A deep valley of
Seebeck coefficient at −77 µV K−1 was first observed
for FeSb2Ag0.028. With the emergence and increase of
allargentum (Ag1−ySby) phase, the Seebeck coefficient at
50 K became higher for FeSb2Ag0.056 and then decreased to
−55 µV K−1 for nanocomposite FeSb2Ag0.33. Meanwhile,
we observed that, with the increase of Ag content, the electron
carrier concentration at 50 K rose from 0.36× 1021 cm−3 for
pure FeSb2 to 10.6 × 1021 cm−3 for FeSb2Ag0.33. However,
the Seebeck coefficients for the corresponding temperature
upon Ag addition in those nanocomposites did not decrease
as much as expected, even though they did decrease to some
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extent. Based on the parabolic band approximation, S(T) of
a degenerate electron system with dominant scattering by

acoustic phonons is given by S(T) =
2m∗Tk2

Bπ
2

3eh2 ( 8π
3n )

2
3 . By

assuming m∗ = m0, the free electron mass, the above equation
has to be multiplied by a factor of 5.5 in order to reproduce
the peak S value for the FeSb2Ag0.33 nanocomposite. This
enhancement has been observed in Te-doped FeSb2 single
crystal samples reported by Sun et al [26], wherein they
proposed an enhancement factor of 10–30.

The electrical resistivity shown in figure 4(c) has a similar
feature as that of the Te-doped FeSb2 single crystal [26].
Above 100 K, the electrical conductivity is dominated by
holes, which means that increasing the electron carrier
concentration through n-type Te doping or electron diffusions
in our FeSb2Agm composites would not lead to significant
improvement in the electrical conductivity. However, below
100 K, the contributions of added electrons from Ag addition
and non-scattering transport for electrons between Ag and
FeSb2 nanograins became significant. As can be seen in
figure 4(c), the electrical conductivity was improved in a
linear relationship with the Ag content (inset in figure 4(c)), as
happened in Te-doped FeSb2. It is noted that the p-type doping
can also increase the electrical conductivity in poly-crystal
FeSb2 but with a different mechanism [22]. Upon Sn
doping, FeSb2 behaved like a fermion metal and the system
became hole dominated, and with the increase of Sn, the
electrical resistivity in the whole temperature range decreased
dramatically. However, a large reduction on the Seebeck
coefficient through Sn doping caused no gain in the power
factor of the materials. Certainly, increasing the Seebeck
coefficient of FeSb2 nanocomposite by reducing the electron
carrier concentration seems very attractive. However, the high
sensitivity of the Seebeck coefficient in FeSb2 to doping
makes this elusive so far.

The power factor (PF) in figure 4(d) shows a trade-off
between Seebeck coefficient and electrical resistivity. The
inset in figure 4(d) indicates there is a maximum value at the
composition of FeSb2Ag0.11 among all the samples at 50 K.
Moreover, a similar valley as that for Seebeck coefficient
for the sample FeSb2Ag0.028 is also observed. By taking
advantage of the greatly reduced thermal conductivity for
all FeSb2Agm nanocomposites, we enhanced the peak ZT
to ∼0.02, which is four times higher than the single crystal
value [23], and ∼70% improvement over the best FeSb2
nanocomposite in our previous report [4].

Enhancement of ZT of semiconductor thermoelectric
materials through the metal/semiconductor interface approach
has been theoretically investigated and predicted by the
Léonard group [14]. Typically, for either a κe or κph dominated
system, as a sum, the electron and phonon scatterings at the
metal/semiconductor interface would lead to concrete thermal
conductivity reductions. In a phonon thermal conductivity
dominated system, the thermal conductivity reduction in
FeSb2Agm nanocomposites is not too surprising. However,
inspired by the model proposed by Léonard [14], the band
bending and Fermi level alignment at the interface of FeSb2
and Ag showed there is no significant potential barriers.
Reasonably, the electron configuration at the FeSb2/Ag

interfaces can be extended to all FeSb2Agm nanocomposites.
Under this situation, electrons can transport into the lightly
doped FeSb2−xAgx and Ag1−ySby without any need to
overcome energy barriers, leading to increased electrical
conductivity for the composites.

We believe that further ZT enhancement can be realized
through tuning the nature of metal phase, size, and distribution
of the grains in the nanocomposite. The results also provide
inspiring hints for the application of metal/semiconductor
interface in other strongly correlated materials or Kondo
systems for possible enhancement in ZT .

4. Conclusion

In summary, we present the substantial figure-of-merit
ZT improvement in FeSb2−xAgx/Ag1−ySby nanocomposite
through a metal/semiconductor interface engineering ap-
proach by mixing nanopowders of FeSb2 and Ag using ball
milling, followed by a dc hot pressing process. Owing to
the interfaces between FeSb2−xAgx and Ag1−ySby phases,
as well as the roughly identical work functions among
them, both thermal conductivity and electrical resistivity
of the nanocomposite were reduced significantly in the
lower temperature regime compared with the pure FeSb2
nanocomposite. Overall, an improvement of 70% in ZT for
the optimized sample FeSb1.975Ag0.025/Ag0.77Sb0.23 (10%
in molar ratio) nanocomposite was achieved. It seems we
have evidence to show the metal/semiconductor interface
does provide benefits to thermoelectric materials, which may
potentially be useful for other strongly correlated material
systems.
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Abstract
We study the temperature dependence of thermoelectric transport properties of four FeSb2 nanocomposite samples with different grain sizes.
The comparison of the single crystals and nanocomposites of varying grain sizes indicates the presence of substantial phonon drag effects in
this system contributing to a large Seebeck coefficient at low temperature. As the grain size decreases, the increased phonon scattering at the
grain boundaries leads to a suppression of the phonon-drag effect, resulting in a much smaller peak value of the Seebeck coefficient in
the nanostructured bulk materials. As a consequence, the ZT values are not improved significantly even though the thermal conductivity is
drastically reduced.

Introduction
Owing to its unusual magnetic and electronic transport proper-
ties, the narrow-gap semiconductor FeSb2 has been one of the
extensively studied compounds in the past few decades.[1–4]

The renewed interest in this compound came after Bentien
et al.[5] reported a colossal value of the Seebeck coefficient of
–45,000 µV/K with a record high value of the power factor
(PF) of 2300 µW/K2/cm at around 10 K in single
crystal samples, which may make this material a potential
candidate for the Peltier cooling applications at very low
temperature near 10 K. Despite the huge PF value, the dimen-
sionless figure of merit (ZT) values for single crystal samples
are limited by a very high thermal conductivity κ∼ 500 W/m/
K at ∼10 K. In our earlier work,[6] we were able to reduce
the thermal conductivity by three orders of magnitude to 0.5
W/m/K in achieving a peak ZT value of ∼0.013 at ∼50 K in
nanocomposite samples. However, the Seebeck coefficient in
the nanocomposites is severely degraded at low temperatures
when compared with that of the single crystal counterpart.
For optimized samples with κ = 0.40 W/m/K and ρ = 1.2 ×
10−4 Ω m at 50 K, a Seebeck coefficient of –970 µV/K is
required to achieve a ZT value of 1. Unfortunately, the
measured value of the Seebeck coefficient at 50 K was only –

109 µV/K. Therefore, it is important to know the origin of the
large Seebeck coefficient in this system to further improve ZT.

The classical theory of thermoelectricity is based on the
assumption that the flow of charge carriers and phonons can be
treated independently. Under this assumption, the Seebeck coeffi-
cient arises due solely to spontaneous electrondiffusion.However,
when the two flows are linked, the effect of electron–phonon

scattering should be taken into account. Hence, in general, the
Seebeck coefficient is given as the sum of two independent
contributions[7]

S = Sd + Sp, (1)

where Sd is the conventional electron-diffusion part and Sp is the
phonon-drag contribution. The diffusion part is caused by the
spatial variation of the electronic occupation in the presence of a
thermal gradient, whereas the drag part arises due to the interaction
between anisotropic lattice vibrations and mobile charge carriers.
Herring[7] showed that the higher than expected value of thermo-
power in germanium[8] and other semiconductors could be
explained assuming that the carriers are preferentially scattered
by the phonons toward the cold end of the sample. The dragging
of some of the charge carriers along the thermal gradient gives
rise to an additional thermoelectric electromotive force (emf).
Because the additional emf and the emf induced by diffusion
have the same sign, the overall phonon-drag effect is to increase
the Seebeck coefficient. Generally, this effect becomes stronger
at lower temperatures where the phonon mean free path becomes
longer.

The origin of the colossal Seebeck coefficient in FeSb2 at
low temperature is not completely understood yet. Several
authors[5,9–12] suggested a strong electron–electron correlation
as a possible cause. Other authors,[13,14] however, surmised
that the origin of the colossal value of the Seebeck coefficient
is not due to electron–electron correlations but due to the
phonon drag effect. In this paper, we study the thermoelectric
properties of FeSb2 nanocomposites and present evidence of
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a substantial phonon-drag contribution to the Seebeck coeffi-
cient in FeSb2.

Experimental
Nanostructured FeSb2 samples were synthesized by first form-
ing an ingot through melting and solidification. The ingot was
ball milled and hot pressed at different temperatures to obtain
the nanocomposite samples with different grain sizes ranging
from nanometers to micrometers. The labels given to the differ-
ent samples and the corresponding processing parameters are
shown in Table I. The Seebeck coefficient (S ), electrical resis-
tivity (ρ), thermal conductivity (κ), and Hall coefficient (RH)
were measured on a Physical Property Measurement System
(PPMS) from Quantum Design Inc. (San Diego, CA). Sample
preparation and measurements were performed in the manner
described in Ref. 6.

Results and discussions
Figure 1 shows the temperature dependence of the Seebeck
coefficient for our four nanocomposite samples. Sample
S-600 was measured both in magnetic fields of 0 and 9 T.
The Seebeck coefficients of all samples are significantly smal-
ler than that of a single crystal at low temperature, whereas at
high temperature the values are comparable. A room tempera-
ture value of S∼ 26 µV/K was observed for all our samples.
This value is comparable to S∼ 31 µV/K reported for the single
crystal.[15] A decrease in the Seebeck coefficient at low temp-
erature in polycrystal,[11] thin films[16] and arsenic-substituted
FeSb2 single crystals[9] was reported earlier. As shown in the
inset of Fig. 1, the peak value of the Seebeck coefficient
(Smax) decreases with decreasing grain size. This is expected
for the phonon-drag effect, because the non-electronic scatter-
ing (grain boundary scattering in the case of nanocomposites)
reduces the phonon mean free path, which in turn decreases
the phonon-drag contribution. A similar conclusion was
drawn in Ref. 14. Yet another example of the reduction of
phonon mean free path decreasing phonon drag contribution
was shown by Weber et al.[17] It was demonstrated, using
point contacts, that when the contact size becomes comparable
to the mean free path of the relevant phonons, the phonon-drag
part of the thermopower is suppressed by the boundary scatter-
ing. Here, we also note that the temperature profile of the

Seebeck coefficient for the samples with larger grains follows
the typical behavior of phonon-drag system as suggested by
Blatt.[18]

The Seebeck peaks shift to the higher temperature when
the grain size decreases (inset of Fig. 1). This type of size-
dependent shift in the Seebeck peak is one of the characteristics
of the phonon-drag-dominated systems, as pointed out
previously.[8,19,20]

Usually, a small magnetothermopower is expected for the
phonon-drag dominated system. For sample S-600 at 25 K,
we observed a relative change in the Seebeck coefficient,
(S(9T )− S(0T ))/S(0T ) = 0.059. This small value supports the
non-electronic origin of the large Seebeck coefficient in this
sample.

Figure 2 shows the temperature dependence of the thermal
conductivity (κ) for the four samples. Calculations based on
the Wiedemann–Franz law show that below 50 K, more than
97% of the total thermal conductivity comes from the lattice
contribution. For large-grained samples, a temperature depen-
dence of the form κ ∼ T2 is nearly obeyed at temperatures
below 50 K. Weber et al.[21] reported a similar T2 behavior in
silicon below 20 K that they attribute to strong electron-phonon
scattering. As the grain size decreases, we find a gradual devi-
ation from the T2 law. This can be understood as follows: for a
large-grained sample, the number of available phonons inter-
acting with the carriers is large which causes significant
phonon-drag. As the grain size decreases the number of rel-
evant phonons decreases and as a result the preferential scatter-
ing of electrons by phonons becomes weaker. Evidence for
electron–phonon coupling in FeSb2 single crystals was also
reported by Perucchi et al.[22] who found a large change in pho-
non lifetimes using optical spectroscopy. Lazarevic et al.[23]

later suggested that the electron–phonon coupling is tempera-
ture dependent below 40 K.

The inset of Fig. 2 shows the change in the Seebeck coeffi-
cient with thermal conductivity for 25 and 50 K. At 25 K, the
Seebeck coefficient increases linearly with the thermal conduc-
tivity. The linear relationship is expected because in a phonon-
drag dominated system Sp is expected to follow the same
temperature dependence as the phonon heat capacity so that
Sp and the lattice thermal conductivity (κl) are linearly related.
This indicates that phonons play a significant role in determin-
ing the Seebeck coefficient values of our samples at around 25
K. At 50 K, however, the Seebeck coefficient decreases with
increasing thermal conductivity without any obvious trend.
This is an indication that the phonon-mean free path
decreases and the phonon-drag effect becomes weak at higher
temperature.

Significant phonon drag effects are expected to occur when
the dominant phonons acquire sufficient momentum to
scatter carriers across the Fermi surface.[24] In a rough
approximation, Tmax ≈ 1

10uD, where Tmax is the temperature at
which the phonon drag peak occurs and θD is the Debye temp-
erature. For rutile TiO2,

[25] θD is 450–780 K and the Seebeck
peak occurs at 10–30 K. For bismuth,[20] another well-known

Table 1. Assigned IDs, processing temperature, and average grain sizes
estimated from the SEM images for the four nanocomposite FeSb2 samples.

Sample
code

Hot pressing temperature
(°C)

Average grain size
(nm)

S-300 300 30

S-400 400 100

S-500 500 350

S-600 600 20,000
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Figure 1. Temperature dependence of the Seebeck coefficient for the four samples. Sample S-600 was measured both at 0 and 9 T magnetic fields. Inset: The
grain size dependence of the peak value (Smax) and the peak position (Tmax) of the Seebeck coefficient.

Figure 2. Temperature dependence of the thermal conductivity for the four samples. Fitting to the power law was done for all the samples below 50 K. Inset:
Seebeck coefficient as a function of thermal conductivity at 25 and 50 K.
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phonon drag system, θD is 119 K, whereas the Seebeck peak
occurs at 2–3 K. For the FeSb2 polycrystal, θD≈ 330− 350K
was reported in Ref. 11 and 256 K in Ref. 26. The Seebeck
peak in single crystal occurs at around 10 K. For our sample
S-600, the peak occurs at 25 K. Hence, comparing with the
other phonon drag systems, the scaling between Tmax and θD
in FeSb2 is consistent with the phonon-drag picture.

Following Herring,[7] the electron-diffusion part of the
Seebeck coefficient, in μV/K, for a semiconductor is given by

Sd = + 86.2 ln
4.7× 1015

n
+ 3

2
ln
m∗

m
+ |DE|

kT
+ 3

2
lnT

[ ]
, (2)

where n is the charge carrier density expressed in cm−3, m and
m* are the bare and effective masses of the electron, respect-
ively, and ΔE is the average energy of the transported electrons
relative to the band edge. In Eq. (2), the upper and lower signs
are for n-type and p-type materials, respectively.

For the case of lattice scattering by long wavelength pho-
nons, |ΔE| /kT can be approximated by[7]

DE

kT

∣∣∣∣
∣∣∣∣ = 5

2
+ r, (3)

where the scattering parameter r is taken to be−1/2. Sd was cal-
culated taking m* =m and using the charge carrier density (n)
calculated from the Hall-coefficient measurements. The diffu-
sion part was then subtracted from the total measured
Seebeck coefficient to obtain the drag contribution shown in
Fig. 3. For S-600 at 25 K, we find the diffusion value, Sd =
−110 µV/K. Using Eq. (1), Sp was calculated to be −238
µV/K. However, for S-300 the calculated diffusion contribution
turned out to be slightly larger than the measured values.
Hence, no significant phonon drag contribution is expected
for this sample. This is understandable, because the phonon
mean free path for sample S-300 is drastically reduced so that
the dominant phonons do not carry sufficient momentum to
scatter carriers. Moreover, the phonon drag is expected to
weaken with increasing carrier concentration and, in fact, it
has been proposed that a saturation effect occurs at high con-
centration level. The overestimation of the diffusion part of
the Seebeck coefficient in S-300 is probably due, in part, to
the approximations made in the above calculations.

The phonon-drag thermopower for semiconductors, in the
first-order approximation, can be written as[7]

Sp = bvslpne

sT
, (4)

where vs is the velocity of sound, λp the mean free path of the
interacting phonons, n the charge carrier density, σ the electri-
cal conductivity, T is the absolute temperature, and β is the
dimensionless parameter with its value ranging from 0 to 1
depending upon the strength of the interaction. Equation (4)
can be used to find approximate values of the mean free path
of t phonons interacting with the electrons. The mean free

path of an average phonon can also be estimated from the lattice
thermal conductivity based on kinetic theory[27]

Kl = 1

3
cV l̃PvS, (5)

where Kl is the lattice thermal conductivity and cV the phonon
contribution to the total specific heat capacity. The lattice con-
tribution of the total thermal conductivity was calculated
assuming κtotal = κl + κe and κe = LσT, where κe is the electronic
contribution to the total thermal conductivity. The Lorenz num-
ber in the free electron model, L = 2.45 × 10−8 W/K2/Ω was
used, cV was calculated using CP− γT = βT3 with γ = 3.98 ×
10−3/JK2/mol, as reported in Ref. 11, and the CP values were
obtained from the same reference. Figure 4 shows the tempera-
ture dependence of the two length scales for samples S-600. It
turns out that with ʋs = 3116 m/s and β = 0.5, the two length
scales, which come from two independent calculations, are of
the same order of magnitude and more importantly they behave
roughly the same way as a function of temperature. This
suggests that similar wavelength phonons are playing a role
in both the thermal conductivity and the phonon-drag effect.
A similar analysis was performed in Ref. 28 to describe the
unusually large Seebeck coefficient in rutile TiO2 at low
temperature.

According to Keyes et al.[29] the value of the figure of merit
(Zp) that can be reached using phonon drag is rather low. Based
on their argument, Goldsmid[30] shows that ZpT is less than ¼
for a bulk thermoelectric material. Ivanov et al.[31] reported
recently a similar conclusion for low-dimensional structures.
These conclusions are consistent with our earlier work[6]

where, despite the dramatic reduction in the thermal

Figure 3. Temperature dependence of the calculated value of diffusion and
drag part for the sample S-600 based on Eqs. (1) and (2). The carrier
concentration obtained from the Hall coefficient data was used in
the calculation. The measured total Seebeck coefficient is also plotted
for comparison.
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conductivity by three orders of magnitude, ZT values were not
improved significantly Fig. 3(d) in Ref. [6].

Finally, our nanocomposite data and analysis of phonon
drag do not support other mechanisms that might explain the
large Seebeck effects reported by Bentien et al.[5] Although
one cannot preclude the presence of electron–electron corre-
lation effects, their role in this phenomenon may be a minor
one. The recent analysis of electron correlations using a hybrid
functional approach of Becke[32] and Hegin’s GW functional
approach[33] by Tomczak et al.[14] suggest that the high thermo-
power in FeSb2 should not be understood in the context of
local correlations, but rather by utilizing vertex corrections to
the transport coefficients. Such vertex corrections describe
the phonon-drag effect. The phonon-drag effects in FeSb2 are
similar to those described in p-type Ge by Geballe and
Hull.[8] In a similar vein the study of magnetoresistance and
Hall effect by Takahashi et al.[13] concludes that the large
Seebeck coefficient in FeSb2 is unlikely to originate from elec-
tron–electron correlations because they have an insignificant
effect on the Seebeck coefficient in the low-temperature insu-
lating regime. Our data on FeSb2 nanocomposite supports
their conjecture that the phonon-drag effect plays an essential
role in enhancing the Seebeck coefficient in the low-
temperature regime, as shown in other semiconductor materials
e.g., InSb[34] and weakly P doped Si.[21]

Conclusions
To summarize, in this paper we analyzed qualitatively and
quantitatively several indicators of the presence of substantial
electron–phonon interaction in FeSb2 at low temperature. Our
analysis indicates that a significant phonon-drag effect must
take place in coarse-grained samples at low temperature. As
the grain size decreases, the phonon drag effect becomes

weaker, causing a much smaller peak value of the Seebeck
coefficient in fine-grained samples. Based on these results
we conclude that the phonon drag plays a significant role in
the colossal value of the Seebeck coefficient in FeSb2 single
crystals. Therefore, the ZT values of FeSb2 nanocomposite
cannot be improved significantly even though the thermal con-
ductivity can be drastically reduced.
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In this report, thermal conductivity reduction by more than three orders of magnitude over its single

crystal counterpart for the strongly correlated system FeSb2 through a nanostructure approach was

presented, leading to a significant increase of thermoelectric figure-of-merit (ZT). For the samples

processed with the optimal parameters, the thermal conductivity reached 0.34 Wm�1 K�1 at 50 K,

leading to a ZT peak of about 0.013, compared to 0.005 for single crystal FeSb2, an increase of about

160%. This work suggests that nanostructure method is effective and can be possibly extended to other

strongly correlated low temperature thermoelectric materials, paving the way for future cryogenic

temperature cooling applications. VC 2011 American Institute of Physics. [doi:10.1063/1.3651757]

Of the several strongly correlated semiconductors includ-

ing FeSi,1 Ce3Bi4Pt3,2 and FeGa3,3 FeSb2 has recently stimu-

lated extensive research efforts due to its colossal

thermopower (Seebeck coefficient, S) at 10 K.4 The thermo-

power S of FeSb2 single crystals is on the order of tens of mV

K�1 which contributes to the very large power factor (PF) of

0.23 Wm�1 K�2,4,5 about 40 times of the best thermoelectric

materials (Bi2Te3-based high-performance alloy ingots6,7).

However, it is the figure of merit, Z¼ S2r/j, where S is the

Seebeck coefficient, r the electrical conductivity, and j the

thermal conductivity, which determines the overall efficiency.

To be practically useful, materials should have a dimension-

less figure-of-merit (ZT) around 1. However, FeSb2 single

crystals have a peak ZT of around 0.005 at 12 K due to a large

value of thermal conductivity of about 500 Wm�1 K�1.5 In

order for FeSb2 to become a useful material for thermoelectric

cooling, ZT must be increased to a meaningful value.

The large lattice thermal conductivity of strongly corre-

lated materials such as FeSb2 at low temperatures limits their

ZT. Zhang et al.8 predicted that phonon size effects in nano-

structured strongly correlated materials can be exploited to

reduce phonon thermal conductivity while maintaining elec-

tron transport due to the long phonon mean free path and

short electron mean free path. For example, it was estimated

that single crystal FeSb2 has an electron mean free path of

less than 10 nm at all temperatures with a phonon mean free

path around 40 lm at 15 K.9 This large difference of mean

free paths allows the opportunity to tune the electrical and

thermal properties almost independently by either dop-

ing10,11 or nano-engineering the grain size.11 In principle,

thermal conductivity suppression can be realized through

several different methods such as the introduction of impur-

ities, defects, or grain boundaries. Although substantial ther-

mal conductivity reduction was achieved by doping, no

improvements in ZT were reported due to altered electron

transport properties in FeSb2.10,11

Nanostructure approach has proven to be a very efficient

way to reduce the lattice contribution to the thermal conduc-

tivity in many thermoelectric material systems.12–15 The

lower limit of the lattice thermal conductivity in FeSb2 has

been calculated16 to be as low as 0.3 Wm�1 K�1 at 50 K

through the model proposed by Cahill et al.17 It will be

shown in this report that the thermal conductivity of nano-

structured FeSb2 is drastically decreased leading to an

improvement in ZT.

The nanostructured FeSb2 were synthesized by first in-

got formation through melting and solidification, and then

followed by ball milling and hot pressing with different proc-

essing parameters. Scanning electron microscopy (SEM,

JEOL 6340F) was used to investigate the grain size distribu-

tions of the above processed samples. Transmission electron

microscopy (TEM, JEOL 2010F) observation was performed

on the representative sample S15hr-200C. The electrical re-

sistivity (q), Seebeck Coefficient (S), thermal conductivity

(j), and Hall coefficient (RH) were all measured on a physi-

cal property measurement system (PPMS) from Quantum

Design. Within the one-band model, the charge-carrier con-

centration was determined by n¼ 1/(e/RH/). The Hall mobil-

ity was determined by lH¼ /RH//q.

SEM images in Fig. 1 show how the grain size changes

as a function of ball milling time and hot pressing tempera-

ture. From the images, it can be seen that samples pressed

from powders ball milled for shorter times (Fig. 1(a)) or at

higher temperatures (Fig. 1(d)) have much larger grains than

those from powders ball milled for longer time (Figs. 1(b) and

1(c)) and at lower temperatures (Figs. 1(e) and 1(f)). It is also

noticed that S15hr-200 C was composed of particles in which

there are many smaller grains, which are around 20 6 5 nm

estimated from SEM images (Fig. 1(f)). TEM images shown

in Fig. 2 indicate that the particles in sample S15hr-200C

were indeed composed of smaller crystalline grains with dif-

ferent orientations, consistent with the SEM image (Fig. 1(f)).

a)Author to whom correspondence should be addressed. Electronic mail:

renzh@bc.edu.
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An enlarged area from Fig. 2(a) was shown in Fig. 2(b). It is

clearly shown that the grains are well-crystallized with dimen-

sions of 20� 15 nm and a lattice spacing of 0.276 nm, which

can be indexed to the (101) planes of orthorhombic Pnnm
FeSb2. The nano-sized grains and the boundaries between the-

ses nano-sized crystals would contribute to the dramatic ther-

mal conductivity reductions in the samples.

Figure 3(a) shows the temperature dependence of ther-

mal conductivity for all samples and also the single crystals

grown from vapor transport (VT) and self-flux (SF) meth-

ods.5 A substantial decrease of thermal conductivity was

found for all samples throughout the temperature range,

decreasing as grain size decreases. The thermal conductivity

of sample S15hr-600C is 17 Wm�1 K�1 at 40 K, compared

with 0.34 Wm�1 K�1 for S15hr-200C at the same tempera-

ture due to a decrease in the lattice portion of the thermal

conductivity. The peak positions of j, which reveal the com-

petition between the phonon-phonon (Umklapp) scattering

or impurity scattering and the grain boundary scattering, shift

to higher temperatures and nearly disappear on samples

S15hr-200C and S15hr-room temperature. This demonstrates

that grain boundary scattering is the dominant scattering

mechanism in samples with smaller grain sizes. Moreover,

fittings for all the curves below 100 K show a shift from

T2.04 to T1.31 with the decreasing of grain sizes, as is also

seen in nanocrystalline silicon12 which indicates that other

parameters besides CV such as porosity, phonon frequency

(x), and the effective mean free path (Keff) also play impor-

tant roles in thermal conductivity reduction. When compared

with single crystal FeSb2, there is a reduction by more than

three orders of magnitude in the thermal conductivity from

500 Wm�1 K�1 down to around 0.1 Wm�1 K�1 at 20 K in

the nanostructured sample S15hr-200C. Such a large thermal

conductivity suppression by nanostructuring at low tempera-

ture is much larger than any other nanostructured thermo-

electric materials at high temperatures. Nanostructured p-

type BiSbTe bulk alloy achieved 83% thermal conductivity

reduction compared with its ingot counterpart at 250 �C,13

half-Heuslers achieved 33% in high temperature ranges,15

and a 100% reduction for p-type silicon germanium alloy.18

Figure 3(b) shows the temperature dependence of elec-

trical resistivity for all the samples. The data was fit using

Arrhenius’ law to find approximate energy gaps. Sample

S15hrs-600C has two gaps of 28.2 meV and 4.2 meV. When

the pressing temperature is lowered further, e.g., sample

S15hrs-300C, only one gap appears with a value of 21 meV.

The change in the band gaps corresponds to the increasing of

crystal defects that are probably due to the decreased grain

size and increased carrier concentration. It appears that the

smaller energy gap located in the temperature range of 7-20 K

was suppressed; and the larger band gap was decreased as can

be seen in the sample pressed at room temperature whose

band gap is reduced to 18 meV. Measurements of the carrier

concentration, inset of Fig. 3(c) increased as well, confirming

the narrowing of the energy gaps.

The temperature dependent Seebeck coefficients (S) are

shown in Fig. 3(c). It shows that S decreases as grain size is

decreased, which could mean that carriers are generated. This

is not the case for S10min-400C, which has smaller grains

than S15hr-600C. From the relationship of the electrical prop-

erty and the quality of crystal, it is believed that S10min-400C

has fewer defects than that of S15hr-600C due to the longer

ball milling time of the latter. Defects typically increase car-

rier concentration, which decreases the S. An increase in the

carrier concentration will also lead to a decrease in the resis-

tivity, which is the case as seen in Fig. 3(b). Mobility and car-

rier concentration measurements are shown for two samples

in the inset of Fig. 3(c). Carrier concentration at 25 K is higher

for the S15hr-300C sample with a value of 9.75� 1019 cm�3

and while its mobility is lower at 4.52 cm2 V�1s�1, when

compared to S15hr-600C at 25 K, whose carrier concentration

is decreased to 8.36� 1017 cm�3 while its mobility is as high

as 160 cm2 V�1s�1. These properties directly correlate to the

increase seen in the S. There is a cross over between the two

samples in the Seebeck coefficient found at 65 K. This cross

over is also seen in the measurements for carrier concentration

at 65 K while the mobility remains relatively constant

FIG. 1. SEM images for nanostructured samples that were prepared with

different conditions. (a) hot pressed at 400 �C using powders ball milled for

10 min, (b) hot pressed at 400 �C using powders ball milled for 1 h, (c) hot

pressed at 400 �C using powders ball milled for 15 h, (d) hot pressed at

600 �C using powders ball milled for 15 h, (e) hot pressed at 300 �C using

powders ball milled for 15 h, and (f) hot pressed at 200 �C using powders

ball milled for 15 h.

FIG. 2. TEM images for nanostructured sample S15hr-200C. (a) Lower

magnification to show the average grain size and (b) higher magnification of

the boxed area shown in (a) to show the crystalline orientation and defected

boundaries.
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confirming both measurements. S15hr-600C has better crys-

tallization and therefore a band gap of 4.2 meV in the temper-

ature range 7-20 K, which is not seen in S15hr-300C and

induces higher resistivity than that of S15hr-300C below

50 K. For the same reason, peak values of the Seebeck coeffi-

cient of S15hr-600C, which is 352 lV K�1 at 20 K, is much

larger than 117lV K�1 for S15hr-300C at 35 K. In FeSb2 sys-

tems, the relation between carrier concentration and Seebeck

coefficient has been intensively investigated recently by

Sun et al.9,11,19 It was found that an enhancement by a

factor of 30 or larger could be applied to the calculated

Seebeck coefficient based on the free-electron model. Due

to this enhancement, it is quite likely that an increase in

the Seebeck coefficient can be realized by tuning carrier

concentration through doping or composition adjustment,

providing the potential for much future work.

Figure 3(d) shows the temperature dependence of ZT for

the nanostructured samples as well as those for single crys-

tals. The ZT increases from 0.001 of sample S15hr-600C to

0.013 of S15hr-200C, which is an unambiguous indication of

grain size effect. The optimal ZT value reaching 0.013 at

50 K in S15hr-200C is much higher than ZT¼ 0.005 at 10 K

for single crystal samples. Though the power factor is much

less than that of single crystal, the drastic reduction in ther-

mal conductivity contributes to the increase in ZT. One fea-

ture worth pointing out is that the ZT curve in nanostructured

FeSb2 is broadened significantly over that of the single crys-

tal counterpart, which is much more useful for applications

between 10 and 150 K.

In conclusion, substantial thermal conductivity suppres-

sion for the strongly correlated system FeSb2 through a

nanostructure approach was reported in this letter. Thermal

conductivity was reduced by more than three orders of

magnitude over its single crystal counterpart. As grain size

decreases from tens of microns to around 20 nm, the corre-

sponding thermal conductivity decreases by 50 times,

reaching 0.34 Wm�1 K�1 at 50 K. ZT was found to be

0.013, compared to 0.005 for single crystal FeSb2, an

increase of 160%. Although this is still far from the state-

of-art requirement of ZT¼ 1, nanostructure to reduce ther-

mal conductivity in FeSb2 is clearly the right way, and a

combination with other methods of ZT enhancement includ-

ing doping or composition adjustment is expected to further

increase the ZT.

The work is sponsored by Air Force MURI program

under Contract FA9550-10-1-0533.
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FIG. 3. Thermoelectric properties for nanostructured

samples: (a) temperature dependence of thermal con-

ductivity, fittings was applied to sample S10min-400C

and S15hr-200C. Two solid curves correspond to ther-

mal conductivity from single crystal samples (Ref. 5);

(b) temperature dependence of resistivity; (c) tempera-

ture dependence of Seebeck coefficient, the insets indi-

cate the temperature dependent carrier concentration

and Hall mobility for S15hr-600C and S15hr-300C,

respectively; (d) temperature dependence of ZT.
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We present the thermoelectric figure-of-merit (ZT) improvement in nanostructured FeSb2 by Cu

nanoparticles of �5 nm as a modulation dopant. Because of the similar work functions between

FeSb2 and Cu and the high electrical conductivity of Cu, the Kondo insulator-like electrical

resistivity of FeSb2 at low temperatures was dramatically reduced. Both carrier concentration and

mobility of the nanocomposites were improved over pure FeSb2 without degrading the Seebeck

coefficient. Overall, an improvement of �90% in power factor was achieved for the optimized

nanocomposite FeSb2Cu0.045. Combined with the reduced thermal conductivity by Cu/FeSb2

interfaces, ZT was improved by �110%. These results clearly demonstrate the potential of

modulation doping to enhance the thermoelectric performance of FeSb2. A similar approach could

be applied to other Kondo insulators or previously known thermoelectric materials to improve ZT.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4808094]

Cryogenic cooling (�77 K) using thermoelectric materi-

als remains challenging so far, Kondo insulator and heavy fer-

mion systems, such as CeB6,1 YbAl3,2 FeSi,3 FeSb2,4–10 and

CrSb2 (Ref. 11) have been investigated for cryogenic cooling

applications. However, the figure-of-merit (ZT), which deter-

mines the cooling efficiency, is much lower than those ther-

moelectric materials working at or above room temperatures.

It is known that ZT ¼ ðs2r=jÞT, where S, r, j, and T are the

Seebeck coefficient, electrical conductivity, thermal conduc-

tivity, and absolute temperature, respectively. Due to the large

Seebeck S and high electrical conductivity r observed in

highly doped Kondo insulators and heavy fermions, large

power factors (PF) have been reported. For example, FeSb2

single crystals have a PF around 78� 10�4 W m�1 K�2 (Ref.

12) that is about twice the highest known PF when compared

to other systems though it decreases to 5.5� 10�4 W m�1 K�2

for poly-crystal samples.13 Most recently, it was reported

CrSb2 single crystal has S of �5000 lV K�1,11 and p-type

poly-crystal FeSi of �1200 lV K�1.3 In addition, doped

FeSe14 and CeCu6 (Ref. 15) have also received attention for

potential cryogenic application.

In addition to exploring new thermoelectric materials

for cryogenic cooling applications, new approaches or strat-

egies that can substantially improve the performance of the

existing thermoelectric materials are also compelling.

Recently, the approaches, such as nanostructures,13,16–18 res-

onant doping,19–21 band engineering at the Fermi level,22,23

modulation doping that provides more charge carriers for

higher electrical conductivity,24,25 as well as metal/semicon-

ductor interfacial engineering providing barrier to scatter

phonons or improve PF26–31 have been proved to be helpful

in several material systems. In the case of strongly correlated

materials, such as FeSb2, nanostructures have been proved to

be able to significantly increase ZT.6,7,13

In this report, inspired by the recent results, we achieved

in FeSb2�xAgx/Ag1�ySby nanocomposite by adding Ag

nanoparticles (NPs) into the system32 and our early work on

modulation doping in SiGe alloys,24,25 we found that modu-

lation doping approach substantially increases the ZT by

�110% through adding Cu NPs to make nanocomposite

FeSb2/Cu in which Cu nanoparticles act as the charge donor.

This is a clear demonstration of modulation doping since the

Cu does not diffuse into FeSb2, this is distinct from our ear-

lier study of SiGe alloys where significant amounts of B or P

diffused easily into the parent compound,24,25 which weak-

ened the role of modulation doping. Similar work functions

of the (100) planes in FeSb2 and Cu facilitate the electron

transfer from Cu to FeSb2 at their interfaces to increase the

electrical conductivity.

The FeSb2/Cux nanocomposites were synthesized by two

procedures. For the synthesis of nanocomposites with �5 nm

Cu nanoparticle inclusions, a total of 25 grams of Fe, Sb, and

Cu with the stoichiometry of FeSb2Cuy (y¼ 0.0225, 0.045,

and 0.09) were mixed and sealed in vacuum in a quartz tube.

Following a high temperature melt, quenching and 12 h of

ball milling as previously reported,13 3 g of the ball milled

powders with various amount of Cu nanoparticles (NPs) were

pressed at 200 �C and 80 MPa for 2 min using direct current

(dc) induced hot pressing method. For the synthesis of nano-

composites with �100 nm Cu nanoparticle inclusion, FeSb2

nanopowders were first prepared, then Cu NPs (�100 nm,

Aldrich) were added into the powder with a final nominal

composition of FeSb2Cu0.045. The mixed powders of �5 g

were further ball milled for 3 h. After this 3 h ball milling,

some of the �100 nm Cu particles may be milled to smaller

nanoparticles, but should still be larger than �5 nm. Disk

samples were prepared by the same method mentioned above.

a)Authors to whom correspondence should be addressed. Electronic

addresses: zhz0600@hotmail.com and zren@uh.edu
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All the hot pressed samples with the same nominal

composition FeSb2Cu0.045, but different sizes of Cu NPs,

were characterized by high-resolution transmission electron

microscopy (HRTEM) (JEOL 2010 F) for detailed structure

and composition studies. The HRTEM samples were pre-

pared by hand grinding and then dispersed in methanol, and

the obtained suspension was dropped onto a typical carbon-

coated Au grid, which can be used for HRTEM observation

after drying. The edge area of the grains was selected for

observations.

The temperature dependent electrical resistivity (q),

Seebeck coefficient (S) and thermal conductivity (k) were

measured on a Physical Property Measurement System

(PPMS) from Quantum Design using the Thermal Transport

Option (TTO). Gold leads were soldered onto samples with

dimensions of 3� 3� 5 mm3. The normal 2-point TTO

option of the PPMS for transport measurements was used.

All the properties were measured in the direction perpendic-

ular to the hot pressing direction.

The schematic band alignment between FeSb2 and Cu,

and the structure of FeSb2Cuy nanocomposite are shown in

Figs. 1(a) and 1(b), respectively. Since FeSb2 is n-type semi-

conductor with a band gap of �28 meV,13 and its Fermi level

located at the conduction band edge, the difference between

the conduction band edge and vacuum level can be regarded

as the same as the work functions for FeSb2 at different crys-

tal orientations. The work functions of FeSb2 have been cal-

culated to be 4.514 eV for (001) plane, 4.852 eV for (010)

plane, and 4.723 eV for (100) plane.32 According to the

alignment of Fermi levels, the band bend for (001) and (010)

planes, leaving an energy barrier in the range of 0.15–0.2 eV

at their interfaces. However, due to the similar work func-

tions between the (100) plane and Cu, which is 4.7 eV, the

electron transfer between them would be much easier. It is

reasonable to expect that Cu NPs can donate electrons from

its conduction band to FeSb2, which will increase the carrier

concentration in the FeSb2 host. Based on our early study, it

appeared that the higher carrier concentration in nanostruc-

tured FeSb2 mostly originated from its high defect density as

compared to single crystal or micro sized samples.13 As a

result of the high defect density, the electrical conductivity

of the nano sized FeSb2 is significantly higher than the micro

sized poly-crystal samples in the low temperature range

(roughly �200 K), but the Seebeck coefficient is also signifi-

cantly lower, which makes the power factor much lower.

How to make the electrical conductivity in nanostructured

FeSb2 high without degrading the Seebeck coefficient is very

challenging. We realized that localized Cu NPs can provide

a large number of free electrons for higher electrical conduc-

tivity without changing the band structure of FeSb2 for high

Seebeck coefficient due to modulation doping similar to

what was observed in SiGe alloy system.24,25

Fig. 2 shows the TEM images for both samples with the

nominal composition of FeSb2Cu0.045. Figs. 2(a)–2(c) are for

the samples prepared by mixing FeSb2 nanopowder and

�100 nm Cu NPs, and Figs. 2(d) and 2(e) refer to samples in

which Cu was incorporated by high temperature alloying

resulting in very small Cu nanoparticles �5 nm. In Fig. 2(a),

we see the similar grain size and morphology for FeSb2 host

as we have shown in our previous reports.13,32 It can be seen

that the particle are composed of small size grains. Fig. 2(b)

shows EDS (Energy Dispersive X-ray Spectroscopy) analy-

sis of four selected areas. From regions A to D shown in Fig.

2(a), we see a transition from FeSb2 to Cu, regions B and C

are Cu dominated, and region D is approximately 200 nm,

showing a slight aggregate of Cu. This indicates that Cu NPs

are uniformly distributed in the composites. Region C in Fig.

2(a) is enlarged in Fig. 2(c), the measured lattice spacing

from HRTEM images are 0.22 nm and 0.19 nm, which can

be indexed to (111) and (200) planes of FCC Cu, respec-

tively. Inverse Fast Fourier transform (IFFT) of the lattice

image is also consistent with the Cu FCC structure with the

[011] zone axis orientation. In Figs. 2(d) and 2(e), we

observed that the size of Cu NPs is reduced to less than

�5 nm, while the FeSb2 kept the similar size and morphol-

ogy as that in Fig. 2(a). In terms of the volume ratio in both

cases, Cu is about 0.9% in the host. The lattice spacing mea-

surement and IFFT show that the �3� 3 nm particle located

at the edge area of FeSb2 grains is Cu, due to the small size,

EDS cannot focus on the Cu targets to confirm the composi-

tion. It is reasonable to assume that for the nanocomposites

with smaller Cu particles, the Cu was first uniformly melted

together with Fe and Sb when heated up to 1350 K. During

cooling, Cu precipitates out as isolated nanoparticles due to

the very limited solubility of Cu in FeSb2.

The measured TE properties are shown in Fig. 3. Fig.

3(a) shows temperature dependence of thermal conductivity

for all FeSb2Cuy composites as well as the pure nanostruc-

tured FeSb2. First, owing to the interfaces between Cu NPs

and FeSb2, reduced thermal conductivity was observed for

FIG. 1. Schematics of the band align-

ment between FeSb2 and Cu (a); distri-

bution of Cu NPs in the nanocomposite

(b), scale bar indicates that the grains of

FeSb2 are around 50 nm on average and

�5 nm for Cu NPs.
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FIG. 2. TEM image (a) for FeSb2Cu0.045

nanocomposite prepared by mixing

FeSb2 nanopowder and 100 nm Cu NPs;

(b) EDS for the selected zones in (a); (c)

HRTEM for zone C shown in (a), inset

shows IFFT for (c); (d) TEM image for

FeSb2Cu0.045 nanocomposite prepared

by melting Fe, Sb, and Cu at 1350 K and

solidifying; and (e) is the enlarged area

in (d), inset is the IFFT of the Cu nano-

particle area in (d).

FIG. 3. Thermoelectric properties of

FeSb2Cuy (y¼ 0, 0.0225, 0.045, 0.09)

samples: (a) temperature dependence of

thermal conductivity, inset shows the

measured thermal conductivity versus

Cu content at 60 K; (b) temperature de-

pendence of Seebeck coefficients; (c)

temperature dependence of electrical re-

sistivity, inset shows the peak Seebeck

coefficient versus electrical conductivity

at corresponding temperatures; (d) tem-

perature dependence of power factor,

inset shows the peak value of power fac-

tor at 60 K versus Cu content; and (e)

temperature dependence of ZT for FeSb2

and FeSb2Cuy nanocomposites.
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most samples. However, a notable difference between two

FeSb2Cu0.045 samples was found, the one with larger Cu NPs

(�100 nm) shows 20% lower thermal conductivity than that

of pure FeSb2 and 10% lower than the one with smaller Cu

NPs (�5 nm). The former is understandable due to the inter-

face phonon scattering, but the latter is very surprising and

hard to understand at the moment. We guess the most possi-

ble reason is the subtle porosity difference between the two

samples since our nanocomposites have relative density of

76% to 78%, as we have reported.32

As for all nanocomposites with �5 nm Cu NPs, it is

seen that with the increase of Cu content (inset of Fig. 3(a)),

thermal conductivity at 60 K decreased slowly to a minimum

of 0.39 W m�1 K�1 for FeSb2Cu0.045 from 0.44 W m�1 K�1

for the pure nanostructured FeSb2. We believe that this is

due to the phonon scattering at the interface of FeSb2 and

Cu. The minimum lattice thermal conductivity of FeSb2 was

reported to be 0.25 W m�1 K�1 at 60 K,33 indicating potential

for further thermal conductivity reduction. When the Cu vol-

ume ratio reaches 1.8% for sample FeSb2Cu0.09, thermal

conductivity becomes comparable to the pure nanostructured

FeSb2 and even larger below 50 K, which shows the contri-

bution of increased electron thermal conductivity outweighs

the decrease of the lattice thermal conductivity.

Seebeck coefficient results were shown in Fig. 3(b).

Interestingly, the Seebeck coefficient only slightly decreases

from �102 lV K�1 to �93 lV K�1 even though the electri-

cal conductivity is increased by a factor of �2 as shown is

Fig. 3(c) for the FeSb2Cu0.045 sample with �5 nm Cu NPs

comparing to pure FeSb2. The relatively high Seebeck coeffi-

cients at different concentrations of Cu nanoparticles can be

understood as the result of modulation doping since the ma-

trix FeSb2 is not significantly affected.

Regarding the electrical conductivity shown in Fig. 3(c),

we have achieved significant improvement by incorporating

Cu NPs to the nanostructured FeSb2. First, as temperature

decreases, all the samples incorporated with Cu NPs show

reduced electrical resistivity with metal-like features below

100 K compared to pure FeSb2. Increasing the Cu content

leads to reduced resistivity, while sample FeSb2Cu0.09 has

the lowest resistivity. Clearly the FeSb2Cu0.045 sample hav-

ing �5 nm Cu NPs is more conductive than the samples with

�100 nm Cu NPs, probably due to better electron transfer

from Cu to FeSb2 when Cu is smaller and well dispersed in

FeSb2. Inset in Fig. 3(c) shows a peak Seebeck coefficient

dependence of electrical conductivity for all nanocomposites

with �5 nm Cu NPs inclusion.

Because of the increased electrical conductivity and

slightly reduced Seebeck coefficient for the FeSb2Cuy nano-

composites, we observe a significant power factor PF
improvement below 200 K for all Cu NPs incorporated

nanocomposites compared to pure FeSb2. As can be seen

from Fig. 3(d)), a maximum PF � 1.64� 10�4 W m�1 K�2

at 60 K was obtained for FeSb2Cu0.0225 before decreasing to

1.39� 10�4 W m�1 K�2 for FeSb2Cu0.045. Such a large

improvement (�90%) over the pure FeSb2 is comparable

with the results achieved by other approaches such as reso-

nant doping,19–21 band engineering,22,23 and modulation

doping.24,25 Combined with the slight decrease of thermal

conductivity shown in Fig. 3(a), ZT of �0.027 has been

achieved, that is �110% enhancement over �0.013

achieved in the nanostructured pure FeSb2 at 60 K.

In summary, we observed the figure-of-merit (ZT)

improvement in nanostructured FeSb2Cuy by modulation

doping of Cu nanoparticles. Because of the favorable work

functions between FeSb2 and Cu nanoparticles, and the high

electrical conductivity of Cu, the insulator-like electrical re-

sistivity for FeSb2 at low temperatures was reduced. It was

found that the power factor was improved by �90% and ZT
�110% for the optimized nanocomposite FeSb2Cu0.045 over

the nanostructured pure FeSb2. Our results suggest that a sim-

ilar strategy could be extended to other Kondo insulators to

enhance their TE properties if the modulation dopant does

not severely react with the matrix.
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Nanostructured YbAgCu4 for Potentially Cryogenic Thermoelectric
Cooling
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ABSTRACT: We have studied the thermoelectric properties
of nanostructured YbAgCu4 materials. A high power factor of
∼131 μW cm−1 K−2 has been obtained at 22 K for
nanostructured samples prepared by ball milling the arc
melted ingot into nanopowder and hot pressing the nano-
powder. The implementation of nanostructuring method
decreased the thermal conductivity at 42 K by 30−50%
through boundary scattering comparing with the previously
reported value of polycrystalline YbAgCu4. A peak dimension-
less thermoelectric figure-of-merit, ZT, of 0.11 has been
achieved at 42 K, which may find potential applications for
cryogenic cooling below 77 K. The nanostructuring approach
can be extended to other heavy Fermion materials to achieve high power factor and low thermal conductivity and ultimately
higher ZT.

KEYWORDS: Thermoelectric, heavy Fermions, Kondo lattice, boundary scattering, YbAgCu4

The ability of thermoelectric (TE) materials for converting
heat into electricity and vice versa is very important for

power generation1,2 as well as solid-state cooling.3 For the
aerospace program where the weight and size compatibility of
the devices is important, thermoelectric devices are more useful
for cryogenic application in comparison to other heavy cooling
devices. The power generation efficiency or coefficient of
performance of thermoelectric devices are determined by the
dimensionless figure of merit, ZT = [(S2σ)/κ]T, where S is the
Seebeck coefficient, σ is the electrical conductivity, κ is the
thermal conductivity, and T is the absolute temperature.4−6 All
of these quantities are related to each other and changing one
affects the others, so increasing ZT is really challenging. In the
recent years, the development of new techniques for controlling
the material properties through nanostructuring,7 modulation
doping,8,9 resonant doping,10,11 and band engineering near
Fermi level12,13 have helped to enhance ZT significantly. The
rapid development of technologies enabled to increases ZT
above 1 for cooling applications at around room temperature
and power generation at high temperatures but at the low-
temperature (cryogenic) range, the existing ZT is far below the
application requirement.
For low-temperature thermoelectric materials, most of the

focus is toward narrow band gap semiconductors and Kondo
insulators. In different temperature ranges below room
temperature, there are many materials that are being
investigated. The well-known low-temperature thermoelectric
material is single crystal Bi1−xSbx with ZT ∼ 0.5 at ∼150 K.14

Encapsulating Ce in clathrate has enhanced ZT to 0.1 at 150

K.15 Doping on extremely high mobility materials CuAgSe has
enhanced ZT to 0.1 at 100 K.16 Doped FeSi have been reported
to have peak ZT of 0.12 at 120 K.17 However, the operating
temperature for these materials is above 100 K, which is above
liquid nitrogen temperature, 77 K. For temperature below 77 K,
ZT is very low because the temperature T is very small.
The current trend for cryogenic thermoelectric materials

involves mostly Kondo insulators like FeSb2,
18−20 CrSb2,

21 and
some rare earth Kondo systems like YbAl3,

22 CeCu6,
23

Ce0.5La0.5Al3,
24 YbCuAl,25 CeAl3,

25 CePd3,
26 and so forth.

Rare earth metallic heavy Fermions like YbAl3, CePd3
26 have

been investigated to the temperature range of 150 K and a peak
ZT ∼ 0.23 have been reported for both n- and p-type. Our
focus in this work is to study materials having good ZT at
below 77 K. FeSb2 was studied for its giant Seebeck coefficient
below 77 K by Bentein.18 Much effort have been made on that
materials but the optimized ZT is not more than 0.026.18−20,27

In phonon drag systems like FeSb2
28 and CrSb2, it is very

difficult to decouple the electrical and phonon part and the
value of ZT remains low. There are some rare earth Kondo
systems with good power factor at temperature below 77 K, but
they have high thermal conductivity so the overall ZT is low.
Maintaining that high power factor and reducing thermal
conductivity is really challenging.
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Here, we present the synthesis and characterization of the
thermoelectric properties of nanostructured YbAgCu4. This
material was discovered as heavy Fermion materials in 1987 by
Rossel29 with moderate effective mass. YbAgCu4 comes from
the family of parent compound YbCu5 that is nonmagnetic and
metallic with hexagonal structure.30−32 The replacing of one Cu
atom by Ag makes a dramatic change in crystal structure and
turns it into face-centered cubic (fcc) structure.33 The spin
exchange interaction between f orbital and conduction electron
is much stronger than the intersite Ruderman−Kittel−Kasuya−
Yosida (RKKY) interaction and any other possible crystalline
field splitting effect.29,34 There is the presence of the giant
Seebeck peak at 45 K which is due to Kondo scattering of
conduction electron from almost the full f band.35 The thermal
conductivity of YbAgCu4 is unusually low below 50 K in
comparison to other heavy Fermion systems,36 which makes
this material worth for investigation as TE materials. This
material has been noted by Mahan25 as having a high power
factor of ∼235 μW cm−1 K−2 on the basis of two earlier
published papers35,37 by inappropriately using the electrical
resistivity data from Graf37 and Seebeck coefficient data from
Casanova.35 Nevertheless, we endeavor to study the thermo-
electric properties of a series of samples to determine whether
such a high power factor can be achieved. It is also intended to
study whether lower thermal conductivity can be achieved in
this material by nanostructuring while maintaining the high
power factor.
Experimental Section. Nanostructured YbAgCu4 was

prepared by arc melting followed by ball milling process. The
stoichiometric ratio of 99.9% pure Ag and 99.9% Cu granular
from Alfa Aesar is kept in an arc melting hearth and melted to
make the single piece. Pure Yb pieces (99.9%) with 10 % extra
form stoichiometric ratio is kept in the arc melting hearth with
the Ag−Cu piece and melted together. The main idea for this
melting approach is to avoid the direct contact of arc with Yb,
which is volatile in nature. The melting process was repeated 8

times by monitoring the total weight loss at each time. The
ingot was polished with metal brush and ball milled for 6 h in
high energy ball milling machine. The powder was dc hot
pressed at 550, 650, and 750 °C and a pressure of 100 MPa for
5 min. The samples were characterized by X-ray diffraction
(Panalytical X’pert), high-resolution transmission electron
microscope (HRTEM, JEOL 2100F), and scanning electron
microscope (SEM, LEO 1525) to characterize the phase
formation, crystallinity, homogeneity, grain size distribution,
and grain boundary. Samples of 3 × 3 × 5 cm3 were measured
for temperature-dependent electrical conductivity, Seebeck
coefficient, and thermal conductivity using thermal transport
option by physical properties measurement system (Quantum
design, PPMS with TTO).

Results and Discussion. Figure 1A presents the XRD
pattern of the sample hot pressed at 750 °C for 5 min. The
sample is single phase within the detection limit of the XRD
machine and can be indexed by AuBe5-type face-centered cubic
structure. The TEM images shown in Figure 1B,C indicate that
the grains are closely packed and the crystallinity of the grains is
good and the grain boundaries are clean. The samples hot
pressed at different temperatures were analyzed using SEM to
study the effect of hot pressing temperature on the grain size
and distribution. Figure 1D−F shows that the average grain size
is 100 ± 25, 175 ± 25, and 225 ± 25 nm for the samples hot
pressed at 550, 650, and 750 °C, respectively.
We have measured the thermoelectric properties of YbAgCu4

samples and the results are presented in Figures 2 and 3.
Electrical resistivity data are presented in Figures 2A and 3A. It
is clearly seen that the samples show pretty strong metallic
behavior below 75 K and a weak semiconductor behavior above
75 K. The electrical transport data can be explained in the basis
of phenomenological method which is being used for many
heavy Fermion systems.38−40 The dominant contribution to
electrical resistivity is due to electron−phonon interaction and
scattering of electron between conduction band and

Figure 1. XRD pattern (A) and TEM images (B,C) for YbAgCu4 samples hot pressed at 750 °C, SEM images for YbAgCu4 samples hot pressed at
temperatures of 550 (D), 650 (E), and 750 °C (F).
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Lorentzian-shaped 4f band. Using the Mott’s analogy, resistivity
due to scattering of electron of conduction band and f band is
proportional to the density of states of f states at Fermi level.41

Hence, electrical resistivity can be written as38,39

ρ = +
+

aT
bW T

T W T
( )

( ( ( )) )o
2 2

(1)

where W(T) = Tf exp(−Tf/T) is the width of f band and To
(kβTo = εF − εf where εF is the Fermi energy and εf the is
energy corresponding to center of gravity of 4f peak) is the
central position of 4f band from Fermi level. The term Tf is a
temperature-dependent parameter and related to quasi-elastic
line width of neutron spectra. The coefficients a and b
represent the strength of electron phonon scattering and the
strength of hybridization between s and f bands, respectively.
The quasi-elastic line width for YbAgCu4 is reported to be
invariant with temperature42 and the value of Tf is reported to
be 100 K.42,43 The coefficients a and b are obtained from fitting
the resistivity curve and found to be 6.51 × 10−10 Ω m K−1 and
2.02 × 10−5 Ω m K, respectively. From Figure 2A, we have seen
that experimental data can be fitted with model very well with
To = 23 K. The difference between the experimental and fitted
data near the resistivity maxima temperature could be due to
defects and the grain boundary presented in the sample.
In the range of 75 to 200 K, there is formation of dilute

Kondo system. In that temperature range, there is an increase

of electrical resistivity with decreasing temperature. This is due
to Kondo scattering of electrons between conduction and f
bands. When the temperature goes below 75 K, the dilute
Kondo system transformed to Kondo lattice system with sharp
decrease in electrical resistivity. Electrical resistivity for samples
hot pressed at different temperatures is presented in Figure 3A.
The electrical resistivity of a sample hot pressed at 550 °C is
higher compared to the other two samples. This can be
understood as conduction electron scattering by the weakly
linked grain boundary that resulted from the low hot press
temperature.
At the very low temperature, the system behaves as Fermi

liquid system with resistivity linear to square of the temperature
of the system as discussed in refs 33 and 44. At that
temperature range, it is not reasonable to expect the matching
of experimental data with phenomenological model. Figure 2C
shows that the electrical resistivity of all samples can be fitted
with Fermi liquid theory below 27 K. The slope of the
resistivity with T2 is proportional to the density of states of
conduction electron. In our samples, we have seen that the
Fermi liquid behavior can be seen up to 27 K indicating that the
electronic motion is not much affected by grain size. Therefore,
the nanostructures do not affect the electronic contribution
arising from band hybridization of the 4f and conduction bands.
Using the Lorentzian density of states of f band at Fermi

level, the Seebeck coefficient can be expressed as

= +
+

S c T
c TT

T W T( ( ( )) )1
2 o

o
2 2

(2)

where the first term gives the nonmagnetic contribution to
Seebeck coefficient and the second term gives the magnetic
contribution to Seebeck coefficient. We have used the same
value Tf (100 K) and extracted value for To (23 K) using
resistivity relation and fitted the Seebeck coefficient. Our
Seebeck coefficient data match with the phenomenological
model with c1 = 0.175 μV K−2 and c2 = −46.713 μV K−1

showing that most of the contribution on the Seebeck
coefficient is from the magnetic scattering of conduction
electron by the f band. From the extracted value of To (23 K),
we have found that the center of the f band is 1.9 meV below
the Fermi level giving the negative slope of density of states of
the f band at Fermi level which makes the negative Seebeck
coefficient of YbAgCu4. The presence of a flat f band could
enhance the density of states near the Fermi level, which
enhances Seebeck coefficient.45 From Figure 3B, for our
nanostructured sample we have achieved absolute maximum
Seebeck coefficient of 66 μV K−1 at 45 K. From this analysis, we
can conclude that the simple phenomenological model can
explain Seebeck coefficient of YbAgCu4.
Figure 3C shows the power factor of the YbAgCu4 samples

hot pressed at different temperatures. Because the absolute
maxima of Seebeck coefficient and resistivity minimum occur at
two different temperatures, we observed the highest power
factor of 131 μW cm−1 K−2 at 22 K. Even though it is much
lower than 235 μW cm−1 K−2 calculated by Mahan25 on the
basis of the previously published papers,35,36 it is already much
higher than most of the other good TE materials such as
Bi2Te3

46 and Bi1−xSbx.
14 Although very high power factors have

been reported for the FeSb2 single crystal,18 it cannot be
maintained in nanostructured samples with very lower thermal
conductivity. Thermal conductivity decreases with grain size
but also the peak Seebeck coefficient and hence the power

Figure 2. Temperature-dependent resistivity (A) and Seebeck
coefficient (B) fitted with phenomenological model for samples hot
pressed at 650 °C. Plot of electrical resistivity ρ versus T2 below 27 K
for YbAgCu4 (C).
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factor and overall ZT enhancement is not significant. For our
system, we did not notice a big decrease of Seebeck coefficient
with grain size. The samples hot pressed at 650 and 750 °C
have nearly the same power factors and are higher than that of
the sample hot pressed at 550 °C.
Figure 3D shows the thermal conductivity of these samples.

They all show a similar trend: decrease with temperature. The
thermal conductivity of the samples hot pressed at 550 °C is a
little bit smaller than the other two samples hot pressed at a
higher temperature. Because the grain size of the samples hot
pressed at 650 and 750 °C is not much different, hence the
thermal conductivity is also similar. In heavy Fermions systems,
the formation of gap due to hybridization of bands enhances
the phonon mean free path and hence the thermal conductivity
of these materials is very high.4 In many heavy Fermion
systems, the lattice thermal conductivity of doped samples is of
the same magnitude of undoped sample26 suggesting point
defect scattering is not effective to decrease thermal
conductivity. Short intrinsic electronic mean free path of
heavy Fermions suggests that boundary scattering of phonon is
one of the promising ways to decrease the thermal conductivity
without significantly affecting the electrical properties of such
systems.47 We did not find any report for thermal conductivity
of single crystal YbAgCu4 for comparison of boundary
scattering. There are a couple of reports on thermal
conductivity of polycrystalline YbAgCu4.

36,48 In comparison,
the nanostructure reduces the thermal conductivity by 30−50%

through boundary scattering of phonons comparing with the
earlier reported value for polycrystalline sample (data from ref
36 is plotted in Figure 3D for comparison). Although, the grain
size information on the refs 36 and 48 is not available, from
their synthesis method it could be speculated that the grain size
of their polycrystalline samples should be in the order of several
microns.
Figure 3E shows the thermoelectric figure of merit ZT of

YbAgCu4 samples. We note a peak ZT of 0.11 at 42 K has been
achieved for samples hot pressed at 650 and 750 °C. This is
pretty high at this low temperature, which will take us one step
further to the cooling applications at this temperature.
In conclusion, we have synthesized and characterized

nanostructured YbAgCu4 using ball milling the arc melted
ingot and hot pressing method. The Seebeck coefficient in Yb-
based heavy Fermions is due to Kondo scattering of electrons
between conduction band and 4f band. The electrical resistivity
and Seebeck coefficient of nanostructured sample can be
explained in terms of the well-known phenomenological model.
The good electrical conductivity of YbAgCu4 leads to a high
power factor of 131 μW cm−1 K−2 at 22 K. We have maintained
the high power factor with a significantly lower thermal
conductivity. The high power factor is clearly advantageous for
higher ZT. A peak ZT of 0.11 has been achieved at 42 K,
suitable for cooling down to this temperature. Our results bring
us one step closer for using TE materials for Peltier cooling
purpose below liquid nitrogen temperature. We believe that this

Figure 3. Thermoelectric properties of nanostructured YbAgCu4 samples hot pressed at different temperatures. Temperature-dependent electrical
resistivity (A), Seebeck coefficient (B), power factor (C), thermal conductivity with the reference data from Golubkov et al.36 for comparison (D),
and ZT with 15% uncertainty in measurement (E).
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result will attract more research effort for this and other similar
material systems to make the TE cooling below liquid nitrogen
temperature a reality.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: zren@uh.edu.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The work was financially supported by Air Force Office of
Scientific Research’s MURI program under Contract No.
FA9550-10-1-0533.

■ REFERENCES
(1) Ioffe, A. F. Physics of Semiconductors; Academic Press: New York,
1960.
(2) Slack, G. A.; Hussain, M. A. J. Appl. Phys. 1991, 70, 2694.
(3) Taylog, R. A.; Solbrekken, G. L. IEEE Trans. Compon. Packag.
Technol. 2008, 31, 23.
(4) Rowe, D. M. CRC Handbook of Thermoelectrics; CRC Press: Boca
Raton, 1995.
(5) Goldsmid, H. J Thermoelectric Refrigeration; Plenum: New York,
1964.
(6) Tritt, T. M. Semiconductor and Semimetals, Recent Trends in
Thermoelectric Materials Research, Part 1−3; Academic: San Diego, CA,
2001; Vol. 69−71.
(7) Poudel, B.; Hao, Q.; Ma, Y. C.; Lan, Y.; Minnich, A.; Yu, B.; Yan,
X.; Wang, D. Z.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus,
M. S.; Chen, G.; Ren, Z. F. Science 2008, 320, 634.
(8) Zebarjadi, M.; Joshi, G.; Zhu, G.; Yu, B.; Minnich, A.; Lan, Y. C.;
Wang, X.; Dresselhaus, M.; Ren, Z. F.; Chen, G. Nano Lett. 2011, 11,
2225.
(9) Yu, B.; Zerbarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.;
Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. F. Nano Lett. 2012, 12,
2077.
(10) Heremans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.;
Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Science
2008, 321, 554.
(11) Heremans, J. P.; Wiendlocha, B.; Chamoire, A. M. Energy
Environ. Sci. 2012, 5, 5510.
(12) Pei, Y. Z.; Shi, X. Y.; LaLonde, A.; Wang, H.; Chen, L. D.;
Snyder, G. J. Nature 2011, 473, 66.
(13) Zhang, Q.; Cao, F.; Liu, W. S.; Lukas, K.; Yu, B.; Chen, S.;
Opeil, C.; Broido, D.; Chen, G.; Ren, Z. F. J. Am. Chem. Soc. 2012,
134, 10031.
(14) Smith, G. E.; Wolfe, R. J. Appl. Phys. 1962, 33, 841.
(15) Prokofiev, A.; Sidorenko, A.; Hradil, K.; Ikeda, M.; Svagera, R.;
Waas, M.; Winkler, H.; Neumaier, K.; Paschen, S. Nat. Mater. 2013,
12, 1096.
(16) Ishiwata, S.; Shiomi, Y.; Lee, J. S.; Bahramy, M. S.; Suzuki, T.;
Uchida, M.; Arita, R.; Taguchi, Y.; Tokura, Y. Nat. Mater. 2013, 12,
512.
(17) Sales, B. C.; Delaire, O.; McGuire, V. L.; May, A. F. Phys. Rev. B
2011, 83, 125209.
(18) Bentien, A.; Johnson, S.; Madsen, G. K. H.; Iverson, B. B.;
Steglich, F. Europhys. Lett. 2007, 80, 17008.
(19) Zhao, H. Z.; Pokharel, M.; Zhu, G.; Chen, S.; Lukas, K.; Jie, Q.;
Opeil, C.; Chen, G.; Ren, Z. F. Appl. Phys. Lett. 2011, 99, 163101.
(20) Koirala, M.; Zhao, H. Z.; Pokharel, M.; Chen, S.; Dahal, T.;
Opeil, C.; Chen, G.; Ren, Z. F. Appl. Phys. Lett. 2013, 102, 213111.
(21) Sales, B. C.; May, A. F.; McGuire, M. A.; Stone, M. B.; Singh, D.
J.; Mandrus, D. Phys. Rev. B 2012, 86, 235136.
(22) Lehr, G. J.; Morelli, D. T. J. Electron. Mater. 2013, 42, 1697.
(23) Ocko, M.; Miljak, M.; Kost, I.; Park, J.-G.; Roy, S. B. J. Phys.:
Condens. Matter 1995, 7, 2979.

(24) Van Aken, P. B.; Van Daal, H. J.; Buschow, K. H. J. Phys. Lett. A
1974, 49, 201.
(25) Mahan, G. D. Solid State Physics 1998, 51, 81.
(26) Mahan, G. D.; Sales, B.; Sharp, J. Phys. Today 1997, 50 (3), 42.
(27) Sun, P.; Sondergaard, M.; Sun, Y.; Johnsen, S.; Iversen, B. B.;
Steglich, F. Appl. Phys. Lett. 2011, 98, 072105.
(28) Pokharel, M.; Zhao, H.; Lukas, K.; Ren, Z. F.; Opeil, C.; Mihaila,
B. MRS Commun. 2013, 3, 31.
(29) Rossel, C.; Yang, K. N.; Maple, M. B.; Fisk, Z.; Zirngiebl, E.;
Thompson, J. D. Phys. Rev. B 1987, 35, 1914.
(30) Tsujii, N.; He, J.; Amita, F.; Yoshimura, K.; Kosuge, K.; Michor,
H.; Hilscher, G.; Goto, T. Phys. Rev. B 1997, 56, 8103.
(31) Mitsuda, A.; Yamauchi, K.; Tsujii, N.; Yoshimura, K.; Isikawa,
Y.; Yamada, Y. J. Phys. Soc. Jpn. 2007, 76, 78.
(32) Yamaoka, H.; jarrige, I.; Tsujii, N.; Hiraoka, N.; Ishii, H.; Tuesi,
K.-D. Phys. Rev. B 2009, 80, 035120.
(33) Tsujii, N.; He, J.; Yoshimura, K.; Kosuge, K.; Michor, H.;
Kreiner, K.; Hilscher, G. Phys. Rev. B 1997, 55, 1032.
(34) Schlottmann, P. J. Appl. Phys. 1993, 73, 5412.
(35) Casanova, R.; Jaccard, D.; Marcenat, C.; Hamdaoui, C.; Besnus,
M. J. J. Magn. Magn. Mater. 1990, 90 & 91, 587.
(36) Golubkov, A. V.; Parfen’eva, L. S.; Smirnov, I. A.; Misiorek, H.;
Mucha, J.; Jezowski, A. Phys. Solid State 2001, 43, 218.
(37) Graf, T.; Lawrence, J. M.; Hundley, M. F.; Thompson, J. D.;
Lacerda, A.; Haanappel, E.; Torikachvili, M. S.; Fisk, Z.; Canfield, P. C.
Phys. Rev. B 1995, 51, 15053.
(38) Freimuth, A. J. Magn. Magn. Mater. 1987, 68, 28.
(39) Grade, C. S.; Ray, J. Phys. Rev. B 1995, 51, 2960.
(40) Gumeniuk, R.; Sarkar, R.; Geibel, C.; Schnelle, W.; Paulmann,
C.; Beanitz, M.; Tsirlin, A. A.; Guritanu, V.; Sichelschmidt, J.; Grin, Y.;
Leithe-Jasper, A. Phys. Rev. B 2012, 86, 235138.
(41) Mott, N. F. Proc. Phys. Soc. 1935, 47, 571.
(42) Severing, A.; Murani, A. P.; Thompson, J. D.; Fisk, Z.; Loong,
C.- K. Phys. Rev. B 1990, 41, 1739.
(43) Luthi, B. Physical Acoustics in the Solid State; Springer Series in
Solid-State Sciences; Springer-Verlag, Berlin Heidelberg, 2005; p 148.
(44) Bauer, E.; Hausser, R.; Gratz, E.; Payer, K. Phys. Rev. B 1993, 48,
15873.
(45) Sun, P.; Ikeno, T.; Mizushima, T.; Isikawa, Y. Phys. Rev. B 2009,
80, 193105.
(46) Goncalves, L. M.; Couto, C.; Alpuimb, P.; Rolo, A. G.;
Völkleinc, F.; Correia, J. H. Thin Solid Films 2009, 518, 2816.
(47) Zhang, Y.; Dresselhaus, M.; Shi, Y.; Ren, Z. F.; Chen, G. Nano
Lett. 2011, 11, 1166.
(48) Bauer, E.; Gratz, E.; Hutflesz, G.; Bhattacharjee, A. K.; Coqblin,
B. Phys. B 1993, 186 − 188, 494.

Nano Letters Letter

dx.doi.org/10.1021/nl501436w | Nano Lett. 2014, 14, 5016−50205020

250

mailto:zren@uh.edu


ARTICLE

Received 10 Aug 2013 | Accepted 4 Feb 2014 | Published 25 Feb 2014

Carrier localization and electronic phase separation
in a doped spin-orbit-driven Mott phase in
Sr3(Ir1–xRux)2O7

Chetan Dhital1, Tom Hogan1, Wenwen Zhou1, Xiang Chen1, Zhensong Ren1, Mani Pokharel1, Yoshinori Okada1,

M. Heine1, Wei Tian2, Z. Yamani3, C. Opeil1, J.S. Helton4, J.W. Lynn4, Ziqiang Wang1, Vidya Madhavan1

& Stephen D. Wilson1

Interest in many strongly spin-orbit-coupled 5d-transition metal oxide insulators stems from

mapping their electronic structures to a Jeff¼ 1/2 Mott phase. One of the hopes is to establish

their Mott parent states and explore these systems’ potential of realizing novel electronic

states upon carrier doping. However, once doped, little is understood regarding the role of

their reduced Coulomb interaction U relative to their strongly correlated 3d-electron cousins.

Here we show that, upon hole-doping a candidate Jeff¼ 1/2 Mott insulator, carriers remain

localized within a nanoscale phase-separated ground state. A percolative metal–insulator

transition occurs with interplay between localized and itinerant regions, stabilizing an anti-

ferromagnetic metallic phase beyond the critical region. Our results demonstrate a surprising

parallel between doped 5d- and 3d-electron Mott systems and suggest either through the

near-degeneracy of nearby electronic phases or direct carrier localization that U is essential to

the carrier response of this doped spin-orbit Mott insulator.
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I
ridium4þ ions with a half-filled 5d shell in a cubic octahedral
oxygen coordination occupy a unique region in relative energy
scales: one where a model of crystal field splitting combined

with strong spin-orbit coupling (SOC) breaks the fivefold
degeneracy of electronic states into fully occupied Jeff¼ 3/2 and
half-filled Jeff¼ 1/2 bands1,2. The resulting bandwidth-narrowed
Jeff¼ 1/2 states allow the relatively modest U(B1.5–2 eV)
inherent to these 5d-transition metal elements3 to split the
band and generate a charge gap. A SOC-assisted Mott phase
results, allowing an unexpected manifestation of correlation-
driven physics in materials with extended 5d-electron wave
functions. Doping this spin-orbit Mott phase has since generated
predictions of stabilizing states analogous to those found in doped
strongly correlated 3d-electron Mott insulators such as the high-
temperature cuprate superconductors4. To date however, the role
of Coulomb interactions in the doped Jeff¼ 1/2 Mott phase
remains contentious with no direct observations of correlated
electronic phase behaviour.

Two prototypical spin-orbit Mott materials are the n¼ 1 and
n¼ 2 members of the iridate Ruddelsden–Popper series Srnþ 1

IrnO3nþ 1 (refs 5,6). Here the bilayer system Sr3Ir2O7 (Sr-327)
possesses a low-temperature charge gap of Eg¼ 130 meV,7

roughly reduced by a factor of four from the gap of its single-
layer cousin Sr2IrO4 (ref. 8). This reduced gap renders the Sr-327
system a fortuitous starting point for perturbing the spin-orbit
Mott phase and exploring carrier-induced electronic phase
behaviour as the system is driven toward the metallic regime.
To this end, in this work Ru4þ (4d4) ions are substituted onto the
Ir4þ (5d5) sites of Sr3(Ir1� xRux)2O7 with the known end point,
Sr3Ru2O7, possessing a Fermi liquid ground state in close
proximity to a magnetic instability9. Our combined transport,
magnetization, neutron scattering and scanning-tunnelling
spectroscopy (STS) studies show that the Mott insulating state
of Sr3Ir2O7 is remarkably robust as the in-plane doped holes
remain largely localized within a nanoscale phase-separated
ground state and only generate a metal–insulator transition
(MIT) near the two-dimensional (2D) percolation threshold. The
resulting electronic phase diagram also reveals the surprising
persistence of antiferromagnetic (AF) order deep into the metallic
phase and suggests emergent itinerant magnetism at the interface
between the AF-ordered spin-orbit Mott phase of Sr3Ir2O7 and
the nearly magnetic Fermi liquid electronic phase of Sr3Ru2O7.

Results
Electronic phase diagram and bulk electronic properties. The
resulting electronic phase diagram determined via our combined
transport, bulk magnetization and neutron-scattering measure-
ments is plotted in Fig. 1a. The most prominent feature of the
phase diagram is that the transition from the insulating ground
state of Sr3Ir2O7 to the low-temperature metallic phase takes
place only beyond the critical concentration of x¼ 0.35. This
suggests that the Ir4þ (5d5) valence is protected by the Mott gap
that blocks the charge transfer of doped holes from the in-plane
substituted Ru4þ (4d4) ions, a phenomenon of ‘Mott blocking’.
The corresponding resistivity r(T) is plotted as a function of
temperature in Fig. 2a for Sr3(Ir1� xRux)2O7 concentrations
spanning the phase diagram. Concentrations near the phase
boundary also show a thermally driven MIT as illustrated in the
inset of Fig. 2a for x¼ 0.33 with TMIT¼ 135 K (see also
Supplementary Fig. 1). As an initial window into the corre-
sponding evolution of the magnetic order, the high-temperature
inflection in r(T) in the x¼ 0 parent compound is known to
identify the onset of canted AF order at TAF¼ 280 K. This feature
in r(T) is gradually suppressed to lower temperatures upon Ru
doping, where the anomaly vanishes in the metallic regime.

Low-temperature magnetoresistance (MR) data with the
magnetic field applied perpendicular to the ab plane are plotted
in Fig. 2b. The negative magnetoresistance previously reported in
the parent material10 and indicative of suppressed spin
fluctuations or magnetic domain scattering persists in lightly
doped, insulating samples; however, as the system transitions into
the metallic phase, the MR smoothly switches sign from negative
to positive values that increase in magnitude with continued Ru
doping. This suggests that orbital (Lorentz force) effects begin to
dominate across the MIT phase boundary as the carrier
concentration is enhanced while fluctuation/domain effects
from AF order are damped. Further illustrating this, bulk
magnetization measurements of the in-plane susceptibility were
performed on select samples, shown in Fig. 2c. As Ru is doped
into Sr-327, the onset temperature of the net ferromagnetism,
arising from the canted AF order and denoted via the
irreversibility temperature (Tirr), is reduced. Close to the critical
regime, the x¼ 0.33 sample exhibiting a thermally driven MIT
with TMIT¼ 135 K (Fig. 2a inset) shows an onset of canted AF
order at the same temperature. This suggests that near the MIT
phase boundary the two transitions (TMIT and TCAF) become
coupled and that this coupling diminishes in lightly doped
samples deeper within the insulating regime. Samples with Ru
doping x40.33 show no irreversibility in magnetization, and
concentrations with a metallic ground state show only local
moment behaviour within resolution. The only exception is that
the highest doped sample with x¼ 0.75 shows the reemergence of
Tirr at low temperature (Supplementary Fig. 2); however, the
origin of this may simply be an extrinsic perturbation of the
nearby Fermi liquid phase of Sr3Ru2O7.

Through direct analogy with Sr3Ru2O7 (ref. 11), Ru nominally
enters the Sr-327 iridate lattice in the low spin state of Ru4þ and
subsequently introduces S¼ 1 impurities into the Jeff¼ 1/2
magnetic background. Unlike its single-layer cousin Sr2IrO4

(ref. 12), the parent Sr-327 iridate shows no Curie–Weiss
behaviour up to 400 K13; however, as Ru ions are introduced
into the lattice a paramagnetic upturn begins to build in the low-
temperature magnetization data for the lowest doping measured
(x¼ 0.13). Immediately upon doping Ru, the known low-
temperature downturn in w(T) in the parent system10,14
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(Fig. 2c) rapidly vanishes and is replaced by a weak paramagnetic
upturn. The resulting local moments, extracted via Curie–Weiss
fits to the susceptibility, are plotted in Fig. 2d. For low Ru-dopant
levels, the effective local moments extracted from each
concentration track the expectation for contributions solely
arising from local S¼ 1 impurities, which build continuously
across the MIT. This suggests Ru ions remain largely localized at
low Ru dopings within the insulating background of Sr3Ir2O7 and
that their survival into the metallic regime demonstrates robust
correlation effects on either side of the MIT. For doping levels
beyond x¼ 0.5, the local moments are screened and smoothly
connect to the high-temperature susceptibility of metallic
Sr3Ru2O7 (ref. 11).

Neutron-scattering measurements. In order to more directly
elucidate the evolution of the ordered AF phase across the MIT in
this system, neutron-scattering measurements were performed.
The results plotted in Fig. 3a show that, for insulating samples,
the onset of long-range AF order coincides with the Tirr deter-
mined via the magnetization curves in Fig. 2. Upon increased
doping, however, the AF phase surprisingly survives across the
MIT at the same Q positions as the insulating phase10,15, and the
resulting order parameters for metallic samples are plotted in
Fig. 3b. From the limited number of magnetic peaks observable
in our neutron measurements ((1, 0, L ); L¼ 1, 2, 3, 4), the spin
structure remains consistent with that of the parent system across
the MIT in the phase diagram, albeit the small degree of spin
canting present in the insulating parent system is necessarily

eliminated or strongly suppressed in the metallic regime. The
persistent AF order remains long-range within resolution with a
minimum correlation length xE200 Å (x ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þ

p
1
w, where

w is obtained by fits of radial scans to the form

I ¼ I0þAe�
1
2
ðx� cÞ

wð Þ2 ). Keeping a model of c axis-aligned
moments across the MIT5, Fig. 3c, shows a nearly linear
suppression of the AF moment in the lightly Ru-doped
insulating regime due to the dilution of ordered Ir ions by
localized Ru S¼ 1 impurities, and deep in the metallic regime the
ordered moment is quickly screened. In close proximity to the
MIT phase boundary however, an anomalous enhancement in
the ordered AF moment appears (Fig. 3 and Supplementary
Fig. 3), suggesting the potential of induced ordering of S¼ 1
moments from doped 4d4 electrons in this range or potentially a
partial relaxation of the octahedral distortion resulting in
enhanced magnetic exchange.

The intrinsic crystal structure of Sr3Ir2O7 remains an active
area of investigation with superlattice reflections violating the
tetragonal space group I4/mmm reported in single-crystal
studies14,16. Previously, our neutron studies resolved high-
temperature Bragg scattering10 at positions forbidden by both
the recently reported I4/mmm (ref. 15) and Bbcb (ref. 5) space
groups. In order to clarify the origin of this high-temperature
superlattice, we also performed polarized neutron diffraction
measurements with the results plotted in Fig. 3d. Radial scans
through Q¼ (1, 0, 3) show that the (1, 0, L)-type superlattice
reflections at 300 K appear only in the non-spin-flip channel with
the neutron guide field applied parallel to Q. This demonstrates

H (kOe)

�(
H

)/
�(

0Τ
)

T = 4 K
x=0
x=0.13
x=0.20

x=0.30
x=0.33
x=0.35

x=0.38
x=0.55
x=0.75

10–5

10–4

10–3

10–2

10–1

100

101

102

145135125

7.6

7.2

25020015010050

Temperature (K)

300
10–6

Temperature (K)

� 
(μ

Ω
 m

)

x=0.55

x=0.30

x=0.33

x=0.35

x=0.13
1.06

1.04

1.02

1.00

0.98

0.96

6050403020100

F
C

-Z
F

C
 (

em
u 

g–1
 O

e–1
)

Temperature (K)

1.0

0.8

0.6

0.4

0.2

0.0

30025020015010050

x = 0

x = 0.13

x = 0.33

H= 500 Oe
H || ab-plane

Sr3(Ir1–xRux)2O7

� e
ff 

(�
B

 f.
u.

–1
)

4

3

2

1

0
1.00.80.60.40.20.0

M
IT

S=1

� 
(Ω

 m
)

x=0

x=0.75

****
*

TirrTirr
Tirr

Figure 2 | Bulk transport and magnetization measurements of Sr3(Ir1� xRux)2O7. (a) Resistivity plotted as a function of temperature for Ru

concentrations spanning the MIT. Inset shows thermally driven transition at TMIT¼ 135 K for x¼0.33. (b) 4 K magnetoresistance plotted as a function of

applied field for Ru concentrations spanning the MIT. (c) Field-cooled (FC) minus zero-field cooled (ZFC) magnetization as a function of temperature

for select Ru dopings. (d) Local moments extracted from Curie–Weiss fits plotted as a function of Ru concentration. Solid line denotes the expected full

moment value for S¼ 1 impurities. The blue square denotes data taken from Ikeda et al.11 1 emu g� 1 Oe� 1¼4p� 10� 3 m3 kg� 1. Error bars in all

plots represent 1 s.d.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4377 ARTICLE

NATURE COMMUNICATIONS | 5:3377 | DOI: 10.1038/ncomms4377 | www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

253

http://www.nature.com/naturecommunications


the structural origin of the superlattice and mandates a space
group symmetry lower than Bbcb. The resulting high-temperature
(1, 0, L)-type peaks argue for oxygen octahedral tilting as well as
in-plane rotation in this system. A tilt already necessarily exists
for the c axis-aligned moments in the canted AF phase, and the
strong spin-lattice coupling in perovskite iridates17 supports the
notion of an accompanying structural tilt. Such a tilt likely
renders Sr-327 isostructural to Ca3Ru2O7 (space group: Bb21m)18;
however, a full neutron data set and structural refinement have
yet to be carried out.

STS measurements. In order to better understand the formation
of the metallic phase, low-temperature (4 K) STS measurements
were performed on two concentrations: samples with x¼ 0.35 in
close proximity to the MIT and samples deep within the metallic
regime with x¼ 0.5. Figure 4a shows the resulting topography of
STS measurements exploring the local density of states (LDOS) in
the x¼ 0.35 concentration. Strong inhomogeneity across nano-
metre-length scales in this sample is immediately apparent from
the topography and reveals the coexistence of two distinct local
environments whose representative tunnelling spectra are plotted
in Fig. 4c. Dark regions with low LDOS in the corresponding map
show a fully gapped spectra paralleling that of the parent Sr3Ir2O7

insulating phase7 reproduced in Fig. 4f, while the bright regions
reveal metallic regions with an enhanced LDOS. The striking
nanoscale coexistence of both fully gapped and gapless metallic
regions in this sample demonstrates that the sample segregates into
electronically distinct regions. The low-temperature MIT phase
line in Fig. 1a therefore does not represent a thermodynamic phase
transition but rather the percolation threshold of metallic puddles
localized within a spin-orbit Mott phase.

In exploring the extent of this segregation between electronic
phases or doped carriers further, we performed STS measure-
ments on the metallic x¼ 0.5 concentration. These measurements
reveal this sample to be globally gapless; however, the spectra also
resolve a substantial degree of electronic inhomogeneity within
this nominal metal, as illustrated by a representative topography
in Fig. 4b. Correspondingly, the spectra plotted in Fig. 4d again
show two distinct shapes representing different local environ-
ments: one with suppressed V-shaped LDOS and the second with
enhanced LDOS and a spectrum that strongly resembles that of
Sr3Ru2O7 (ref. 19). To better illustrate this, a comparison with
Sr3Ru2O7 is provided as shown in Fig. 4e. The similarity between
the hole-rich regions of the metallic x¼ 0.5 sample and the pure
bilayer ruthenate system is particularly striking, with the
tunnelling data resembling a thermally broadened version of a
qualitatively similar electronic structure. This combined with the
strong inhomogeneity of this metallic state indicates that even the
fully metallic compounds continue to remain electronically
segregated over nanometre-length scales.

Discussion
Our combined experimental results, viewed globally, paint a
picture of a nanoscale, electronically phase-separated ground state
for in-plane carriers doped within a spin-orbit-driven Mott phase,
Sr3Ir2O7 (Fig. 1). Since the meaning of ‘electronic phase
separation’ is rather subtle at the nanoscale in doped transition
metal oxides, we define its use explicitly here simply as the
observation of two different local environments with distinct
electronic properties. This general scenario of nanoscale phase
separation, either via the coexistence of distinct electronic phases
or the direct segregation of holes, results in the stabilization of
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two different local environments and a percolating conduction
network sensed by our earlier transport measurements. Bare
charge accumulation into puddles of 1–2 nanometre-length scales
may not be energetically favourable due to unscreened long-range
Coulomb interactions. Without knowing the effective screening
length for the Coulomb interaction and the pinning potential for
carriers, it is hard to quantify what the length scale should be in
Sr3Ir2O7. An alternative of phase separation into electrically
neutral, yet electronically distinct, phases separated by a first-
order phase transition is instead a likely mechanism; however, we
are unable to differentiate this from the pure carrier segregation
scenario. Regardless of which scenario dominates, the carriers
within metallic patches remain initially localized across B1–
2 nm-length scales, and at the critical concentration where
transport measurements show a MIT (xB0.35), this leads to
the formation of metallic patches percolating within the fully
gapped, spin-orbit Mott insulating background. At Ru substitu-
tion levels below x¼ 0.35, the thermally driven MIT is therefore
the likely result of the expansion of these metallic puddles due to
thermal shifts in their free energy relative to insulating host phase.
Phase inhomogeneity continues deep into the metallic regime,
where our STS data directly demonstrate nanometre-scale texture
in metallic Sr3IrRuO7 comprising two distinct regions: (1) large
LDOS regions with an electronic response mirroring the 4d4

electronic spectrum of isostructural Sr3Ru2O7 (ref. 19) and
(2) regions with V-shaped spectra with LDOS suppressed close to
the Fermi energy.

Since their valence states are rather far from the Fermi level,
A-site doping in perovskite oxides is historically envisioned as
controlling the filling of d-bands on the B-sites by donating their
valence electrons to the entire system. The resulting doping

mechanism gives rise to a rapid suppression of the Mott phase
such as in A-site-doped Sr2IrO4 (ref. 20) and Sr3Ir2O7 (ref. 21).
Our B-site doping in Sr-327, however, reveals that holes
nominally added via Ru substitution remain localized within
the IrO2 planes until B35% of the Ir 5d ions have been replaced,
close to the classical 2D percolation threshold of 41% (ref. 22).
Even beyond this threshold at 50% replacement, hole-rich regions
remain phase separated. Given that Ru doping is nominally a
strong perturbation to the weakly insulating ground state of Sr-
327, this observation is striking and suggests that Coulomb
interactions and correlation effects remain essential across the
majority of the phase diagram of this system.

Our combined neutron scattering and STS data reveal that the
AF-ordered state that survives across the MIT has a spin–spin
correlation length (x4200 Å) that spans across the phase-
separated puddles of gapped and metallic regions—revealing a
globally AF-ordered phase. Furthermore, in concentrations doped
close to the MIT, the recovery of the ordered AF moment to
values nearly equalling that of the undoped parent Sr3Ir2O7 rules
out any trivial superposition of chemically distinct phases. A
magnetically ordered, metallic state beyond the MIT is reminis-
cent of the phase diagrams of (Ca1� xSrx)3Ru2O7 (ref. 23) and
Ca2� xSrxRuO4 (ref. 24); however, from our current
measurements of Sr3(Ir1� xRux)2O7 the structural symmetry
appears identical for concentrations spanning the MIT,
suggesting that the critical point is not directly tied to a
structural phase transition. AF metallic states have also been
proposed in disordered and binary alloy Mott phases as an
intermediate state prior to the onset of Anderson localization25,26.
The global picture our data provide shows that the physics here is
more complex than that of a trivially diluted AF system with
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percolative transport. The percolating metallic network seemingly
can be induced to order by the host AF matrix, which may
explain why the ordered AF moment is actually enhanced near
the region of maximum heterogeneous interface area at the MIT
as well as why AF order survives across the percolation threshold
where no infinite domain of the AF host persists. Local
antiferromagnetism does however naively persist across the
critical concentration and can continue to influence the metallic
phase into the heavily Ru-doped regime. Eventually this gives way
to a globally gapless AF phase in the x¼ 0.5 sample.

We propose the following picture of magnetic interactions
within this system: when they are dilute within the matrix, Ru-
doped holes behave in a manner consistent with isolated ions in
the S¼ 1 low spin state giving rise to the local moment response;
however, increasing the Ru-doping level increases the density of
these isolated magnetic impurities, eventually nucleating clusters
of metallic regions (resolved directly in our STS measurements).
Within these metallic puddles, whose percolation generates the
MIT, the local moment should be quenched at low temperatures
in a Fermi liquid ground state; however, these puddles may still
be magnetically ordered due to proximity of local AF order in
neighbouring regions and a large spin susceptibility arising from
their nested Fermi surface pockets. Such an instability is indeed
known to be present along the Q¼ (p, p) in-plane wave vectors of
Sr3Ru2O7 (ref. 27) where an enhanced density of states is nested
at the Fermi level due to the

ffiffiffi
2
p
�

ffiffiffi
2
p

structural zone folding. In
this regard, this suggests similarities to the thermally driven MIT
in the prototypical Mott system VO2, where percolating metallic
puddles display significant correlation effects28. More broadly, the
survival of an ordered magnetic moment into the metallic state of
the system demonstrates that electron–electron correlations
remain relevant across the MIT of this system and argues
against the picture of Sr3Ir2O7 as a trivial band-insulator simply
driven by the zone folding that occurs at the onset of AF order.

The evolution of AF order across the MIT in the phase diagram
of this hole-doped spin-orbit Mott insulator demonstrates that a
rich interplay can be realized at the boundary between a novel
Jeff¼ 1/2 insulator and a correlated metal. The localization of Ru-
doped carriers into a phase-separated ground state surprisingly
parallels the strongly correlated phase behaviour of 3d-transition
metal oxide systems such as the B-site-doped correlated
manganites29–32 and reveals that correlation physics can play a
dominant role in the electronic phase formation of a doped spin-
orbit Mott insulator. Our findings demonstrate that correlation
effects felt by carriers introduced within in a 5d Mott phase
remain robust enough to drive electron localization, a key
ingredient in emergent phenomena such as high-temperature
superconductivity and enhanced ferroic behaviour. This opens
up a new frontier for exploring correlated electron phases within
the presence of strong SOC effects inherent to a 5d-electron
setting.

Methods
Materials and crystal growth. The single crystals of Sr3(Ir1� xRux)2O7 were
grown by conventional flux methods similar to earlier reports10,14 using a SrCl2
flux. Crystals were grown in platinum crucibles using IrO2 (99.98%, Alfa Aesar),
RuO2 (99.98%, Alfa Aesar), SrCO3 (99.99%, Alfa Aesar) and anhydrous SrCl2

(99.5%, Alfa Aesar) in a 2:3:15 molar ratio. Starting powders were partially sealed
inside the crucible with a Pt lid and further contained inside alumina crucibles.
Mixtures were heated up to 1,380 �C, cooled to 850 �C at a rate of 3.5 �C per hour,
and then furnace-cooled to room temperature. The resulting boule was etched with
deionized water and shiny, black Sr3(Ir1� xRux)2O7 crystals with typical dimensions
2� 2� 0.1 mm were removed.

Ru concentrations were determined to match target values within B2% via
energy-dispersive X-ray spectroscopy (EDS) measurements. EDS measurements
were performed on numerous samples across different regions of samples from
each growth batch, and measurements were also collected across different length
scales to verify chemical homogeneity. Multiple crystals were tested from every

batch, and from point to point on a given sample, we were able to resolve a Ru
distribution homogenous within a central value ±1% (2% spread). The central
value of Ru concentrations between crystals from a single growth batch would vary
no more than ±2% from a central value (4% spread). Error bars on the reported
phase diagram in the main text reflect this uncertainty—in many cases they are
within the symbol size. The actual crystals measured via transport and
magnetization measurements and almost all of the crystals for the neutron
measurements were first characterized (only the x¼ 0.20 and x¼ 0.15 samples
were not, although crystals from the same batch were characterized) via EDS
measurements to determine/verify the precise Ru content.

X-ray diffraction measurements. Single crystals from a single batch of each
concentration were ground into a powder and measured via X-ray powder dif-
fraction within a Bruker D2 Phaser diffractometer. X-ray powder diffraction and
refinement revealed no impurity phases within instrument resolution (B2–3%).
Lattice parameters and unit cell volumes were refined within the I4/mmm space
group and showed both a- and c axes that reduce continuously with increased Ru
substitution (Supplementary Fig. 4)—as expected, because the smaller Ru4þ ions
are introduced into the lattice. We note here that laboratory-based powder X-ray
measurements typically lack the intensity to resolve the known orthorhombic
superlattice reflections in this material, so each concentration was instead refined
within the tetragonal I4/mmm space group.

Bulk property measurements. Magnetotransport measurements were performed
via standard four-wire measurements within a Quantum Design PPMS. Magne-
tization measurements were collected within a Quantum Design SQUID MPMS
magnetometer.

MIT determined via resistivity. The MIT depicted in the phase diagram of Fig. 1a
was determined via the temperature at which the slope of the sample’s resistance
versus temperature changed sign from dR=dT40 to dR=dTo0 upon cooling. Data
showing the MIT for all samples where an MIT was reported are shown in the inset
of Fig. 2a and in Supplementary Fig. 1.

Bulk spin susceptibility. Local moments were determined via Curie–Weiss fits to
the form 1/w(T)¼Y/CþT/C, where Y is the Weiss constant and C is the Curie
constant (results plotted in Supplementary Fig. 2). Here C ¼ NA

3kB
m2

eff , with NA as
Avogadro’s number and kB is Boltzman’s constant. Fits render a negative Weiss
constant for xo0.75 consistent with the observation of AF correlations. For
x¼ 0.75, low-temperature susceptibility shows the reemergence of an irreversibility
temperature (Tirr) below 20 K. The reentrance of a net ferromagnetic signal in this
heavily doped regime is likely the result of the fragility of the nearly magnetic
ground state of Sr3Ru2O7 where small levels of impurity substitution or pressure
are known to stabilize magnetic order11. As similar effects are known to occur in
Sr3Ru2O7, for the purposes of our study we treat the ground state of x¼ 0.75 as
qualitatively similar to that of the ruthenate bilayer end point. We have not
performed neutron diffraction measurements exploring the presence of AF order in
this concentration.

Neutron-scattering measurements. The unpolarized neutron diffraction
experiments were performed on HB1-A triple-axis spectrometer at the High Flux
Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) and at N-5
triple-axis spectrometer at Canadian Neutron Beam Center, Chalk River Canada.
For HB1-A the incident beam was monochromated by the Q¼ (0, 0, 2) reflection
of a double-bounce pyrolitic-graphite (PG) monochromator with a fixed incident
energy of Ei¼ 14.65 meV, and a PG(002) analyser crystal was used on the scattered
side. Two PG filters were placed before the sample, and collimations of 400–400–
400–800 were used before the monochromator, sample, analyser and detector,
respectively. Experiments on N5 were performed with a PG monochomator and
Ei¼ 14.5 meV and PG analyser with one PG filter placed after the sample. Colli-
mations of 300–600–330–1440 were used before the monochromator, sample, ana-
lyser and detector, respectively. The polarized neutron experiment was carried out
on the BT7 triple-axis spectrometer at the NIST Center for Neutron Research using
PG(002) monochromator, 3He polarizers, PG filters before and after the sample,
radial collimation and a position-sensitive detector on the scattered side. A guide
field allowed the magnetic field to be tuned along the scattering vector (horizontal
field) and perpendicular to the scattering plane (vertical field) configuration. For all
experiments, the crystals were aligned in the (H, 0, L) scattering plane.

STS measurements. Sr3(Ir1� xRux)2O7 single crystals were cleaved at B77 K in
ultra-high vacuum before being directly transferred to the STM head held at 4 K.
From previous data, cleaving at low temperatures is critical for obtaining flat clean
samples. Tips were prepared by annealing etched W-tips in vacuum and then
checking the quality on metallic (copper single crystal) surfaces. The quality of all
tips used in this study was checked by imaging standing waves on Cu and per-
forming spectroscopy. The tips thus prepared showed atomic resolution on the
iridate samples and were stable, allowing us to obtain high-quality dI/dV maps.
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Measurement statistics. For transport measurements, each batch with a unique
Ru concentration was tested at a minimum of three times (in most cases more) on
different crystals. Phase transitions determined via transport measurements
reproduced within the error bars shown within the phase diagram of Fig. 1a. The
most sensitive batches were those with Ru contents close to the sharp MIT phase
boundary with x¼ 0.35 where the same slight deviations in Ru content resulted in a
larger sample-to-sample variation in TMIT. The resulting uncertainty is encom-
passed by the horizontal error bars in Fig. 1a, often within the symbol size.

For neutron measurements, every data point for TAF on the phase diagram in
Fig. 1a represents a measurement on one unique sample. The anomalous regions
such as those near the phase boundary with an enhanced moment (x¼ 0.33–0.35)
and deep within the metallic regime (x¼ 0.5) were checked with additional
experiments on additional samples grown in different batches. The magnetic
behaviour reproduced in both instances and those data points are not shown.

For our magnetization measurements, only a few select samples, well
characterized by transport and EDS, were chosen for measurement. Only one
measurement was taken for each concentration reported.

For STS measurements, for each doping, at least three different tips and samples
were studied. The spectral shapes for any given doping were consistent and
repeatable. We checked the tip height dependence for the insulating regions of the
parent compound and the x¼ 0.35 compound and found no obvious changes in
spectral shape with height. We have measured three samples at the x¼ 0.35
concentration and found the reported nanoscale phase coexistence completely
reproducible. Three samples with x¼ 0.5 have also been measured and with
completely reproducible spectra and surfaces.
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Spin ordering and electronic texture in the bilayer iridate Sr3Ir2O7
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Through a neutron scattering, charge transport, and magnetization study, the correlated ground state in the
bilayer iridium oxide Sr3Ir2O7 is explored. Our combined results resolve scattering consistent with a high
temperature magnetic phase that persists above 600 K, reorients at the previously defined TAF = 280 K, and
coexists with an electronic ground state whose phase behavior suggests the formation of a fluctuating charge
or orbital phase that freezes below T ∗ ≈ 70 K. Our study provides a window into the emergence of multiple
electronic order parameters near the boundary of the metal to insulator phase transition of the 5d Jeff = 1/2 Mott
phase.

DOI: 10.1103/PhysRevB.86.100401 PACS number(s): 75.25.Dk, 75.50.Ee, 72.20.Ht

There has been considerable interest recently in studying
the phase behavior of correlated 5d-electron transition metal
oxides due to the potential of realizing electronic phenomena
possible only when electron hopping, spin-orbit coupling, and
Coulomb interaction energy scales are almost equivalent.1–3

Of particular focus has been members of the iridium oxide
Ruddelsden-Popper (RP) series Srn+1IrnO3n+1, where an
experimental picture of a spin-orbit induced Jeff = 1/2 Mott
insulating state has been proposed.4,5 Upon increasing the
dimensionality of the iridate RP series to higher n, optical6

and transport measurements7,8 have shown that the effective
bandwidth increases and the system transitions from a quasi-
two-dimensional insulating state to a metallic phase in the
three-dimensional limit.

Specifically, the reported optical gap in the n = 2 member
Sr3Ir2O7 (Sr-327) shifts considerably downward relative to the
n = 1 Sr2IrO4 system into what should be a weakly insulating
phase,6 demonstrating that Sr-327 occupies a unique position
in the iridate RP phase diagram near the boundary of the
metal to insulator phase transition in the RP series. Given
this framework, Sr3Ir2O7 exhibits a number of anomalous
features in its magnetic properties: Bulk magnetization mea-
surements of Sr-327 reveal a rich behavior possessing three
distinct energy scales,8,9 and recent muon spin rotation (μSR)
measurements have revealed the presence of highly disordered
local spin behavior,10 both supporting the notion of multiple
coexisting or competing magnetic phases. However, the details
of how spin order evolves in this material and interfaces
with the energy scales identified in both transport and bulk
susceptibility measurements remains largely unexplored.

In this Rapid Communication, we utilize neutron scattering,
bulk magnetization, and transport techniques to explore the
phase behavior in Sr3Ir2O7 (Sr-327). At high temperatures,
a phase appears with Tonset > 600 K followed by a second
magnetic transition at TAF = 280 K. Scattering from this
high temperature phase is consistent with a magnetic origin,
provides an explanation for the absence of Curie-Weiss para-
magnetism in this material above 280 K,11 and also suggests
an origin for the recently reported anomalous 93 meV magnon
gap.12 At low temperatures, the spin order is decoupled within

resolution from a second upturn in the bulk spin susceptibility
at TO = 220 K, suggestive of the formation of an electronic
glass that freezes below T ∗ ≈ 70 K. Below this freezing energy
scale, charge transport demonstrates a localized ground state
that can be biased into a regime of field enhanced conductivity
(FEC) consistent with collective transport above a threshold
electric field. Our combined results demonstrate the coex-
istence of spin order with an unconventional, electronically
textured, phase in an inhomogeneous ground state near the
boundary but on the insulating side of the Jeff = 1/2 Mott
transition.

Single crystals of Sr3Ir2O7 (Sr-327) were grown via
flux techniques similar to earlier reports.13,14 The resulting
Sr:Ir ratio was confirmed to be 3:2 via energy dispersive
spectroscopy (EDS) measurements, and a number of Sr-327
crystals were also ground into a powder and checked via
x-ray diffraction in a Bruker D2 Phaser system. No coexisting
Sr2IrO4 phase was observed and the resulting pattern was
refined to the originally reported I4/mmm structure—we note,
however, that, due to the small scattering signal from oxygen,
we are unable to distinguish between this and the various
reported orthorhombic symmetries.8,11,13 For the remainder
of this Rapid Communication, we will index the unit cell
using the pseudotetragonal unit cell with a = b = 5.50 Å,
c = 20.86 Å.

Neutron measurements were performed on the HB-1A
triple-axis spectrometer at the High Flux Isotope Reactor
(HFIR) at Oak Ridge National Laboratory and on the C5
spectrometer at the Canadian Neutron Beam Centre at Chalk
River Laboratories. Experiments on C5 were performed with
a vertically focusing pyrolitic graphite (PG-002) monochro-
mator and analyzer, an Ef = 14.5 meV, two PG filters after
the sample, and collimations of 33′-48′-51′-144′ before the
monochromator, sample, analyzer, and detector, respectively.
On HB-1A, a double bounce PG monochromator was utilized
with fixed Ei = 14.7 meV, two PG filters before the sample,
and collimations of 48′-48′-40′-68′. Magnetization measure-
ments were performed on a Quantum Design MPMS-XL
system and resistivity data was collected in a series of four-wire
setups: (1) Zero field resistance from 300 to 12 K was collected
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FIG. 1. (Color online) (a) Temperature dependence of the ab-
plane resistivity for Sr-327. Also plotted is the ∂ ln ρ

∂(1/T ) vs T showing
two peaks at TAF and T ∗. (b) I-V curve of ab-plane transport at
300 mK showing voltage biasing into a FEC regime. (c) Current
driven, pulsed, I -V measurements as a function of temperature. Solid
lines show linear fits to the Ohmic regime at each temperature. The
dashed line is a Joule heating model at 30 K as described in the text.
(d) Magnetoresistance (MR) ratio as described in the text plotted as a
function of temperature showing two well defined minima at the T ∗

and TAF transitions.

with a Keithley 2182A voltmeter, (2) data from 12 to 0.3 K
was collected in a 3He absorption refrigerator with an Keithley
Model 617 electrometer, and (3) magnetoresistance data was
collected in a 9 T Quantum Design PPMS.

Looking first at the results of our ab-plane transport
measurements under low (1 μA) current, Fig. 1(a) shows
the zero field resistivity as a function of temperature. The
sample’s resistivity increases from several m� cm at room
temperature to beyond 10 M� cm below 20 K, and begins to
show saturation behavior below 2 K.14 There is no substantial
interval of constant activation energy, as illustrated by the
overplot of ∂ ln ρ

∂(1/T ) versus T in this same panel. Instead, ∂ ln ρ

∂(1/T )
shows two peaks suggestive of two phase transitions coupling
to charge carriers: the first near the known magnetic phase
transition at TAF = 280 K (Ref. 8) and the second indicating a
lower temperature phase formation at T ∗ ≈ 70 K.

In order to investigate further the transport properties of
this lower temperature, T ∗ phase, the charge transport was
characterized via a voltage driven I -V sweep at 300 mK
shown in Fig. 1(b). A pronounced nonlinearity appears, where
with increasing field strength the system switches from a
linear, Ohmic regime with near zero conductance into a
highly non-Ohmic FEC regime. To determine the temperature
evolution of this FEC feature, a separate sample was mounted
and probed with 600 μs current pulses to minimize heating
effects [Fig. 1(c)]. While it is difficult to completely preclude
all heating effects within the rise and sample time of the pulse,
these pulsed measurements show that the nonlinear bend in the

I -V curve persists and eventually vanishes below resolution
at T ≈ 60 K.

A separate (rough) check for discriminating the nonlinear
conduction from simple Joule heating can be performed by
looking at the 30 K data in Fig. 1(c). The Ohmic regime
R(30 K) = 42 k� and the maximum pulsed current (2 mA)
during the 600 μs pulse delivers a maximum �Q = 10.1 ×
10−5 J. While low temperature heat capacity data are needed
for Sr-327, as a lower estimate, the heat capacity of Sr2IrO4

at 30 K can be used (≈14 J/K),15 giving a maximum �T =
5.5 K (for a 1.32 × 10−6 mol sample). In carrying out a similar
analysis for each current value pulsed at 30 K and assuming
perfect thermal isolation, the measured Ohmic R(T ) can be
used to determine the lowest fields possible due to pure Joule
heating as a function of the pulsed current density. This limiting
case is plotted as a dashed line in Fig. 1(c), demonstrating that
the nonlinear feature at 30 K is intrinsic.16

In looking at the magnetoresistance of the same sample
plotted in the Fig. 1(d), the MR = [R(9 T) − R(0 T)]/R(0 T)
ratio is negative and shows two minima at T ∗ ≈ 70 K and
TAF = 280 K. The lower minimum appears approximately at
the temperature where the onset of FEC emerges and coincides
with the low-T peak in ∂ ln ρ

∂1/T
. The origin of the negative

magnetoresistance is likely the removal of spin disorder
scattering due to biased magnetic domain populations which
will be discussed later, and the inflection below T ∗ supports the
idea of a field coupled order parameter freezing below 70 K.
The suppression of enhanced fluctuations originating from an
additional electronic instability, however, may also account for
the overall negative MR.

Magnetization data shown in Fig. 2(a) supports the idea
of a bulk phase transition below 70 K where a downturn in
the dc susceptibility originally reported by Cao et al.8 begins,
suggestive of a glassy freezing process. Consistent with earlier
reports,8,9 three energy scales are apparent in the field cooled
magnetization data: a canted AF phase transition at TAF =
280 K, a sharp upturn at TO = 220 K, and an eventual decrease
in susceptibility below T ∗ = 70 K. Both field cooled (FC) and
zero field cooled (ZFC) data show similar downturns near T ∗
and an irreversibility temperature near TO. At 300 K, however,
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FIG. 2. (Color online) (a) dc-magnetization data for Sr-327 with
H = 0.01 T aligned parallel to the ab plane for both FC (solid
symbols) and ZFC temperature sweeps (open symbols). The dashed
line shows the mean-field order parameter fit to the net moment
from the 280 K transition. The inset shows M vs H sweep at 300 K.
(b) Temperature dependence of the peak intensities at (1,0,3) and
(1,0,2) magnetic reflections. The solid line is a power law fit to the
(1,0,2) order parameter.
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FIG. 3. (Color online) Radial Q scans at 100 and 315 K through
the (a) Q = (1,0,2) and (b) Q = (1,0,3) reflections. Solid lines are
Gaussian fits to the data. (c) L scans across the (1,0,3) peak position
showing three-dimensional (3D) superlattice peaks at 100 and 315 K.
(d) Q scans showing the temperature dependence of the (1,0,3)
peak.

field sweeps plotted in the inset of Fig. 2(a) reveal a rapid
saturation of the spin response, suggesting the persistence of
magnetic correlations above TAF.

In order to further investigate the spin order, neutron
diffraction measurements were performed on a 7 mg single
crystal Sr-327 sample with the results plotted in Figs. 3
and 4. [H,0,L], [H,K,0], and [H,H,L] zones were ex-
plored and magnetic reflections were observed only at the
(1,0,L) positions for L = 1,2,3,4,5. The correlated order is
three dimensional with ξL = √

2 ln(2) × 1/w = 147 ± 10 Å,
where w(Å

−1
) is the peak’s Gaussian width [Fig. 3(c)]. The

appearance of both L = even and L = odd reflections in a
simple collinear picture of the spin structure is therefore
consistent with recent x-ray results resolving the presence
of two magnetic domains.9 attributable to in-plane structural
twinning in an orthorhombic symmetry.

Looking at the order parameters for both the L = 3 and
L = 2 reflections in Fig. 2(b), the magnetic intensities show
that the L = 2 peak disappears at TAF while substantial
intensity remains at 280 K in the L = 3 reflection. Q scans
plotted in Fig. 3(b) demonstrate this more explicitly. The peak
remaining above 280 K is long-range ordered with a minimum
correlation length of 93 ± 18 Å, comparable to the correlation
length observed at 10 K (97 ± 5 Å). Due to the rather coarse
collimations used, both these values and those of all magnetic
Bragg reflections are resolution limited. At 300 K peaks remain
at the (1,0,L) L = 1,3,4 positions, all forbidden in the reported
structural space groups to date. This same crystal was then
loaded into a furnace and measured at higher temperatures,
where, upon warming, the remnant peaks continue to decrease
in intensity as illustrated in Fig. 3(d); however, they notably
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FIG. 4. (Color online) (a) Rocking scans on a separate crystal
showing the temperature dependence of the (1,0,3) peak above 300 K.
(b) Temperature dependence of the a- and c-axis lattice parameters
measured at the (2,0,0) and (0,0,4) reflections. Integrated intensities
plotted as (c) 100 K with 315 K data subtracted and (d) the total
scattering data at 100 K. Data is compared with two simple collinear
spin models described in the text.

remain present beyond 600 K. The continued temperature
dependence of these peaks above 300 K and the absence of
peaks at higher order L and H strongly imply that this remnant
scattering is magnetic and that an additional magnetic phase
persists beyond 280 K.

In order to verify this in a second sample, a 2 mg crystal
from a separate batch was explored on the C5 spectrometer
with the results plotted in Fig. 4(a). Again, a clear temperature
dependence above 300 K was observed with the remnant
(1,0,3) peak vanishing within the error of the measurement by
450 K. The earlier disappearance of this high temperature AF
peak is likely due to the poorer statistics in the measurement of
this second sample; however, variable oxygen stoichiometry
between samples may also play a role in diminishing the
effective transition temperature.

Due to the presence of two magnetic domains9 and the
rapid attenuation due to the Ir magnetic form factor, it is
difficult to uniquely determine a model of the spin structure
in both the high and low temperature magnetic phases. If we
assume that the scattering seen at 315 K is a separate, saturated,
order parameter, then the additional intensity due to the 280 K
transition is plotted in Fig. 4(c). The rapid disappearance of
magnetic peaks for L > 5 suggests a sizable component of the
moment directed along the c axis, and the best symmetry bound
two-domain model matching the data is a G-type arrangement
of AF-coupled bilayers with moments directed along the
(0,0,1) axis, consistent with a recent x-ray report.14,17 The
ordered moment using this model is μ = 0.52 ± 0.08μB .

Looking instead at the total scattering observed at 100 K in
Fig. 4(d), no simple collinear model captures all of the major
reflections well. Nevertheless, if we again use a twinned G-type
spin structure, a model comprising four magnetic domains with
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two different moment orientations can be constructed. If the
two twin domains added to the previous model have moments
directed along the (1,0,0) axis, this four domain model
roughly fits the data.14 This added domain would comprise
the high temperature phase in a two domain picture, however,
future polarized measurements are required to differentiate
between this multidomain picture, a potential noncollinear spin
structure with an accompanying spin reorientation at 280 K,
and to confirm the magnetic nature of the high temperature
phase.

Our combined data demonstrate the presence of canted
3D antiferromagnetic domains whose phase evolution is
decoupled within resolution from the fluctuation and freezing
behavior at T ∗ and TO [Fig. 2(b)], precluding any additional
major spin reorientations at these temperatures. This suggests
that there remain additional moments weakly coupling8,9 to
fluctuations below TO and eventually freezing below T ∗. Our
measurements in their entirety therefore suggest a picture of
three distinct order parameters driving the phase behavior of
Sr-327: (1) a high temperature phase (of likely magnetic origin)
with Tonset > 620 K, (2) a canted AF magnetic transition at
280 K, followed by (3) the freezing of the T ∗ phase into an
electronically textured ground state.

The T ∗ transition is nominally suggestive of a charge
density wave (CDW) or collective transport mechanism which
becomes depinned above a threshold field, leading to an
avalanche process in the carrier number. The structural lattice
parameters [Fig. 4(b)], however, evolve smoothly as the system
is cooled from 315 to 10 K and, to date, no structural
distortion associated with a conventional CDW formation has
been observed below 300 K,11,18 although, high temperature
structural measurements are a promising avenue for future
studies. An alternative scenario of exchange coupled metallic
islands condensing below T ∗ with a substantial Coulomb
barrier for tunneling may also address the transport mechanism
below T ∗.19,20 Similar non-Ohmic behavior has also been re-

ported in other correlated iridates,21,22 suggesting an electronic
inhomogeneity intrinsic to these 5d-correlated materials.

Curiously, X-ray measurements on a Sr-327 sample with
a qualitatively similar bulk spin susceptibility have reported
the onset of AF order at TO.9 This resonant x-ray scattering
(RXS) study speculated about the presence of short-range
order setting in at TAF and diverging at TO as the reason
for the discrepancy,9 however, our measurements reveal no
appreciable change in the correlation length upon cooling
through TO. Given that more recent RXS measurements show
the onset of magnetism at the expected TAF = 285 K,17

variation in sample quality is likely the cause for the variance
reported between these two RXS studies.

To summarize, our studies have illustrated a complex
electronic ground state in the Sr3Ir2O7 system with multiple
electronic order parameters. Our observation of scattering
consistent with an AF phase extending beyond 600 K is
supported by the absence of Curie-Weiss behavior above the
previously identified TAF (Ref. 11) and also by the rapid
field-induced saturation of the magnetization at 300 K. The
system then transitions through a magnetic transition at TAF =
280 K, and exhibits multiple magnetic domains or alterna-
tively noncollinear spin order in its ground state. The spin
order appears decoupled from two additional energy scales
appearing in transport and bulk susceptibility measurements,
suggesting a fluctuating charge/orbital state that freezes into an
inhomogeneous electronic ground state where tunneling and
sliding effects manifest under increasing electric field strength.
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