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ESSAYS IN APPLIED MICROECONOMIC THEORY

Abstract

by

RADOSLAV S. RAYKOV

Dissertation Committee

M. UTKU ÜNVER

UZI SEGAL

HIDEO KONISHI

This dissertation consists of three essays in microeconomic theory: two focusing on

insurance theory and one on matching theory.

The first chapter is concerned with catastrophe insurance. Motivated by the after-

math of hurricane Katrina, it studies a strategic model of catastrophe insurance in

which consumers know that they may not get reimbursed if too many other people

file claims at the same time. The model predicts that the demand for catastrophe in-

surance can “bend backwards” to zero, resulting in multiple equilibria and especially

in market failure, which is always an equilibrium. This shows that a catastrophe

market can fail entirely due to demand-driven reasons, a result new to the literature.

The model suggests that pricing is key for the credibility of catastrophe insurers: in-

stead of increasing demand, price cuts may backfire and instead cause a “race to the

bottom.” However, small amounts of extra liquidity can restore the system to stable

equilibrium, highlighting the importance of a functioning reinsurance market for large

risks. These results remain robust both for expected utility consumer preferences and

for expected utility’s most popular alternative, rank-dependent expected utility.



The second chapter develops a model of quality differentiation in insurance markets,

focusing on two of their specific features: the fact that costs are uncertain, and the

fact that firms are averse to risk. Cornerstone models of price competition predict

that firms specialize in products of different quality (differentiate their products) as

a way of softening price competition. However, real-world insurance markets feature

very little differentiation. This chapter offers an explanation to this phenomenon by

showing that cost uncertainty fundamentally alters the nature of price competition

among risk-averse firms by creating a drive against differentiation. This force becomes

particularly pronounced when consumers are picky about quality, and is capable of

reversing standard results, leading to minimum differentiation instead. The chapter

concludes with a study of how the costs of quality affect differentiation by considering

two benchmark cases: when quality is costless and when quality costs are convex

(quadratic).

The third chapter focuses on the theory of two-sided matching. Its main topic are

inefficiencies that arise when agent preferences permit indifferences. It is well-known

that two-sided matching under weak preferences can result in matchings that are

stable, but not Pareto efficient, which creates bad incentives for inefficiently matched

agents to stay together. In this chapter I show that in one-to-one matching with weak

preferences, the fraction of inefficiently matched agents decreases with market size if

agents are sufficiently diverse; in particular, the proportion of agents who can Pareto

improve in a randomly chosen stable matching approaches zero when the number of

agents goes to infinity. This result shows that the relative degree of the inefficiency

vanishes in sufficiently large markets, but this does not provide a “cure-all” solution

in absolute terms, because inefficient individuals remain even when their fraction is

vanishing. Agent diversity is represented by the diversity of each person’s preferences,

which are assumed randomly drawn, i.i.d. from the set of all possible weak preferences.



To demonstrate its main result, the chapter relies on the combinatorial properties of

random weak preferences.
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Chapter 1

Does Catastrophe Insurance Obey

the Law of Demand?

1.1 Introduction

Catastrophe insurance is insurance against large-scale, low-probability accidents with

correlated damage, such as hurricanes, earthquakes, and terrorist acts, which affect

many individuals in a single blow. Every year, millions of Americans buy hurricane

insurance in Florida, earthquake insurance in California, and flood insurance in Mis-

sissippi; insurance against financial instrument default can also be considered a form

of catastrophe insurance. Major disasters, however, are often problematic even for

the best-prepared insurers. Although catastrophe risk may not be uninsurable in

principle (Borch, 1990), in reality, major catastrophes have devastating effects not

only on the insured but on the insurers as well (Born and Viscusi, 2006).

Motivated by the aftermath of hurricane Katrina, I study a strategic model of catas-

trophe insurance in which consumers know that they may not get reimbursed if too

many other people file insurance claims at the same time. The model predicts that
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the demand curve for catastrophe insurance can bend backwards to zero, resulting in

multiple equilibria and especially in market failure, which is always an equilibrium in

this model. This result is important for two reasons: firstly, it shows that a catastro-

phe insurance market can fail entirely due to demand-driven reasons, a result new to

the literature; and secondly, it sheds light on why catastrophe insurance markets fail

so often and why California homeowners buy so little earthquake insurance (Cum-

mins, 2006). The model suggests that when consumers use the price as a signal of

solvency, then competitive price-cutting may backfire – instead of generating more

demand, it leads to a “race to the bottom.”

The backward-bending demand curve permits multiple equilibria with different sta-

bility properties. I show that even small amounts of extra liquidity can restore the

system to a stable equilibrium, highlighting the importance of a working reinsurance

market. For expositional purposes I use expected utility, but the results extend read-

ily to alternative risk preferences such as rank-dependent utility (Quiggin 1982; Segal

1987a; Chew, Karni and Safra, 1987).

The paper is structured as follows. Section 1.2 reviews specific features of catastrophe

insurance markets that matter for the model. Section 1.3 reviews the related litera-

ture, and Sections 1.4 and 1.5 present the model. Section 1.6 interprets the results,

while Section 1.7 looks at the effect of aid from reinsurers or the government. Section

1.8 extends the results to rank-dependent utility; Section 1.9 concludes.

1.2 The Market for Catastrophe Insurance

Catastrophe insurance markets operate very differently from the markets for regular

insurance. In regular insurance, such as auto, theft, and industrial accident insurance,

accidents are statistically independent and relatively frequent so that expected losses
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can be predicted accurately using laws of large numbers. It is not so in the market

for catastrophe insurance, where losses are “lumpy” in that they occur rarely, arise

from correlated claims, and require large amounts of liquidity. Due to this, major

disasters often have catastrophic effects on the insurace industry (Born and Viscusi,

2006).

One reason for this is that losses associated with a once-in-a-lifetime catastrophe, such

as Hurricane Katrina, the Northridge earthquake, or the terrorist attacks of 9/11, are

statistically difficult to predict. Since these are very infrequent events, small sample

size makes laws of large numbers uninformative in forecasting future losses; as a

result, the insurer may not have enough funds to service all simultaneous claims.

Although some authors have argued that catastrophic risk is, at least in principle,

fully insurable (Borch (1990), p. 315; Jaffee and Russel, 1997; Zeckhauser, 1995),

opinions agree that in reality, large disasters remain difficult to handle. For example,

Hurricane Katrina, which inflicted over 45 billion dollars of insured losses,1 forced

several major insurers to withdraw from the catastrophe market: Allstate Insurance

exited several West coast states, and State Farm, another major insurer, stopped

renewing policies after 2005. One of Florida’s largest insurers, Poe Financial, went

bankrupt.2 Even major insurers who did not go bankrupt refused to honor thousands

of hurricane policies, leading to an unprecedented wave of lawsuits.

Another reason for insurers’ vulnerability to catastrophes is that the firm may still face

a liquidity problem even if the premium accurately reflects risk. Due to the simultane-

ous nature of losses, catastrophe risks require insurers to hold large amounts of liquid

capital, but institutional factors and capital market imperfections make insurance

companies reluctant to do this (Jaffee and Russel, 1997). For example, accounting

standards prevent insurers from dedicating a capital surplus to fund a specific future

1SwissRe (2006).
2Born and Viscusi (2006); “The Price of Sunshine,” The Economist, June 8, 2006, p. 76.
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loss, even if that loss is likely.3 Setting aside retained earnings to fund catastrophe

risks is also disadvantageous, since retained earnings are taxed as corporate income

in the year in which they are set aside. Finally, holding large amounts of free cash

can make the company a target for a hostile takeover; Blanchard, Lopez-de-Silanes,

and Schleifer (1994) find that “firms that hold the cash [...] are themselves acquired

within a few years.” As a result, holding liquid reserves is unattractive for insurers.

This gives rise to an additional liquidity consrtaint which prevents the disbursement

of numerous large payments at the same time.

The third reason for insurers’ vulnerability to catastrophes is the lack of an adequate

reinsurance market (Froot, 2001). Why the market for disaster reinsurance is so thin

is still an active area of research. Individual companies’ vulnerability to large risks,

while unsurprising, does not explain why insurers are not able to pool and diversify

risks on a larger scale, such as a national market for reinsurance. It is tempting to

think that catastrophe risks are too big to handle even for the nationwide market, but

this reasoning is disputed by Cummins, Doherty, and Lo (2002), who estimate that

the national reinsurance industry has enough capacity to fund up to a 100 billion

dollar accident (more than twice the size of hurricane Katrina), albeit with some

disruptions. Jaffee and Russell (1997) similarly conclude that “there is nothing in the

nature of catastrophe risk as such which prevents the operation of a private market

[for reinsurance].”

Theories differ as to why the market for catastrophe reinsurance is so thin. Froot

(2001) examines eight different explanations and finds that the two most likely causes

are supply restrictions caused by capital market imperfections and market power

exerted by traditional reinsurers. By contrast, Ibragimov, Jaffee and Walden (2009)

see the weak reinsurance market for catastrophe risks as a consequence of “non-

3See Financial Accounting Standards Board (FASB) Statement No. 5, “Accounting for Contin-
gencies”. The effects of this accounting rule are discussed in Jaffee and Russel (1997).
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diversification traps”. They argue that insurance companies have no incentives to

diversify catastrophe risks, since diversifying risks with heavy-talied distributions can

increase the riskiness of the resulting portfolio. For the diversification to be successful,

the process requires coordination between firms, a feature absent from reality. Thus

Ibragimov et al. see the thin reinsurance market as the result of a coordination

problem.

Failures of primary insurance markets have often resulted in government intervention.4

For example, the failure of the private market for flood insurance prompted the U.S.

government to charter the National Flood Insurance Program (NFIP) in 1968, which

survived financially until the hurricane losses from 2004 and 2005. The California and

Florida hurricane markets similarly experienced difficulties after hurricanes Andrew

in 1992 and Katrina in 2005; in response, the State of Florida created the FRPCJUA,

a “residual market facility” providing insurance to those unable to find coverage on

the private market.

The government also stepped in to save the California earthquake insurance market

after the 1994 Northridge quake. According to the California Department of Insurance

(1995), companies representing 93 % of the market stopped offering homeowners’

insurance or imposed strict liability limits after the earthquake. In response, the

California legislature chartered the California Earthquake Authority (CEA) – a quasi-

government entity with a mandate to write insurance at actuarially sound prices.

The intervention succeeded in bringing companies back, as by 2005, more than 150

private insurers had joined the market.5 Despite this, California homeowners remain

remarkably reluctant to buy earthquake insurance even at actuarially fair prices.

Cummins (2006) writes that this remains “somewhat of a puzzle in the California

4This summary is based on the discussion in Cummins (2006).
5See California Department of Insurance (2005).
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market”. My model shows that such consumer behavior is optimal in the presence of

liquidity constraints that affect the insurer’s ability to pay many simultaneous claims.

Hurricane Katrina’s aftermath showed that the risk of claim denial can be substantial

even if the insurer does not go bankrupt. In the wake of the hurricane, insurers denied

payments to thousands of Mississippi homeowners, using a legal loophole that allowed

them to interpret the policies as insurance against wind damage but not against wind-

driven water damage. As a result, three thousand Mississippi policyholders filed a

class-action lawsuit against insurers Allstate, MetLife, State Farm, and USAA, while

Mississippi’s Attorney General, Jim Hood, independently filed a separate lawsuit.6

Two especially famous cases ruled by the same judge were Leonard vs. Nationwide7

and Broussard vs. State Farm.8 The court ruled against the Leonard family who

claimed that the policy terms were misleading, but sided with the Broussard family,

which argued that irreparable wind damage had already occurred before their house

was flooded.

The broad media coverage of the lawsuits suggests that homeowners likely take such

information into account when considering how much insurance to buy. Here I propose

a model of catastrophe insurance in which consumers take each other’s insurance

purchases into account, knowing that the more people file claims at the same time,

the lower is the likelihood of obtaining a payment. This leads to a strategic setup

in in which consumers strategize against other consumers, rather than against the

insurer, as in the traditional literature.

6Fox News, July 11, 2006.
7“Katrina damage ruling bad news for homeowners,” The Houston Chronicle, Aug. 15, 2006.
8“Jury Picked to Hear Katrina Insurance Lawsuit,” The Washington Post, Jan. 8, 2007.
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1.3 Related Literature

Authors studying insurance contracts with uncertain repayment typically refer to

them either as “nonperforming contracts” (Doherty and Schlesinger, 1990) or “prob-

abilistic insurance” (Kahneman and Tversky, 1979). The common feature of most

such models is that the probability of insurer default is either exogenous or determined

by factors independent of the price of insurance and of consumers’ actions.

Doherty and Schleisinger (1990) were among the first to analyze the response of

insurance demand to exogenous changes in the probability of default; they consider

the long-run case when the insurer always has a non-negative profit. I begin with a

similar theoretical setup, but improve on their model by endogenizing the probability

of default and by extending the analysis to the short run, where firms can incur losses

as well as profits. Next I introduce correlation between insurance claims, a feature

typical of catastrophe insurance, and permit insurance customers to strategize against

each other, a feature not considered by Doherty and Schleisinger or the remaining

literature.

Strategic situations are common in the context of insurance, but they usually take

place either among competing oligipolists, or between buyers and sellers. Strategizing

is typically made possible by the presence of asymmetric information combined with

a signal, such as a price or an interest rate (e.g., Akerlof (1970); Rotschild and Stiglitz

(1976); Shavell (1979); Wilson (1977); Hellwig (1987); Green (1973), Grossman and

Stiglitz (1976), and others.9 For example, in Rotschild and Stiglitz (1976), the prices

of separating insurance contracts act as signals that sort customers into high-risk and

low-risk types.) However, the existing insurance literature has focused mainly on

games where consumers play against the insurer, and more rarely, on games where

9The reader is referred to Laffont (1989) for a survey and to Dionne et al (2000) for a detailed
summary of this literature.
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insurers play against each other.10 By contrast, I introduce an insurance model in

which consumers strategize against other consumers; this feature is meant to model

the aftermath of hurricane Katrina, where the large number of simultaneous claims

caused serious difficulties for insurers.

This paper is related to Zanjani (2002) and Cummins and Danzon (1997), who also

consider savvy consumers mindful of the probability of default. Zanjani (2002) studies

a model of catastrophe insurance pricing where demand is assumed decreasing in the

price and increasing in the chance of reimbursement, without considering the endoge-

nous relation between the two. Cummins and Danzon (1997) model the relationship

between loss shocks, capitalization and insurance prices, but only in markets without

strategic consumer interactions. They find empirically that insurers with high default

risk price their policies cheaper than insurers with low default risk, an observation

consistent with the predictions of my model.

Newer work by Cummins and Mahul (2003) studies the market for catastrophe rein-

surance when the buyer and the insurer have divergent beliefs about the probability of

default, and Hoy and Robson (1981) along with Briys, Dionne and Eeckhoudt (1989)

study whether insurance can be a Giffen good, but only in the context of certain,

non-probabilistic insurance. To my knowledge, the present literature features little

discussion of any variation of the probability of default due to consumers’ actions, an

issue that here is key.

By contrast, in my model the probability of default arises endogenously as a result

of consumers’ response to the current price. Price-taking consumers observe the

going price and compute the probability of default, taking into account remaining

demand by other consumers; they consider whether at this value of total demand, the

10For example, Ibragimov, Jaffee and Walden (2009).
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going price guarantees enough solvency in order to pay everyone, and buy insurance

accordingly.

1.4 Model

I perform a short-run analysis of a stylized insurance market based on the description

of the catastrophe insurance market in Section 1.2. I assume a large number of

identical consumers, represented mathematically by a continuum of agents of measure

1; there is a large finite number K of identical firms. The evidence from Section

1.2 suggests that despite the presence of large government-created entities in some

catastrophe markets, private insurers can be modeled as price-takers, as government

entities do not engage in monopoly pricing11 (Cummins, 2006). The existence of

the California Earthquake Authority, for instance, does not seem to have hindered

either competition or market entry in the California market, which has more than

150 private insurers operating at present; based on this, I model private firms as

price-takers.

Each firm k begins with an initial set of consumers Sk of measure sk (0 < sk <

1,
∑K

k=1 sk = 1), interpretable as the firm’s market share. It will be shown that

market shares become equal given a fixed price, therefore the initial distribution of

market shares does not matter and can be assumed arbitrary.12 Aggregated demand

x for insurance at firm k is the sum (integral) of individuals’ consumption amounts

xi integrated over the set Sk, so that x ≡
∫
Sk
xidi. This formulation captures the

idea of an individual consumer who is too small to affect total demand. Indeed, if we

11For example, the CEA’s legal mandate obliges it to price policies close to the expected actuarial
loss.

12Formally, one can also look at this as a two-stage game where the customer first chooses from
which firm to buy, and then a quantity demanded. However, solving by backward induction reveals
that the first stage is trivial: as in second-stage equilibrium, all firms will offer exactly the same
terms, the choice of firm is not a strategic variable.
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denote the summary consumption of all agents other than i with x−i, it is trivial to

verify that

x =

∫
{Sk}

xjdj =

∫
{Sk\i}

xjdj = x−i, so
dx

dxi
= 0.

Consumers are price-takers: each consumer is too small relative to the market in order

to be able to move the price, total market demand, or the probability of non-payment

by his insurance company. Each consumer owns initial wealth w0; conditional on a

catastrophe, there is a chance γ (0 < γ ≤ 1) that his property is destroyed, inflicting

a loss of $ L (the value of his property); then his wealth becomes (w0 − L). A

catastrophe occurs with exogenous probability π, while γ is the conditional chance

that the particular individual is affected, so the unconditional probability that each

agent suffers a loss is p = γπ.

Every consumer i has to decide how much coverage xi (0 ≤ xi ≤ L) to buy at the going

price of $ q per dollar of coverage, which the consumer takes as given. The consumer

first chooses an insurance company and then the quantity of insurance demanded.

Each company’s product has two characteristics: price and “quality.” By “quality”

I understand that in the event of accident, there is a (conditional) chance r that the

chosen insurance company denies the consumer’s claim and refuses payment, resulting

in final wealth w0 − qxi − L. In Proposition 2, it will be shown that in competitive

equilibrium, all firms offer the same terms (price and quality) of insurance, so that

the initial distribution of customers across firms does not matter (if one firm’s terms

are worse than another’s, the consumer can switch). Consumers do not distinguish

whether they are denied because of a bankruptcy affecting everyone else, or due to

a partial default affecting only some people; what matters to the individual is only

his own reimbursement. Each consumer is too small to affect r by his choice of

coverage and takes r as given, so when deciding on the optimal choice of coverage,
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each consumer i faces the lottery

X ′ = (w0 − qxi, 1− p ; w0 − L+ (1− q)xi, p(1− r) ; w0 − L− xiq, pr).

Each consumer has the same, strictly concave vonNeumann-Morgenstern utility func-

tion u(·) over money, and evaluates the lotteryX ′ using expected utility. To determine

the optimal choice of insurance, she solves the problem

max
xi

EU [X ′(xi)] s.t. qxi ≤ w0

with associated first-order condition

−q(1−p)u′(w0−qxi)+p(1−q)[1−r]u′(w0−L+(1−q)xi)−pqr u′(w0−L−qxi) = 0.

The probability r of non-payment, although taken as given by each individual agent,

is determined endogenously within the model; individual agents are simply too small

to move it by varying xi. In reality, r varies depending on how much liquid resources

i’s chosen firm has, compared to how much it needs in order to cover the accident A.

Because individual losses are correlated, the firm needs more liqudity than the uncon-

ditional expected loss πγx, in contrast with regular insurance. Since each consumer

is affected with probability γ conditional on a catastrophe, a fraction γ of insured

properties is destroyed when the disaster arrives (1 ≥ γ > 0); the parameter γ reflects

the severity of the disaster and captures the correlation between claims. Then the

insurer’s expected payout in the event of accident A is

E[Claims|A] = γx.

11



At price q and demand x, the firm collects total revenue t = qx; therefore, when

q ≥ γ, the insurer is fully solvent even if he starts with zero liquid reserve from

previous years. I consider this case first; section 1.7 extends the results for the case

where the insurer has a previously accumulated reserve of $R.

Even when the firm sells insurance at a price that guarantees solvency, additional

factors typically prevent it from holding its entire revenue liquid. Jaffee and Rus-

sell (1997) have found that exogenous institutional factors – accounting, taxes, and

takeover risk – make insurers unwilling to hold large amounts of liquid capital, thereby

exacerbating the liquidity strain caused by the thin reinsurance market. I model these

external factors with an exogenous liquidity function α(t), a rule that tells the firm

how many dollars to keep liquid out of a given total revenue t. Since the influence of

institutions is external, I assume α exogenous and make only minimal assumptions

about it; my results depend only on the assumption that liquidity increases with rev-

enue and does so without abrupt jumps (α(t) is increasing, continuous, α(0) = 0 and

α(t) ≤ t (∀t)). This assumption is plausible and is the only assumption I make about

α. To reflect insurers’ unwillingness to keep large liquid funds, one can additionally

assume that liquid funds as a fraction of total revenue (the quantity α(t)/t) decreases

in t, that is, that the liquidity constraint α is binding, but this assumption is not

essential.13 The dollar amount of expected unpaid claims in the event of accident A

is therefore

E[Unpaid Claims|A] ≡ γx− α(qx).

If an accident occurs and the insurer has less liquidity than needed to pay the claims,

he randomly picks whom to pay and whom to refuse until he exhausts all available

money. Claims are either paid in full or denied in full; the evidence quoted in Section

1.2 suggests that cases of partial payment are very rare. If a disaster does not occur,

13However it is more realistic and suggests an explanation for the California earthquake insurance
puzzle (see Section 1.6). One can also assume α(t) ≡ t; the details are given in the proofs.
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the insurer keeps the entire revenue qx, and either invests it in long-term assets, or

sets aside a liquid reserve of $R ≤ qx for the future; that case is considered in Section

1.7. I define the probability of claim rejection r as the ratio of the expected unpaid

claims to total claims:

r =
E[ Unpaid claims|A]

E[ Claims|A]
=
γx− α(qx)

γx
= 1− α(qx)

γx
.

Since consumer i’s demand also factors in x, technically r depends on the choice of xi.

However, since x = x−i, each consumer ignores his own influence on r as negligible

and faces a probability of being rejected equal to

r = 1− α(qx−i)

γx−i
.

Since r = r(x−i), others’ consumption x−i also enters consumer i’s first-order condi-

tion

− q(1− p)u′(w0 − qxi) + p(1− q)[1− r(x−i)]u′(w0 − L+ (1− q)xi)

− pqr(x−i)u′(w0 − L− qxi) = 0

which from here on, I denote as G(xi, x−i) = 0. In this setup, i’s optimal choice of

insurance depends on other agents’ aggregate consumption x−i.

1.5 Strategic Competitive Equilibrium

I approach the problem using the solution concept of competitive equilibrium. Since

all agents are the same, I further narrow down the solution concept to symmetric

competitive equilibrium.

13



Definition 1. A symmetric competitive equilibrium is a triple (x∗, q∗, r∗) such

that:

(a) x∗i = argmaxxiEU [X ′] for each i, and x∗i = x∗j (∀i, j at firm k)

(b) At price q∗ the market clears, and

(c) r∗k = r∗` = . . . = r∗K for all firms k, `, . . . K.

Since individual optimal choices strategically depend on each other, it is more ap-

propriate to refer to this as strategic competitive equilibrium, although incentive

compatibility follows from the Definition. (If no profile of strategies {x∗} constitute

mutually best responses at the market-clearing price, clearly existence of competitive

equilibrium also fails). Definition 1 also implies that in competitive equilibrium, no

agent has an incentive to switch firms, as every firm offers the same probability of

rejection and the same price.

I will prove existence of strategic competitive equilibrium in two steps: first I will

show that given a fixed price q > 0, there exist values of xi (i ∈ Sk) and r1, . . . , rK

that satisfy parts (a) and (c) of Definition 1, and then I will proceed to show that

there is a price q that clears the market; at that price q∗, all three parts of Definition

1 will hold.

I first show that given a positive price, a mutually compatible profile of best con-

sumption choices exists for all agents within a firm. For a given fixed price q > 0,

this is easiest to represent as a game Γ parametrized by the price. One can think of Γ

as a game in which each agent i plays against remaining consumers at the same firm

(henceforth, rest of the firm’s market) about how much consumption to choose at a

given fixed price. This is consistent with the previous discussion that the resource

constraint occurs on the firm level: that is, insurers cannot lend or borrow from each

other, neither are they allowed to pool risks by purchasing reinsurance due to the
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failure of the reinsurance market. In the interest of clarity, I suppress all firm-specific

notation; I reintroduce firm indices in the aggregation stage.

Given a price of isnurance q, define the infinite-player game played at firm k as

Γ = {(i ∈ Sk,−i); (xi∈Sk
, x−i); (vi∈Sk

, v−i) | q} ,

in which:

• Players are agents i ∈ Sk, plus the rest of the firm’s market, denoted as player

−i;

• Each i ∈ Sk plays against rest of the firm’s market −i, but not directly against

other individual consumers j ∈ Sk;

• Agents choose actions xi ∈ [0, L], and rest of the firm’s market −i “selects”

consumption x−i ∈ [0, skL];

• The behavior of the individuals is governed by payoff functions vi(xi, x−i) =

EU [X ′];

• The behavior of the rest of the firm’s market is governed by the response func-

tion R−i =
∫
{Sk\i}

xidi, equal to the integral of individual responses of other

consumers.

Using this formalization, it is possible to show that given a postive price q, part (a)

of Definition 1 is satisfied:

Proposition 1. Given a price q > 0, at each firm k there exists a symmetric con-

sumption profile {x∗i }i∈Sk
such that x∗i = argmaxxiEU [X ′] for each i, and x∗i =

x∗j (∀i, j).

Proof: In the Appendix. �
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It remains to be seen whether the market can equilibrate in terms of the rejection

probabilies rk at different firms k. So far I looked at the symmetric consumption

levels x∗,k at each particular firm k, but there is no guarantee that consumers at a

different firm ` choose the same symmetric amounts. The next Proposition shows

that it is again possible to approach this question separately for every price. Here I

prove three important results:

Proposition 2. Given a price q > 0:

a) Symmetric equilibrium consumption levels are the same across firms: x∗,k = x∗,`

for every two firms k and `.

b) All firms have equal shares and equal amounts of consumers: sk = s` = 1
K

(∀k, `)

c) All firms have the same probability of non-payment: rk = r`, (∀k, `).

Proof. In the Appendix. �

The last proposition implies that, given a price q > 0, part (c) of Definition 1 also

holds. Since (a) and (c) hold for any price including the market-clearing price, this

permits us to look at demand and supply separately as a function of the price, as in

a standard model.

To find symmetric competitive equilibrium, it remains only to prove that a market-

clearing price exists, that is, that supply and demand intersect. To do this I first

derive the market demand curve, which is of special interest on its own. Note that

the last Proposition also simplifies the aggregation of demand curves into market

demand. Each consumer has the same demand curve x∗i (q); each firm also has the

same firm-specific demand curve xk(q) = (1/K)x∗i (q). Therefore, market demand is

D(q) = K ·xk(q) = x∗i (q). In other words, market demand and individual demand are

the same, a shortcut I use to simplify aggregation. From here, it suffices to describe

the shape of the individual consumer’s demand; the result for the market follows

automatically.
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Next I show that consumer demand in this model is described by an unusual-looking

demand curve which converges to zero at low prices; the intuition behind this is given

by three steps:

Step 1. When the price q → 0, the probability of non-payment r → 1

regardless of the path of demand x(q).

Step 2. At r = 1, optimal consumption is x∗i = 0 at every positive price.

Step 3. By continuity of expected utility preferences, optimal consump-

tion x∗i approaches 0 when q → 0.

Steps 2 and 3 are very intuitive, so they are proven in the Appendix. The claim in

Step 1 is less apparent. If we take q → 0 and demand x(q) indeed converges to zero

as hypothesized, then r’s limit is an indeterminacy of the kind [0/0]. It is not obvious

where this expression tends to (indeterminacies of the kind [0/0] can theoretically

converge to any real number, or go to infinity). The next proposition resolves the

indeterminacy by showing that when q goes to zero, the probability of non-payment

r approaches unity regardless of the path of demand, a result that is key.

Proposition 3. The function

r(x, q) = 1− α(qx)

γx
satisfies lim

q→0
r(x, q) = 1

on the domain x ∈ (0, skL], where α(t) is an increasing, continuous function s.t.

α(0) = 0 and α(t) ≤ t.

Proof. In the Appendix. �

The last Proposition provides justification for Step 1, and jointly the three steps

establish the fact that at near-zero prices, demand tends to zero: limq→0[x∗i ] = 0.

Note that this statement does not imply that x∗i (0) = 0. Indeed, at the zero price,
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demand is multiple-valued: when insurance is free, one can buy any amount even

if that insurance is useless, i.e. never pays back; however, none of the main results

depend on this, as shown in Proposition 5.

With the help of the last three propositions, we are now in possession of the following

facts:

• Fact 1. As the price of insurance converges to zero, so does individual demand:

limq→0[x∗i ] = 0.

• Fact 2. From standard theory, at a sufficiently high price qH , the quantity

demanded becomes zero: x∗i (q
H) = 0.

• Fact 3. By Lemma 2 in the proof of Proposition 1 (see the Appendix), there

exists a price q̄ at which demand is positive: x∗i (q̄) > 0.

• Fact 4. By the proof of Proposition 1 and the implicit function theorem, demand

x∗i (q) is differentiable and therefore continuous in the price q.

Facts (1)-(3) pin down three points on the price-quantity plane through which the

demand curve must pass. Facts (2), (3) and (4) jointly imply that the demand curve

has a downward-sloping portion at sufficiently high prices,14 while facts (1) and (4)

imply that the demand curve has an upward-sloping portion near q = 0. Fact (4)

rules out the possibility that quantity demanded returns to zero in a discontinuous

“jump.” Since in this model, market demand and individual demand coincide, this

implies that

Proposition 4. Facts (1)-(4) imply that the market demand curve has an upward-

sloping portion at prices near q = 0 and a downward-sloping portion at prices near

qH .

14Because demand is continuous by Fact 4.
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The last Proposition implies that the demand curve for catastrophe insurance is

backward-bending, one of the main results of this paper. To complete the existence

proof for strategic competitive equilibrium, one needs to verify that a market-clearing

price exists, that is, that supply and demand intersect; this is done in the next section.

1.6 Discussion and Interpretation

The backward-bending demand curve permits anomalies that cannot arise in a reg-

ular market. In particular, it can generate multiple equilibria with distinct stability

properties, but the exact equilibria that will occur depend on the properties of supply.

To permit for the richest set of outcomes, I again make minimal assumptions about

supply. Consistent with price-taking,15 I assume that the competitive firm’s supply

equals its marginal cost above the shut-down price (i.e. above minimum average vari-

able cost), and that marginal cost is non-decreasing in quantity, but make no further

assumptions. For example, marginal cost could be constant or irregular-shaped, but

the model still delivers a stark result.

Proposition 5. There exists at least one price q∗ that clears the market. In partic-

ular, the zero-price, zero-quantity combination (q∗ = 0, x∗ = 0) is always a strategic

competitive equilibrium.

Proof: In the Appendix. �

Proposition 5 shows that at least one strategic competitive equilibrium exists, but

more importantly, highlights that market failure is always an equilibrium in this

model, in addition to any non-degenerate equilibria. This provides a distinct demand-

side view on the frequent failures of catastrophe markets. What Proposition 5 implies

15Recall price-taking is consistent with the evidence about the private earthquake insurance market
in California.
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is that consumer distrust in the paying ability of insurers is already a sufficient cause

for the market to fail, a result new to the catastrophe literature. In addition, the

model suggests that when consumers use the price as a signal of solvency – which in

this line of business seems more than likely – then competitive price-cutting techniques

may backfre: instead of generating more demand, they lead to a race to the bottom.

An illustration of a few such anomalies appears in Fig. 1.1.

q

x(q)

Demand curve

x** x*

q**

q*

S

Stable equilibrium

Unstable equilibrium
Market failure

S0

S1

x(q)

q

Stable 
equilibrium

Market failure

Figure 1.1: Demand anomalies in the market for catastrophe insurance

The first anomaly that can arise is the existence of multiple equilibria, and in par-

ticular, of market failure, which is always an equilibrium in this market, as shown in

Proposition 5. A competitive firm will stop producing when the price falls below the

minimum of average variable cost, so supply at the zero price is S(0) = 0; since de-

mand at the zero price is a horizontal line (multiple-valued, as discussed before), this

ensures that also x(0) = 0, so supply and demand always intersect at the zero-price,

zero-quantity combination. Unlike other models, market failure here is generated

entirely by the demand side.

However, other equilibria with distinct stability properties may also exist. For exam-

ple, the market in Fig. 1.1 (left) has three distinct equilibria: a stable equilibrium
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(q∗, x∗), an unstable equilibrium at (q∗∗, x∗∗), and a stable market failure point (0, 0).

The equilibrium (q∗∗, x∗∗) is unstable: if q is between q∗∗ and q∗, excess demand puts

upward pressure on prices, while at prices q < q∗∗, excess supply pushes prices down

to the market failure point (0,0); therefore the smallest price perturbation results

either in going back to the stable equilibrium or in market failure. Fig. 1.1 (right)

illustrates the case of flat marginal costs, where marginal cost equals the shutdown

price. In this case there are only two equilibria: market failure and one stable equi-

librium where demand intersects marginal cost. It is also possible to have a situation

where market failure is the only equilibrium, such as when the shutdown pice is zero

and marginal cost is sufficiently flat, as reflected by the supply curve S1. In all cases

market failure remains as a possible equilibrium.

Another interesting anomaly in the market for catastrophe insurance is the so-called

California earthquake insurance puzzle, described by Cummins (2006):

“Something of a puzzle in the California market, however, is that only

a small proportion of eligible property owners actually purchase the in-

surance. In the homeowners market, 33 percent of eligible properties

purchased earthquake insurance in 1996, [...] but only 13.6 percent had

insurance in 2003. The rationale usually given for the low market pen-

etration is that most buyers consider the price of insurance too high for

the coverage provided, even though premiums are close to the expected

losses.”

My model formalizes the intuition suggested by Cummins (2006), but in addition

suggests an alternative explanation of the California puzzle. Jaffee (2005) observes

that “It seems that many homeowners consider the premiums to be high relative

to the coverage provided” (p. 208), but provides no formal analysis. If prices are

“too high” yet pricing is close to the expected loss, the surcharge must be coming
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from the correlation of claims. To illustrate this, consider a rare disaster which

occurs only once per century with a chance π = 1%, but is quite severe and destroys

80% of insured properties, so γ = 0.8. Each individual is affected with probability

p = πγ = 0.8%, but the fully-solvent price in the model is higher than 0.8 cents. To

see this, consider the extreme case where the firm starts with no prior reserves;16 then

the fully-solvent price is q = γ = 0.8, since the expected payout in case of accident is

E[Claims |A] = γx. In this case, the consumer pays 80 cents per dollar of coverage

in order to cover a risk smaller than 1%, a clearly unattractive pricing exceeding the

“actuarially fair” price (from the standpoint of the consumer) by a factor of 10. Of

course, in reality firms accumulate disaster reserves throughout multiple years, which

mitigates the price differential between the fully-solvent and actuarially fair price and

moderates some of the worst anomalies, as will be shown in Section 1.7. Nonetheless,

a surcharge above the actuarially fair price always remains, because individual risks

are correlated; thus the fully-solvent price is not actuarially fair, and a risk-averse

consumer will not buy full insurance at that price, consistent with what we observe

in the California market. Therefore my model agrees with the intuition in Jaffee

(2005), but in addition, suggests additional insights on the California puzzle.

Even at the fully-solvent price, the model is capable of generating reduced demand

if the insurer keeps less than 100% of the revenue liquid. If the liquidity constraint

α is binding, as suggested by Jaffee and Russell (1997), the institutional factors

described in Section 1.2 create strong disincentives for insurers to keep revenue liquid,

so they prefer to convert revenues to illiquid, but more advantageous assests (from the

standpoint of accounting and tax law). But the lower the fraction of liquid revenue,

the higher is the probability of claim refusal, and the lower is demand compared to

the textbook model. The tighter is the constraint α imposed by the institutional

factors, the lower is the quantity demanded. This provides additional insight into the

16The effect of previously accumulated reserves is discussed in the next Section 1.7.
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California earthquake insurance puzzle, as facts about the solvency and liquidity of

the CEA suggest that consumers may simply distrust that they will be paid back.

Cummins (2006) observes that the CEA has claims-paying abillity of about $7 billion,

or just above one-third of the $18 billion loss inflicted by the Northridge earthquake

and states that “it is probable that the CEA could withstand damages on the scale of

Northridge.” However, this statement reflects solvency, not liquidity. In the presence

of Jaffee-Russell type liquidty constraints, it is unlikely that the CEA’s liquidity is

sufficient to address a major disaster, even if one is willing to disregard the $11 billion

difference between the Northridge damage and CEA’s paying ability. Since FEMA

disaster assistance is not intended as a substitute for property insurance17 and does

not guarantee help in the event of claim denial,18 homeowners’ distrust in the paying

ability of their insurer may be another demand-reducing factor in addition to the

already high price.

Low-demand situations such as the California insurance puzzle provide a different,

demand-side perspective on why a catastrophe insurance market can fail. So far,

insurance market failures have been viewed as strictly supply-side phenomena driven

entirely by firm exit, based on evidence of insurers discontinuing or limiting coverage

after major disasters (e.g. in Ibragimov, Jaffee and Walden (2009) or Born and Viscusi

(2006)). The California earthquake puzzle, however, suggests that there may be a

demand-side component to market failures as well. A market failure can occur not

only because nobody is selling, but also because nobody is buying, and the model

highlights precisely this possibility.

17For example, FEMA (2011) defines disaster assistance as follows: “Disaster assistance is money
or direct assistance to individuals, families and businesses in an area whose property has been
damaged or destroyed and whose losses are not covered by insurance. It is meant to help you with
critical expenses that cannot be covered in other ways. This assistance is not intended to restore
your damaged property to its condition before the disaster.”

18Owners of insured properties can receive FEMA assistance only if they have already received
the maximum settlement from their insurer and can still demonstrate they have an unmet need, but
even then aid is not guaranteed. See FEMA (2011).
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1.7 Policy Implications and the Role

of Reinsurance

I conducted the analysis in Section 1.4 based on the axiom that the insurer starts with

no liquid reserves from previous years. Here I relax this assumption to allow an initial

reserve of $R, coming either from previous years or from an external source, such as

a reinsurer or the government. I show that the qualitative result about the shape

of demand remains largely intact, but highlights the importance of extra liquidity

and particularly of reinsurance. The next proposition shows that having a reserve

somewhat mitigates the degree of bending of the demand curve, depending on the

reserve size. If the firm “inherits” (or receives) an extra $R and keeps $α(R) liquid

in accordance with its liquidity rule, then the liquidity constraint function becomes

α(R + qx), and the following result holds:

Proposition 6. As q converges to 0, individual demand x∗i converges to a limit that

satisfies

lim
q→0

x∗i (q) ≥
α(R)

γ
> 0.

Proof. In the Appendix. �

Proposition 6 implies that extra liquidity shifts the backward-bending portion of the

demand curve to the right. Consider the effect of providing extra liquidity in the

case of the equilibrium (q∗∗, x∗∗) in Fig. 1.1 (left). A reinsurer or the government

provides additional liquidity α(R), thereby shifting demand’s horizontal intercept to

the right to a positive constant. At q∗∗, now there is excess demand which puts

upward pressure on prices, resulting in recovery to the stable equilibrium (q∗, x∗).

A similar story holds for Figrue 1 (right): extra liquidity is sufficient to “walk” the

system to a stable equilibrium even if it starts from the point (0,0). Moreover, even

a very small amount of aid, α(R) = ε > 0 is sufficient to do the job. I interpret this
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as a highlight of the importantnce of the reinsurance market, which acts positively

on consumer confidence not so much by providing actual liquidity but by its ability

to do so, similar to the role of the FDIC in preventing bank runs.

1.8 Other Risk Preferences

In the context of small-probability, large-destruction events such as catastrophes, one

can argue that decision-makers may mentally “amplify” the probabilities associated

with particularly bad outcomes; if so, expected utility is no longer the appropriate

risk preference to use, as illustrated by a number of classical examples such as the

Allais paradox. For instance, a decision-maker who exaggerates the probability of

catastrophe may in fact want to purchase more, not less insurance, at low prices.

Here I argue that my model’s results remain intact for a large class of non-expected

utility preferences, known as rank-dependent expected utility (Quiggin, 1982; Chew,

Karni and Safra 1987), which accommodate the Allais paradox and other behavioral

phenomena (Segal 1987a, 1987b).

The rank-dependent utility of a lottery X = (x1, p1, . . . xn, pn) is defined as:

RD(X) =
n∑
i=1

u(xi)

[
ν

(
i∑

k=1

pk

)
− ν

(
i−1∑
k=1

pk

)]
,

where ν is a concave increasing differentiable function, called probability transfor-

mation function, from [0,1] onto [0,1], which satisfies ν(0) = 0, ν(1) = 1 (Segal

1987a; Chew, Karni and Safra, 1987). Rank-dependent risk preferences use “decision

weights” instead of the underlying probabilities of each outcome. If one regards an

outcome’s probability as the change in cumulative probability in the lottery’s dis-

tribution, then the rank-dependent functional assigns to each outcome a cumulative

probability change ∆ν, interpreted as a decision weight. Decision weights allow an
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“amplification” of the importance of some outcomes relative to others in the decision-

making process; for a survey of insurance problems using rank-dependent utility, see

Dionne (2002).

The rank-dependent valuation of the insurance lottery X ′ faced by the customer is:

RD(X ′) = u(w0 − qxi)ν(1− p) + u(w0 − L+ (1− q)xi)[ν(1− pr)− ν(1− p)] +

+ u(w0 − L− qxi)[1− ν(1− pr)]

with associated first-order condition G(xi, x−i) = 0 which takes the form

− qu′(w0 − qxi)ν(1− p) + (1− q)u′(w0 − L+ (1− q)xi)[ν(1− pr)− ν(1− p)]

− qu′(w0 − L− qxi)[1− ν(1− pr)] = 0.

To reflect the new risk preference, I modify the definition of competitive equilibrium

by requiring individuals to maximize their rank-dependent valuations of the lottery

X ′, thereby replacing EU [X ′] in Definition 1(a) with RD[X ′]. The payoff function of

agent i in the game Γ is now

vi = RD(X ′(xi, x−i))

and as before, it remains strictly concave in the consumption of insurance xi because

∂2vi
∂x2

i

= q2u′′(w0−qxi)ν(1−p)+(1−q)2u′′(w0−L+(1−q)xi)[ν(1−pr)−ν(1−p)]+

+ q2u′′(w0 − L− qxi)[1− ν(1− pr)] < 0

as u′′(·) < 0 and the increasing, differentiable probability transformation function

ν satisfies ν(0) = 0, ν(1) = 1 so that the resulting weights satisfy ν(1 − p) > 0,
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[ν(1− pr)− ν(1− p)] ≥ 0, and [1− ν(1− pr)] > 0, which implies a strictly negative

sum.

Using these results, it is not difficult to formulate a result analogous to Proposition

1. To this end we only need to modify the part of Proposition 1’s proof contained in

Lemma 1 in the appendix. I denote its rank-dependent version with Lemma 1*.

Lemma 1*. When each agent i uses rank-dependent preferences to evaluate risk,

then:

(a) The best response BRi(x−i) is single-valued.

(b) BRi(x−i) is differentiable and always weakly decreasing in x−i; if in addition, the

liquidity constraint α(t) is binding, then BRi(x−i) is stictly decreasing in x−i.

Proof. In the Appendix. �

The remaining propositions carry over without modification. For example, Lemma 2

in the proof of Proposition 1 (existence of Nash equilibrium) uses only the fact that

BRi(x−i) is continuous and decreasing, which is preserved by the rank-dependent risk

preference, so the proof carries over without change. The same is true of Propositions

3, 5, and 6, which do not refer to individual risk preferences. It remains only to verify

Steps 2 and 3 that lead to the main result in Proposition 4, for the rank-dependent

case; I relabel their rank-dependent versions to Step 2* and 3*, respectively.

Step 2*. When r = 1, optimal consumption is x∗i = 0 at any q > 0.

Proof. The optimal choice of x∗i using RD preferences and given r = 1 is the solution

to

max
xi
{u(w0 − qxi)ν(1− p) + u(w0 − L− qxi)[1− ν(1− p)]}
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with first-order condition

−qu′(w0 − qxi)ν(1− p)− qu′(w0 − L− qxi)[1− ν(1− p)] < 0 (∀x ≥ 0,∀q > 0)

which imples that the maxium occurs at the left corner solution x∗i = 0. �

Step 3*. Optimal consumption x∗i → 0 approaches 0 when q → 0.

Proof. Since q → 0 implies r → 1 regardless of x, and since at r = 1 optimal con-

sumption is 0, by continuity of RD preferences (proven in Lemma 3 in the Appendix)

it follows that x∗i → 0. �

The last two steps make sure the main result from Proposition 4 continues to hold

and the demand curve retains its backward-bending shape, preserving all qualitative

results obtained so far.

1.9 Conclusion

I study a strategic model of catastrophe insurance in which consumers take each

other’s actions into account, knowing that they are competing for the same, limited

financial resource. The model shows that the demand for catastrophe insurance can

“bend backwards,” resulting in low-price, low-demand equilibria and especially in

market failure, which is always an equilibrium. This highlights a new fact: that a

competitive insurance market can fail entirely due to demand-side reasons, a scenario

new to the catastrophe literature. The model also suggests that pricing is key for

the credibility of catastrophe insurers: price-cutting techniques originally aimed at

increasing demand can backfire and instead pull it down, leading to market failure.

This further highlights the importance of a working reinsurance market for large risks.
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The backward-bending demand curve permits multiple equilibria with distinct stabil-

ity properties. The typical low-price, low-demand equilibrium is unstable, but even

small amounts of extra liquidity restore the system to stable equilibrium, highlighting

the importance of a functioning reinsurance market. My model supplements existing

supply-side studies by providing a demand-side perspective on the observed instability

and frequent failures of catastrophe insurance markets.

1.10 Appendix: Proofs

Proposition 1. Given a price q > 0, at each firm k there exists a symmet-

ric consumption profile {x∗i }i∈Sk
such that x∗i = argmaxxiEU [X ′] for each i, and

x∗i = x∗j (∀i, j).

Proposition 1 is proved as a sequence of two lemmas. I begin by looking at some

properties of i’s best response to x−i, which are helpful in establishing the existence

of Nash equilibrium of the game Γ for a fixed price q > 0.

Lemma 1.

(a) The best response BRi(x−i) of individual i is single-valued.

(b) BRi(x−i) is differentiable and always weakly decreasing in x−i; if in addition the

liquidity constraint α(t) is binding, then BRi(x−i) is stictly decreasing in x−i.

Proof. (a) Observe that the payoff function is strictly concave in xi:

∂2EU(X ′(xi))

∂x2
i

= q2(1− p)
<0︷ ︸︸ ︷

u′′(w0 − qxi) +

+ p(1− q)2[1− r]u′′(w0 − L+ (1− q)xi)︸ ︷︷ ︸
<0

+pq2r u′′(w0 − qxi − L)︸ ︷︷ ︸
<0

< 0
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since u is strictly concave and r(x−i) doensn’t depend on xi. A strictly concave

function over a compact set xi ∈ [0, L] always has a unique maximum. Therefore

argmaxxiEU [X ′(xi|x−i)] is unique. �

(b). The first-order condition G(xi, x−i) = 0 implicitly defines the optimal choice of

coverage as a function x∗i = ϕ(x−i) w.r.t −i’s action in a neighborhood of (x∗i , x
∗
−i).

By the implicit function theorem, in this neighborhood there exists the derivative

dx∗i (x−i)

dx−i
= −

∂G
∂x−i

(x∗i , x
∗
−i)

∂G
∂xi

(x∗i , x
∗
−i)

.

The denominator of this fraction, ∂G
∂xi

(x∗i , x
∗
−i) = ∂2EU(X′(xi))

∂x2i
< 0 by part (a), so the

sign of the numerator determines that of
dx∗i (x−i)

dx−i
. Since the best response BRi(x−i) =

ϕ(x−i) is single-valued, ϕ exists not only locally, but for every value of x−i, so we can

apply the implicit function theorem everywhere. When the constraint α is binding so

that α(t)/t is decreasing, from the definition of r it is easy to derive that

∂r

∂x−i
= −γ qx−iα

′(qx−i)− α(qx−i)

(γx−i)2
> 0,

because the decreasing ratio α(t)/t implies that tα′(t) − α(t) < 0. (Alternatively,

for the case where α(t) ≡ t, observe that then r = 1 − q/γ and so ∂r/∂x−i = 0.)

Therefore, it is always true that ∂r/∂x−i ≥ 0 and hence

∂G

∂x−i
(x∗i , x

∗
−i) = −p(1− q) ∂r

∂x−i
u′(w2)− pq ∂r

∂x−i
u′(w3) ≤ 0.

From this it follows that dx∗i /dx−i ≤ 0 always holds; therefore BRi(x−i) always weakly

decreases in x−i, and strictly decreases in x−i whenever α is binding. Continuity

follows from the existence of the derivative
dx∗i (x−i)

dx−i
. �
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Next, observe that when we impose symmetry on individual outcomes x∗i = x∗j = x̄

at a given price, the response of rest of the firm’s market simplifies to

R−i(xi) ≡
∫
i∈Sk

xidi = x̄

∫
i∈Sk

i di = skx̄ = skxi.

Using this fact we can prove the existence of Nash equilibrium in the game Γ for a

given price q.

Lemma 2. Given a price q > 0, symmetric pure-strategy Nash equilibrium of the

game Γ exists and is unique.

Proof. Observe that ϕ : [0, skL] → [0, L] is weakly decreasing, continuous, and

ϕ(0) > 0 for all prices q at which BRi 6≡ 0. I will show that there exists a unique

x∗ ∈ [0, skL] s.t. BRi(x
∗) = R−i(x

∗), that is, ∃x∗ : ϕ(x∗) = (1/sk)x
∗.

Put φ(x) = skϕ(x) − x and observe that φ(0) > 0 while φ(skL) ≤ 0. Indeed

φ(0) = skϕ(0) − 0 > 0 and ϕ(skL) = sk[ϕ(skL) − L] ≤ 0, because 0 ≤ ϕ(·) ≤ L.

By the intermediate value theorem, the continuous function φ takes all intermediate

values between φ(0) and φ(skL). Since φ(0) > 0 and φ(skL) ≤ 0, there exists

x∗ ∈ [0, skL] for which φ(x∗) = 0. It is trivial to verify that x∗ 6= 0, since φ(0) > 0

implies ∃ε > 0 such that ϕ(ε) > 0; therefore x∗ > 0.

Uniqueness. Suppose ∃ two solutions x1 < x2 for which φ = 0. Then

skϕ(x1) > skϕ(x2) since ϕ is non-increasing; then 0 = φ(x1) > φ(x2) = 0, a

contradiction. �

Lemma 2 establishes the existence of a symmetric consumption profile {x∗i }i∈Sk

among the clients of firm k, such that, for a given price, each agent is maximing ex-

pected utility of the lottery X ′, consumption choices are symmetric (x∗i = x∗j , ∀i, j),
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and no agent has an incentive to deviate from x∗. This completes the proof of

Proposition 1.

Proposition 2. Given a price q > 0:

a) Symmetric equilibrium consumption levels are the same across firms: x∗,k = x∗,`

for every two firms k and `.

b) All firms have equal shares and equal amounts of consumers: sk = s` = 1
K

(∀k, `)

c) All firms have the same probability of non-payment: rk = r`, (∀k, `).

Proof. (a) Suppose that optimal x∗,k at frim k satisfies x∗,k < x∗,` given the price q.

Then k’s clients will prefer to go to ` by monotonicity, as at the same price they get

strictly more coverage; the reverse argument also holds.

Proof (b). Suppose sk > s` at price q. Since symmetric consumption x∗ is the same

at each firm, then xk = skx
∗ > s`x

∗ = x`, and

rk = 1− α(skx
∗q)

γx∗
< 1− α(s`x

∗q)

γx∗
= r`

because α is increasing, so α(skx
∗q) > α(s`x

∗q). Clients purchase the same coverage,

x∗, at k and `, but the probability of rejection is higher at `; therefore by first-order

stochastic dominance, clients have an incentive to switch to k until it attracts all of

firm `’s customers (as at the same price, k’s probability of default is lower). This

implies that the firm with the biggest share will capture the entire market, but that

contradicts the assumption that there is more than one seller. (The same argument

holds for the case where α(t) = t.)

Proof (c). Follows as a corollary of parts a) and b). �
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Proposition 3. The function

r(x, q) = 1− α(qx)

γx
satisfies lim

q→0
r(x, q) = 1

on the domain x ∈ (0, skL], where α(t) is an increasing, continuous function s.t.

α(0) = 0 and α(t) ≤ t.

Proof. Let {qn} be a sequence of positive numbers such that qn → 0. Form a

corresponding sequence of functions {rn} with terms defined as rn(x) = r(x, qn).

Each rn is now a function only of x. I will prove that the sequence of functions

{rn} converges to 1 uniformly on the domain [δ, skL], for an arbitrary small positive

number δ.

Fix δ > 0, a small positive number, and consider r(x) on the domain [δ, skL]. Since

qn → 0 and x is bounded, we have qnx→ 0. Since α is continuous, limqn→0 α(qnx) =

α(limqn→0 qnx) = α(0) = 0. Therefore, given some ε1 > 0, exists N s.t. for n ≥ N ,

α(qnx) < ε1. At the same time γx ≥ γδ. Putting ε1 = εγδ, for n ≥ N we have

sup
[δ,skL]

∣∣∣∣α(qnx)

γx

∣∣∣∣ ≤ ε1

γδ
= ε for n ≥ N

which implies that for n ≥ N

sup
[δ,skL]

|rn(x)− 1| < ε

so the sequence of functions {rn(x)} uniformly converges to 1. And since δ is arbi-

trary, now let δ → 0 to obtain convergence on the entire domain (0, skL]. Therefore

limq→0 r(x, q) = 1 everywhere on the domain x ∈ (0, skL]. �

33



Proposition 5. There exists at least one price q∗ that clears the market. In

particular, the zero-price, zero-quantity combination (q∗ = 0, x∗ = 0) is always a

strategic competitive equilibrium.

Proof. Recall that the quantity demanded x(q) is differentiable and therefore contin-

uous w.r.t. the price q; we also know that limq→0 x(q)→ 0, and x(0) = R0+, meaning

that demand at q = 0 is multiple-valued (can be any number x ≥ 0). Next recall

that the supply curve is a sum of firms’ nondecreasing, continuous marginal cost

schedules and so is nondecreasing, continuous in q. Moreover the quantity supplied

at the zero price is always zero, because in the short run the firm will shut down

when the price falls below average variable cost; hence the quantity supplied at the

zero price is always zero. Since xs(0) = 0 and xd(0) = R0+, clearly the combination

xs = 0 and xd = 0 always clears the market, so market failure (q = 0, x = 0) is

always an equilibrium. Therefore at least one market-clearing price exists.

Step 2. When r = 1, optimal consumption is x∗i = 0 at any q > 0.

Proof. The optimal choice of x∗i when given r = 1 is:

max
xi
{(1− p)u(w0 − qxi) + pu(w0 − L− qxi)}

FOC: − q(1− p)u′(w0 − qxi)− pq u′(w0 − L− qxi) < 0 (∀x ≥ 0, ∀q > 0)

Therefore the maximum occurs at x = 0. �

Step 3. Optimal consumption x∗i → 0 approaches 0 when q → 0.
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Proof. Since q → 0,⇒ r → 1 regardless of x, and since at r = 1 optimal consumption

is 0, by continuity of EU preferences it follows that x∗i → 0. �

Proposition 6. As q converges to 0, individual demand x∗i converges to a limit that

satisfies

lim
q→0

x∗i (q) ≥
α(R)

γ
> 0.

Proof. Since q → 0 and 0 ≤ x ≤ L, it is trivial to verify that limq→0[α(R + qx)] =

α(R) > 0. Therefore in the limit q → 0,

r ≡ 1− α(R + qx)

γx
→ 1− α(R)

γ limq→0 x(q)
.

Since r is bounded (0 ≤ r ≤ 1), clearly limq→0 x(q) 6= 0, so the limit of x must be

positive. Then

0 ≤ 1− α(R)

γ limq→0 x(q)
⇒ α(R) ≤ γ lim

q→0
x(q) ⇒ lim

q→0
x(q) ≥ α(R)

γ
> 0,

since α(R) > 0 and γ > 0. �

Lemma 1*. When each agent i uses rank-dependent preferences to evaluate risk,

then:

(a) The best response BRi(x−i) is single-valued.

(b) BRi(x−i) is differentiable and always weakly decreasing in x−i; if in addition, the

liquidity constraint α(t) is binding, then BRi(x−i) is stictly decreasing in x−i.
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Proof. (a) The strict concavity of the function vi in xi over the compact set xi ∈ [0, L]

implies that given a value for x−i, then argmaxxivi(xi|x−i) is unique; therefore, i’s

best-response is single-valued.

(b). As before, the equation G(xi, x−i) = 0 implicitly defines optimal own consump-

tion of insurance as a function of that of all other agents in a neighborhood of the

point (x∗i , x
∗
−i), so that x∗i = ϕ(x−i). The implicit function theorem guarantees that

in this neighborhood exists the derivative

dx∗i (x−i)

dx−i
= −

∂G
∂x−i

(x∗i , x
∗
−i)

∂G
∂xi

(x∗i , x
∗
−i)

.

whose denominator ∂G/∂xi < 0 by part (a). Since BRi(x−i) is single-valued, ϕ exists

not only locally but for every value of x−i and therefore so does the above derivative.

Since ∂r
∂x−i

≥ 0 remains true (from the proof of Proposition 1), we use this fact to

establish

∂G
∂x−i

= −p ∂r

∂x−i
(1− q)u′(w2)ν ′(1− pr)− pq ∂r

∂x−i
u′(w3)ν ′(1− pr) ≤ 0,

where I also use the fact that u and ν are increasing and differentiable. This

determines the sign of the numerator of dx∗i /dx−i as nonnegative and implies that

always dx∗i /dx−i ≤ 0. In addition, whenever α is binding, ∂r/dx−i > 0 implies that

dx∗i /dx−i < 0, so the best response is differentiable, continuous and decreasing in

x−i. �

Lemma 3. Rank-dependent preferences are continuous.

Proof. A preference relation � over lotteries is continuous if for every money outcome

m, there is exists a probability p that makes the lotteries (m, 1) and (0, p; a, 1 − p)

exactly indifferent (where a is the maximal element of {m}). We must therefore show
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that for every m, there exists p such that RD(m, 1) = RD(0, p; a, 1− p). Using the

definition of RD in section 1.8,

RD(m, 1) = u(m)[ν(1)− ν(0)] = u(m), because ν(1) = 1, and

RD(0, p; a, 1− p) = u(0)[ν(p)− ν(0)] + u(a)[ν(1)− ν(p)] = u(a)[1− ν(p)].

We want to show that exists p that makes u(m) = u(a)[1 − ν(p)]. Since m and

a are fixed, put ξ ≡ u(m)/u(a); since m ≤ a,⇒ ξ ≤ 1. We must show that ∃p:

ν(p) = 1− ξ. Since 1− ξ ∈ [0, 1] and ν is a continuous function from [0,1] onto [0,1],

the intermediate value theorem guarantees that exists p ∈ [0, 1] s.t. ν(p) = 1− ξ. �
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Chapter 2

How Uncertain Costs Affect

Quality Differentiation in the

Insurance Market

2.1 Introduction

Classical oligopoly models predict that firms differentiate product quality in order to

soften price competition.1 The conventional wisdom is that by making their products

different, firms attract consumers of different types, and in doing so avoid prices being

driven down to marginal cost.

However, in some oligopoly markets, quality differences are muted. One such exam-

ple is the market for auto insurance, where the median auto policy looks very similar

across sellers in different states, regardless of varying state-mandated minimum re-

1For example, see Shaked and Sutton (1982) or Tirole (1988).
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quirements.2 Insurance markets also differ from conventional markets in two other

respects: the fact that insurers are risk-averse and face uncertain costs.

In this paper, I propose a model that accounts for minimum quality differentiation

by showing that it is generated by the cost uncertainty of risk-averse firms. Whereas

cost uncertainty is a phenomenon not limited to one particular industry, insurance

is a particularly relevant application, because, as argued by Wambach (1999) and

Polborn (1998), uncertainty about accident probability can result in aggregate cost

uncertainty even when accidents are independent and the insured pool is large. In

addition, many authors consider insurance companies risk-averse, a view reinforced

by modern finance and insurance theory (see Froot, Scharfstein and Stein, 1993,

or Hardelin and Lemoyne-Deforges 2012). Thus, insurance companies are a good

example of risk-averse firms with uncertain costs.

The paper is organized as follows. Section 2.2 discusses the motivation and Section 2.3

the related literature. Section 2.4 presents the model’s basic assumptions. Section 2.5

derives the outcome of price competition, while Section 2.6 considers quality choice.

Section 2.7 concludes the essay.

2.2 Motivation

Uncertain costs can occur in a variety of settings, but acquire special significance in

the context of insurance. Textbook models often assume that when the number of

insureds is large and risks are uncorrelated, there is no aggregate cost uncertainty;

typically, laws of large numbers are invoked as a justification. However, that conclu-

sion is an artifact of the stylized assumption that there is a single category of risk (e.g.

only one type of auto accident, resulting only in vehicle damage). In reality, there is

2See the discussion in Section 2.2 for more details.
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more than one risk category associated even with a standard auto policy: for exam-

ple, bodiliy injury liabilities, property damage liabitlities, uninsured motorist bodily

injury, medical payments, collision vehicle damage, comprehensive risk, and personal

legal protection. Therefore “risk” is an umbrella term that combines different types

of risks having different probabilities, which have to be estimated from samples much

smaller than the insured population. For example, to estimate the probability of

damage to uninsured motorist, the insurer will look at the subsample of insureds to

whom this particular accident type occured, which is much smaller than the insured

pool. Therefore, laws of large numbers need not apply, and the estimate is subject

to sampling error. Wambach (1999, p. 946) explains how this can lead to aggregate

cost uncertainty despite the fact that individual risks are uncorrelated:

“One example of such a market [with uncertain costs] could be the insur-

ance industry where the accident probability is not exactly known to the

insurers [...], only a distribution over this probability exists. Thus, even if

the number of insured people is large, so that individual uncertainty does

not matter, the costs of all contracts N ( probability of loss) (size of the

loss) is uncertain.”

In reality, things are even more complicated. Real-world actuaries use regression tools

to estimate the so-called exceedance probability (EP) curves – graphs depicting the

probability that a certain level of loss will be exceeded on an annual basis. According

to actuaries, “By its nature, the EP curve incorporates uncertainty associated with the

probability of an event occurring and the magnitude of dollar losses. This uncertainty

is reflected in the 5% and 95% confidence interval curves.” (OECD 2005, p. 115;

italics added). Actuaries will typically be interested in the 95% confidence bands

around the regresion line, so the fewer data points are available for a particular loss

size, the wider is the estimated confidence interval. This means that if losses of
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certain size occur more rarely than others, their probability will be estimated with a

wider margin of error. In a typical insurance market, the largest-size losses (or “tail

events”) will occur most rarely, but that means their exceedance probabilities will be

estimated least accurately. Therefore, uncertainty about accident probabilities is an

issue, and concerns that it leads to aggregate cost uncertainty are legitimate.

Another reason to choose the insurance market as an application is that risk-aversion

is an appropriate assumption for this industry. Whenever losses exceed estimates,

insurers routinely borrow from capital markets or reinsurers, but this comes at a

cost because verifying the true financial state of the borrower is costly. According to

Froot, Scharfstein and Stein (1993), costly external finance is one of the leading factors

causing firms to exhibit risk-aversion, although other factors such as corporate taxes

and managers holding company stock also exist (Smith and Stulz, 1985). Because

of this, many insurance authors prefer to model insurance firms as risk averters (in

addition to Polborn (1998) and Wambach (1999), see Raviv (1979), Eliashberg and

Winkler (1981), Blazenko (1985), among others).

Finally, insurance is an appropriate focus for a differentiated goods model because

some insurance markets, such as the market for auto insurance, seem to exhibit sur-

prisingly little quality differentiation. A database maintained by StateFarm3 shows

that the median auto policy sold by insurers looks strikingly similar across different

states, despite varying state minima. For example, the required minimum coverage

for bodily injury is $ 50,000 in Maine, $ 25,000 in Vermont, and $ 20,000 in Mas-

sachusetts, but the median auto policy sold in each of these states covers 100,000 with

a cap of 300,000 for this category, and this similarity persists both across remaining

categories of coverage and across most other states. This sits well with the anecdotal

observation that insurers do not like to portray themselves as cheap, affordable, and

barely covering the state minimum, but on the contrary, try to project an image of

3Available at http://www.allstate.com/auto-insurance/state-coverages.aspx
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solidity and reliability, which suggests a concentration of quality near the high end.

As a main application of the model, I show that cost uncertainty can result exactly

in such a drive to minimum differentiation when insurers are risk-averse.

2.3 Related Literature

There is a large literature on oligopolies facing uncertainty. One of the earliest analy-

ses belongs to Sandmo (1971), who first formally showed that a risk-averse Bertrand

competitor will charge a positive markup in any market with potential losses. In sub-

sequent years, the effects of uncertainty have been studied in a variety of oligopoly con-

texts. The first generation of such papers focused mostly on risk-neutral oligopolists

who feature product differentiation.

For example, Harrington (1992) considers risk-neutral firms who are uncertain of the

degree of product homogeneity. He shows that uncertainty about product homogene-

ity is enough to cause equilibrium pricing above marginal cost. Bester (1998) intro-

duces a model with both horizontal and vertical product differentiation and shows

that uncertiainty about vertical characteristics may result in a drive to horizontal

agglomeration. Klemperer and Meyer (1986), by contrast, consider a model where

the nature of competition (price or quantity) is detemined endogenously, so firms can

choose either a price to charge or a quantity to produce. Vives (1983) is concerned

with information exchange between Cournot or Bertrand duopolists with differenti-

ated goods who face uncertain demand, while Spulber (1995) focuses on Bertrand

competition when the rival’s costs are uncertain. In this literature, firms are risk-

neutral, so large variances of risk are inconsequential; implicit is the assumption that

a monetary loss does not cause more disutility than the utility from an equivalent

monetary gain.
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However, when losses trigger the need to borrow, which comes at an additional cost,

firms may no longer act as risk-neutral. As shown by the influential work of Froot,

Scharfstein and Stein (1993), costly external finance in and of itself is sufficient to

cause risk-averse behavior on part of the firm, although other potential causes also

exist. For example, Stulz (1984) argues that firm risk-aversion may stem from the risk

aversion of managers who hold a relatively large portion of their wealth in the firm’s

stock. Smith and Stulz (1985) argue that corporate taxes, which are often convex in

earnings, can also lead to risk-averse firm behavior, as a more volatile earnings stream

leads to higher average taxes. Other convincing rationales for firm risk aversion also

exist, such as the costs of bankruptcy (Smith and Stulz, 1985) and capital market

imperfections. Because of this, the second generation of models, beginning roughly

in the 90’s, focus on risk-averse oligopolies.

To this generation of models belong papers by Wambach (1999), Polborn (1998),

Hviid (1989), Kao and Hughes (1993), and Asplund (1995), most of which assume a

homogeneous good. Hviid (1989) and Kao and Hughes (1993) are interested mainly in

the information exchange between Cournot competitors, while Asplund (1995) studies

whether risk aversion leads to softer or fiercer competition.

A key paper in this literature is Polborn (1998), who considers an insurance oligopoly

facing uncertain costs. In Polborn’s setup, competitors are risk-averse insurers com-

peting in price, who sell a homogeneous good and whose marginal costs are uncer-

tain because the probability of accident is not exactly known to them. This setup

is motivated by the fact that in reality insurers always deal with estimates from

a distribution, not with hard numbers; the idea is that even very small variances,

when incorporated into the model, alter the nature of Bertrand competition. Pol-

born shows that under the classical assumptions (lowest-price firm captures entire

market), Bertrand competition results in a continuum of equilibria, and considers
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criteria for equilibrium selection. Wambach (1999) employs a similar setup, but with

a different equlibrium selection criterion.

This paper adopts the uncertain cost approach of Polborn (1998) and applies it to

a setting with differentiated goods in order to study how cost uncertaitnty affects

quality differentiation. I introduce Polborn’s uncertain cost framework into a suitably

modified framework of vertical differentiation (Tirole, 1988, p. 296), in which firms

first choose product quality, and then compete on price. The solution concept I use for

this two-stage model is subgame-perfect Nash equilibirum in pure strategies. I modify

Tirole’s model by introducing firms with risk-averse utility functions and uncertain

marginal costs the way it is done in Polborn (1998), which significantly complicates

the analysis. I consider two cases: when higher quality is costless, and when quality

costs are convex.

In a risk-averse setting, firms care not only about expected profits, but also about

their variances, both of which vary nontrivially with the degree of product differentia-

tion. When we additionally make quality costly, tracking the effect on differentiation

becomes mathematically challenging, which motivates the choice of a relatively simple

differentiated goods framework such as Tirole (1988). Nonetheless, the model delivers

several sharp results.

The conventional wisdom is that in order to soften price competition, firms differenti-

ate their products in order to avoid prices being driven down all the way to marginal

cost (Shaked and Sutton, 1982; Tirole, 1988). Thus, the classical literature explains

the simultaneous existence of expensive, high-quality goods together with cheap, low-

quality substitutes. By contrast, I find that uncertain costs fundamentally alter the

nature of price competition by introducing a drive against quaility differentiation.

This economic force becomes particularly pronounced when consumers are somewhat

picky about quality, and is capable of reversing conventional results by making it op-
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timal for firms to differentiate minimally instead. In the realistic case when quality is

costly, this setup is capable of producing multiple minimum-differentiation equilibria

at both high and low quality levels.

2.4 Model

There are two firms, i and j, who can produce a good of quality si and sj respectively,

charging prices pi and pj. Chronologically, firms first choose product quality and then,

given quality levels, compete on price. Quality can be either costless or costly (see

sections 2.6.1 and 2.6.2); when costly, the firms pay for it in the first stage, before

entering price competition. Quality costs are certain and known in advance; however,

production costs (including insurer claim payments), are not.

Since production costs are uncertain, both the quality choice stage and the price

competition stage take place before the realization of costs; firms use information

only from the cost distribution, an approach standard in this literature (see Hardelin

and Lemoyne-DeForges, 2012 and Polborn, 1998).

Quality is a positive real number s ∈ [s, s]. Since firm indices are arbitrary, we can

assume that sj > si so that the difference in quality always satisfies ∆s ≡ sj−si > 0.

Due to the mathematics involved, the minimum differentiation case (∆s = 0) will

be defined as the limiting case of the model when ∆s → 0; the limit will be shown

to be well-behaved (see Appendix B).4 To economize on notation, I will denote the

frequently occurring expression θ∆s with ∆ and the expression θ∆s with ∆.

On the demand side, there is a continuum of consumers with total mass one, who

choose from which firm to buy and can purchase at most one unit of the good (this is

4Alternatively, one can assume min ∆s = ε > 0, which can be motivated as in Harrington (1992),
who argues that quality cannot be reproduced perfectly. Results are very similar.
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particularly relevant to insurance, where customers typically buy at most one policy

per property).

Consumers care both about the price p and the quality s of the good consumed. Each

consumer’s preferences are described with

U(s, p) =


θs− p if buys 1 unit

0 if no purchase

where θ is a taste parameter regulating how sensitive the given consumer is to the

quality s. Utility is separable in price and quality and should be interpreted as the

surplus from the consumption of the good (Tirole 1988, p.96). For a given fixed

price, each consumer prefers a higher-quality good to a lower-quality one, but those

consumers who have higher values of θ are more willing to pay for high quality (or

equivalently, derive higher surplus). The positive number θ is distributed uniformly

over the interval [θ, θ], where θ = θ + 1 to ensure unit mass.

Following Tirole (1988), I impose two standard assumptions to guarantee that the

model outcome is non-degenerate:

Assumption 1 (Heterogeneity): θ > 2θ.

This assumption makes sure that, roughly speaking, there is enough consumer het-

erogeneity to rule out degenerate model behavior (negative equilibrium profits and

markups). Notice that since θ = θ+ 1, and θ is positive, this assumption restricts the

range of θ between 0 < θ < 1.

Assumption 2 (Market is covered): Minimum quality s is large enough

that no firm faces zero demand in equilibrium.
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Assumption 2 guarantees that the market is a duopoly as opposed to a monopoly. If

minimum quality s is so low that at the equilibrium price p∗i and quality s Firm i’s

clients prefer to buy nothing (which will happen if p∗i > θ s), then Firm i faces the

possibility of zero demand, and the model is no more a duopoly. For this we require

minimum quality s to be high enough so that p∗i < θ s. (As will be seen from the

expression for equilibrium prices, it is always possible to pick such an s.)

When the market is covered, consumers can choose between a higher- and a lower-

quality good. A consumer of type θ is exactly indifferent between the two goods

when

θsi − pi = θsj − pj ⇔ θ(sj − si) = pj − pi.

Therefore, given prices and qualities, those consumers with θ >
pj−pi

∆s
will buy the

higher-quality good, and those with θ <
pj−pi

∆s
, the lower-quality good, effectively

splitting the interval [θ, θ] in two parts: those types θ who go to Firm i, and those

who go to Firm j. Since θ is uniformly distributed over the interval [θ, θ] of length

1, and since quantity demanded is 1 unit for each person who buys, demand at each

firm simply equals the measure (length) of consumers positioned on [θ, θ] buying from

each respective firm:

Di(pi, pj) =
pj − pi

∆s
− θ; Dj(pj, pi) = θ − pj − pi

∆s
.

Each firm’s profit equals its quantity demanded times the markup charged above

marginal cost c:

Πi = (pi − c)
[
pj − pi

∆s
− θ
]

; Πj = (pj − c)
[
θ − pj − pi

∆s

]
.
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So far the setup is the same as in Tirole (1988), where all costs are certian. However,

we are interested in price competition with uncertain costs. Following Polborn (1998),

I introduce an uncertain marginal cost c, which is normally distributed with mean µc

and variance σ2, which results in profit uncertainty:

c ∼ N(µc, σ
2) =⇒ Π ∼ N(µΠ, σ

2
Π).

In his paper “A model of an Oligopoly in an Insurance Market,” Polborn (1998)

argues that this setup is particularly applicable to insurance companies when the

accident probability is uncertain: when the number of insureds is large, losses will be

approximately normally distributed, carrying normality over to marginal costs. The

realization of costs at the two firms is assumed independent, which will be true for

most lines of non-catastrophe insurance (there are no common shocks).

For the resons explained in Section 2.2 and discussed in detail by Froot, Scharfstein,

and Stein (1993) and Smith and Stulz (1985), firms are assumed risk averse and

maximize the expected utility of uncertain profits. The two firms have identical von

Neumann-Morgenstern utility functions with constant absolute risk aversion (CARA)

u(Πk) = −e−rΠk (k = i, j),

where r is the coefficient of absolute risk aversion.

The choice of CARA utility with a normal distribution of costs is motivated mainly by

the fact that its expectation has a closed-form solution in terms of the distribution’s

mean and variance. As shown in Freund (1956), if x is a normally distributed random

variable x ∼ N(µx, σ
2
x), then

E[−e−rx] = − exp

(
−rµx +

1

2
r2σ2

x

)
.
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Thus, the expectation of a CARA utility function can be expressed in terms of the

mean and variance of the random variable. In the firm’s maximization problem, the

uncertain variable is profits, which have means and variances as follows:

µΠi
= (pi − µc)

pj − pi −∆

∆s
µΠj

= (pj − µc)
∆− pj + pi

∆s

Var(Πi) =

[
pj − pi −∆

∆s

]2

σ2 Var(Πj) =

[
∆− pj + pi

∆s

]2

σ2

Substiuting mean profits and their variances into the firms’ utility functions yields

expected utilities

Eu(Πi) = − exp

{
−r(pi − µc)

pj − pi −∆

∆s
+

1

2
r2σ2

[
pj − pi −∆

∆s

]2
}

Eu(Πj) = − exp

{
−r(pj − µc)

∆− pj + pi
∆s

+
1

2
r2σ2

[
∆− pj + pi

∆s

]2
}

where I will often denote the expression within the exponent as φi and φj, respectively.

In the price competition stage, qualities have already been selected so they are treated

as given. Firms compete on price by solving:

max
pi

Eu(Πi) and max
pj

Eu(Πj).

2.5 Price Competition

In order to find maxima using first-order conditions, the expected utility functions

must be concave, which is ensured by the next proposition.

Proposition 1. Both firms’ utility funcions are concave with respect to the own price.

In particular,
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a) Eu(Πi) is strictly concave in pi

b) Eu(Πj) is strictly concave in pj.

Proof. In the Appendix.

If we denote the expected utility functions’ exponents above as φi and φj respectively,

the first-order condition for Firm i can be reduced to

dEu(Πi)

dpi
= −eφi dφi

dpi
= 0 ⇐⇒ dφi

dpi
= 0

which, written fully, takes the form

−r
[
pj − 2pi −∆ + µc

∆s

]
+ r2σ2

[
−pj + pi + ∆

(∆s)2

]
= 0.

This yields Firm i’s reaction function in terms of pj:

pi(pj) =
µc∆s+ (rσ2 + ∆s)(pj −∆)

rσ2 + 2∆s
.

Similarly Firm j’s first-order condition reduces to

−r
[

∆− 2pj + pi + µc
∆s

]
+ r2σ2

[
pj − pi −∆

(∆s)2

]
= 0,

resulting in the reaction function

pj(pi) =
µc∆s+ (rσ2 + ∆s)(pi + ∆)

rσ2 + 2∆s
.
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Solving the system of reaction functions results in the following equilibrium prices:

p∗i = µc +
(rσ2 + ∆s)[rσ2 + (θ − 2θ)∆s]

2rσ2 + 3∆s

p∗j = µc +
(rσ2 + ∆s)[rσ2 + (2θ − θ)∆s]

2rσ2 + 3∆s

where I will often denote the equilibrium markup as m∗k ≡ (p∗k − µc).

First observe that, unlike the risk-neural case, risk averse firms charge a positive

markup above marginal cost, because risk-averse agents require compensation in order

to hold risk (Sandmo, 1971). This softens price competition a bit, but as will be seen,

not enough to reverse standard results by itself: absent additional incentives, firms

will still find it optimal to differentiate maximally even when they are risk averse.

As in Tirole (1988), the higher-quality firm earns higher profits and charges a higher

markup, as (2θ − θ) > (θ − 2θ):

Π∗i = (rσ2 + ∆s)

[
rσ2 + (θ − 2θ)∆s

2rσ2 + 3∆s

]2

, Π∗j = (rσ2 + ∆s)

[
rσ2 + (2θ − θ)∆s

2rσ2 + 3∆s

]2

and

Var(Π∗i ) =

[
rσ2 + (θ − 2θ)∆s

2rσ2 + 3∆s

]2

σ2, Var(Π∗j) =

[
rσ2 + (2θ − θ)∆s

2rσ2 + 3∆s

]2

σ2.

It is also intuitive that the higher the firm’s risk aversion (or the variance of costs),

the higher the equilibrium markup. Product quality, however, does not always have

unambiguous effects on equilibrium profits. The expressions above reveal an interest-

ing tradeoff which is essential in the analysis that follows. Whereas Firm j’s profit

always increases in own quality, the effect of own quality on Firm i’s profits is gen-

erally ambiguous. Nonetheless, above a certain quality level, si begins to increase

Firm i’s profits, so after some point both firms get better profits from higher quality.
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Higher profits, however, come at the cost of increased variance, as shown in the next

proposition.

Proposition 2. All else equal,

a) Π∗j is increasing in sj, (∀si ∈ [s, s])

b) The overall effect of si on Π∗i is ambiguous. However, above some quality s0
i ,

Firm i’s quality starts to increase profits (∂Π∗i /∂si > 0).

c) Both firms’ equilibrium variances increase in own qualities.

Proof. In the Appendix.

Proposition 2 suggests an interesting tradeoff. Above some quality level, higher qual-

ity leads to higher expected profits for both firms, but extra profits come at the cost

of increased variance. This creates a tradeoff between high, variable profits, versus

lower, but more predictable ones. If Firm i offers lower quality, it also earns lower

profit than Firm j, but it is very predictable. If Firm i offers a higher quality closer

to Firm j, its profits may start growing, but so will their variance. Without a quanti-

tative analysis, it is not obvious which combination is better. Therefore, forces acting

both for and against quality differentiation exist, and the model’s task is to find out

which force prevails and when. To find out, we need to look at the effect of quality

on equilibrium utility.

Substituting the profit and variance equations into the firms’ utility functions, the

utilities attained in Bertrand equilibrium are:

Vi = Eu(Π∗i ) = − exp

{
−
(
r∆s+

1

2
r2σ2

)[
rσ2 + (θ − 2θ)∆s

2rσ2 + 3∆s

]2
}

Vj = Eu(Π∗j) = − exp

{
−
(
r∆s+

1

2
r2σ2

)[
rσ2 + (2θ − θ)∆s

2rσ2 + 3∆s

]2
}
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Having computed what prices, profits and utilities will prevail in the Bertrand equi-

librium, firms proceed to find optimal qualities by backward induction.

2.6 Quality Choice

2.6.1 Costless Quality

I consider two cases: when quality is costless (higher quality doesn’t cost more), and

when quality costs are convex (quadratic). It is assumed that the firm pays the costs

of quality at the same time when it selects the quality level and before entering the

price competition stage. The costless quality case isolates the forces acting for and

against differentiation more clearly, so it is considered first.

In subgame-perfect Nash equilibrium, each firm knows it has no incentive to devi-

ate from the Bertrand equilibrium prices and quantities, which are parametrized by

quality levels. Therefore when deciding on optimal quality, the firms solve

max
si

Eu(Π∗i |sj), max
sj

Eu(Π∗j |si).

Just as in the standard model (Tirole, 1988), when quality is costless, it will turn out

that the higher-quality firm (Firm j) wants to pick the maximum quality regardless

of what Firm i does; the explanation for this, however, is different. Recall that by

Proposition 2, equilibrium variances increase with own quality; therefore, by increas-

ing quality, the firm increases not only its expected profits, but also their variance.

The model tells us that in this particular case, the profit effect dominates over that

of variance. Interestingly, this remains true regardless of the degree of risk-aversion

r and the variance of risk σ2.
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Proposition 3. When quality is costless, Firm j will always choose the highest quality

s.

Proof. dVj/dsj > 0 regardless of si (see Appendix).

However, model results begin to diverge from the classical paradigm for the lower-or-

equal-quality Firm i. The next proposition shows that, by contrast, the outcome for

Firm i begins to depend on how much consumers care for quality.

Proposition 4. With costless quality,

a) When consumers are picky enough (θ exceeds some θ∗), Firm i will choose

minimum differentiation regardless of r, σ2.

b) Moreover, such a critical value θ∗ always exists.

c) When θ falls below some θ∗∗, Firm i chooses maximum differentiation.

Moreover, such a θ∗∗ > 0 always exists as long as rσ2 > 3.

Proof. In the Appendix.

Proposition 3 tells us that we can still get the maximum-differentiation result back,

but it will hold only if consumers are not too picky (their quality parameter θ starts

relatively low). When θ’s range starts relatively high, however, the classical result is

reversed and the equilibrium outcome is minimim differentiation at the point s where

both firms offer maximum quality.

To understand this result, first note that Firm i’s equilibrium demand D∗i and equi-

librium markup m∗i are both decreasing in θ:

∂D∗i
∂θ

= − ∆s

2rσ2 + 3∆s
≤ 0;

∂m∗i
∂θ

= −(rσ2 + ∆s)[2rσ2 + 3∆s]∆s

(2rσ2 + 3∆s)2
≤ 0.
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Therefore, for a fixed quality, higher θ unambiguously lowers equilibrium profits

(∂Π∗i /∂θ ≤ 0 by the chain rule). Then, if faced by picky consumers with high θ,

Firm i may try to improve profits by instead offering higher quality in order to cap-

ture more consumers to boost demand, because

∂D∗i
∂si

= − [2(1− θ)− 3]rσ2

(2rσ2 + 3∆s)2
> 0.

Higher demand alone, however, may not be enough to increase profits (relative to

the maximum differentiation case) because profit also depends on the equilibirum

markup.

The behavior of the equilibrium markup is the decisive factor determining whether

the traditional result will reverse. At low levels of θ, equilibrium markup falls in own

quality, stimulating the firm to stay at the lowest-quality point s; this is how we get

the classical, maximum-differentiation equilibrium in part (c). At high enough levels

of θ, however, equilibrium markup begins to increase in si, so now both demand and

the markup pull profits in the upper direction. This can be seen from the behavior

of the derivative

∂m∗i
∂si

= −(1− 2θ)r2σ4 + (1− θ)[3(∆s)2 + 4rσ2∆s)

(2rσ2 + 3∆s)2
.

When θ < 1/2, the expression 1−2θ is positive and
∂m∗i
∂si

< 0, so higher quality lowers

the markup, although it increases demand. If we keep lowering θ, eventually there

comes a point θ∗∗ where the markup effect prevails over that of demand: at low levels

of θ profits are falling in own quality, which stimulates the firm to stay at the left

corner s. The fact that the variance of equilibrium profits increases in own quality

only reinforces this result, because Firm i’s profit variance is lowest at s; this is the

intuition behind the traditional result in part (c).
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However, when θ > 1/2, the numerator is positive and markup begins to increase in

own quality:
∂m∗i
∂si

> 0. Therefore at high values of θ, offering higher quality increases

both demand and the equilibrium markup, pushing up profits as well. This is the

main force behind the drive to minimum differentiation in part (a). However, profits

alone cannot tell us whether high quality is optimal, because quality-driven profits

come at the cost of increased variance (see Proposition 2(c)). Based on intuition

alone, one cannot predict which profit-variance combination is better, or whether

the benefits of non-differentiation exceed those of differentiation. The model resolves

this tradeoff by showing that when θ > θ∗, Firm i will unambiguously shoot for the

high-quality, minimum differentiation option. This tells us that the utility from extra

profits dominates disutility from increased variance, something that is not obvious.

It is especially striking that this result is true regardless of the cost variance σ2 and

the risk aversion r.

2.6.2 Costly Quality

The previous discussion permits both firms to shoot for the highest quality, because

quality is assumed to be costless. In more realistic settings, however, achieving high

quality requires costly investments. For example, if we measure the quality of an

insurance policy by coverage levels in each risk category above the required minimum,

offering higher coverage means maintaining higher reserves, which involves higher

opportunity costs (every liquid dollar could instead be invested to earn interest).

Therefore high quality costs more in the insurance business just as in other industries.

The question naturally arises whether with costly quality, the previous results are

preserved.

To study this case, I introduce certain quality costs which are paid at the quality-

choice stage (before price competition). Quality costs are commonly assumed convex
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(higher quality costs increasingly more); I focus on the quadratic quality case as

mathematically more tractable.

Assume that both firms can invest in product quality s at cost C(s) = bs2, where

b > 0. Since quality costs are certain and are paid before entering price competition,

they reduce equilibrium profits one-for-one without changing their variance. The

equilibrium utilities attained in Bertrand equilibrium therefore are now

Vi = − exp

{
−
(
r∆s+

1

2
r2σ2

)[
rσ2 + (θ − 2θ)∆s

2rσ2 + 3∆s

]2

+ rbs2
i

}

Vj = − exp

{
−
(
r∆s+

1

2
r2σ2

)[
rσ2 + (2θ − θ)∆s

2rσ2 + 3∆s

]2

+ rbs2
j

}

Each firm’s solution to the problem maxsk Vk(sk|s−k) (k = i, j) provides its reaction

function with respect to opponent’s quality. Unfortunately, even with quadratic qual-

ity, these reaction functions are highly non-linear, so the Nash equilibrium solutions

are analytically untractable. However, it is possible to make at least partial con-

clusions about minimum-differentiation equilibria at the lowest and highest-quality

point.

Proposition 5. When quality costs for both firms are given by C(s) = bs2,

a) If θ < 1/2 and b > 5
16s

, both firms choose minimum quality with minimal

differentiation.

b) If θ > 1
2

+ 8bs and b < 1
16s

, both firms choose maximum quality with minimal

differentiation.

Proof. In the Appendix.

Proposition 5 confirms that the relationship between consumer selectivity θ and min-

imum differentiation is not an artifact of the costless quality assumed in section 2.6.1.
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Again, high values of θ are conducive to a concentration of quality at the high point s.

In addition, however, now a minimum-differentiation equilibrium also becomes possi-

ble at the low quality point s when consumers are not very quality-sensitive. Interior

quality equilibria with minimum differentiation likely also exist, but their analysis is

complicated by the reaction functions’ non-linearity, coupled with the fact that the

functions Vk can switch from concave to convex (in quality) depending on parameter

combinations. Nonetheless, Proposition 5 carries a very important message: that the

same force against product differentiation not only survives, but gets amplified in the

costly quality setting, leading to an even richer set of non-differentiation outcomes at

both high and low quality levels. This reinforces the notion that cost uncertainty is

a fundamental driver behind low quality differentiation in risk-averse industries such

as insurance. The model’s predictions are especially consistent with the low quality

differentiation in the market for auto insurance polcies, suggested by some market

surveys and casual observation.

2.7 Conclusion

This chapter develops a model of quality differentiation in insurance markets, focusing

on two of their specific features: the fact that costs are uncertain, and the fact that

firms are averse to risk. Cornerstone models of price competition predict that firms

specialize in products of different quality as a way of softening price competition.

However, some real-world insurance markets feature very little quality differentia-

tion. This chapter offers an explanation to this phenomenon by showing that cost

uncertainty fundamentally alters the nature of price competition among risk-averse

firms by creating a drive against differentiation. This force becomes particularly pro-

nounced when consumers are picky about quality, and is capable of reversing standard

results, leading to minimum differentiation instead. This result is preserved regard-
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less of whether quality is costly or costless, but in the costly quality case the set of

minimum-differentiation outcomes is richer.
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2.8 Appendix A: Proofs

Proposition 1. Both firms’ utility funcions are concave with respect to the own price.

In particular,

a) Eu(Πi) is strictly concave in pi

b) Eu(Πj) is strictly concave in pj.

Proof. Recall that

Eu(Πi) = − exp

{
−r(pi − µc)

pj − pi −∆

∆s
+

1

2
r2σ2

[
pj − pi −∆

∆s

]2
}

= −eφi

Eu(Πj) = − exp

{
−r(pj − µc)

∆− pj + pi
∆s

+
1

2
r2σ2

[
∆− pj + pi

∆s

]2
}

= −eφj

labeling the expressions inside the exponents as φi and φj respectively. I will first

show that φi is convex in pi and therefore d2Eu(Πi)/dp
2
i < 0.

An inspection of the derivatives of φi shows that

dφi
dpi

= −r
[
pj − 2pi −∆ + µc

∆s

]
+ σ2r2pi − pj + ∆

∆s
.

d2φi
dp2

i

=
2r

∆s
+ σ2

( r

∆s

)2

> 0,

therefore φi is strictly convex in pi. Taking this into account, we can now look at the

sign of

d2

dpi
[−eφ2i ] = −eφi

[(
dφi
dpi

)2

+
d2φi
dp2

i

]
< 0

which is negative because −eφi < 0 while the convexity of φi ensures that d2φi
dp2i

> 0.
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The same procedure applied to firm j reveals that φj is likewise convex in pj and

therefore

d2

dp2
j

[−eφj ] = −eφj
[(

dφj
dpj

)2

+
d2φj
dp2

j

]
< 0. �

Proposition 2. All else equal,

a) Π∗j is increasing in sj, (∀si ∈ [s, s])

b) The overall effect of si on Π∗i is ambiguous. However, above some quality s0
i ,

Firm i’s quality starts to increase profits (∂Π∗i /∂si > 0).

c) Both firms’ equilibrium variances increase in own qualities.

Proof. a) The partial derivative

∂Π∗j
∂sj

=

=
4(1 + θ)r3σ6 + 3(2 + θ)2(∆s)3 + 6rσ2(2 + θ)2(∆s)2 + r2σ2(4θ2 + 18θ + 17)∆s

(3∆s+ 2rσ2)3
> 0

is strictly positive because all terms are ≥ 0, while 4(1 + θ)r3σ6 > 0. �

b) The partial of Π∗i with respect to si is:

∂Π∗i
∂si

= −3[1 + 2rσ2](1− θ)2(∆s)2 + r2σ2(4θ2 − 10θ + 3)∆s− 4θ(rσ2)3

(3∆s+ 2rσ2)3
.

In the general case, the sign of
∂Π∗i
∂si

is ambiguous because it depends on the values of

∆s, θ, r and σ2. However observe that as ∆s→ 0,

∂Π∗i
∂si
→ 4θ(rσ2)3

3∆s+ 2rσ2
> 0.
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Recalling that ∆s ≡ sj − si, next observe that ∂Π∗i /∂si is continuous in si, which

imples that for any given level of sj, there exists a neighborhood where the function’s

sign is preserved. Therefore there is some s0
i < sj above which the sign of ∂Π∗i /∂si

remains positive:

Given sj, ∃s0
i : ∂Π∗i /∂si > 0 for si > s0

i . �

c) If we put

[
rσ2 + (θ − 2θ)∆s

2rσ2 + 3∆s

]2

≡ gi(si)

[
rσ2 + (2θ − θ)∆s

2rσ2 + 3∆s

]2

≡ gj(sj),

then we can write Var(Π∗i ) = gi(si)σ
2 and Var(Π∗j) = gj(sj)σ

2. To find the effect of

qualities on the variances, we need the derivatives g′i and g′j:

g′i(si) =
2rσ2[rσ2 + (1− θ)∆s][1 + 2θ]

[2rσ2 + 3∆s]3
> 0.

g′j(sj) =
2rσ2[rσ2 + (θ + 2)∆s][1 + 2θ]

[2rσ2 + 3∆s]3
> 0.

where I used the fact that θ = θ+ 1. Both derivatives are positive since θ > 0, ∆s ≥

0, r > 0, σ2 > 0. Therefore equilibrium variances increase in own quality. �

Proposition 3. When quality is costless, Firm j will always choose the highest

quality s.

Proof. I will show that dVj/dsj > 0 regardless of si. To simplify the expression for

equilibrium utility, write the negative exponent as a product of two functions, fj and

gj:

Vj = − exp

−
(
r∆s+

1

2
r2σ2

)
︸ ︷︷ ︸

fj

[
rσ2 + (2θ − θ)∆s

2rσ2 + 3∆s

]2

︸ ︷︷ ︸
gj

 = −e−fjgj .
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We already found that g′j > 0, and f ′j = r. Therefore

dVj
dsj

= −e−fjgj [−(f ′jgj + fjg
′
j)] = e−fjgj [f ′jgj + fjg

′
j] = e−fjgj [rgj + fjg

′
j].

Since both fj > 0, gj > 0 and on the other hand g′j > 0, it follows that always
dVj
dsj

> 0

so the solution for sj must be at the right corner sj = s. �

Proposition 4. With costless quality,

a) When consumers are picky enough (θ exceeds some θ∗), Firm i will choose

minimum differentiation regardless of r, σ2.

b) Moreover, such a critical value θ∗ always exists.

c) When θ falls below some θ∗∗, Firm i chooses maximum differentiation.

Moreover, such a θ∗∗ > 0 always exists as long as rσ2 > 3.

Proof. a) As before, write Firm i’s equilibrium utility in simpler form as

Vi = − exp

{
−
(
r∆s+

1

2
r2σ2

)[
rσ2 + (θ − 2θ)∆s

2rσ2 + 3∆s

]2
}

= −e−figi .

Then

dVi
dsi

= e−figi [f ′igi + fig
′
i],= e−figi [−rgi + fig

′
i],

since f ′i = −r. Notice that the derivative’s sign depends on the sign of [−rgi + fig
′
i],

where the first term is negative while the second is positive (both fi > 0 and g′i > 0 as

shown in the proof to Proposition 2). Which term dominates will turn out to depend

on the value of θ. To avoid dealing with the (strictly positive) denominators of gi and

its derivatives, which do not change the sign, I bring the expression [−rgi + fig
′
i] to
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a common denominator and then focus only the numerator, so

sgn[−rgi + fig
′
i] = sgn

{
−r[rσ2 + (θ − 2θ)∆s]2(2rσ2 + 3∆s) +

+2rσ2
(
r∆s+ rσ2/2

)
[rσ2 + (θ − 2θ)∆s][3− 2(θ − 2θ)]

}
.

Keeping in mind that [rσ2 + (θ − 2θ)∆s] > 0 and [3− 2(θ − 2θ)] = 1 + 2θ, simplifies

to

sgn[−rgi + fig
′
i] = sgn

{
−(rσ2 + (1− θ)∆s)(2rσ2 + 3∆s)+

+2σ2[r∆s+ r2σ2/2](1 + 2θ)
}
.

First I will prove that there exists a critical value θ∗ above which [−rgi + fig
′
i] < 0.

For this to happen, it must be the case that

2σ2[r∆s+ r2σ2/2](1 + 2θ) > (rσ2 + (1− θ)∆s)(2rσ2 + 3∆s)

or after reduction,

rσ2[3∆s+ rσ2] > [ 6rσ2∆s+ 2r2σ4 + 3(∆s)2 ](1− θ).

To find a θ∗ high enough to work independent of ∆s, I substitute “the worst possible

values” ∆s = 0 in the LHS and ∆s = 1 in the RHS, resulting in

r2σ4 > (6rσ2 + 2r2σ4 + 3)(1− θ).

Therefore, when

θ > 1− r2σ4

6rσ2 + 2r2σ4 + 3︸ ︷︷ ︸
θ∗

⇒ dVi
dsi

> 0.
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(b) Notice that since 0 < r2σ4

6rσ2+2r2σ4+3
< 1

2
, it follows that 1 > θ∗ > 1/2, which means

θ∗ is always within the allowed range (0,1) for θ.

(c). To reverse the sign of dVi/dsi, we need the opposite inequality to hold:

(1− θ)[ 6rσ2∆s+ 2r2σ4 + 3(∆s)2 ] > rσ2[3∆s+ rσ2]

which reduces to

θ < 1− rσ2[3∆s+ rσ2]

6rσ2∆s+ 2r2σ4 + 3(∆s)2

To find a θ∗∗ that works for all ∆s, I substitute “the worst possible cases” ∆s = 1 in

the numerator and ∆s = 0 in the denominator, yielding

θ∗∗ = 1− rσ2[3 + rσ2]

2r2σ4
=
rσ2 − 3

2rσ2

which is smaller than 1 and positive as long as rσ2 > 3 (for example, r = 3 and σ2 > 1,

which are economically reasonable values according to commonplace estimates of risk

aversion).

Proposition 5. When quality costs for both firms are given by C(s) = bs2,

a) If θ < 1/2 and b > 5
16s

, both firms choose minimum quality with minimal

differentiation.

b) If θ > 8bs + 1
2

and b < 1
16s

, both firms choose maximum quality with minimal

differentiation.

Proof. a). Since we look for zero-differentiation equilibria at the corners, evaluate the

quality derivatives of Vi and Vj at ∆s = 0 and look for a relationship between them
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and costs that will make them positive or negative:

dVi
dsi

∣∣∣∣
∆s=0

= re−figi+rbsi
[
−1

8
+

1

4
θ − 2bsi

]

dVj
dsj

∣∣∣∣
∆s=0

= re−fjgj+rbsj

[
3

8
+

1

4
θ − 2bsj

]
.

First notice that if θ < 1/2, then dVi
dsi
|∆s=0 < 0, so Firm i will have an incentive to

go for the minimum quality. For this to be an equilibrium, however, Firm j will also

need to have incentives to stay there. Vj’s derivative shows that

dVj
dsj

∣∣∣∣
∆s=0

< 0 whenever θ < 8bs− 3/2.

The inequality on the RHS will always be satisfied when 8bs−3/2 > 1 (because θ < 1

by assumption). So a sufficient condition for
dVj
dsj
|∆s=0 < 0 is

b >
5

16s
.

When θ < 1
2

and b > 5
16s

, both firms’s quality choice (s) is a best response to the

opponent’s quality, so the quality pair (si, sj) = (s, s) is a Nash equilibrium.

b) Let us now look if minimum differentiation is possible at the maximum quality.

Begin with Firm i. If θ > 1/2 + 8bs, then dVi/dsi|∆s=0 > 0, but θ also needs to be

less than 1. A neccessary condition for this is b < 1
16s

.

For Firm j, the derivative evaluated at ∆s = 0 will be positive as long as

θ > 8bs− 3

2
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which, given that θ < 1, is possible only when

8bs− 3

2
< 1⇒ b <

5

16s

Collecting the conditions for both firms to go to s, we get:

θ >
1

2
+ 8bs b <

1

16s

θ > 8bs− 3

2
b <

5

16s

Taking their intersection provides the sufficient conditions

θ >
1

2
+ 8bs b <

5

16s

which guarantee that both firms choose s. Since each firm is maximizing utility given

its opponent’s action, again this is a Nash equilibrium. �

2.9 Appendix B: Asymptotics at ∆s→ 0

Lemma. As ∆s → 0, equilibrium demand, profits and their variances converge to

the following qualtities:

lim
∆s→0

D∗i = lim
∆s→0

D∗j =
1

2

lim
∆s→0

Var(Π∗i ) = lim
∆s→0

Var(Π∗j) =
1

4
σ2

lim
∆s→0

Π∗i = lim
∆s→0

Π∗j =
rσ2

4

Proof. It is sufficient to find the limit of the expression
p∗j−p∗i

∆s
, which enters D∗, Π∗

and Var(Π∗). Recall that equilibrium prices p∗i and p∗j satisfy the system of reaction
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functions

pi(pj) =
µc∆s+ (rσ2 + ∆s)(pj −∆)

rσ2 + 2∆s
,

pj(pi) =
µc∆s+ (rσ2 + ∆s)(pi + ∆)

rσ2 + 2∆s
.

By subtracting the first equation from the second, obtain

p∗j − p∗i
∆s

=
rσ2 + ∆s

2rσ2 + 3∆s
(θ + θ).

In the limit ∆s→ 0, it becomes

lim
∆s→0

[
rσ2 + ∆s

2rσ2 + 3∆s
(θ + θ)

]
=

(θ + θ)

2
= θ +

1

2
.

Since D∗i =
p∗j − p∗i

∆s
− θ, ⇒ lim

∆s→0
D∗i = 1/2.

Analogously D∗j = θ −
p∗j − p∗i

∆s
⇒ lim

∆s→0
D∗j = θ − θ︸ ︷︷ ︸

1

−1

2
=

1

2
.

From here it easily follows that lim∆s→0 Var(Π∗i ) = lim∆s→0 Var(Π∗j) = 1
4
σ2. To prove

the result for profits, observe that the equilibrium markups converge to

lim
∆s→0

m∗i = lim
∆s→0

[
(rσ2 + ∆s)[rσ2 + (θ − 2θ)∆s]

2rσ2 + 3∆s

]
=
rσ2

2
,

lim
∆s→0

m∗j = lim
∆s→0

[
(rσ2 + ∆s)[rσ2 + (2θ − θ)∆s]

2rσ2 + 3∆s

]
=
rσ2

2
.

so it is enough to multiply the limit of the markup times that of demand. �

In particular, observe when ∆s → 0, the firms split the market equally in the limit

(D∗i = D∗j = 1/2), thereby recovering the classical Bertrand competition result for

homogeneous goods. Therefore, both economically and mathematically it makes sense
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to define model variables at the ∆s = 0 point as

D∗i (∆s = 0) = D∗j (∆s = 0) = 1/2

Var(Π∗i (∆s = 0)) = Var(Π∗j(∆s = 0)) =
1

4
σ2

Π∗i (∆s = 0) = Π∗j(∆s = 0) =
rσ2

4
.

Since a function f is continuous at a point x0 if f(x0) = limx→x0 [f(x)], this definition

also ensures that model variables are continuous in ∆s.
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Chapter 3

On Pareto Efficiency in the

Marriage Problem with Weak

Preferences and Many Agents

3.1 Introduction

In recent years, results from matching theory have been used to analyze a variety

of real-life situations: student-school matching, medical resident-to-hospital match-

ing, centralized university admissions, and pairwise kidney exchange, to name just a

few. Many of these applications involve a large number of agents who face different

incentives and different outcomes depending on market size.

This paper studies the large-market behavior of the marriage problem with weak

preferences. When preferences are weak, the set of stable matchings and that of Pareto

efficient matchings diverge, so that some stable matchings are no longer efficient.

This creates incentives for inefficiently matched agents to stay together, which is

undesirable from both a theoretical and a practical viewpoint. However, several
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recent studies have shown that the finite-market shortcomings of a mechanism can

disappear when the market is large.

For example, Kojima and Pathak (2009) have recently found that the student-optimal

mechanism becomes approximately strategy-proof in large markets. Kojima and

Manea (2008) have obtained a similar result for the Probabilistic Serial mechanism,

and Che and Kojima (2010) demonstrate that even seemingly unrelated mechanisms

can converge to the same outcome in a large market. These results show that even

well-studied mechanisms can behave surprisingly in large allocation problems, often-

times allowing the mechanism designer to overcome or improve on existing shortcom-

ings.

Here I show that the inefficiency associated with weak preferences in the marriage

problem vanishes in large markets where agents’ preferences are random and suffi-

ciently diverse. In particular, I demonstrate that the proportion of agents who can

Pareto improve in a randomly chosen stable matching approaches zero when the

number of agents goes to infinity. This result provides a partial alleviation to the

inefficiency of stable matchings under weak preferences, but it should be emphasized

that this alleviation is only in relative terms, as it refers to the expected proportion of

inefficient agents. Nothing in this result suggests that the absolute number of agents

who can Pareto improve goes to zero for large n. Therefore, the result itself is not

simply a way to get rid of indifferences with a resulting “cure-all” for the inefficiency

problem; on the contrary, even though the frequency of pairwise indifferences vanishes

in the limit, this has no implications for the absolute number of inefficient agents.

The rest of the paper is organized as follows. Section 3.2 provides a brief literature

review. Section 3.3 presents a non-technical summary of the problem and the main

results, and Section 3.4 presents the model and technical terms. Section 3.5 proves an

important impossibility result that I use throughout, section 3.6 discusses the large-
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market aspect and the derivation of main results, while section 3.7 extends the existing

results to more general settings. Section 3.8 concludes. For better readability, longer

proofs are relegated to the Appendix. Stand-alone lemmas are numbered sequentially;

lemmas belonging to the proof of a given theorem are included and named after it

(e.g. Lemma 1.2 is used in Theorem 1).

3.2 Related Literature

The main question of this paper belongs to the intersection of two distinct literatures:

studies on large markets and studies on matching with weak preferences. The large-

market approach dominates throughout my results, but its implementation relies on

several crucial tools from the weak-preference literature. The main motivating fact

for this study – the inefficiency of stable matchings in the presence of indifferences –

also comes from the literature on weak preferences.

It is well-known that weak preferences can generate inefficient stable matchings, but

several recent papers underscore the practical importance of this inefficiency. For

example, Abdulkadiroğlu, Pathak and Roth (2008) show that the mechanism used

by New York City to allocate students to high-schools results in more than 6,800

inefficiently matched students each year because indifferences among students are

resolved at random. A similar inefficiency is pervasive in the marriage problem, so

improving the efficiency of stable mechanisms with indifferences remains in the focus

of current work (for example, Erdil and Ergin (2008)).

I base my approach on tools adopted from the weak-preference literature, which I

subsequently introduce into a new asymptotic setting. In particular, I extensively

use the concept of Pareto-improvement cycles and chains (Erdil and Ergin (2006)).

Pareto-Improvement cycles and chains are coalitions of agents who are willing to trade

79



partners so that at least one person in the coalition benefits strictly, while nobody

is made worse off; the existence of such cycles or chains uniquely identifies inefficient

matchings. Pareto-improvement cycles and chains provide a convenient way to iden-

tify both inefficient matchings and the particular agents who can Pareto improve,

because checking for Pareto-dominant matchings is computationally difficult in large

markets. I introduce this identification tool into a random market environment, in

which preferences are drawn stochastically, and look at the expected proportion of

agents who can Pareto improve as the number of agents goes to infinity.

Roth and Peranson (1999) and Immorlica and Mahdian (2005) first introduced two-

sided matching in the context of a random environment where agents’ preferences are

drawn from a probability distribution. This technique allows the mechanism designer

to look at the mechanism outcome in expectation, averaged across different markets.

This method has subsequently been extended and refined for many-to-one matching

by Kojima and Pathak (2009), who reintroduced this probabilistic setting under the

name random market. The random market device is the second main building block

I adopt in order to frame my problem. I consider a sequence of random markets with

increasing number of agents n → ∞ in order to show that the expected proportion

of inefficiently matched agents converges to zero.

My study differs from Immorlica and Mahdian (2005) and Kojima and Pathak (2009)

significantly. Since these authors study the tradeoff between stability and strategy-

proofness, they consider neither weak preferences nor the inefficiency associated with

them. By contrast, I study the convergence of the set of stable matchings to that

of Pareto efficient stable matchings, a subject that does not involve game-theoretic

considerations. The paper builds on the combinatorial properties of random weak

preferences to demonstrate that the inefficiency vanishes in large markets. The full

details of the method are presented in Section 3.6, while the next section presents a

brief non-technical summary.
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3.3 Non-technical Summary

Gale and Shapley’s (1962) marriage problem is one of the simplest bilateral matching

problems. In it, each of n agents, called men, must be matched to a partner from

another set of n agents, called women, based on their mutual preferences. A sys-

tematic allocation procedure to assign partners to each other is called a mechanism,

and the outcome of a mechanism is called a matching. A matching µ is stable if two

conditions hold:

(1) No agent is matched to a spouse (s)he finds unacceptable, and

(2) There are no blocking pairs – that is, no man and no woman prefer to

be matched to each other rather than to their current spouse given by µ.

In this paper, I focus extensively on one particular way of selecting a stable matching,

called the random stable mechanism (RSM).

Example 1a. The Random Stable Mechanism.

Consider the stable matchings generated by the preferences below (denoted with Ri

when they are weak and Pi when strict):

Pm1 : w1, w2, m1; Rw1 : {m1, m2, } , w1

Pm2 : w1, w2,m2; Rw2 : {m1, m2, } , w2

There are two stable matchings, µ1 and µ2, because neither of them exhibits blocking

pairs or blocking individuals:

µ1 =

m1 m2

w1 w2

 , µ2 =

m1 m2

w2 w1

 .
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(By contrast, matchings where one or both men remain single are not stable, because

each agent strictly prefers having a spouse to remaining single and in doing so forms

a blocking pair with a member of the opposite gender.)

The RSM mechanism operates by generating a list of all stable matchings and by

selecting one at random. For example, given the preferences above, the probability

that either µ1 or µ2 is selected is Pr(µ1) = Pr(µ2) = 1/2. �

A matching µ is Pareto efficient if there is no other matching ν that can reassign at

least one person to a strictly better spouse (than under µ) without making anyone

else worse off. When agents’ preferences are strict, it is well known that all stable

matchings are Pareto efficient (for example, see Roth and Sotomayor 1990). When

preferences permit indifferences, however, a stable matching need not be efficient, as

shown in Example 1b.

Example 1b. Consider the preferences and the matching µ given below:

Pm1 : w1, w2, w3, m1; Rw1 : {m1, m2, m3} , w1

Pm2 : w1, w3, w2, m2; Rw2 : {m1, m2, m3} , w2

Pm3 : w2, w1, w3, m3; Rw3 : {m1, m2, m3} , w3

µ =

m1 m2 m3

w2 w3 w1



It is straightforward to verify that the allocation µ is stable, but inefficient. Under

µ, each man is matched to his second choice. However, if men m1 and m3 switched

partners, each of them would receive his first choice without hurting anyone else or

upsetting stability. �
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For expositional clarity, I first permit weak preferences only on the women’s side,

and then extend the results for both men and women. I characterize inefficiently

matched agents using Pareto Improvement cycles and chains (Erdil and Ergin (2006));

my purpose is to show that the proportion of agents involved in cycles or chains

converges to zero in expectation. To do this I first obtain a necessary condition

for cycle formation in terms of agents’ randomly drawn preferences, and show that

this condition occurs less and less frequently as the number of agents grows. In this

context, the preference-generating process acquires special importance. I show that

when agents are stochastically diverse, efficiency can be restored in large markets.

Specifically, I assume that each agent with weak preferences draws her preferences

independently from an urn containing all possible weak preferences. Repetition of

agent types is possible, but becomes increasingly unlikely as the market size grows.

This technical axiom means that in the limit, agents need to be sufficiently different,

or that agent diversity increases with market size. With this assumption, one can

obtain an upper bound for the expected proportion of inefficiently matched agents

and look at how this bound changes with n.

To show that the proportion of inefficiently matched agents engaged in cycles or

chains converges to zero, I recast the economic problem in combinatorial terms. I use

combinatorial enumeration methods to obtain a recurrence relation for the maximum

number of agents admitting cycles (chains), and show that as a fraction of the total,

such agents decrease to zero in the limit. This allows me to conclude that a randomly

chosen stable matching is asymptotically efficient.
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3.4 Model

The triple (M,W,R)n is called a marriage problem with n men and n women to be

matched, where M denotes the set of men, W the set of women, and R the collection

of weak preferences R = {Rm ∪Rw m ∈M, w ∈ W}. Preferences are ordinal and

can be thought of as “rank lists,” where each agent lists agents of the opposite sex

in order of preference. It is standard to denote the weak preference relation “at least

as good as” with the letter R indexed by the “name” of the agent: for example, aRib

denotes “agent i weakly prefers a to b”. The corresponding strict preference relation

is denoted with Pi, and the indifferrence relation with ∼i. I will often refer to n as

simply the size of the market.

In the classical marriage problem (Gale and Shapley (1962)), preferences are treated

as given. However, they can also be chosen stochastically: for example, each agent

may be drawing his or her preferences from some distribution over all possible pref-

erence lists. Such an environment allows one to look at the allocation in a given

marriage problem on average, where the averaging takes place across different pref-

erence realizations. A marriage problem with stochastically determined preferences

is is called a random market (Kojima and Pathak (2009); Immorlica and Mahdian

(2005)). In our context, a random market is a quadruple (M,W,R,D)n where D is

a distribution over the set of all possible weak preferences {R}. (Clearly, the set of all

strict preferences is also included in {R}). Each random market can have different re-

alizations, depending on what preferences are jointly drawn. Given a fixed preference

realization, one can use a systematic procedure to allocate partners. An allocation

that specifies who is matched to whom (and who remains single) is called a matching

and is often denoted as µ. The notation µ(i) denotes the partner assinged to agent i

by the matching µ. Formally, a matching is a function µ : M ∪W → M ∪W that

satisfies three conditions:
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(1) µ(m) /∈ W ⇒ µ(m) = m, ∀ m ∈M ;

(2) µ(w) /∈M ⇒ µ(w) = w, ∀w ∈ W ; and

(3) µ(m) = w ⇔ µ(w) = m, ∀m ∈M,∀w ∈ W .

Different preferences can result in different matchings; the set of all matchings is

denoted as M.

A matching µ is Pareto efficient1 when there exists no other matching ν such that:

(1) ν(i)Riµ(i) for all i ∈M ∪W , and

(2) ν(i)Piµ(i) for some i ∈M ∪W .

A matching µ is individually rational if for every agent i, it is true that µ(i)Ri i.

A matching µ is blocked by an individual i if iPiµ(i). A matching µ is blocked

by a pair (m,w) if both wPmµ(m) and mPwµ(w) hold. A matching is stable if it

is not blocked by any individual or pair.2

A mechanism is a function f : R → ∆(M) from preferences R to the set of dis-

tributions ∆ over the set of possible matchings M. Given a set of preferences, a

mechanism outputs a (unique) distribution over matchings. A mechanism f is

Pareto-efficient if the matching f(R) is Pareto efficient for every preference profile

R.

To gauge the efficiency of a matching, I first identify agents who can Pareto improve,

using the notion of Pareto-Improving cycles and chains (Erdil and Ergin (2006)).

Definition 1. Given a matching µ, a Pareto-Improvement Cycle is a set of

agents of the same sex i1, i2, . . . , iK (K ≥ 2) such that:

1The terms in this section are explained in greater detail in Roth and Sotomayor (1990).
2One can also define a stricter notion of stability. A matching is strictly stable if it is individually

rational and there is no pair (m,w) such that either wRmµ(m) and mPwµ(w) hold together, or
wPmµ(m) and mRwµ(w) hold together. Throughout the paper, I use the regular notion of stability,
sometimes also called “weak stability” (as in Gusfield and Irving 1989); it is trivial to see that all
strictly stable matchings are Pareto efficient.
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1. Each agent it is matched to a spouse of the opposite sex.

2. µ(it+1)Ritµ(it) and itRµ(it+1)it+1 for t ∈ {0, 1, . . . , K − 1}.

3. At least one of the preferences in (2) is strict for some t ∈ {0, 1, . . . , K − 1}.

Pareto-Improvement cycles and chains are sets of agents who are willing to exchange

partners among themselves so that at least one agent in the cycle (chain) is better

off and nobody else is worse off. If we call the relation µ(it+1)Ritµ(it) an envy

relation and and denote it with an arrow, Pareto-Improvement cycles and chains

can be represented more intuitively as graphs.

Definition 1′. Given a matching µ, a Pareto improvement cycle is a sequence

of men m1,m2, . . . ,mK and their respective spouses µ(m1), µ(m2), . . . , µ(mK), such

that

µ(m1)→ µ(m2)→ . . .→ µ(mK)→ µ(m1) and (3.1)

mK ← m1 ← m2 ← . . .← mK−1 ← mK . (3.2)

where at least one of the envy relations → is strict.

If a matching contains single agents, then such a coalition of agents can begin with

and end with an unmatched agent, in which case the relevant concept is the Pareto-

Improvement chain. A graphical example of a Pareto-Improvement cycle and a

Pareto-improvement chain is shown in Fig. 3.1; the formal definition of chains is

deferred to Section 7.1.

Pareto-Improvement cycles and chains (henceforth, PI-cycles and PI-chains) provide

a means to construct a matching that Pareto dominates a given matching µ, so if a

cycle or chain exists, it is immediate that the matching µ is inefficient. The converse
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Figure 3.1: A Pareto-Improvement Cycle and a Pareto-Improvement Chain.

is also true, as shown in Proposition 1 in the Appendix, so a key feature of Pareto-

Improvement cycles and chains is that they identify inefficiently matched agents in

the marriage problem.3

From here on, my main strategy will be to obtain a necessary condition for cycle

(chain) formation, and to show that when certain assumptions are met, this neces-

sary condition occurs less and less frequently as n → ∞. I begin with a set of six

assumptions, some of which I subsequently relax:

A1. The mechanism designer is facing a sequence of random markets of

increasing size {(M,W,R,D)n}∞n=3.

A2. Men and women are matched using the random stable mechanism

(RSM).

A3. Everybody is acceptable: remaining single is strictly the last choice

of every agent.

A4. Given a market size n, each man independently draws strict pref-

erences from the uniform distribution over all possible strict preferences

3Erdil and Ergin (2006, Theorem 1) prove a similar result for many-to-one matchings, but under
different assumptions. For example, they rule out indifferences between a mate and remaining
unmatched.
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over the n women. The draw is repeated for each market size n; successive

draws are independent.

A5. Given a market size n, each woman independently draws weak pref-

erences from a distribution Dn over all possible weak preferences over the

n men. The draw is repeated for each market size n; successive draws are

independent.

A6. Dn is the uniform distribution.

Assumptions A1 and A2 are self-explanatory. Assumption A3 (acceptability) is intro-

duced for convenience; its immediate corollary is that when all agents are acceptable,

any stable mechanism leaves no agent single, so it is enough to consider only Pareto-

Improvement cycles. (I relax this assumption in Section 3.7.) For expositional clarity,

assumption A5 specifies that weak preferences occur only on one side of the market

(for concreteness, women); it is relaxed in Section 3.7.

Assumptions A4 and A5 (stochastic diversity) merit longer discussion. They specify

the frequency of occurence of preference types, and imply that recurrence of the same

agent (preference) type gets less and less frequent as n → ∞: as market size grows,

agent diversity increases. When women are stochastically diverse, agents likely to

end up in a PI-Cycle occur less and less frequently until their share converges to zero.

For technical aspects of this result, the reader is referred to Section 3.6.

Whether assumptions A4 and A5 are realistic or not depends on the market under

consideration. They will work well for markets with many agents with heterogeneous,

uncorrelated preferences. By contrast, in settings where preferences are correlated (for

example, a dating market in which women agree on the ranking of men), A4 an A5

are unsuitable. Thus my results apply to large heterogeneous markets but not to

markets with many similar agents.
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For simplicity, in assumption A6 I also assume that Dn is the uniform distribution,

but Section 7.2 provides an example that this can be relaxed as well.

3.5 An impossibility result

The next Lemma relates Pareto-improvement cycles to preferences; this impossibility

result separates those agents who can enter a cycle from those who cannot.

Lemma 1. (Necessary condition for cycle formation). Suppose that µ is a stable, 1:1

matching. Then two fixed men m1 and m2 cannot be in the same Pareto-Improvement

cycle unless at least one of their spouses is indifferent between m1 and m2, so that

[m1 ∼µ(m2) m2] or [m1 ∼µ(m1) m2], or both.4

Proof. First consider the (strict) preferences of m1. Given any matching µ, either

µ(m2)Pm1µ(m1), or µ(m1)Pm1µ(m2).

Initially suppose that µ(m1)Pm1µ(m2); then m1 will not be willing to trade with m2,

and m1 and m2 cannot participate in the same PI-Cycle.

Now suppose that µ(m2)Pm1µ(m1) and consider the weak preferences of µ(m2). If

m1Pµ(m2)m2, then (m1, µ(m2)) form a blocking pair and so µ is not stable, a contra-

diction. If m2Pµ(m2)m1, then µ(m2) cannot point to µ(m1) and by Definition 1, these

two women and their spouses m1 and m2 cannot be part of the same PI-Cycle. The

only preference of µ(m2) consistent with a PI-Cycle is m1 ∼µ(m2) m2. Reversing the

places of m1 and m2 yields the second part of the necessary condition, [m1 ∼µ(m1) m2].

�
4This “non-exclusive OR” and the notation ∪ will be used interchangeably where needed to save

space.
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The next step is to determine how often preferences leading to cycle formation occur

in the preference-generating setup in A1-A6. I begin by demonstrating that the

probability of any two given men (and hence, their corresponding matches) entering

a cycle will go to zero when the number of agents n→∞. I do this by showing that

this probability is bounded from above and that the upper bound goes to zero.

Theorem 1. Let µ be a one-to-one matching produced by the Random Stable Mech-

anism under assumptions A1-A6. Then in the limit n → ∞, the probability that

two arbitrary fixed men m1 and m2 admit a Pareto-Improvement cycle C satisfies the

upper bound

Pr(m1,m2 ∈ C) ≤ 2 Pr(m1 ∼w m2), (3.3)

where w is an arbitrary woman.

Proof: In the Appendix. �

The statement in Theorem 1 is less obvious than it appears. Firstly, the theorem uses

the probability of pairwise indifference by a fixed arbitrary woman w as an upper

bound for the probability of indifference by a variable woman µ(m2) selected by the

mechanism, therefore the upper bound also depends on the mechanism’s properties.

In the Appendix, I show that the Random Stable Mechanism satisfies the upper bound

(3); however, this need not be true for stable mechanisms in general. For example,

stable mechanisms that under assumptions A1-A6 match a fixed pair (m∗, w∗) with

probability other than 1/n, may violate the upper bound from the theorem (see the

proof in the Appendix).

Theorem 1 implies that the frequency of cycle formation is related to the frequency of

indifferences in the underlying preference-generating process. Next I will show that

such pairwise indifferences vanish in the limit n→∞.
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3.6 Asymptotic Method

This section shows that under assumptions A1-A6, the upper bound Pr(m1 ∼w m2)

converges to zero in large markets. Assumption A5 posits that each woman selects

her (weak) preference at random from the list {R} of all possible weak preferences;5

it specifies a stochastic preference-generating process (PGP), which I translate in

combinatorial terms. If we denote:

T̃n = The number of weak preferences over n men in which m1 ∼w m2

Tn = The total number of weak preferences over n men,

then a woman w selecting a weak preference at random will have a probability of

pairwise indifference between two fixed men m1 and m2 equal to

Pr(m1 ∼w m2) = T̃n/Tn. (3.4)

To find the terms Tn and T̃n, I generate weak preferences as ordered partitions of a

set with n elements. For example, the ordered partition of a set of 8 men

{m7 | m2 m3 m5 | m4 | m6 m1 | m8}

generates the weak preference

Rw : m7 � {m2 m3 m5} � m4 � {m6 m1} � m8.

One can think of the woman’s preference-generation task as the task of distributing

the n men into ordered blocks of various sizes, where each block of size greater than

one represents an indifference class (a group of men among whom the woman is

indifferent). So I posit a random weak preference to be a randomly chosen ordered

5Again it is understood that {R} also includes all possible strict orderings of men.
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partition of the set of men M . As another example, consider the task of generating

a random weak preference over a set of n = 3 fixed men.

Example 2. The set of men M = {m1 m2 m3} has T3 = 13 ordered partitions,

corresponding to the 3!=6 permutations corresponding to strict preferences, plus the

following 7 preferences containing at least one indifference:

m1, {m2,m3} ; {m2,m3} ,m1; m2, {m1,m3} ; {m1,m3} ,m2;

m3, {m1,m2} ; {m1,m2} ,m3; {m1,m2,m3} .

Each possible preference is therefore selected with probability 1/13. �.

The next Theorem shows how to count the large numbers T̃n and Tn using recurrence

relations, as they have no exact closed formulas in n.

Theorem 2. (a)The total number Tn of weak preferences over n partners satisfies

the recurrence relation

Tn =
n−1∑
i=0

(
n

i

)
Ti. (3.5)

(b) The total number T̃n of weak preferences over n partners in which two fixed agents

are indifferent, satisfies the recurrence relation

T̃n = Tn−1 (3.6)

Proof. (a). The first partition block of size k (1 ≤ k ≤ n) can be selected from the

set of n partners in exactly
(
n
k

)
ways, because within blocks, order does not matter.

To each selection of this 1st k-block, there corresponds a subset of (n− k) remaining

elements to be partitioned into ordered blocks, which can be done in exactly Tn−k
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ways. Summing over all possible sizes k = 1, 2, . . . , n results in the sum

Tn =
n∑
k=1

(
n

k

)
Tn−k =

n∑
k=1

(
n

n− k

)
Tn−k =

n−1∑
i=0

(
n

i

)
Ti, (3.7)

where i = n− k.

(b). Let the set M be of cardinality n. If two fixed elements m1,m2 ∈ M always

appear in the same block of an ordered partition of M , one can treat them as a single

element m̄ for partitioning purposes. The resulting set {m̄,m3,m4, . . . ,mn} consists

of n − 1 elements and can therefore be partitioned into ordered blocks in exactly

Tn−1 ways. Therefore the number of ordered partitions T̃n in which the two fixed

elements m1 and m2 always occur in the same block, satisfies the recurrence relation

T̃n = Tn−1. �

Using the recurrence relations from Theorem 2, one can demonstrate that the prob-

ability of a pairwise indifference (a necessary condition for cycle formation), goes to

zero in a large market. To emphasize that this probability depends on market size,

here it will be specifically denoted as Pr(m1 ∼w m2 ; n).

Theorem 3. The probability of pairwise indifference between two fixed agents m1 and

m2 as n→∞ satisfies the limit

lim
n→∞

Pr(m1 ∼w m2 ; n) = lim
n→∞

T̃n
Tn

= 0. (3.8)

Proof: In the Appendix. �

The last theorem shows that a 2-ple of fixed men is less and less likely to enter a

cycle as the number of agents increases. As n grows, however, the number of such
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2-ples also increases; the next step shows that with the random stable mechanism,

the expected proportion of 2-ples admitting a cycle (and therefore also the expected

proportion of agents admitting a cycle) converges to zero.

Theorem 4. Let assumptions A1-A6 be satisfied. Then the expected proportion of

agents that can participate in a Pareto-Improvement cycle converges to zero as n →

∞.

Proof. In the Appendix.

Theorem 4 establishes the main result of the paper: that the expected proportion of

individuals admitting a PI-Cycle is vanishingly small at infinity. Sections 7.1 - 7.3

extend this result to setups allowing Pareto-improvement chains, two-sided indiffer-

ences, and non-uniform distributions over preferences, respectively.

3.7 Extensions

3.7.1 Pareto Improvement Chains

Here I drop the assumption that all agents are acceptable, allowing an agent to prefer

remaining single to being matched. Partners who appear as choises worse than i

are unacceptable for i, and if µ(i) = i we say that agent i remains single under the

matching µ.

If an agent remains single, he or she cannot be part of a Pareto-Improvement cycle.

However, a chain of agents willing to exchange spouses to their mutual benefit may

still exist. A Pareto-Improvment chain (Ergin and Erdil (2006)) is a sequence of

men and women, beginning with an unmatched man and ending with an unmatched

woman, who are willing to exchange spouses so that nobody is worse off and at least
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one person is better off. This idea is made precise in Definition 2. Let the envy

relation between two agents x→ y denote the fact that µ(y)Rxµ(x).

Definition 2. Given a matching µ, a Pareto-Improvement Chain is a set of men

m1, . . .mK and women µ(m2), µ(m3), . . . , µ(mK), wK , K ≥ 2 such that:

1. m1 and wK are single;

2. m1 → m2, . . . ,mK−1 → mK and mK → wK .

3. wK → wK−1, . . . , w2 → w1 and w1 → m1.

4. At least one of the envy relations “→” is strict.

In an inefficient matching where some agents are unacceptable to others, either a PI-

Cycle or a PI-Chain must occur. I am again interested in finding a limiting condition

for the frequency of Pareto improvement cycles and chains. In a setting with single

agents, a man can envy (i.e. point to) either a matched man or a single woman, so

instead of envy 2-ples of men of the type mi → mj, now I will consider generalized

envy 2-ples m→ i where the envied agent i can be either a matched man or a single

woman. Given a matching µ, denote the set of matched men as M and the set of

single women as W ; so, I will consider 2-ples of the type (m, i) s.t. i ∈M ∪W .

Lemma 2. (Necessary condition for PI-cycle/chain formation).

Suppose that µ is a stable, one-to-one matching. Then the pair of agents m and i

cannot be in the same PI-Cycle or PI-Chain unless

m ∼µ(i) i ∪ m ∼µ(m) i (3.9)

Proof. First suppose that µ(i)Pmµ(m), where m ∈ M and i ∈ M ∪W . (If instead

µ(m)Pmµ(i), agents m and i will never voluntarily trade partners).
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1. For cycles: Suppose not, so m 6∼µ(i) i. Then either µ(m2) will be unwilling to

trade, or else (m1, µ(m2)) form a blocking pair, so µ is not stable. �

2. For chains. If both m and i are matched men, the proof is the same as for cycles.

If m ∈ M (so m has a wife) and i ∈ W (i.e. i is a single woman), then obviously

µ(i) = i. If i is not indifferent between m and remaining single, either she won’t agree

to trade, or else (m, i) are a blocking pair. Alternatively, if m is a single man, then i

is a matched man, and if m 6∼µ(i) i, again µ(i) will either refuse to trade, or form a

blocking pair with m. �

It is also possible that µ(m)Piµ(i); (if instead µ(i)Piµ(m), agents m and i will not

want to trade). In this case, simply reverse the roles of m and i in the proofs above

to obtain the second part of the necessary condition m ∼µ(m) i. �

The probability of the event m ∼µ(i) i, (i ∈ M ∪W ) will again be an upper bound

for the chance that these two agents can be in a cycle (chain). Since in the case of a

single woman w, µ(w) = w, again this frequency depends only on the preferences of

women; the only difference is that now we include into consideration any indifferences

between the “stay single” position and being matched to a man m. Each woman’s

preference is now defined over n + 1 agents: the n men plus herself (to indicate her

individual rationality point). As before, we can decompose

Pr(m ∼µ(i) i) = Pr

(
n⋃
i=1

[µ(i) = wi ∩m ∼wi
i]

)
(3.10)

and by replacing m2 with i in the proof of Theorem 1, directly obtain

Pr(m, i ∈ C) ≤ 2 Pr(i ∼w j) (3.11)

where C is a PI-chain or PI-Cycle, w is an arbitrary woman and i and j are any two

fixed agents in the ordinal preference of w.
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From this it is evident that the combinatorial problem remains unchanged. The only

difference is that now we have to partition a set of n + 1 elements, as the individual

rationality point may now occur anywhere in the rank list, including an indifference

class. A statement analogous to Theorem 4 immediately follows, because

lim
n→∞

Pr(i ∼w j ; n) = lim
n→∞

T̃n+1

Tn+1

= lim
n→∞

T̃n
Tn

= 0. (3.12)

Repeating without change the reasoning in Theorem 4, it follows that the expected

proportion of men pointing to either other men or to single women, i.e. the fraction

of men that admits a PI-cycle or a PI-chain, converges to zero. Since the matching

is one-to-one, so does the expected proportion of inefficient women.

3.7.2 Two-sided Weak Preferences

Similar resutls hold when both men and women have random weak preferences, except

that in this case the inefficiency vanishes slower. Instead of assumption A4, now

assume that:

A4′. Given a market size n, each man independently draws weak pref-

erences from the uniform distribution over all possible weak preferences

over the n women. The draw is repeated for each market size n; successive

draws are independent.

In this setting, cycles can occur more frequently, because there are more indifferent

agents who can agree to switch partners. The necessary condition for a cycle involving

two fixed men m1 and m2 is now the following.
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Lemma 3. Suppose that µ is a stable, 1:1 matching. Then two fixed men m1 and m2

cannot be in the same Pareto-Improvement cycle unless

[m1 ∼µ(m1) m2] ∪ [m1 ∼µ(m2) m2] ∪ [µ(m1) ∼m1 µ(m2)] ∪ [µ(m1) ∼m2 µ(m2)]. (3.13)

Proof. The first two indifferences [m1 ∼µ(m1) m2] ∪ [m1 ∼µ(m2) m2] follow without

change from the proof of Lemma 1. In addition, however, now a cycle can also occur

when one of the women µ(m1), µ(m2) has a strict preference over the men m1, m2,

but one of these men is indifferent between µ(m1), µ(m2). Again, if m1Pµ(m1)m2, then

µ(m1) and µ(m2) will not trade, and when m2Pµ(m1)m1, the two fixed men cannot be

in the same cycle unless µ(m1) ∼m2 µ(m2); the same logic applies to µ(m1), resulting

in the indifference [µ(m1) ∼m1 µ(m2)]. �

To obtain a similar efficiency result, I use a modified version of the upper bound

theorem.

Theorem 5. Let µ be a matching produced by the Random Stable Mechanism and let

assumptions A1-A3, A4’, A5-A6 hold. Then the probability that two arbitrary fixed

men m1 and m2 admit a Pareto-Improvement cycle C satisfies the upper bound

Pr(m1,m2 ∈ C) ≤ 2 Pr(m1 ∼w m2) + 2 Pr(w′ ∼m w′′), (3.14)

where w, w′ and w′′ are any fixed women and m is any fixed man.

Proof. In the Appendix.

When wen and women draw weak preferences using the same i.i.d. uniform generation

process, the upper bound is 4 Pr(m1 ∼w m2), twice larger than before. Applying

without change the reasoning from Theorem 4, it follows that
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Theorem 6. Let both men and women have weak preferences drawn from the uni-

form distribution so that assuptions A1-A3,A4′,and A5-A6 hold. Then the expected

proportion of agents that can participate in a Pareto-Improvement cycle converges to

zero as n→∞.

This result completes the extension for two-sided weak preferences. As expected,

when both sides of the market can have indifferences, the associated inefficiency is

larger, but it goes to zero as well.

3.7.3 A Non-Uniform Distribution

So far I discussed weak preferences generated as random ordered partitions of the

set of agents of the opposite sex. Now suppose we eliminate all strict orders from

that list, and allow the agent to choose only from preferences containing at least

one indifference. It can be shown that this non-uniform distribution over preferences

preserves the results. In this case, given two fixed men m1 and m2,

Pr(m1 ∼w m2) =
T̃n

Tn − n!
=

Tn−1

Tn − n!
(3.15)

because there are Tn−1 preferences where m1 ∼w m2, and from the total Tn we must

subtract the n! strict preferences. One can represent

Pr(m1 ∼w m2) =
Tn−1/Tn

(Tn − n!)/Tn
=

Tn−1/Tn
1− (n!/Tn)

. (3.16)

I will show that (n!/Tn)→ 0 which implies that,

lim
n→∞

Pr(m1 ∼w m2) = lim
n→∞

Tn−1

Tn
= 0. (3.17)

Lemma 4. The quantity (n!/Tn) satisfies limn→∞(n!/Tn) = 0.
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Proof. Equation 45 in the proof of Theorem 3 directly implies that ∆Tn > nTn−1.

Using this inequality recursively yields

n!

Tn
<

n

n+ 1

(n− 1)!

Tn−1

<
n

(n+ 1)

(n− 1)

n

(n− 2)!

(n− 1)
· · · 2

3

1!

T1

=
2

n+ 1
(3.18)

since T1 = 1 and cross-terms cancel. Since (n!/Tn) ≥ 0 and 2/(n + 1)→ 0 it follows

immediately that

lim
n→∞

n!

Tn
= 0. � (3.19)

This statement implies that the above non-uniform preference generating process

(PGP) also results in Pr(m1 ∼w m2) → 0. Moreover, notice that if we denote the

standard uniform PGP as P and the PGP requiring at least one indifference as P∗,

then the following asymptotic approximation holds:

Pr(m1 ∼w m2 | P∗)→ Pr(m1 ∼w m2 | P) ≡ Tn−1/Tn. (3.20)

This property allows us to preserve the proofs of all Theorems proved so far in their

entirety because the limiting distribution of preferences is the same. All results ob-

tained in Theorems 1-6 carry over immediately without any modification.

Clearly, other non-uniform PGPs may also preserve the limit Pr(m1 ∼w m2) →

0 without satisfying the last property. Extending Theorems 1-6 for such PGPs is

considerably more difficult and is therefore relegated to a separate paper.

3.8 Conclusion

This paper establishes a simple-to-state result for the marriage problem with weak

preferences: that with heterogeneous agents, a randomly selected stable matching

will be approximately Pareto efficient when the number of agents approaches infinity.
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Specifically, the expected proportion of agents who can Pareto improve by exchanging

partners is vanishingly small in the limit. This result provides a partial alleviation

to the inefficiency of stable matchings under weak preferences, but it should be em-

phasized that this alleviation is only in relative terms, as it refers to the expected

proportion of inefficient agents. Nothing in this result suggests that the absolute

number of agents who can Pareto improve goes to zero for large n. Therefore, the

result itself is not simply a way to get rid of indifferences with a resulting “cure-all”

for the inefficiency problem; on the contrary, even though the frequency of pairwise

indifferences vanishes in the limit, this has no implications for the absolute number

of inefficient agents.

This result joins an interesting class of other asymptotic results recently obtained

by Kojima and Pathak (2009), Kojima and Manea (2008), and Che and Kojima

(2010). These authors have shown that certain finite-market shortcomings of stable

mechanisms, such as the lack of strategyproofness, can vanish in large markets; my

paper demonstrates an analogous result for Pareto efficiency. Taken together, these

results suggest that in large markets, mechanism designers can improve not only on

agens’ incentives, but also on the efficiency of the stable match.
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3.9 Appendix: Theorem Proofs

Proposition 1. Any one-to-one matching is Pareto Efficient if and only if it admits

neither PI-Cycles nor PI-Chains.

Proof. Sufficiency. If the matching µ admits a PI-Chanin or a PI-Cycle C, we

can construct a matching ν that Pareto-dominatss µ by simply executing the trades

suggested by the arrows in C. By Definitions 1 and 2, ν Pareto-dominates µ; therefore

µ is not Pareto efficient.

Necessity. Assume that no PI-Cycles and no PI-Chains exist, but that the one-to-

one matching µ is inefficient. Then there exists a matching ν that Pareto dominates

µ. This implies that ν(i)Riµ(i) for every i, and that there exists at least one agent

i∗ s.t. ν(i∗)Pi∗µ(i∗); therefore, ν(i∗) 6= µ(i∗) and therefore i∗ has a different partner

under ν compared to µ. Hence there is a non-empty set S of agents, including i∗,

who switch partners from µ to ν.

Since ν Pareto-dominates µ, in particular, ν(i)Riµ(i) and ν(i∗)Pi∗µ(i∗) for ∀i, i∗ ∈ S.

But this implies that each i ∈ S weakly points to µ(ν(i)), that is, i
R→ µ(ν(i)), while

i∗
P→ µ(ν(i)). Moreover, notice that

i ∈ S ⇒ µ(ν(i)) ∈ S (3.21)

because if i is reassigned to ν(i), then µ(ν(i)) must also switch partners. Since

µ(ν(i)) ∈ S and S is finite, we can construct the sequence

i
R→ µ(ν(i))

R→ µ(ν(µ(v(i))))
R→ . . .

R→ i, i ∈ S (3.22)
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where for i = i∗, the envy relation is strict. At the same time, since µ(ν(i)) ∈ S, and

S is finite,

µ(ν(i))
R→ µ(ν(µ(ν(i))))

R→ . . .
R→ µ(ν(i)) i ∈ S (3.23)

where again for i∗, the envy relation is strict. By Definitions 1 and 2, equations 22

and 23 above imply that:

• If i is single under µ, then S is a Pareto-improvement chain.

• If i is matched under µ, then S is a Pareto-improvement cycle.

But this contradicts the starting assumption that no chains or cycles exist. Therefore

the absence of cycles or chains implies that µ is efficient. This completes the proof.

�

Theorem 1. Let µ be a stable mechanism for one-to-one matching and let assump-

tions A1-A6 hold. Then the probability that two arbitrary fixed men m1 and m2 admit

a Pareto-Improvement cycle C satisfies the upper bound

Pr(m1,m2 ∈ C) ≤ 2 Pr(m1 ∼w m2), (3.24)

where w is an arbitrary woman.

Proof. My strategy will be to bound the complementary probability Pr(m1 6∼µ(m2) m2)

from below and show that, in the limit, it satisfies the lower bound

Pr(m1 6∼µ(m2) m2) ≥ 1− Pr(m1 ∼w m2), (3.25)

which is not an identity because the woman µ(m2) in the LHS is variable, while the

woman w in the RHS is generic (fixed). Then by reversing the last inequality I will
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obtain the upper bound

Pr(m1 ∼µ(m2) m2) ≤ Pr(m1 ∼w m2), (3.26)

which is what I need; the rest follows trivially.

First, I will decompose the probability Pr(m1 6∼µ(m2) m2) as a union of disjoint events:

Pr(m1 6∼µ(m2) m2) = Pr

(
n⋃
i=1

[µ(m2) = wi ∩m1 6∼wi
m2]

)
= (3.27)

=
n∑
i=1

Pr[µ(m2) = wi ∩m1 6∼wi
m2] (3.28)

To bound this sum from below, I want to separate the intersected events inside the

sum using the following fact:

Lemma 1.1. In the limit n→∞,

lim
n→∞

Pr[µ(m2) = wi ∩m1 6∼wi
m2] ≥ lim

n→∞
Pr(µ(m2) = wi) · Pr(m1 6∼wi

m2) (3.29)

Proof of Lemma 1.1: I first transform the inequality I want to prove to a more

convenient conditional form:

Pr(µ(m2) = wi ∩m1 6∼wi
m2) ≥ Pr(µ(m2) = wi) · Pr(m1 6∼wi

m2) (3.30)

Pr(µ(m2) = wi | m1 6∼wi
m2) ≥ Pr(µ(m2) = wi). (3.31)

I am interested whether this inequality holds in the limit:

lim
n→∞

Pr(µ(m2) = wi | m1 6∼wi
m2) ≥ lim

n→∞
Pr(µ(m2) = wi) (3.32)
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When women’s preferences are weak, uniformly drawn, and men’s preferences are

strict, also from the uniform distribution, the random stable mechanism gives each

woman an equal chance of being matched to a fixed man: Pr(µ(m2) = wi) = 1/n, as

will be proved in the next Lemma. Therefore limn→∞ Pr(µ(m2) = wi) = 0 and all we

need is to verify whether

lim
n→∞

Pr(µ(m2) = wi | m1 6∼wi
m2) ≥ 0 (3.33)

which is always true because Pr(·) ≥ 0, (∀n). �

Lemma 1.2. When preferences RW and PM are drawn from the uniform distribution,

each woman wi has an equal chance of being matched to a fixed man (m2) by the

Random Stable Mechanism µ. Specifically, Pr(µ(m2) = wi) = 1/n.

Proof of Lemma 1.2: There are n! possible matchings and n matchings of each type

µ(m2) = w1, µ(m2) = w2, . . . , µ(m2) = wn. Indeed, to see this fix µ(m2) = wk and

observe that the remaining n − 1 men can be matched to the remaining (n − 1)

women in (n − 1)! ways. The fraction of matchings where µ(m2) = wk is therefore

(n− 1)!/n! = 1/n. Next observe that with uniform preferences, each given matching

out of the n! possible matchings has an equal chance of being stable, so the proportion

of stable matching types does not change. Indeed, fix a matching µ : µ(m2) = wk;

then each man and woman (m,w) who are not spouses blocks µ with equal proba-

bility, because men and women draw preferences independently from the respective

uniform distribution. Since stable matchings are selected at random, the RSM selects

a matching s.t. µ(m2) = w1, µ(m2) = w2, . . . , µ(m2) = wn with equal probability

1/n. �
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Using Lemma 1.1, I can be sure that in the limit,

lim
n→∞

Pr(m1 6∼µ(m2) m2) = lim
n→∞

n∑
i=1

Pr[µ(m2) = wi ∩m1 6∼wi
m2] ≥ (3.34)

≥ lim
n→∞

n∑
i=1

Pr(µ(m2) = wi)︸ ︷︷ ︸
1/n

·Pr(m1 6∼wi
m2)︸ ︷︷ ︸

1−Pr(m1∼wim2)

(3.35)

Since all women draw the same iid preferences, Pr(m1 ∼wi
m2) does not depend on

the index i, so the summation becomes

lim
n→∞

n∑
i=1

1

n
· [1− Pr(m1 ∼w m2)] = lim

n→∞
6 n
[

1

6 n
(1− Pr(m1 ∼w m2))

]
=

= lim
n→∞

[1− Pr(m1 ∼w m2)]

where w is now a generic, fixed woman because the probability of pairwise indifference

is the same for each woman i. (Notice that the fact Pr(µ(m2) = wi) = 1/n is key.)

Therefore I obtained

lim
n→∞

Pr(m1 6∼µ(m2) m2) ≥ lim
n→∞

[1− Pr(m1 ∼w m2)] (3.36)

which, in turn, has implications for the complementary probability Pr(m1 ∼µ(m2) m2):

lim
n→∞

Pr(m1 ∼µ(m2) m2) ≡ 1− lim
n→∞

Pr(m1 6∼µ(m2) m2) (3.37)

≤ 1− lim
n→∞

[1− Pr(m1 ∼w m2)] (3.38)

therefore

lim
n→∞

Pr(m1 ∼µ(m2) m2) ≤ lim
n→∞

Pr(m1 ∼w m2) (3.39)

which is exactly the needed upper bound. �
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Theorem 3.The probability of pairwise indifference between two fixed agents m1 and

m2 as n→∞ satisfies the limit

lim
n→∞

Pr(m1 ∼w m2 ; n) = lim
n→∞

T̃n
Tn

= 0. (3.40)

Proof.

Observe that

T̃n
Tn

=
Tn−1

Tn
=

Tn−1

Tn−1 + ∆Tn
=

1

1 + ∆Tn
Tn−1

. (3.41)

I will prove that ∆Tn
Tn−1

→∞. From the recurrence relation

Tn =
n−1∑
i=0

(
n

i

)
Ti, (3.42)

and taking into account that T0 = 1 and
(
n
0

)
=
(
n−1

0

)
= 1, it follows that

∆Tn ≡ Tn − Tn−1 = (3.43)

=

[(
n

1

)
−
(
n− 1

1

)]
T1 + . . .+

[(
n

n− 2

)
−
(
n− 1

n− 2

)]
Tn−2 +

(
n

n− 1

)
Tn−1. (3.44)

We can simplify this using Pascal’s formula
(
n
k

)
−
(
n−1
k

)
=
(
n−1
k−1

)
and the fact that(

n
n−1

)
= n, from which we get

∆Tn = nTn−1 +
n−3∑
i=0

(
n− 1

i

)
Ti+1. (3.45)

From this recurrence it is evident that:

∆Tn
Tn−1

= n+

∑n−3
i=0

(
n−1
i

)
Ti+1

Tn−1︸ ︷︷ ︸
≡Z(n)>0

(3.46)

107



Therefore

lim
n→∞

∆Tn
Tn−1

= lim
n→∞

[n+ Z(n)] =∞. (3.47)

and

lim
n→∞

P (n) = lim
n→∞

1

1 + ∆Tn
Tn−1

=
1

1 +∞
= 0. � (3.48)

Theorem 4. Let assumptions A1-A6 be satisfied. Then the expected proportion

of agents that can participate in a Pareto-Improvement cycle converges to zero as

n→∞.

Proof. I will consider all
(
n
2

)
2-ples that can be formed from the set of n men and

argue that (1) the expected proportion of 2-ples admitting a cycle converges to 0, and

(2) the expected proportion of men involved in 2-ples admitting a cycle tends to 0.

1) Since indifferences of the type mi ∼µ(wj) mj occur independently and the assign-

ment is random, whether an arbitrary 2-ple (mi,mj) admits a cycle is independent of

whether any other 2-ple (mk,mz) admits a cycle, so the expected proportion of 2-ples

admitting cycles is the same as the probability of a generic 2-ple admitting a cycle. In

Theorem 3 it was shown that for arbitrary two men mi and mj, Pr(mi,mj ∈ C)→ 0,

therefore so does the expected proportion of 2-ples admitting cycles.

2) Now it remains to translate this result from the expected proportion of 2-ples to

the expected proportion of agents. Let an be the expected number of men admitting

a cycle, so that an
n

is the expected proportion of men admitting a cycle. Since the

expected proportion of 2-ples admitting a cycle
(
an
2

)
/
(
n
2

)
goes to 0, this implies

(
an
2

)(
n
2

) → 0 ⇒ an(an − 1)

n(n− 1)
→ 0 (3.49)
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Further notice that limn→∞
an
n

= limn→∞
an−1
n−1

, so if one limit exists, so does the other

and (
lim
n→∞

an
n

)2

= lim
n→∞

an
n
· lim
n→∞

an − 1

n− 1
= lim

n→∞

an(an − 1)

n(n− 1)
= 0, (3.50)

from which it follows that limn→∞
an
n

= 0. Therefore, the expected proportion of men

admitting a cycle converges to zero. Since the matching is one-to-one, the same is

true for the expected proportion of women engaged in cycles.

(Alternatively, if the limit limn→∞
an
n

doesn’t exist, then neither does
(
limn→∞

an
n

)2
=

limn→∞
[(
an
2

)
/
(
n
2

)]
, in contradiction to limn→∞

[(
an
2

)
/
(
n
2

)]
= 0, so this case is impos-

sible.) �

Theorem 5. Let µ be a matching produced by the Random Stable Mechanism and

let assumptions A1-A3,A4’,A5-A6 hold. Then the probability that two arbitrary fixed

men m1 and m2 admit a Pareto-Improvement cycle C satisfies the upper bound

Pr(m1,m2 ∈ C) ≤ 2 Pr(m1 ∼w m2) + 2 Pr(w′ ∼m w′′), (3.51)

where w, w′ and w′′ are any fixed women and m is any fixed man.

Proof. The logic is very similar to that in Theorem 1. Decompose

Pr(µ(m1) 6∼m1 µ(m1)) = Pr

(⋃
i 6=j

[µ(m1) = wi] ∩ [µ(m2) = wj] ∩ [wi 6∼m1 wj]

)
=

(3.52)

=
∑
i 6=j

Pr([µ(m1) = wi] ∩ [µ(m2) = wj] ∩ [wi 6∼m1 wj]) ≥ (by Lemma 5.1) (3.53)

≥
∑
i 6=j

Pr([µ(m1) = wi] ∩ [µ(m2) = wj]) · Pr(wi 6∼m1 wj) = (3.54)

=
∑
i 6=j

1(
n
2

)(1− Pr(wi ∼m1 wj)) =

(
n

2

)
1(
n
2

)(1− Pr(wi ∼m1 wj)) = (3.55)

= 1− Pr(wi ∼m1 wj). (3.56)
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Therefore

Pr(µ(m1) ∼m1 µ(m1)) ≤ Pr(wi ∼m wj) (3.57)

and because men and women’s preferences are independent,

Pr[m1 ∼µ(m1) m2 ∪m1 ∼µ(m2) m2 ∪ µ(m1) ∼m1 µ(m2) ∪ µ(m1) ∼m2 µ(m2)] ≤

≤ 2 Pr(m1 ∼w m2) + 2 Pr(w′ ∼m w′′).

Lemma 5.1. In the limit n→∞,

Pr([µ(m1) = wi] ∩ [µ(m2) = wj] ∩ [wi 6∼m1 wj]) ≥

≥ Pr([µ(m1) = wi] ∩ [µ(m2) = wj]) · Pr([wi 6∼m1 wj])

Proof. Rewriting the inequality in conditional form, we need to verify that

lim
n→∞

Pr(µ(m1) = wi∩µ(m2) = wj | wi 6∼m1 wj) ≥ lim
n→∞

Pr(µ(m1) = wi ∩ µ(m2) = wj)︸ ︷︷ ︸
0

(3.58)

which is verified using the fact that Pr(µ(m1) = wi ∩ µ(m2) = wj) ≤ Pr(µ(m1) =

wi) = 1/n→ 0 as in Lemma 1.1.
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