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Abstract 

The Roles of Visuospatial and Verbal Working Memory in Children’s Mathematical 

Performance 

Alana E. Dulaney 

Dissertation Chair: Marina Vasilyeva 

 

The ability to mentally store and manipulate information, termed working 

memory (WM), is essential to mathematical performance. Yet, little research has 

investigated the mechanisms through which WM capacity is related to mathematical 

performance in children. Furthermore, the extent to which children utilize specific WM 

resources when executing mathematical tasks is poorly understood. Addressing these 

gaps, this research investigated the nature of relations between WM and children’s 

mathematical performance.  

Participants were 56 second and 32 fourth grade students from public and private 

elementary schools. Students completed tasks measuring their visuospatial-WM and 

verbal-WM capacities, the strength of their spatial and symbolic representations of 

numerical magnitude, and arithmetic performance. Arithmetic strategies were also 

assessed. In a dual-task condition, children’s WM resources were experimentally 

manipulated: children completed mathematical tasks while retaining visuospatial and 

verbal stimuli in memory. 

Results showed that the relation between visuospatial-WM capacity and 

arithmetic accuracy was mediated by children’s spatial numeric representations and the 

frequency of using a decomposition strategy in solving arithmetic problems. Conversely, 



 

 

the relation between verbal-WM and arithmetic accuracy was mediated by the frequency 

of using retrieval strategies in solving arithmetic problems. Additionally, the extent to 

which specific WM resources were involved in children’s math performance varied by 

math task and children’s skill level. Verbal-WM resources appeared to be minimally 

involved in children’s spatial numerical representations, but highly involved in symbolic 

numerical representations and arithmetic calculations. On all math tasks, visuospatial-

WM resources were involved to a greater extent among highly skilled children than low-

skill children.   

The results suggest that WM capacity might improve spatial numerical 

representations and lead children to use memory-based arithmetic strategies more 

frequently, resulting in better arithmetic performance. Regardless of WM capacity, 

children who heavily use visuospatial-WM resources are more successful in executing 

mathematical tasks than children who rely on these resources minimally. These findings 

contribute to our understanding of how WM can facilitate children’s mathematical 

performance. Implications for identifying specific challenges in children’s mathematical 

learning are discussed.  
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Chapter 1: Introduction 

Among a number of socio-emotional and academic predictors of educational 

achievement, meta-analytic results point to early math achievement as one of the 

strongest predictors of long-term achievement in both math and reading (Duncan et al., 

2007). Yet, national and international assessments of American students’ math 

performance have raised concerns among educators and policy makers, with some fearing 

that the nation risks losing its status as a financial and economic leader (National 

Mathematics Advisory Panel, 2008). Recent national test results show that the math 

performance of elementary school students needs improvement: in all but four states, less 

than half of fourth-graders scored at or above proficiency, with at least one quarter of 

students scoring below the basic level in seven states (National Center for Education 

Statistics, 2011). Moreover, international comparisons of student mathematical 

performance show that even the highest performing American fourth-graders continue to 

trail behind their counterparts in nine other countries (Mullis, Martin, Foy, & Arora, 

2012). One approach to addressing this problem is to uncover the cognitive skills that 

play a key role in children’s math learning and performance. Doing so would provide a 

focal point for educators seeking to identify and overcome barriers to students’ success in 

math.  

A growing body of literature has taken such an approach, identifying two 

cognitive abilities as integral to mathematical learning and achievement. One of these 

cognitive abilities, working memory, is a domain-general limited-capacity system that 

involves simultaneously encoding, manipulating, and recalling several units of inter-
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related task-specific information (Baddeley & Hitch, 1974; Daneman & Carpenter, 

1980). Associational studies show that working memory capacity is strongly related to 

mathematical ability in elementary school, even after accounting for IQ (Alloway, 2009; 

Alloway & Alloway, 2010), verbal ability (Alloway & Passolunghi, 2011), and other 

executive functions (Bull & Scerif, 2001). Moreover, findings from experimental studies 

conducted with adults suggest that working memory resources are heavily involved in 

performing mental arithmetic calculations (DeStefano & LeFevre, 2004; Imbo & 

LeFevre, 2010; Imbo, & Vandierendonck, 2007a. 2007b; Imbo, Vandierendonck, & 

Vergauwe, 2007; Trbovich, & LeFevre, 2003).    

A second cognitive ability—number sense—is thought to provide a foundation for 

the development of mathematical skills and knowledge. Although there is no single 

recognized definition for the term “number sense”, it has been described as something 

that “constitutes an awareness, intuition, …conceptual structure, or mental number line” 

(Berch, p.1, 2005). One aspect of number sense that has received much attention in the 

literature on children’s early mathematical development involves associating spatial and 

symbolic representations of numbers with numerical magnitudes or with quantities of 

events and objects (Dehaene, 1992; Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 

2007; Siegler and Booth, 2004). Measurement of this aspect of children’s number sense 

has been useful in identifying children’s risk for poor math achievement (e.g., Gersten, 

Jordan, & Flojo, 2005) and implementing early interventions (e.g., Griffin, Case, & 

Siegler, 2004). For example, this aspect of number sense has been identified as a 

predictor of school children’s development in arithmetic calculations and word problem 
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solving (Fuchs et al., 2010a; Fuchs, Geary, Compton, Fuchs, Hamlett, & Bryant, 2010b; 

Griffin et al., 1994), learning to estimate solutions to arithmetic problems (Booth & 

Siegler, 2008), and growth in a standardized measure of math achievement (Geary, 

Hoard, Nugent, & Bailey, 2012).  

While the literature suggests that number sense and working memory may be 

essential to children’s mathematical performance, the prevalence of deficits in both of 

these cognitive abilities is cause for concern. In a sample of over 3000 five- to ten-year 

old children from British mainstream classrooms, 10% demonstrated working memory 

impairments on a standardized measure called the Automated Working Memory 

Assessment (AWMA; Alloway, 2007); among these children, 70% demonstrated 

mathematical difficulties (Alloway, Gathercole, Kirkwood, & Elliot, 2009). Thus, strong 

evidence that working memory and number sense play a role in children’s math 

performance, combined with a troubling percentage of children who demonstrate 

difficulties with these aspects of cognition, beg a more thorough understanding of how 

these variables are related.  

To date, despite the fact that a number of associational studies have examined 

working memory and number sense in relation to arithmetic performance (e.g., Fuchs et 

al., 2010a, 2010b; Geary, 2011; Geary et al., 2007, 2009b, 2012), there has been limited 

investigation of potential mechanisms underlying these relations. Additionally, only a 

few studies have taken an experimental approach to investigating the involvement of 

working memory resources in children’s arithmetic performance (Imbo, & 

Vandierendonck, 2006; McKenzie, Bull, & Gray, 2003), and none of the existing 
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experimental investigations have examined working memory involvement in children’s 

number sense. The present research addressed these limitations in two parts, by (a) 

examining possible mechanisms underlying the relation between working memory 

capacity and arithmetic performance and (b) examining the extent to which working 

memory resources are involved in children’s number sense and arithmetic performance. 

With regard to the first part, children’s number sense and arithmetic problem solving 

strategies were examined as mediators of the relation between working memory capacity 

and arithmetic performance. Regarding the second part, working memory resources were 

manipulated while children completed tasks measuring their number sense and arithmetic 

calculations, in order to compare working memory involvement for each type of math 

task and as function of children’s grade and skill level. 
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Chapter 2: Literature Review 

Working memory is considered to be foundational to children’s mathematical 

learning and performance (Geary et al., 2012; LeFevre, DeStefano, Coleman, & 

Shanahan, 2005; Raghubar, Barnes, & Hecht, 2010). However, the mechanisms 

underlying the relation between working memory capacity and mathematical 

performance are not well understood. Furthermore, despite a large body of research 

examining the involvement of working memory resources in adults’ math performance, a 

parallel body of investigations with children has yet to be developed. To address these 

limitations in our current understanding of this issue, several bodies of literature will be 

reviewed. First, literature providing a theoretical framework for studying working 

memory in relation to math performance and literature on the development of working 

memory in children will be reviewed. Second, literature on two key elements of 

children’s mathematical development—number sense and arithmetic calculations—is 

reviewed. Third, the existing literature documenting relations between working memory, 

number sense, and arithmetic performance will be reviewed. Last, gaps in the literature 

will be summarized and the questions addressed by this research will be presented. 

The Structure and Development of Working Memory in Children 

Children’s performance in various academic domains is increasingly being 

interpreted from an information processing perspective, with a particular focus on 

working memory. However, working memory is a complex cognitive system that has 

been studied from a variety of theoretical angles. While disagreements regarding the 

exact definition and structure of working memory have persisted over time, most scholars 
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agree that working memory involves short-term storage of information, executive 

resources such as allocation of attention, and activation of information stored in long-

term memory (Miyake & Shah, 1999).  

Research that has investigated the role of working memory in mathematical 

performance has typically adopted the classic Baddeley and Hitch (1974, 1994) multi-

componential model (see Figure 1). According to this model, there are three primary 

components of working memory, each with limited capacities for storing and processing 

information. The multi-componential model postulates that there are two short-term 

storage components: one encodes verbal information and the other encodes visuospatial 

information (referred to as the phonological loop and the visuospatial sketchpad, 

respectively). The third component, termed the central executive, is said to be responsible 

for manipulation of information on complex tasks, through controlled attention and 

inhibition of irrelevant information (Baddeley, 1996). A recent addition to the model is 

the episodic buffer, which is thought to tap information stored in long-term memory in 

order to facilitate storage and executive processes (Baddeley, 2000, 2012; Baddeley, 

Allen, & Hitch, 2011).  
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Figure 1. A current version of the Baddeley and Hitch multi-componential model of 

working memory. Adapted from “Working memory: Theories, models, and 

controversies,” by A. Baddeley, 2012, Annual Review of Psychology, 63, p.16. Copyright 

2012 by Annual Reviews. 

Working memory, as defined by the multi-componential model, develops 

substantially across childhood (Gathercole, 1999; Gathercole, Pickering, Ambridge, & 

Wearing, 2004; Palmer, 2004; Pickering, 2001), with adult levels of capacity reaching 

two to three times that of young children (Cowan & Alloway, 2009). Specifically, 

Gathercole and her colleagues (2004) sampled over 700 children, ages 4 to 15, from rural 

and urban schools in the United Kingdom. Children completed the Working Memory 

Test Battery for Children (Pickering & Gathercole, 2001) and the Visual Patterns Test 

(Della Sala, Gray, Baddeley, & Wilson, 1997). Factor analysis suggested that the basic 
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structure of working memory—comprised of the phonological loop, visuospatial 

sketchpad, and central executive (Baddeley & Hitch, 1974, 1994)—is present and stable 

from age 6. That is, the relation between distinct components of the working memory 

system was not found to change with age. However, the functioning of each component 

of working memory was found to improve linearly with age, beginning at age 4 and 

leveling off between the ages of 14 and 15. Therefore, while the structure of working 

memory is in place early on, working memory capacity continues to expand across 

childhood, making it easier to store and manipulate information with development.   

It has also been argued that observable increases in working memory capacity 

may be due, in part, to the acquisition of knowledge that is relevant to information or 

stimuli measured on tests of working memory capacity. Support for this general argument 

comes from a classic study conducted by Chi (1978). Since knowledge and age are often 

confounded, Chi measured child chess experts’ and adult novices’ retrieval of spatial 

arrangements of chess pieces, allowing age and knowledge to be disentangled. As 

expected, child chess experts recalled more arrangements than adult novices, and, in a 

separate condition, required fewer training trials to memorize these arrangements. 

Conversely, adults performed better than children on a digit recall task, presumably 

because they had more numerical experience than children. These findings, which were 

later replicated with a larger sample (Schneider, Gruber, Gold, & Opwis, 1993), suggest 

that knowledge or familiarity with stimuli might facilitate one’s ability to recall those 

stimuli.  
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In summary, the structure and development of working memory in children has 

been widely studied, both theoretically and empirically. While working memory theorists 

are divided in their views on the mechanisms underlying individual variations in working 

memory capacity (Cowan & Alloway, 2009), the Baddeley and Hitch (1974, 1994) multi-

componential model has been applied somewhat uniformly across investigations of 

working memory in relation to children’s mathematical performance. Accordingly, the 

present research examines working memory through the lens of the Baddeley and Hitch 

model.  

Mathematical Development in Children 

One of the foundational mathematical competencies children acquire is that of 

arithmetic calculations. However, this development depends on children’s ability to 

represent numerical information in a manner that is conducive to performing 

mathematical operations. This understanding of the formal systems used to represent 

numbers—often referred to as number sense—is rooted in children’s innate capacity for 

making sense of quantitative information. Thus, children’s early mathematical 

development is characterized by a transition from their native concepts of quantity to 

learned representations of numerical magnitudes, and finally, to the acquisition of 

arithmetic skills and knowledge. 

The measurement and development of number sense in children. Unlike 

working memory, which is required for executing a range of cognitive processes, the 

utility of number sense is specific to the domain of mathematics. This important skill, 

which develops during early mathematical learning, involves mapping quantities onto 
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symbolic and spatial representations of those quantities. Whereas the ability to represent 

approximate quantities has been documented even in infants (Xu & Spelke, 2000), this 

early capacity for representing quantity must develop into a more precise and structured 

system in order for it to facilitate math problem solving (Butterworth, 2005). This 

transition is difficult for children, as Geary (2006) suggests, because they must adapt 

their innate system for representing general amounts to a system in which they map 

number words onto specific quantities (Gallistel & Gelman, 1992).  

Number sense is thought to have a range of applications in formal mathematics. 

As Berch (2005) suggests, “possessing number sense ostensibly permits one to achieve 

everything from understanding the meaning of numbers to developing strategies for 

solving complex math problems; from making simple magnitude comparisons to 

inventing procedures for conducting numerical operations; and from recognizing gross 

numerical errors to using quantitative methods for communicating, processing, and 

interpreting information” (p.1). Thus, the term “number sense” has encompassed, often 

inconsistently, a variety of basic numerical competencies and has been measured using a 

range of instruments. When measured with certain instruments, number sense has been 

found to begin developing early in childhood, even prior to children’s memorization of 

specific number facts, and these competencies continue to develop through elementary 

school (e.g., Geary et al., 2012).  

Two instruments that have emerged as particularly useful in capturing children’s 

number sense in relation to their math learning and achievement are the number sets task 

and number line estimation task. The number sets task measures a child’s ability to 
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rapidly apprehend small quantities of objects and symbolic representations of quantity 

(Geary et al., 2007; Geary, Bailey, & Hoard, 2009a). Two types of stimuli are used in the 

task: squares containing small quantities of objects and squares containing an Arabic 

numeral. Several pairs of these stimuli are displayed, and the sum of each pair must be 

discerned as either a match or a non-match to a target number (see part E of the 

Appendix). Children’s performance on this task has been found to improve with age. In a 

prospective longitudinal study, Geary and colleagues (2012) measured children’s 

performance on the number sets task annually beginning when the children were in first 

grade, and ending when they were in fifth grade. Consistent linear growth was observed 

across the five measurements, indicating that children’s ability to rapidly process 

symbolic representations of quantity improves across the elementary school years.  

The second measure, the number line estimation task, is recognized as 

instrumental in measuring children’s spatial representations of numerical magnitude 

(Dehaene, 1992; Siegler & Opfer, 2003; Siegler & Booth, 2004; Booth & Siegler, 2008). 

The task involves estimating the location of a target number on a horizontally displayed 

number line, typically with marked endpoints. One empirically supported perspective is 

that, while young children can use their ability to represent approximate magnitudes to 

estimate the locations of target numbers on the number line, the distances between 

smaller magnitudes are overestimated, while the distances between larger magnitudes are 

underestimated (Siegler & Booth, 2004). At this stage, children’s estimates are best 

represented by a logarithmic function. However, with numerical experience, children’s 

estimates of small and large values become more accurate, whereby distances between 
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smaller values begin to approximate distances between larger values, and thus become 

consistent with a linear function.  

The transition of children’s estimates from a logarithmic to a linear function, 

according to one theoretical perspective, represents a shift in children’s underlying 

mental representation of number magnitudes (Siegler & Opfer, 2003; Siegler & Booth, 

2004; Booth & Siegler, 2006, 2008). Others have argued, however, that this transition is 

better explained by improvements in children’s proportional judgment, as children 

estimate magnitudes in relation to reference points on the number line, such as the start, 

halfway, and end points (Barth & Palladino, 2011). Regardless of the underlying 

developmental mechanism, the number line task has become a widely used tool to 

capture children’s spatial mapping of numbers (Dehaene, 1992, 1997). 

In summary, despite some inconsistency in the definition and measurement of 

number sense, the number sets and number line estimation tasks have often been used to 

capture numerical skills and knowledge central to the construct. Furthermore, these two 

tasks have become commonplace in investigations of the development of children’s 

number sense in relation to their math performance during elementary school. Thus, 

number sense, in the present study, is the term used to encompass the skills and abilities 

measured by these two tasks. 

The development of arithmetic performance in elementary school. Arithmetic 

calculations provide the basis for children’s mathematical learning in elementary school. 

Though it is considered one of the most basic mathematical skills one can develop, the 

importance of mastering these skills is critical. As Geary (2006) discusses, performing 
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arithmetic calculations involves both conceptual and procedural knowledge. Though 

there is disagreement about which of these two types of knowledge precedes or informs 

the other (Gelman & Williams, 1998; Siegler & Crowly, 1994; Sophian, 1997), there is 

some evidence to suggest that acquiring both types of knowledge is an iterative process 

(Rittle-Johnson, Siegler, & Alibali, 2001), and it is generally agreed that both play a role 

in the development of arithmetic performance (Geary, 2006).   

Conceptual knowledge of addition, for example, involves the properties of 

commutativity and associativity, both of which state, broadly, that the order in which two 

or more numbers are added does not change their sum. Knowledge of these properties is 

central to solving addition problems, as it encompasses “an understanding that numbers 

are sets composed of smaller-valued numbers that can be manipulated in principled 

ways,” (Geary, 2006, p. 789). An understanding of commutativity is seen in children as 

early as the age of four, through their manipulation of objects. At this age, children have 

shown that they understand that sets of objects, such as toys, can be broken down into 

smaller groups of objects and recombined; regardless of how this decomposition and 

regrouping is performed, they know that the total number of objects stays the same 

(Canobi, Reeve, & Pattison, 1998, 2002). Thus, children may begin acquiring an 

understanding of arithmetic principles before they are formally educated on arithmetic 

computations.  

Procedural knowledge, on the other hand, consists of an understanding of the 

steps involved in solving arithmetic problems; that is, it includes skills in executing 

strategies in order to arrive at the solution for a given problem. Early procedural 
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knowledge of arithmetic is manifested through children’s ability to add small groups of 

objects by counting them (Fuson, 1982), and by kindergarten, children are typically 

capable of adding two numbers by counting both addends in their entirety, either on their 

fingers or verbally (Siegler & Shrager, 1984). Children begin to execute more efficient 

counting strategies around this stage, such as starting at one of the two addends and 

counting the other addend to reach the sum (counting on), as opposed to counting both 

addends in their entirety (counting all). Two types of strategies can be used to count on: 

the max strategy involves counting on from the smaller of the two addends (less efficient) 

and the min strategy involves counting on from the larger of the two addends (more 

efficient).  

As children become well versed in counting, they begin to commit addition sums 

to memory, which facilitates their use of memory-based strategies such as decomposition 

and retrieval (Siegler & Shrager, 1984). Decomposition involves breaking a problem 

down into a series of smaller problems that are easier to solve or for which the solutions 

can be directly retrieved. For example, to solve 12 + 14 = 26, one might break the 

problem down into 2 + 4 = 6, 10 + 10 = 20, and 6 + 20 = 26. Executing a more 

sophisticated strategy such as decomposition generally reflects stronger conceptual 

knowledge of arithmetic, such as the property of commutativity (Canobi et al., 1998).  

It is important to note that children’s transition from counting strategies to 

memory-based strategies is not strictly linear. Instead, as Siegler’s overlapping waves 

theory (1996) suggests, children may rely on a variety of strategies to solve a given 

problem early on, but their learning is marked by finding more effective ways of solving 
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problems, making progressively adaptive choices among the various strategies available 

to them, and becoming more efficient in executing alternative problem solving strategies. 

With practice, the development of conceptual knowledge, and exposure to formal 

instruction, children become increasingly adept at executing memory-based strategies 

across the elementary school period (Geary et al., 2012), showing substantial growth in 

arithmetic performance during this time.  

Thus, it is clear that children’s problem solving strategies are an important aspect 

of their arithmetic development. In fact, children’s selection of certain strategies is 

predictive of their overall arithmetic performance (Carr & Alexeev, 2011). For example, 

children who frequently use memory-based strategies to solve arithmetic problems 

typically show higher levels of math achievement than children who use counting 

strategies (Carr & Alexeev, 2011; Geary, Hoard, Byrd- Craven, & DeSoto, 2004). Given 

the significance of children’s selection of strategies, the present study assessed children’s 

arithmetic performance not only via the accuracy of their calculations, but also through 

the frequency with which they executed counting, decomposition, and retrieval strategies. 

Relations Between Working Memory, Number Sense, and Arithmetic Performance 

As is evident from the literature reviewed above, working memory, number sense, 

and arithmetic performance have been studied extensively in children. Presented below 

are some of the key investigations in a large body of literature that has revealed the 

important contributions of working memory capacity and number sense to children’s 

arithmetic performance. Specifically, existing literature that has investigated links 

between pairs of all three constructs is reviewed. Some of these investigations have 
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examined relations of working memory capacity and number sense to arithmetic 

performance in the same analysis, estimating the unique contributions of each of these 

factors when holding the other constant. Few studies, however, have examined working 

memory capacity and number sense in relation to each other, resulting in an incomplete 

understanding of the roles that both factors play in the development of mathematical 

skills. Thus, the question of how working memory capacity and number sense are used 

during mathematical problem solving remains largely unanswered.  

Working memory capacity and number sense. Evidence that working memory 

capacity is related to the development of number sense has come, primarily, from studies 

of children with severe mathematical difficulties. For example, Geary and colleagues 

(2007) sampled nearly 300 children of average intelligence, some of whom had a 

mathematical learning disability and some of whom showed typical levels of math 

achievement. The authors measured children’s number sense using the number line and 

number sets tasks, and measured their working memory capacities. They found that 

visuospatial and central executive working memory capacities were strongly related to 

children’s performance on both the number line and number sets tasks. A few years later, 

these findings were replicated by Fuchs and her colleagues (2010b). Thus, there is some 

evidence to suggest that working memory capacity is related to children’s foundational 

numerical representations, although the possible mechanisms underlying this relation 

have not yet been identified. Nonetheless, an important conclusion that can be drawn 

from the existing findings is that both factors should be considered contemporaneously in 

relation to children’s math performance. 
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Number sense and arithmetic performance. While there has been little research 

linking working memory capacity to number sense, many investigations of the relation 

between number sense and various mathematical outcomes in children have been 

conducted, some of which statistically controlled for working memory capacity. 

Specifically, the number sets and number line tasks have been found to predict initial 

differences and growth in children’s math achievement in several short- and long-term 

longitudinal studies, in which a host of domain general abilities, including working 

memory capacity, were statistically controlled (e.g., Fuchs et al., 2010b; Geary et al., 

2007, 2012; Geary et al., 2009b).  

In a longitudinal study of over 200 children, Geary and colleagues (2009a) argued 

that the number sets task could be useful in identifying children at risk for a mathematical 

learning disability. After controlling for kindergarten working memory capacity, IQ, and 

math achievement, children’s first grade performance on the number sets task predicted 

their odds of showing severe mathematical difficulty by grade three. Also important, 

however, is their finding that typically achieving students’ performance on the number 

sets task was correlated with their math achievement from kindergarten through grade 

three. Thus, early performance on the number sets task is useful not only in predicting 

severe mathematical difficulties down the road, but also in predicting future levels of 

performance in typically-achieving children. 

Strong links have also been made between children’s number line estimation 

ability and their mathematical learning (Holloway & Ansari, 2009; Schneider, Grabner, 

& Paetsch, 2009; Siegler & Booth, 2004; Booth & Siegler, 2008). In fact, there is 
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compelling evidence that number line estimation ability is causally related to arithmetic 

learning. In one of four experimental conditions, Booth and Siegler (2008) trained over 

100 first graders to learn the answers to a small set of addition problems. Children were 

asked to say the number that they thought was the answer to each problem within 6 

seconds, which required them to retrieve the answer from memory or estimate the 

solution to the problem. Conditions varied according to the use of a number line to 

display the magnitudes of problem addends. In one condition, these representations were 

generated by a computer. In another, the child was asked to generate these 

representations. In a third condition, the child generated the representations, followed by 

the computer. In the control condition, children were only shown the addends and asked 

to provide the sum, without any visuospatial representation. Results indicated that 

children who received computer-generated visuospatial representations showed the 

greatest improvement in the accuracy of their responses from pretest to posttest, when 

compared to children in the other three conditions. In other words, training children to 

spatially represent problem addends facilitated their addition fact learning.  

Based on this literature, the contribution of number sense to children’s math 

performance is substantial, beyond significant contributions from working memory 

capacity. What remains to be clarified, however, are the mechanisms underlying this 

relation. For example, if number sense predicts children’s arithmetic problem solving 

performance, then it is possible that number sense might facilitate children’s ability to 

successfully implement efficient problem solving strategies. These nuances have yet to be 

investigated in a single analysis.  
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Working memory capacity and arithmetic performance. Like number sense, 

strong working memory capacity may also be crucial to mastering arithmetic skills 

(LeFevre et al., 2005). A number of associational studies have investigated relations 

between working memory capacity and math performance in typically achieving 

children, although few have focused exclusively on arithmetic performance.  Many of 

these studies have shown that, when controlling for a number of other cognitive factors, 

math performance in elementary school is related to both verbal (Alloway, 2009; 

Alloway & Alloway, 2010; Alloway & Passolunghi, 2011; Bull & Scerif, 2001) and 

visuospatial (Alloway & Passolunghi, 2011; Berg, 2008; Swanson & Beebe-

Frankenberger, 2008) working memory capacities. For example, Bull and Scerif (2001) 

measured children’s verbal working memory capacity, in addition to other cognitive 

abilities, and found that in children ages 6 to 8, verbal working memory capacity was 

significantly predictive of children’s mathematical ability, including arithmetic 

calculations, above and beyond the variance in mathematical ability that was explained 

by IQ, reading ability, and inhibitory control. In another study, Berg (2008) found that 

after controlling for processing speed and short-term memory, visuospatial and verbal 

working memory capacities both uniquely explained significant variance in the accuracy 

of arithmetic calculations among students in grades three through six.  

Additional evidence of the working memory capacity and math relation comes 

from associational studies of children with a mathematical learning disability who show 

lower working memory capacities than their typically achieving peers (Hitch & 

McAuley, 1991; McLean & Hitch, 1999; Pickering & Gathercole, 2004; Swanson, 1993; 
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Swanson & Jerman, 2006)—about 1 standard deviation lower, on average (Geary et al., 

2004). While these studies have typically measured general math achievement, as 

opposed to solely focusing on arithmetic calculations, a substantial portion of the 

achievement measures that they used involved arithmetic calculations. In a meta-analysis 

of this body of literature, Swanson and Jerman (2006) analyzed 28 studies comparing 

children with mathematical difficulties to typically achieving children. They found that, 

across these studies, verbal working memory capacity emerged as the most important 

predictor of differences between typically achieving children and children with 

mathematical difficulties, although it has been argued that this may have been due to the 

way in which working memory capacity was measured in many these studies (Raghubar 

et al., 2009). Deficits in visuospatial working memory capacity are also shown to be 

characteristic of children with mathematical difficulties (Geary et al., 2009b; 

Passolunghi & Cornoldi, 2008). In particular, children who show deficits in visuospatial 

processing tend to have difficulty with the basic procedural and conceptual aspects of 

arithmetic calculations (Geary, 1993; McLean & Hitch, 1999; White, Moffitt, & Silva, 

1992). 

Taken together, studies of typically achieving children and children with severe 

mathematical difficulties have identified working memory capacity as a key factor in 

predicting children’s math performance. However, despite this persistent finding, the 

cognitive process through which this relation is manifested is unclear. Thus, an important 

gap in this literature parallels that which is found in the literature on number sense and 

math performance in children. It is clear that these factors are useful in identifying 
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children at risk for mathematical difficulties, but without an understanding of the 

mechanisms underlying these relations, little can be done to improve these children’s 

chances of success.  To address this issue, literature pointing to possible mechanisms is 

reviewed next. 

Possible underlying mechanisms. It is not clear from the extant literature how 

children’s working memory capacity is related to arithmetic performance. However, a 

number of findings point to number sense and arithmetic problem solving strategies as 

possible factors mediating this relation. While children’s number sense and arithmetic 

strategies have never explicitly been examined as mediators of the relation between 

working memory capacity and arithmetic performance, bi-variate relations between these 

factors raise this possibility. 

In one of the longitudinal studies of mathematical learning disability conducted 

by Geary and colleagues (2007), a kindergarten assessment of children’s working 

memory capacity was linked to their addition problem solving strategies in first grade. 

Specifically, central executive working memory capacity of children with mathematical 

learning disabilities predicted the frequency of errors they made when using the retrieval 

strategy to solve simple and complex addition problems. Visuospatial working memory 

capacity also emerged as a positive predictor of the frequency with which these children 

used the min strategy to solve addition problems. The min strategy, as opposed to the 

max strategy, is the most sophisticated of the counting strategies, in which children count 

on from the larger of the two addends to reach the sum. It is not surprising that children’s 

use of the min strategy was related to their working memory capacity, as children must 
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first compare the relative magnitudes of the two addends and then decide which of the 

two is the larger number before counting on.  

Arithmetic problem solving strategies were also implicated as a potential 

mechanism when Geary and colleagues (2009b) investigated characteristics of children in 

different classes of achievement groups, including mathematical learning disability, low 

achieving, typically achieving, and high achieving. Certain measurements of children’s 

working memory capacity, number sense, and arithmetic problem solving strategies 

predicted their odds of group membership. Of particular interest is their examination of 

memory-based problem solving strategies (retrieval and decomposition). Specifically, 

larger central executive and visuospatial working memory capacities, higher performance 

on the number sets task, and more frequent use of memory-based problem solving 

strategies all predicted children’s membership in the high-achieving group, as opposed to 

the typically-achieving group. Similarly, larger capacities of all working memory 

components, better number sets task performance, frequent use of memory-based 

strategies, and frequent use of backup strategies (e.g., reverting to a counting strategy 

when a memory-based strategy failed) all predicted the odds of membership in the low 

achieving group as opposed to the mathematical learning disability group.  

While the findings of Geary et al. (2007, 2009b) do not reflect a direct test of the 

mechanisms through which working memory capacity is related to math performance, 

they do implicate number sense and arithmetic strategies as key contenders. Thus, this 

work provides a foundation on which to explore these processes in children. In addition 

to this body of literature, there is another strand of investigation that reflects progress 
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toward understanding the role of working memory in math performance. Specifically, a 

large and growing number of experimental studies have investigated the involvement of 

specific working memory resources in mathematical problem solving. While this work, 

which is reviewed below, has not yet provided insight into the role of working memory in 

number sense, it does provide a window into some of the nuances in the relation between 

working memory and arithmetic performance.  

Involvement of Working Memory Resources in Arithmetic Performance 

The wealth of associational investigations of working memory capacity and math 

performance have implications for identifying children who may be at risk for poor math 

achievement. However, once these children are identified, it is important to understand 

effective tools for intervention. Experimental investigations of the involvement of 

resources from specific components of working memory in math performance provide a 

foundation for developing such tools, as they can reveal some of the cognitive processes 

utilized during problem solving, possibly illuminating areas of difficulty for children.  

It is important to note that examining the capacity of working memory in relation 

to math performance, versus examining the extent of involvement of working memory 

resources in mathematical performance, are two different types of investigations. While 

one’s working memory capacity is measured using span tasks, in which scores reflect the 

total amount of information that one can remember, the involvement of working memory 

resources in a given task is measured through an experimental manipulation, as described 

below.   
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Investigations of working memory involvement in mathematical performance 

adhere to a dual-task paradigm, whereby demands are imposed on participants’ 

visuospatial, phonological, or central executive working memory resources during their 

completion of mathematical tasks. Participants are usually given a recall task, such as a 

set of letters to remember; before recalling the letters, they are given a math task, such as 

finding the solution to an addition problem. Thus, they have to manipulate information 

required for calculating the solution to the problem while trying to retain the verbal 

information presented earlier. Performance during this dual-task condition is compared to 

conditions in which there is only a single task: either a math problem solving or a recall 

task. Generally, it has been found that the dual task causes a decrement in both memory 

and math performance, compared to the single tasks. The magnitude of this decrement 

reflects the extent to which working memory resources are involved in carrying out the 

task. This research has illuminated specific areas of cognitive difficulty underlying 

arithmetic problem solving, but such work remains largely unparalleled in child 

populations.  

While there is an abundance of this literature, it predominantly includes 

investigations conducted with college-aged adults, providing a limited understanding of 

the cognition involved in children’s arithmetic calculations, especially given the 

substantial developments in working memory (Gathercole et al., 2004) and mathematics 

(e.g., Geary et al., 2012) that are seen across childhood. Furthermore, since number sense 

is understood to be foundational to children’s math learning and performance, 

investigation of working memory involvement in number sense is still needed to clarify 
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areas of cognitive difficulty in children’s foundational numerical understanding. Below is 

a review of experimental investigations of working memory in adults’ and children’s 

math performance.  

Working memory involvement in adults’ arithmetic performance. 

Experimental studies investigating the involvement of adults’ working memory resources 

in their arithmetic performance have revealed differential involvement of specific 

components of working memory (Baddeley & Hitch, 1974) in various aspects of 

arithmetic problem solving (reviewed by DeStefano & LeFevre, 2004). In particular, 

involvement of specific working memory resources seems to differ based on the 

arithmetic strategies adults use to generate problem solutions. For example, while verbal 

working memory has a role in retaining problem information during problem solving 

(e.g., remembering the values to be added or subtracted; Furst & Hitch, 2000), it also 

seems to play a role in solving arithmetic problems using counting strategies (Ashcraft, 

1995).  The central executive and visuospatial components, on the other hand, both seem 

to play a greater role in solving complex arithmetic problems involving carrying and 

borrowing (Hubber, Gilmore, & Cragg, 2013; Imbo & LeFevre, 2010; Imbo et al., 2007). 

The central executive has also been implicated in arithmetic fact retrieval (Seitz & 

Schumann-Hengsteler, 2002).  

In one of these studies, Imbo and Vandierendonck (2007) taxed college students’ 

central executive and verbal working memory resources while they solved complex 

addition and subtraction problems. They also examined participants’ selection and 

implementation of problem solving strategies by implementing a choice/no-choice 
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manipulation, which involved four conditions. In the “choice” condition, participants 

were free to solve problems using any strategy of their choosing. In the three “no-choice” 

conditions, participants were asked to solve the problems using one of three strategies: 

retrieval (saying the answer that immediately came to mind), decomposition (breaking 

the problem down into a series of smaller problems), or counting (counting one-by-one to 

reach the sum or difference). Participants’ central executive working memory resources 

were taxed while they executed these arithmetic strategies by asking participants to 

determine if an audible tone was low or high, relative to another tone, at random 

intervals. They engaged their verbal working memory resources by having participants 

continuously repeat the word “the”. Both of these manipulations were implemented while 

participants completed the math task. They found that central executive working memory 

was involved in executing all three types of strategies in the “no-choice” conditions, 

while verbal working memory was involved only in executing decomposition and 

counting strategies.  However, there was no evidence that either component of working 

memory was involved in selecting strategies in the “choice” condition.  

As Imbo and Vandierendonck (2007) discuss, their findings that specific 

components of working memory are involved in implementing arithmetic problem 

solving strategies are consistent with other literature. Retrieving the solution to a problem 

from long-term memory may involve scanning through several candidate answers to 

select the correct one; the finding that this process involved central executive working 

memory is consistent with the idea that a key role of the central executive component of 

working memory is to interact with long-term memory (Baddeley, 1996). However, when 
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individuals are unable to retrieve the solution to an arithmetic problem, they must select 

and implement heuristics to decompose the problem or to keep track when implementing 

a counting procedure (Ashcraft, 1995; Logie, Gilhooly, & Winn, 1994). These processes 

involve allocation of attention and inhibition of irrelevant information, which is another 

important role played by the central executive component (Baddeley, 1996). With regard 

to verbal working memory, they argue that their finding is consistent with literature 

which has shown that verbal working memory, in addition to the central executive, is 

involved in keeping track of totals when counting up or down to reach the solution to a 

problem, or keeping track of intermediate results when executing a decomposition 

strategy (Ashcraft, 1995; Heathcote, 1994; Passolunghi & Siegel, 2004).  

In another study, specific components of working memory were found to be 

differentially involved in adults’ performance when solving addition problems presented 

in vertical versus horizontal formats; these problem formats primed participants to 

implement different types of problem solving strategies (Trbovich & LeFevre, 2003). 

Specifically, the visuospatial component of working memory seems to be important for 

solving problems presented in a vertical format, while the verbal component may play a 

larger role in solving problems presented in a horizontal format.  Therefore, while both 

visuospatial and verbal working memory play a role in arithmetic problem solving, their 

roles may vary as a function of problem presentation format, and in turn, the strategy 

used to solve the problem. As Trbovitch and LeFevre discuss, the presentation of 

problems in a vertical format may prime individuals to solve the problem using a 

columnar algorithm, which would require visualization of the problem in this particular 
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format, hence the use of visuospatial working memory. The presentation of problems in a 

horizontal format, on the other hand, seems to prime participants to use a decomposition 

or counting strategy which, as Imbo and Vandierendonck (2007) found, requires 

resources from verbal working memory.  

In addition to variations in working memory involvement in problem solving as a 

function of problem solving strategies, there is also evidence to suggest that working 

memory involvement might vary as a function of individual differences, such as how 

skilled individuals are in arithmetic. This research, which is reviewed next, could have 

important implications for educators after further investigation. In particular, a parallel 

body of research would need to be conducted with children. 

Individual differences in working memory involvement. Few studies of working 

memory involvement in adults’ math performance have approached this topic from an 

individual differences perspective. However, an understanding of individual differences 

in the cognitive underpinnings of mathematical problem solving may provide insights 

into how children showing difficulty with mathematics can be better served in their 

mathematics education.  

In a dual-task investigation of working memory involvement in addition problem-

solving strategies, adult participants were asked to complete a series of single-digit 

addition problems (Imbo & Vandierendonck, 2010). In the dual-task condition, the 

central executive component of working memory was taxed using the same procedure the 

authors used in their 2007 study, described above. Participants’ accuracy, response time, 

and problem solving strategies were recorded. They were also given a separate measure 
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of arithmetic skill, which allowed the investigators to compare working memory 

involvement in performance between high- and low-skill individuals. They found that 

high-skill individuals were more adaptive in their strategy selection based on the 

demands of the task, compared to low-skill individuals. Specifically, when compared to 

low-skill participants, high-skill participants used retrieval more often in the dual-task 

than in the single-task condition, especially on problems with sums larger than 10.  

Retrieval, of course, is an adaptive strategy choice when there are competing 

demands on working memory (in this case, demands from the secondary central 

executive task), as it is less demanding of working memory resources than counting or 

decomposition strategies. Furthermore, in examining response times, they found smaller 

effects of central executive load on response times of high-skill individuals than low-skill 

individuals. Taken in the context of the finding that high-skill individuals chose retrieval 

more often in the dual-task condition, this finding suggests that high-skill individuals 

require central executive resources to a lesser extent than low-skill individuals on simple 

addition problems because they adapted to task demands by selecting the retrieval 

strategy.  

Similarly, Imbo and LeFevre (2009) found that Chinese-educated individuals 

required central executive working memory resources to a lesser extent than Canadian-

educated individuals; importantly, the Chinese-educated participants showed higher 

levels of arithmetic skill than Canadian-educated participants. However, a year later these 

authors (2010) obtained contrasting results in another dual-task study, in which they 

manipulated visuospatial and verbal working memory resources during Chinese- and 
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Canadian-educated college students’ subtraction and multiplication problem solving. 

Once again, the arithmetic skill level of Chinese-educated students exceeded that of the 

Canadian-educated students. However, they found that Chinese-educated college students 

generally showed the same degree of involvement of visuospatial and verbal working 

memory as Canadian-educated college students, rather than less involvement.  

Taken together, these three studies show some preliminary evidence that while 

high-skill individuals may require central executive resources to a lesser extent than low-

skill individuals, they may require visuospatial and verbal working memory resources to 

a similar extent. However, the fact that the 2007 and 2009 studies involved addition, 

while the 2010 study involved subtraction and multiplication, combined with the fact that 

arithmetic skill level was confounded with cultural background in both studies, makes it 

difficult to draw any solid conclusions in the differential involvement of these specific 

components of working memory as a function of skill level. 

Summary. It is clear from the findings presented in this section, and a large body 

of similar investigations (see DeStefano & LeFevre, 2004), that working memory does 

not operate in a unitary fashion during adults’ mathematical problem solving. 

Furthermore, some studies have suggested that the involvement of working memory in 

problem solving might vary as a function of individual differences, such as arithmetic 

skill-level. With respect to children, this issue has not been addressed in depth, and yet it 

would be important to disentangle how different components of working memory relate 

to math problem solving in children. This would benefit our theoretical understanding of 



 

 

31 

math reasoning from a developmental perspective and would help identify targets for 

educational interventions.   

Working memory involvement in children’s arithmetic performance. To date, 

only two experimental studies on the involvement of working memory resources in 

children’s math performance have been conducted (Imbo, & Vandierendonck, 2006; 

McKenzie et al., 2003). These studies have focused on different age groups, and have 

varied in their manipulation of working memory. Both studies examined individual 

differences in working memory involvement, based on age (McKenzie et al., 2003) and 

their level of skill in implementing certain strategies (Imbo & Vandierendonck, 2006).  

McKenzie and colleagues (2003) investigated working memory in relation to 

arithmetic problem solving using a dual-task procedure with Norwegian children ages 6 

to 7 and 8 to 9. Children completed two- and three-term single-digit addition problems in 

three within-subjects conditions: one in which they solved addition problems without 

interference, another in which they solved addition problems with visuospatial 

interference, and a third in which they solved addition problems with verbal interference. 

Visuospatial interference involved a matrix of squares and verbal interference involved a 

recording of a children’s story; children were expected to remember this information 

while they completed the arithmetic task. In the younger group, visuospatial interference 

resulted in the greatest decrement to baseline performance, while in the older group, both 

visuospatial and verbal interference produced drops in performance compared to 

baseline, although the effects were smaller for older children than for younger children. 

The authors argued that younger children may rely more on visuospatial strategies to 
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solve arithmetic problems, while older children may employ more verbally-based 

strategies.  

Imbo and Vandierendonck (2006) examined the central executive component of 

working memory in relation to the addition problem strategies of Belgian children in 

grades 4 through 6. Addition problems included two single-digit terms with sums greater 

than 10. In the dual-task condition, children also completed a secondary task that 

demanded central executive working memory resources. With regard to strategies, half of 

the children were assigned to a choice condition, in which they were free to solve the 

problems using a strategy of their choosing. The other half was assigned to a no-choice 

condition, in which they were required to solve the problem using retrieval, 

decomposition, or a counting strategy. Consistent with their previous findings (2007), the 

central executive component of working memory was heavily involved in children’s use 

of all three strategies. However, decomposition and counting strategies were more 

demanding of central executive working memory resources than the retrieval strategy, 

perhaps because they require several processes, including manipulation of information, 

keeping track of counting, and retrieving several arithmetic facts from long-term 

memory. In examining individual differences, they found that children who were less 

efficient in executing retrieval and decomposition displayed greater involvement of 

central executive working memory in problem solving, showing again that the role of the 

central executive component of working memory might be reduced when participants are 

more skilled in executing particular strategies.  
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The Present Research 

The purpose of this dissertation is to address gaps in the extant literature by more 

closely examining the nature of the relation between working memory and arithmetic 

problem solving in children. While associational studies have shown that the capacities of 

visuospatial and verbal working memory are related to children’s arithmetic performance, 

the mechanisms underlying this relation remain unclear. However, bi-variate relations 

from a number of studies have raised the possibility that number sense and arithmetic 

strategies mediate the relation between working memory and arithmetic performance.  

The involvement of working memory resources in children’s mathematical 

performance is also unclear. It is currently unknown how and to what extent working 

memory resources are involved in children’s number sense, despite associational findings 

that central executive and visuospatial working memory capacities are related to 

children’s number sense. Additionally, the extent of visuospatial and verbal working 

memory involvement in children’s arithmetic performance requires further investigation. 

Last, individual differences in working memory involvement as a function of children’s 

grade or skill level needs to be examined. Specific limitations of the available literature 

and the rationale underlying the questions addressed by the present study are discussed 

below. 

Gaps in the literature and underlying rationale. The primary limitation among 

associational investigations of working memory and math performance in children is that 

while working memory capacity, number sense, arithmetic strategies, and arithmetic 

performance have all been linked to each other in this line of work, the nature of 
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interrelations between all three variables is unclear. One of the studies conducted by 

Geary and colleagues (2007) produced some of the only available evidence that working 

memory is related to number sense; specifically, that the central executive and 

visuospatial working memory capacities predict performance on the number line and 

number sets tasks. Other studies have found children’s performance on the number line 

and number sets tasks to be related to their math achievement (e.g., Geary et al., 2009b; 

Holloway & Ansari, 2009; Schneider, Grabner, & Paetsch, 2009; Siegler & Booth, 2004; 

Booth & Siegler, 2008). While these findings, in combination, suggest that number sense 

might serve as a mediator of the relation between working memory and math 

performance, this meditational chain has not been explicitly tested.  

Additionally, associational investigations of working memory capacity in relation 

to children’s arithmetic problem solving strategies (Geary et al., 2004, 2007, 2009b)—as 

well as one experimental study of working memory involvement in children’s strategies 

(Imbo & Vandierendonck, 2007)—provide some evidence that arithmetic problem 

solving strategies might serve as an underlying mechanism. However, this has not been 

directly examined. Last, the link between number sense and arithmetic strategies remains 

poorly understood, and yet children with mathematical difficulties often demonstrate 

poor number sense and execution of arithmetic strategies, raising the possibility that these 

two factors may not only be related, but also that they may serve as serial mediators of 

the relation between working memory capacity and math performance.  

A few important limitations of the existing experimental investigations of 

working memory in children should also be addressed. First, of the two available studies 
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of working memory involvement in children’s arithmetic performance (Imbo & 

Vandierendonck, 2006; McKenzie et al., 2003), neither study examined the involvement 

of working memory in children’s number sense. However, a link between working 

memory and number sense has been reported in the associational literature (e.g., Geary et 

al., 2007). Moreover, given that number sense is understood to be foundational to 

children’s mathematical learning and performance (Berch, 2005), it would be useful to 

know not only that working memory is involved in math performance, but also whether it 

is involved in the skills foundational to math performance—namely, number sense.   

Second, while the studies conducted by Imbo and Vandierendonck (2006) and by 

McKenzie and colleagues (2003) showed that central executive, verbal, and visuospatial 

working memory are all involved in children’s single-digit arithmetic problem solving, 

the involvement of specific working memory components in multi-digit arithmetic 

problem solving is not yet known. While mastery of simple arithmetic serves as a 

foundation for developing skills in more complex arithmetic operations, and it is useful to 

understand how working memory is involved in this basic mathematical skill, 

understanding the nature of working memory involvement in more difficult problems is 

important, as these problems may require greater use of procedural strategies, such as 

decomposition, as opposed to retrieval. In other words, children may memorize the 

solutions to single-digit addition problems, but they may employ a variety of more 

cognitively demanding strategies for multi-digit problems.  

Third, differences in the involvement of working memory in math problem 

solving between children with high- versus low-levels of mathematical skill has not been 
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directly examined in the extant literature, despite preliminary evidence that highly skilled 

adults may rely on central executive resources to a lesser extent than low-skill adults 

(Imbo & Vaniderendonck, 2007; Imbo & Lefevre, 2009). Understanding individual 

differences in the involvement of working memory would provide a starting point for 

developing interventions that address cognitive difficulties underlying children’s 

difficulty with mathematics.  

Research questions and hypotheses. In response to these limitations in the 

extant literature, two sets of research questions were addressed.  

(1) Do number sense and arithmetic problem solving strategies mediate the 

relation between working memory capacity and arithmetic performance? Are 

visuospatial and verbal working memory capacities related to arithmetic 

accuracy through the same cognitive processes, or are there different 

mediators for each type of working memory?  

To address these questions, assessments of children’s visuospatial and verbal 

working memory capacities, number sense, arithmetic strategies, and arithmetic accuracy 

were made. These measurements allowed for an explicit test of the prediction that 

number sense and problem-solving strategies could serve as mediators of the relation 

between working memory and arithmetic accuracy. This hypothesis was based on a 

number of bi-variate relations between these variables that have been documented in the 

literature. First, while the relation between working memory capacity and number sense 

has rarely been investigated, relations between the visuospatial working memory capacity 

and both the number line and number sets tasks have been documented (Fuchs et al., 
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2010b; Geary et al., 2007). Second, working memory capacity has been linked to 

children’s arithmetic strategies (Geary et al., 2009b). Third, while relations between 

number sense and arithmetic strategies are poorly understood, the fact that they explain 

shared variance in children’s mathematical performance (e.g., Fuchs et al., 2010b; Geary 

et al., 2007) suggests that a relation between the two should be directly tested. Fourth, 

although research has not typically focused exclusively on children’s arithmetic 

performance, number sense is strongly predictive of children’s math achievement after 

controlling for working memory capacity (Fuchs et al., 2010a; 2010b; Geary, 2011; 

Geary et al., 2009a, 2012). Last, it is well-known that children’s arithmetic strategies are 

an important aspect of their arithmetic performance and development (Carr & Alexeev, 

2011; Geary et al., 2004; Geary, 2006). Given this body of evidence, it is possible to 

hypothesize that number sense and problem solving strategies mediate the relation 

between working memory and arithmetic performance. However, the literature does not 

provide enough information to make predictions with regard to the specific measures of 

number sense and arithmetic strategies that would serve as mediators for visuospatial 

versus verbal working memory. 

(2) To what extents are visuospatial and verbal working memory involved in 

children’s number sense and arithmetic performance? Does the extent of 

involvement differ by grade level, or for high- and low-performing students?  

To address these questions, children’s visuospatial and verbal working memory 

resources were experimentally manipulated in a dual-task condition. This allowed for an 

examination of the involvement of these resources in children’s number sense and multi-
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digit arithmetic performance, as well as a comparison of the extent to which each type of 

working memory is involved. It was predicted that both visuospatial and verbal working 

memory would be involved in arithmetic problem solving, based on the findings of 

McKenzie and colleagues (2003), and on findings from studies conducted with adults 

(Trbovich & Lefevre, 2003; Imbo & LeFevre, 2010). Although there is some evidence 

that visuospatial working memory capacity is related to number sense (Geary et al., 2007; 

Fuchs et al., 2010b), the involvement of working memory resources in number sense has 

never been examined, and thus this aspect of the question was approached from an 

exploratory perspective.  

To capture individual differences in arithmetic skill, elementary school children in 

grades 2 and 4 were chosen to participate in this study. Grades 2 and 4 were chosen, 

specifically, because by grade 2 children have typically received between one and three 

years of formal education in mathematics, can be expected to have fairly strong number 

sense (Geary et al., 2012; Laski & Siegler, 2007; Siegler & Booth, 2004), and have had 

some practice in solving multi-digit arithmetic problems; by grade 4, children have 

typically developed a very strong number sense (Geary et al., 2012; Siegler & Opfer, 

2003) and are fairly skilled at solving multi-digit arithmetic problems. Thus, by selecting 

children from these two grades, it was expected that a range of mathematical skill and 

maturity would be captured. This allowed for an examination of variations in working 

memory involvement as a function of grade or performance level. Since there were 

inconsistent findings in the literature with regard to variations in working memory 
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involvement by skill level (e.g., Imbo & Vandierendonck, 2007; Imbo & LeFevre, 2009; 

Imbo & LeFevre, 2010), no specific predictions were made with regard to this question.  

  



 

 

40 

Chapter 3: Methods 

Participants 

 Participants were 58 second grade children (26 females) and 32 fourth grade 

children (15 females) from 3 public and 3 private elementary schools in the northeast. 

Once permission was granted by school principals, who were initially contacted via 

email, teachers who agreed to participate were asked to send home consent forms with 

their students. Children whose parents returned consent forms indicating that they 

permitted their child to participate were included in the sample. Among these children, 

only those who have their written informed assent to participate were included. On the 

assessment of arithmetic performance (described below), two children responded 

incorrectly to all items. Data for these children were excluded from all analyses (the 

exclusion of these children is reflected in the numbers reported above).   

Measures & Procedure 

General study procedure. Children completed all tasks individually with the 

experimenter in one session lasting approximately 25 minutes. All tasks were completed 

on a laptop computer using E-Prime 2.0 Professional software (Psychology Software 

Tools, Inc., 2002) in a quiet space in the child’s school. The testing session involved 

three within-subjects conditions: a dual-task condition (memory recall + math problem 

solving), a single memory task condition, and a single math task condition. The dual-task 

condition was designed to demand working memory resources, specifically from either 

the phonological loop or the visuospatial sketchpad (Baddeley & Hitch, 1974, 1994). 

That is, while children completed tasks measuring their number sense and arithmetic 
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problem solving in the dual-task condition, an extra cognitive load was placed on their 

visuospatial and verbal working memory resources. This procedure was adapted from 

that used by Imbo and LeFevre (2010) with adults, and is consistent with the dual-task 

paradigm used in experimental studies of adults’ working memory and math problem 

solving (DeStefano & LeFevre, 2004). After completing the three single task conditions, 

a brief assessment of children’s arithmetic problem solving strategies was administered. 

After the testing session was complete, children were thanked for their participation and 

given their choice of a pencil or a sticker as a token of appreciation. 

Experimental conditions. Each of the three within-subjects conditions included 

16 trials. Every condition began with instructions, followed by 2 to 4 practice trials, 

depending on the number of unique types of items presented in that condition. Children 

were given verbal feedback at the end of each practice trial and were invited to ask 

questions, if they had any. Next, the 16 experimental trials were presented in random 

order. The content and procedures within each condition are discussed next, and details 

about the stimuli presented in each condition are discussed in the following section. 

Information about each condition is also listed in Table 1, and a visuospatial 

representation of the procedures in each condition is depicted in Figure 2. Before 

beginning the experimental conditions, children were told the following, “Sometimes, I 

will ask you to solve math problems. Other times, I will ask you to remember something. 

Your job is to pay attention and follow instructions.” At the end of each condition, 

children were told, “Good job! Let’s move on.” 
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Table 1 

Number of Items in Each Condition and Block  

    Memory Stimuli 
    Visuospatial Verbal None  
Single Math Task 

  
16 

 
Addition 

  
4 

 
Subtraction 

  
4 

 
Number Line 

  
4 

 
Number Sets 

  
4 

Single Memory Task 8 8 
 Math and Memory Dual Task 8 8 
 

 
Addition 2 2 

 
 

Subtraction 2 2 
 

 
Number Line 2 2 

   Number Sets 2 2   
Note. Within each condition, items were presented in random order. 
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Figure 2. Experimental procedure by condition. 

Single math task condition. In this condition, children were presented with math 

tasks. Note that there was no secondary memory recall task in this condition. Within the 
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16 trials in this condition, there were four math tasks, each involving four trials, but all 

trials were presented in a random order, rather than being presented in blocks. Two tasks 

were designed to measure children’s number sense, and the other two tasks were 

designed to measure arithmetic performance. Of the two number sense tasks, one 

included number line estimation trials and the other included number sets identification 

trials; of the two arithmetic performance tasks, one consisted of addition trials and the 

other consisted of subtraction trials. Each trial consisted of a single math item/problem, 

with one exception: number line trials involved two number line items because they 

could generally be solved in half the amount of time as the other types of math tasks.   

At the beginning of this condition, children were given the following instructions, 

which were presented on the computer screen and read aloud by the experimenter: “Now 

you will solve some math problems. When you know your answer, say it right away. Let's 

practice.” They were then given four practice problems, one representing each type of 

math task. Following feedback and any questions, the 16 experimental trials were 

presented. Preceding each trial, the experimenter asked, “Ready?” to prepare the child. In 

each trial, the math item/problem was displayed in the center of the computer screen and 

the child was prompted to solve the problem. For number sets, addition, and subtraction 

tasks, the items/problems remained on the screen for 15 s, during which the child was 

expected to say his or her answer aloud. For the number line task, each trial totaled 15 s, 

but the two items were displayed for 7 s each, with a 1 s interval between the two items.  

At the end of each trial, the math item/problem disappeared and a white screen appeared 

before moving on to the next trial. The child’s responses were recorded by the 
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experimental software; on addition and subtraction items, the experimenter typed in the 

child’s responses, while on number line and number sets items, the child’s mouse click 

responses (described in greater detail below) were recorded by the software.  

Single memory task condition. In this condition, children were presented with 

memory tasks; there was no secondary math task in this condition. There were 16 

randomized trials involving two types of memory tasks, of eight items each. One task 

measured children’s visuospatial working memory capacity and the other measured 

children’s verbal working memory. Each trial consisted of a single memory item. 

The condition began with these instructions, which were presented on the 

computer screen and real aloud by the experimenter: “Now, you will use your memory. 

Sometimes you will see circles. Other times you will hear letters. Your job is to remember 

them. Let's practice.” Children were then given two practice trials: one visuospatial 

working memory trial, and one verbal working memory trial. After feedback was given 

and any questions were answered, the 16 trials began. Preceding each trial, instructions 

appeared on the computer screen, which the experimenter read aloud. On verbal working 

memory trials, the instructions read, “Remember what you hear”; for visuospatial trials, 

the instructions read, “Remember what you see”. Next, the child was presented with the 

visuospatial or verbal memory stimuli (described in greater detail in the following 

section). Visuospatial stimuli remained on the computer screen for 4 s, and audio 

recordings of verbal stimuli were played on the computer speakers for approximately 5 s. 

After the stimuli were presented, a white screen appeared, during which the child was 

expected to wait silently for 15 s. After 15 s, the screen changed. On verbal trials, a gray 
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screen appeared, and the child was asked say aloud all the letters they remembered in the 

order that they heard them. On visuospatial trials, a response screen for the visuospatial 

stimulus appeared, and the child was asked to take the computer mouse and click on the 

screen locations where they had previously seen the stimuli (described in more detail in 

the subsequent section). After the child provided a response, the next trial began. The 

experimental software recorded the child’s response on both types of trials; on verbal 

trials, the experimenter typed in the child’s response and on visuospatial trials, the 

software recorded the locations of the child’s mouse clicks.  

Dual-task condition. This condition combined the procedures and content of the 

single math task and single memory task conditions, resulting in a dual-task procedure; 

that is, each trial included a math item/problem embedded in a memory trial.  The math 

items/problems and memory stimuli presented in this condition were parallel to those 

presented in the single task conditions. The specific math and memory tasks were crossed 

so that there were four trials for each of the following categories: (1) Arithmetic Math (2 

addition, 2 subtraction) + Verbal Recall; (2) Arithmetic Math (2 addition, 2 subtraction)  

+ visuospatial Recall; (3) Number Sense (2 number line, 2 number sets) + Verbal Recall; 

(4) Number Sense (2 number line, 2 number sets) + Visuospatial Recall, although the 

order of items were randomized, as was the case with the single-task conditions.  

The condition began with the following instructions, which were presented on the 

computer screen and read aloud by the experimenter: “Now you need to use your memory 

and solve math problems. First, you'll see circles or hear letters. Try to remember them! 

Then, solve the math problem. Say your answer as soon as you know it. Let's practice.” 



 

 

47 

They were then asked to complete two practice problems and ask any questions before 

the 16 experimental trials began. At the start of each visuospatial trial, a screen appeared 

with the text “Remember what you see”; at the start of each verbal trial, a screen 

appeared with the text “Remember what you hear”. Next, a visuospatial or verbal 

memory stimulus was presented for 4 s. Following the memory stimulus, a math 

item/problem appeared on the screen for 15 s, during which the child was expected to 

provide an answer. Note that the math problem in this condition replaced the 15 s blank 

screen presented in the single memory task condition. After 15 s, the screen changed 

either to gray or to the visuospatial response slide, depending on the modality of the 

memory stimuli presented prior to the math problem. The child was asked to recall the 

memory stimuli at this point, just as they had done in the single memory task condition.  

The order of the two single task conditions was counterbalanced. However, the 

dual-task condition was always presented last: the single task conditions familiarized 

children with the math and memory procedures, before these procedures were combined 

into a dual-task procedure.  This decision was based on the conclusion that the dual-task 

would already be quite challenging for children, and should not impose the added burden 

of trying to understand the memory and math procedures all at once, at the risk of 

impaired performance.  

Arithmetic strategy assessment. After completing the three conditions, the child’s 

arithmetic strategies were assessed. They were given a selection of 8 arithmetic problems 

that were presented during the experimental procedure, and were given 15 s to solve each 

problem. On each item, after the child provided a numeric response, the experimenter 
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asked, “How did you solve that problem?” and wrote down the child’s reported strategy, 

as well as any observable behaviors the child displayed during problem solving. 

Mathematical tasks, memory stimuli, and scoring. Complete sets of all 

mathematical tasks and memory stimuli are presented in the Appendix and described 

below. 

Verbal working memory. Verbal working memory items were audio voice 

recordings of strings of 5 letters (e.g., “FCPDX”), which was adopted from Imbo and 

LeFevre (2010). Vowels were excluded to preclude children from encoding letter strings 

as non-words, and there were no repeated letters, making each letter an independent 

stimulus. Additionally, every consonant in the alphabet was presented at least once. 

There were two sets of 5-letter strings, one used in the single memory task condition and 

one used in the dual-task condition. 

The goal on each trial was for the child to recall each of the letters in the correct 

order. Performance was measured in terms of accuracy, which was defined as the 

proportion of letters (out of five on each item) that the child recalled in the correct order. 

For example, if the stimuli were “XDHWV” and the child said, “XDHWB”, the child’s 

score would be 0.80 (i.e., 4 correct out of 5) for that item; if the child responded, 

“XHDW”, their score would be 0.40 (i.e., 2 correct out of 5) for that item. Children’s 

scores were averaged across 8 items in the single memory task condition, 4 arithmetic 

items in the dual-task, 2 number line items in the dual-task, and 2 number sets items in 

the dual-task condition. 

 Visuospatial working memory. Visuospatial working memory items were 
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displayed on the computer screen. Stimuli were three black dots (diameter approximately 

.5 inch) in varying locations within a 6 x 6 matrix. The 36 cells within the matrix had 

invisible borders, but the outer borders of the matrix were black. Thus, to anyone who 

viewed them, the visuospatial stimuli appeared as three dots within a white square with a 

black border. Each visuospatial pattern was constructed so that no dot was in the same 

column or row as another dot, and so that the three dots never formed a straight line. 

Therefore, each pattern formed some sort of triangle, but care was taken to ensure that no 

two triangles were identical. These stimuli were adapted from the 4 x 4 matrix used by 

Trbovich and LeFevre (2003). A 6 x 6 matrix was used to provide a wider variety of 

patterns formed by the three dots. Furthermore, the larger matrix made it possible to limit 

the number of times dots appeared near the edges or corners of the matrix, because it 

might have been possible for children to encode the locations of dots near the boarders 

verbally (e.g., “The dot was near the top left corner”), rather than spatially. This approach 

allowed for a more pure assessment of visuospatial working memory capacity, rather than 

an assessment that confounded visuospatial and verbal working memory.  

The goal on each trial was for the child to remember the location of each dot. The 

child responded directly by clicking on the response screen with the mouse. The response 

screen was identical to the stimulus screen, except that no dots were displayed within the 

borders of the matrix. For each mouse click the child made on this screen, a black dot 

centered on the mouse click coordinates appeared and the x and y coordinates were 

recorded by the computer. Performance was measured in terms of accuracy, which was 

defined as the number of dots, out of three on each item, for which the child correctly 
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recalled the location in which it had been presented. Since it would be virtually 

impossible to click the exact location of any of the dots, a margin of error was identified 

for each response. Specifically, this margin of error was defined by the cells that 

contained the stimulus dots within the 6 x 6 matrix. In other words, the x and y 

coordinates were categorically coded as either falling within the area of the correct cell 

(correct response), or outside of that area (incorrect response). To code the child’s 

responses, the distance between the x and y coordinates of the child’s response and the 

coordinates of the borders of the correct cell was calculated. If this distance exceeded the 

dot’s radius, in pixels, then the response was coded as incorrect; if the distance was less 

than the dot’s radius, or if the entire dot fell within the area of the correct cell, then the 

child’s response was coded as correct. In other words, the child’s click was considered to 

be incorrect only if no portion of the dot fell within the boundaries of the correct cell.  

Number sense. Two types of items were used to measure children’s number 

sense: the number sets task (Geary et al., 2009a) and number line estimation task (Siegler 

& Booth, 2004). These tasks were chosen for two reasons. First, these are commonly 

used measures of children’s basic number sense. Second, these were the measures used in 

previous investigations of the relation between working memory and number sense 

(Fuchs et al., 2010b; Geary et al., 2007). 

For number line items, children were asked to estimate where a given value 

between 0 and 1000 falls on a number line with marked endpoints of 0 and 1000. Each 

number line item is presented as a white screen displayed on the computer, with a black 

horizontal line that is placed in the vertical and horizontal center of the screen and that 
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stretches nearly the complete horizontal length of the screen. At the top-center of the 

screen, the target number to be estimated by the child was displayed in black font. As 

mentioned previously, two number line items were presented on each 15s trial, for two 

reasons. First, pilot data suggested that estimation of one value on the number line takes 

fewer than 15 seconds (approximately 7 seconds).  Second, the task was adapted from a 

number of studies using the number line estimation task (e.g., Booth & Siegler, 2008; 

Laski & Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 2003), which sample 

approximately 26 values within the scale (e.g., 0 to 1000, 0 to 100, etc.). Since the 

present study measures other types of math ability and working memory performance, it 

would not be feasible to ask children to estimate the magnitudes of 26 values within each 

condition. Instead, 8 were sampled in the single math task condition, and 8 values were 

sampled in the dual-task condition, with 2 values on each of the four 15 s number line 

trials in each condition.  

  Children used the computer mouse to click on the point along the number line 

where they estimated the target value to be. The x and y coordinates of the pixel location 

of the mouse click were recorded by the experimental software. Since the number line did 

not span the entire screen, the width of the number line was subtracted from the width of 

the screen and this difference was divided by 2 to obtain the width of the space from the 

left edge of the screen to the left edge of the number line. This value was then subtracted 

from the x coordinates of the child’s responses for each number line item to get the true 

positions of the child’s estimates. Accuracy on the number line task was represented as 

proportion absolute error (PAE), which was calculated by taking the absolute value of the 
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difference between the child’s estimate and the actual target magnitude, then dividing this 

difference by 1000 (the scale of the number line). Thus, lower PAE represents greater 

accuracy of estimates.  

The number sets task involved a child’s ability to identify number sets as 

symbolized by Arabic numerals and groups of objects (adapted from Geary et al., 2009a). 

Children were given a target number of 5 or 9 and a set of rectangles containing two or 

three adjacent squares that shared borders, similar to dominos. Each half (or third) of a 

domino contained an Arabic numeral or a quantity of small shapes (e.g., circles, stars, 

diamonds, squares, etc.). The child was asked to determine whether the sum of the 

quantities represented in each domino matched the target number. Each item contained 

dominos that matched the target value and dominos that did not match the target value. 

Some dominos contained only quantities of shapes, some contained only Arabic 

numerals, and some contained a mix of these two representations.  The total quantity 

displayed on each domino was less than 10. Items with 5 as the target number displayed 9 

dominos, 4 of which matched the target; items with 9 as the target number displayed 6 

dominos, 3 of which matched the target. The x and y coordinates of the child’s mouse 

clicks were recorded by the computer. Each click was matched to a particular domino, 

based on the x and y coordinates of the outside borders of the domino. A small margin of 

error was allowed when coding children’s responses as correct or incorrect, in case the 

child was imprecise in responding. The margin of error was defined as 50% of the 

vertical or horizontal distance between the domino in question and the adjacent dominos, 

so that whichever domino the click was nearest to was the one that was used to represent 



 

 

53 

the child’s selection. Accuracy was defined as the proportion of hits on the item, out of 4 

possibilities on items with a target of 5, and out of 3 on possibilities on items with a 

target of 9.  

Arithmetic problem solving. The single math task and dual-task conditions each 

contained 4 addition and 4 subtraction problems. Each problem included one single-digit 

value and one double-digit value under 100. Doubles (e.g., 44, 88, etc.) were excluded. 

Accuracy, defined as a correct response to the problem, was coded for each item. For 

children’s responses to addition problems, the proportion of correct responses was 

calculated across 4 items in the single-task condition, 2 visuospatial items in the dual-task 

condition, and 2 verbal items in the dual-task condition; parallel calculations were made 

for subtraction problems. 

To determine whether children’s scores on addition and subtraction items should 

be combined or treated as separate scales, an analysis of internal consistency was 

conducted on accuracy scores. Cronbach’s alphas were calculated for children’s accuracy 

on addition problems, subtraction problems, and an arithmetic scale that combined 

addition and subtraction problems within each of the three conditions. As can be seen in 

Table 2, the internal consistency of addition problems in the three conditions was quite 

low (.27 to .58), while the scale that combined addition and subtraction problems in each 

condition raised alpha levels to more acceptable levels (.64 to .78). Therefore, analysis of 

arithmetic accuracy was based on the proportion of correct responses across addition and 

subtraction problems in each condition.  
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Table 2 

Cronbach’s Alphas for Addition, Subtraction, and Combined Arithmetic Items in Each 

Condition 

  Addition   Subtraction   
Combined 
Arithmetic 

  α K   α K   α K 
Single Math 0.58 4   0.78 4   0.78 8 
Dual Visuospatial 0.27 2   0.62 2   0.64 4 
Dual Verbal 0.51 2   0.36 2   0.65 4 

 

Arithmetic strategies. Another aspect of children’s arithmetic performance that 

was measured was their problem solving strategies, which included counting, 

decomposition, retrieval, and other/guess/non-response. Children were considered to use 

a counting strategy if they reported counting during any portion of the calculation to 

reach the solution, or if their behaviors indicated such (e.g., counting on fingers, sub-

vocal counting). Strategies were coded as decomposition if the child reported breaking 

the problem apart into a series of smaller problems; the exact steps the child reported 

using were recorded to validate the child’s report. Strategies were coded as retrieval if the 

child claimed that they just knew the answer, although there were certain limitations to 

this rule. For example, if the child claimed to “just know” the answer, but had not 

provided their answer immediately (i.e., within approximately 3 s), then the experimenter 

prompted them to explain a little more. This usually resulted in a modified report of the 

strategy they used, such as stating, “Well, I counted part of it”, or describing breaking the 

problem apart and retrieving intermediate solutions from memory (i.e., decomposition). 
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Similarly, if the child’s behavior indicated the obvious use of a counting strategy, then 

this was reported and the child’s strategy was coded as counting. There were, of course, 

instances when the child’s reported strategy was initially unclear and could not be 

clarified by further prompting. These instances, along with cases where they reported 

guessing or simply did not respond, were all coded as such, but then collapsed into the 

category of “other”.  
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Chapter 4: Results 

Two sets of research questions were addressed by the analyses reported below. 

The first set of questions was addressed through associational analyses, which examined 

predictors of arithmetic performance. These analyses began with an exploration of the 

relation between two types of working memory (visuospatial and verbal) and children’s 

accuracy in solving arithmetic problems. Next, the cognitive process through which 

working memory is related to arithmetic accuracy was explored. Specifically, two 

questions were addressed: (1) Do measures of number sense and problem solving 

strategies mediate the relation between working memory capacity and arithmetic 

performance? (2) Are visuospatial and verbal working memory capacities related to 

arithmetic accuracy through the same cognitive processes, or are there different mediators 

for each type of working memory? 

In the second set of questions, experimental data were analyzed to examine the 

extent of working memory involvement during children’s problem solving on different 

types of mathematical tasks. Specifically, the degree of visuospatial and verbal working 

memory involvement in children’s performance was compared on number line, number 

sets, and arithmetic tasks. Further, the question of whether the extent of involvement 

differs for second and fourth graders, or for high- and low-performing students, was 

addressed.  

Note that in the first set of questions, the focus was on working memory capacity 

as a predictor of math performance and thus the analysis involved examining the relation 

between children’s performance on single memory tasks (capturing the child’s memory 
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capacity) and single math tasks (capturing the child’s level of math skill). In the second 

set of questions, the focus was on the extent to which working memory resources were 

utilized when children completed different mathematical tasks and thus the analysis 

involved examining decrements in children’s performance in the dual task, compared to 

the single tasks. 

Descriptive Statistics 

 Before addressing the research questions, descriptive statistics were calculated for 

measures of children’s visuospatial and verbal working memory capacities, number 

sense, and arithmetic accuracy in the single task conditions (presented in Table 3). 

Overall, all measures seemed to match the children’s level of ability, in that none of the 

tasks appeared to be too easy or too difficult for children. With regard to arithmetic 

accuracy, children’s performance covered a wide range, from 1 correct problem (13%) to 

8 correct problems (100%), and averaged around 62% correct. Children’s number line 

performance, which was represented as the average proportion absolute error (PAE) 

across 4 trials (8 estimates in total), indicated that while some students were quite 

accurate in their answers (1% error), others were much less accurate (37% error), with a 

mean error of 12%. Children’s number sets scores represented the average proportion of 

correctly identified number sets (i.e., hits) on each trial. There were 4 possible hits on 

trials that had a target of 5, and 3 possible hits on trials that had a target of 9; the 

proportion of hits on each trial was averaged across all four trials to obtain the average 

proportion of hits. The minimum score was .13, which reflects 1 out of 4 possible hits on 

each of the two target 5 trials, but no hits on each of the two target 9 trials 
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((.25+.25+0+0)/4); the maximum average was 1, which reflects 4 out of 4 hits on target 5 

trials and 3 out of 3 hits on target 9 trials ((1 + 1 + 1 + 1)/4). Across all children, the 

mean score was 0.76, indicating that children generally did well on the task, but still 

showed some difficulty.  

 Regarding the memory measures, the ranges observed for visuospatial and verbal 

working memory were slightly different from each other. Across the 8 visuospatial trials 

in the single memory condition, the minimum average percentage of recalled stimuli (out 

of 3 on each trial) was 13%, which represents 3 correct dot locations, out of 24 in total. 

The maximum score across all 8 trials was 83%, amounting to about 2 to 3 correct dot 

locations on each trial. On average, children recalled 46% of all possible dot locations, 

which amounts to about 1 to 2 dots per trial. Across the 8 verbal working memory trials, 

the minimum average percentage of recalled letters (out of 5 on each trial) was 15%, 

which represents 6 letters recalled across all trials, or about 1 letter per trial. The 

maximum score was 100%, and the average was 60%, suggesting that children typically 

recalled 3 letters per trial. Thus, both measures of working memory capacity seemed to 

match children’s ability level, although the visuospatial task might have been slightly 

more challenging for them.  
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Table 3 
 
Means, Standard Deviations, Minimum Values, and Maximum Values for Measures of 

Number Sense, Arithmetic, and Working Memory Capacity 

  Min Max M SD 
Arithmetic Accuracy .13 1.00 .62 .25 

Number Line Error .01 .37 .12 .08 

Number Sets Accuracy .13 1.00 .76 .21 

Visuospatial WM Recall  .13 .83 .46 .15 

Verbal WM Recall  .15 1.00 .60 .20 

Note. WM = Working Memory. Accuracy = Proportion Correct.  Error = Proportion 
Absolute Error. Recall = Proportion Correct.  
 
 Table 4 displays the percentage of children who used specific arithmetic strategies 

at three levels of frequency: none of the problems, some of the problems (between 1 and 

7 times), and all of the problems. Counting and retrieval strategies were less common 

than decomposition. Specifically, while more than half of children never used a counting 

strategy (58%), and the majority of children never used retrieval (84%), a minority of 

children never used decomposition (25%), illustrating the popularity of decomposition in 

this sample. Regarding the use of counting strategies, almost half of the children relied on 

it for some, but not all of the problems (45%), while a smaller number relied on it for all 

problems (13%). In other words, most children were capable of implementing memory-

based strategies at least some of the time. In contrast, with regard to the use of retrieval, a 

very small minority of children (3%) reported using this strategy for every problem, 

while slightly more (13%) reported using it for just some of the problems, suggesting that 
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most of the problems were too difficult for children to solve by retrieving the solution 

from memory, which can be expected for multi-digit arithmetic. Children’s use of 

decomposition, however, was more uniformly distributed, with 42% of children using it 

some of the time and 33% using it on all of the problems. Therefore, this strategy appears 

to be a good choice for students who have advanced beyond the use of counting 

strategies, but are unable to retrieve solutions to multi-digit arithmetic problems from 

memory.  

Table 4 
 
Percentage of Students Using Counting, Decomposition, Retrieval, and Other Strategies 

at Various Frequencies 

Frequency Counting Decomposition Retrieval Other 
0 58% 25% 84% 62% 
1-7 29% 42% 13% 37% 
8 13% 33% 3% 1% 

 
Working Memory Capacity and Arithmetic Performance: Mediating Factors 

Correlation analysis. Bi-variate correlations were run to examine interrelations 

between children’s working memory and arithmetic accuracy in the single-task 

conditions, as well as the measures of number sense and strategy use. The results are 

shown in Table 5. In examining measures of working memory in relation to measures of 

math performance and arithmetic strategies, distinct patterns of correlations emerged for 

visuospatial and verbal working memory. High visuospatial working memory was 

significantly associated with lower number line PAE scores (a measure of the error in 

children’s estimates), higher arithmetic accuracy, and greater use of the decomposition 
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strategy. While high verbal working memory was also significantly associated with 

higher arithmetic accuracy, it was not significantly correlated with use of the 

decomposition strategy, and was only marginally significantly associated with lower PAE 

scores (p = .075). Higher verbal working memory was, however, significantly associated 

with more frequent use of the retrieval strategy.  
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Table 5 
 
Zero-order Correlations Between Single-Task Measures of Working Memory, Number Sense, and Arithmetic Performance 

    1 2 3 4 5 6 7 

Working Memory Capacity        

1. Visuospatial WM −       

2. Verbal WM .173 −      

Number Sense        

3. Number Line PAE -.327** -.191 −     

4. Number Sets Hits .156 .136 -.185† −    

Arithmetic Strategies        

5. Counting -.138 -.207 .292* -.391*** −   

6. Decomposition .295** .150 -.393** .304** -.750*** −  

7. Retrieval -.184 .229* -.075 .234* -.154 -.244* − 

8. Arithmetic Accuracy .221* .340** -.378** .172 -.317** .452*** .258* 

Note. PAE = Proportion Absolute Error. WM = Working Memory. 
* p < .05. **p < .01. ***p < .001.



 

 

63 
Different patterns of associations were also seen when examining the two 

measures of number sense in relation to arithmetic accuracy and strategies. Lower error 

in number line estimates (i.e., greater accuracy) was associated with higher arithmetic 

accuracy, higher use of a counting strategy, and higher use of the decomposition strategy. 

Conversely, number sets scores were not significantly correlated with arithmetic 

accuracy, although they were significantly correlated with all three measures of 

arithmetic problem solving strategies (counting, decomposition, and retrieval).  

Last, interrelations among arithmetic strategies and their relation to arithmetic 

accuracy were examined. All three problem solving strategies were significantly 

correlated with arithmetic accuracy, with higher accuracy associated with greater use of 

decomposition and retrieval strategies but lower use of the counting strategy. Greater use 

of decomposition was also associated with greater use of retrieval, and lower use of 

counting, while there was no significant relation between counting and retrieval 

strategies. 

Mediation analysis. Having established a relation between working memory and 

arithmetic accuracy, further analysis was conducted to explore mediators of this relation, 

focusing specifically on number sense and problem solving strategies. Separate chains of 

mediation were considered for visuospatial and verbal working memory. Figure 3 

displays three hypothetical mediation models that were explored in this analysis for each 

type of working memory. The specific measures that represented “number sense” and 

“arithmetic strategies” were selected according to the pattern of correlations described 

above. 
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Figure 3. Hypothesized processes through which verbal and visuospatial working memory relate to arithmetic performance.  
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In examining bi-variate correlations, two separate patterns of associations 

emerged for visuospatial and verbal working memory, which supported the decision to 

test separate mediation models for each of these working memory components. With 

regard to visuospatial working memory, the correlation analysis showed that one measure 

of number sense (number line PAE) and one type of strategy (decomposition) correlated 

with both visuospatial working memory and arithmetic accuracy, as well as with each 

other. This pattern of correlations suggested that all three mediation models shown in 

Figure 3 (Models 1a, 1b, and 1c) could be tested. However, since Model 1a would be 

subsumed by Models 1b and 1c (i.e., the specific paths tested in Model 1a represent a 

subset of paths tested in Models 1b and 1c), only the latter two models were tested. With 

regard to verbal working memory, the correlation analysis showed that one type of 

strategy (retrieval) was correlated both with this type of working memory and with 

arithmetic accuracy. No measure of number sense was correlated with verbal working 

memory. This pattern of associations supported the decision to test only one chain of two 

parallel chains shown in Model 2a (Figure 3). Specifically, only the arithmetic strategies 

piece of this model was tested, since the correlation analysis did not show a correlation 

between verbal working memory and either measure of number sense.  

The mediation analysis was conducted using bias-corrected bootstrapping, which 

tests the significance of the mediation effect based on estimation of confidence intervals, 

and is the recommended method in smaller samples (Dearing & Hamilton, 2006; 

Preacher & Hayes, 2008).  To conduct the analysis, the SPSS macro “PROCESS”, 

created by Preacher and Hayes (2004), was used to randomly select 5,000 samples with 
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replacement from the complete data file. Regression coefficients were estimated for each 

of the bootstrap samples, after which the estimated coefficients were averaged across all 

samples. This method allowed for detection of direct and indirect effects (i.e., mediation) 

of visuospatial and verbal working memory on arithmetic accuracy, via number sense and 

arithmetic strategies. Testing for indirect effects required estimating the regression 

coefficients for a number of pathways, as outlined by Hayes (2013). When examining 

possible mediators of the relation between visuospatial working memory and arithmetic 

accuracy (i.e., Models 1b, and 1c), verbal working memory was included in the models as 

a covariate; likewise, when examining the mediator of the relation between verbal 

working memory and arithmetic accuracy (Model 2a), visuospatial working memory was 

included as a covariate in the model.  

To test Models 1b and 1c, seven paths were estimated. The paths that were 

estimated were the same for the two models, with the exception of the order of the 

mediating variables; in Model 1b, number line PAE was the first mediator (M1) and 

decomposition was the second mediator (M2), while in Model 1c, decomposition was the 

first mediator (M1) and number line PAE was the second mediator (M2). Otherwise, the 

estimated paths for both models were as follows: (1) visuospatial working memory (X) to 

M1, controlling for verbal working memory (path a1), (2) M1 to arithmetic accuracy (Y), 

controlling for verbal working memory (path b1), (3) M1 to M2, controlling for X and 

verbal working memory (path d), (4) X to M2, controlling for M1 and verbal working 

memory (path a2), (5) M2 to Y, controlling for M1, X, and verbal working memory (path 

b2), (6) X to Y, controlling for verbal working memory (path c), and (7) X to Y, 
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controlling for M1, M2, and verbal working memory (path c'). To test the significance of 

the indirect effect of visuospatial working memory on arithmetic accuracy via M1 and 

M2, the product of paths a1, d, and b2 was calculated for each bootstrap sample (i.e., 

5,000 times for each indirect effect), generating a distribution of indirect effects. From 

this distribution, a 95% confidence interval was estimated, which served as a test of 

significance for the indirect effect. By convention, the indirect effect is concluded to be 

statistically significant if the confidence interval does not contain the value 0 (Preacher & 

Hayes, 2008). 

Similarly, for Model 2a, the following four paths were estimated: (1) verbal 

working memory (X) to retrieval (M), controlling for visuospatial working memory (path 

a), (2) M to arithmetic accuracy (Y), controlling for X and visuospatial working memory 

(path b) (3) X to Y, controlling for visuospatial working memory (path c) and (4) X to Y, 

controlling for M and visuospatial working memory (path c'). The indirect effect of 

verbal working memory on arithmetic accuracy via retrieval was estimated for each of 

the bootstrap samples as the product of paths a and b. Once again, the 95% confidence 

interval for the distribution of indirect effects was calculated to test the significance of 

retrieval as a mediator.  

Figure 4 displays the results pertaining to Models 1b and 1c, which yielded 

evidence supporting mediation effects. The two models were estimated separately, but 

are reported in parallel here due to their similar structure. Visuospatial working memory 

was marginally significantly predictive of number line PAE scores, b = -0.11, sb = .06, p 

= .062, and was significantly predictive of decomposition, b = 0.79, sb = .32, p = .016, 
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after controlling for verbal working memory. After partitioning variance explained by 

visuospatial and verbal working memory, number line PAE was significantly predictive 

of decomposition, b = -1.85, sb = .61, p = .003, and decomposition use was significantly 

predictive of number line PAE, b = -0.06, sb = .02, p = .006. Decomposition significantly 

predicted arithmetic accuracy after partitioning variance explained by number line PAE , 

visuospatial working memory, and verbal working memory, b = 0.20, sb = .07, p = .030; 

likewise, number line PAE significantly predicted arithmetic accuracy when holding both 

types of working memory and decomposition constant, b = -0.84, sb = .38, p = .005. 

When controlling for both of the mediators and verbal working memory, the relation 

between visuospatial working memory and arithmetic accuracy was non-significant, b = 

0.08, sb = .19, p = .674, whereas both indirect effects were statistically significant, 

indicating full mediation for both models. The indirect effects were estimated as a1*d*b2 

= 0.04, 95% CI [0.01, 0.16] for Model 1b, and as a1*d*b2 = 0.04, 95% CI [0.01, 0.14], 

for 1c.  
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Figure 4. Mediation of the relation between visuospatial working memory and arithmetic 

accuracy. Solid lines indicate significant effects; dashed lines indicate non-significant 

effects. WM = working memory. † p < .10, * p < .05, ** p < .01.  

With regard to Model 2a (see Figure 5), verbal working memory was significantly 

predictive of use of children’s use of the retrieval strategy after partitioning variance 

explained by visuospatial working memory, b = 0.24, sb = .10, p = .017. Use of the 

retrieval strategy, in turn, was significantly predictive of arithmetic accuracy when 

holding visuospatial and verbal working memory constant, b = 0.37, sb = .16, p = .029. In 
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contrast to the analysis of visuospatial working memory, verbal working memory was 

directly related to arithmetic accuracy after partitioning variance explained by 

visuospatial working memory and use of the retrieval strategy, b = 0.32, sb = .14, p = 

.027. A test of indirect effects showed that this relation was partially mediated by use of 

the retrieval strategy, a*b = 0.09, 95% CI [0.01, 0.22]. 

 

Figure 5. Mediation of the relation between verbal working memory and arithmetic 

accuracy. Solid lines indicate significant effects; dashed line indicates non-significant 

effects. WM = working memory. * p < .05.  

In summary, the results reported above suggest that visuospatial and verbal 

working memory capacities are related to arithmetic performance through different 

cognitive processes. While the relation between visuospatial working memory and 

arithmetic performance was mediated by children’s number sense and use of the 

decomposition strategy, the relation between verbal working memory and arithmetic 

performance was partially mediated only by children’s use of the retrieval strategy.  

Involvement of Working Memory in Mathematical Performance 

The second research question was addressed by analyzing the effects of the 
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experimental memory manipulation on mathematics performance. To determine to what 

extent visuospatial and verbal working memory are involved in children’s math problem 

solving, separate analyses were conducted for each type of math task: number line, 

number sets, and arithmetic. In general, analyses were conducted by comparing math 

scores in the single-task condition to math scores in the dual-task condition, in which 

children had to perform a math task under interference of either visuospatial or verbal 

material (visuospatial-load dual task and verbal-load dual task, respectively). 

Involvement of visuospatial or verbal working memory in children’s problem solving 

would be indicated by a decrement in performance between items in the single math 

condition and items in the visuospatial- or verbal-load dual condition. For example, if 

math performance is significantly worse on visuospatial dual-task items, compared to 

single-task performance, this decrement would suggest that visuospatial working memory 

is involved in solving this particular type of math problem. Likewise, if math 

performance is significantly worse on verbal dual-task items, compared to single-task 

items, verbal working memory would be implicated in children’s problem solving.  

To examine whether the extent of working memory involvement in problem 

solving differs for second and fourth grade students (or for high- and low-performing 

students), the decrement in math performance caused by a visuospatial or verbal load was 

compared for these two groups of students (i.e., between second and fourth graders, or 

between high- and low-performing students); different degrees of decrement in 

performance as a function of grade or performance level would suggest different extents 

of working memory involvement.  
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Number line estimation. A 3 (condition: single vs. dual visuospatial vs. dual 

verbal) x 2 (grade level: second  vs. fourth) x 2 (gender) mixed ANOVA was conducted 

mean PAE scores, in which condition was the within-subjects variable, and between-

subjects variables were grade level and gender. The only significant result was the main 

effect of grade level, F(1, 84) = 18.81, p < .001, 𝜂𝑝2 = .18, with fourth graders showing 

lower PAE scores across all conditions (M = 0.09) than second graders (M = 0.15). The 

following effects were non-significant: the main effects of gender, F(1, 84) = 0.03, p = 

.858, 𝜂𝑝2 < .001, and condition, F(2, 168) = 1.21, p = .302, 𝜂𝑝2 = .02; the 2-way interaction 

effects between condition and grade, F(2, 168) = 0.92, p = .402, 𝜂𝑝2 = .01, condition and 

gender, F(2, 168) = 0.69, p = .504, 𝜂𝑝2 = .01, and gender and grade, F(1, 84) = 2.61, p = 

.110, 𝜂𝑝2 = .03; and the 3-way interaction between condition, grade, and gender, F(2, 168) 

= 1.11, p = .331, 𝜂𝑝2 = .01. 

In the present study, children from two grades were included to capture different 

levels of mathematical skill, so as to explore variation in the involvement of working 

memory in math performance as a function of skill level. As reported above, there was no 

interaction between grade level and experimental condition. This, however, does not 

necessarily suggest that working memory involvement in number line estimation does not 

differ as a function of skill level. In fact, despite the main effect of grade, some second 

graders may show performance on the number line task that is comparable to that of 

fourth graders. To explore this possibility, a median split was performed on children’s 

PAE scores in the single-task condition. Children who scored below the median PAE of 

0.11 were categorized as high-performing students (n = 41), and those who scored above 
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the median were categorized as low-performing students (n = 47). A cross-tabulation of 

performance group and grade level showed that there were 24 second graders (43%) who 

fell into the high-performing group, while 9 fourth graders (28%) fell into the low-

performing group. The overlap in these distributions is depicted in Figure 6.  
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Figure 6. Frequency distributions of number line, number sets, and arithmetic scores in second and fourth grade students. 
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 Based on these overlapping distributions, the grade level variable was replaced with the 

dichotomous measure of number line performance and a 3 (condition) x 2 (gender) x 2 

(performance group) ANOVA was conducted. As can be expected, this analysis showed a main 

effect of performance group, F(1, 84) = 90.59, p < .001, 𝜂𝑝2 = .52,  indicating  that children who 

performed below the median PAE score in the single math condition had significantly lower 

error across all conditions (M = 0.08) than those who scored above the single condition median 

value (M = 0.18). There was also a significant 2-way interaction between performance group and 

condition, F(2, 168) = 3.12, p = .047, 𝜂𝑝2 = .04. The following effects were non-significant: the 

main effect of condition, F(2, 168) = 1.71, p = .184, 𝜂𝑝2 = .02, and gender, F(1, 84)  <.001, p = 

.997, 𝜂𝑝2 < .01; the 2-way interaction between gender and performance group, F(1, 84) = 0.07, p 

= .788, 𝜂𝑝2 < .01; and the 3-way interaction between gender, performance group, and condition, 

F(2, 168) = 0.02, p = .977, 𝜂𝑝2 < .01.  

Simple effects tests were performed to interpret the interaction between performance 

group and condition. Comparisons using the LSD method were made between conditions within 

each performance level, which revealed that among low-performing children, there were no 

significant differences in PAE between the single math condition (M = 0.19) and the dual-task 

condition, for both visuospatial, p = .618, and verbal dual-task items, p = .770, (M = 0.18 in both 

cases). In high-performing children, on the other hand, PAE scores on visuospatial dual-task 

items (M = 0.09) were significantly higher than PAE scores in the single math condition (M = 

0.06), p = .001, while PAE scores on verbal dual-task items (M = 0.08) were only marginally 

significantly higher than scores in the single math condition, p = .061. Scores on visuospatial and 

verbal dual-task items were not significantly different from each other, p = .285. Mean PAE 

scores in each condition for each performance group are depicted in Figure 7.  
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Figure 7. Mean number line, number sets, and arithmetic scores in single math, dual 

visuospatial, and dual verbal conditions.   
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Taken together, this analysis suggests that working memory involvement in number line 

estimation differs for high- and low-performing students. High-performing students seem to 

utilize visuospatial working memory and—to a lesser extent—verbal working memory. Low-

performing students, on the other hand, appear to rely less on visuospatial and verbal working 

memory resources. That is, among low-performing students, there was no difference in number 

line performance, whether or not visuospatial and verbal memory resources were demanded by 

an additional task.  

Number sets identification. To determine how working memory is related to children’s 

performance on the number sets task, a 3 (condition: single vs. dual visuospatial vs. dual verbal) 

x 2 (grade: second vs. fourth) x 2 (gender) mixed ANOVA was conducted on the mean 

proportion of correct target detections across number sets items in each condition. A main effect 

of grade level, F(1, 84) = 7.33, p = .008, 𝜂𝑝2 = .08, showed that fourth graders correctly identified 

a greater proportion of number sets (M = 0.77) than second graders (M = 0.68). The main effect 

of condition was also significant, F(2, 168) = 7.77, p < .001, 𝜂𝑝2 = .09. Non-significant effects 

included: the main effect of gender, F(1, 84) < .01, p = .949, 𝜂𝑝2 < .01, and the 2-way interaction 

effects between gender and grade, F(1, 84) = 0.78, p = .381 𝜂𝑝2 = .01, condition and gender, F(2, 

168) = 1.51, p = .224, 𝜂𝑝2 = .02, and condition and grade, F(2, 168) = 0.92, p = .396, 𝜂𝑝2 = .01; the 

3-way interaction effect between condition, gender, and grade level was marginally significant, 

F(2, 168) = 2.89, p = .058, 𝜂𝑝2 = .03  

Pairwise comparisons using the LSD method were conducted to follow-up on the main 

effect of condition. Across genders and grade levels, number sets scores were significantly 

higher in the single math condition (M = 0.77) than scores on visuospatial items in the dual-task 

condition (M = 0.70), p = .005, and scores on verbal dual condition items (M = 0.69), p < .001.  
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There was no significant difference between scores on visuospatial and verbal dual-task items, p 

= .651.  

As was the case with scores on the number line task, there was considerable overlap in 

the performance distributions of second and fourth grade students. A median split was performed 

on number sets scores in the single math condition (Mdn = 0.75), which resulted in 44 students in 

the high-performing group and 44 students in the low-performing group. Cross-tabulation of 

grade level and number sets performance group showed that 26 second graders (46%) scored 

above the median, while 14 fourth graders (44%) scored below the median (see Figure 6). Given 

this substantial overlap, the possibility that working memory involvement differed by 

performance level, rather than by grade level, was explored next.     

The 3 (condition) x 2 (gender) x 2 (performance group) ANOVA was repeated with the 

performance group variable in lieu of grade level. As can be expected, there was a significant 

main effect of performance group, F(1, 84) = 84.43, p < .001, 𝜂𝑝2 = .50, which showed that 

students who scored above the median in the single math condition had a higher mean number 

sets score (M = 0.82) across all conditions than students who scored below the median (M = 

0.59). Also significant were the main effect of condition, F(2, 168) = 9.32, p < .001, 𝜂𝑝2 = .10, 

and the 2-way interaction effect between condition and performance group, F(2, 168) = 16.07, p 

< .001, 𝜂𝑝2 = .16. Non-significant effects were observed for gender, F(1, 84) = 1.39, p = .241, 𝜂𝑝2 

= .02, the two-way interactions between gender and condition, F(2, 168) = 1.43, p =.242, 𝜂𝑝2 = 

.02, and between gender and performance level, F(1, 84) = 0.03, p =.870, 𝜂𝑝2 < .01, as well as the 

three-way interaction between gender, condition, and performance level, F(2, 168) = 0.89, p = 

.413, 𝜂𝑝2 = .01.  
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To follow-up on the main effect of condition, pairwise comparisons using the LSD 

method were conducted. Consistent with the previous ANOVA, number sets scores were 

significantly higher in the single math condition (M = 0.76) than scores on the visuospatial (M = 

0.69) and verbal dual-task items (M = 0.68), p’s < .001, but scores on visuospatial and verbal 

dual-task items were not significantly different from each other, p = .748. A test of simple effects 

was performed to follow up on the 2-way interaction effect between condition and performance 

group, in which comparisons of scores were made (using the LSD method) between the three 

conditions, within performance groups. Among low-performing students, scores in the single 

task condition (M = 0.59) were not significantly different from scores on visuospatial dual-task 

items (M = 0.63), p = .159, or verbal dual-task items (M = 0.57), p = .395. In contrast, high-

performing students showed significantly lower scores on dual visuospatial (M = 0.74) and dual 

verbal (M = 0.80) items, compared to their scores in the single math condition (M = 0.93), p’s < 

.001. The mean score in each condition within performance group is depicted in Figure 7. 

The pattern of effects that emerged from the second ANOVA suggests that visuospatial 

and verbal working memory resources are both involved in children’s number sets identification. 

However, high-performing children, regardless of gender or grade level, show significantly 

greater involvement of both visuospatial and verbal working memory in identifying number sets 

than low-performing children, which echoes the pattern observed on the number line task.  

Arithmetic problem solving. Parallel to the analysis of number line and number sets 

performance, a 3 (condition: single vs. dual visuospatial vs. dual verbal) x 2 (grade: second vs. 

fourth) x 2 (gender) mixed ANOVA was conducted on the proportion of correct responses on 

arithmetic problems; gender and grade level served as between-subjects variables and condition 

served as a within-subjects variable. A main effect of grade level, F(1, 84) = 9.79, p =.002, 𝜂𝑝2 = 
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.10, revealed significantly higher performance among fourth graders (M = 0.67) than second 

graders (M = 0.50), across genders and conditions. There was also a significant main effect of 

condition, F(2, 168) = 17.86, p <.001, 𝜂𝑝2 = .18. Non-significant results were found for the 

following effects: the main effect of gender, F(1, 84) = 0.96, p =.330, 𝜂𝑝2 = .01; the 2-way 

interaction effects between gender and grade level, F(1, 84) = 0.64, p =.427, 𝜂𝑝2 = .01, and grade 

and condition, F(2, 168) = 0.61, p =.543, 𝜂𝑝2 = .01, and condition and gender, F(1, 84) = 2.37, p 

=.096, 𝜂𝑝2 = .03; and the 3-way interaction effect between gender, condition, and grade level, F(2, 

168) = 0.17, p =.842, 𝜂𝑝2 < .01.   

Pairwise LSD comparisons were conducted to interpret the main effect of condition. 

Across genders and grade levels, scores in the single math condition (M = 0.65) were 

significantly higher than scores on the dual verbal items (M = 0.48), p < .001, but were not 

significantly different from scores on dual visuospatial items (M = 0.63), p = .485. Dual 

visuospatial item scores were significantly higher than dual verbal item scores, p < .001.  

Since uneven performance distributions were observed in number sets and number line 

scores, the possibility that the same was true for arithmetic scores was explored. The 

performance distributions of second and fourth grade students were examined by conducting a 

median split on children’s arithmetic scores from the single task condition (Mdn = 0.63), 

resulting in two groups nearly even in size (high-performing = 39, low-performing = 49). Cross-

tabulation of performance group and grade level revealed that there were 17 second graders who 

performed above the median (30%), and 10 fourth graders who performed below the median 

(31%). Once again, the overlapping performance distributions of second and fourth graders 

provided the rationale for examining the possibility that visuospatial and verbal working memory 

involvement in arithmetic problem solving differed for high- and low-performing students. 
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Performance distributions for each grade are depicted in Figure 6. 

The 3 (condition) x 2 (gender) x 2 (performance group) ANOVA was repeated with 

performance level as a replacement for grade level. Reflecting similar patterns as those observed 

when examining number line and number sets performance, results showed significant main 

effect of performance level, F(1, 84) = 89.87, p < .001, 𝜂𝑝2 = .52, whereby high-performing 

students (M = 0.77) scored significantly higher than low-performing students (M = 0.40) across 

conditions. There was also a significant main effect of condition, F(2, 168) = 18.79, p < .001, 𝜂𝑝2 

= .18, as well as a significant two-way interaction effect between condition and performance 

level, F(2, 168) = 3.93, p = .021, 𝜂𝑝2 = .05. The main effect of gender, F(1, 84) = 3.67, p = .059, 

𝜂𝑝2 = .04, the two-way interactions between gender and condition, F(2, 168) = 1.91, p =.151, 𝜂𝑝2 = 

.02, and between gender and performance level, F(1, 84) = 0.89, p =.348, 𝜂𝑝2 = .01, as well as the 

three-way interaction between gender, condition, and performance level, F(2, 168) = 2.20, p = 

.114, 𝜂𝑝2 = .03, were all non-significant.  

To follow-up on the main effect of condition, pairwise comparisons using the LSD 

method were conducted. Scores in the single task condition (M = 0.64) and in the dual 

visuospatial condition (M = 0.62) were significantly higher than scores in the dual verbal 

condition (M = 0.48), p’s < .001. However, scores in the single task condition were not 

significantly different from scores in the dual visuospatial condition, p = .444. The 2-way 

interaction between condition and performance group was further analyzed through simple 

effects tests, in which scores in each condition were compared within each performance group, 

using the LSD method. Within high-performing students, scores in the single task condition (M = 

0.86) were significantly higher than scores in the dual visuospatial condition (M = 0.76), p = 

.017, and the dual verbal condition (M = 0.69), p < .001, but scores in the latter two were only 
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marginally significantly different from each other, p = .075. Within low-performing students, on 

the other hand, single task scores (M = 0.43), were significantly higher than scores in the dual 

verbal condition (M = 0.29), p < .001, but were not significantly different from scores in the dual 

visuospatial condition (M = .48), p = .109; scores in the dual visuospatial condition were 

significantly higher than scores in the dual verbal condition, p < .001. Figure 7 shows the mean 

arithmetic score in each condition for each performance group.  

Taken together, these results suggest that verbal working memory plays a larger role in 

arithmetic problem solving than visuospatial working memory, among second and fourth grade 

children, regardless of their baseline arithmetic performance. However, of note, reliance on 

visuospatial working memory differed for high- and low-performing children: while children 

showing low arithmetic performance appeared to depend minimally on visuospatial working 

memory, children showing high arithmetic performance appeared to require a substantial amount 

of visuospatial working memory resources to solve arithmetic problems.  

In observing differences in the extent of working memory involvement between high- 

and low-performing students, the point could be raised that these differences were due to a floor 

effect in the low-performing group (i.e., this group did not have as much room to drop as the 

high-performing group). However, a close look at the level of performance of children in the 

low-performing group showed that they scored highly enough on the number sets and arithmetic 

tasks, and showed low enough error on the number line task, to have shown a significant 

decrement in their performance. Specifically, with regard to the number sets task, high-

performing children showed a decrement of 0.19 points between single-task items and 

visuospatial dual-task items, while low-performing children showed a mean single-task number 

sets score of 0.59—much more than 0.19 points away from the floor. On the arithmetic task, 
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high-performing children showed a decrement of 10 percentage points from single-task items to 

visuospatial dual-task items, and the mean single-task score among low-performing children was 

43%, well above 10 percentage points from the floor. Last, on the number line task, high-

performing children showed an increase of 0.03 points in their mean PAE from single-task items 

to visuospatial dual-task items, while the mean single-task PAE among children in the low-

performing group was 0.19, over 0.81 points away from the worst possible error score of 0.99. 

Thus, the individual differences in working memory involvement detected in these analyses 

could not be explained by a floor effect.  

Analysis of visuospatial and verbal working memory recall. The results pertaining to 

each math task, reported above, showed that children who performed above the median score on 

the single number line, number sets, and arithmetic tasks showed a greater decrement in math 

scores than children who scored below the median. This pattern of results suggests that high-

performing children utilized working memory resources to a greater extent than low-performing 

children. However, an alternative explanation is possible: that high-performing children 

dedicated more cognitive effort to remembering visuospatial or verbal stimuli in the dual-task 

condition than to solving the math problems, at the expense of their math performance. If this 

were the case, high-performing children would show a smaller decrement in recall scores than 

low-performing children. For example, as reported above, visuospatial interference caused a 

greater decrement in high-performing children’s arithmetic scores than low-performing 

children’s scores. If visuospatial interference caused a greater decrement in high-performing 

children because they were more focused on the visuospatial memory component of the dual task 

than the arithmetic component, then they should show a smaller decrement, when compared to 

low-performing children, in visuospatial recall scores as a result of arithmetic interference. 
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To test this possibility, analyses parallel to those reported above were conducted, in 

which children’s visuospatial and verbal working memory recall scores were analyzed, rather 

than their scores on the three math tasks. Specifically, children’s visuospatial and verbal recall 

scores in the single memory condition were compared to their visuospatial and verbal recall 

scores in the dual-task condition. To make this comparison, three separate analyses were 

conducted, which differed according to the dual-task items that served as the comparison. First, 

dual-task items that involved the number line task were analyzed, followed by dual-task items 

that involved the number sets task, then by dual-task items that involved the arithmetic task. In 

each of these analyses, the between-subjects variable was the corresponding dichotomous 

measure of math performance group (i.e., number line performance, number sets performance, 

and arithmetic performance groups). Including the relevant performance group variable in each 

of the three analyses made it possible to test the possibility of a smaller decrement in recall 

scores in the high-performing group than the low-performing group, by examining 2-way 

interaction effects between performance group and condition (single vs. dual), or 3-way 

interaction effects between performance group, condition, and stimulus (visuospatial vs. verbal).  

The results of the analyses conducted for each math task are reported below. Note that 

any significant interaction effects were interpreted by conducting simple effects tests, in which 

mean comparisons were made using the LSD method. Table 6 displays estimated marginal 

means and standard errors for each analysis. 
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Table 6 
 
Estimated Marginal Means and Standard Errors for Analyses of Visuospatial and Verbal Recall 

Scores in Single- and Dual-Task Conditions 

      Number Line   Number Sets   Arithmetic 
      M SE   M SE   M SE 
High-performing                 
  Visuospatial                 
    Single 0.42 0.02   0.43 0.02   0.43 0.02 
    Dual 0.33 0.04   0.28 0.04   0.33 0.02 
  Verbal                 
    Single 0.54 0.03   0.55 0.03   0.55 0.03 
    Dual 0.26 0.03   0.28 0.04   0.23 0.03 
Low-performing                 
  Visuospatial                 
    Single 0.48 0.02   0.47 0.02   0.48 0.02 
    Dual 0.34 0.03   0.34 0.04   0.36 0.03 
  Verbal                 
    Single 0.64 0.03   0.63 0.03   0.65 0.03 
    Dual 0.39 0.03   0.38 0.04   0.29 0.03 

 
Number Line Task. A mixed 2 (condition: single vs. dual number line) X 2 (stimulus: 

visuospatial vs. verbal) X 2 (number line performance group: high vs. low) was conducted on 

children’s memory stimulus recall scores. Significant main effects of stimulus, F(1, 86) = 8.97, p 

= .004, 𝜂𝑝2 = .09, and condition, F(1, 86) = 113.70, p < .001, 𝜂𝑝2 = .57, showed that children 

recalled a greater proportion of visuospatial stimuli than verbal stimuli and that they recalled a 

greater proportion of stimuli on items in the single memory condition than on items with a 

number line component in the dual-task condition. In addition, a main effect of number line 

performance group, F(1, 86) = 7.66, p = .007, 𝜂𝑝2 = .08,  showed that children who scored below 

the median PAE score in the single math condition had significantly higher recall than children 
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who scored below the median PAE score. A stimulus by condition interaction effect, F(1, 86) = 

113.70, p < .001, 𝜂𝑝2 = .57, revealed that there was a greater decrement in verbal recall scores 

than visuospatial recall scores. Non-significant interaction effects between condition and 

performance group, F(1, 86) = 0.04, p = .845, 𝜂𝑝2 < .01, and between condition, performance 

group, and stimulus, F(1, 86) = 1.96, p = .165, 𝜂𝑝2 = .02, showed that the decrement to recall 

scores caused by arithmetic interference was comparable across the high- and low-performing 

groups. Thus, it appears as through children in both groups focused on stimulus recall to the 

same extent.   

Number Sets Task. A mixed 2 (condition: single visuospatial. dual number sets) X 2 

(stimulus: visuospatial vs. verbal) X 2 (number sets performance group: high vs. low) was 

conducted on children’s memory stimulus recall scores. Significant main effects of stimulus, F(1, 

86) = 8.37, p = .005, 𝜂𝑝2 = .09, condition, F(1, 86) = 128.23 p < .001, 𝜂𝑝2 = .60, and number sets 

performance group, F(1, 86) = 6.30, p = .014, 𝜂𝑝2 = .07, as well as the interaction effect between 

stimulus and condition, F(1, 86) = 14.64, p < .001, 𝜂𝑝2 = .15, revealed the same pattern of mean 

differences reported with respect to the number line task (see Table 6 for estimated marginal 

means). Again, non-significant interaction effects between condition and performance group, 

F(1, 86) = 0.42, p = .520, 𝜂𝑝2 = .01, and between condition, performance group, and stimulus, 

F(1, 86) = 0.02, p = .878, 𝜂𝑝2 < .01, revealed that the interference effect cause by the number sets 

task resulted in similar levels of decrement in that high- and low-performing children.  

Arithmetic Task. A mixed 2 (condition: single vs. dual arithmetic) X 2 (stimulus: 

visuospatial vs. verbal) X 2 (arithmetic performance group: high vs. low) was conducted on 

children’s memory stimulus recall scores. Once again, there were significant main effects of 

condition, F(1, 86) = 213.13, p < .001, 𝜂𝑝2 = .71, and arithmetic performance group, F(1, 86) = 
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5.44, p = .022, 𝜂𝑝2 = .06, as well as a significant interaction effect between stimulus and 

condition, F(1, 86) = 71.99, p < .001, 𝜂𝑝2 = .46, all of which echoed the mean differences reported 

with respect to the number line and number sets tasks (see Table 6). The main effect of stimulus 

was non-significant in this analysis, F(1, 86) = 2.31, p = .132, 𝜂𝑝2 = .03. The interaction effects 

between condition and performance group, F(1, 86) = 0.42, p = .520, 𝜂𝑝2 = .01, and between 

condition, performance group, and stimulus, F(1, 86) = 0.02, p = .878, 𝜂𝑝2 < .01, were also non-

significant, again suggesting that high- and low-performing children focused on stimulus recall 

to the same extent.   

 
  



 

 

88 

Chapter 5: Discussion 

Performance in mathematics during childhood is strongly predictive of long-term 

mathematical achievement (Duncan et al., 2007; Jordan, Kaplan, Ramineni, & Locuniak, 2009; 

Tyson, Lee, Borman, & Hanson, 2007). By adulthood, mathematical competence increases the 

chance of full-time employment after completing school, over and above a number of competing 

factors, such as reading literacy and level of education (Rivera-Batiz, 1992). Given these long-

term implications, this dissertation aimed to address limitations in existing literature that is 

centered on understanding the cognitive underpinnings of children’s mathematical performance. 

Specifically, the nature of relations between children’s working memory and two mathematical 

abilities that provide a foundation for children’s mathematical development—namely, number 

sense and arithmetic strategies—were examined.  

Two sets of research questions guided this investigation. The first set of questions 

pertains to predictors of arithmetic performance. Research has suggested that working memory 

may support the development of number sense and procedural knowledge of arithmetic, both of 

which can facilitate arithmetic calculations (De Rammelaere, Stuyven, & Vandierendonck, 1999; 

Geary et al, 2004, 2007, 2012; Fuchs et al., 2010b), but this mechanism has not been explicitly 

tested in previous investigations. The present study addressed this gap in the literature by 

examining children’s number sense and arithmetic strategies as mediators of the relation between 

working memory and arithmetic performance.  

The second set of questions examined the involvement of working memory in children’s 

number sense and arithmetic performance. While a large and growing body of experimental 

investigations have reported the involvement of specific working memory components in adults’ 

arithmetic problem solving (DeStefano & LeFevre, 2004), there is currently a dearth of such 
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investigations conducted with children. Existing research on the involvement of working 

memory in children’s math problem solving have examined only one aspect of children’s 

mathematical performance, their calculation of single-digit arithmetic problems. To extend this 

literature to other important areas of children’s mathematical performance, the present research 

investigated the involvement of the visuospatial sketchpad and the phonological loop in 

children’s number sense, including number line estimation and number sets identification, and 

their multi-digit arithmetic problem solving.  

Mediators of the Working Memory Capacity and Arithmetic Performance Relation 

The relation between working memory and arithmetic performance is complex. Research 

conducted with adults and children has documented different relations between performance on 

span measures of specific working memory components and performance on different 

mathematical tasks, such as arithmetic, algebraic, and word problem solving (Raghubar et al., 

2010). The present study examined the mechanisms underlying relations between arithmetic 

performance and two components of working memory—the visuospatial sketchpad and the 

phonological loop. The literature suggests several underlying mechanisms for each type of 

working memory, but none have ever been tested in a complete mediation model. The findings 

of this study indicated that the relations of the visuospatial sketchpad and phonological loop to 

arithmetic performance were mediated by different factors. For the visuospatial sketchpad, both 

number line performance and use of the decomposition strategy mediated the relation, while for 

the phonological loop, only children’s use of the retrieval strategy mediated the relation. Below, 

the findings are discussed in the context of the extant literature.  

Visuospatial working memory and arithmetic performance. There is a long history of 

research that has documented relations between spatial skills—such as the ability to visualize, 
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mentally transform, and mentally rotate objects in space—and performance in various 

mathematical domains (de Hevia, Vallar, & Girelli, 2008; Gunderson, Ramirez, Beilock, & 

Levine, 2012; Mix & Cheng, 2012; Hegarty & Kozhevnikov, 1999). Therefore, it is not 

surprising that the ability to encode and retain visuospatial information in working memory has 

emerged as an important predictor of various measures of mathematical performance, especially 

on more difficult math problems (Alloway & Passolunghi, 2010; Bull, Johnston, & Roy, 1999; 

Holmes & Adams, 2006; Holmes, Adams, & Hamilton, 2008) and among high-achieving 

students (Geary et al., 2009b). Indeed, in the present study, children’s visuospatial working 

memory was found to be positively correlated with their arithmetic performance. To better 

understand the processes involved in this relation, visuospatial working memory was examined 

in relation to a number of other factors that have emerged in the literature as potential mediators.  

One potential mediator that has been implicated is children’s number sense, which was 

supported by the present findings. Consistent with previous investigations (Fuchs et al., 2010b; 

Geary et al., 2007), a relation was detected between children’s visuospatial working memory and 

their performance on the number line task. However, visuospatial working memory was not 

found to be related to number sets task performance, despite the fact that this relation was found 

previously. The reason for this inconsistency is not completely clear, but one possibility pertains 

to differences in the measurement of visuospatial working memory. Whereas previous work 

(Fuchs et al., 2010b; Geary et al., 2007) has relied on a standardized assessment of visuospatial 

working memory known as the WMTB-C (Pickering & Gathercole, 2001), which involves a 

Block Recall task and a Memory for Mazes task, the measurement of visuospatial working 

memory in the present study was an adaptation of the Visual Patterns Task (Della Sala et al., 

1997).  While the former tasks capture more dynamic spatial elements of visuospatial working 
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memory, the latter task captures more static visual elements. Thus, it is possible that the more 

abstract spatial processing elements of visuospatial working memory are related to the 

apprehension of symbolic representations of quantities, and the measure used in the present study 

might not have been as sensitive to these elements. Therefore, a relation might have been 

detected in the present study had a different measure of visuospatial working memory been used.  

Another possible mechanism is implied by the notion that visuospatial working memory 

facilitates the development of basic and fundamental arithmetic skills and knowledge. For 

example, visuospatial working memory may be related to the facility with which children are 

able to align addends in columns when implementing written arithmetic algorithms, and to their 

development of a conceptual understanding of place value (Geary, 2003; Rourke & Finlayson, 

1978). While these aspects of arithmetic problem solving were not directly assessed in the 

present study, they are implicit in children’s ability to execute certain problem solving strategies 

(Geary, 2006). Indeed, visuospatial working memory was correlated with the frequency with 

which children used the decomposition strategy in the present study. This is consistent with 

previous investigations, which have documented relations between visuospatial processing and 

the execution of certain arithmetic problem solving strategies, including decomposition and 

mental visualization of arithmetic algorithms (Geary et al., 2007; Imbo & LeFevre, 2010; Laski, 

Casey, Yu, Dulaney, Heyman, & Dearing, 2013; Trbovich & LeFevre, 2003). 

Thus, there may be multiple mechanisms through which visuospatial working memory is 

related to arithmetic problem solving. Given the shared relations found between children’s 

visuospatial working memory, number line task performance, use of the decomposition strategy, 

and arithmetic performance, two mediation models were analyzed in this research. First, number 

line estimation and use of the decomposition strategy were tested as serial mediators of the 
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relation between the visuospatial working memory capacity and arithmetic accuracy, 

respectively. Second, both factors were tested as serial mediators again, but in the opposite order, 

whereby decomposition was the first mediator and number line estimation was the second 

mediator.  The findings with respect to both of these models are discussed next.  

Number line estimation and decomposition as serial mediators. Children’s number line 

estimation performance and use of the decomposition strategy mediated the relation between 

visuospatial working memory and arithmetic accuracy. The finding of a mediation effect of 

children’s number line estimation is not only consistent with previous findings of bi-variate 

relations between these variables (Fuchs et al., 2010b; Geary et al., 2007), but it also resonates 

with the perspective that one way individuals interpret numerical magnitude is through 

visuospatial codes that resemble a mental number line or continuum (Dehaene, 1992, 1997; 

Dehaene, Bossini, & Giraux, 1991; Dehaene & Mehler, 1992), which has been found to facilitate 

arithmetic learning and performance (Booth & Siegler, 2008; Griffin et al., 1994). An 

explanation for the mediation effect of the decomposition strategy is not as clear, but it is 

possible that strong visuospatial working memory may support children’s learning of the 

decomposition strategy, possibly by alleviating demands on the central executive and 

phonological components of working memory, as executing the decomposition strategy is 

thought to be particularly demanding of these resources (Imbo & Vaniderendonck, 2007, 2010). 

This process, as suggested by the present findings, may result in greater success in arriving at 

correct problem solutions. Furthermore, children who use the decomposition strategy gain 

additional practice in retrieving simple arithmetic facts when executing this strategy, and must 

exercise arithmetic procedures that improve their understanding of arithmetic concepts, such as 

the property of commutativity (Canobi et al., 1998; Cowan & Renton, 1996; Geary, 2006). Thus, 
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these children already seem to have a solid foundation on which to perform multi-digit 

calculations.   

Importantly, a serial mediation effect was detected for these two mediators, in both 

orders. In other words, strong visuospatial working memory was associated with better number 

line estimation skills, which, in turn, were related to greater use of the decomposition strategy, 

and finally, to higher arithmetic accuracy. Likewise, strong visuospatial working memory 

predicted more frequent use of the decomposition strategy, which was associated with better 

number line estimation skills, and again, higher arithmetic accuracy. The fact that both serial 

mediation models were significant suggests not only that children’s capacity for storing and 

manipulating visuospatial information supports both the development of spatial numerical 

representations and the acquisition of skills needed to execute the decomposition strategy, but 

also, that there may be a bi-directional relation between these two factors. That is, an 

understanding of numerical magnitudes might facilitate children’s use of the decomposition 

strategy, while skilled use of the decomposition strategy could clarify their representation of 

number magnitudes.  

Understanding the possible bi-directional relation between children’s decomposition and 

number line estimation requires further research. Children’s arithmetic strategies have not often 

been linked to their number line estimation skills. Therefore, the mechanism underlying this 

relation is not immediately clear. In considering how use of the decomposition strategy might 

improve the accuracy of number line estimates, it is useful to consider factors that have been 

found to improve children’s performance on the number line task. For example, Laski and 

Siegler (2007) provided children with feedback on their categorization of number magnitudes as 

“really small”, “small”, “medium”, “big”, and “really big” and found that this feedback 
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improved the accuracy not only of their categorizations but also of their estimates on the number 

line task. If experiential factors such as number categorization can improve children’s numerical 

magnitude representations, then it is plausible that experience in executing certain arithmetic 

strategies, such as decomposition, could have a similar effect. Executing the decomposition 

strategy requires children to practice making judgments about the relative magnitudes of problem 

addends, which may help them to categorize numerical magnitudes and ultimately improve the 

precision of their number line estimates. While the relation found between decomposition and 

number line estimation raises this possibility, this mechanism should be tested in future research.  

With regard to the way in which number line estimation ability might facilitate use of the 

decomposition strategy, findings on children’s memory for numbers become relevant. 

Specifically, there is evidence to suggest that children showing more accurate internal 

representations of numerical magnitude—as measured by several tasks, including number line 

estimation—were also better at remembering numbers introduced to them in a story, while other 

types of numerical knowledge, such as knowledge of counting, were unrelated to their recall of 

the numbers presented (Thompson & Siegler, 2010). Since decomposition is a strategy that 

involves temporary storage of intermediate results, any mechanism that might support their 

ability to do so is particularly relevant to the present finding; it appears as though skill in making 

spatial-numerical relations, as measured by number line task, may indeed be one such 

mechanism. This possibility should be tested empirically in future studies.  

Verbal working memory and arithmetic performance. Also related to arithmetic 

performance is verbal working memory. It has been argued that one of the primary roles of 

verbal working memory in mental arithmetic is to assist in the storage of problem information. 

This idea has been supported by the finding of a minimal role for verbal working memory when 
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problem information is visually available during problem solving. For example, when Fürst and 

Hitch (2000) displayed problem information continuously during adults’ arithmetic problem 

solving, taxing their verbal working memory in a dual-task condition had no effect on their 

performance. In the present study, however, problem information was visually available for the 

complete duration of children’s problem solving and yet, verbal working memory was still found 

to be correlated with and involved in arithmetic performance. This finding implicates a role for 

verbal working memory in arithmetic performance, despite the visuospatial availability of 

problem information. 

There are a couple of explanations for the contrasting findings between the present study 

and those of Fürst and Hitch. First, it is important to note the ages of participants in both studies; 

in the present study, participants were of elementary school age, while in the Fürst and Hitch 

study, participants were college-aged students. Therefore, the inconsistency in the two sets of 

findings might partially reflect developmental differences in working memory or arithmetic skill. 

Second, verbal working memory may be useful for other aspects of arithmetic problem solving. 

Indeed, it has been argued that another role of verbal working memory in mental arithmetic is 

that of encoding and storing verbal information used for counting (Healy & Nairne, 1985; Nairne 

& Healy, 1983). This idea may provide some explanation for the link between verbal working 

memory capacity and arithmetic performance in the present study, as a small correlation was 

found between verbal working memory capacity and use of counting strategies, although this 

was only marginally significant. However, children’s use of another strategy, retrieval, was 

significantly related to their verbal working memory capacity. This finding is consistent with 

literature that has suggested a relation between verbal working memory and the early acquisition 

of number facts (Geary et al., 2004), which are thought to be encoded and retrieved verbally 
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(Dehaene & Cohen, 1995). In line with this argument, the present study was the first to test 

children’s use of the retrieval strategy as a mediator of the relation between verbal working 

memory and arithmetic performance. 

Retrieval as a mediator. One of the key findings in the present study is that the retrieval 

strategy partially mediates the relation between verbal working memory and arithmetic 

performance. In other words, children with strong verbal working memory showed higher 

accuracy in their arithmetic problem solving, and this apparent advantage was explained, in part, 

by their more frequent use of the retrieval strategy. This finding suggests that the capacity to 

temporarily store and process verbal information may provide children with an important 

advantage in performing arithmetic calculations by supporting their learning of arithmetic facts 

that would be accessed through the retrieval strategy.  

It is not surprising that children’s use of retrieval during the strategy assessment was 

positively related to their arithmetic accuracy in the single-math condition. After all, use of the 

retrieval strategy typically represents the most advanced level of skill in arithmetic problem 

solving (Ashcraft & Stazyk, 1981; Geary, 2011; Geary et al., 2004; Shrager & Siegler, 1998; 

Siegler 1988). Compared to decomposition and counting, retrieval is the most efficient method 

of solving an arithmetic problem, as it requires the least amount of time to execute and is the 

least demanding of central executive working memory resources (Imbo & Vandierendonck, 

2006, 2007). Children with mathematical difficulties are much less likely to use the retrieval 

strategy than their typically-achieving peers (Bull & Johnston, 1997), as they struggle to learn 

the arithmetic facts that would support their use of this strategy (Ashcraft & Stazyk, 1981; 

Dehaene & Cohen, 1995; Geary, 2004; Jordan, Hanich, & Kaplan, 2003). The present findings 

suggest that this may be due, in part, to a lack of available resources from verbal working 
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memory. While this mechanism has been suggested by previous findings, this study was the first 

to directly test this mediation model. 

Lack of a mediation effect of number sense. Unlike visuospatial working memory, 

which was related to children’s number line estimation, children’s verbal working memory was 

not significantly related to either measure of number sense. This is consistent with a previous 

finding, which showed that among the three primary components of working memory, verbal 

working memory was the only one that bared no relation to children’s number line or number 

sets task performance (Geary et al., 2007). Thus, while verbal working memory has been 

implicated in a number of mathematical skills (Bull, Espy, & Wiebe, 2008; Fürst & Hitch, 2000; 

Hecht, 2002; Imbo & LeFevre, 2010; Lee & Kang, 2002; Logie et al., 1994; Trbovich & 

LeFevre, 2003), including those assessed in the present study, children’s number line estimation 

and number sets identification do not appear to be mechanisms underlying this relation.  

Involvement of Working Memory in Number Sense and Arithmetic Performance 

Despite widely documented relations of visuospatial and verbal working memory 

capacity to children’s arithmetic performance, the present investigation is one of the few that 

have experimentally investigated the involvement of working memory resources in children’s 

math performance using dual-task methodology. The advantage of this approach is that it 

involves experimentally taxing specific working memory components during mathematical tasks. 

This manipulation allows for a comparison of the extent to which the assessed components of 

working memory are involved in completing math tasks, and whether this involvement varies as 

a function of the types of mathematical performance that are measured. This differs from 

examining relations between measures of working memory capacity and measures of arithmetic 

performance in that it yields evidence of causal relations. Furthermore, finding that working 
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memory is related to arithmetic performance is not the same as finding how it is actually 

involved in children’s problem solving.  The latter type of finding can provide information about 

which aspects of children’s performance are most constrained by limitations in specific types of 

working memory, which is useful in identifying specific areas of difficulty for children, 

especially when individual differences are considered.  

One major contribution of the present research is that it is the first to use a dual-task 

design to examine visuospatial and verbal working memory involvement in children’s number 

sense and multi-digit arithmetic problem solving. In particular, there is no previous research that 

has used a dual-task procedure to study working memory involvement in children’s or adults’ 

number line and number sets task performance. The number line and number sets tasks capture 

children’s spatial and symbolic representations of number magnitudes (Dehaene, 1992; Geary et 

al., 2009a; Siegler & Opfer, 2003); therefore, examining the extent to which children use 

visuospatial and verbal working memory resources during these tasks provides meaningful 

information about the visuospatial and verbal processing involved in accessing internal 

representations of numbers. With regard to arithmetic, previous dual-task investigations have 

only measured children’s single-digit arithmetic performance. Performance on multi-digit 

arithmetic can represent a wider range of arithmetic competencies, including an understanding of 

place value, knowledge of single-digit arithmetic facts, and the ability to adaptively execute a 

range of problem solving strategies, since children are less likely to use retrieval on these types 

of problems. Thus, multi-digit arithmetic places a greater load on elementary school children’s 

working memory than single-digit arithmetic (Adams & Hitch, 1997).   

Evidence of visuospatial or verbal working memory involvement in children’s 

performance on a math task is found in a decrement in children’s math performance between the 
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single- and dual-task conditions. However, in interpreting decrements in number line, number 

sets, and arithmetic performance caused by dual-task interference, it is important to note that a 

lack of a significant effect of visuospatial or verbal interference does not necessarily imply a lack 

of visuospatial or verbal working memory involvement in children’s performance. Rather, it is 

likely to suggest that working memory resources required for the task are minimal. That is, any 

given math task may require some amount of resources from visuospatial and verbal working 

memory, but if the amount is minimal, then the combined load of the math task and retaining 

visuospatial or verbal stimuli does not exceed working memory resources, resulting in no 

decrement to math performance.   

In the present study, the findings showed variable levels of involvement of both 

visuospatial and verbal components of working memory in children’s number line estimation, 

number sets identification, and arithmetic calculations. Importantly, significant involvement of 

specific working memory components was not always found for all students, but instead was 

detected only in students who demonstrated a high level of skill on the particular math task being 

assessed. These results are discussed in greater detail below.   

Working memory involvement in number sense. According to the present findings, 

visuospatial and verbal working memory components appear to be differentially involved in the 

two measured aspects of children’s numerical representations. In examining performance on the 

number line task, at first glance there appears to be minimal visuospatial and verbal processing 

involved in generating spatial representations of number magnitude. However, a look at 

differences between high- and low-skill students indicates a varied pattern of working memory 

involvement. Specifically, high-skill children showed a highly significant involvement of 

visuospatial working memory and a marginally significant involvement of verbal working 
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memory. Low-skill children, on the other hand, show minimal involvement of both types of 

working memory. In examining performance on the number sets task, on the other hand, both the 

visuospatial sketchpad and the phonological loop were highly involved, but again, only for high-

skill students. Therefore, low-skill students appear to involve minimal resources from both types 

of working memory in both aspects of number sense.  

The finding that the visuospatial sketchpad was significantly involved in high-performing 

students’ number line estimation is consistent with literature suggesting that number line 

estimation is a visuospatial process (Dehaene, 1992, 1997; Siegler & Opfer, 2003). It also echoes 

the correlation between visuospatial working memory capacity and the accuracy of children’s 

number line estimates that was detected in the mediation analysis. Thus, the accuracy of 

children’s number line estimates is related to their visuospatial working memory capacity and the 

extent to which they involve visuospatial working memory resources.  

The finding that high-performing children relied heavily on both types of working 

memory when completing the number sets task is consistent with the argument, made by those 

that developed the task, that completing the task involves multiple domain-general and domain-

specific cognitive processes (Geary et al., 2009a), including those required for processing 

approximate and exact visuospatial and verbal codes of quantity (Dehaene, 1992). However, as 

was discussed previously and in contrast to the number line task, performance on the number sets 

task was not significantly related to either type of working memory. Thus, the use of resources 

from visuospatial and verbal working memory is related to greater accuracy in identifying 

number sets, but large capacities in both working memory components are not associated with 

higher performance.  

Working memory involvement in arithmetic problem solving. It is clear from the 
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present and previous findings that verbal working memory plays a large role in arithmetic 

calculations, particularly those presented in a horizontal format (Trbovich & LeFevre, 2003). In 

fact, the present findings indicate a larger role for verbal working memory in arithmetic 

calculations than for visuospatial working memory. However, a comparison between students 

with high versus low levels of arithmetic skill revealed differential involvement of visuospatial 

working memory. Specifically, highly skilled children showed a significant involvement of 

visuospatial working memory and verbal working memory, while children with a lower level of 

arithmetic skill primarily showed involvement of verbal working memory.  

One possible explanation for this finding is that children who can delegate various 

components of arithmetic calculations to the visuospatial sketchpad and the phonological loop, 

thus involving both storage systems in their problem solving, have higher success in arriving at 

the correct solution to the problem. The role of the visuospatial sketchpad is variegated, in that it 

can be used to encode and retain aspects of arithmetic calculations of a more static or abstract 

spatial nature (Knops, Thirion, Hubbard, Vincent, Dehaene, 2009; Zorzi, Priftis, & Umilta, 

2002). Therefore, it is possible that some children may temporarily store intermediate results in 

the visuospatial sketchpad by visually encoding numeric symbols or spatial representations of 

numbers when executing arithmetic calculations, as has been suggested previously (Logie et al., 

2004), while assigning other components of the task, such as fact retrieval, to the phonological 

loop.  

The delegation of different aspects of arithmetic calculation to different working memory 

components can be illustrated by the following example. To solve the problem 52 + 29, a high-

performing child might first add 9 and 2 to obtain the value 11, but will need to temporarily 

retain this value in memory while they execute the next steps, which might be to add 50 and 20 
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to obtain 70, and finally to add 70 and 11 to obtain 81. Executing all three of these steps would 

require considerable phonological and central executive resources. Therefore, the child might 

have more success in executing these steps by temporarily encoding intermediate results visually 

(i.e., visualizing the number 11 in a mental space), rather than verbally (i.e., sub-vocally 

repeating the number 11). Delegating the first intermediate result of 11 to the visuospatial 

sketchpad could make it easier for them to sub-vocally process the next step, e.g., “… 2 and 9 

have been added… 5 plus 2 is 7, then add a 0 to make it 70”. They might then recruit the 

visuospatial code of 11 from the visuospatial sketchpad to sub-vocally complete the final step of 

adding both intermediate results—e.g., “11 plus 70 is 81—to arrive at the solution. As illustrated 

here, the potential negotiation of resources between these two storage systems may facilitate 

calculation and thus increase the likelihood of achieving the correct answer. While the present 

study did not explicitly test this mechanism, it provides some preliminary support for this 

possibility.  

Working Memory Capacity versus Working Memory Involvement 

 This research examined the nature of the relation between working memory and math 

performance in two different ways. First, associations between measures of children’s 

visuospatial and verbal working memory capacities and measures of their number sense, 

arithmetic strategies, and arithmetic performance were examined. Second, visuospatial and 

verbal working memory components were experimentally manipulated to examine their 

involvement in children’s completion of mathematical tasks. Thus, the former investigation 

examined correlations between working memory capacity and mathematical performance, while 

the latter examined the extent to which children involve resources from working memory when 

executing mathematical tasks.  
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These two investigations have different theoretical and practical implications. On one 

hand, an understanding of the mechanisms underlying relations between working memory 

capacity and mathematical outcomes may help educators to identify children who are at risk for 

poor math achievement and focus on helping them improve areas that may be particularly 

difficult for them as a result of their limited working memory capacities. On the other hand, 

understanding which working memory resources children recruit when performing mathematical 

tasks demonstrates how they encode and process numerical content and operations, regardless of 

their working memory capacity. This information can inform the ways in which mathematical 

concepts and procedures are taught and highlight the most efficient ways for children to 

approach mathematical tasks, including problem solving strategies.   This has promising 

implications for children who show limitations in their working memory capacities because it 

suggests that it may be possible to train children to use even the limited resources they have 

more efficiently in order to improve their performance. This possibility should be investigated in 

future research. 

Limitations and Future Directions 

In addition to the suggestion that future research should consider possible links or lack 

thereof between the educational implications of working memory capacity versus working 

memory involvement, additional recommendations for future research are made here, based on 

limitations of the present research. The first limitation pertains to the measurement of children’s 

arithmetic strategies. While the relation between children’s working memory capacity and their 

use of various problem solving strategies was investigated, the involvement of working memory 

in children’s execution of arithmetic strategies was not investigated, as strategies were not 

assessed in the dual-task condition. Therefore, it was impossible determine whether children’s 
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use of any particular strategy called upon resources from the visuospatial sketchpad or the 

phonological loop. This limitation was primarily due to time constraints, as the procedures 

involved in executing the present study required children to be out of their classrooms for a 

considerable amount of time. In order to measure working memory involvement in children’s 

arithmetic strategies, a separate experimental session would have been required, as half of the 

present experimental session was dedicated to measuring children’s number sense, rather than 

their arithmetic performance. Thus, future investigations should include an assessment of 

arithmetic strategies using a dual-task procedure, as an understanding of working memory 

involvement in children’s arithmetic strategies can improve the current knowledge of the 

mechanisms underlying working memory involvement in children’s arithmetic performance.  

The second limitation involves the specific components of working memory that were 

assessed and manipulated in the present study. Only children’s visuospatial and verbal working 

memory capacities were examined, but it is important to understand how central executive 

resources might be related to and involved in children’s number sense and their multi-digit 

arithmetic strategies and performance. This limitation is, again, due to time constraints, as the 

length of the experiment and the number of experimental items would need to have been 

increased by one third in order to measure the central executive component of working memory. 

However, this is an important next step for future studies, as it has been posited that while the 

contributions of the visuospatial sketchpad and phonological loop to children’s performance are 

significant, the role of the central executive is also substantial (Barrouillet, Fayol, & Lathuliére, 

1997; Geary, Hamson, & Hoard, 2000; Geary et al., 2007; Hubber et al., 2013).  

Third, while the present research extended the work of previous dual-task investigations 

by assessing various types of math performance, it was difficult to examine variations in working 
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memory involvement within each type of math task, due to the limited number of items on each 

measure. In particular, to conduct an in-depth investigation of variations in visuospatial and 

verbal working memory involvement in children’s multi-digit arithmetic performance, a larger 

number of addition and subtraction items should be sampled. This would allow for a comparison 

of visuospatial and verbal working memory involvement in performing addition versus 

subtraction, as well as an examination of differences in working memory involvement due to 

problem size or carry and borrow operations. After all, previous research has shown that working 

memory involvement is in large part specific to the particular arithmetic operation being 

executed (DeSefano & Lefevre, 2004; Lee & Kang, 2002).  

Fourth, while it was possible to assess working memory involvement in three measures of 

children’s mathematical performance in the present study, a study of working memory 

involvement in other areas of mathematics could yield significant implications for educators. For 

example, there could be a very different pattern of working memory involvement in children’s 

performance on more spatially based types of mathematics. In fact, national assessments show 

that more spatially oriented mathematics, such as measurement of volume, are areas of particular 

difficulty for children (Lubienski, 2003; National Center for Education Statistics, 2011).  

Last, it is important to note that the mediation analyses were based on associational 

components of the study and thus, conclusions of causal relations cannot be derived from this 

study. However, the associational findings obtained in this research provide a starting point for 

future dual-task investigations of working memory involvement in children’s mathematical 

performance.  

Implications 

The present research shows that arithmetic problem solving strategies and visuospatial 
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representations of numbers represent mechanisms through which children’s working memory 

capacity is related to their arithmetic performance. However, regardless of working memory 

capacity, children are more successful in their arithmetic calculations when they call upon 

resources from the visuospatial sketchpad during problem solving. These findings have several 

implications for interventions aimed at children with deficits in working memory capacity or 

who demonstrate mathematical difficulties.   

The finding that children’s working memory capacity is related to their arithmetic 

performance through their underlying numerical representations and arithmetic strategies 

highlights the importance of early identification of children with deficits in visuospatial and 

verbal working memory capacities, in order to intervene before these deficits interfere with their 

acquisition of critical mathematical skills and knowledge. Specifically, the finding that children’s 

visuospatial working memory capacity is related to their arithmetic performance through their 

spatial representations of numerical magnitudes and their use of the decomposition strategy 

uncovers two targets for early interventions; focusing on these mediating factors may improve 

these children’s chances for mastering arithmetic calculations, one of the most important skills 

they are expected to develop during their educational careers. This finding also underscores the 

importance of aiming to develop both of these factors, as the relation between them may be bi-

directional. Therefore, improving both of these skills may elicit a higher amount of learning 

overall.  

Additionally, limited verbal working memory capacity may represent a barrier to 

children’s ability to commit arithmetic facts to long-term memory or subsequently retrieve them, 

which can directly impact their execution of arithmetic calculations. Finding methods that make 

arithmetic facts more salient for children, such as associating facts with visuospatial stimuli or 
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presenting facts in novel and creative ways, may improve their ability to encode and recall this 

information from long-term memory. Indeed, evidence from neurobiological investigations 

suggests that greater salience of stimuli is associated with higher levels of encoding in critical 

brain regions (Lisman & Grace, 2005; Lisman & Otmakhova, 2001). Moreover, there is evidence 

to suggest that children’s arithmetic fact learning can be significantly improved when the 

problem terms are spatially represented on a number line during the learning process (Booth & 

Siegler, 2004).  

It is also possible that interventions aimed at improving children’s working memory 

capacity (Holmes, Gathercole, & Dunning, 2009; Klingberg, Forssberg, & Westerberg, 2002; 

Thorell, Lindquist, Nutley, Gunilla, & Klingberg, 2009) have the potential to facilitate their 

acquisition of spatial representations of numerical magnitude and arithmetic problem solving 

strategies, which would improve their overall mathematical performance. These interventions 

may also increase the effectiveness of interventions designed to improve children’s number sense 

(Griffin et al., 2004; Laski & Siegler, 2007, 2013) or to increase their use of memory-based 

strategies. Last, the finding that children who take advantage of resources from visuospatial 

working memory have higher arithmetic performance, regardless of their working memory 

capacity, suggests that training children to visualize elements of their arithmetic calculations may 

improve the efficiency of their problem solving strategies. Thus, children demonstrating 

difficulties with mathematics might be helped by learning to solve problems more efficiently. 

For example, children should not just be taught to use the decomposition strategy, but should 

also be taught how to use the decomposition strategy more efficiently by encoding intermediate 

solutions in a visuospatial modality. 

While further investigation is warranted to test the applications of these findings and the 
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validity of these implications, this research contributes substantially to our understanding of how 

working memory is related to math performance in children. Though limitations in working 

memory capacity pose serious challenges for children in the course of their mathematical 

development, awareness of the mediating factors identified in this research can guide the 

development of interventions that could have real and substantial impacts. Moreover, this 

research serves as a catalyst for future investigations that can further advance our understanding 

of children’s mathematical thinking, which ultimately serves to advance their chances of success 

in mathematics.  
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Appendix 

a. Visuospatial working memory items 
 

i. Set A  ii. Set B 

  

 

  

  

 

  

  

 

  

  

 

  
 

iii. Practice item  iv. Response screen 

 

 

 
 

b. Verbal working memory items 
 

i. Set A 
NFTVD 
YCLFK 
PGRSQ 
SDGBP 
KZFYN 
JQDNB 
TJHMF 
ZWPJC 

ii. Set B 
MHZRG 
BMSWH 
QKVLJ 
XRCDL 
WPXBR 
CLQTV 
HXNGT 
VYKCX 

iii. Practice item 
KA 
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c. Arithmetic items 

 
i. Set A 
34 + 7 
18 + 6 
29 + 5 
59 + 9 
83 - 6 
22 - 9 
45 - 7 
26 - 8 

ii. Set B 
45 + 6 
26 + 7 
16 + 8 
67 + 5 
31 - 8 
86 - 7 
31 - 8 
53 - 6 

 
 

d. Number line items and display 
 

i. Set A 
6 

47 
481 
773 

 

965 
327 
28 
13 

 
 

ii. Set B 
16 
23 
271 
901 

655 
504 
34 
  8 

 

iii. Display 
 

 

 
 

e. Number sets stimuli and displays (targets are either 5 or 9) 
 

i. Stimuli 
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ii. Displays 
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