Structual variation detection in the
human genome

Author: Jiantao Wu

Persistent link: http://hdl.handle.net/2345/3928

This work is posted on eScholarship@BC,
Boston College University Libraries.

Boston College Electronic Thesis or Dissertation, 2013

Copyright is held by the author, with all rights reserved, unless otherwise noted.


http://hdl.handle.net/2345/3928
http://escholarship.bc.edu

Boston College

The Graduate School of Arts and Sciences

Department of Biology

STRUCTURAL VARIATION DETECTION IN THE HUMAN GENOME

a dissertation

by

JianTAO WU

submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

December 2013



© copyright by JiaNTAO WU
2013



Structural Variation Detection in the Human Genome

ABSTRACT
JianTAO WU
DISSERTATION ADVISOR: GABOR T. MARTH

Structural variations (SVs), like single nucleotide polymorphisms (SNPs) and short
insertion-deletion polymorphisms (INDELs), are a ubiquitous feature of genomic sequences and
are major contributors to human genetic diversity and disease. Due to technical difficulties, i.e.
the high data-acquisition cost and/or low detection resolution of previous genome-scanning
technologies, this source of genetic variation has not been well studied until the completion of the
Human Genome Project and the emergence of next-generation sequencing (NGS) technologies.
The assembly of the human genome and economical high-throughput sequencing technologies
enable the development of numerous new SV detection algorithms with unprecedented accuracy,
sensitivity and precision.

Although a number of SV detection programs have been developed for various SV types, such
as copy number variations, deletions, tandem duplications, inversions and translocations, some
types of SVs, e.g. copy number variations (CNVs) in capture sequencing data and mobile element
insertions (MEIs) have undergone limited study. This is a result of the lack of suitable statistical
models and computational approaches, e.g. efficient mapping method to handle multiple aligned
reads from mobile element (ME) sequences.

The focus of my dissertation was to identify and characterize CNVs in capture sequencing data
and MEI from large-scale whole-genome sequencing data. This was achieved by building
sophisticated statistical models and developing efficient algorithms and analysis methods for
NGS data. In Chapter 2, I present a novel algorithm that uses the read depth (RD) signal to
detect CNVs in deep-coverage exon capture sequencing data that are originally designed for SNPs
discovery. We were one of the early pioneers to tackle this problem. In Chapter 3, I present a fast,
convenient and memory-efficient program, Tangram, that integrates read-pair (RP) and split-read

(SR) signals to detect and genotype MEI events. Based on the results from both simulated and



experimental data, Tangram has superior sensitivity, specificity, breakpoint resolution and
genotyping accuracy, when compared to other recently published MEI detection methods.
Lastly, Chapter 4 summarizes my work for SV detection in human genomes during my PhD study

and describes the future direction of genetic variant researches.
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Introduction

HE ENORMOUS DIVERSITIES in the human population can be explained by

a difference of only 0.1% in the genomic sequence between any two individuals [1, 2].

Thus, identification and characterization of these genetic variants is a crucial step in
understanding the link between the genomic information and phenotype. Genetic variations
between human genomes could range from a single nucleotide up to several million base pairs.
Despite this large size range, in the last 15 years of the 20™ century the study of these variants was
limited to large-scale events that can be observed under the microscope, such as
aneuploidies [ 3-5 ], rearrangements [ 6-8], heteromorphisms [9—11], chromosomal fragile

sites [ 12], and single nucleotide polymorphisms (SNPs) that can be detected using traditional



PCR-based DNA sequencing methods [ 13]. Typically, variants under 50 bp are considered to be
short polymorphisms, including short insertion and deletion events. Those variants with sizes
ranging from 50 bp to millions of base pairs are typically termed as structural variations (SVs).
Due to the limitations of available technologies, these variants were not deeply studied until the
emergence and popularization of array-based comparative genome hybridization (array-CGH)
and next-generation sequencing (NGS) technologies. With these higher resolution technologies,
the whole-genome SV detection at the population scale became practicable. In the last ten years,
various types of SVs, including copy number variations (CNVs, such as deletions and
duplications) that alter the net amount of DNA and copy neutral variations (such as inversions
and translocations) that do not alter the net amount of DNA, have been discovered at a rapid rate.
By the end of June 2013, 2,888,526 CNVs and 3,380 inversions have been reported to the
Database of Genomic Variants (DGV) [14]. Recent large international genome study projects,
e.g the 1000 Genomes Projects [ 15] and International Cancer Genome Consortium [16], have
started to generate the map of almost all types of SVs at the single nucleotide resolution, which
further accelerates the SV research. This map will set a solid stage for understanding the
relationship between genetic variants and phenotypic diversities and many common and rare

human diseases.

1.1 STRUCTURAL VARIATION IN HUMAN DISEASES AND PHENOTYPES

Like SNPs, SVs are ubiquitous in the human genome and are a major source of genomic and
phenotypic diversities [ 17]. Recent studies suggest an unexpected result that SVs actually affect
more heritable DNA sequences than SNPs between individuals (0.1% for SNPs and 0.5% — 1%
for SVs) [18, 19]. Also the rate of novel SVs formed at a specific genomic location is relatively
high. A new locus-specific SV (de novo variant introduced at the same genomic location among
individuals) may occur in every 7,000 newborns [20], which is at least 1,000 to 10,000 times
more frequent than locus-specific SNPs [21]. Although most SVs have a neutral phenotypic

effect, mounting evidences show that some SVs play an important role in many phenotypic traits



Table 1.1.1: The phenotypic impact of copy number variation (CNV) in human genome.
The copy number change of genes may lead to various types of genetic disorders. CNVs have

been associated with many human diseases [30].

Affected gene Copy number change Phenotype

GSTTI'1 Deletion Halothane/epoxide sensitivity
GSTM1 Deletion Toxin resistance, cancer susceptibility
CYP2Dé6 Amplification Antidepressant sensitivity
CYP21A2 Amplification Congenital andrenal hyperplasia
OPN1LW, OPN1MW Deletion X-linked color blindness

LPA Deletion Coronary heart disease risk

RHD Deletion Rhesus blood group sensitivity
C4A/C4B Deletion Systemic lupus erythematosus
DEFB4,103 Deletion Crohn’s disease, IBD

DEFB4,103 Amplification Psoriasis

CCL3L1 Deletion HIV susceptibility

FCGR3B Deletion SLE and glomerulonephritis
IRGM Deletion Crohn’s disease

GPRCsB Upstream Deletion Obesity

Cq Amplification Lupus

SMN2 Amplification Severity of spinal muscular atrophy
AZF region Deletion Spermatogenetic failure

UGT2B17 Deletion Graft-versus-host disease

NEGR1 Upstream deletion Obesity

NBPF23 Deletion Neuroblastoma

TSPANS Amplification Type 2 diabetes

HLA Multiple CNVs Crohn’s disease, reheumatoid arthritis
LCE3B,LCE3C Deletion Psoriasis

CRIPAK Deletion Breast cancer

and genetic disorders, such as Mendelian disease [22, 23 ], sporadic chromosomal microdeletion

syndrome [21], autism [24, 25 ], schizophrenia [26] and different types of cancers [27-29].

Table 1.1.1 summarizes some human diseases that are correlated with SVs [30].

In general, SVs can affect the phenotype through two well-recognized mechanisms: dosage

effect [31, 32] and position effect [33]. Deletion and duplication (CNV) of genes and regulatory

elements may cause significant dosage changes in the expression level (mRNAs) and the

translation level (proteins). If affected genes are dosage-sensitive, these rearrangements can cause

genetic abnormalities. Results from many studies carried out in model organisms like

mice [34-36] and transformed human cells [37, 38] have demonstrated the close relationship



between gene copy numbers and their expression levels. The position effect mechanism is
dominated by duplications and translocations. These rearrangements can affect the causative
gene even from a long distance (~1 Mbp). For example, a ~2 Mbp duplication has been found in
the regulatory region upstream of the SOXg9 gene to be associated with brachydactyly-anonychia
disease [39]. Also, in the study of chronic myelogenous leukemia (CML), a recurrent
translocation between chromosome 9 and 22 has been reported. This rearrangement forms a
fusion gene between BCR and ABL genes that has been implicated in the development of this
type of cancer [40]. A number of other mechanisms linking copy number changes with diseases
have also been proposed, including the coding sequence disruption [41] and unmasking of

recessive mutations [42].

1.2 TECHNOLOGIES FOR SV DETECTION

1.2.1 CYTOGENETIC METHODS

As previously mentioned, the SV detection is generally limited by the development of
technologies. Back in 1920s, long before the establishment of modern molecular biology and
genomics, SVs could only be detected at a microscopic level (variants are so large that they can be
observed under the microscope). Mega-base-pair CN'Vs, inversions and chromosomal
rearrangements could be detected through cytogenetic methods such as chromosome banding
(Figure 1.2.1A), spectral karyotyping (SKY) (Figure 1.2.1B) and fluorescent in situ hybridization
(FISH) (Figure 1.2.1C, D, E, F, G and H) [17]. These large-scale genome abnormalities and
heteromorphisms are usually associated with severe genetic diseases like Down and Turner
syndrome [43 ]. However, these types of SVs are rarely implicated in common complex diseases

and non-disease traits.
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Figure 1.2.1: Structure variation detection with cytogenetic technology. A. An inversion
event detected using the centromere (C)-banding method. B. A translocation event between
chromosome 7 and 13 detected using the spectral karyotyping (SKY) method. C. a translo-
cation between chromosome 3 and 7 detected using fluorescence in situ hybridization (FISH)
carried out using metaphase chromosomes. D, E. copy number decrease and increase events
detected using the FISH method. In panel D, two copies of control probes (green) in chromo-
some 7 have been detected whereas the test probe (red) only presents on one of the homol-
ogous chromosome 7. In panel E, an amplification signal is observed on chromosome 16 in
additional to the signal of two copies on chromosome 6. F. A micro inversion event of length
700kbp detected using a two-color FISH method. Reprinted from [44] with permission. G.
Two-color FISH has revealed a large genomic rearrangement (duplication). H. Copy number
differences can be detected with FISH. Reprinted from [14] with permission.



1.2.2 MICROARRAY

The first wave of systematic studies of SVs at the whole-genome level began in the late 1990s and
early 2000s when the full assembly of the human genome [45 ] and microarray technologies
(aCGH) [46, 47] became available. Figure 1.2.2 is a flow chart that demonstrates how a
microarray is used to detect SVs. The sample and reference DNA are first fragmented and then
labeled with different fluorescent dyes, for example Cys and Cy3. Both sample and reference
DNA are then treated with COT-1 DNA that is primarily composed of repetitive sequences, to
block genomic regions with repeats. These DNA sequences are then hybridized to arrays that are
covered with oligonucleotides (60 — 100bp) derived from the reference genome. Finally, SVs
(deletions and duplications) can be detected by measuring the ratio of fluorescent signal between
the sample and reference DNA. To reduce the noise and false positive detection rate, array-CGH
usually includes an assay format called “dye-swap”. In this format, an extra hybridization is carried
out with sample and reference DNA swapping their fluorescent tag (say sample-Cys and
reference-Cy3 for the first hybridization and reference-Cys and sample-Cy3 for the second
hybridization). The ratio will be measured twice. These two ratios are almost the reciprocal of
each other for real events. Any spurious calls can be excluded if only one ratio is off from the
neutral ratio (1.0), which might be caused by the random fluctuation of the fluorescent signal
instead of a real CNV event.

The strength of this technology is its effectiveness of both cost and time. In 2000, the
whole-genome shotgun sequencing (Sanger sequencing [48]) was already being used in the
Human Genome Project. However, it is prohibitively expensive for the routine SV detection at
the population scale. Compared with the first generation sequencing technology, microarrays are
vastly cheaper. Additionally, microarrays are very high-throughput: hundreds of thousands of
genomic regions can be probed for SV detections simultaneously on a single array, making it an
ideal method for large-scale projects. Microarrays can also be used to detect submicroscopic SV

events. In fact, a resolution on the order of tens kbp [ 17] can be achieved. This would be
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Figure 1.2.2: Array based, genome-wide methods for SV detection. Test and reference DNA
sequences are fragmented, labeled with different fluorescent tags and hybridized to arrays cov-
ered with oligonucleotide probes derived from the reference sequence. The copy number vari-
ants can be detected as those regions in which the ratio between sample and reference data
deviates significantly from 1.0. To reduce noise, the sample and reference DNA sequences
have their fluorescent tags swapped for an extra round of measurement. Reprinted from [17]
with permission.

practically impossible to observe using cytogenetic methods.

Although the development of microarrays was a significant advance in SV detection
technology, it is not without its limitations. First of all, aCGH can be only used for detecting
CNVs (deletions and duplications), not copy neutral variations (inversions and translocations)
since it only measures the copy number difference between the sample and reference DNA.
Secondly, although microarray is a much improved genome-scanning technology, the fluorescent
signal is typically very noisy. The signal can be affected by many factors such as the base
composition, the proportion of repetitive sequences and the amount of “hybridizable” DNA in
the array element. The fluorescent intensities can fluctuate by a factor of 30 even if there are no
CNVs [49]. Because of these reasons, microarray data normally require a sophisticated
computational process to decode. This limits the sensitivity and breakpoint resolution to smaller
(under 1 kbp) SVs of algorithms designed for microarray data. Last but not least, microarray

based methods are intentionally designed to avoid genomic regions embedded in repeat



sequences, making it insensitive to breakpoints located in repetitive elements, which compose 66

~ 69% of the human genome [50].

1.2.3 NEXT-GENERATION SEQUENCING

The recent success in building up high-resolution SV map within human populations is largely
attributable to the rapid development of the high throughput NGS technology. The NGS
technology was first introduced by Roche company with its 454 sequencing machine in

2005 [ 51]. Soon, many other companies like Illumina [52], Applied Biosystem (ABI) [53] and
Complete Genomics [ 54] joined this market with their own NGS technologies. The widespread
adoption of these sequencing technologies greatly facilitated the discovery of SVs. The number of
reported SVs grew dramatically since the late 2000s. Compared to the first generation sequencing
technology, Sanger sequencing, NGS technology replaces the time-consuming bacterial cloning
with much more efficient PCR techniques to amplify DNA samples (Figure 1.2.3), which
significantly reduces the sequencing cost (Table 1.2.1 [54, 55]). The length of output reads (25 -
100 bp) from NGS machines is usually shorter than that of the Sanger sequencing (~1 kbp).
However, NGS is able to generate much more data per run: the latest Illumina HiSeq sequencing
machine can produce up to 200 Gb high quality reads per run in about eight days whereas the
most recent Sanger capillary machine introduced in 1999 can only produce 1.6 Mb data per run.
Also, most current NGS technologies apply the paired-end sequencing technique to increase the
effective sequencing length. DNA samples are digested into long fragments with a length ranging
from several hundred base pairs to thousands base pairs, depending on the sequencing technology
and the final read length. Then sequencing machines read the nucleotides from both sides of
these fragments and leave an unsequenced region in the middle. The width of the distribution of
these fragments, or inserts, is usually very tight. The fragment length of most sequencing reads is
within a very narrow region. So the mapping distance of a given pair of reads from this

technology can be easily estimated from this distribution if there are not any SVs occurring in the



Figure 1.2.3: DNA amplification methods used in next-generation sequencing technologies.
A. Emulsion PCR. This method is mainly used in 454 and Solid sequencing machines. DNA
fragments with adapters (gold and turquoise) are PCR amplified within a water-in-oil emul-
sion. B. Bridge PCR. lllumina invents this technique. One end of the DNA fragments for am-
plification is first ligated to adaptors that attached to a membrane. The other end of these
fragments is then flanked with another adapter. The bridge-shape fragment will then be am-
plified iteratively as shown in the figure. Reprinted from [56] with permission.

Table 1.2.1: Approximate cost of generating reads with 1x coverage of human genome by
using different sequencing technologies [54, 55].

Technology Cost per 1X
Sanger capillary $1.4M
Roche 454 $93k
Illumina $123

ABI SOLiD $8k
Complete Genomics $110
PacBio $6k

Ion Torrent $3k




unsequenced region. This constraint provides valuable information to detect SVs with NGS data.
By utilizing the NGS technology, researchers can now identify a certain types of SVs in the
whole-genome and population scale, like deletions and duplications, at the single nucleotide
resolution with high accuracy. However, due to the limitations of the NGS technology, especially
the read length, and biological complexities of the human genome, some other types of SVs, e.g.
inversions (usually buried in repetitive regions) and mobile element insertions (MEIs, inserted
elements themselves are repetitive sequences), are hard to detect. The detection of full-spectrum
SV types will require further advances in the sequencing technology (with read length at tens of

kbp) and the development of more sophisticated algorithms.

1.3 ALGORITHMS FOR SV DETECTION WITH NGS DATA

NGS data opened many possibilities for bioinformaticians to develop different types of
computational methods to comprehensively identify and characterize SVs in human genomes. To
handle the huge amount of data generated from NGS machines, many efficient algorithms that
take advantage of different aspects of sequencing data have been proposed. Most of these
approaches are based on the resequencing strategy — sequencing reads have to be first mapped to
the reference genome with aligners, such as MOSAIK [57], BWA [s8] and BFAST [59], and then
the SVs can be detected as the differences between alignment reads and the human genome
reference, the major achievement of the Human Genome Project. Due to the limitations of
current sequencing technologies (short read length and fragment length) and biological features
of the human genome (full of repetitive elements), many reads cannot be aligned uniquely to the
reference genome. Reads that can be mapped to multiple positions are usually assigned only to a
random location by most of sequencing alignment programs with a low mapping quality (o, in
most cases) that is dominantly affected by the number of locations a read can be aligned in
addition to some other factors such as the number of mismatches in the alignment and base
qualities of the sequencing read and excluded from the analysis by most of SV detection programs

for the sake of lower false discovery rate (FDR). However, in order to detect some complicated

10



types of SV, such as MEI, these ambiguous reads have to be taken into account with special
handling at both the primary aligning level and SV detection level — the aligner must provide the
extra information about these reads, such as the type of repetitive elements where these reads are
sampled, for the downstream analysis.

This section will review three most frequently applied algorithms in current available SV

detectors for NGS data: read depth (RD), read pair (RP) and split read (SR).

1.3.1 READ DEPTH ALGORITHM

The depth of coverage is one of the well-known statistics to describe the quality of NGS
alignment data — usually the higher the coverage the better the data. In most cases, the depth of
coverage refers to the base coverage: the number of reads that contain a certain nucleotide in the
reference sequence: ¢ = % , where c is the base coverage, N is the number of sequencing reads, L
is the average length of reads and G is the length of the reference sequence. There is another
expression of the depth of coverage that is often used in the CNV detection: read depth, the
number of alignments (DNA fragments) that fall into a given size of window at a particular
genome location. By analyzing the read depth (RD) signal with NGS alignment data, CN'Vs can
be detected with the similar computational method that is applied on microarray data. Instead of
measuring the difference of the fluorescent intensity between the sample and reference DNA, the
RD method measures the difference between the observed read depth and the expected or
control read depth. For example, the observed read depth at a given genome region should be
about half of the expected or control read depth if the genomic region harbors a heterozygous
deletion or about zero if the genomic region harbors a homozygous deletion (Figure 1.3.1). In
this method, the whole genome region is first segmented into numerous non-overlap windows
with fixed size around 50 bp - 100 bp (depending on the quality of the data) and then the
algorithm will count how many alignments (the start of each alignment) are within each of these
windows. Each of these counts is the observed read depth. To detect CNVs, it is also necessary to

estimate the number of read counts in the same window if there is no CNV at all (null
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hypothesis). One efficient way of estimating expected read counts is to generate the same amount
of simulated reads with the same read length as the real sequencing data from the reference
genome with a practical error model (sequencing error) similar to the sequencing technology
used for generating the real data. Many toolboxes, such as WgSim [60] and MASON [61], can be
used for this task. The simulated reads will be aligned with the same aligner and the same
parameters as the real sequencing data and the count of simulated alignments at the
corresponding window will be served as the expected read depth. In cancer sequencing data,
there is usually no need to generate simulated data since the number of alignments from the
normal tissue in the same patient can be served as the control read depth. If we assume that
sequencing reads are sampled uniformly from the genome, the number of observed read depth at
a given window should follow the Poisson distribution with the median of RDexpecteq and the
standard deviation of | /RDeypected- The candidate CNV events then can be detected with a
pre-defined p-value threshold. In practice, detectors using the RD signal usually calla CNV event
only if at least two or three consecutive windows all have the significant difference between the
observed read depth and the expected read depth for specificity consideration.

The advantage of this algorithm is that it is computationally lightweight since only the
alignment position of each read is used for calculation. After calculating the read count for each
window, the rest of computational work can be easily performed even with a personal computer.
Moreover, the RD algorithm can be applied to both whole-genome sequencing data and the
capture sequencing data where sequencing reads are only from selected genomics regions, such as
exons. The major problem of CNV detection in capture sequencing is that breakpoints may not
be included in sequencing regions, which is a requirement for RP and SR algorithms. Since the
RD algorithm only measures the read depth change breakpoint positions being outside the
sequencing region does not affect the detection of CNVs.

Like microarray technology, the major limitation of the RD algorithm is the relatively low
breakpoint resolution (approximately several hundred base pairs, Figure 1.3.2) and sensitivity to

smaller events. Although NGS is technologically better than aCGH, the RD signal is still
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Figure 1.3.1: Detection of a homozygous deletion event with split read (red read in the mid-
dle) and read depth (bottom panel) signal. Reprinted from [62] with permission.
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Figure 1.3.2: Breakpoint resolution (blue for start position and red for end position) of dele-
tion events detected by the read depth method with WGS data in the 1000 Genomes Project
Pilot studies [63].

sometimes too noisy to precisely locate CNVs and sensitively detect those small events.
Moreover, the RD algorithm is totally blind to copy neutral variations like inversions and

balanced translocations since it only measures read count changes.

1.3.2 READ PAIR ALGORITHM

The RP algorithm takes advantage of a special feature of the NGS technology, paired-end
mapping. In the protocol of current available sequencing technologies, the input sample DNA is
usually sheared into small fragments, ranging from several hundred to several thousand base pairs.
The sequencing machine will read nucleotides from both ends of each fragment and leave an

unsequenced region in the middle. The length of fragments from the same batch of sequencing
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jobs should be within a very narrow range. If the unsequenced region of the fragment does not
harbor any SVs then the mapping distance between the two mates of a read pair should be slightly
deviated from the expected fragment length. These pairs are called concordant pairs. If there is an
SV between the two mates then the mapping distance of them should be much different from the
expected fragment. For example, if a read pair span a deletion breakpoint, the mapping length of
this read pair should be significantly larger than its fragment length due to the absence of the
deleted region in the sample DNA and the existence of it in the reference genome. These pairs are
called discordant pairs (Figure 1.3.3 left panel). So the first step in the RP algorithm is to calculate
the fragment length distribution from those read pairs with high mapping qualities (both mates
are uniquely aligned with few mismatches, Figure 1.3.3 right panel). SV candidates then can be
identified as those read pairs on both edges of the fragment length distribution with a pre-defined
p-value cutoff. These read pairs will then be clustered with a particular clustering algorithm to
increase the detection specificity. Most SV detectors equipped with the RP algorithm required a
minimum number of candidate fragments in a cluster to make an event call to reduce the
possibility of false detections. Since the exact length of DNA fragments input into the sequencing
machine is unknown, the breakpoint position and the length of the detected event can be only
estimated approximately from the mapping positions of alignment reads in the cluster and the
fragment length distribution. For example, a cluster with two discordant reads identifies a
deletion event. The read length of these two pairs is fixed: 50 bp. The mapping start and end
positions of the first mates in the first pair are: 1000 bp and 1049 bp. The mapping start and end
positions of the second mate are: 2000 bp and 2049 bp. The corresponding mapping start and
end position of the two mates in the second pair are: 1100 bp, 1149 bp, 2050 bp and 2099 bp. The
median fragment length of this sequencing library is 500 bp. It represents the expected fragment
length without any SV events. Based on the information given above, we can estimate the
breakpoint position of this deletion event to be at 1149 bp, the rightmost position of the mapping
end position of the first mate in these two pairs, and the event length to be 52 5bp, the average

difference between mapping distances of these two pairs and the median fragment length,
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Figure 1.3.3: lllustrations of concordant, discordant pairs (left panel) and fragment length
distribution (right panel). The discordant pairs can be identified as those alignments whose
mapping distance between two mates does not agree with the fragment length distribution or
mapping orientation does not agree with the expected read orientation. The left panel demon-
strates an instance of using discordant pair to detect a deletion event. Reprinted from [62]
with permission.

(1050bp — 500bp + 1000bp — 500bp) / 2. Besides the fragment length, the orientation of a read
pair can also provide useful information for SVs detection. For a given sequencing technology,
the orientation of two mates in a read pair should follow a predictable pattern if they are sampled
from a genomic region without any SVs. For example, the orientation pattern of read pairs from
Ilumina sequencing machines is that the mate with smaller genomic position should be on the
positive strand and the mate with larger genomic position should be on the minus strand. If one
mate of a read pair hits a inversion then its orientation will be different from the expected
orientation. Inversion events can be identified through grouping these mis-oriented read pairs.
The advantage of the RP algorithm is that it provides much higher breakpoint resolution. The
uncertainty of reported events by the RP algorithm is usually around 5o - 100 bp (Figure 1.3.4),
depending on the coverage and the shape of the fragment length distribution. Also, the RP signal
is generally very strong and clear. It usually requires a few RP supporting fragments to identify a
SV event. So the RP method can be applied to low coverage data (~5x ). Moreover, the RP
algorithm cannot only identify CNV events such as deletions and duplications but also can detect
copy neutral variation like inversions and translocations. Almost all types of SVs have their
corresponding RP signatures. For example, the RP signature for deletions is that the mapping

length of a read pair is larger than the expected fragment length; the RP signature for insertions is

16



1000 -
bc_deletion I —— start
n= 4403 end
800} ]
£
S 600} '
©
)
O
€ 400} ]
o
Z
200 ]

O 2
-50 0 50
Breakpoint resolution (bp)

Figure 1.3.4: Breakpoint resolution (blue for start position and red for end position) of dele-
tion events detected by the read pair method with WGS data in the 1000 Genomes Project
Pilot studies [63].

that the mapping length of a read pair is smaller than the expected fragment length; the RP
signature for inversions is that the mapping orientation of a read pair is discordant with the
expected orientation (the mapping length might be discordant too); the RP signature for
translocations is that two mates of a read pair will be aligned to two different chromosomes.

The major limitation of this approach is that the detection sensitivity to SV events highly
depends on the quality of the fragment length distribution. If the fragment length distribution of
sequencing data is in regular shape (bell-shaped) and tight (Figure 1.3.5A), the RP algorithm can
achieve high detection efficiency. However, if the fragment length distribution is wide and in
irregular shape (Figure 1.3.5B), it might limit the sensitivity of the RP algorithm. Also, although

the RP algorithm can provide much better breakpoint resolution than the RD algorithm, it still
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Figure 1.3.5: Two different fragment length distributions from two different sequencing li-
braries of a 1000GP sample (WGS), NA12878.

can only provide the approximate position of a reported SV instead of the exact breakpoint

location.

1.3.3 SPLIT READ ALGORITHM

The SR algorithm is the latest player for SV discovery. The first SV detection program based on
the SR algorithm, Pindel [64], is not published until 2009. Before that, few detectors take those
unaligned reads and soft clipped reads (only part of these reads can be aligned to the reference
genome) into account for SV detection since they are hard to handle. These reads are usually
sampled from genome regions that cross SV breakpoints. The basic idea of the SR algorithm is to
split these unaligned and soft clipped reads into several partial reads so that they can be aligned
separately to different genome positions, before breakpoints, within SVs and/or after breakpoints
(Figure 1.3.1). For example, one mate of a read pair with 100 bp length crosses a deletion (500
bp) breakpoint in the middle. This mate is actually a fusion read with the first so bp before the
deletion region and the second 50 bp after the deletion region. This read usually cannot be

aligned back to the reference genome or it will be aligned with so bp soft clipped (either the first

18



or the second 50 bp). With the SR algorithm, the first 5o bp partial alignment can be found by
searching a local region, about 2 times of the median fragment length, around the other anchor
mate (usually required to be aligned uniquely to the genome). The second 50 bp partial
alignment can be then found in a region after the mapping end position of the first partial
alignment. For running time consideration, the size of the search region for the second partial
alignment is usually limited to several kbp to 1 mbp since large-size SVs are generally very rare.
After both partial alignments are found the position, the length and type of the detected variation
can be determined. To avoid high FDR, most SV detectors based on the SR algorithm require at
least two SR alignments for a given call.

The advantage of the SR algorithm is that it can locate SV at the single nucleotide resolution
(Figure 1.3.6), which is a huge improvement from RD and RP algorithms. The mapping position
and orientation of partial alignments can provide the precise information about the location,
length and type of reported SVs. Like the RP algorithm, the SR method can detect almost all
types of simple SVs as well as some complex events.

Although powerful, the SR algorithm requires an additional mapping effort after the primary
alignment. Depending on the size of the search region for the second partial alignment, the length
of sequencing reads and the base coverage of the alignment, the split mapping step may become
time-consuming. Moreover, a long read length (>50 bp) is usually required for reliable split
mapping results.

Three algorithms utilize reads sampled from three different regions associated with SVs:
candidates for the RD algorithm are those reads inside SV events; candidates for the RP algorithm
are those reads whose two mates span SV breakpoints; and candidates for the SR algorithm are
those reads that one mate is uniquely aligned to the normal reference region and the other mate
hits the breakpoint of a SV event. These three sources of signal for SV detection are generally
independent of each other. Several recently published SV detectors, such as DELLY [65] and
Tangram (described in Chapter 3), utilize two or more algorithms together for higher detection

efficiency and specificity. As the read length becomes longer, we could anticipate that toolboxes
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Figure 1.3.6: Breakpoint resolution (blue for start position and red for end position) of dele-
tion events detected by the split read method with WGS data in the 1000 Genomes Project
Pilot studies [63].
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that integrate de novo or local assembly algorithms will soon become available in the near future.
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Ifyouwould be a real seeker after truth, it is necessary that at

least once in your life you doubt, as far as possible, all things.

Rene Descartes

CNYV detection from exon capture sequencing data

NA CAPTURE TECHNOLOGIES combined with high-throughput sequencing

now enable cost-effective, deep-coverage, targeted sequencing of complete exomes.

This is well suited for SNP discovery and genotyping. However, there has been little
attention devoted to Copy Number Variation (CNV) detection from exome capture datasets
despite the potentially high impact of CNVs in exonic regions on protein function.

As members of the 1000 Genomes Project analysis effort, we investigated 6977 samples in

which 931 genes were targeted and sampled with 454 or Illumina paired-end sequencing. We
developed a rigorous Bayesian method to detect CN'Vs in the genes, based on read depth within

target regions. Despite substantial variability in read coverage across samples and targeted exons,
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we were able to identify 107 heterozygous deletions in the dataset. The experimentally
determined false discovery rate (FDR) of the cleanest dataset from the Wellcome Trust Sanger
Institute is 12.5%. We were able to substantially improve the FDR in a subset of gene deletion
candidates that were adjacent to another gene deletion call (17 calls with 0% FDR). From the
simulation experiment and our calculation, the estimated sensitivity of our call-set was 45%.
This study demonstrates that exonic sequencing datasets, collected both in population based
and medical sequencing projects, will be a useful substrate for detecting genic CNV events,
particularly deletions. Based on the number of events we found and the sensitivity of the
methods in the present dataset, we estimate on average 16 genic heterozygous deletions per
individual genome. Our power analysis informs ongoing and future projects about sequencing

depth and uniformity of read coverage required for efficient detection.

2.1 INTRODUCTION

Copy Number Variations (CNVs) i.e. deletions and amplifications, are an essential part of normal
human variability [66]. Specific CNV events have also been associated with various human
diseases [67], including cancer [68] autism [69, 70] and schizophrenia [71]. Historically, large
CNV events can be observed using FISH [ 14] but systematic, genome-wide discovery of CNVs
started with microarray-based methods [72—74] which can detect events down to tens of kbp. As
with all hybridization based approaches, these methods are blind in repetitive and low complexity
regions of the genome where probes cannot be designed. High throughput sequencing with
next-generation technologies have enabled CNV detection at higher resolution (i.e. down to
smaller event size), in whole-genome shotgun datasets [63, 75, 76]. However, despite decreasing
costs, deep-coverage (> 25x ) whole-genome data s still prohibitively expensive for routine
sequencing of hundreds of samples, and in low-coverage (2-6 X base coverage) datasets detection
sensitivity and resolution is limited to long genomic events [66].

Targeted DNA capture technologies combined with high-throughput sequencing now provide

a reasonable balance between coverage and sequencing cost in a substantial portion of the
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genome, and full-exome sequencing projects are presently collecting > 25 average sequence
coverage in thousands of samples. CNV events in exonic regions are important because the
deletions of one or both copies, or amplifications affecting exons, are likely to incur phenotypic
consequences.

Current algorithms for detecting CN'Vs in whole-genome shotgun sequencing data use one of
four types of signal as evidence for an event: (1) aberrantly mapped mate-pair reads (RP or read
pair methods); (2) split-read mapping positions (SR); (3) de novo assembly (AS); and (4) a
significant decrease or increase of mapped read depth (RD methods). Unfortunately, these
methods are not generally applicable for CNV detection in capture sequence data without
substantial modifications. SR, RP, and AS based methods are sensitive only to CNVs in which
mapped reads or fragments span the event breakpoint(s). In the case of exon capture data, this
restricts detection to CNV events where at least one breakpoint falls in a targeted exon. RD based
methods suffer from large fluctuations of sequence coverage stemming from variability in
probe-specific hybridization affinities across different capture targets (in this case: exons) and
sets of such targets (in our case: genes), and from the over-dispersion of the read coverage
distribution in the same target across different samples. Presumably because of the technical
challenges, and despite the importance of deletion or amplification events within exons, there are
currently no reported CNV detection algorithms for targeted DNA capture based
exon-sequencing data (with the exception of methods for tumor-normal datasets [77] where the
read depth measured in the normal sample can be used for normalization, which is not available
in the case of population sequencing).

In this study, we set out to develop a CNV detection algorithm for capture sequencing data.
This algorithm is based on RD measurement, and detects samples with non-normal copy number
in the capture target regions. As participants of the 1000 Genomes Project, we took part in the
data analysis of the “Exon Sequencing Pilot” dataset [ 15], where 12,475 exons from over 9oo
genes (representing about 10% of the whole exome) were targeted and sequenced with a variety

of DNA capture sequencing technologies.
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2.2 RESULTS

2.2.1 BRIEF ALGORITHMIC OVERVIEW

Our algorithm is an extended version of RD-based CNV detection that aims to mitigate the vast
target-to-target (and consequently gene—to—gene) heterogeneity of read coverage by
normalization procedures roughly corresponding to those employed in CNV detection methods
from microarray hybridization intensity data. The overall workflow of our method is shown in
Figure 2.2.1 and described in greater detail in the Methods 2.4 section. For a given gene in a given
sample (we will use the abbreviation GSS: Gene-Sample Site throughout the paper), we define
the read depth as the number of uniquely mapped reads whose 5 end falls within any of the
targeted exons within that gene. We compare this measurement with an expected read depth

(Eq. 2.2, Methods 2.4.3), based on a “gene affinity” calculated from measured read depth for that
gene across all samples (to account for across-target read coverage variance due to target-specific
hybridization), and the overall read depth for the sample (to account for the variance of read
coverage due to the overall sequence quantity collected for the sample under examination). We
then use a Bayesian scheme, calculating the posterior probability for each copy number with prior
probablities estimated from previous study [ 18] and the data likelihood computed based on the
data (See Methods 2.4.4), to determine whether the measured coverage is consistent with normal
copy number (e.g. CN = 2 for autosomes), or aberrant copy number (i.e. homozygous deletion:
CN = o, heterozygous deletion: CN = 1, or amplification: CN > 2). We have included two
algorithmic variants: One is suitable for CNV events that occur at a low allele frequency (i.c. in a
small fraction of the samples), and the other for capturing higher-frequency deletion events (see

Methods 2.4.8).
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Figure 2.2.1: A. Median Read Depth (MRD) is calculated for each sample, as a measure
of sample coverage (NA18523 shown). B. The gene affinity is estimated for each gene as
the slope of the least-square-error linear fit between MRD and RD for that gene (TRIM33
shown). C. Example of observed (magenta) and expected (green) read depth for three sam-
ples and four genes. The observed read depths were roughly half of the expected values for
genes TRIM33 and NRAS, in sample NA18523, and detected as deletions.
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2.2.2  DATASET

In this study we analyzed the exon capture sequencing dataset collected by the 1000 Genomes
Project Exon Sequencing Pilot, including 931 genes (about 4.6% of the protein-coding genes in
the human genome) processed with Agilent liquid-phase and Nimblegen solid-phase capture
methods, and sequenced from 697 individuals with Illumina paired-end and/or 454 technologies.
The samples in the dataset have been sequenced by four different data collection centers
(Washington University, WU; Wellcome Trust Sanger Institute, SC; Broad Institute, BI; and
Baylor College of Medicine, BCM) using different pairings of capture and sequencing
technologies (Table 2.2.1 and Table 2.2.2). Initially 1,000 genes were randomly selected by the
Exon Piolt Project from the CCDS [78, 79] database as targeted sequences. However, the capture
target designs used in the four production centers were significantly different. To eliminate the
inconsistency, the Pilot Project defined a set of consensus exon target sequences by intersecting
the intial designs. The consensus targets, 931 genes used in this study, has approximately

1.43 Mbp in length, covering 86.1% coding regions in the initial 1,000 genes [80]. As our method
relies on an estimate of the gene-specific hybridization affinity, it requires that such affinities are
consistent across all samples analyzed simultaneously. According to the principal component
analysis (PCA) of the observed read depths, (Figure 2.2.2A, see Methods 2.4.1), target and genes
affinities are inconsistent across data from different centers, and therefore we analyzed each
dataset separately. We only considered datasets with at least 100 samples (SC, BI, BCM) so we
can obtain sufficient sample statistics across genes. After filtering out genes and samples that did
not meet our minimum read depth requirements (see Methods 2.4.2), we were left with the
following datasets: SC (862 genes in 106 individuals sequenced with Illumina), BI (739 genes in
110 samples sequenced with Illumina), and BCM (439 genes in 349 samples sequenced with
454) (Table 2.2.1). The number of genes that passed our filters was substantially lower in the
BCM dataset both due to lower overall 454 coverage (see below), and because the longer 454

reads result in lower RD (fewer reads) when compared to shorter lllumina reads, even at
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Table 2.2.1: Properties of datasets from different sequencing centers

SC BCM BI wuU
Total sample count 117 352 161 93
Sample count after quality control 106 349 110 82
Technology Illumina 454 Illumina Illumina
Duplicate rate 0.21 0.3 0.5 0.72
Mapping quality (mean) 50 33 45 51
Base coverage (mean + standard deviation) 56 £ 34 23t 12 70X 61 29t9
geejiszi;hper gene (meani standard 23093166 106t 171 1329 £ 2053 9771t 1382
MRD (mean + standard deviation) 1710+ 1073 97t 52 1070 * 803 599 + 164
Number of exons 8174 8174 8174 8174

Exons overlapped with segmental
duplication regions

458 (5.6%)

458 (5.6%)

458 (5.6%)

458 (5.6%)

Number of genes (passing QC) 862 439 739 1
Genes overlapped with segmental
duplication rzgions & 29 (3.3%) 11(2.5%) 23(3.1%) 0(0.0%)
Over-di ion fact + standard
de\;zti(l)srsersmn actor (mean + standar 7ot 8 . 64t 5. N/A
uality index (mean * standard deviation 9.4%8.8 5.5t 2.3 7.6%5.6 N/A
y
Expected detection sensitivity based on
. 0.46 0.2 0.41 N/A
quality index
Number of calls h = 0.65 either with or p p N/A
without a neighboring call 3 4 3
Number of calls h = o.1 either with a
17 o) 11 N/A

neighboring call
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Table 2.2.2: Data characterized by sequencing center and population

SC

CEU CHB JPT TSI YRI
Number of samples 18 14 9 51 14
Male/Female 9/9 5/9 5/4 24/27 2/12
Average read depth per gene 1679 1701 1597 1617 1865
Read Length 36 36 36 36 36

BCM

CEU CHB CHD ]JPT LWK YRI
Number of samples 40 62 78 16 108 45
Male / Female 20/20 15/47 38/40 5/11 51/57 22/23
Average read depth per gene 178 131 171 243 128 165
Read length 258 323 339 300 336 322

BI

CEU CHB CHD ]JPT YRI
Number of samples 16 13 28 34 19
Male / Female 9/7 11/2 12/16 16/18 12/7
Average read depth per gene 1623 1631 1675 1104 1612
Read length 73 75 74 75 76

Population abbreviations:

CEU — Utah residents with Northern and Western European ancestry
CHB — Han Chinese in Beijing

CHD — Chinese in Denver, Colorado

JPT — Japanese in Tokyo, Japan

LWK — Luhya in Webuye, Kenya

TSI — Tuscans in Italy

YRI — Yoruba in Ibadan, Nigeria

equivalent base coverage.

2.2.3 SAMPLE COVERAGE AND GENE AFFINITIES

As a metric of coverage for each sample, we calculated the sample-specific median gene RD,
referred to as “Median Read Depth” (MRD); see Figure 2.2.1A and Methods 2.4.3. MRD was
highest for the SC samples (1,710 * 1,073, median 1,491 reads/gene; data presented as mean *

standard deviation), see Figure 2.2.2B. MRD was somewhat lower for the BI samples (1,070 +
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Figure 2.2.2: A. Principal component analysis of a “mixed” read depth matrix built with
data from 3 different sequencing centers, SC (Wellcome Trust Sanger Institute), Bl (Broad
Institute) and BCM (Baylor College of Medicine). Each sample is represented as a point in
the plot, with the first principal component plotted vs. the second principal component. Sam-
ples from different sequencing centers cluster separately from each other within this space,
suggesting significant differences in the gene affinities among these three datasets. B. Dis-
tributions of MRD for each of the BCM, Bl and SC samples C. Histogram of RD across all
GSSs in the three datasets. D. Histogram of gene affinities across genes within each of the
three datasets. E. Distributions of the RD over-dispersion factor (ODF) in our data.
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803, median 860 reads/gene), and much lower in the BCM dataset (97 + 52, median 87
reads/gene). As mentioned above, RD (distributed as in Figure 2.2.2C) is not determined by
base coverage alone. Base coverage was highest in the Bl data (70 £ 61, median 56 reads/base),
followed by SC (56 * 34, median 5o reads/base). The much lower RD in the 454 reads from
BCM corresponds to only somewhat lower base coverage (23 * 12, median 21 reads/base).

For each target we define a quantity, the “target affinity”, intended to describe the number of
reads (RD) being mapped to a given target, relative to the sample-specific MRD over all capture
targets. Analogously, we define the gene-specific affinity as the ratio of the number of reads (RD)
mapped to the targets (exons) belonging to that gene and the gene-specific MRD for that same
sample (see Methods 2.4.3, Figure 2.2.2D). In general, tighter distributions of affinities, with
mean and median as close to 1 as possible, are desirable because these correspond to more even
target coverage. The observed gene affinities for our datasets (Figure 2.2.2D) were as follows: SC
(1.40 * 1.43, median 1.04), BI (1.58 * 1.59, median 1.20),and BCM (2.63 * 3.03, median 1.73).
Because of the more favorable gene affinities, we used the SC data as our primary dataset for

method development and experimental validations.

2.2.4 CNV CANDIDATES DETECTED IN THE DATA

According to our Bayesian detection scheme, we call a heterozygous deletion event in a gene if the
posterior probability value of CN = 1, i.e. P(CN=1 | RD) > h where h is a pre-defined probability
cutoff value. Similarly, a homozygous deletion is where P(CN=o | RD) > h. Although we
detected both deletions and amplifications in the analyzed datasets, deletion events (even when
in a heterozygous state) provide easier detectable signal than amplifications. For this reason we
only discuss deletion events here and report candidate amplifications in Table 2.2.3.

Using a cutoff value h = 0.65, we detected 96 deletion events in the three datasets (36 in SC, 56
in BL, and 4 in BCM)), all heterozygous deletions (Table 2.2.4, Table 2.2.5 and Table 2.2.6). The
top ranked deletions are shown in Figure 2.2.3A. Most of the events were found in the Tuscan

population, which constituted about half of the sample set. A subset of 10 of 36 gene deletions in
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Table 2.2.3: Gene duplication calls in the SC dataset (PP: posterior probability)

Population Sample  Genename Chr Start[bp] End[bp] PP  RD,, RDe,
CEU NA12348 CD3oolLB 17 70030472 70039195 1 638 420
TSI NA20533 CLDNio 13 95003009 95028269 1 2108 1582
CHB NA18526 SNRNP27 2 69974621 69977184 1 530 383
CHB NA18532 CES1 16 54401930 54424468 1 501 337
TSI NA20752 NOM1 7 156435193 156455158 1 1335 966
TSI NA20796 AHNAK 11 62040792 62059238 1 7330 5169
TSI NA20796 ZNF264 19 62408577 62416161 0.999 1276 888
TSI NA20801 GPRi128 3 101811391 101896535 0.998 14747 8265
TSI NA2o0772 STX16 20 56660469 56684753 0.998 2101 1605
TSI NA20769 MRPS6 21 34419511 34436770  0.998 1585 1203
TSI NA20774 ELAVL4 1 50383216 50439437  0.998 782 567
TSI NA20804 CYP2A13 19 46291375 46293686  0.997 1289 984
TSI NA20774 CREBjs 7 28494318 28825421 0.996 1435 954
TSI NA20796 ZNF32 10 43459504 43461587  0.996 911 646
TSI NA20520 Cé6orfi4s 6 3668852 3683381 0.995 201§ 1601
CEU NA12348 GDNF 5 37851510 37870647  0.994 306 217
CHB NA18561 PSMB4 1 149638688 149640730 0.986 3461 2216
CEU NA12546 DAZAP2 12 49920394 49922509 0.985 2265 1651
TSI NA20752 AATF 17 32380539 32488077  0.976 1157 843
CEU NA12749 PAQRs 15 67439474 67483215 0.976 1684 1239
TSI NA20769 BCL2L11 2 111597794 111638279 0.965 1813 1435
TSI NA20804 PILRA 7 99809603 99835466  0.909 962 752
TSI NA20589 CB8orf8s 8 118019664 118024121 0.903 147 91
TSI NA20752 CCKAR 4 26092358 26100987  0.902 712 532
JpPT NA18973 HBG2 11 5278820 5523329 0.901 4151 3094
TSI NA20774 HIPK1 1 114298778 114317657 0.9 2374 1626
TSI NA20774 ODC1 2 10498301 10502609 0.897 1489 935
TSI NA20796 STBD1 4 77446947 77450177  0.885 978 664
TSI NA20589 CRIPAK 4 1378300 1379640 0.877 76 38
YRI NA19189 PSMB4 1 149638688 149640730 0.853 2622 2090
TSI NA2o0774 STX16 20 56660469 56684753 0.811 949 704
JPT NA18980 CES1 16 54401930 54424468 0.788 1679 1036
TSI NA20774 PAQRs 15 67439474 67483215  0.788 1048 676
CHB NAi18561 CRNN 1 150648694 150651333 0.778 4845 3172
TSI NA20774 DKK4 8 42350775 42353720 0.76 493 362
TSI NA20589 NOMI1 7 156435193 156455158 0.74 1052 801
TSI NA20769 RNFi122 8 33525813 33535831 0.734 2574 2004
TSI NA20796 ZNFs521 18 20896674 21184908  0.721 3536 2738
TSI NA20769 VLDLR 9 2625453 2631499 0.676 2092 1624
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the SC dataset were found in two samples (NA18523 and NA20533), clustered in a contiguous
string of deleted genes extending approximately 3 Mbp on chromosome 1 and 17, respectively, a
genomic deletion event that we were also able to find in the 1000 Genomes Project

whole-genome Low Coverage Pilot data [ 15] from the same samples.

Table 2.2.4: Gene deletion calls in the Bl dataset (PP: posterior probability)

Population  Sample Gene name Chr Start[bp] End[bp] PP  RDgs RDey

CHD NA18695 TPMj3 1 152396739 152422219 1 166 337
JPT NA19o66 TPM3 1 152396739 152422219 1 169 288
CHD NA18687 RPL27A 11 8661325 8663929 1 93 182
JPT NA18983 POUsF1 6 31240357 31241803 1 122 256
JPT NA19o66 POUsF1 6 31240357 31241803 1 166 318
JPT NA1g9o66 RPL27A 11 8661325 8663929 1 106 203
CHD NA18687 TPMj3 1 152396739 152422219 1 155§ 258
CHD NA18687 POUsF1 6 31240357 31241803 1 156 285
JPT NA1gos4 TPM3 1 152396739 152422219 1 135§ 230
CHD NA18695s POUsF1 6 31240357 31241803 1 194 371
JPT NA18960 SETDS8 12 122441130 122455574 1 221 347
CHD NA18164 RPL27A 11 8661325 8663929 1 129 223
JPT NA1gos4 POUsF1 6 31240357 31241803 1 130 254
CHD NA1869s SETDS 12 122441130 122455574 1 142 309
CHD NA18695 RPL27A 11 8661325 8663929 1 128 238
CHD NA18695 AKRi1B1 7 133778020 133787045 1 310 554
CHD NA18164 HAX1 1 152512874 152514801 1 214 339
CHD NA18687 SETDS8 12 122441130 122455574 1 12§ 237
JPT NAi1gos4 HFE 6 26201326 26202433 1 56 122
JPT NA18983 RPL27A 11 8661325 8663929 0.99 95 164
JPT NA18983 TPMj3 1 152396739 152422219 0.99 147 232
JPT NA19s561 TRIMss 8 67202058 67209944 0.99 119 193
CHD NA18687 RBMS1 2 160840394 160932124 0.99 334 575
CHB NA18757 CRIPAK 4 1378300 1379640 0.99 327 669
JPT NA1gos4 PSAT: 9 80109471 80113319 0.98 140 253
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Table 2.2.4: Gene deletion calls in the Bl dataset — continuation from previous page

Population Sample Gene name Chr Start[bp] End[bp] PP  RDgys RDeyp
JPT NA19066 PSAT1 9 80109471 80113319 0.98 190 317
CHD NA18164 TPM3 1 152396739 152422219 0.98 209 317
JPT NA19568 ORS8A1 11 123945175 123946141 0.98 471 764
JPT NA19066 RAN 12 129923334 129926424 0.98 229 462
CHD NA1869s KLHL12 1 201128284 201160913 0.97 767 1358
JPT NA19o66 SETDS8 12 122441130 122455574 0.97 154 265
JPT NA19066 RPS15A 16 18706886 18707936 0.96 83 161
CHD NA1869s RPS135A 16 18706886 18707936 0.96 88 188
CHD NA18687 KLHL12 1 201128284 201160913 0.96 621 1041
JPT NA18983 SETDS 12 122441130 122455574 0.96 120 213
JPT NA18983 DCTNj; 16 23560365 23585966 0.96 177 298
JPT NA18983 EIF2Bjs 3 185500333 185509372 0.94 856 1482
CHD NA18687 ARGz 14 67187855 67187951 0.94 28 62
CHD NA1869s PSAT1 9 80109471 80113319 0.93 221 371
CHD NA18695s RBMS1 2 160840394 160932124 0.9 442 750
JPT NA1g9561 ORS8A1 11 123945175 123946141 0.89 254 466
YRI NAi1g9247 TIMMSB 11 111461229 111462657 0.88 40 89
CHD NA18164 POUsF1 6 31240357 31241803 0.85 226 349
CHD NA18164 KLHL12 1 201128284 201160913 0.8 803 1276
CHD NA18164 SETDS8 12 122441130 122455574 0.79 181 291
CHD NA18687 RPS15A 16 18706886 18707936 0.79 81 144
JPT NA19o66 EIF2Bgs 3 185500333 185509372 0.78 1137 1840
JPT NA19568 GABARAPL2 1 157676173 157676631 0.76 254 476
JPT NA1gs60 ORS8A1 11 123945175 123946141 0.75 614 1119
JPT NA1g9os58 RPL27 17 38404294 38408463 0.73 356 518
CHD NA18699 SDPR 2 192408894 192419896 0.72 524 1033
JPT NA18983 SPRR2G 1 151388989 151389210 0.67 81 147
JPT NA19o66 SPRR2G 1 151388989 151389210 0.67 10§ 182
JPT NA19066 RBMS1 2 160840394 160932124 0.67 404 642
JPT NAi1gos4 EIF2Bjs 3 185500333 185509372 0.67 869 1470
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Table 2.2.4: Gene deletion calls in the Bl dataset — continuation from previous page

Population Sample Gene name Chr Start[bp] End[bp] PP RD;, RDey

CHD NA18695 RAN 12 129923334 129926424 0.66 290 539

When two or more gene deletions are detected in close proximity, it is likely that these events
are part of a single, longer genomic deletion spanning the genes. With this in mind, we searched
the sequenced genes for deletion events at a lower probability cutoff value (4 = 0.1), but required
that an immediate neighbor of a candidate gene be located within 3 Mbp and also show evidence
for a deletion at the same probability cutoff. This procedure produced 17 heterozygous deletion
calls in the SC dataset, 11 calls in the BI dataset (but no such calls were made in the BCM
dataset). The union of both callsets (i.e. those made with and without use of neighboring
information) resulted in a total of 107 unique deletion events (41 in SC dataset, 62 in B], and 4 in
BCM). We note that none of the events we detected in our data were at high allele frequency. In

fact, even the most “common” events were only present in two samples, as heterozygotes.

2.2.§ CALL-SET ACCURACY ASSESSMENT

To assess the accuracy of deletion calls made in the SC dataset, researchers from Stanford
University ( Dr. Fabian Grubert and Dr. Alexander Urban) helped me perform experimental
validations on calls made with posterior probability >0.65 without neighbor information, using
quantitative PCR (qQPCR) (see Methods 2.4). The validation results are summarized in

Figure 2.2.3B. Many of the CNV calls submitted for gPCR validation are not given a conclusive
results. This is gernerally caused by some limitations of this technologies such as the high
similarity between the test DNA fragments and the target template and the defective design of the
primers [81] Of the 36 calls made, we evaluated 26. All 22 calls with posterior probability >0.95

and 4 out of 12 calls (randomly selected) with posterior probability between 0.65 and 0.95 were
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Table 2.2.5: Gene deletion calls in the SC dataset (PP: posterior probability)

Population Sample Genename Chr Start[bp] End[bp] PP RD,ps  RDgyp
YRI NA18523 BCL2L1g 1 114225268 114231520 1 533 1158
YRI NA18523 HIPK1 1 114298778 114317657 1 2539 5272
TSI NA20533 GLOD4 17 610163 6322454 1 1322 22958
TSI NA20533 C1QBP 17 5277059 5282317 1 793 1416
TSI NA20533 Ci7orfg1 17 1562414 1563890 1 369 574
YRI NA18523 NRAS 1 115052679 115060304 1 702 1462
YRI NA18s523 TRIM33 1 114741793 114808533 1 2610 5225
TSI NA20533 TRPV3 17 3363961 3404894 1 3365 527§
TSI NA20774 PTMAP1 6 30725671 30728671 1 132 260
TSI NA20796 SNRNP27 2 69974621 69977184  0.998 105 194
TSI NA20807 HIST1iH2BC 6 26231731 26232111 0.998 42 90
TSI NA20772 ULBP1 6 150331436 150332954 0.997 104 205
TSI NA20807 CYP2A13 19 46291375 46293686  0.996 126 204
YRI NA18508 PTMAP1 6 30725671 30728671 0.992 14§ 230
CEU NAo7000 PSGS8 19 47950287 47960273 0.99 29 70
CEU NA11893 PSGS8 19 47950287 47960273 0.985 43 86
TSI NA20771 PTMAP1 6 30725671 30728671 0.98 533 862
TSI NA20773 CCK 3 42274594 42280126  0.971 282 474
CEU NAo7000 HMGN4 6 26653414 26653686  0.966 68 132
CEU NA12749 HMGN4 6 26653414 26653686 0.966 156 286
TSI NA20772 AlF1 6 31692086 31692262 0.964 51 124
CEU NA12348 DUSP10 1 219942377 219946216 0.962 155 242
YRI NA18508 ULBP1 6 150331436 150332954 0.941 40 79
YRI NA18523 PPMi] 1 113056116 113057756 0.891 560 924
TSI NA20807 POUsF1 6 31240884 31241803 0.891 124 193
TSI NA20772 SERPINA11 14 93978696 93984864  0.889 786 1243
CEU NAo7000 KRT18P19 12 51630379 51632393 0.887 85 174
CEU NA12348 ULBP1 6 150331436 150332954 0.879 49 88
YRI NA18523 RHOC 1 113054308 113055529 0.867 557 955
CEU NA12348 STBD1 4 77446947 77450177  0.839 246 395
CEU NAo7000 POUsF1 6 31240884 31241803 0.823 106 169
CEU NAi12749 SNRNP27 2 69974621 69977184  0.775 142 216
TSI NA20752 POUsF1 6 31240884 31241803 0.723 76 142
TSI NA20807 HIST1H2BO 6 27969220 27969600  0.723 48 88
TSI NA20589 POUsF1 6 31240884 31241803 0.697 61 117
TSI NA20786 NPSR1 7 34884213 34884321 0.678 51 88
Table 2.2.6: Gene deletion calls in the BCM dataset (PP: posterior probability)
Population Sample  Gene name Chr Start[bp] End[bp] PP RDgps RDeyp
LWK NA19355 MBDg 2 148932798 148986980 0.999 618 973
CHD NAi17970 MTERFD2 2 241684086 241687982 0.996 255 393
CHB NA18618 GABARAPL2 16 74159436 74168768 0.8 58 99
CHD NAi18135 PSMB4 1 149638688 149640929 0.729 390 605
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Figure 2.2.3: A. Top-ranked (by posterior probability) deletion events in the SC dataset. B.
Validation results for different callsets (left — without neighboring information, right — with
use of neighboring information). Green denotes events positively validated either in our exper-
iments or as known events [18]; red — calls validated negatively in our experiments; yellow —
calls without validation status (not submitted for validation or validation experiments with-
out conclusive outcomes). C. Detection sensitivity as a function of number of samples. D.
Sensitivity of detecting common CNV as a function of the deleted allele frequency.
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Table 2.2.7: Validation results

Posterior>=0.94 0.65<=Posterior<o.95 Posterior>=o0.1
without neighbor without neighbor with neighbor
information information information

Validated per previous

C . 4 2 7

publication

Validated positively de novo 11 1 7

Validated inconclusively de novo 4 1 o

Validated negatively de novo 3 o o

Submitted for validation but o lo 3

without result

Total calls 22 14 17

submitted for validation. A set of 6 were considered positively validated as they appeared in an
earlier publication [ 18] and 20 were validated de novo using qPCR. The qPCR validations
produced positive results for 12 calls (measured fold change <0.7) and negative results for 3 calls
(measured fold change >0.8). The validation results for the remaining 5 were inconclusive. All the
17 neighbored calls with posterior probability >o.1 were selected for validation. A set of 7 were
considered valid per previous publication [ 18], 7 were positively validated de novo and none was
found invalid; validation was not obtained for the remaining 3. The union of those two callsets
counted 41 calls and 32 of them were evaluated. Among these 32 calls 7 were considered
positively validated per previous publication [18], 14 were positively validated de novo, 3 were
invalidated, 5 were inconclusive and 3 did not obtain the validation results. The numbers of
validated calls are presented in Table 2.2.7. The selection procedure for site validation was as
follows: (1) We selected sites for validation (in some categories, all candidates, in others, a
random selection); (2) we searched the literature [ 18], and removed from the validation list
events that we found as validated in one of the publications we consulted; (3) events that
remained on the list were sent for experimental validation. The overall FDR for the union of calls

made with and without neighboring information can be estimated as 12.5% (3/24).
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2.2.6 SENSITIVITY

We performed simulations to assess the detection efficiency of our method, both for individual
gene and for pairs of neighboring genes deletions. Specifically, in each sample we randomly
selected (1) 5 out of 862 genes in one simulation and (2) 5 pairs of neighboring genes in another
simulation. In the selected genes we down-sampled the actual read depth seen in the
experimental data by a factor of 2 to simulate a heterozygous deletion. The results of those
simulations are presented in Figure 2.2.3C. Of the 530 gene deletions, we detected 237 (45%). Of
the 530 gene-pair deletions we detected 287 (54%). We also performed simulations on smaller
subsets of the original 106 samples to assess the impact of sample size on detection sensitivity.
Reduction of sample size did not substantially degrade detection sensitivity as long as the number
of samples was >20. Therefore, our detection efficiency is around 45% without using neighboring
information and approximately 50-55% with the use of neighboring information, in the SC
dataset.

In addition to simulations, we compared our dataset to a published study [ 18]. This study
reported 12 heterozygous deletion events in samples and genes (in our terminology, GSS) that
were part of our analyzed dataset. We detected 6 of these 12 events, which is broadly consistent
with our overall sensitivity estimate.

Finally, we investigated our sensitivity to common events (see Methods 2.4.8) using
simulations. Figure 2.2.3D shows detection sensitivity as a function of gene-level affinity: for a
gene affinity value of 1.8 (representing the 75™ percentile of our data), sensitivity to common
events (allele frequency between 10% and 90%) approaches 40%. Note that the detection
efficiency starts to decrease at high allele frequency (>70%) due to a reduction of the overall read
depth because more samples have a deletion and a corresponding depleted read depth signal. The
estimated gene affinity will be dominated by these deleted events. Instead of detecting these
deletion events, the samples with normal copy numbers will be detected as amplifications. We
can also see that the median gene affinity is substantially lower than the mean because the

distribution of gene affinity has a long tail at the high end (Figure 2.2.2D). Since sensitivity is
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directly related to the gene affinity, the simulated data with the substantially higher mean gene

affinity (red) has better sensitivity than with the substantially lower median gene affinity (green).

2.2.7 THE NUMBER OF CNV EVENTS IN THE SAMPLES

We estimated the total number of gene deletions in the SC dataset from the number of detected
events (41), the FDR (12.5%) and the detection efficiency (45%), as ~66 in total 106 samples, or
anominal 0.62 deletions per sample . By projecting the per-sample number, corresponding to
3.9% of the exome (862 genes of 21,999), onto the whole exome, our estimate for the average
number of genic deletion events is 16 + 4 per sample. This estimation is very close to that from a
large-scale whole-genome scanning CNV study with high-resolution CGH technology published
in 2011 [18]. In that study, 6187 heterozygous deletions were found in exon regions from 450
samples (on average, it is ~14 heterozygous deletions per exome). This estimation is
representative for the whole-exome sequencing data since the 1000 Genomes Exon Pilot Project
randomly selected all the exon targets from the CCDS collection. Our gene set is therefore a
quasi-random sampling of known human genes, with no intentional enrichment for any given
gene family. Figure 2.2.4A and 2.2.4B show the distributions of exon length in the gene list used
for our analysis and the full human exome. There is no significant difference between these two
distributions: the median and the standard deviation of the exon length for our study are 125 bp
and 236 bp, whereas the corresponding values for the whole exome are 127 bp and 264 bp. The
similarity of these two distributions suggests that our estimation of the number of events per

sample is unbiased and is representative for a whole-exome analysis.

2.2.8 DETECTION EFFICIENCY AS A FUNCTION OF DATA QUANTITY AND DATA QUALITY

As discussed earlier, our algorithm’s sensitivity was 45% at 87.5% accuracy. Both sensitivity and
accuracy are considerably lower than achievable for SNP detection in the same datasets [ 15 ]. This
poses the more general question of how detection efficiency is influenced by sample size, data

quantity, and data quality. Our simulations show that sensitivity only modestly depends on
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Figure 2.2.4: A. Exon length distribution in the gene list used for our analysis (median: 125
bp, standard deviation: 236 bp). B. Exon length distribution of the whole exome (median:
127 bp, standard deviation: 264 bp). These two distributions are very similar to each other,
suggesting our estimation of the number of events per sample is unbiased and is representa-
tive for a whole-exome study.

sample size, above approximately 20 samples (Figure 2.2.3C).

We found that the primary factors that determine detection efficiency are (1) sequence
coverage, or more precisely, RD (higher RD supplies more statistical power to detect systematic
changes in coverage); (2) the level of over-dispersion of the RD distribution for individual genes
(the more the RD distribution departs from an expected Poisson distribution, the less one can rely
on the statistics); and (3) the shape of the distribution of RD across all genes in the dataset,
determined by the gene affinities (uneven distribution means that detection power is low in a
high fraction of the genes, but this effect is not compensated by the extra coverage in other,
“over-sequenced” genes where detection efficiency is already high, see Figure 2.2.5A. Favorable
scenarios therefore involve distributions in which all or most genes have sufficient RD for
detection).

For each gene, we compute a quality index (QI) taking into account the variance of the
expected read depth for that gene (assuming the ideal, Poisson distribution), RDexpected; and a

over-dispersion factor, ODF (see Method 2.4.5), that quantifies the over-dispersion of RD
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Figure 2.2.5: A. Distributions of the detection efficiency estimated from the quality index for
each gene-sample site. B. Theoretical detection efficiency (at posterior probability cutoff h =
0.65) as a function of expected read depth, plotted for various values of the over-dispersion
factor. C. Histograms of the quality index (QI) distribution in the three datasets. Overall, QI
was highest in SC: 9.44+8.8 (median 6.6); second highest in Bl: QI = 7.6 £ 5.6 (median 6.2);
and lowest in BCM: QI = 5.5 £ 2.3 (median 5.0).
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Table 2.2.8: Nominal prior probabilities corresponding to the range of gene region copy

numbers derived from Conrad et al. 2010 [18]

Copynumber Prior probability per gene
o 6.34-10 4
1 2.11-10 3
2 9.96 -10 !
3 5.38-10 %
4 6.68 10 4
5 3.57-107°
6 7.52 - 1076
7 1.39 - 1076
8 3.61-10 7
9 4.37-107°¢

relative to the Poisson expectation:

. RD expected
QI = Y _apeded (2.1)
ODF

Ql is directly related to detection sensitivity, as shown in Figure 2.2.5B. According to our
power calculations, for the posterior detection threshold value we used in this study (h = 0.65),
sensitivity is completely diminished for genes with QI < 5.1. QI > 7.2 is required to achieve 50%
sensitivity, and QI > 9.5 to achieve 90% sensitivity. This estimated sensitivity from QI is made
only for heterozygous deletions. To achieve the same sensitivity for detecting higher copy
number variation (CN > 3), higher QI value will be required since the difference of prior
probability between higher copy and normal copy (CN = 2) is greater than that between
heterozygous deletion and normal copy (Table 2.2.8).

The distributions of QI values in our three datasets are shown in Figure 2.2.5C. Overall, QI was
highest in SC: 9.4 + 8.8 (median 6.6); second highest in Bl: QI = 7.6 + 5.6 (median 6.2); and
lowest in BCM: QI = 5.5 * 2.3 (median 5.0). The corresponding distributions of detection
efficiency values are shown in Figure 2.2.5A. Because detection efficiency increases abruptly from
o to almost 1 over a narrow range of QI values (note the mapping between the vertical axes in

Figure 2.2.5B), the distribution of detection sensitivity (Figure 2.2.5A) is strongly bimodal, with
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the vast majority of GSS having either close to zero or close to 100% sensitivity. Even in the SC
dataset with the highest overall QI values, in less than half of the GSS does the quantity and
quality of the data support >80% detection efficiency. There was also very substantial variation
across samples: only 15 of the 106 SC samples had sufficiently high coverage to support > 90%
overall sensitivity, and in 22 samples overall sensitivity was below 10%.

Given that QI improves only with the square root of RD, over-dispersion can profoundly
influence detection performance, as shown in Figure 2.2.5B. The ODF values we chose for this
figure correspond to the 2 st 5o and 75t percentile, and the mean values (ODF = 3, 5.5, 10,
and 8, respectively) in the SC dataset. Using the observed distribution of QI in the SC dataset, we
predict 46% sensitivity, in good agreement with our estimate based on simulations. The QI
formulation permits one to estimate CNV (or specifically in our case, heterozygous deletion)
detection power in any given exon capture dataset, based on the read mappings. One can also use
the formulation to calculate the amount of base coverage required for a given level of desired
power, to guide data collection. For example, using the distributions of QI values in the SC
dataset, one would need to collect an overall 110X coverage, assuming 36 bp reads, to achieve
60% detection power, and 320X coverage to achieve 80% detection power. However, if DNA
capture methods improved to support a median ODF = 3, assuming an accordingly scaled version
of the observed distribution of QI in the SC dataset, one would only need to collect 33 X coverage
for 60% power, and 96 X for 80% power. It is important to also point out that, in the case of
whole-exome data, sensitivity would also improve just by virtue of the higher density of targeted

genes, if one were to integrate in one’s pipeline neighbor-gene based detection.

2.2.9 FUNCTIONS OF AFFECTED GENES

Although function study is not our major goal for this research work, we still found some genes
affected by CNVs in the callset that are correlated with human diseases. For example,
heterozygous deletions are detected at POUsF1, a gene that is responsible for the self-renewal

activity and pluripotency of embryonic stem cells and germ cells [82], in many Asian samples
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from both BI and SC datasets. The mutations of this gene and EWSR1 together are reported to
play an important role in sarcomagenesis and tumor cell maintenance [83]. Two genes from
BCL2 familiy, BCL2L11 and BCL2L15 are detected as duplications and heterozygous deletions
recpectively in the SC dataset. BCL2 family is well known as one of the regulators for
programmed cell death. When it dominants, the programmed cell death will be suppressed and
the cell can therefore survive [84]. The dysfunction of this gene is associated with many types of
cancers such as breast cancer [85] and prostate cancer [86]. Many other cancer-related genes are
discovered as CNVs in the callset as well, such as NRAS [87], ODC1 [88] and CRIPAK [ 89, 90].
Besides cancers, genes associated with neurodegenerative genetic disorders are also seen. SETD2,
also known as HYPB (huntingtin yeast partner B), is involved in the modulation of chromatin
structure and may also bind to DNA promoters and interact with Pol II, thereby promoting
transcription [91]. The mutation of SETD2 is associated with the pathogenesis of Huntington’s
disease [92], which is characterized by a loss of striatal neurons, leading to brain deterioration
and, ultimately, death. Another gene in the detected in our callset, GDNF, a highly conserved
neurotrophic factor. The major function of the protein production of this gene is to promote the
survival and differentiation of dopaminergic neurons in culture and to prevent apoptosis of motor
neurons induced by axotomy [93 ]. The dysfuction of this gene may lead to Parkinson’s disease, a
degenerative disorder of the central nervous system. HFE, a gene that econdes a membrane
protein that is responsible for regulating iron absorption, is invloved in the devlopment of
Alzheimer’s disease [94] since the iron imbalance may have impact on plaque formation, amyloid
processing, and expression of and response to inflammatory agents. Many other
disease-correlated genes, such as TPM3 (muscle weakness [95]), DAZAP2 (male

infertility [96]) and HAX1 (neutropenia [97]) are also seen in our callset. Due to the design of
1000GP exon capture sequencing study, the phenotype data of all the samples are not available so
it is very hard for us to do any further functional studies of these detected CNVs. However, for
other large whole-exome sequencing projects that focus on functional studies, our method could

be potentially used for detecting events with significant biological impact.
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2.3 DiIscussIiON

We have developed a novel, Bayesian method to identify CNVs in exon-capture data. We applied
this method (and a simple extension using neighbor-gene information) to the 1000 Genomes
Project Exon Sequencing Pilot dataset. We were able to achieve reasonable sensitivity (which is
limited by the quality of the dataset instead of our methodology) and specificity in a dataset that
was optimized for SNP discovery and, as discussed above, is far from ideal for CNV detection. As
new whole-exome sequencing data become easily available nowadays with higher coverage and
low or even none (single molecule sequencing) PCR bias, the detection efficiency of our method
should be significantly improved based on our statistical analysis (quality index).

Krumm and his colleagues recently published a method, CONIFER [98], that also used
read-depth signal to detect CNV in the exome capturing sequencing data. Like our method,
CoNIFER normalizes the read depth signal in order to discover the CNV. However, it is quite
different for these two algorithms in the approach of calling samples copy number variants on the
basis that they present aberrant read depth. As we mentioned previously, our method deploys
specific models for copy numbers o, 1, 2, and is capable of detecting both rare, intermediate
frequency, and common CNV events. On the other hand, CoNIFER deploys singular value
decomposition (SVD) to remove noise from the read depth data, and interprets the first “k”
singular values as noise in the data. This approach may identify systematic variance in the data
caused by a high-frequency CNV event as noise and removes it. Therefore CoNIFER has limited
power for detecting common CNV events. On the other hand, our method is capable of detecting
CNV events on the entire frequency spectrum, and is therefore more generally applicable.

The main accomplishment of this work is that we provide a statistically rigorous algorithm for
CNV detection in exon capture data, backed by experimental validations, that can be applied to
the thousands of exomes sequenced to date in various medical projects, and to nascent and
on-going projects targeting increasingly higher numbers of samples. Our formulation allows

investigators to assess detection power in existing datasets and to take into account CNV
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detection power during experimental design for future datasets. We also uncovered >100
heterozygous deletion events in the 1000 Genomes samples we examined, allowing us to estimate
the average number of heterozygous deletions per exome (as ~16 events per exome for a diploid
genome. See Results 2.2.7). Because we focused on algorithm we only did some brief functional
assessment of these sites is beyond in this study. Nevertheless, these and other gene deletions that
will be found using our methods are very likely to uncover events with strong functional

significance.

2.4 METHODS

The overall detection workflow (shown in Figure 2.2.1) consists of five main steps: (1) We
tabulate the observed read depth for every GSS. (2) We determine whether the distribution of
read depth for a specific gene distribute across samples should be modeled using simple uni-linear
fit or using a more sophisticated tri-linear fit. (3) If the simple uni-linear fit is found suitable, we
determine an expected read depth for every GSS under a null hypothesis of a normal copy
number, using a simple linear fit model. (4) Subsequently, we compare the observed read depth
for a GSS to the corresponding expectation , calculate a Bayesian posterior probability for each
copy number considered (CN = 0-9) and report events that pass the pre-defined posterior
probability threshold with a non-normal CN. (5) If data do not allow for modeling using a simple
uni-linear fit model, we perform a more sophisticated tri-linear fit. The tri-linear fit directly

assigns copy number to every sample.

2.4.1 OBSERVED READ DEPTH

Capture sequencing reads from the 1000 Genomes Project Exon Sequencing Pilot Project were
downloaded, in FASTQ format, from the 1000 Genomes Project DCC site:
http://1000genomes.org. The reads were mapped using the MOSAIK read mapping

program [57], to the NCBI build 36.3 human reference genome. The resulting read alignments

(in BAM format) were further processed to remove duplicate reads, and reads with low mapping
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quality (<20) [57].

Gene target regions were also downloaded from the 1000 Genomes Project site. For each GSS,
we determined RD as the number of distinct reads that had their first (5’) base uniquely mapped
within an exon of that gene. This resulted in a matrix of RD observations (illustrated in

Figure 2.2.1C left).

2.4.2 DATA FILTERING

We discarded all duplicate reads and all reads with mapping quality less than 20. We also
discarded all the targets with median RD less than 30. Similarly, we discarded all the samples with
median RD less than 30. In 454-sequenced data, this led to discarding almost all targets and
samples; therefore we relaxed those criteria to 5 and 1, respectively. Additionally, we discarded all

the genes that failed to exhibit correlation between observed RD and MRD at #* > o.7.

2.4.3 EXPECTED READ DEPTH BASED ON UNI-LINEAR FIT AND TRI-LINEAR FIT

In the first attempt, we use the simple uni-linear fit; we calculate the expected read depth for
normal copy number (CN = 2) as the product of a gene-specific capture affinity value, ag, and a
sample-specific measure of read coverage, the median of read depths, MRD, across all genes for

that sample:

RDy = ag - MRD; (2.2)

The gene-specific capture affinity (a,) is determined as the slope of a least-squares
zero-intercept linear fit between the gene-specific read depth (RD,;) and the median read depth
(MRD;) for all samples (illustrated in Figure 2.2.1B). This procedure resulted in a matrix of RD
expectations (Figure 2.2.1C right).

The afore-mentioned procedure requires a single-line linear fit between RD,, and MRD;. The
quality of such a fit is evaluated by comparing r> against a predetermined threshold (>0.7 as

described before). When this indicates poor quality of the single-line linear fit, we attempt to
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perform a tri-linear fit.

Briefly, we attempted to minimize error function:

a
errory = » _ min{(RDg; — ag - MRD,), (RDg, — = - MRD,), (RDg, — 0 - MRD,)}  (2.3)
2
N
where s iterates over samples and g indicates the gene in question. Note that the tri-linear fit
directly assigns copy number to each GSS. Please see Common CNVs (Methods 2.4.8) for more

detail.

2.4.4 COPY NUMBER PROBABILITIES

We used a Bayesian scheme to calculate the probability P(CN,|RDy,) of a given copy number at
a given GSS§, based on the observed read depth. We only considered CN = 0-9 i.e. homozygous
deletion (CN = 0), heterozygous deletion (CN = 1), normal copy number (CN = 2), and
amplifications of various magnitudes (CN > 2). We assigned prior probabilities P(CNy) to each
copy number based on CNV events reported in an earlier study [18] (Table 2.2.8). We assumed
that, for each distinct CN, the observed RD obeys an over-dispersed Poisson distribution. Its
mean value for normal copy number (CN = 2) is calculated according to (Eq. 2.2) and for other
copy numbers it is proportionally scaled. The standard deviation of the distribution includes an
over-dispersion factor (ODF) in the range of 1 to 20 to account for over-dispersion (variance
beyond the level of Poisson fluctuations, see Method 2.4.5).

Briefly, to account for over-Poisson dispersion, we used observed RD,, and calculated
corresponding z-score under an assumption of an ideal Poisson distribution at every GSS.
Subsequently, we calculated a sample-specific standard deviation of that z-score for every sample
and annotated it as sample over-dispersion factor. Similarly, we calculated a gene-specific
standard deviation of z-score for every gene and annotated it as the gene-specific over-dispersion

factor. If the assumption of an ideal Poisson distribution were true, those sample- and

49



gene-specific standard deviations should equal 1. Subsequently, we calculated the over-dispersion
factor for every GSS as a product of respective sample- and gene-specific ODFs. The ODF was
then normalized and assigned to 1 ifless than 1.

We used the over-dispersed Poisson distributions to calculate the data likelihoods P(RDg|CN)
for all considered CN values. Finally, we used Bayesian method to estimate the posteriors for each
considered CN (Eq. 2.4).

P(CN) - P(RDy|CN)

= T PCN) - P(RD,[CN) (.4)

P(CNg|RDy;)

A CNV event is reported the posterior probability of a non-normal copy number is above a

pre-defined threshold value, h.

2.4.5 INSIGHT FROM EMPIRICAL DATA AND ACCOUNTING FOR OVER-DISPERSION

We performed a simulation to assess potential variability in the gene affinities on the
over-dispersion. Using this data, we calculated expected read depth RD expecteq for every GSS as
product of respective gene affinity and MDR. Subsequently, we calculated read depth using
Poisson distribution with RDeypecteq as parameter. The z-score calculated from that distribution
followed a normal distribution N(o, 1), as expected for an ideal case.

Subsequently, we randomly distorted the vector of gene affinities; i.e. we drew a random
number from a normal distribution N(ag, 0.15 - ag)to be used instead of the exact affinity a,. With
increased variability in gene affinities, the distribution becomes progressively wider; ata 15%
increase in variability the results are comparable to the distribution of the empirically calculated
z-score (Figure 2.4.1). This result indicates that as little as 15% variability in gene affinities is
enough to reproduce the distribution over-dispersion observed in the experimental data.

If we knew ODF for every GSS in our data, we could correct for it, so that

RDubserved - RDexpected

€/ RDexpected

50

~ N(o,1) (25)
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Figure 2.4.1: To generate the simulated data, we introduced a normal random noise to
each target affinity calculated from the real data with 15% of the value of the target affin-
ity, N(a, 0.15-a). The distribution of the z-score (M) from the simulated data (red)

exp

is very similar to that of the real data (blue). Note that both z-score distributions from simu-
lated and real data are much wider (dispersed) than the ideal normal distribution (green) due
to the over-dispersion effect.
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where ¢ is the sample-gene-specific correction factor for the over-dispersed Poisson effect
(over-dispersion factor, ODF).

As indicated above, ODF remains constant over a range of coverage only under assumption of
mutual independence of subsequent runs. When the entire z-score matrix is considered, that
assumption is obviously violated (i.e. RDs in different genes in a sample are correlated by sharing
the same MDR and RDs in a gene in different samples are correlated by sharing the same gene
affinity).

In the absence of a fundamental model describing interplay between gene affinities varying
across genes, samples and machine runs, we developed an empirical procedure to account and
correct for over-dispersion.

We estimated the over-dispersion factor for each site according to the following steps. First we

calculated a z-score matrix [z ],

observeds g — expected; g

Zog =
\/expected,

(2.6)

from the observed read depth matrix [observed; ;] and expected read depth matrix [expected ).
Then for every row and for every column in the "z-score” matrix, we calculated their respective

standard deviations. This procedure generated a column vector ¢, .| of row (sample-specific)

standard deviations and a row vector [c, ;| of column (gene-specific) standard deviations.

Subsequently, the over-dispersion factor matrix [c, ;] was calculated as:

Csx ° C
P (2.7)
mean(c.g)

If any over-dispersion factor was to fall below 1, it was assigned 1 since no counting experiment
of independent trials should have a variance less than that of a Poisson distribution.

Once the over-dispersion factor was calculated, we could model data likelihood using a normal

distribution N (RDexptected, C* A /RDexpected) .
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2.4.6 NEIGHBORING GENE DELETIONS

A simple extension of the algorithm used neighboring gene deletion events as part of the
detection method. For the purpose of our algorithm, the genes were deemed “neighboring” if
they were located on the same chromosome, the segment between those genes was no longer
than 3 Mbp and no gene was sequenced in between. In principle, when a gene has a deleted
neighbor, we should assume a higher prior probability of a deletion in the gene in question. Since
the posterior probability usually scales monotonically with the prior, for practical reasons we
assumed a lower Bayesian posterior probability threshold (4 = 0.1) to produce a preliminary list
of candidate events. Events on this list for which at least one of the two immediate neighbor genes

was also on the list were retained.

2.4.7 SENSITIVITY ESTIMATION

We carried out sensitivity estimation in the SC dataset, using simple simulations. In each
simulation cycle, we drew § genes randomly from every sample, and downscaled the observed
RD for those genes by a factor of 2, to emulate heterozygous deletions. We then applied our
standard detection procedure to this “spiked” dataset, and tabulated the fraction of simulated

events that were detected by the algorithm.

2.4.8 CommoN CNVs

We evaluated all genes that failed to achieve r* > 0.7 using the linear fit model from

Figure 2.2.1B. The results of that evaluation are shown in Figure 2.4.2. The last row describes
result for gene RNF1 50 that achieved the worst 7* of 0.48. The histogram shown in the left
columns demonstrates distribution of observed RD to MRD (taken as from Figure 2.2.1B), In
case of a rare CNV (or lack of CN'Vs at all), one would expect a unimodal distribution centered
around that gene affinity. For a common CNV, one additional peak corresponding to CN = 1
centered around half of that gene affinity, and another peak corresponding to homozygous

deletion (CN = 0) around o, should be visible. However, the data shown do not allow identifying
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such a pattern of either bi- or tri-modal distribution.

Additionally, the histogram of quality index calculated for that gene is presented in the right
column. The low values of quality index further corroborate the conclusion that the absence of a
call in that locus is due to lack of high quality data rather than due to a hypothetical common
CNV event. Careful inspection of the graphs calculated for all 69 genes the failed simple linear fit
reveals lack of evidence for a common CNV in any of them. Notably, in the SC dataset only 28%
of GSS in genes with r* < 0.7 were potentially detectable vs. 62% in genes with 7* > o.7.

With no common CNV present in the experimental data, we tested the sensitivity of our
algorithm using simulated deletions. We used realistic gene affinities (mean and three quartiles
from Figure 2.2.2B) and the empirical MRD; for 106 samples. We assumed frequency of the
deleted allele among 106 samples varying from o to 100% in 10% increments; we allowed for
random segregation, so that both homo- and heterozygous deletions were introduced. Then for
each sample we calculated the expected read depth as a product of MRD and affinity; however in
the samples drawn for a heterozygous deletion we used halves of the nominal affinities and in the
samples drawn for a homozygous deletion, we multiplied the MRD by o.01 to account for reads
erroneously mapped into that region. Having an expected read depth m for each sample, we drew
arandom read depth using a normal distribution, N(m, ODF,/m), where ODF was assumed as 8.
In Figure 2.4.3B and 2.4.3C we show the results of analysis performed on simulated common
CNV events. Panel B shows r> values obtained from the simple linear fit (as in Figure 2.2.1B) and
panel C shows the 7* values obtained from the tri-linear fit (as in Figure 2.4.3C). The uni-linear r*
values deteriorate with the increase of the deleted allele frequency. To the contrary, the tri-linear
r* values stay relatively high over wide range of the allele frequency. Finally, Figure 2.2.3D
demonstrates that the sensitivity of the algorithm to the common CNVs remains relatively stable

over wide range of the deleted allele frequency (up to 90%).
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Figure 2.4.2: Analysis of genes that failed simple linear fit. Each row describes a different
gene. Left panels — distribution of the ratio of RD at the GSS sites to the sample MRD.
Right panels — distribution of the quality index for that gene. The non-multimodal distribu-
tions and the low quality-index values of these genes suggest that there are no common CNV
events on these loci.
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Figure 2.4.3: A. If a simple linear fit fails, the gene affinity is estimated for each gene as the
slope of the least-square-error tri-linear fit between MRD and RD for that gene. B and C.

r* values of a simple linear fit (B) and a tri-linear fit (C) as a function of the deleted allele
frequency.
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2.4.9 VALIDATION EXPERIMENTS

All primers were designed using Primer3 [99, 100] with default settings to obtain a desired PCR
amplicon size between 200 bp and 250 bp. All primers were checked with BLAT [101] to avoid
known SNPs that could influence primer hybridization. PCR products were run on an agarose gel
to make sure they gave no additional bands besides the expected amplicon.

Primer efficiencies were determined by calculating the standard curve of a serial dilution (4
times, 10-fold) of pooled genomic DNA (Promega, Madison, WI). All experiments were
performed in triplicates on the Roche LightCycler 480 platform with LightCycler 480 SYBR
Green I Master (cat# 04707516001). The volume of each reaction was 20 yl with final primer
concentrations of 400 nM. The PCR was performed according to the following protocol: § min at
95 °C, and 45 cycles of ss at 95 °C, 10s at 60 °C, 30s at 72 °C. To determine the copy number state
of an event locus, we used the Delta-Delta-Ct-Method (2-AACt) for each event locus compared
to a reference locus in the sample and a control pool of seven individuals (Promega, Madison,
WI), respectively. This reference locus was not previously known to show any copy number
variation.

Among the calls made without neighboring information, we exhaustively validated all the calls
with posterior probability of 0.95 or more (4 coincided with known events [18]; we
experimentally validated the remaining 18 events). Additionally, we performed qPCR validations
for 4 events randomly selected from those with posterior probability between 0.65 and 0.95 (2
coincided with known events [ 18]; we experimentally validated the remaining 2 events).

Of the calls made with the neighboring information, we deemed 7 calls coincided with known
events [ 18]; 7 out of 10 remaining calls were submitted for qPCR validation. For the purpose of
validation, the fold change for a given gene <o.7 was classified as a positive validation, >0.8 as a

negative validation and in the intermediate range as inconclusive.
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If the facts don't fit the theory, change the facts.

Albert Einstein

Tangram: An inclusive toolbox for MEI detection

oBILE ELEMENTS (MEs) constitute greater than 45% of the human genome as
aresult of repeated insertion events during human genome evolution. Although
most of these elements are now fixed in the population, some MEs, including
ALU, L1, SVA and HERV-K, are still actively duplicating. Mobile element insertions (MEIs) have
been associated with human genetic disorders, including Crohn’s disease [102],
hemophilia [ 103 ], and various types of cancers [ 104, 105 ], motivating the need for accurate MEI
detection methods. To comprehensively identify and accurately characterize these variants in
whole genome next-generation sequencing (NGS) data, a computationally efficient detection

and genotyping method is required. Current computational tools [64, 65, 76, 106] are unable to
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call MEI polymorphisms with sufficiently high sensitivity and specificity, or call individual
genotypes with sufficiently high accuracy.

Here we report Tangram, a computationally efficient MEI detector program that integrates
read-pair (RP) and split-read (SR) mapping to detect MEI events. By utilizing SR mapping in its
primary detection module, Tangram is able to pinpoint MEI breakpoints with single-nucleotide
precision. To understand the role of MEI events in disease, it is essential to produce accurate
individual genotypes in clinical samples. Tangram is able to predict sample genotypes with very
high accuracy. Using simulations and experimental datasets, we demonstrate that Tangram has
superior sensitivity, specificity, breakpoint resolution and genotyping accuracy, when compared
to other, recently developed MEI detection methods. Tangram serves as the primary MEI
detection tool in the 1000 Genomes Project, and is implemented as a highly portable,
memory-efficient, easy-to-use C/C++ computer program, built under an open-source

development model.

3.1 INTRODUCTION

Structural variations (SVs), like single nucleotide polymorphisms (SNPs), are a ubiquitous
feature of genomic sequences and are major contributors to human genetic diversity and disease
[107-109]. With the advent of next-generation sequencing (NGS) technologies providing vast
throughput for individual resequencing, a number of new algorithms have been developed for
various SV types, including copy number variations (CNVs) [64-66, 110, 111], and large
deletion events [112]. These algorithms take advantage of various signals provided by NGS
mapping algorithms primarily read-depth (RD), and read-pair (RP) mapping positions.
However, the computational identification of mobile element insertions (MEIs) with NGS data is
less well established because mobile elements (MEs) are highly repetitive DNA sequences that
are difficult to align against a reference genome with commonly used mapping strategies. MEs
have propagated in the human genome through a copy-and-paste mechanism [113-115] and

undergone continuous amplification in early primate evolution. Through more than 40 million
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years of accumulation, MEs account for nearly half of the human genome sequence [116].
Although the current insertion/duplication rate of these elements is substantially reduced, many
genetic disorders, such as Crohn’s disease [ 102], hemophilia [103] and cancers [ 104, 105], have
been reported to be associated with their continuing transposition into new genomic locations.

To address eftective detection of MEI events we developed an MEI detection pipeline around
our SPANNER SV discovery tool [ 117], and deployed it on the Pilot data of the 1000 Genomes
Project (1000GP) [15]. Using this pipeline we compiled the most comprehensive catalog of MEI
events in the human genome to date [118]. Although an effective SV detector used extensively in
the 1000GP [63 ], SPANNER only uses RP signal, limiting the precision of breakpoint prediction,
detection sensitivity as well as the genotype accuracy that can be achieved.

More recently, three NGS-based MEI detectors, RetroSeq [119], TEA [105] and
VariationHunter [ 120], have been published, each with specific limitations. For example, TEA
and VariationHunter do not provide sample genotypes, limiting their use for single-sample
detection pipelines e.g. in personal genome sequencing projects; or genotype data likelihoods
that are essential for phasing structural variants together with SNPs and short INDELSs. Also,
none of these detectors efficiently integrate the SR and RP signals: VariationHunter detects MEIs
using RP signal alone; RetroSeq and TEA only trigger SR analysis when RP signal suggests a
potential MEIL, and therefore misses events for which only SR evidence is available from the reads
(See Table 3.2.1). Because of the steady increase in the read lengths generated by today’s
sequencing technologies, SR methods are becoming more powerful because these longer reads
support confident mapping across SV event breakpoints. Therefore, it is reasonable to expect that
using both SR signal and RP signal on an equal footing, as primary observations for “nucleating”
SV event calls, will be more sensitive than RP signal alone, or RP signal in combination with a
secondary SR search. As a more practical point, the TEA and VariationHunter programs produce
reports in non-standard formats, rather than the well established standard VCF format [121], an
issue for data communication and downstream analysis. Finally, all the above tools focus on the

detection of NON-LTR events, such as ALUs, L1s and SVA, and they do not address the
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detection of LTRs, such as HERV-K, in the human genome.

3.2  RESULTS

Here we report a fast and convenient MEI detection toolbox, Tangram, which effectively
integrates signals provided by both RP and SR mapping. What sets our approach apart from
existing methods is the “global” use of SR mapping: we perform a SR mapping step for all
orphaned or substantially soft-clipped reads before the detection begins, and therefore both RP
and SR mappings are available at the outset, and can nucleate SV event calls. We target both
NON-LTR and LTR mobile element types. The global use of SR mapping substantially improves
the accuracy of identifying SV event boundaries (breakpoints). Our method produces sample
genotypes as well as genotype likelihoods. Unlike other SV detection tools, Tangram is able to
detect MEIs for a single individual genome and simultaneously process multiple sequence
alignment (BAM) [122] files to call MEI events on population-scale data, and can deal with
multiple fragment length libraries and a mixture of read lengths within a single detection step.
Tangram is memory and CPU eflicient, as analysis is carried out locally i.e. event detection in any
given region only requires reading the alignment within that region. To our knowledge, there are
currently no other detectors that can provide such a comprehensive set of features required for

the full characterization of MEIs within a single sample, or a large collection of samples.

3.2.1 PERFORMANCE EVALUATION ON SIMULATED DATASETS

We evaluated the detection and genotyping performance of Tangram with a series of in silico
experiments involving the insertion of 1,000 full-length AluY elements into the sequence of
human chromosome 20 (to closely reflect the real insertion, each inserted AluY element was
attached with 15 bp poly-A tails and 15 bp target-site duplication sequence), and generating
simulated paired-end sequencing reads of various lengths with realistic base error properties (See
Methods 3.4.7). After aligning these reads to the human reference genome sequence using our

MOSAIK read mapping program [57], we applied Tangram detect MEI events and to generate
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sample genotype calls (see Table 3.2.1 and 3.2.2). For comparison, we also ran the RetroSeq
program on the same dataset (aligned with the BWA mapping program [ 58], using default
parameters, as instructed by the RetroSeq paper [119]), and compared detection sensitivity and
genotyping accuracy, for various read lengths and levels of sequence coverage, considering both
heterozygous and homozygous events i.e. case where the MEI event is present in one or both
chromosome copies within the cell. TEA and VariationHunter do not report sample genotypes,
and therefore we did not use these two programs in the comparisons.

As Table 3.2.1 shows, Tangram’s sensitivity exceeds 97% both for heterozygous and
homozygous events in 10X sequence coverage or greater. Even in low-coverage sequence (5 X is
the approximate average sequence coverage in the low-coverage 1000GP datasets), Tangram
maintains >80% sensitivity. Tangram’s sensitivity substantially exceeds that of the RetroSeq
program, especially when detecting heterozygous events in low-coverage (5 %) data.

We also tabulated genotype calling accuracy i.e. the rate at which a given algorithm provides
the correct genotype for a given simulated sample (i.e. no MEL heterozygous MEI, homozygous
MEI). As Table 3.2.2 indicates, Tangram is able to call sample genotypes with >90% accuracy for
all coverage levels and event ploidy we considered. Accuracy in our simulated data is nearly
perfect for heterozygous events over 10X coverage, and for homozygous events over 20 X
coverage. These accuracy values compare very favorably with those obtained for RetroSeq, which
appears to heavily favor homozygous calls in low-coverage data, and heterozygous calls in deeper
sequence coverage, and has a very high error rate in the non-favored category. The overall
accuracy of the Tangram genotypes, obtained by a judicious mixing of heterozygous and
homozygous events, is high, over 96%, in every category, again, substantially higher than what was
obtained with RetroSeq.

Determining the exact location of SV event boundaries is notoriously difficult. In the
simulation experiments performed here, Tangram was able to assign MEI breakpoints at or near

single nucleotide resolution using the SR signal. For 106 bp reads, greater than 65% of the
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Table 3.2.1: Results are shown for the Tangram and RetroSeq programs applied to simulated
data (1,000 ALUY insertions introduced at random positions on human chromosome
20).Simulated reads were generated under: different ploidy values (homozygous or
heterozygous), read length (76bp and 106bp) and read coverage (5x, 10x, 20x). The two
columns “Sen (RP\SR)” and "“Sen (SR\RP)" indicate the sensitivity of the RP and SR
methods respectively, when considered in isolation. The best result in each row is indicated in
boldface text.(Pldy: Ploidy, RL: Read Length, Cov: Coverage)

Parameters Tangram RetroSeq
Pldy RL Cov Sen(RP) Sen(SR) Sen(RP\SR) Sen(SR\RP) Sen Sen
55X 67.6% 60.0% 25.4% 17.8% 85.4% 43.7%
76bp 10X 83.4% 88.9% 8.8% 14.3% 97.7% 93.6%
Het 20X 84.2% 97.8% 1.2% 14.8% 99.0% 98.9%
55X 45.1% 67.3% 13.9% 36.1% 81.2% 12.0%
106bp 10X 77.0% 93.0% 4.5% 20.5% 97.5% 68.9%
20X 83.4% 98.9% 0.4% 15.9% 99.3% 97.7%
§X  83.4% 88.9% 8.8% 14.3% 97.7% 95.2%
76bp 10X 84.2% 97.8% 1.2% 14.8% 99.0% 98.8%
Homo 20X 84.6% 99.1% 0.4% 14.9% 99.5% 99.2%
§X 77.0% 93.0% 4.5% 20.5% 97.5% 68.9%
106bp 10X 83.4% 98.9% 0.4% 15.9% 99.3% 97.7%
20X 83.8% 99.3% 0.4% 15.9% 99.7% 98.9%
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Table 3.2.2: For each simulated dataset corresponding to a specific read length and coverage,
we randomly chose 500 MEI loci. 400 were designated as heterozygous sites, and 100 as
homozygous sites. The genotype accuracy was then calculated for these loci. The random
selection and genotype accuracy experiment was then repeated five times (to give a sample of
2,500 MEI loci) and the overall genotype accuracy was determined by averaging the results of
the five experiments. The best result in each row is indicated in boldface text. (RL: Read
Length, Cov: Coverage)

Parameters Tangram RetroSeq

RL Cov Het Homo Total Het Homo Total

5% 99.3% 90.8% 97.6% 2.3% 92.8%  20.4%

76bp 10X 100.0% 94.2% 98.8% 40.6% 63.6% 45.2%
20X 100.0% 98.4% 99.7% 96.5% 8.8% 78.9%
5 X 96.6% 93.4% 96.0% 0.0% 91.6% 18.3%
106bp

10X 99.6% 92.6% 98.2% 38.8% 64.4% 43.9%

20X  100.0% 95.6% 99.1% 95.1% 10.8% 19.6%

reported breakpoints co-locate exactly with, and over 99% are within 15 bp of the true
breakpoints (see Figure 3.2.1). This performance is attributable to SR-mapped reads identifying

the breakpoints at a resolution that RP-only methods are unable to match.

3.2.2 PERFORMANCE COMPARISONS USING 1000 GENOMES PRO_]ECT DATA

We ran Tangram and two other MEI detection algorithms, RetroSeq and TEA, to analyze
deep-coverage sequencing data from a CEU trio consisting of samples NA12878 (89x),
NA12891 (78x) and NA12892 (78X ), obtained from the public 1000GP ftp site. The DNA of
these individuals were collected from fresh blood cells. All people who contributed their DNA to
this project are anonymous and have no phenotype data available. Trio data were sampled from
mother-father-adult child families. The detailed data collection guideline can be found from the
supplemental information of [ 123 ]. The data consists of 101 bp paired-end reads generated by
Illumina HiSeq sequencing machines; insert size was 465 + 50 bp (median * standard deviation).

We mapped the reads with MOSAIK 2.0 [57] for Tangram and BWA [ 58] for RetroSeq and TEA,
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Figure 3.2.1: Breakpoint resolution of Tangram and Retroseq. The difference between re-
ported and true breakpoint position in simulated data is shown for the Tangram and the Ret-
roSeq MEI detection algorithms (homozygous events in 76 bp paired-end reads, 20x sequence
coverage). The majority of breakpoints reported by Tangram exactly match the true break-

point.
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according to author instructions. To assess sensitivity and genotype accuracy, we compared the
MEI loci (ALU and L1) reported by the three detectors to the events reported and
experimentally characterized in a previous large-scale study [ 118] using an earlier set of 1000GP
data for the same samples (characteristics of this dataset from the 1000GP Pilot 2 trio data are
reported in Table 3.2.3). The Stewart et al. 2011 [118] callset consisted of 1,208 Aluand 180 L1

Table 3.2.3: Sequence coverage (base coverage) for two sequencing technologies (454 and
[llumina) of CEU trio (NA12878, NA12891 and NA12892) used in 1000GP Pilot MEI
paper [118].

Samples 454 INlumina

NA12878 11.0X 15.9X%X
NA12891 o0.0X 14.9 X
NA12892 0.0X 9.2 X

calls, including 486 Alu and 48 L1 insertions that were experimentally confirmed with a
PCR-based validation technique. As shown in Table 3.2.4, Tangram recovered >98% of PCR
validated events and > 93% of all reported events. RetroSeq provided comparable results, but
TEA was unable to achieve this level of sensitivity to ALU events. Tangram’s genotype accuracy
for ALU events was > 91% for all three samples. Tangram detected approximately 87% of PCR
validated L1 insertion events, outperforming the two competing algorithms. Tangram’s
sensitivity to L1 events reported in the Stewart ef al. 2011 data set drops markedly in comparison
to the PCR-validated events. This is likely the result of the high false discovery rate (FDR) for L1
events (18.8%) in the Stewart et al. 2011 data set. Notably, our algorithms called none of the
events reported in the Stewart et al. 2011 dataset that failed PCR validation. It is notable that
sample NA12878 had the highest number of MEI calls using either of the calling methods. This is
likely the result of the substantially higher read coverage in this sample, as well as longer reads
from 454 sequencing machines, not available for the other two samples (Table 3.2.3).

Our experiments here demonstrate that Tangram provides accurate MEI genotypes across all

MEI types (see Table 3.2.5). The TEA program does not provide sample genotypes, and
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Table 3.2.4: Comparisons are shown for a CEU trio (NA12878, NA12891 and NA12892)
processed with Tangram, RetroSeq and TEA.Sensitivity and genotype accuracy was measured
by comparing the reported events with those in Stewart et al., 2011 [118]. The total number
of validated and reported MEI loci are shown under the “Stewart et al. 2011" column. The
two sub columns under each detector, “Validated” and “Reported”, show the sensitivity to
PCR validated loci and all reported loci in Stewart et al. 2011, respectively. The TEA program
does not provide genotype calls, and therefore could not be used for genotype accuracy
comparisons. The best result in each row is indicated in boldface text.

Stewart et al. 2011 Tangram RetroSeq TEA
Sample Loci Sensitivity Genotype Sensitivity Genotype Sensitivity
Validated Reported Validated Reported Validated Reported Validated Reported

NA12878 408 965 98.8% 93.0% 95.0% 94.10% 87.70% 76.40% 89.50% 82.20%
ALU NA12891 309 675 98.1% 96.3% 91.2% 98.40% 96.40% 67.90% 96.10% 93.80%
NA12892 312 650 98.1% 96.9% 92.6% 99.00% 97.40% 71.20% 94.20% 92.50%
NA12878 38 157 86.8% §2.2% 87.5% 78.90% 45.80% 83.30% 84.20% 49.70%
L1 NA12891 26 64 92.3% 75.0% 100.0% 76.90% 64.10% 66.70% 84.60% 70.30%
NA12892 34 76 94.1% 76.3% 85.7% 79.40% 65.80% 50.00% 76.50% 64.50%

therefore we were not able to include it in this comparison. RetroSeq appears to suffer from a
systematic bias when applied to deep-coverage data: it called almost all MEI loci as heterozygous.

In comparison, Tangram can effectively distinguish between homozygous and heterozygous loci.

3.2.3 RUNNING TANGRAM ON POPULATION DATA

We deployed Tangram on 218 samples from the 1000GP Phase 1 release [123]. Three
populations were included in this dataset: ASW (people with African ancestry in Southwest
United States, 5o individuals), LWK (Luhya in Webuye, Kenya, 83 individuals) and YRI (Yoruba
in Ibadan, Nigeria, 85 individuals). These data were collected with same strategy as the
deep-coverage trio data mentioned above. However, the sequencing coverage for these samples is
much lower. On average, each sample had §x sequence coverage so the overall coverage of this
dataset is ~1,000 X. The allele frequency spectrum (AFS) of all MEIs for each of the three
populations (4,085 ALU, 1,548 L1, 88 SVA and 44 HERV-K insertions) is shown in Figure 3.2.2.
The expectation is that the AFS of MElIs is similar to AFS observed from SNP data [118]. This s
indeed the case, except at very low allele frequency, where detection sensitivity drops off in the

low-coverage 1000GP datasets (as there may be too few RP and/or SR mapped reads supporting
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Table 3.2.5: A contingency table is shown for MEI genotypes reported by Tangram and
RetroSeq on deep coverage sequencing data from a CEU trio (NA12878, NA12891 and
NA12892).The “Genotype from validation” column shows the genotype that was validated in
Stewart et al. 2011 [118]. The “Genotype call” column shows the genotype predicted by
Tangram and RetroSeq at the same loci. The “Genotype” column in Table 3.2.4 was
calculated based on the results in this table.

Tangram RetroSeq

Genotype from  Genotype call Genotype call

validation Het Homo Het Homo

Het 120 8 11 o)
NA12878 2

Homo 1 26 37 1

ALU

Het 1 o
NA12891 95 3 o3

Homo o 40 44 o

Het 106 11 10 o
NA12892 4

Homo o 32 42 o

Het 1 o
NA12878 S 4

Homo o 2 1 1

L1

Het o 2 o
NA12891 4

Homo o 2 1 o

Het 1 o
NA12892 3 3

Homo o 3 3 o
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Table 3.2.6: Genomic distribution of MEI events detected from the AFR dataset.

Genomic Region Number of MEIs

Intergenic 3,249
Intron 2,439
3’ UTR 54

5 UTR 23
Exon o

a MEI event). The genomic distribution of these 5,765 MEI events is shown in Table 3.2.6. Most
of the detected MEI events (98.7%) fall into the intergenic and intronic regions whereas none of
the events are found in the exon regions. This observation is very similar to the results from

Stewart et al. 2011 [118]. The absence of MEI events in exonic regions could be attributed to the
selection pressure since such long insertion events could substantially interrupt the transcription

process (See Discussion 4.1.3).

3.2.4 EXPERIMENTAL VALIDATION

To assess the specificity of Tangram, researchers (Dr. Miriam Konkel and Dr. Mark Batzer) from
Louisiana State University helped us perform the PCR validation experiment on 23 1000GP
Phase 1 [123] samples (Table 3.2.7), including a CEU trio (NA12878, NA12891 and NA12892)
with deep coverage (~20x ) and 20 low-coverage (~5 %X ) samples from the CHS and LWK
populations. Tangram detected 2,874 ALU, 256 L1, 53 SVA and 22 HERV-K insertions in these
samples. Of the 3,205 loci, 357 were novel, i.e. not reported in previous studies [ 118, 124-130],
and absent from the dbRIP database [131]. Two random subsets, 160 sites in all, were randomly
selected for PCR validation: (1) 8o loci (66 known + 14 novel) were randomly selected from the
entire callset of 3,205 MEISs; and (2) additional 80 loci were randomly selected only from the
novel 357 novel calls. PCR validation results for Tangram and VariationHunter are shown in
Table 3.2.8 and Table 3.2.9. Tangram achieved very low FDR for all three non-LTR MEI types

(<6%). Although the numbers are low, no false positive L1 and SVA calls were reported. The
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Figure 3.2.2: Allele frequency spectrum for MEI variants detected in 3 African populations.
Results for samples designated as ASW, LWK and YRI are shown, for 4 types of MEls: ALU,
L1, SVA and HERV-K. There is limited sensitivity to low frequency events because of sparse
or absent supporting reads in low-coverage data.
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Figure 3.2.3: Motifs reported by MEME software [132] by using sequences (£25bp) around
the ALU and L1 breakpoints detected by Tangram in 23 1000 Genome Project Phase 1 sam-
ples. They are highly consistent with the canonical ALU and L1 recognition motifs.

overall estimated FDR for the first and second validation sets were 2.53% and 9.21%, respectively.
This result is consistent with expectations that newly detected, previously unknown events have
higher FDR. In Table 3.2.9, we compared experimental validation results for three algorithms:
Tangram, RetroSeq, and VariationHunter, for event types detected by each calling algorithm.
Tangram achieves substantially higher specificity than the two competing algorithms. In fact, this
level of accuracy is comparable to or better than the FDR of SNP calls from current
state-of-the-art variant callers [123].

Consistently with the validation results, a copy of the canonical ALU and L1 recognition motif,
5'-TTAAAAA-3', was found within a 25 bp window of all reported breakpoints (Figure 3.2.3),

further confirming the high specificity of our detection method.
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Table 3.2.7: Samples and sequence coverage of CEU trio and 20 1000GP phase | samples
used for PCR validation

Sample Population Platform

NA1g3z97 LWK ILLUMINA
NA1g9398 LWK ILLUMINA
NA19399 LWK ILLUMINA
NAig404 LWK ILLUMINA
NA19428 LWK ILLUMINA
NAi1g429 LWK ILLUMINA
NA19434 LWK ILLUMINA
NA19435 LWK ILLUMINA
NAi1g440 LWK ILLUMINA
NA19443 LWK ILLUMINA
HGoo662 CHS ILLUMINAHISEQ
HGoo663 CHS ILLUMINAHISEQ
HGoo671 CHS ILLUMINAHISEQ.
HGoo672 CHS ILLUMINAHISEQ
HGoo683 CHS ILLUMINAHISEQ
HGoo684 CHS ILLUMINAHISEQ
HGoo689 CHS ILLUMINAHISEQ
HGoo6g9o CHS ILLUMINAHISEQ
HGoo464 CHS ILLUMINAHISEQ
HGoo614 CHS ILLUMINAHISEQ
NA12878 CEU Multiple

NA12892 CEU Multiple

NA12891 CEU Multiple
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Table 3.2.8: PCR validation results for the Tangram MEI detector. Validation results and

estimated false discovery rates are shown for MEI calls from 23 1000 Genomes Project Phase 1
samples.

ALU L: SVA HERV-K Total
Random Novel Random Novel Random Novel Random Novel Random Novel
Analyzed by PCR 68 64 7 3 3 6 1 3 8o 78
Validated Loci 66 58 7 3 3 6 1 2 77 69
Invalidated Loci 2 6 o o o o o 1 2 7
FDR 2.94% 9.38% 0.00% 0.00% 0.00% 0.00% 0.00% 33.33%  2.53% 9.21%

Table 3.2.9: Comparison of PCR validation results across three MEI detection algorithms.
Calls were made in 23 1000 Genomes Project Phase 1 samples by Tangram, RetroSeq and
VariationHunter. The best result is indicated in boldface text.

Tangram RetroSeq VariationHunter

Random Novel Combined Random Novel Combined Random Novel Combined

Analyzedby PCR 80 78 158 8o 8o 159 83 51 134
Validated Loci 77 69 142 73 58 131 69 29 98
Invalidated Loci 2 7 9 7 21 28 14 22 36
FDR 2.53% 9.21% §.96% 8.75% 26.58% 17.61% 16.87% 43.14% 26.86%
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3.2.5 RESOURCE REQUIREMENTS AND SOFTWARE AVAILABILITY

The primary motivation behind developing Tangram was to provide highly accurate MEI calls. To
be a useful software tool, however, it must be easy to install, easy to run, and generate results in a
timely fashion, using reasonable computational resources. We characterized resource usage and
analysis time on our analysis of the 218 1000GP low-coverage samples described [123]. When
using other MEI detection software, it is a common requirement that only a single BAM file can
be processed at a time, necessitating all input BAM files to be merged into a single file (a lengthy
task), or to process each BAM file individually (reducing sensitivity to low-frequency events).
Tangram, in contrast, can process all input BAM files simultaneously. Most currently available
structural variant callers employ multiple passes through the entire input file, requiring
substantial memory and computation time. To reduce the memory footprint and increase the
throughput, Tangram was designed to call MEI events regionally, i.e. within shorter windows of
the sequence alignment. Single-pass analysis is made possible by annotation tags produced by our
MOSAIK read mapper software [ 57], marking reads whose fragment-end paired mate maps into
ME reference sequence. Additional parallelization was accomplished by multi-threaded
implementation of the software. In this test, we submitted one Tangram detection job for each
chromosome (Chr1-ChrX). Each job used one AMD Opteron 6134 CPU (8 cores at 2.3GHz).
The detection process finished within 58 hours (wall time) or 96 hours (CPU time). Repeating
the detection process in 1 Mbp detection windows on the same cluster resource requires 0.24
hours (wall time) or 0.40 hours (CPU time).

Tangram is easy to install and run. Users can download it from its main github repository
(https: //github.com/jiantao/ Tangram). We have also integrated it into our pipeline and tool

launcher system, GKNO, available at http://gkno.me.
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3.3 DiscussioN

Many MEI events have strong impact on gene function and they are therefore essential to
accurately detect and genotype within individuals. Mobile elements are, by nature, repetitive
sequences and are therefore difficult to detect. To our knowledge, our Tangram software is the
only robust software capable of detecting all classes of MEIs, providing accurate individual
genotype information, and accurate, near base-perfect breakpoint localization. We believe that
Tangram can achieve higher sensitivity, specificity, genotyping accuracy, and breakpoint calling
accuracy than competing MEI detection methods because of the global use of split-read mapping
information into the detection process. Competing algorithms either only use RP mapping
information to call events, or perform SR mapping in regions where RP mappings indicate a
possible MEI events. In contrast, Tangram analyses both RP and SR mapped reads from the start,
and can therefore detect events for which only SR mapping evidence exists.

Table 3.2.1 illustrates detection sensitivity when RP or SR signal is used in isolation, or in
combination with each other. At almost all read length and coverage values, the SR method on its
own is more sensitive that the RP method (except for low, 5 X coverage in 76 bp reads).
Importantly, RP detection sensitivity does not exceed 85%, even in deep-coverage data. This is
because RP-mapped reads localize the ME insertion point to a window. If the reference sequence
already contains a ME within this window, one must filter out the candidate event because of the
high likelihood of spurious detection. SR mapping localizes the insertion site with much greater
resolution, making it possible to distinguish between ME elements in the reference, and
polymorphic insertions not present in the reference.

Table 3.2.1 also illustrates that RP based methods that use a secondary SR mapping step can
perform very well in deep sequencing data because in such high-coverage datasets there are likely
read pairs mapping across the breakpoints, and then additional reads that can be SR-mapped
across the breakpoint for fine localization. In low-coverage data however, there are many events

without read pairs mapping across the breakpoints. When using shorter reads, reliable SR
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mapping becomes difficult. In both cases, sensitivity suffers. As through technology development
read lengths increase, the same sequence coverage will be accomplished with fewer, but longer,
reads. Moving forward, this trend clearly favors SR mapping methods, and in particular, methods
that use SR mapping as part of their primary detection approach. As we demonstrate in this study,
such methods are more sensitive and specific, have higher genotype accuracy, and are able to
localize event boundaries more accurately.

Our MEI detector program, Tangram is a fast, accurate tool that has been extensively tested
and benchmarked in the analysis of the 1000GP sequencing datasets. It is easy to install, easy to
use, and is available as a stand-alone package or as part of our tool and pipeline launching system,

making it especially useful for medical or population sequencing projects.

3.4 METHODS

3.4.1 THE TANGRAM DETECTOR — ALGORITHMIC OVERVIEW

As input, Tangram uses reads aligned to the genome reference sequence as well as to mobile
element reference sequences, available in BAM format alignment file(s). Currently, alignments to
ME reference sequences can be produced by the MOSAIK mapping software (version 2.0 or
above) [57]. Tangram’s RP detection module first scans the alignment for read pairs where one
mate uniquely aligns to the genome reference, and the other mate maps to a ME reference
sequence (Figure 3.4.1A). Second, read pairs where one mate is aligned to the genome reference
uniquely (i.e. with high read mapping quality value, or MQ), but the other mate either
soft-clipped or entirely unaligned, are collected as the starting material for SR mapping

(Figure 3.4.1B). The SR module attempts to align these soft-clipped or unaligned mates both the
genome reference and to the ME reference sequences in a split fashion (i.e. aligning one section of
the read to the genome reference and another section to the ME reference). Loci in the genome
with either RP or SR evidence for a candidate MEI event are then extracted. Candidate events are

filtered on the number and type of supporting fragments. A genotyping module produces
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Figure 3.4.1: lllustration of MEI detection algorithms in Tangram. A. MEI detection with
RP signal: RP algorithm will cluster those read pairs with one mate uniquely aligned to the
normal reference (5" — blue and 3" — red) and the other mate aligned to the MEI special ref-
erences (green). B. MEI detection with SR signal: SR algorithm will search for unaligned or
soft-clipped reads (crossing the breakpoint from 5’ — blue or 3’ — red) and align these reads to
both the normal reference and the special MEI reference (green) after splitting them into two
subsections. Reprinted from [118] with permission.

individual genotype likelihoods and calls sample genotypes. A reporting module produces a VCF
format variant report including the location and type of the events, as well as individual sample

genotype information.

3.4.2 SEQUENCE ALIGNMENT TO GENOME AND MOBILE ELEMENT REFERENCE

Alignments were created with the MOSAIK program, a hash-based read mapper that is aware of
user-specified insertion sequences, e.g. MEIs. When the insertion sequences are provided, the
reference hashes are prioritized such that alignment to the MEI sequences are attempted prior to
alignment to the genome reference. Since MEISs are repetitive elements, a read from an MEI can
be mapped to several locations within the genome (potentially hundreds of locations). An
additional tag in the BAM file (the ZA tag) is then populated with information about the reads
mate, including location, mapping quality and number of mapping locations for the mate. This
information ensures that BAM search operations (which can be lengthy for large alignment files)

can be avoided.
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3.4.3 MEI DETECTION BASED ON READ-PAIR MAPPING POSITIONS

Tangram first establishes the fragment length distribution for each library in the input BAM files
using “normal” read pairs (i.e. those read pairs where both mates are uniquely aligned to the same
chromosome with expected orientation). Tangram then searches the BAM files for
MEI-candidate read pairs that have one mate uniquely aligned to the reference genome and the
other aligned to a ME reference. Such read pairs must also satisfy one of the following three
requirements: (1) they do not have the expected orientation; (2) they are not aligned to the same
chromosome or (3) the fragment length is not consistent with the fragment length distribution
(p-value < 0.005). For each type of ME (ALU, L1, SVA and HERV-K), Tangram clusters these
candidate read pairs with a customized nearest-neighbor algorithm [ 133, 134] according to their
fragment center position (aligned position of the uniquely aligned mate plus one half of the
median of the fragment length distribution). During this process read pairs cluster with other
read pairs within a range determined by the fragment length distribution. This algorithm can
handle candidate read pairs from different libraries and samples eftectively, which can
significantly improve the sensitivity for multiple low-coverage samples. Also, the complexity of
this algorithm is linear in the number of candidate read pairs, making it suitable for large-scale
sequencing data. Read pairs that span into MEs from the 5’ end will be clustered separately from
those spanning in from the 3’ end. Tangram will identify an MEI event if a pair of clusters in the
MEI neighborhood range span into the insertion from both the 5’ and 3’ ends (Figure 3.4.1A).
The true breakpoint should locate somewhere between the end of the s’ cluster or the beginning
of the 3’ cluster. Tangram reports the estimated breakpoint following a leftmost convention

(smallest genomic coordinate of the two positions).

3.4.4 MEI DETECTION BASED ON SPLIT-READ MAPPING POSITIONS

We used the Scissors software [ 135 ], both a stand-alone split-read mapping program, and a
library providing an application programming interface (API) to its functions. Scissors uses a

uniquely aligned mate and the fragment length distribution to identify a candidate genomic
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region for aligning an unaligned/soft-clipped mate (Figure 3.4.1B). The alignment is performed
using a sensitive and fast algorithm, single instruction multiple data Smith-Waterman (SIMD
SW) [136]. Several candidate alignments may be obtained in this step, each of which may have a
different segment of the read successfully aligned. The unaligned/soft-clipped read is then aligned
to the MEI reference sequences, using the SIMD SW algorithm (Figure 3.4.1B). This step may
again yield several candidate alignments. After obtaining the candidate alignments, Scissors
calculates a score for each, based on the number of mapped bases and the number of mismatches.

In our application, we use the best SR alignment i.e. the alignment with the highest score.

3.4.5 CANDIDATE MEI EVENT FILTERING AND POST-PROCESSING

The MEI candidates are first filtered using the number of supporting fragments. An MEI
candidate with at least two RP supporting fragments from both s’ and 3’ or at least two SR
supporting fragments were retained. Candidates that are supported by RP signal alone undergo
additional filtering. If the candidate MEI falls within a predefined distance of a locus annotated in
RepeatMasker [ 137] downloaded from UCSC Genome Browser [138] they are removed from
the candidate list. The distance used is the approximate maximum expected fragment length
(p-value = 0.005) in the clusters of supporting RP fragments. For ALU and HERV-K events, the
candidate call is only filtered out if the MEI in RepeatMasker is also an ALU or HERV-K event.
L1 and SVA elements are filtered out if they also co-locate with an L1, SVA or ALU event in
RepeatMasker. For MEI events supported by SR signal, no further filtering steps will be applied.
All remaining MEI candidates will be reported in the final VCF file. These filtering steps can be

performed using the PERL program (tangram_filter.pl) thatis included in the toolbox.

3.4.6 SAMPLE GENOTYPE CALLING AND GENOTYPE LIKELIHOOD CALCULATION

Tangram uses a Bayesian framework to predict the genotype of MEI events [ 118]. We calculate

the posterior probability of a given sample MEI genotype g (i.e. monomphic: REF/REF;
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heterozygous MEIL: REF/MEI: or homozygous MEI: MEI/MEI) as follows:

P(g)P(Dlg)
>_¢ P(&)P(D¢)

where D is the observed read evidence at the site; and P(g) is the prior probability of the

P(g|D) = (3.1)

genotype. By default, Tangram will set a flat prior probability (1/3) for all three possible
genotypes. The data likelihood, P(D|g), is calculated as a binomial probability with the following

parameters:

P(D’g) :pbin(NalﬁNalt +Nf€f7pg) (3-2)

where p_ is the expected ratio of MEI alleles to the total number of fragments (~o for
homozygous reference, 0.5 for heterozygous MEI and ~1 for homozygous MEI); N,.fand Ny are
the numbers of read pair fragments that support reference and MEI (alternate) alleles,
respectively. Reference and MEI alleles are defined as follows: any uniquely mapped read pairs
spanning the predicted breakpoint with a consistent insert size and orientation will be counted as
a fragment supporting the reference allele. Fragments supporting an alternate allele (insertion)
are those inconsistent with the conditions for a reference allele collected during the detection
step (both RP and SR signal). The meaning of the data likelihood is the binominal probability
that N,.¢ + Ny will fluctuate to Ny, given the expected P

The genotype reported by Tangram is that with the highest posterior probability and the

output VCEF file is populated with the corresponding data likelihoods.

3.4.7 SIMULATION DATA GENERATION

1,000 full-length ALUY elements with a 15 bp poly-A tail and a 15 bp target-site duplication
(TSD) sequence were randomly introduced into chromosome 20. No elements were allowed to
insert within a 100 bp window of the reference MEs or other simulated elements. Simulated

Ilumina paired-end reads were generated for both heterozygous and homozygous insertions,
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with two different read lengths (76 bp and 106 bp) and three different coverages (5, 10X and
20X ) using the MASON read simulator [61] with the default error model. This led to 12
different different sets of simulated data. All of the simulated reads had a 500 bp + 100 bp
(median + standard deviation) insert size. MOSAIK 2.0 [57] with default parameters was used to
align these simulated reads against a customized human reference that combined hgi9 and 23 ME
sequences (4 ALU, 17 L1, 1 SVA and 1 HERV) downloaded from RepBase [139]. The output
BAM files from MOSAIK were sorted by genomic coordinates using BamTools [ 140]. The final

BAM files served as the input to Tangram for MEI discovery and genotyping.

3.4.8 GENOTYPE MIXING

For each dataset corresponding to a specific read length and coverage, we randomly chose 500
MEI loci. 400 were designated as heterozygous sites, and 100 as homozygous sites (the 4:1 ration
was based on experimentally validated genotypes from our earlier study, Stewart et al.

2011 [118]). The genotype accuracy was then calculated for these loci. The random selection and
genotype accuracy experiment was then repeated five times (to give a sample of 2,500 MEI loci)
and the overall genotype accuracy was determined by averaging the results of the five

experiments.

3.4.9 ALIGNMENTS FOR RETROSEQ

RetroSeq calls were based on BWA [ 58] alignments with default parameters as suggested in the
RetroSeq publication.

3.4.10 IDENTIFICATION OF EVENTS ACROSS MEI CALLSETS

In this experiment, we report a detected MEI event as a match to the locus in Stewart et al.
2011 [118], if the two events are within 500 bp of each other. This criterion is a result of the large

breakpoint uncertainty in Stewart et al. 2011.
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3.4.11 PCR VALIDATION

Two sets of 80 loci each were selected for PCR validations from the whole dataset of candidate
loci containing ALU, L1, SVA, and LTR elements. The first set contained loci from the whole
dataset while the second one included only loci identified as novel based on previous

studies [118, 124~130] and the dbRIP database [131]. Due to the nature of paired-end reads and
low coverage data, breakpoint coordinates for MEIs were commonly not available. Thus, an
insertion range was provided for each locus within which the MEI was predicted. For primer
design, 600 bp of flanking sequence were added upstream and downstream of the insertion
coordinates. The sequence was extracted from the human reference genome (hg19) using Galaxy
[141-143].

ALU elements were masked using RepeatMasker [137]. After adding a safety margin of 50
nucleotides up- and downstream of the insertion coordinates, primers were selected using
BatchPrimer3 v2.0 [ 144]. The uniqueness of each primer was determined using BLAT [101]. An
in silico PCR was performed for each locus when at least one primer had more than one match. If
several matches were identified or the in silico PCR provided evidence for more than one PCR
product primers were manually redesigned. In these cases the repeat content of the flanking
sequence was determined using RepeatMasker. Moreover, the flanking sequence was “Blatted”
against the human reference genome (hg19) to determine if the flanking sequence matched to
highly homologous loci. In cases with high sequence homology, the other orthologous sequences
were retrieved using the UCSC genome browser [ 138]. Following an alignment of the candidate
locus with the other orthologous loci using BioEdit [ 145 ] primers design was attempted in
regions with sequence divergence between the different loci. All manually designed primers were
tested with Primer3 [146]. For loci with ambiguous PCR results, no amplification, or
amplification of only the empty insertions site, a second primer pair was designed using the same
primer design criteria described above.

Due to the size and high GC-content of SVA elements we used previously designed internal

PCR primers [ 118]. The internal primers were designed within the 3” end of the SVA sequence
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matching the consensus sequences of the youngest SVA subfamily (SVA_F) which is
human-specific. All PCR primers were ordered from Sigma Aldrich, Inc. (St. Louis, MO). The
PCR primer sequences used in this validation study are available at http://batzerlab.lsu.edu.

3.5 SOFTWARE AVAILABILITY

The source code and instruction are available at https://github.com/jiantao/Tangram. Our

pipeline and tool launcher system, GKNO, available at https://github.com/gkno.
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Reviewing what you have learned and learning anew, you

are fit to be a teacher.

Confucius

Concluding Remarks

TRUCTURAL VARIATIONS are now recognized as one of the major contributors to human

diseases and phenotypic variants. In order to enable downstream functional studies

about these variants, it is first necessary to establish reliable methods to detect them.
Current excitement surrounding the SV discoveries mainly stem from the advent of NGS
sequencing technologies. The focus of my PhD study in the Marth lab is to develop efficient and

lightweight computational methods for SV detection in the human genome based on NGS data.
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4.1  SUMMARY

4.1.1 CNV DETECTION FROM EXON CAPTURE SEQUENCING DATA

DNA capture technologies combined with high-throughput sequencing now enable
cost-effective, deep-coverage and targeted sequencing of complete exomes. This is well suited for
SNP discovery and genotyping. However, there has been little attention devoted to CNV
detection from exome capture datasets despite the potential impact on the protein function for
CNVs in exonic regions.

To fill this gap, I developed a computational method based on the RD signal to identify CNVs
in exon capture sequencing data. I first established a mathematical model to calculate the
expected number of reads for each target region (gene), which is one of the most difficult
problems in the CNV detection from capture sequencing data. This model does not only
normalize the read depth signal from sample to sample (sample specific median read depth) but
also from gene to gene (gene affinity). With the expected read depth, I can calculate the data
likelihood of each gene-sample site (GSS) and each possible genotype based on the Poisson
(Normal) distribution with a correction factor (ODF) accounting for the random noise and PCR
bias. I plugged these data likelihoods to a Bayesian framework to calculate the posterior
probability for each possible copy number. CNVs can be detected as those GSS whose largest
posterior probability is not from copy number 2.

I evaluated this algorithm on 1000GP exon capture sequencing data generated from four
sequencing centers. Totally my program detected 96 heterozygous deletions and 39 duplications
from about 4.6% of the human exome (Table 2.2.3, 2.2.4, 2.2.5 and 2.2.6). Due to the limitation
of the data quality, the estimated detection efficiency from both mathematical derivation and
simulation experiments is about 50%. I derived a statistical measurement, quality index (QI), to
describe the relationship between the quality of sequencing data (coverage and ODF) and the
estimated detection efficiency. From the calculation, I found the detection efficiency of my

program could be significantly improved if better data are available (high coverage and/or low
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ODF) (Figure 2.2.5B). Based on the number of CNV calls in this study and the estimated
sensitivity, I gave the approximate number of genes affected by CNV, 0.62, in each individual
genome on average. Finally the result of PCR validation experiments performed on 24 random
selected heterozygous deletion events indicated an FDR of 12.5%, which is comparable to or
lower than the FDR of CNV detectors based on the RD signal in 1000GP Pilot 1 low coverage

data (Table 2.2.7).

4.1.2 TANGRAM: AN INCLUSIVE TOOLBOX FOR MEI DETECTION

Although it is possible today to detect large deletions and duplications with high accuracy,
effective methods still need to be developed for several other structural variation (SV) types.
MEI was still one of the most difficult SV types to detect and genotype, although a few methods
have been published to tackle this problem [ 105, 118-120].

To address this difficult SV type, I developed a novel variant calling program, Tangram,
designed to provide a flexible and efficient SV detection tool for genomics researchers to identify
and characterize MEI accurately and sensitively in the human genome. This new tool relied
heavily on split-read mappings performed on all problematic mates (i.e. read pairs where one
end-mate is aligned with high mapping quality, but the other mate is either unmapped or mapped
with many unaligned or “clipped-off” bases). This approach is different from other SV detection
methods employing the SR mapping, which only attempt SR mappings in regions where the RP
signal indicates the possibility of a candidate event. I found that a significant fraction of SV events
were supported only by SR mapped reads but not RP mappings (Table 3.2.1). I also developed a
genotyping module to assign genotype data likelihoods based on the number of RP and SR
mappings, as well as the mapping quality values associated with sequencing reads.

I evaluated Tangram on simulated data, applied it to 1000GP data, and compared its
performance to competing methods. The analysis of simulated data indicates a high-degree of
sensitivity, specificity and genotype accuracy, across a wide range of sequence coverage values,

both for heterozygous and for homozygous MEI events (Table 3.2.1 and 3.2.2). This experiment
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also demonstrates that the global SR method makes a key contribution for the sensitive MEI
discovery (e.g. at 20X coverage nearly 15% of events are only detected from SR mappings). It is
also able to report SV events with very accurate breakpoint locations (Figure 3.2.1). Iran
Tangram on deep CEU trio data, and compared our detection performance with two competing
methods, RetroSeq and TEA. Tangram had higher sensitivity to both known MEI events from
the literature and experimentally validated events found in the 1000GP Pilot dataset, especially
for L1 elements. The genotyping accuracy of our program as compared to experimentally
determined genotypes was far better than those two competing methods (Table 3.2.4). Finally,
PCR based validation experiments performed by our collaborators in the Batzer laboratory on
160 randomly selected events indicated an FDR of 5.93%, an accuracy that equals or exceeds the

SNP calling specificity from the best variant callers (Table 3.2.8 and 3.2.9).

4.1.3 DIsScuUsSsION

During my PhD study, I developed two variant callers based on two different detection strategies,
read-depth and read-pair plus split-read approaches for two different types of sequencing data,
exon capture and whole genome sequence. Because each type of sequencing data has its own
unique characteristic, it is necessary to adopt different SV detection algorithms. As mentioned in
Chapter 1, compared to the RD algorithm, RP and SR are more superior methods in both
breakpoint resolution and sensitivity to smaller events. However, they are not suitable for the SV
detection in exon capture sequencing data since breakpoints of SV events might be outside the
sequencing regions (breakpoints could locate at intronic or intergenic regions). Due to this
special characteristic of capture sequencing data, candidate read pairs for RP (read pairs span
across the breakpoint) and SR (reads pairs are sampled from the breakpoint) will not be obtained
for the analysis. On the other hand, the RD method does not have this limitation. No presence of
breakpoints in sequencing data will not keep it from detecting CNVs properly, since it only
measures the change of read depth coverage in a given genomic region. Moreover, since the RD

algorithm is computationally light-weight it is a good fit for analyzing large-scale data, e.g.
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sequencing data from 1000GP. In the second research work, MEI detection from WGS data, RP +
SR methods instead of the RD algorithm were applied because of their high detection efficiency
and breakpoint resolution. Also, although MEI belongs to CNVs (changes in the net amount of
DNA), the RD approach is basically blind to this type of SV since MEs are highly repetitive DNA
elements. To accurately measure the read depth of a given genomic region, only those uniquely
aligned sequencing reads will be taken into consideration for the statistical analysis and those
reads aligned to multiple genomic positions will be excluded. So for the MEI detection, the RD
method can hardly collect any signal. Moreover, due to the repetitiveness of MEs, traditional RP
and SR methods also have to be customized enough for the special need of the detection: the
postdoctoral research associate in our lab, Wan-Ping Lee, modified our sequencing read aligner,
MOSAIK, in order to provide the extra MEI information (an optional BAM file tag, called “ZA”)
in the alignment file, which makes it possible for Tangram to detect MEIs with the RP method; I
implemented a customized split alignment module in Tangram that can align soft-clipped or
unaligned reads to both normal and ME references.

One interesting observation in these two research works is that although based on our study
results from the exon capture sequencing data, we estimated that there should be many CNV
events occur in exonic regions for a given individual, no MEI events were found in exonic regions
when we looked at the detection result for 218 1000GP phase 1 samples (Table 3.2.6). This
seemingly contradiction actually has several reasonable explanations: (1) MEI events in exonic
regions are so destructive to genes that the individual carried these variations can not survive
under the selection pressure. Even the shortest ME, Alu, has a length of about 300 bp. L1, SVA
and HERYV are all thousands bp long. Such along DNA element inserted in the exon region will
definitely has a great impact on the transcription process of a gene. Moreover, non-LTR MEs, Alu,
L1 and SVA, carry their own insertion recognition motif, 5' “-TTAAAA-3". One insertion of this
kind of MEs will introduce more insertions at the same area, which will create a MEI “hotspot”
This is further unfavorable under the selection pressure. (2) As shown in Figure 3.2.2, Tangram

has relatively low sensitivity to those low allele frequency events due to the absence or sparseness
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of supporting fragments. It is possible that some low allele frequency MEIs occur in exonic
regions but Tangram might not be able to detect them due to the detection efficiency issue.

Both of my research works were aiming at developing efficient algorithms for those SVs that
were not addressed by any previous studies or very difficult to detect accurately in the past. My
first research work opens a new door for the exploration of exon capture sequencing data as they
are originally generated only for SNP and INDEL detections. In my second research work, I
developed the state-of-the-art MEI detector that is capable of analyzing large-scale NGS data for
the routine use. By properly introducing new modules and integrating new algorithms in the
future, my current detector could be expanded to a comprehensive detection toolbox for more
other SV types, such as inversions, translocations and de novo insertions (See Future

directions 4.2).

4.2 FUTURE DIRECTIONS

4.2.1 CURRENT CHALLENGES

The future of the SV detection largely depends on the development of sequencing technologies
and new computational methods that can take advantage of them. As most simple SVs, like
deletions and duplications, are already well characterized by current available SV detection
programs, the researching focus has moved to those much difficult SVs, e.g. inversions,
translocations and complex events. Although some SV toolboxes, such DELLY [65 ], Pindel [64]
and BreakDancer [ 106], have already provided the function to detect these types of events, their
performance is less than satisfactory. For example, recent validation results in the 1000GP
indicated a 70 — 100% FDR for current methods attempting to detect inversion events. Current
challenges of the SV detection come from technology restrictions, algorithm limitations and
biological complexities. From the aspect of technology, the current generation of sequencing
technology can only provide short length reads (36bp — 250bp) due to the restrictions of

chemical agents and image processing. The length of the sequencing read greatly limits the
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possibilities of the exploration of those SV events buried in the complex genomic context, like
inversions which are usually surrounded by repeat sequences [ 147, 148]. In terms of current SV
detection algorithms, most of them rely on the alignment of sequencing reads to the human
reference assembly. This single-reference detection model could cause systematic biases. For
example, most false detections of translocation events are caused by the mis-assembly in the
human genome reference. Also sequencing reads from those highly mutated human genomes,
like those from solid tumor tissues, might be difficult to align to the normal reference. As to the
biological complexities of the human genome, many recent studies have found that SV events
tend to aggregate at some certain genomic locations. For example, a paper published in

2011 [118] for MEI studies reported many “hot spots” for MEI events in the human genome. The
early MEI events set stage for later events. Some newly inserted MEs are very close or even inside
previous MEs. Such complex genomic regions create tremendous difficulties for current SV

detection methods.

4.2.2 PROSPECT OF NEW SEQUENCING TECHNOLOGIES

The fast and continuous advance in both sequencing technologies and computational methods
may offer solutions to all the mentioned issues in the near future.

Many sequencing companies have already announced their third-generation products, such as
Ion Torrent from Life Technologies and PacBio from Pacific Biosciences. Unlike the
second-generation sequencing (NGS) technology that DNA molecules need to be amplified
through PCR step before sequencing, the third-generation sequencing machine applied a brand
new technique — Single-Molecule Real-Time (SMRT) sequencing technology [ 149]. Through
this technique, the sequencing machine can directly observe the synthesis process of a single
DNA polymerase, which significantly increases the sequencing speed and addresses many
shortcomings of the second-generation sequencing technology, such as the PCR bias (not all the
genomic regions can be amplified at the same rate due to the GC content difference) and short

read length. The length of output reads from the third-generation sequencing machine could
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range from 1,000bp to 10,000bp, which is much longer than that from the NGS technology.
Although this new technology is still not mature yet due to the relative high sequencing error
(currently about 15%), it is not hard to imagine the bright future and wide use of it for the
high-quality de novo assembly algorithm, direct identification of haplotypes and the SV detection

in complex and repetitive genomic regions.

4.2.3 PROSPECT OF NEW ALGORITHMS FOR SV DETECTION

As new sequencing technologies become available, there is little doubt that new companion
computational methods will also be developed rapidly. The much longer read length from the
third generation sequencing machine opens many opportunities for multi-reference or even
reference-free SV detection approaches. The multi-reference system is gradually formed these
years as more and more genomic variants are detected and submitted to public variant databases
such as dbSNP [150] and DGV [14]. It is highly possible that variants between newly sequenced
genomes and the reference are already existed in these databases. Thus detection of these existed
variants will become a simple task if a well-designed aligner can map sequencing reads not only to
the normal reference but also to those alternative alleles. Several attempts have already been
carried out based on NGS short reads [151, 152]. As the continuous expansion and improvement
of variant databases, such as the removal of duplicated entries and the refinement of breakpoint
positions, this approach could be applied routinely in the future for the detection of common SVs
in large-scale sequencing projects. Another direction of the future SV studies is de novo assembly
method. The performance of current de novo assemblers are greatly restricted by the read length
of the NGS technology. According to recent study results, tens of thousands of errors could be
generated with short sequencing reads by the-state-of-art de novo assemblers [ 153 ] for human
genomes. Moreover, the memory and time cost is prohibitively expensive for current de novo
assemblers for routine uses due to the huge number of reads generated by NGS machines. The
future development of de novo assemblers will greatly benefit from the longer length and less

number of reads from the third-generation sequencing technology. Also, the memory usage of de
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novo assemblers could be significantly reduced by using the compressed data structure during the
assembly process [ 154]. With high-quality assembly data, almost all SV types should be easily

identified and characterized.

4.2.4 PROSPECT OF FUNCTION STUDIES

The ultimate goal of genomics studies is the continuous improvement of the human health. The
last ten years since the completeness of the Human Genome Project has witnessed the huge
advance in understanding genetic variations that distinguish different people and are responsible
for specific traits and diseases. Based on the results of numerous genomic variants studies,
genome-wide association studies in humans have been carried out to identify the relationship
between inherited mutations and various common human diseases, such as heart

disease [155, 156], diabetes [157—159], Alzheimer’s disease [ 160, 161] and Crohn’s

disease [162—-164]. Although more than 13,000 GWAS papers have been published in the last 5
years, germline variants discovered in these researches only address a small fraction of the
heritability of traits and diseases [165] (less than soo types). Until recently most GWAS studies
only take SNP variants into account as the SNP database and detection methods are pretty
mature. However, in the past few years it has been clear that SV is also a major contributor to
human genomic variations and can actually affect more genomic regions than SNPs [ 14, 73 ].
Moreover, since there were no cost-effective methods to call all genetic variants in a large number
of human genomes, currently many GWAS studies only focus their attentions on common
variants whose allele frequencies are higher than 5%. The “missing heritability” gap due to these
two limitations mentioned above is the major bottleneck for GWAS studies [ 166]. The further
development and improvement of both sequencing technologies and SV detection algorithms in
the next ten years will enable the systematical discoveries and characterizations of all types of
germline SVs in the human genome and create a complete list of genomic variants that will greatly
facilitate association studies that can translate the genetic information into phenotypic diversity

or pathogenesis. Here the “complete” does not mean we will sequence the DNA sample from
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every individual in the world. Instead, it is more desirable to have a comprehensive SV database
with the accurate information, such as the type, position and length of a given SV event, at a
satisfactory population allele frequency deepness (say <0.5%). For example, to catch variants
down to 0.5% AFS in a population with 90% sensitivity, only 230 individuals need to be sampled
(log(1 — 0.9)/log(1 — 0.005)/2). As the rapid development of technologies and measuring
algorithms, soon this database could be set up for the downstream functional study and serve as
the major resource to fill the “missing heritability” gap for future GWAS studies.

Besides those population-scale genomics studies, another branch of human genomics,
personal genomics and medical, is also under fast development. The preliminary results from
variant researches in the human genome have already attracted the attetions of the public. More
and more people are willing to explore their own genomic information to identify variants that
may threat their future health. This useful information could help them to take some preventive
actions or appropriate treatments to avoid their future health risks. Many personal genomics
projects, e.g. Personal Genome Project (PGP) [167-169], have already started to collect and
sequencing DNA samples from a broader space than that of normal large-scale genomics projects,
such as 1000GP, in a long-term run. Also many companies have already sensed the commercial
interest of delivering the genomic analysis to individual customers. For example, 23andMe sells
mail order of SNP genotyping kits for people who want to assess their risks of 178 diseases and
estimate their ancestry origins. Other firms, such as HelloGenome and deCODEme.com, all offer
similar services to the public. As the cost of WGS rapidly and continuously drops,
sequencing-based services, instead of SNP genotyping kits, may become the mainstream.
However, currently SV studies did not play an important role in these analyses. As the reason
mentioned above, compared to the current knowledge of SNPs, our understanding about SVs is
still not comprehensive enough. Methods that can be used to accurately characterize all types of
SVs are still under developing. Until then personal genomic studies could extend to broader areas
that have never been explored before due to the lack of associations between phenotypes and

genotypes and we should be able to understand more clearly of the pathogenesis of most
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common and rare diseases. The personal genomic information at that time may become much
valuable to us for the purpose of personalized medicine and therapies that could substantially
improve our health quality.

Another possible high-impact direction of SV researches in the future is the identification and
characterization of somatic mutations for different types of cancers in different tissues (organs).
Unlike germline mutations that are inherited from parents, somatic mutations are accumulated
during the lifetime of an individual. These mutations are tissue specific or even single-cell specific
(the mutations you got on your skin due to the sun burn could be much different from those in
your stomach due to the alcohol damage) and they are driven factors for various types of
cancers [ 170]. These somatic mutations inherited by daughter cells in tumors are under
continuous selections, which make the cancer a “microevolutionary process” [171-174]. More
and more “passenger” mutations are introduced during this whole evolutionary process as a result
of the increasing instability of the DNA repair machinery. Cancer genomes, especially those in
solid tumors, are extensively rearranged compared to the normal healthy genome [175-177].
Although somatic mutations have been recognized as the “top criminal” that is responsible for the
cancer formation for decades, it is still very difficult to detect driver variations (in most cases SVs)
since they are usually buried in a background of germline (could be filtered out with normal
control genome from the same patient but it still depends on the sensitive SV detection on both
DNA samples) and “passenger” mutations. The signal to noise ratio (SNR) in the cancer genome
is generally very low. With the help of the current high-resolution genomics technology, several
recurrent fusion genes are discovered in solid tumors, such as prostate [ 178] and lung
cancers [ 179] but we are still far away from accurately and systematically detecting these driver
mutations from various types of cancers. As the read length from the future sequencing
technology becomes longer and longer, one possible breakthrough of somatic mutations
detection could be de novo assembly method. Using the reference-free method to detect the SVs
in the cancer genome could overcome some limitations of resequencing-based detection

methods, such as the mapping accuracy for those highly mutated genomes and the sensitivity to
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insertion events, and could reconstruct the organization of the cancer genome at the single
nucleotide resolution. Although there are no publications for this type of study some genomics
scientists have already started to explore this promising research direction [ 180]. With the rapid
development of technologies and SV detection algorithms and the broad corporation of
international institutions in large cancer genome projects, such as The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium (ICGC), searching driven somatic
mutations at the genome scale will become practical and very cost-effective, which could
significantly facilitate the downstream pathogenesis and medicine targeting study.

It will be along journey to decode all the secrets in the human genome and we are just passing
the start line by studying variants and some of their functional impacts. The full picture of the
human genome will become more and more clear as we collect more and more variations like
jigsaw puzzles from different sources, population-scale, personal-scale and tissue- and
disease-specific data. With sufficient data preparation, bold hypothesis proposal and prudent
experiment design from the entire biology community, we are gradually approaching the
comprehensive understanding of the relationship between the genetic information and its
complicated functions. Of course, studying the variants on the DNA sequence level is just a
beginning. Many other inheritable factors, such as epigenetic variants, also plays a significant role
in affecting our phenotypic traits [ 181183 ] or susceptibility to different diseases, including
Angelman syndrome [184], Prader-Willi syndrome [ 185 ], Beckwith-Wiedemann
syndrome [186, 187] and various types of cancers [ 188-196]. Some epigenetics problems, e.g.
methylation variation detection, are very similar to those in the SV detection (CNV detection).
Many methods used for SV discovery in high throughput sequencing data could also be
transplanted easily on large-scale epigenetic data [197-199]. So the future achievement of SV
studies could also greatly benefit the development of epigenetics. The progress of variant studies,
including SNP, INDEL, SV and epigenetic variations, will accelerate the process of finding
“missing heritability” in the human genome and facilitate downstream GWAS studies, which

could potentially bring revolutionary improvements to the human health.
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