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Abstract 

Nanostructured Semiconductors for High Efficiency Artificial 

Photosynthesis  

 

A dissertation by Rui Liu 

Dissertation Advisor: Prof. Dunwei Wang 

 

Photosynthesis converts solar energy and stores it in chemical forms. It is one of the 

most important processes in nature.  Artificial photosynthesis, similar to nature, can 

provide us reaction products that can potentially be used as fuel. This process promises 

a solution to challenges caused by the intermitted nature of solar energy.  Theoretical 

studies show that photosynthesis can be efficient and inexpensive.  To achieve this goal, 

we need materials with suitable properties of light absorption charge separation, 

chemical stability, and compatibility with catalysts.  For large-scale purpose, the 

materials should also be made of earth abundant elements.  However, no material has 

been found to meet all requirements. As a result, existing photosynthesis is either too 

inefficient or too costly, creating a critical challenge in solar energy research.  In this 

dissertation, we use inorganic semiconductors as model systems to present our 

strategies to combat this challenge through novel material designs of material 

morphologies, synthesis and chemical reaction pathways. 

Guided by an insight that a collection of disired properties may be obtained by 

combining multiple material components (such as nanostructured semiconductor, 
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effective catalysts, designed chemical reactions) through heterojunctions, we have 

produced some advanced systems aimed at solving fundamental challenges common in 

inorganic semiconductors.  Most of the results will be presented within this dissertation 

of highly specific reaction routes for carbon dioxide photofixation as well as solar water 

splitting. 
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Chapter 1: Introduction 

 

An increasingly modernized world relies on a steady, dependable supply of energy. 

Currently, approximately 85 % of the global energy need is met by the burning of fossil 

fuel.[1] However, the depletion of non-renewable fossil fuel is a well-known global 

challenge. To address this issue, alternative, renewable means of energy supply must 

be developed.  Among those studied, solar energy as an abundant and free energy 

source stands out and has therefore attracted intense attention for many years. Indeed, 

the energy that arrives on the surface of the Earth from the Sun each hour is 4.3x1020 J, 

comparable to the total energy of 5.4x1020 J consumed by human activities in the entire 

year of 2012. There is no doubt that solar energy will play an important role in meeting 

our future energy needs. However, solar light is also diffusive, diurnal and sporadic, 

meaning direct usage of solar energy is not desired in most applications. To better utilize 

solar energy, we not only need to come up with methods to convert it into other energy 

forms with high efficiencies, but also need to devise technologies that can store solar 

energy for off-hour usage.  

 

1.1  Natural Photosynthesis 

Photosynthesis in nature converts solar energy and stores it as chemical energy. It is 

one of the most important processes on Earth. The light reaction of natural 

photosynthesis has a series of step-wise electron-transfer processes to produce 
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sufficient energy that can power water splitting.[2] The detailed mechanism is known as 

the “Z-scheme”, which is illuminated in Figure. 1.1.[3]  In a simplified form, the 

photosynthesis machinery can be divided into  two parts, photosystem I (PS I) and 

photosystem II (PS II). They both absorb solar light (with maximum absorption 

wavelength of 700 nm and 680 nm, respectively) through an assembly of light-harvesting 

chlorophylls and pump electrons to a higher electronic state (excitation) inside the 

reaction center.[4,5] PS I contains photosystems in series with an electron transfer chain, 

which provides electrons to complete a series of reduction reactions, and finally 

produces the final product, nicotinamide adenine dinucleotide phosphate (NADPH). PS II 

involves a water oxidation reaction which takes place at a manganese calcium oxide 

cluster.[6,7] Charge separation and charge collection within these processes are so 

effective under optimal conditions that there is almost no energy loss in natural 

photosynthesis. [3] The dark reaction of natural photosynthesis incorporates carbon 

dioxide into the product of sugar, an important energy source for many biological 

reactions. 
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Figure 1.1. Natural Photosynthesis charge-separation processes, including PS I and 

PS II reaction centres (simplified Z-scheme). (See all the abbreviation details in 

Appendix of Chapter 1.) Figure is adapted from reference 3. 

 

Although not shown in Figure 1.1, NADP+ is ultimately used to reduce CO2, making 

the CO2 reduction reaction and water oxidation reaction (oxygen evolution reaction) on 

PS II the two key chemical processes in natural photosynthesis. Both reactions are 

complex because they involve multiple electrons and protons, and they usually exhibit 

slow kinetics and require high over potentials. The advantage of the complex “Z-scheme” 

is believed to lie in the capability to minimize side reactions and to improve overall 

efficiencies. This strategy is one of the most important aspects we have learned from 

nature. 

 

1.2  Artificial Photosynthesis 

Although natural photosystems present a highly inspiring platform for us to learn 

photosynthesis designs on a systematic level, they generally fail to provide a high overall 

incident photon-to-current efficiency because the light absorptions by PS I and PS II are 

too narrow. Starting from natural photosynthesis but working on improving solar energy 

conversion efficiency for large scale reactions, researchers have taken significant efforts 

to design artificial photosynthesis systems, such as photoelectrochemical cells (PEC). 

CO2 photoreduction, similar to the dark reactions in natural photosynthesis that stores 

energy harvested by PS I, and solar water splitting, similar to PS II, are the two of the 

most important applications in PEC cells, and comprise the main contents of this 

dissertation. We are particularly interested in harvesting solar light and carrying out the 
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reactions by inorganic semiconductor materials because they offer the promise of 

durability and low cost. 

More specifically, semiconductors often possess the capabilities to absorb broadly in 

the visible light range, owing to existence of the band gap, pumping electrons from the 

valence band to the conduction band in the process. The depletion regions in 

semiconductors near the solid/electrolyte interface also offer a mechanism to separate 

photoexcited charges. Presently, the key challenge in the field is that no single 

semiconductor material can offers all desired properties in terms of light absorption, 

charge separation and catalytic activity simultaneously.  Correspondingly, researchers 

have focused their efforts on improving the artificial photosynthesis efficiency by 

precisely controlling the materials synthesis, manipulating the materials morphologies, 

creating semiconductor/catalysts heterojunction systems, introducing homogenous 

reaction catalysts, and designing new reaction pathways. My thesis work covers this 

ground broadly. 

 

1.2.1 CO2 Photoreduction Related Study Based on Semiconductor 

Photoelectrodes 

Photoreduction of carbon dioxide by semiconductors promises a route to reduce 

CO2 concentration in the atmosphere while producing useful molecules such as fuel. It 

has attracted significant research attention. The range of products that can be generated 

by photoreduction of CO2 is broad, as can be seen from Table 1.1.  
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Table 1.1 Products of CO2 reduction along with the number of electrons needed to 

produce each one and their standard reduction potentials at pH 6.8. Table is adapted 

from reference 8. 

 

The potential (or energy required) to reduce CO2 to different products (see Table 

1.1 [8]) is generally within the range of what can be produced by many semiconductor 

photoelectrodes. Using semiconductors to harvest solar energy and to reduce CO2 into 

the fuel is not only theoretically possible but also economically promising. The general 

details of PEC cells for CO2 photoreduction through a semiconductor photoelectrode are 

schematically shown in Figure 1.2.[9] At the photoanode the sequence of events is: 1) 

photon absorption, 2) excited state electron injection, 3) inter-electrode electron 

transport, 4) sequential hole transfer, 5) water oxidation, 6) light-driven CO2 reduction at 
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the photocathode. In a simplified system, researchers usually focus on CO2 reduction 

reaction and use sacrificial metal to replace the photoanode. Other approaches such as 

using catalyst decorated TiO2 nanoparticles suspension to have CO2 reduction and H2O 

oxidation on the same particles are also being studied. [10-11] 

 

Figure 1.2 Tandem PEC configuration for CO2 reduction to methane at a photocathode 

and light driven water oxidation at a photoanode. Figure is adapted from reference 9. 

 

However, the subtle differences of energies in various CO2 reduction products as 

shown in Table 1.1 also highlight a significant challenge. That is, it is difficult, if possible 

at all, to control which product is obtained when CO2 is directly reduced by a 

photoelectrode. Consequently, CO2 reduction by semiconductors usually suffers 

disadvantages such as low yield, low selectivity and high overpotential. The fundamental 
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reason is the multiple electrons transfer process required to fully reduce CO2.
 [8,10-12] For 

instance, utilizing semiconductors such as TiO2 or p-type Si in PEC cells to reduce CO2 

in aqueous solution by solar energy also has low faradic efficiency and significant 

production of byproducts, chiefly hydrogen and other hydrocarbons.[13-14] It is our goal to 

address this particular issue and correct the deficiency, and our strategy will be further 

discussed later. 

 

1.2.2 Solar Light Powered Water Splitting by Semiconductor  

Another important PEC process is solar water oxidation on semiconductors, an 

analogy of PS II. To do so, we need an anode that can oxidize water to produce O2 

using harvested solar energy. 
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Figure 1.3. Principle of solar water splitting cells. The most important steps are 

illustrated as: (i) light absorption; (ii) charge transfer; (iii) charge transport; and (iv) 

surface chemical reactions. Figure is adapted from reference 15. 

 

Similar to the CO2 reduction PEC process discussed in 1.2.1, PEC water splitting 

also has following steps: light absorption and charge separation on semiconductor; 

charger transfer and transport inside semiconductor and circuit; surface chemical 

reactions (Figure 1.3). Those critical steps to achieve efficient water splitting are mainly 

associated with intrinsic properties of photoelectrodes such as its band gap, the 

energetic position of its conduction band and valance band, the electronic properties and 

surface catalytic properties. For example, the band gap of the semiconductor determines 

how much solar light that can be harvested. Only photons with equal or higher energy 

than the energy gap of semiconductor can be absorbed to excite electron-hole pairs. For 

water splitting, the standard free energy changes is 237 KJ mol-1 or 1.23 eV. Therefore, 

for a single semiconductor to perform water splitting, its band gap should be larger than 

1.23 eV. 

The general requirements of a highly efficient electrode are summarized as follows. 

(1) The electrode must be stable in reaction solution for long term without corrosion. (2) 

The conduction band edge and valance band edge should be appropriate for both 

reduction and oxidation reactions (more negative conduction band edge to transfer 

photogenerated electrons for hydrogen evolution and more positive valence band edge 

to transfer holes for oxygen evolution, respectively). (3) The semiconductor should 

possess a suitable band gap to allow for light absorption and electronic excitation with 

sufficient energies. (4) Charge separation and collection should be efficient, without 
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serious charge recombination which results in low energy conversion efficiency. (5) 

Because the number of incident photons received per unit area under standard 

conditions (e.g., solar simulator AM 1.5 with normalized intensities of 100 mW/cm2) is 

fixed, to match the kinetics, the material should be catalytically active for H2O oxidation 

or reduction or both. [15] 

Since the first demonstration of photoelectrochemical water splitting by Fujishima 

and Honda[16], intense research effort has been focused on searching for the ideal 

material that can meet all requirements discussed above. However, up to date, materials 

satisfying all criteria simultaneously have not been reported. Thus our research is guided 

to engineer materials for improved solar energy conversion efficiencies.  

 

1.2.3 Development of Artificial Photosynthesis  

In order to develop highly efficient artificial photosynthesis PEC cells, different 

strategies are introduced to simple photoanode or photocathode systems. Three of the 

strategies are most commonly studied: 1) introducing catalysts onto the effective 

photoanode or photocathode, which will reduce the reaction overpotential and increase 

the reaction kinetics;[17-19] 2) fabricating high quality nanostructured semiconductors, 

such as nanoparticles[20], nanowires[21], nanotubes[22], ultrathin films[23] and nanonets[24] 

etc., which improve the efficiency by increasing light absorption and reducing carrier 

transportation distance; 3) manipulating the materials by doping[25], making homogenous 

p-n junction[26], heterogenous p-n junction[27], passivation, etc., which usually improve 

photovoltage by engineering the materials band structures.  

Some outstanding work on artificial photosynthesis through PEC cells has been 
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demonstrated by designing adequate semiconductor/catalyst heterojunctions. For 

instance, Bocarsly et al. used pyridinium ion as a catalyst to selectively photoreduce 

carbon dioxide into methanol on a p-type GaP photocathode, measuring faradaic 

efficiencies close to 100 % at potentials well below the standard potential. The catalyst 

for CO2 reduction not only reduces the reaction overpotential, but also increases the 

reaction selectivity by defining the reaction pathways.[18]  

Another example is water oxidation catalyst cobalt phosphate (CoPi), which has 

proved to be one of the most promising water oxidation catalysts, both on its intrinsic 

properties and in devices when applied onto semiconductors. As high as 350 mV 

cathodic shift of onset potential on α-Fe2O3 photoanodes for water oxidation is obtained 

when cobalt catalyst layer is deposited on it. [19] Recently, by combining atomic layer 

deposited MnO water oxidation catalyst with n-Si, Lewis et al. successfully demonstrate 

water oxidation (oxygen evolution reaction).[29]  MnO-coated n-Si photoanodes displayed 

open-circuit voltages of up to 550 mV and stable anodic currents for periods of hours at 

0.0 V versus the solution potential. 

Nanostructured materials take advantage of PEC cells from their morphology for 

better light absorption and less energy loss from shorter carrier transportation 

distance.[22-24] Our group reported high external quantum efficiency using hematite 

deposited on TiSi2 nanonets.[24] Nanonets are highly conductive and have suitably high 

surface areas. The nanonets serve as a support with high surface area to hematite, 

which improves the light absorption of hematite. Also, nanonets serve as efficient charge 

collector, allowing for maximum photon-to-charge conversion. Moreover, for some PEC 

reactions, nanostructured materials may favor charge transfer due to their multifaceteds 

feature, meaning that a variety of crystal planes are present. It is reasonable to assume 

that charge transfer semiconductor/electrolyte interface are preferred on one of the 
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crystal planes in nanostructured materials, resulting in lower reaction overpotentials than 

the one on bulk materials for the same PEC reactions. For instance, SiNWs achieved 

better onset potential than planar Si when used on CO2 photoreduction in aromatic 

ketone system and in alkyne system with catalyst existence.[30-31]  

Overall, synthesizing suitable nanostructured materials and rationally engineering 

semiconductor/catalyst heterojunctions for effective artificial photosynthesis is our goal. 

Appling energetically matched catalysts onto semiconductor can decrease reaction 

overpotential, increase selectivity. Nanostructured materials have advantages in PEC 

process for better light absorption, shorter charge transportation distances and 

sometimes lower charge transfer barrier due to their multifaceted nature. Manipulating 

multiple components with their unique functions into PEC device offers combinations of 

properties for high-efficiency artificial photosynthesis.  

 

1.3  The Scope of This Dissertation 

The motivation of this dissertation is to achieve highly efficient solar energy 

conversion in artificial photosynthesis processes of carbon dioxide photofixation and 

water splitting using nanostructured semiconductors. To achieve these goals, we focus 

on rational material design and synthesis for high-performance electrodes; we also 

design new chemical reaction routes for significantly improved product selectivity.  

This dissertation mainly investigates artificial photosynthesis of PEC CO2 reduction 

and PEC water oxidation. We start from artificial photosynthesis process of carbon 

dioxide photofixation by SiNWs. We designed a similar PEC reaction to the dark reaction 

of natural photosynthesis, which has improved PEC reactions selectivity and yields. 

Followed on this direction, we also broaden the reaction scope by introducing a CO2 
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reduction catalyst onto SiNWs. The catalysts electrochemical properties are also studied 

to inspire people to optimizing energetic structure of semiconductor/catalyst 

heterojunctions. The water oxidation, as the other half reaction in natural photosynthesis, 

is also investigated in WO3/Mn-oxo catalyst heterjunction in the last part of this 

dissertation.  

In Chapter 2, we demonstrate a high selective and effective PEC carboxylation 

reaction achieved on Si nanowires (SiNWs) photocathode using CO2 as carbon source. 

The reaction route optimization indeed helps to improve overall desired product yield by 

suppressing the chance of producing byproduct.  Instead of directly reducing carbon 

dioxide, photogenerated electrons from SiNWs will reduce the aromatic ketone molecule, 

forming corresponding radical. The ketone radical will selectively bind with carbon 

dioxide in the solution and finally produce corresponding carboxylation acid. The 

reaction selectivity and yield are one of the best reported to date, and the reactions can 

be used to synthesize NSAIDs (non-steroidal anti-inflammatory drugs) such as ibuprofen 

and naproxen. As an earth abundant element, Si harvests solar energy to enable these 

reactions. The close resemblance to natural photosynthesis renders our work 

significant.[30] 

Further study of using SiNWs for organic reactions is investigated in Chapter 3. In 

order to expand PEC reactions types on SiNWs photoelectrode, we introduce a Ni 

catalyst into this system. It is a well-established catalyst for alkyne carboxylation reaction 

using CO2 as the carbon source. SiNWs can reduce Ni catalyst under light illumination 

with photogenerated electrons, and the reduced form of Ni catalyst binds carbon dioxide 

and alkyne to finish the carboxylation reaction. This approach holds the potential to 

greatly broaden the reaction scopes as long as we choose the reaction suitable for Ni 

catalyst.  [31] 
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The ligand effect of Ni catalysts is discussed in Chapter 4. Energetic match of 

catalyst and semiconductor is crucial to design an effective PEC cell. By varying binding 

ligands with the Ni center, we are able to tune the reduction potential of the Ni catalysts 

by as much as 0.86 V. Consistently high photovoltages of 410-450 mV are measured on 

these catalysts when SiNWs are used as a photocathode for the cyclic voltammetry 

characterizations. This work is expected to inspire researchers to optimize energetic 

structures when applying catalysts onto semiconductors for PEC reactions. [32] 

In Chapter 5, we successfully develop a new atomic layer deposition (ALD) process 

for the growth of WO3 film and study its fundamental properties as a photoanode for 

water oxidation. Moreover, an effective water oxidation catalyst Mn-oxo is thermo-

deposited onto WO3 to improve the oxygen evolution kinetics. The WO3/Mn-oxo catalyst 

heterojunction has increased oxygen generation rate, and better stability in neutral 

solution.[33]  
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Appendix of Chapter 1 

Abbreviation of Figure 1.1* 

P680 pigment (chlorophyll) that absorbs 680 nm light in photosystem II (PSII) 

P680* excited state of P680 

P700 pigment (chlorophyll) that absorbs 700 nm light in photosystem I (PSI) 

P700* excited state of P700 

Mn manganese calcium oxide cluster 

Tyr tyrosine in PSII 

Pheo pheophytin, the primary electron acceptor of PSII 

QA primary plastoquinone electron acceptor 

QB secondary plastoquinone electron acceptor 

PQ plastoquinone 

FeS Rieske iron sulphur protein 

Cyt. f cytochrome f 

PC plastocyanin 

A0 primary electron acceptor of PSI 

A1 phylloquinone 

FX, FA, FB three separate iron sulphur centres 

FD ferredoxin 

FNR nicotinamide adenine dinucleotide phosphate (NADP) reductase 

 

*This Z-scheme process is driven by the absorption of two photons, one at PSII and the other 

at PSI. Light absorption at PSII creates P680*, which provides an electron to reduce pheophytin, 

and the step-wise electron transfer occurs from pheophytin to P700* (the oxidizing species after 

the electron transfer from P700*). Following this initial electron transfer, P680* can oxidize 

tyrosine and subsequently the manganese calcium oxide cluster. Light absorption at PSI creates 
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P700*, which provides an electron to reduce A0 to FNR. A series of electron transfer pathways 

are indicated by black arrows. 
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Chapter 2:  

Si Nanowires as Photoelectrodes for Carbon Dioxide Fixation 

 

2.1 Introduction  

Natural photosynthesis harvests the energy in solar light to power chemical reactions 

and uses CO2 as the carbon source.  Because light as an energy source is free and 

abundant, chemical reactions similar to photosynthesis have major fundamental and 

practical implications.[1,2]  Indeed, significant efforts have been attracted to this research 

goal.  The majority of attention for photochemical reactions that transform CO2 have 

focused primarily on conversion into fuels.[3,4]  How to learn from photosynthesis and 

devise reaction routes for the synthesis of useful organic compounds receives relatively 

underwhelmed considerations.[5]  Drawing inspiration from the mechanisms found in dark 

reactions of photosynthesis and using p-type Si nanowires as a photocathode, here we 

show that highly specific reactions can be readily carried out to produce α-hydroxy acids 

by photoreduction of aromatic ketones, followed by CO2 fixation.  Powered by solar light, 

this reaction is in close resemblance to natural photosynthesis, and different from its 

electrochemical analogues.  The carboxylation products of two of the substrates 

examined in this work serve as precursors to nonsteroidal anti inflammatory drugs 

(NSAID), ibuprofen and naproxen.[6]  

In nature, photosynthesis is carried out in two distinct stages: light and dark reactions.  

During the light promoted stage, the energy in photons is harvested and stored in 

chemicals such as NADPH (nicotinamide adenine dinucleotide phosphate) and ATP 
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(adenosine-5’-tiphosphate) are subsequently used to sequester carbon dioxide for the 

synthesis of complex sugar monomers.  At the heart of the Calvin cycle (dark reactions) 

is the conversion of ribulose-1,5-bis-phosphate (RuBP) into an intermediate β-keto-acid 

(Scheme 1), which ultimately fragments to 3-phosphoglycerate (3PG), the core building 

block for sugars.[7]  By not directly reducing CO2, this process avoids producing C in a 

variety of oxidation states and gains a critical advantage of high selectivity.[8]  This 

chemistry inspires us to propose a strategy to perform carboxylation reactions using light 

as a direct energy source and CO2 as a carbon source.  As shown in Schemes 2.1 and 

2.2, our reaction route is in close resemblance to natural photosynthesis but different 

from existing approaches that seek to directly photoreduce CO2.  It solves a critical 

challenge of poor selectivity inherent to the direct photoreduction of CO2 due to the 

nature of the multielectron transfer processes.  Our strategy has the potential to meet 

the selectivity requirement necessary for more complex synthetic targets than fuels, 

opening up the doors to a wide range of light-powered chemical reactions[9-12] that have 

not been previously studied. 
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Scheme 2.1. Comparison of the key carboxylation steps in natural photosynthesis and 

those in this work 

 

Scheme 2.2. Proposed mechanism of the light-driven carboxylation reactions 

 

2.2 Experimental 

2.2.1 SiNWs synthesis 

SiNWs were prepared following a previously reported method.  A p-Si (100) (1015 cm-

3 B doped; ρ:10~20 Ω•cm; Wafernet, CA, USA) was cleaned with acetone, methanol, 

and isopropanol sequentially and then oxidized in H2O2/H2SO4 (1:3) at 90˚C for 15 min 



Boston College Dissertation  

Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis  

 

- 24 - 
 

to remove heavy metals and organic species.  After rinsing with deionized (DI) water, the 

substrate was cut into approximately 1.0 cm×5.0 cm pieces and then immersed into an 

HF/AgNO3 solution (4.6 M HF and 0.02 M AgNO3) for 30 min at 50˚C for a varying 

duration of time to produce SiNWs of varying lengths. 

2.2.2 Photoelectrode fabrication 

After thorough cleaning, the substrates containing SiNWs were immersed in HF 

(aqueous, 5 %) for 2 min and then dried in a stream of N2.  Al (300 nm) was then 

sputtered onto the backside of the substrates by radio frequency magnetron sputtering 

(AJA International, Orion 8, MA, USA).  They were then annealed in Ar (flow rate: 5000 

standard cubic centimeter per minute, SCCM) at 450 ˚C for 5 min.  Afterward, tinned Cu 

wires were fixed to the Al film by Ag epoxy (SPI supplies, PA, USA).  Lastly, non-

conductive hysol epoxy (Loctite, OH, USA) was used to seal the entire substrates except 

the regions where SiNWs resided. 

2.2.3 Photoelectrochemical (PEC) characterizations  

PEC experiments were carried out using a CHI 609D Potentiostat/Galvanostat in a 

three-electrode configuration, the reference electrode being a Ag/AgI wire soaked in 0.1 

M tetrabutylammonia iodine acetonitrile solution.  A piece of high-purity Al foil (99.9995%, 

Alfa Aesar, MA, USA) served as the counter electrode.  The electrolyte solution 

consisted of 0.025 M benzophenone (> 99.0%, Sigma-Aldrich, MO, USA), 0.1 M 

tertrabutyl ammonia bromide (≥ 99.0%, Sigma-Aldrich, MO, USA)  in acetonitrile, into 

which CO2 (Airgas, MA, USA; flow rate: 120 SCCM) was continuously bubbled.  For all 

data reported here, a 150 W Xenon lamp (model 71228, CA, USA) equipped with an AM 
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1.5G filter was used as the light source and the light intensity was adjusted using a Si 

photodiode (UV 005, OSI, Optoelectronic, CA, USA).  The scan rate was 50 mV s-1. 

2.2.4 Photoelectrochemical Synthesis 

To a flame-dried, three-neck, 25-mL round-bottom flask equipped with magnetic stir 

bar was added tetrabutylammonium bromide (0.644 g, 2.00 mmol), benzophenone (0.22 

M benzophenone in acetonitrile; 2.00 mL, 80.0 mg, 0.439 mmol) and acetonitrile (18 mL) 

in a dry box. One of the following was placed in each neck of the round-bottom flask: Si 

NWs working electrode, aluminum counter electrode, Ag/AgI/I- reference electrode.  The 

reaction vessel was brought out of the dry box and CO2 was bubbled through the 

solution with an oil bubbler outlet.  A constant potential of -1.2 V was applied to the 

reaction mixture and reaction current was monitored during the synthesis time.  Light 

was shined onto the reaction with vigorous stirring overnight.  Without illumination, the 

reaction current was negligible.   

2.2.5 Procedure for determination of 1H NMR yields of the products  

The crude reaction mixture was transferred to a new 100 mL round-bottom flask and 

was concentrated in vacuo to remove acetonitrile.  The reaction was quenched by the 

addition of 4N HCl (8 mL) and was extracted with diethyl ether (3 × 25 mL).  The 

combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated 

under reduced pressure.  The crude reaction mixture was analyzed by the addition of 

200 μL internal standard (0.719 M mesitylene in acetone-d6).  1H NMR analysis was 

carried out using acetone-d6 as solvent. 
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Unless otherwise noted, all reagents were obtained commercially and used without 

further purification.  Flash column chromatography was performed using Silicycle 

SiliaFlash F60 silica gel and ACS grade solvents as received from Fisher Scientific.  All 

reactions were performed with dry, degassed solvents dispensed from a Glass Contour 

Solvent Purification System (SG Water, USA LLC), unless otherwise noted.  1H and 13C 

NMR were performed on a Varian VNMRS 500 MHz spectrometer.  Deuterated solvents 

were purchased from Cambridge Isotope Labs and stored over 3 Å molecular sieves.  All 

NMR chemical shifts are reported in ppm relative to residual solvent.  Coupling 

constants are reported in Hz.  All IR spectra were gathered on a Bruker Alpha FT-IR, 

equipped with a single crystal diamond ATR module, and values are reported in cm-1.   

 

2.3 Results and Discussion 

2.3.1 Band Structure Investigation 

We used Si nanowires (SiNWs) as the light-harvesting electrode because they have 

been shown to be efficient in converting solar energy into electrical forms, easy to make, 

and remarkably stable under reductive conditions.[13-17]  To examine their suitability for 

organic synthesis, we first conducted a reaction that has been previously performed 

electrochemically, the formation of benzilic acid through CO2 fixation by 

benzophenone.[18,19]  The key difference of the result reported here is that light serves as 

an important source of energy input.  Our goal for this initial set of experiments was to 

determine whether the energy levels of Si are aligned for reduction of benzophenone to 

the radical anion, the key step in the carboxylation reaction.  We would then apply this 

knowledge to the CO2 photofixation with ketone-based substrates.  Information 
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important to our considerations includes the electrochemical potential of the solution 

(determined by the Tafel technique in dark as -0.12 V; all potentials were relative to 

Ag/AgI/I- reference, which was 0.60 V more positive than SCE, saturated calomel 

electrode) and the Fermi level of Si (measured by the Mott-Schottky plot as 0.74 V).   

 

2.3.1.1 Equilibrium condition investigation with Tafel plot  

The equilibrium potential is the point at which the cathodic current density and the 

anodic one are equal.  At this potential, the electrochemical potential of the electrolyte 

solution aligns with the Fermi level of Si. As shown in Figure 2.1, the equilibrium 

potential of planar Si is -0.120 V in dark. When illuminated, the equilibrium potential 

shifts positively as a result of the photogenerated electron accumulation on the surface. 

Together with the Mott-Schottky plot (which will be discussed later), the energetic 

scheme of Si/ benzophenone junction can be generated.  

Compared with planar samples, Si nanowires exhibit more positive equilibrium 

potential in dark or under illumination.  This suggests that it requires less applied 

potential in order for the benzophenone reduction to take place on SiNWs. Importantly, 

the difference between the equilibrium potentials in dark and under illumination is larger 

(0.4 V) for SiNWs than for planar Si (0.22 V).  It indicates that a higher build-in potential 

is obtained on SiNWs. This is likely caused by improved light absorption by SiNWs.  
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Figure 2.1 a. Tafel plot of planar Si sample in a benzophenone solution; b. Tafel plot 

of Si Nanowires sample in a benzophenone solution. All measurements were peformed 

with 25 mM benzophenone in 0.1 M TBAB acetonitrile solution with CO2 bubbling. Xe 

lamp light intensity 100 mW cm-2 was calibrated by a Si diode under AM 1.5 irradiation 
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condition. Scan rate was 0.1 mV/sec, and scan direction was from negative potential to 

positive potential. All the voltages are relative to reference electrode Ag/AgI/I-. 

 

2.3.1.2 Mott-Schottky plot 

              

Figure 2.2 Mott-Schottky plots of SiNW photoelectrode measured in 

CO2/benzophenone system at different frequencies. All the measurements were carried 

out in dark. The dotted lines are linear fitting curves. 

 

In the reverse bias region, the space charge region capacitance (Csc) of p-SiNWs 

can be described by the Mott-Schottky relation: 

 

CSC
−2 =

2
A2qεε0NA

−V +Vfb −
kT
q

 
  

 
                                                                  (2.1) 
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where ε0 is the permittivity of free space; ε is the dielectric constant of silicon; V is the 

applied potential; Vfb is the flat-band potential; NA is the dopant density of silicon; A is 

the surface area of the electrode; k is the Boltzmann constant; and T is the temperature.  

The Mott-Schottky plots obtained at different frequencies are linear (R2>0.995) and 

the flat-band potential is measured as 0.74 V (all potentials refer to Ag/AgI/I- reference, 

which is 0.60 V more positive than SCE.). 

 

2.3.1.3 Band structure build up 

From this information and the known doping levels of Si (1015 cm-3 B-doped; ρ: 10-20 

Ω⋅cm), we constructed the energetics of the benzophenone system as shown in Figure 

2.3.  Under equilibrium conditions, a large degree of band bending (0.86 V in magnitude) 

on the surface creates a substantial depletion layer where photogenerated charges can 

be separated with high efficiencies when illuminated.   

This understanding was indeed consistent with the photoelectrochemical (PEC) 

measurements (Figure 2.4, see later disscussion). We note that both p-type and n-type 

Si NWs with different doping levels were investigated in this work. Moderately doped p-

type SiNWs were found to be the most suitable photocathodes. 
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Figure 2.3. Energetics of using p-type SiNWs for benzophenone reduction.  Under 

equilibrium conditions in the dark, a substantial band bending (0.86 V in magnitude) 

forms, providing a basis for efficient charge separation.  When illuminated, the separated 

charges create a build-in field to help power the benzilic acid formation by carboxylation.  

 

2.3.2 Photoelectrochemical Performace  

Several additional characteristics of the PEC data are noteworthy.  First, in the 

absence of light, no photocurrent was detected for applied potentials up to -2.4 V, nor 

did we obtain any carboxylation products (Figure 2.4a).  In contrast, when illuminated, a 

high saturation current density is measured at relatively low negative applied potentials 

(31.1 mA/cm2 at -1.20 V, Figure 2.4).  These results support that the reaction as shown 

in Schemes 2.1 & 2.2 is indeed powered by light.  Control experiments where SiNWs 
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were replaced by Pt only measured 2.00 mA/cm2 under identical applied potential and 

illumination conditions.   

The current level also approaches what is theoretically possible by Si (43.0 mA/cm2) 

under the same lighting conditions,[20,21] further highlighting the feasibility of using the 

system for high-efficiency PEC operations.  Important to this discussion, the saturation 

current density scales with illumination intensity in a linear fashion, supporting that the 

charge separation mechanism agrees with that proposed in Figure 2.3, and that charge 

collection is effective.   

Third, the sharp turn-on of the photocurrent density (a slope of 70.1 mA cm-2 V-1 was 

measured in the linear region between -1.00 and -1.20 V) was comparable to that 

measured on Si in the more extensively studied CoCp2/CoCp2
+ system,[22] where charge 

transfer resistance from Si to the electrolyte is known to be low, as well as that of Pt (a 

slope of 72.0 mA cm-2 V-1 between -1.15 and -1.50 V).  The comparison indicates 

illuminated Si is a suitable candidate for aromatic ketone reduction.  Indeed, under 

typical operation conditions (-1.20 V, 100 mW/cm2 AM 1.5 illumination), benzophenone 

is carboxylated at a faradic efficiency of 94% and in >98% isolated yield of the α-hydroxy 

acid product (Figure 2.4c). We note that in order to avoid direct reduction of CO2, which 

would alter the proposed reaction mechanism and produce undesired by-products, it is 

important to limit the operating potentials at or above -1.2 V.  Additional control 

experiments also suggest that the reaction proceeds by a 2-step single-electron transfer 

process (see 2.3.4).[23,24] Dimerization of the starting material as well as reduction to the 

secondary alcohol is often observed in electrochemical coupling of ketones with carbon 

dioxide.  During the reaction, the product, in the form of an aluminum salt, would 
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precipitate out of the solution and only a small portion left on the surface of aluminum 

anode.  The solid product salt would not influence the charge transfer between Si NWs 

photocathode and the other organic substrate molecules.   The observed photocurrent 

would not be disturbed as long as the aluminum anode was not consumed out.  Analysis 

of the crude photoelectrochemical reaction mixture by 1H NMR showed no signs of 

byproduct formation consistent with the high isolated yield.[25] 

 

 

Figure 2.4. Photoelectrochemical characteristics of benzilic acid formation by p-type 

SiNWs.  (a) Compared with Pt and planar Si substrate, p-type SiNWs exhibit less 
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negative turn-on voltages.  Data obtained under 100 mW/cm2 AM 1.5G illumination.  (b)  

Light powered carboxylation of benzophenone. 

 

 

Figure 2.5 a. photocurrent density of planar Si electrode at different light intensities; b. 

Photocurrent density vs. voltage plots under different illumination conditions.  A cross 
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sectional view of the electrode is shown in the inset; scale bar: 1 µm. All measurements 

were performed with 25 mM benzophenone in 0.1 M TBAB acetonitrile solution with CO2 

bubbling. Xe lamp was used as light source. All light intensity was calibrated by a Si 

diode under AM 1.5 irradiation condition. 

The linear relationship between saturation photocurrents densities on planar Si and 

light intensities suggest effective electron transfer on the Si/ benzophenone junction.  

The photocurrent density of planar Si is slightly higher than Si NWs, which is due to the 

increased charge recombination on the larger surface area of Si NWs. But the turn-on 

potential is more negative than Si NWs. The turn-on photocurrent slop on Si NWs (68.7 

mA cm-2 V-1) is also slightly lower than the planar Si (70.1 mA cm-2 V-1). This indicates 

improved electron transfer kinetics from multifaceted Si NWs to liquid electrolyte junction, 

leading to reduced overpotentials. 

 

2.3.3 Photocurrent densities and turn-on voltages of different length SiNWs 

Further analysis of the benzophenone carboxylation reaction showed that SiNWs 

exhibit a less negative turn-on (-0.52 V at >1 mA/cm2) than planar Si (-0.63 V) but lower 

saturation current density (32.1 mA/cm2 vs. 34.4 mA/cm2, Figure 2.4a).  It has been 

reported that the high surface area of nanostructures such as SiNWs may result in 

increased charge recombination at the semiconductor/solution interface, leading to 

reduced saturation current densities without considering light trapping 

mechanisms.[16,26,27]  However, the recombination mechanism would also predict 

reduced open-circuit potentials, implying a more negative turn-on voltage should be 

measured on SiNWs than on planar Si.   
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Figure 2.6: Saturation photocurrent densities (a) and turn-on potentials (b) vs. p-SiNWs 

lengths. 

 

To account for the apparent discrepancies, we suggest that the observed trend is 

indicative of improved charge transfer kinetics on SiNWs.  That is, the multifaceted 

nature of SiNWs favors charge transfer from Si to benzophenone, resulting in lower 
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overpotentials.  Our hypothesis is supported by control experiments where the turn-on 

voltages were compared with the length of SiNWs (L varying between 0 and 10 µm).  

Within a limited range (0 < L ≤ 6 µm), the turn-on voltage changes with the surface 

roughening factor monotonically; the recombination-induced open-circuit reduction 

dominates for longer SiNWs (L > 6 µm), and more negative turn-on voltages were 

measured. Similar effect has been observed on SiNWs-based water splitting reactions 

previously,[28,29] although more details about the reasons remain unclear to the best of 

our knowledge. 

Si NWs with different length were obtained by varying chemical etching time. All Si 

NWs photoelectrodes were measured in the CO2/benzophenone system in the same 

PEC setup and identical illumination condition. Photocurrent densities were determined 

from the saturate photocurrent densities (Jsc), and turn-on potentials (Von) were identified 

at current density greater than 1 mA/cm2 for comparison. 

In order to interpret the observed trend of Jsc and Von dependency on the nanowire 

lengths correctly, we need to consider several important factors. First, light absorption 

changes with the length (L) of Si NWs. Longer nanowires allows for more light 

absorption and, therefore, increases Jsc. Second, the probability for charge 

recombination increases with Si NWs length, too. Longer nanowires exhibit larger 

solid/liquid junction areas, which contain more surface states as charge recombination 

centers. As a result, for long NWs, Jsc is expected to decrease with increasing L. Taken 

as a whole, Jsc is likely to decrease for short Si NWs because the effect due to increased 

surface charge recombination dominates when light absorption is relatively weak.  

Indeed, we observed a monotonic decrease of Jsc for L< 4 µm.  For longer Si NWs, 
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however, the effect due to improved light absorption dominates, leading to an obvious 

increase of Jsc when L> 4 µm (Figure 2.6a).  

Interestingly, Von exhibited opposite trend for relatively short Si NWs (L≤4 µm). This 

observation suggested that additional factors have a significant effect on the Von. In the 

literature, nanostructured semiconductor photoelectrodes have been shown to change 

the energetics of the solid/liquid interface and lead to reduced overpotentials.ξ¶ We 

suggest that the multifaceted nature of Si NWs improves the charge transfer kinetics and, 

hence, reduces the overpotentials.  

For Si NWs longer than 10 µm, the recombination effect would eventually dominate.  

As a result, lower Voc is measured (Figure 2.6b).   

 

2.3.4 Mechanistic studies of the reactions 

To better understand the reaction mechanisms, we carried out control experiments 

using with p-Si NW photoelectrodes under illumination. For these experiments, the 

volume of solvent and concentration of supporting salt (tetrabutyl ammonia bromide) 

were kept constant.  The results are summarized in Figure 2.7. 
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Figure 2.7 a. Si NWs photoelectrodes measured with or without the presence of CO2. b. 

Si NWs photoelectrodes measured without the presence of benzophenone.  As a 

reference, the trace for typical carboxylation reactions is shown in red. 

 

As shown in Figure 2.7, when CO2 was absent, photogenerated electrons reduce 

benzophenone by a single-electron transfer process to produce ketyl radical anions or 
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dimmer (see Scheme 1 in the main text for a drawing of the mechanism). The second 

electron transfer, which takes place after CO2 fixation, is not observed. Supporting this 

understanding is currently density level of the observed plateau (14.6 mA/cm2), 

approximately half of that when CO2 is present (29.4 mA/cm2). Under large negative 

bias condition (<-2.1 V), the solvent or supporting salt can be reduced and now the 

photocurrent density can be increased further.  

In the absence of benzophenone, CO2 is reduced to produce C of various oxidation 

states. This reaction competes with the carboxylation process and is undesired. To limit 

such side reactions, we typically chose the operating conditions in the green shaded 

area in Figure S5b.  Lastly, we note that the reaction with the solvent only occurs at 

extremely negative potentials (e.g., <-2.1 V) and no photocurrent due to solvent 

reduction could be observed under our photosynthesis conditions. 

 

2.3.5 Photosynthesis Results  

To demonstrate the synthetic utility of the reaction we applied the methodology to 2-

acetyl-6-methoxynaphthalene and 4-isobutylacetophenone, which are precursors for the 

anti-flammatory drugs naproxen and ibuprofen.[19,24]  We observed consistently high yield 

and selectivity for both new substrates (Figure 2.9); furthermore, the performance is 

comparable to what has been reported by electrochemical carboxylation techniques 

where electricity was the only source of energy input and graphite or mercury were the 

electrodes (see later discussion).   
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For practical applications, the stability of the photoelectrodes against photo corrosion 

and other mechanisms that may degrade their performance such as oxidation is an 

important concern. For the reported process, the SiNWs are operating under reductive 

conditions, so we considered oxidation of SiNWs less likely and instead focused our 

attention on assessing the stability.  Recycling of the photoelectrode made of SiNWs up 

to four times showed no measurable differences in the PEC performance (Figure 2.8).  

Importantly, the rate, yield, and selectivity were reproduced over each successive 

experiment, consistent with the fact that SiNWs remain intact over the course of the 

reaction (> 34 h).  If we assume every Si surface atom as an active site, a peak turn-over 

frequency (TOF) of 25.8 s-1 is estimated (detailed calculation see 2.3.6). 

We emphasize that the photoelectrochemical syntheses reported here were 

carried out at potentials up to 670 mV less negative than what has been reported 

using electrochemical approaches, the difference provided by solar light.  Our 

strategy showed that solar light photon energies can indeed be harnessed to 

promote the synthesis at lower applied potential.[30] 
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Figure 2.8. Stability of Si NW photoelectrodes.  No significant difference is observed for 

four consecutive runs under identical operating conditions. 

 

Figure 2.9. Summary of selectivity and isolated yield for NSAID precursors. 
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2.3.6  Turnover frequency (TOF) calculation. 

The TOF was calculated following the heterogeneous catalysis definition: 

 

TOF =
Np

Ncat × t                                                                                                    (2.2) 

where Np stands for the number of product molecules as measured by NMR; Ncat is the 

number of active sites, and we estimate it by assuming every surface Si atom is an 

active site (as such, the TOF calculated would be a conservative lower limit); t is the 

reaction time. 

In a typical experiment, we detected 27% carbooxylation product of 0.44 mmol 

bezophenone starting material after 1 h reactions; the electrode area was 0.86 cm2.  

From this information, we obtained a TOF of 25.8 s-1. 

 

2.3.7 Comparison of selectivity obtained by this work and those reported in the 

literature 
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Substrate  Product  Cathode  

(this work/literature) 

Selectivity  Yield * Literature 
Selectivity[24,31] 

1 1a Si NWs / Graphite 100 % 98 % 82-86 % † 

2 2a Si NWs / Mercury 100 % 84 %, 97% ‡ 82 % ∥   

3 3a Si NWs / Mercury 64 % 64 % 90 % §  

 

* Yield of isolated product after purification; all the reactions of this work were carried out 

in acetonitrile  at 25 oC with Si NWs cathode under an atmosphere of CO2, reaction for 

4-isobutylacetophenone was carried out at 4 oC. Applied potential was -1.2 V on 

benzophenone and 2-acetyl-6-methoxynaphthalene; -1.6 V on 4-isobutylacetophenone 

vs. Ag/AgI/I- reference electrode. 

† The reactions were carried out in N-methyl pyrrolidone at 20 oC with graphite cathode 

under an atmosphere of CO2. 1H NMR yield is based on converted starting material. 
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‡ 1H NMR yield 97%. 

∥ The reactions were carried out in N, N-dimethylformamide at 0 oC with mercury 

cathode under 1 atm CO2. Reactions were done under constant current density: 10 mA 

cm-2. 1H NMR yield is based on converted starting material. 

§ The reactions were carried out in N, N-dimethylformamide at 25 oC with mercury 

cathode under 65 atm CO2. Reactions were done under constant current density: 10 mA 

cm-2. 1H NMR yield is based on converted starting material. 

 

2.4 Conclusion 

In conclusion, we demonstrated a chemical reaction that is powered by light, the most 

abundant energy source on the surface of earth, and uses CO2, an inexpensive and 

readily available source of carbon.  Significantly, these reactions produce organic targets 

that can be readily used to synthesize NSAIDs such as ibuprofen and naproxen.  

Although the energy harvesting aspect of natural photosynthesis has been widely 

exploited in reactions such as H2O splitting or CO2 reduction for fuel production, how to 

learn from nature and use the harvested photo energy for complex molecule synthesis is 

an underdeveloped area.  One of the most important merits offered by the reported 

reaction strategy is the ease with which electron exchange (donation for photocathode or 

withdrawal for photoanode) takes place between the photoelectrode and the organic 

substrates.  It has the potential to greatly broaden the scope of photosynthesis.  While in 

the present proof of concept demonstration an additional electrochemical potential is still 

necessary, the energy input from the harvested light plays a critically important role.  As 
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such, our approach represents a step forward in the use of light to power complex 

organic molecule syntheses.  
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2.6 Appendix  

 

Substrate Characterization.  

Substrate Syntheses 

Benzophenone was obtained from Sigma-Aldrich and used without purification.  2-

Acetyl-6-methoxynaphthalene was purchased from TCI America and was used without 

further purification. 

             

1-(4-isobutylphenyl)ethanone.  To a flame-dried, 250-mL, round-bottom flask was 

added AlCl3 (9.38 g, 70.3 mmol) and CH2Cl2 (86 mL).  The mixture was cooled to 0 °C, 

and acetylchloride (5.00 mL, 70.3 mmol) and isobutylbenzene (10.0 mL, 63.9 mmol) 

were added, sequentially, to the flask.  The reaction was stirred at this temperature for 

90 minutes.  The mixture was poured into a mixture of ice water and CH2Cl2 (150 mL).  

The two layers were partitioned in a separatory funnel and the organic layer was washed 

with water (70 mL) and brine (50 mL).  The organic layer was dried over MgSO4 filtered, 

and concentrated in vacuo.  The title compound was distilled to purity using a Kughelrohr 

and was isolated as a colorless oil (10.7 g, 95%).  1H NMR ((CD3)2CO, 500 MHz) δ 7.89 

(d, 2H, J = 8.3), 7.30 (3, 2H, J = 8.3), 2.55 (d, 2H, J = 7.3), 2.54 (s, 3H), 1.87 – 1.95 (m, 

1H), 0.89 (d, 6H, J = 6.6); 13C NMR ((CD3)2CO, 125 MHz) δ 197.6, 148.2, 136.3, 130.3, 

129.2, 45.9, 31.0, 26.8, 22.7; IR: 2956, 1680, 1605, 1357, 1265, 950, 596, 582 cm-1; 

HRMS (DART-TOF) calcd. for C12H17O1 [M+H]+: 177.1279, found: 177.1280. 
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Product Characterization 

 

2-hydroxy-2,2-diphenylacetic acid.   To a flame-dried, three-neck, 25-mL, round-

bottom flask equipped with magnetic stir bar was added tetrabutylammonium bromide 

(0.664 g, 2.00 mmol), benzophenone (0.22 M benzophenone in acetonitrile; 2.00 mL, 

80.0 mg, 0.439 mmol) and acetonitrile (18 mL) in a dry box. One of the following was 

placed in each neck of the round-bottom flask: Si NWs working electrode, aluminum 

counter electrode, Ag/AgI/I- reference electrode.  The reaction vessel was brought out of 

the dry box and CO2 was bubbled through the solution with an oil bubbler outlet.  A 

potential -1.2 V was applied to the reaction mixture and a light was shined onto the 

reaction with vigorous stirring overnight.  The crude reaction mixture was concentrated in 

vacuo, quenched with 6 N HCl (7.5 mL), and extracted with diethyl ether (3 x 20 mL).  

The combined organic layers were dried over MgSO4, filtered, and concentrated in 

vacuo to afford the title compound as a colorless solid (98 mg, 98%).  1H NMR 

((CD3)2CO, 500 MHz) δ 7.49 – 7.52 (m, 4H), 7.29 – 7.37 (m, 6H); 13C NMR ((CD3)2CO, 

125 MHz) δ 175.3, 144.1, 128.7, 128.5, 128.3, 81.6; IR: 3394, 2865, 1715, 1243, 1175, 

1053, 697 cm-1; HRMS (DART-TOF) calcd. for C14H11O2 [M+H-H2O]+: 211.0759, found: 

211.0758. 
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2-hydroxy-2-(6-methoxynaphthalen-2-yl)propanoic acid. To a flame-dried, three-

neck, 25-mL, round-bottom flask equipped with magnetic stir bar was added 

tetrabutylammonium bromide (0.664 g, 2.00 mmol), 2-acetyl-6-methoxynaphthalene 

(0.0865 g, 0.432 mmol) and acetonitrile (20 mL) in a dry box.  One of the following was 

placed in each neck of the round-bottom flask: Si NWs working electrode, aluminum 

counter electrode, Ag/AgI/I- reference electrode.  The reaction vessel was brought out of 

the dry box and CO2 was bubbled through the solution with an oil bubbler outlet.  A 

potential -1.2 V was applied to the reaction mixture and a light was shined onto the 

reaction with vigorous stirring overnight.  The crude reaction mixture was concentrated in 

vacuo to remove the acetonitrile solvent.  To the crude reaction was added 6 N NaOH (3 

mL).  The aqueous layer was washed with diethyl ether (15 mL).  After separating the 

two layers, the organic layer was washed with an additional portion of 6 N NaOH (3 mL).  

The organic layer was discarded and the combined aqueous layers were acidified to pH 

= 2 with concentrated HCl.  This aqueous layer was washed with diethyl ether (2 x 30 

mL) and the combined organic layers were dried over MgSO4, filtered, and concentrated 

in vacuo to afford the title compound as a colorless solid, which turns beige upon 

standing (89 mg, 84%).   1H NMR ((CD3)2CO, 500 MHz) δ 8.05 (d, 1H, J = 1.5) 7.77 – 

7.82 (m, 2H), 7.69 – 7.71 (m, 1H), 7.28 (d, 1H, J = 2.4), 7.13 – 7.15 (m, 1H), 3.91 (s, 3H), 

1.81 (s, 3H); 13C NMR (((CD3)2CO, 125 MHz) δ 176.5, 158.8, 139.8, 134.8, 130.3, 129.3, 

127.3, 125.0, 124.5, 119.5, 106.2, 76.0, 55.5, 27.4; IR: 3410, 2940, 1724, 1605, 1266, 

1132, 851 cm-1; HRMS (DART-TOF) calcd. for C14H13O3 [M+H-H2O]+: 229.0865, found: 

229.0872. 
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2-hydroxy-2-(4-isobutylphenyl)propanoic acid. To a flame-dried, three-neck, 25-mL, 

round-bottom flask equipped with magnetic stir bar was added tetrabutylammonium 

bromide (0.664 g, 2.00 mmol) in a dry box.  One of the following was placed in each 

neck of the round-bottom flask: Si NWs working electrode, aluminum counter electrode, 

Ag/AgI/I- reference electrode.  The reaction vessel was brought out of the glovebox and 

was purged with CO2 three times.  Acetonitrile (20 mL) was added to the flask under an 

atmosphere of CO2 and the flask was then brought into a cold room (4 °C) where CO2 

was bubbled through the solution.  During the course of sparging the solution, 4-

isobutylacetophenone (80.0 μL, 0.432 mmol) was brought out of the dry box and added 

to the reaction via syringe.  Sparging with CO2 was continued for an additional 20 

minutes, after which time the inlet/outlet needles were replaced with a balloon of CO2.  A 

potential of -1.6 V was applied to the reaction mixture and a light was shined onto the 

reaction with vigorous stirring overnight.  The crude reaction mixture was concentrated in 

vacuo to remove the acetonitrile solvent.  To the crude reaction was added 6 N HCl (8 

mL).  The aqueous layer was washed with diethyl ether (3 x 20 mL).  The combined 

organic layers were washed with 6 N NaOH (3 x 6 mL) and the organic layer was 

discarded.  The aqueous layer was acidified to pH = 2 using concentrated HCl.  The 

aqueous layer was extracted with diethyl ether (3 x 30 mL) and the organic layer was 

dried over MgSO4, filtered, and concentrated in vacuo to afford the title compound as a 

colorless solid (62 mg, 65%).   1H NMR ((CD3)2CO, 500 MHz) δ 7.53 (d, 2H, J = 8.1), 

7.15 (d, 2H, J = 8.1), 2.47 (d, 2H, J = 7.3), 1.82 – 1.90 (m, 1H), 1.73 (s, 3H), 0.89 (d, 6H, 

J = 6.6); 13C NMR (((CD3)2CO, 125 MHz) δ 176.2, 142.0, 141.4, 129.4, 125.8, 75.9, 45.3, 

30.7, 27.4, 22.5; IR: 3423, 2955, 2926, 2869, 1716, 1262, 1146, 1119 cm-1; HRMS 

(DART-TOF) calcd. for C13H17O3 [M-H]-: 221.1178, found: 221.1175. 
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By-product Characterization 

 

Diphenylmethanol.  Purchased from Sigma-Aldrich and analyzed by 1H NMR in 

acetone-d6.  1H NMR ((CD3)2CO, 500 MHz) δ 7.44 (d, 4H, J = 7.6), 7.30 – 7.33 (m, 2H), 

7.20 – 7.23 (m, 2H), 5.85 (d, 1H, J = 3.7), 4.87 (d, 1H, J = 3.9); 13C NMR ((CD3)2CO, 

125 MHz) δ 146.5, 129.0, 127.7, 127.4, 76.2;. IR: 3275, 1493, 1454, 1032, 1017, 762, 

739 cm-1; HRMS (DART-TOF) calcd. for C13H11 [M+H-H2O]+: 167.0861, found: 167.0865. 

 

 

1,1,2,2-tetraphenylethane-1,2-diol.  Purchased from Sigma-Aldrich and analyzed by 1H 

NMR in acetone-d6.  1H NMR ((CD3)2CO, 500 MHz) δ 7.44 – 7.46 (m, 8H), 7.10 – 7.11 

(m, 12H), 4.79 (s, 2H); 13C NMR ((CD3)2CO, 125 MHz) δ 147.0, 130.1, 127.4, 127.1, 

84.1; IR: 3554, 3056, 1445, 1024, 741, 698 cm-1; HRMS (DART-TOF) calcd. for 

C26H21O1 [M+H-H2O]+: 349.1592, found: 349.1588. 

 

OH

OH

OH
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1-(6-methoxynaphthalen-2-yl)ethanol.  To a flame-dried, 15-mL, round-bottom flask 

was added NaBH4 (134 mg, 3.00 mmol) and dry methanol (3.0 mL).  The mixture was 

cooled to 0 °C and 2-Acetyl-6-methoxynaphthalene (500 mg, 2.50 mmol) was added to 

the flask, with stirring, as a solution in methanol (1.4 mL).  After the addition was 

complete, the reaction was allowed to warm to room temperature over one hour.  The 

reaction was quenched by the addition of 4 N HCl (10 mL), transferred to a separatory 

funnel, and extracted with dichloromethane (60 mL).  The organic layer was dried over 

MgSO4, filtered, and concentrated to yield a colorless solid (420 mg, 83%). 1H NMR 

((CD3)2CO, 500 MHz) δ 1H NMR ((CD3)2CO, 500 MHz) δ 7.78 (s, 1H), 7.77 (d, 1H, J = 

2.2), 7.75 (s, 1H), 7.50 – 7.52 (m, 1H), 7.27 (d, 1H, J = 2.4), 7.12 – 7.14 (m, 1H), 4.96 – 

5.01 (m, 1H), 4.21 (d, 1H, J = 3.9), 3.90 (s, 3H), 1.48 (s, 3H, J = 6.6); 13C NMR 

((CD3)2CO, 125 MHz) δ 158.5, 143.5, 134.9, 130.2, 129.8, 127.6, 125.7, 124.3, 119.5, 

106.6, 70.1, 55.6, 26.2; IR: 3340, 2972, 1251, 1203, 760, 698 cm-1; HRMS (DART-TOF) 

calcd. for C13H13O1 [M+H-H2O]+: 185.0966, found: 185.0970. 

 

1-(4-isobutylphenyl)ethanol.  To a flame-dried, 25-mL, round-bottom flask was added 

NaBH4 (129 mg, 3.40 mmol) and methanol (4 mL).  The mixture was cooled to 0 °C, 

followed by the addition of 1-(4-isobutylphenyl)ethanone (500 mg, 2.84 mmol) as a 

solution in methanol (1 mL).  The reaction was allowed to warm to room temperature 

over one hour, quenched by the addition of 4 N HCl (10 mL), transferred to a separatory 

funnel, and washed with dichloromethane (70 mL).  The organic layer was dried over 

MgSO4, filtered, and concentrated in vacuo.  Isolation of the title compound was carried 
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out using silica gel column chromatography (20% EtOAc/Hex) to afford a colorless oil 

(429 mg, 84%).  1H NMR ((CD3)2CO, 500 MHz) δ 7.28 (d, 2H, J = 7.8), 7.10 (d, 2H, J = 

8.1), 4.78 – 4.82 (m, 1H), 4.0 (d, 1H, J = 4.2), 2.45 (d, 2H, J = 7.3), 1.82 – 1.87 (m, 1H), 

1.38 (d, 3H, J = 6.4), 0.89 (d, 6H, J = 6.6) 13C NMR (((CD3)2CO, 125 MHz) δ 145.7, 

140.7, 129.6, 126.1, 69.9, 45.7, 31.1, 26.3, 22.8; IR: 3342, 2954, 1094, 846, 799, 554 

cm-1; HRMS (DART-TOF) calcd. for C12H17 [M+H-H2O]+: 161.1330, found: 161.1331. 

 

2,3-bis(4-isobutylphenyl)butane-2,3-diol (isolated as a mixture of meso and dl 

compounds).  Prepared by the method of Banik, et al.1 1H NMR ((CD3)2CO, 500 MHz) δ 

7.23 (d, 4H, J = 8.3), 7.07 (d, 4H, J = 8.1), 6.95 (m, 8H), 4.07 (s, 2H), 3.92 (s, 2H), 2.42 

– 2.44 (m, 8H), 1.81 – 1.86 (m, 4H), 1.51 (s, 6H), 1.50 (s, 6H), 0.87 – 0.89 (m, 24H); 13C 

NMR ((CD3)2CO, 125 MHz) δ 144.1, 143.5, 140.2, 140.0, 128.3, 128.2, 128.1, 128.0, 

79.0, 78.7, 45.64, 46.63, 31.1, 31.0, 25.5, 25.2, 22.7, 22.6; IR: 3450, 2952, 1338, 1102, 

1063, 1019, 907, 848, 798, 596 cm-1; HRMS (DART-TOF) calcd. for C24H33O1 [M+H-

H2O]+: 337.2531, found: 337.2519.   
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Chapter 3:  

Si Nanowires Show Improved Performance as Photocathode for 

Catalyzed Carbon Dioxide Photofixation 

 

3.1 Introduction  

The ability to utilize sunlight, the most abundant form of energy on earth’s surface, to 

power chemical reactions is a unique feature of natural photosynthesis.[1]  The process 

enables the storage of solar energy that is intermittent in nature.  With carbon dioxide 

(CO2) as a feedstock, it also produces highly specific organic chemicals that are the 

essential energy suppliers or building blocks for a wide range of important natural 

processes.[2-4]  Significant research efforts have been devoted to mimicking the process 

in artificial systems, and the major focus has been on how to improve the solar energy 

conversion efficiencies.[5,6]  Relatively underwhelming attention is paid to issues related 

to low product specificities when CO2 is reduced.  Inspired by the detailed mechanisms 

of the dark reactions in the Calvin cycle,[7] we recently reported a strategy to combat this 

problem.[8]  Briefly, the key to our idea was to avoid direct CO2 reduction, which is prone 

to produce carbons of varying oxidation states.  Instead, we rely on the creation of an 

intermediate that subsequently reacts with CO2 selectively.  The idea is similar to 

Bocarsly et al’s approach of using pyradium for the production of methanol,[6] although 

we seek to produce more complex, and hence synthetically relevant organic molecules.  

In principle, the scope of reactions can be significantly broadened if the intermediate 

produced by photoreduction is a catalyst that can be used to react with CO2 to yield the 
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desired product.  Similar to photosynthesis, the carbon-carbon bond forming reactions 

are independent of photons (e.g. the dark reactions), allowing for improved control in 

selectivity.  To test this hypothesis, here we report our success in performing CO2 

photofixation with the help of the Ni(bpy)2 catalyst.  To our surprise and delight, we 

observed that Si nanowire (SiNW) photoelectrode exhibited more than 300 mV turn-on 

potential reduction when compared with planar Si.  We attributed this to the multifaceted 

nature of the nanowires. 

 

Scheme 3.1. Proposed reaction mechanism of catalyzed CO2 fixation by Si 

photoelectrodes. 
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Our catalyzed CO2 photofixation design is schematically shown in Scheme 1.  

SiNWs absorb solar energy and excite electrons to the conduction band.  The excited 

electrons are transferred to the Ni(II)(bpy)2
2+ complex and produce Ni(0)(bpy)2, which 

then binds with CO2 and the alkyne substrate.  Oxidative cyclization of the alkyne and 

CO2 yields a Ni(II) metallacycle, which upon protonation releases the desired carboxylic 

acid, regenerating the Ni(II) catalyst.  Overall, the Ni catalysed process provides an 

efficient and stereospecific synthesis of trisubstituted alkenes from CO2 and an alkyne. 

 

3.2 Experimental  

3.2.1 Catalyst Synthesis 

Unless otherwise noted, all reagents were obtained commercially and used without 

further purification. 

To a flame-dried, 100 mL, round-bottom flask was added, successively, 

Ni(BF4)2•6H2O (1 eqiv.), EtOH (0.15 M), and 2,2'-bipyridine (3 equiv.). The reaction was 

stirred at room temperature for one hour. The resultant precipitate was filtered, washed 

with Et2O, and dried overnight under reduced pressure. 

3.2.2 SiNWs Synthesis 

SiNWs were prepared by a previously reported method. A piece of p-Si (100) wafer, 

(1015 cm-3 B doped, ρ:10~20 Ω•cm, Wafernet, USA), sequentially cleaned with acetone, 

methanol, and isopropanol, was further cleaned using Piranha solution of H2O2/H2SO4 

(1:3) (Sigma-Aldrich, USA) at 90˚C for 15 min to remove heavy metals and organic 

species.  Following rinsing with deionized (DI) water, the wafer was cut into 
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approximately 1.0 cm× 4.0 cm pieces.  Immersion of the pieces in an HF/AgNO3 solution 

(4.6 M HF and 0.02 M AgNO3, Sigma-Aldrich, USA) for 30 min at 50 ˚C resulted in 

SiNWs ca. 10 μm in length.  The SiNWs substrate was then cleaned by an HNO3 

aqueous solution (Sigma-Aldrich, USA) to remove silver residue and finally was rinsed 

by DI water. 

3.2.3 Photoelectrode fabrication 

The SiNWs substrate was immersed in HF (aqueous, 5%) for 2 min and dried in a 

stream of N2.  Following Al (300 nm) sputtering onto the backside of the substrates by 

radio frequency magnetron sputtering (AJA International, Orion 8, USA), the substrate 

was annealed in Ar (flow rate: 5000 standard cubic centimeter per minute, SCCM) at 

450˚C for 5 min in rapid thermal processor (RTP-600S, Modular Process Tech., USA), 

and tinned Cu wires were fixed to the Al film by conductive epoxy (SPI supplies, USA) to 

form a back contact.  Lastly, non-conductive hysol epoxy (Loctite, USA) was used to 

seal the substrate, allowing only the front surface where SiNWs reside to remain 

revealed. 

3.2.4 Photoelectrochemical (PEC) and Electrochemical Impedance Spectroscopy 

(EIS)characterizations 

PEC and EIS experiments were carried out using a CHI 609D Potentiostat. A three-

electrode configuration was used, in which a Ag/AgI wire soaked in 0.1 M 

tetrabutylammonium iodide acetonitrile solution was used as the reference electrode, a 

piece of high-purity Al foil (99.9995%, Alfa Aesar, USA) served as the counter electrode, 

and SiNW-based (or planar Si) photoelectrodes were used as the working electrode. 

The electrolyte solution was composed of 5 mM Ni(bpy)3(BF4)2 catalyst and 0.1 M 
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tetrabutyl ammonium bromide (TBAB) (≥ 99.0%, Sigma-Aldrich, USA) in 20 mL 

acetonitrile.  CO2 (Airgas, USA; flow rate: 120 SCCM) was continuously bubbled through 

the solution.  A 150 W Xenon lamp (model 71228, Newport, USA) equipped with an AM 

1.5G filter and illumination intensity calibrated to be 100 mW cm-2 by a Si photodiode 

(UV 005, OSI, Optoelectronic, USA) was used as the light source.  The scan rates for 

both CV and IV curves were 50 mV s-1.  EIS measurement was done with electrolyte 

solution of 5 mM Ni(bpy)3(BF4)2 catalyst and 0.1 M tetrabutyl ammonium bromide in 20 

mL acetonitrile without illumination. Frequency range was from 105 Hz to 1 Hz. 

3.2.5 Reference Electrode Calibration 

All potentials shown hereafter in this dissertation are relative to the reference 

electrode of Ag/AgI/I-, which is -0.56 V relative to SCE, saturated calomel electrode).  

This homemade reference electrode is made by soaking a silver wire into 0.1 M 

tertabutalammonium idiod acetonitrile solution in a glass tube with porous glass tip.  

The potential of this electrode is calibrated with SCE based on testing same redox 

pair (CoCp2
0/CoCp2

+/MeCN) potential with a Pt mesh.  The cyclic voltammograms is 

recorded by using reference electrode of SCE or Ag/AgI/I- electrode. 
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Figure 3.1. Reference electrode calibration by testing cyclic voltammograms in redox 

pair of CoCp2
0/CoCp2

+. 

 

3.3 Results and Discussion 

3.3.1 Polarization Curves Comparison of various electrodes and photoelectrodes 

Although the process may be accomplished by electrochemistry[9] using, for example, 

Pt as the working electrode, the advantage of performing the reaction on a Si 

photoelectrode is a significantly lowered requirement for externally applied potentials , as 

shown in Figure 3.2.  Analysis of the crude reaction mixture shows the reaction 

proceeded at 81% faradaic efficiency for the carboxylated product.   
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Figure 3.2. Comparison of various electrodes and photoelectrodes.  a) Cyclic 

voltammetry in acetonitrile with 0.1 M tetrabutylammonium bromide, 5 mM 

Ni(bpy)3(BF4)2, and 0.05 M 4-octyne, saturated with CO2.  Scan rate: 50 mV/s.  Both 

SiNW and planar Si photoelectrodes were under illumination of an Xenon lamp (light 

intensity adjusted to 100 mW cm-2).  No measurable current was observed on SiNW and 
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planar Si photoelectrodes when they were not illuminated.  b) Polarization curves in the 

same solution but with vigorous stiring (1000 rpm).  

 

3.3.2 Mott-Schottky plots and the corresponding energy band diagrams of 

electrode made of SiNWs and planar Si  

Most prominent of the features are that the peaks in the cyclic voltammetry (CV) 

corresponding to the reduction/oxidation of Ni(II)(bpy)2
2+/Ni(0)(bpy)2 are anodically 

shifted, from -0.71 V for Pt to -0.37 V for planar Si photoelectrode, and -0.19 V for 

SiNWs (Figure 3.2a; all potentials shown hereafter in this chapter are relative to the 

reference electrode of Ag/AgI/I-, which is -0.56 V relative to SCE, saturated calomel 

electrode).  The shift suggests the need for applied potentials is greatly reduced, with the 

additional power produced by the photoelectrode.  It means that our approach allows 

one to effectively use the energy delivered by light for the reduction of CO2, which is an 

important character of photosynthesis.  We also note that there are no anodic peaks 

visible on all electrodes (Figure 3.2a), strongly indicating that electron transfer from Ni(0) 

catalyst to alkyne and CO2 as proposed in Scheme 1.  Without alkyne and CO2, the 

anodic peaks were unambiguously observed. 

There are several points we wish to highlight here, including the importance of light, 

the performance difference between electrodes made of SiNWs and planar Si, and a 

hypothesis for these unusual observations.  We first focus on the effect of light on the 

reactions.  Within the potential window that we measured (Figure 3.3), without light no 
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currents were observed on electrodes made of Si, either planar or SiNWs.  The result 

suggests that light plays an important role in powering the reactions.  The difference 

between the red/ox potentials of Ni(II)(bpy)2
2+/Ni(0)(bpy)2 for Si and that for Pt was 

inferred as the photovoltage provided by Si.[10]  When Si is in equilibrium with the 

electrolyte system, a downward band bending occurs (see Figure 3.3c & 3.3d).  This is 

because the Fermi level (as measured by the flatband potential, or Vfb) of Si is more 

positive than the equilibrium potential of the Ni(II)(bpy)2
2+/Ni(0)(bpy)2 system.  Here we 

emphasize that the exact equilibrium potentials of the electrolyte system relative to the 

Fermi levels of Si is unknown.  The measurement of these values requires further 

research.  It is likely to be different from the red/ox peak positions of 

Ni(II)(bpy)2
2+/Ni(0)(bpy)2 as measured by the CV peak positions in Figure 3.2a, which 

were obtained under stagnant conditions.  This is because the equilibrium potential of 

Ni(II)(bpy)2
2+/Ni(0)(bpy)2 depends on the relative concentrations of the oxidized and 

reduced species.  As such, our representation of the band-bending in Figure 3.3 is 

qualitative in nature. 

The data presented in Figure 3.2a nonetheless allowed us to obtain a Vph of 0.34 V 

for planar Si and one of 0.52 V for SiNWs.  These values fall in the range of 

photovoltages observed on both n- and p-type Si previously[11,12] and are therefore 

reasonable.  What was intriguing, however, is the difference between photoelectrodes 

made of planar Si and SiNWs.  To better present the difference, typical polarization 

curves for all three types of electrodes are plotted in Figure 3.2b.  If we define the 

potential at which the currents (or photocurrents) reach 50 µA cm-2 as the turn-on 

voltage (Von), the value for Pt is -0.46 V, and those for planar Si and SiNWs are -0.20 V 

and +0.04 V, respectively.  Again, a greater reduction in Von is observed on SiNWs (0.50 
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V as opposed to 0.26 V for planar Si), implying that photoelectrodes of SiNWs produce 

larger photovoltages.  While reduced reflection and improved light harvesting by SiNWs 

might contribute to the greater photovoltage [13], such an effect would fail to account for a 

significant difference like what we observe (0.24 V more photovoltage measured on 

SiNWs).  It is noted that the same trend was observed on more than 6 pairs of 

photoelectrodes compared, with less than 0.02 V differences in the photovoltages 

measured.  We therefore ruled out the possibilities of measurement artifacts. 

We suggest the difference is a manifestation of how easy or difficult charge transfer 

can take place between Si and the catalyst.  It is well documented that the impedance to 

the charge transfer process show up in polarization curves as a part of the 

overpotential.[14]  Because Ni(bpy)2
2+/0 is not known to form covalent bonds with Si, the 

electron transfer likely proceeds through an outer-sphere mechanism.  The ease (or 

difficulty) of electron transfer from Si to Ni(bpy)2
2+/0 is dependent on which surfaces of Si 

is exposed to and how the molecules are arranged relative to Si surface atoms.  The 

advantage of SiNWs is that each individual nanowire is multifaceted, meaning that a 

variety of crystal planes are present.  It is reasonable to assume that electron transfer 

pathways between a SiNW and a Ni(bpy)2
2+ are preferably formed on a crystal plane 

that favors the process, more so than on one that requires higher overpotentials, such as 

the (100) faces.   

One way to test this hypothesis is to examine the electrochemical impedance 

spectroscopy.  For this purpose, we plot how the capacitance varies with the applied 

potentials in dark.  As shown in Figure 3.3a, a classical Mott-Schottky (M-S) relationship  

                                                                                  (3.1) 
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is followed by SiNWs for frequencies ranging from 5000 Hz, 10000 Hz and 20000 Hz.  

Here, C represents the space charge capacitance in the semiconductor, NA is the hole 

density, q is the electron charge, ε0 is vacuum permittivity of a vacuum, ε is the dielectric 

constant of Si, E is the applied potential, Vfb is the flat band potential, T is the 

temperature, and k is the Boltzmann constant.  The negative slope proves that the 

majority carrier is hole, consistent with the fact that p-type Si was used.  From the M-S 

plots, a carrier concentration of NA= 3.1×1015 cm-3 and Vfb=+0.69 V was obtained.  The 

carrier concentration calculation is in excellent agreement with the information provided 

by the vendor of the Si substrate (resistivity: 10-20 Ω cm; NA=1015 cm-3). 

In stark contrast, a plateau shows up in the M-S plots for planar Si between -0.55 to -

0.30 V.  In the literature, a plateau like this is typically understood as a voltage region 

within which the applied potential drops within the Helmholtz layer instead of in the 

depletion region of the semiconductor.[15]  The most common cause for such a 

phenomenon has been regarded as surface states-induced Fermi level pinning.[16]  We, 

however, consider surface states trapping an unlikely mechanism for the phenomenon 

because the plateau was only observed on planar Si without chemical pre-treatments; it 

was absent on SiNWs produced by chemical etching which are far more likely to be of 

high surface states.  We understand the origin of the plateau as the change of the 

Helmholtz layer on planar Si between -0.55 and -0.30 V.  It is hypothesized that the 

arrangement of Ni(II)(bpy)2
2+ on Si surfaces is dependent on the surface potentials, and 

that the arrangement defines the impedance of charge transfer.  For SiNWs, owing to 

the availability of a variety of facets, one that favors charge transfer between 

Ni(II)(bpy)2
2+ and Si is present within the entire potential window.  For planar Si, on the 

other hand, the only available crystal plane is Si(100), which does not favor charge 
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transfer between Ni(II)(bpy)2
2+ and Si above -0.30 V.  Starting from -0.30 V, the negative 

potential induces molecular rearrangement for improved charge transfer, and the 

process is complete at -0.55 V.  In other words, between -0.30 and -0.55 V, most of the 

applied potential drops at the Helmholtz layer instead of within the space charge region 

of Si.  The understanding is depicted in Figure 3.3d.  Close examinations of the M-S 

plots of planar Si revealed that if the data between Vapplied=0 and -0.30 V are used to 

extract the Vfb, a value of +0.66 V is obtained, which is only different from that obtained 

on SiNWs by 0.09 V (Vfb of SiNW is +0.69 V, as shown in Figure 3.3a).  At applied 

potentials below -0.55 V, approximately 0.25 V drops within the Helmholtz layer that do 

not contribute to the formation of the space charge region.  Note that all values 

discussed in this paragraph refer to steady-state conditions in dark. 
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Figure 3.3. Mott-Schottky plots and the corresponding energy band diagrams of 

electrode made of SiNWs (a & c, respectively) and that of planar Si (b &d, respectively).  

The insets in (a) and (b) show the legends of the frequencies used.  The plateau 

observed on planar Si (b) is attributed to the charging of the Helmholtz layer.  The 

understanding is shown in panel (d). 
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3.3.3 Electrochemical impedance spectroscopy (EIS) study of SiNWs and planar 

Si  

To validate the hypothesis, we further examined the Nyquist plots at different applied 

potentials by fitting the data using equivalent circuits (Figure 3.4 and 3.5).  Two distinct 

features of this group of data are noted.   

 

 

Figure 3.4.  Nyquist plots at 0 V (a), -0.600 V (b), -0.300 V(c) and -0.500 V (d) for 

SiNWs (red) and planar Si.  The dotted lines are fitting data.   
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First, the capacitance attributed to the space charge region of SiNWs decreased 

monotonically between 0 V and -0.600 V.  By comparison, the capacitance 

corresponding to the space charge region of planar Si remained unchanged between -

0.30 V and -0.50 V.  This observation is consistent with the M-S plots as shown in Figure 

3.3.  It proves that within this potential window, the increased negative potential on 

planar Si drops within the solution but not in the space charge region, as indicated in 

Figure 3.3d.   

Second, a clear difference between the data obtained on SiNWs and those on planar 

Si is observed in the low frequency region, where the characteristics of the Helmholtz 

layer and the solution dominate the features.  For instance, at 0 V the fitting of the data 

for planar Si resulted in a resistor of 4.03×106 Ω while that for the SiNWs was 8.83×104 

Ω.  At -0.60 V, the values were 1.49×105 Ω and 1.60×105 Ω, respectively (see Table 3.1).  

The difference indicates that charge transfer from planar Si to Ni(II)(bpy)2
2+ at small 

applied potentials (e.g., 0 V) was indeed more difficult than that from SiNWs to 

Ni(II)(bpy)2
2+, whereas the difference is negligible at high applied potentials (e.g., -0.60 

V). 

Tabel 3.1a. EIS simulation results for planar Si at different applied potentials  

 Csc Rsc Css Rss Cdl Rdl Cn1 Rn1 

0 mV 7.46E-10 1.42E7 8.89E-8 1.15E5 2.82E-8 4.03E6 8.23E-7 9.05E4 

-300 mV 5.60E-10 3.10E6 4.01E-8 2.15E5 4.17E-9 2.65E5 5.28E-8 2.43E5 

-500 mV 5.87E-10 3.08E6 3.91E-8 2.12E5 4.50E-9 1.95E5 2.28E-8 3.90E5 

-600 mV 5.31E-10 2.30E6 6.40E-8 2.42E5 2.60E-9 1.49E5 3.38E-8 4.00E5 
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Tabel 3.1b. EIS simulation results for SiNWs at different applied potentials  

 Csc Rsc Css Rss Cdl Rdl Cn1 Rn1 Cn2 Rn2 

0 mV 7.29E-10 1.58E6 2.17E-7 1.60E5 2.17E-8 8.83E4 7.72E-7 4.47E5 9.01E-8 9.94E4 

-300 mV 5.89E-10 1.76E6 1.64E-7 1.69E5 1.71E-8 8.73E4 4.95E-7 2.87E5 9.80E-8 1.04E5 

-500 mV 5.65E-10 2.46E6 1.33E-7 7.44E5 1.44E-8 1.35E5 2.14E-8 1.35E5 4.98E-8 1.31E5 

-600 mV 5.39E-10 1.55E6 1.14E-7 2.55E5 1.12E-8 1.60E5 2.19E-8 4.72E5 2.19E-8 4.72E5 
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Figure 3.5. Nyquist plots of SiNWs at -600 mV with different fitting models respectively.   

Taken as a whole, we understand the data as follows.  When Ni(II)(bpy)2 is in 

contact with SiNWs, a charge transfer pathway is established at relatively positive 

potentials due to the multifaceted nature of SiNWs.  At similar potentials, a significant 

resistance between planar Si and Ni(II)(bpy)2 exists, which disappears when the applied 

potential is negative enough (lower than -0.50 V, for example).  The understanding also 

explains the photocurrent differences as shown in Figure 3.2b.  At -0.20 V applied 

potential, a current density of -1.72 mA cm-2 was observed on SiNWs while no 

photocurrent was measured on planar Si.  In the diffusion-limited region (e.g., -0.60 V), 

higher photocurrents were measured on planar Si than on SiNWs because of better 

diffusion on a planar electrode. 

 

 

3.3.4 Ni catalysts turn over on SiNWs 
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The fact that Ni catalyst turns over on SiNWs was one of the most important pieces 

of information for the reaction. We used control experiment and the CV scans to prove 

the turning over of catalyst. In the control experiment, we continuously applied -0.3 V 

potential on SiNWs with light irradiation. But no substrate was added to the solution. As 

a result, photocurrent dropped continuously and quickly, maintaining less than 20 % 

when the 2n charge was passed through the PEC cell. The charge 2n means the 

equivalent amount of charge could reduce all catalyst in the solution. It implied that 

without substrate binding, the Ni catalyst cannot turn over on the SiNWs. 

However, after the same amount of charge (2n), a very distinguish CV peak for Ni 

catalys was still obtained on SiNWs with substrates (4-octyne and CO2) added to the 

solution. Overall, with the control experiment result, this was evidence to show that the 

Ni catalyst can turn over on SiNWs in the presence of substrates.   

 

Figure 3.6. a) Control experiment with only 5 mM Ni catalyst in the acetonitrile solution 

with N2 gas as protection gas; b) CV scans to show Ni catalyst was turning over on Si 

NWs. The electrolyte contained 5 mM Ni catalyst and 0.05 M 4-octyne acetonitrile 
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solution with CO2 gas bubbling. In all electrolytes, 0.1 M tetrabutylammonium bromide 

was added in acetonitrile solution. SiNWs were illuminated with a 100 mW cm-2 Xenon 

lamp. 

 

3.3.5 Stability for SiNWs 

The CV curve of SiNWs had good reproducibility (10 continuous CV scans 

overlapped well in Figure 3.7), suggesting that the stability of both SiNWs electrode and 

Ni catalyst were well maintained in this experimental condition. 

 

 

Figure 3.7. CV stability of catalyst Ni(bpy)3(BF4)2 on SiNWs. SiNWs were illuminated 

with a 100 mW cm-2 Xenon lamp. 

 

3.3.6 Photosynthesis Results 
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*Faradaic efficiency is defined as one product mole per every 2 electron moles. 

 

3.3.7 Characterization of Products 

Carboylic Acid. The crude reaction mixture was transferred to a new 100 mL round-

bottom flask and was concentrated in vacuo to remove acetonitrile. The reaction was 

quenched by the addition of 6N HCl (9 mL) and was extracted with diethyl ether (4 × 20 

mL). The combined organic layers were dried over Mg2SO4, filtered, and concentrated 

under reduced pressure. 1H NMR (CDCl3, 500 MHz) δ 11.5 (s, 1H), 6.9 (t, 1H), 2.3 (t, 

2H), 2.2 (q, 2H). 1.4-1,5 (m, 4H), 0.9-1.0 (m, 6H); 13C NMR [TBD]; HRMS (DART-TOF) 

calcd. for C9H17O2 [M+H]+: 157.1233, found: 157.1229. 

 

As Si is an earth abundant element, and a great deal of knowledge about its 

optoelectronic and photoelectrochemical properties has been accumulated, research on 

using Si-based materials for solar energy utilizations is of special interest.  Within this 

Catalyst Cathode/Conditions Applied Potential Faradaic Efficiency* 

1 SiNWs / illuminated -0.3 V 64 % 

1 SiNWs / dark -0.3 V No product 

1 Au -0.8 V 74 % 
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context, our result is significant.  It shows that SiNWs may exhibit advantages over 

planar Si in addition better light absorption.  By reducing the overpotential due to charge 

transfer impedance, higher photovoltage is measured on SiNWs than on planar Si.  

Although similar observations have been made by earlier reports,[17,18] little attention has 

been paid to the phenomenon.  To the best of our knowledge, our report is the first to 

systematically compare photoelectrodes of SiNWs and planar Si in a synthetically useful 

system.  A consistent trend, albeit in a much less pronounced magnitude, was observed 

in our proof-of-concept demonstration of the benzophonene system.[8]  Previous 

considerations[13, 19, 20] about the trade-off between photovoltage reduction caused by 

surface states and better charge collection by the NW morphology are generally valid.  

We emphasize that cautions must be used when applying these considerations to 

specific chemical systems as these factors may be outplayed by those related to the 

detailed chemical mechanisms.  With the intense research attention on solar energy 

utilization by photoelectrochemical processes, we envision that reactions similar to 

natural photosynthesis, that is, those seek to use solar energy to produce highly specific 

chemicals, will gain increasingly more attention.  For these reactions, each system must 

be evaluated individually.   

 

3.4 Conclusion 

Communicating the point that the multifaceted nature of SiNWs may be 

advantageous for catalytic photoelectrochemical processes is our primary intention.  To 

fully understand the nature of the interface between Si and the electron-receiving groups, 

more detailed research is needed.  For instance, Si with different crystal faces exposed 
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could be obtained or produced and the charge transfer characteristics could be 

measured to identify which facets favor charge transfer between Si and Ni(II)(bpy)2
2+.  

Detailed knowledge like this will contribute significantly to the goal of designing highly 

specific reactions that are powered by sunlight and produce useful chemicals in a way 

similar to natural photosynthesis but at much higher efficiencies. 
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Chapter 4:  

Tunable Redox Potential of Ni catalysts for carbon dioxide 

photoreduction on p-SiNW 

 

4.1 Introduction  

Converting solar energy into fuel through artificial photosynthesis is an attractive 

means to energy storage. [1-3] This process, analogous to natural photosynthesis, uses 

semiconductors to capture and convert solar irradiation to useful forms of energy. 

Carbon dioxide photofixation through semiconductors is, however, limited by the slow 

kinetics, ultrahigh overpotential, and extremely low yield. [4-6]   

Recently, there has been an increase in work to introduce catalysts onto 

semiconductors to improve the light conversion efficiency in photoelectrochemical (PEC) 

cells. Nocera et al. used CoPi catalyst on Si based semiconductors to split water without 

external bias. [7] The Brudvig-Crabtree catalyst (Mn-oxo) has been thermally deposited 

on the surface of a WO3 photoanode to improve the water oxidation efficiency. [8] 

Bocarsly et al. used pyridine as a catalsyt on p-type GaP to photoreduce carbon dioxide 

to methanol, obtaining yields as high as 96 %.[9]  These effectively show that catalysts 

can not only increase the efficiency when converting solar energy into chemical energy, 

but also increase the product selectivity by limiting the reaction pathway, especially for 

carbon dioxide photoreduction. 

However, it is not always straightforward to apply catalysts onto semiconductor 

materials. The introduction of catalysts may cause stability issues, as well as introduce 
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complexity to the energetic structure, which is a determining factor in the ability of 

photogenerated charges to flow from the semiconductor to the catalyst. The band 

position and Fermi level of the semiconductor must be appropriately placed relative to 

the redox potential of the catalyst. For reduction reactions, the redox potential of the 

catalyst is required to be more negative than the Fermi level of the semiconductor to 

allow for the flow of electrons from semiconductor to catalyst, a requirement that is met 

through the use of p-type semiconductors. Additionally, the overpotential of the charge 

transfer from semiconductor to catalyst should be sufficiently small. As a result, it is a 

challenge to find a suitable semiconductor/catalyst pair.   

In this chapter, we look to address these issues by focusing on tuning the redox 

potential of Ni catalysts through the exchange of ligands. We began with Ni(bpy)3(BF4)2 

(bpy=2,2'-bipyridine, catalyst 1) as a model catalyst for the carboxylation of 4-octyne 

using CO2 as a C1 source, which has previously been shown on carbon fiber. [10] SiNWs 

are used as the photocathode to reduce these Ni catalysts.  This work demonstrates the 

ability to tune the redox potential of a system simply by changing ligands on a catalyst, 

allowing for the selection of an appropriate catalyst/semiconductor pair. 

In this chapter, we look to address these issues by focusing on tuning the redox 

potential of Ni catalysts through the exchange of ligands. We began with Ni(bpy)3(BF4)2 

(bpy=2,2'-bipyridine, catalyst 1) as a model catalyst for the carboxylation of 4-octyne 

using CO2 as a C1 source, which has previously been shown on carbon fiber.[10] 

SiNWs are used as the photocathode to reduce these Ni catalysts.  This work 

demonstrates the ability to tune the redox potential of a system simply by changing 

ligands on a catalyst, allowing for the selection of an appropriate catalyst/semiconductor 

pair. 
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4.2 Experimental 

Ni catalysts were prepared by the addition of Ni(BF4)26H2O and the appropriate 

ligand in a 1:3 ratio in ethanol for 1 hour. [11] The resultant precipitate was washed with 

ether and dried overnight under reduced pressure. All ligands were obtained 

commercially, with the exception of ligand 3, which was prepared according to literature. 

[12] 

Electroless etched SiNWs were prepared following a reported method. [13] A p-type Si 

(100) substrate (Wafternet, 1015 cm3, B-doped; 10–20 Ω•cm) was cleaned with acetone, 

methanol, and isopropanol sequentially and then oxidized in H2O2/H2SO4 1:3 at 90 °C 

for 10 minutes to remove heavy metals and organic species. The cleaned substrate was 

immersed in an HF/AgNO3 aqueous solution (4.6 M HF and 0.02 M AgNO3) for 30 

minutes at 50°C to produce SiNWs. Electrode fabrication was done after Al post-

treatment to form ohmic contact as detailed in our previous work. [14] 

Photoelectrochemical experiments were performed on a CHI 609D Potentiostat. A 

three-electrode configuration was used, in which Pt or SiNW electrodes were used as 

the working electrode, a piece of high-purity Al foil (99.9995%, Alfa Aesar, USA) served 

as the counter electrode, and a saturated calomel electrode (SCE) was used as the 

reference electrode.  The electrolyte solution was composed of 5 mM Ni catalyst and 0.1 

M tetrabutyl ammonium bromide (TBAB) (≥ 99.0%, Sigma-Aldrich, USA) in 20 mL 

acetonitrile. CO2 (Airgas, USA; flow rate: 120 SCCM) was continuously bubbled through 

the solution. A 150 W Xenon lamp (model 71228, Newport, USA) equipped with an AM 

1.5G filter and illumination intensity calibrated to be 100 mW cm-2 was used as the light 

source. The scan rates of cyclic voltammetry curves were 50 mV s-1.  The resultant 
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product was analyzed by NMR and mass spectrometry.  

 

4.3 Results and Discussion  

4.3.1 Working principle  

The proposed mechanism for the carboxylation is shown in Scheme 4.1. Ni(II)L2 

(L=ligand) receives photogenerated electrons from SiNWs under light illumination, and is 

reduced to Ni(0)L2, the active catalyst in the reaction cycle. Ni(0)L2 then couples with 

substrates,  carbon dioxide and 4-octyne, forming an intermediate nickelacycle complex. 

With the help of the Al3+ ions generated at the anode by the holes from valence band of 

SiNWs, the carboxylate is released, regenerating Ni catalyst in the form of Ni(II)L2. The 

catalytic cycle is maintained as long as SiNWs continuously reduce  Ni(II)L2 with 

assistance of light.  

 

Scheme 4.1. Reaction mechanism of light promoted nickel catalyzed carboxylation of 

alkynes on SiNWs.  
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The electrochemical properties of this reaction were investigated to determine the 

effects of applying different ligands to the Ni metal center. This was done with the use of 

cyclic voltammetry (CV) scans, which are commonly used to investigate the 

electrochemical properties of metal complex redox reactions. 

 

4.3.2 Photovoltage gained on SiNWs investigated by cyclic voltammetry 

In the CV measurements, Pt or SiNW electrodes were employed as a photocathode, 

high purity aluminum was used as an anode, and the reference electrode was the 

saturated calomel electrode (SCE). The Ni catalyst 1 reduction peak on SiNWs with light 

irradiation is very distinct (Figure 4.1). In the absence of CO2 and 4-octyne, symmetric 

CV peaks are obtained. This suggests that the redox pair Ni(II)(bpy)2/Ni(0)(bpy)2 has 

good reversibility. The reduction peak position is the most relevant information gained 

from this data, as it gives direct information about how much potential is required to 

reduce the Ni catalyst. Comparing these results to a conductive but non-photoeffective 

Pt cathode, the reduction peak position is shifted positively about 450 mV on SiNWs in 

light. This positive shift of reduction potential is due to photovoltage gained by SiNWs. It 

means Ni catalyst can be reduced easier with SiNWs due to the solar light contribution. 

It is worth mentioning here that the dark current on SiNWs is close to 0 mA/cm-2 (about 3 

orders smaller than light current), implying that all the current on SiNWs comes from 

solar light irradiation.  
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Figure 4.1. CV of Catalyst 1 on Pt and SiNWs under the conditions of: 5 mM Ni catalyst 

and 0.1 M Bu4NBr in acetonitrile with N2 as a protection gas.  

 

We then looked to compare the results of our model catalyst with derivatives 

employing ligands alternative to 2,2’-bipyridine (Scheme 4.2). It has been shown that the 

introduction of electron withdrawing or electron donating groups can shift the redox 

potential of metal complexes.[15] Overall, five additional Ni catalysts were synthesized 

(from catalyst 2 to catalyst 6, with ligands of bathophenanthroline, 4,5-diazafluoren-9-

one, 4,4'-dinitro-2,2'-bipyridine, 4,4'-di-tert-butyl-2,2'-bipyridine, 4,4'-dimethyl-2,2'-

bipyridine, respectively).  
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Scheme 4.2. Library of Ni catalysts used for CO2 photofixation through alkyne 

carboxylation reaction.  
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We see that, similar to our model catalyst, it is easier to reduce these catalysts on 

SiNWs relative to Pt due to the gained photovoltage. When looking at the effects of 

adding different substituents to the bipyridine ligand backbone, however, we see a 

marked change in the redox potential. When looking at the application of electron 

withdrawing groups, such as in catalyst 4, we see a much more positive reduction peak 

position, at -0.51 V compared to that of catalyst 1 at -1.25 V (on Pt, see Figure 4.1).  

Conversely, we see a relative negative shift in the reduction peak position with the 

introduction of electron donating groups, such as in catalyst 5. This could be expected, 

as the addition of electron withdrawing groups allows for a less electron rich metal center, 

and therefore a more easily reduced metal center. Similarly, a more electron rich metal 

center is less easily reduced. These affects demonstrate the ability to take advantage of 

the use of different ligands in order to obtain a desired reduction potential in a catalytic 

system. 

In addition to the intrinsic reduction peak position of the catalysts, the respective 

reduction in the presence of substrate (CO2 and 4-octyne) binding was also investigated, 

which presents the real artificial photosynthesis condition. When substrates are present 

in solution, they bind to the Ni(0) active catalyst species, and as a result the oxidation 

peak will be supressed. However, our primary focus is on the reduction peak and how it 

compares to the reduction peak without substrate.  Reduction peak positions on a Pt 

electrode do not display a substantial difference with or without substrate binding in most 

catalysts. The exception to this is seen in catalyst 4. The primary difference with this 

catalyst is the strongly electron withdrawing NO2 groups. This makes the nickel species 

without substrates very easy to reduce. The species formed in the presence of 

substrates may not be as electron poor, and is therefore not as easily reduced as the 
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original species, which is represented in the more negative potential required to reduce 

the species in the presence of substrates Again, with SiNWs as the photocathode, the 

reduction peak potentials consistently show about 400 mV to 450 mV shifts in a positive 

direction relative to those on Pt electrodes due to the energy gain from solar light. The 

detailed reduction peak positions of each catalyst on both Pt and SiNWs are 

summarized in Table 4.1. 

 

 

Figure 4.2. Reduction peak potentials of Ni catalysts. All the solutions contain 5 mM Ni 

catalyst and 0.1 M tetrabutylammonium bromide in acetonitrile. For the conditions with 

substrate binding, 0.05 M 4-octyne was added with CO2 gas bubbling. SiNWs are 

illuminated with a 100 mW cm-2 Xenon lamp. 
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Table 4.1. Reduction potentials of the catalysts on Pt and potential shifts on SiNWs. 

Catalyst  VRP on 
Pt/ V 

VRP on Pt with starting 
materials/ V 

VRP on SiNWs with 
starting materials/ V 

Vph on 
SiNWs 

1 -1.25 -1.18 -0.73 450 mV 
2 -1.26 -1.26 -0.83 430 mV 
3 -1.09 -1.11 -0.71 400 mV 
4 -0.51 -0.76 -0.33 430 mV 
5 -1.37 -1.36 -0.95 410 mV 
6 -1.35 -1.33 -0.90 430 mV 

 

4.3.3 Stability  

The alkyne carboxylation reaction on Ni catalysts requires good chemical stability 

and electrochemical stability of both catalyst and SiNWs in the reaction solution. Stability 

experiments were completed on SiNWs in the presence of catalyst 6, CO2 and 4-octyne. 

The CV curve of the SiNWs had good reproducibility (10 continuous CV scans 

overlapped well, see Figure 4.3a), suggesting that the stability of both SiNWs and the Ni 

catalyst were well maintained under these experimental conditions. Most of the catalysts 

in Figure 2 had similar CV stabilities (except catalyst 4). 

Long-term reactions were also completed with catalyst 6, CO2 and 4-octyne in 

acetonitrile. The SiNWs were applied with constant potential (-0.90 V vs SCE), and the 

electrode showed no extensive photocurrent decay for more than 20 hours (Figure 4.3b).  
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Figure 4.3. a) CV stability of catalyst 6 on SiNWs. SiNWs were illuminated with a 100 

mW cm-2 Xenon lamp. b) Long-term experiment on SiNWs under light with constant 

applied potential shows very stable photocurrent. The solutions contain 5 mM Ni catalyst 

and 0.1 M tetrabutylammonium bromide in acetonitrile. 0.05 M 4-octyne is slowly added 

by a syringe pump with CO2 gas bubbling. 
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4.4 Conclusion  

In conclusion, we successfully show that we are able to tune the reduction potentials of 

nickel catalysts over a range of 0.86 V simply by changing the ligands on the catalyst. 

With SiNWs as the electrode, we consistently observe 400-450 mV photovaltage. The 

photogenterarted electrons can continously inject into the Ni catalysts from the SiNWs 

for more than 20 hours. With this work we hope to inspire people to use ligand effects as 

a viable design control in manupulating energetic structures when studying the 

application of catalysts on semiconductors.  
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Chapter 5: 

Water Splitting Using Tungsten Oxide Prepared by Atomic Layer 

Deposition and Stabilized by Oxygen-Evolving Catalyst 

 

5.1 Introduction  

When sunlight is used as direct energy input, water can be split into hydrogen and 

oxygen at conversion efficiencies similar to those of solar cells.[1] This process offers a 

method for energy storage to address the problem that the sun does not shine 

continuously, and is a particularly appealing approach to solar-energy harvesting.[2–

4] Notwithstanding the intense research efforts, progress in this area is extremely slow. 

Efficient and inexpensive water splitting remains elusive. A key reason for the sluggish 

progress is the lack of suitable materials.[5] The “ideal” material must absorb strongly in 

the visible range, be efficient in separating charges using the absorbed photons, and be 

effective in collecting and transporting charges for the chemical processes. Such a 

material has yet to be found.[6] The difficulties in finding a suitable material stem from the 

competing nature of intrinsic material properties (e.g., optical depth, charge diffusion 

distance, and width of the depletion region, among others), which leaves limited 

opportunity for tunability.[7] We recently demonstrated that heteronanostructures, a type 

of nanoscale material consisting of multiple components that complement each other, 

have a combination of properties which are not available in single component 

materials.[8,9] For instance, we can add charge transport components to oxide 

semiconductors to solve the issue of low conductivity that oxide semiconductors 
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generally suffer.[8] In a similar fashion, one can add an effective catalyst to address the 

challenge that oxygen evolution is complex and tends to be the rate-limiting step.[10–

12] These new materials will likely lead to significant improvement in solar water splitting 

efficiencies. The success of a heteronanostructure design relies on the ability to produce 

high-quality components with interfaces of low defect density, and on the availability of 

various components. Here we show that crystalline WO3 can be synthesized by the 

atomic layer deposition (ALD) method in the true ALD regime. When coated with a novel 

Mn-based catalyst, the resulting WO3 survives soaking in H2O at pH 7 and produces 

oxygen by splitting H2O under illumination. 

 

5.2 Experimental 

5.2.1 Preparation of the Mn catalyst 

The Mn catalyst was prepared by following published protocols.[21] In a typical 

experiment, Mn(OAc)2 (1.06 g, 4.29 mmol) and 2,2’:6,2’’-terpyridine (1.00 g, 4.29 mmol) 

were dissolved in 15 mL of H2O, and then KHSO5 (1.04 g, 3.21 mmol) in 15 mL of water 

was added dropwise with stirring, which turned the yellow solution dark green. After 

stirring at room temperature for 10 min, the solution was cooled to 0 oC. 20 mL of 

saturated KNO3 solution was then added, resulting in a green precipitate of the 

oxobridged Mn dimer (2.31 g, 65.0%). Elemental analysis revealed a formula of 

C30H26N9O13Mn2. More details of the elemental analysis are available in the table below.  
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Table 5.1. Elemental analysis of the Mn-oxo dimmer 

Formula  Elemental analysis % 

Mn2C30H26N9O13  Calcd C, 43.39; N, 15.18; H, 3.16; O, 25.05 

Found C, 42.52; N, 15.37; H, 2.68; O, 29.57 

 

5.2.2 Fabrication of the electrodes 

At room temperature, the Mn complex was redissolved in H2O to make a 1 mm 

solution. When heated to 75 oC, the oxo-bridged Mn dimer underwent thermal 

decomposition to yield the Mn catalyst, which was received by the WO3 film. The 

thickness of the catalyst coating was controlled by varying the concentration of the Mn 

complex. The deposition time was kept constant at 5 min. More details of controlling 

deposition thickness are available in the Supporting Information.  

 

5.2.3 Photoelectrochemical (PEC) experiments 

The resulting WO3 (thickness: 180 nm) with or without the Mn catalyst was 

fabricated into a working electrode. A Pt mesh was used as counterelectrode, and the 

reference electrode was Ag/AgCl in 1m KCl solution. The electrolyte solution was 1m 

KCl with HCl added to adjust the pH from 2 to 7. A CHI 600C potentiostat was used. The 

voltage was swept between 0 and 1.3 V (vs. RHE) at a rate of 10 mVs-1. The light source 

was a 150W Newport Mercury lamp, and the intensity was adjusted to 100 mW.cm-2. The 

incident photon-to-electron conversion efficiency (IPCE) and the absorbed photon-to-

electron conversion efficiency (APCE) were measured by using a Newport quantum 

efficiency measurement kit (QE-PV-SI).  
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For the IPCE and the APCE experiments, the working electrode was biased at 1.23 

V (vs. RHE). The absorption spectra were collected with an Ocean Optics spectrometer 

(USB 4000) and an integration sphere (Sphere Optics, RT-4Z).  

 

5.2.4 GC analysis 

To quantify the amount of oxygen and hydrogen generated by the water splitting 

process, the PEC apparatus was sealed in an N2 environment. The working electrode 

bias was fixed at 1.23 V (vs. RHE). The gas phase was sampled periodically, and the 

samples were fed to an HP 5890 gas chromatograph equipped with an HP-PLOT 

MoleSeive column. The temperatures of the injector and the detector were set at 1008C. 

Helium and nitrogen were used as carrier gases for oxygen and hydrogen, respectively. 

For the GC-MS analysis, a Thermo Fisher Scientific ITQ 700 with a Focus GC was 

utilized.  

 

5.2.5 Structural characterization 

A transmission electron microscope (TEM, JEM-2010F, operating at 200 keV) was 

used to study crosssection samples of ALD-grownWO3, prepared by using a focused ion 

beam (FIB, JOEL 4500 Multibeam system).  We used a focused ion beam microscope 

(FIB, JOEL 4500 Multibeam system) to prepare a cross-section transmission electron 

microscopy (TEM) sample. A carbon film (~ 2 μm thick) was pre-deposited onto the WO3 

film to reduce the ion beam damage. The sample was milled into thin slices (~15 μm × 5 

μm span and 1.5 μm thick) with a 30-kV gallium (Ga) ion beam. A slice was cut off the 

substrate and transferred to a Cu support with a nano-manipulator S3 (Kleindiek 

Nanotechnik MM3A). After the slice was glued to the Cu support, it was further thinned 
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to be e-beam transparent (< 100 nm thick). A final polish with low-energy ion beam (5 kV) 

was applied to remove or minimize ion beam damage introduced in the previous steps. 

5.2.6 GCMS analysis of O2-34 and O2-36 

GC-MS analysis was performed in a Thermo Fisher Scientific ITQ 700 with a Focus 

GC, which was equipped with Thermo TR-5MS SQC 30 m x 0.25 mm ID x 0.25 μm 

fused silica capillary column. Helium gas served as the carrier gas with a constant flow 

rate of 1.5 mL/min. The oven temperature was held at 35 °C for 2.5 min and then 

ramped to 100 °C at the rate of 65 °C /min. Afterward the temperature was held at 

100 °C for 2.5 min. Temperatures of the injector and detector were held for 200 °C 

through the analysis. The samples of 5.0 μL headspace gas were injected, and the 

amount of 18O-labeled O2 was quantified using the peak height in the resulting mass 

spectra by averaging three independent measurements. 

 

5.3 Results and Discussion 

We choose ALD to prepare WO3 because of the following advantages: 1) a high 

degree of control over the resulting materials; 2) excellent step coverage to yield 

conformal coatings; and 3) process versatility to tailor the composition of the deposit. 

WO3 was studied because it is one of the most researched compounds for water 

splitting. The widely available literature makes it easy to compare our results with 

existing reports[13–15] and thus allows us to test the power of the heteronanostructure 

design. To avoid the production of corrosive byproducts during the ALD process[16] and 

to ensure the reaction occurs in the true ALD regime, we used (tBuN)2(Me2N)2W as 

tungsten precursor and H2O as oxygen precursor. Our first goal was to verify that the 

growth indeed takes place in the ALD regime. The dependence of the growth rate on the 
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precursor pulse times and on the substrate temperature unambiguously confirms this. In 

addition, the excellent linear dependence of the deposition thickness on the number of 

precursor pulses supports the ALD growth mechanism and shows the extent of control 

we can achieve (see Figure 5.1).  

 

5.3.1 Atomic layer deposition (ALD) growth of WO3 

Figure. 5.1a and 5.1b show the growth rate dependence on the precursor pulse 

times. It is evident that the growth is self-limiting. The experimental data for both H2O 

and (tBuN)2(Me2N)2W agree with a surface adsorption model (Langmuir model) fitting. 

Note that the optimum H2O pulse time 40-100 ms is longer than what is used in typical 

oxide growths in a Savannah system, but was found necessary. We were unable to grow 

WO3 thicker than 12 nm when shorter H2O pulses (e.g., 10 ms) were used. The slow 

oxidation of (tBuN)2(Me2N)2W is believed to be responsible for this observation. 

The growth was also highly sensitive to the substrate temperatures. Little product 

was obtained for T < 300°C. No noticeable improvement was observed when T was 

raised above 350°C (Figure. 5.1c). Optimum growth conditions (tBuN)2(Me2N)2W pulse 

2 s, N2 purge 10 s, H2O pulse 50 ms, N2 flow 5 s without pumping and then 10 s with 

pumping, T=350°C) yielded stable WO3 growth (1.01 ± 0.05 Å/cycle) for at least up to 

1600 cycles, Figure. 5.1d. For all data presented here, H2O was kept at room 

temperature (25°C), and (tBuN)2(Me2N)2W was heated at 75°C. 
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Figure 5.1. Characteristics of the WO3 growth. The growth rate is sensitive to 

the precursor doses (a & b, H2O and (tBuN)2(Me2N)2W, respectively). The 

dependence can be fit by a surface adsorption model (blue lines in a and b). (c) 

The growth is also sensitive to the substrate temperature. (d) The thickness of 

WO3 scales linearly with total number of precursor pluses. 
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5.3.2 Structure Characterization of ALD grown WO3 

That a long H2O pulse time is necessary to initiate growth is a key finding of 

this work. Despite intentional strengthening of the oxidative conditions, as-grown 

WO3 exhibited a tinted color, indicating the existence of oxygen 

deficiencies,[17] which was then corrected by an annealing step in O2 at 550 oC. 

The crystalline nature of the product is manifested in the high resolution (HR) 

TEM image in Figure 5.2a. We also synthesized WO3 on two-dimensional TiSi2 

nanonets.[18, 19] The uniformity and good coverage around the nanonet branches 

show that this deposition technique is suitable for the creation of 

heteronanostructures. Ready dissolution of WO3 in aqueous solutions with pH=4 

is a significant challenge that impedes its widespread use.[20] 

 

Figure 5.2. Microstructure of WO3 by TEM after annealing. (a) Polycrystalline WO3 

on ITO substrate. (b) Conformal coating of WO3 on TiSi2 Nanonets. 
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The as-grown tungsten oxide film was annealed at 550°C in O2 to achieve the 

desired stoichiometry and crystallinity. Consistent with the TEM result, formation of 

monoclinic tungsten oxide was confirmed by XRD after annealing. 

 

Figure 5.3. XRD pattern of WO3 after annealing. The crystal structure was 

identified as monoclinic tungsten oxide. 

 

5.3.3 Thermal Deposit Mn-oxo Catalyst on to WO3 

Derived from the Brudvig–Crabtree catalyst, this coating was prepared by thermally 

decomposing [(H2O)-(terpy)Mn(O)2Mn(H2O)(terpy)](NO3)3 (terpy=2,2’:6’,2’’-

terpyridine).[21] Similar to the oxo-bridged dimanganese catalyst, the thermal 

decomposition product exhibits good catalytic properties when sacrificial oxidants are 

available.[22] 
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The solid Mn-containing material is not manganese dioxide according to elemental 

analysis and EPR, FTIR, and atomic absorption spectroscopy.[22] Although further study 

is needed to understand the exact structure of this catalyst and the nature of its working 

mechanism, its thermal stability, ease of fabrication, and unequivocal evidence for its 

catalytic properties compelled us to explore it in the heteronanostructure design. 

The surface of WO3 was coated with the catalyst by thermal treatment of a solution 

of the above Mn complex at 75 oC (see Experimental Section). This step was brief 

(typically 5 min) and did not cause noticeable colorization of WO3.  

Different Mn-oxo dimmer solution concentrations, different deposition temperatures 

and different deposition times were studied. The general trend was that more 

concentrated dimer solutions, lower temperatures and longer times tend to produce 

thicker film. The coating thickness was measured by TEM and spectroscopic 

ellipsometer (Vertical VASE, J. A.Wollam Co., Inc.). Important to the H2O solar splitting 

functionalities, films thicker than 5 nm are undesired because charge transfer through 

the coating becomes hindered. Films thinner than 1 nm also exhibit detrimental effects 

because they fail to provide adequate protection for the WO3. We identified the following 

optimum conditions to yield a continuous coating of 2 nm (Figure 5.4, the Mn-oxo 

dimmer concentration, 1 mM; deposition temperature: 75 °C; and deposition time: 5 min. 

Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) 

confirmed the presence of Mn element in the amorphous layer. 
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Figure 5.4. TEM characterizations reveal the thin coating of the Mn-catalyst on the 

surface of WO3. 

 

No measurable differences were observed in the absorption spectra of WO3 before 

and after this deposition, that is, solvation on the WO3 surface was insignificant. This 

observation also suggests that the catalyst poses no appreciable competition to WO3 in 

light absorption, which is an extremely important feature, because light absorbed by the 

catalyst would be wasted. WO3 can be protected in non-acidic solutions by depositing 

other materials such as TiO2 by, for example, ALD. However, deposition of the Mn 

catalyst is preferred for at least three reasons: 1) deposition is straightforward, 2) the 

coating does not compete with WO3 in light absorption, and 3) the catalyst facilitates 

hole transfer from the semiconductor to the solution (see following discussion).  
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5.3.4 Working Principle  

 

Figure 5.5. Proposed working principle of the MOC/WO3 design for water oxidation. 

H2O transfers electrons to Mn(IV,V) to produce O2 and Mn(II, III), the latter of which then 

transfers the electrons to the semiconductor. The electrons are excited in the 

semiconductor by the absorbed light. With the assistance of the built-in field, they are 

collected and transported to the cathode for H2O reduction to complete the artificial 

synthesis process. 

 

Figure 5.5 illustrates the proposed working mechanism of the semiconductor/catalyst 

system. Light is absorbed by WO3 to generate electrons and holes. The built-in field in 

WO3 helps concentrate electrons away from the solid/liquid interface to be collected by 

the supporting substrate,[23] which is indium tin oxide (ITO). Holes are driven by the built-

in field toward the solid/liquid interface, where they transfer to the solution to oxidize H2O. 

This schematic neglects the potential influence of the Mn catalyst coating on the 
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electronic energy of WO3 because of the thinness of the former. The oxidation process 

is mediated by the catalyst, which we suggest works in a fashion similar to the oxo-

bridged Mn2 catalyst,[24] that is, mixed-valent MnIII and MnIV are oxidized by the 

photogenerated holes from the semiconductor, and the product of the oxidation process 

is reduced by H2O to produce O2. A distinguishing feature of the WO3/Mn catalyst 

system is that no sacrificial oxidants are present for O2 generation. H2O oxidation by the 

Mn catalyst is effective and has fast kinetics.  

 

5.3.5 Photoelectrochemical (PEC) Performance 

When measured in an electrolyte at pH 4, electrodes with and without the Mn 

catalyst coating exhibited distinct but not significant differences in the 

photoelectrochemical (PEC) performance (photocurrent and onset potential, see Figure 

5.6a). When the external and internal quantum efficiencies are compared for electrodes 

with and without the Mn catalyst coating, similar conclusions are reached (Figure 5.6b). 

When the catalyst coating is absent, deviation of the photocurrent and the dependence 

on light intensity from a linear relationship indicates that charge transfer from the 

semiconductor to the solution becomes a kinetically limiting step.[25] The deviation from 

linearity is less obvious when the catalyst is present (Figure 5.7). This suggests that the 

presence of the catalyst facilitates charge transfer from the semiconductor to the solution, 

and the effect is more obvious when the charge density is high.  
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Figure 5.6. Photoelectrochemical properties of ALD-grown WO3 and WO3/Mn-

catalyst.  (a) In acidic solutions, the presence of the Mn-catalyst induces no significant 

change to the photocurrent (b)The differences between the APCE and the IPCE also 

highlight the room for improvement when absorption is improved without impairing the 

charge collection.   
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Figure 5.7. The photocurrent dependence on light intensity for WO3 with and without 

the Mn-catalyst at pH=4. For WO3, the photocurrent depends on the light intensity 

following a linear relationship; this dependence deviates at high light intensities (> 70 

mW/cm2). The linear dependence is preserved when the catalyst coating is present. 

 

5.3.6 Quantify the amount of O2 and H2 generated 

To quantify the amount of O2 and H2 generated by the WO3/Mn catalyst electrode, 

we conducted photocatalytic experiments with GC analysis. An HP 5890 GC instrument 

equipped with an HP-Plot MoleSeive column was used for this expierment. The injector 

and the detector temperatures were set at 100 °C. Helium was used as the carrier gas 

for oxygen measurements, and nitrogen was used for hydrogen. The flow rate of the 
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carrier gases was 5.4 ml/min. For the stability test, the reaction veiscle was purged with 

N2 every 7 h. All other test parameters were kept constant. 

As shown in Figure 5.8, a stark difference is observed for the electrodes with and 

without the Mn catalyst. When the catalyst is present, the amount of O2 increases with 

time, following a linear relationship for up to 5 h, after which the rate of O2 generation 

slows down. The reduced rate of O2 generation is caused by the experimental design.  

 

Figure 5.8. When tested at pH=4, the oxygen generation rates by electrodes with 

and without the Mn-catalyst are drastically different.  

 

When the vessel was purged with N2 and the experiment was restarted, O2 was 

produced at the same rate as in the original experiment (Figure 5.9). Without the Mn 

catalyst, the amount of O2 measured was only approximately 50% of that with the Mn 

catalyst after 3 h. Thereafter, the electrode ceased to function, showed obvious 

colorization, and eventually peeled off from the ITO support. 
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Figure 5.9. Stability test of the Mn-catalyst coated WO3. Red arrows indicate where 

the reaction vesicle was purged by N2. 

 

Better stability was observed when solutions with lower pH were used, and no 

obvious colorization was seen when WO3 was tested in solutions of pH 2 for up to a day. 

The protecting effect of the Mn catalyst was more pronounced when the electrodes were 

tested in less acidic solutions. At pH 7, WO3 without the Mn catalyst decayed more 

quickly than at pH 4 (60% after 1 h), whereas approximately 4% performance 

degradation was observed when the Mn catalyst was present (Figure 5.10) for up to 2 h. 

It took more than 19 h in the Mn/WO3 case for the efficiency to drop to 50% of the initial 

value. 
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Figure 5.10. The protection effect of the Mn-catalyst. The effect is more pronounced 

when tested in neutral solutions.   

 

Various evidences support that the detected O2 is the direct product of H2O splitting. 

First, the amount of H2 is approximately twice that of O2, consistent with complete 

decomposition of H2O (Figure 5.11a). Second, control experiments with H2
18O confirmed 

that O in the gas phase comes from H2O (Figure 5.11b).[26] Third, the amount of O2 far 

exceeds what would be available in WO3 or the Mn catalyst. The rate of O2 generation 

was measured by GC to be 13.6 mmol cm-2 h-1. The rate was also calculated from the 

measured photocurrent as 16.8 mmol cm-2 h-1 (based on a current density of 1.8 mA cm-

2). The discrepancy originates from the GC measurements, which did not include O2 

dissolved in the solution or lost due to imperfections of the apparatus. Improvement of 

the GC method by, for example, using a flow-through system will correct this.  
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Figure 5.11. (a) The generations of O2 and H2 were measured simultaneously to 

verify the complete decomposition of H2O. (b) When 18O isotope was used, the ratio 

of 34O2 to 36O2 was approximately 10:1, unambiguously confirming that the measured O2 

comes from H2O splitting. 

Using literature methods, we computed a peak energy-conversion efficiency of 1.1 % 

(at 0.80 V vs. reversible hydrogen electrode (RHE)), and the efficiency was 0.59 % at 

V=1.23 V (vs. RHE, Figure 5.12). Although the observed photocurrent at 1.23 V (vs. 
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RHE) is among the highest for WO3, the efficiency is still low compared with solar cells. 

Weak absorption in the visible range is the primary reason for the low efficiency (Figure 

5.6b). Nonetheless, the stability of the resulting material in neutral solutions is significant 

and has not been reported previously. 

The energy conversion efficiency is calculated by the equation below,[27] 

 

where η is the energy conversion efficiency, Ip is the photocurrent in A/m2 and Pin is the 

total input power density in W/m2. The maximum efficiency obtained is 1.10 % at 0.8 V 

(vs RHE). 

 

Figure 5.12. Energy conversion efficiency at pH=4. 
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5.4 Conclusion 

Efficiently and inexpensively converting solar energy by splitting H2O is one of the 

most pressing issues we face today. Research in this area faces a multitude of 

challenges. Capabilities to design, make, and study novel materials that can perform this 

reaction with meaningful efficiency and at low cost have broad appeal. The results 

presented here will contribute significantly to this goal. The ALD growth of WO3 without 

production of corrosive byproducts has not been reported elsewhere, and the synthetic 

technique makes it easy to form heteronanostructures. The Mn catalyst derived from the 

oxo-bridged Mn dimer is easy to prepare and exhibits good stability and catalytic 

properties. When interfaced with WO3, it acts as a protecting layer without adverse effect 

on the water-splitting properties. To the best of our knowledge, this is the first time that 

WO3 photoelectrodes stable in neutral solution have been prepared. The 

heteronanostructure design combines multiple components, each with unique 

complementary and critical functions, and offers combinations of properties that are not 

available in single-component materials. The versatility of this method will find 

applications in numerous areas where the availability of materials is the limiting factor. 
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Chapter 6: Conclusions  

 

In summary, this thesis is mainly focused on two most important reactions of 

photosynthesis, photoreduction of CO2 and water oxidation. Photoreduction of CO2 is a 

crucial reaction in natural photosynthesis because it stores harvested solar energy that 

is intermittent in nature, and water oxidation is important because it produces a molecule 

that is vital to the development of lives on this planet. Most of our efforts on artificial 

photosynthesis have been spent on designing chemical reactions or designing 

photoelectrode materials. Our strategy helped us define reaction pathways, improve 

photoelectrode stability, increase reaction kinetics on the semiconductor/electrolyte 

interface, and lower the reaction overpotentials.  

Our aspirations are inspired by the detailed mechanisms of natural photosynthesis. 

To achieve highly specific reduction of CO2 in a fashion similar to the dark reactions in 

natural photosynthesis, we demonstrated a chemical reaction route that does not directly 

pass electrons from the photoelectrode to CO2. Significantly, we realized this goal on Si 

nanowires (SiNWs) photocathode, which harvests solar energy. In an effort to show the 

usefulness of these reactions, we showed that these reactions produce organic targets 

that can be readily used to synthesize NSAIDs (non-steroidal anti-inflammatory drugs) 

such as ibuprofen and naproxen.  We note the ease of electron exchange taken place 

between SiNWs and the organic substrates. It indicates that Si may be broadly used as 

a photoelectrode for a wide range of chemical reactions similar to photosynthesis.  While 

in the present proof-of-concept demonstration an additional electrochemical potential is 

still necessary, the energy input from the harvested light plays an indispensable role.  As 
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a result, our approach represents a critical step forward in the use of light to power 

complex organic molecule syntheses.  

Further studies of using SiNWs for organic reactions were carried out by introducing a 

CO2 reduction catalyst Ni(bpy)3(BF4)2 in to the reaction electrolyte. The reduced form of 

the Ni catalyst (produced by photogenerated electrons from SiNWs) binds with CO2 and 

alkyne to yield unsaturated carboxylic acids. To our surprise, SiNWs exhibited 

dramatically different reactivity from bulk Si in this reduction. The multifaceted nature of 

SiNWs was identified advantageous for the catalytic photoelectrochemical processes as 

it promotes charge transfer across the semiconductor/electrolyte interface. To fully 

understand the nature of the interface between Si and the electron-receiving groups, 

more detailed research is needed.  For instance, Si with different crystal planes exposed 

could be obtained or produced and the charge transfer characteristics could be 

measured to identify which facets favour charge transfer between Si and Ni(II)(bpy)2
2+.  

Detailed knowledge like this will contribute significantly to the goal of designing highly 

specific reactions that are powered by sunlight and produce useful chemicals in a way 

similar to natural photosynthesis but at much higher efficiencies. 

We also took efforts to tune the reduction potentials of nickel catalysts by as much as 

0.86 V by simply changing the ligands on the catalyst. With SiNWs as the electrode, we 

consistently observed photovaltages of 400-450 mV. This result is expected to inspire 

researchers to design and manipulate energetic structures when applying catalysts onto 

semiconductors for photoelectronchemical reactions. 

Similarly, solar water oxidation using a semiconductor photoelectrode was performed. 

We explored low-cost materials that can efficiently convert solar energy by splitting H2O. 

For this goal, WO3 has been successfully synthesized by an ALD method, which makes 
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it possible to create heteronanostructures. To stabilize the photoelectrode in neutral 

solutions, we applied a Mn-oxo-based catalyst that was derived from the oxo-bridged Mn 

dimer on the surface of WO3.  The catalyst acts as a protecting layer without adverse 

effect on the water-splitting property. To the best of our knowledge, this is the first time 

that WO3 photoelectrodes stable in neutral solution have been prepared. The 

heteronanostructure design combines multiple components, each with unique 

complementary and critical functions, and offers combinations of properties that are not 

available in single-component materials.  
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