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ABSTRACT 
 

 

Palaeoecology of the Middle to Late Cambrian Rogersville Shale, 

Conasauga Group, eastern Tennessee 

Leslie Ann Campbell 

Advisor:  Dr. Paul Strother 

 

The Rogersville Shale of the Middle to Late Cambrian Conasauga Group 

was deposited on the margins of Laurentia, in what is now eastern Tennessee.   

Based on 21 thin section samples from the ORNL-Joy2, core five distinct 

microlithofacies are described, trace fossils characterized, and palynological data 

interpreted.  This investigation concluded that the Rogersville Shale was 

deposited in a shallow, restricted marine or possibly estuarine environment that 

would have been exposed to terrestrial runoff.  Previous work on the Conasauga 

Group placed deposition of the Rogersville Shale within an intercratonic basin in 

approximately 250m of water, perhaps significantly deeper.  This investigation 

found that the Rogersville Shale was likely deposited in a lagoonal setting or 

restricted estuarine environment that had freshwater input.             
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Chapter 1 

Introduction 

 

Purpose and Scope 

The focus of this research has been to reconstruct the palaeoecologic 

conditions of the Middle to Late Cambrian, Rogersville Shale using a 

multidisciplinary approach to identify palaeoenvironmental conditions.   Part of 

the Conasauga Group, the Rogersville Shale, represents one palaeoenvironment 

in a series of three progradational and retrogradational events.  The six 

formations of the Conasauga Group were formed as Cambrian sea-levels 

fluctuated across the continental margins.   

 

Previous Works 

 While the Conasauga Group has been studied in great detail 

(Glumac and Walker, 1998; Glumac and Walker 2000; Glumac and Walker 2002; 

Markello and Read 1981; Srinivasan and Walker 1993; Byerly et al. 1986; Haase, 

Walls, and Farmer 1985; Hasson and Haase 1988; Walker, Foreman, and 

Srinivasan 1990), the Rogersville Shale has been less completely investigated.  

Walcott’s (1898) Fossil Medusæ, which illustrates and describes fossils found 

within the Rogersville Shale, was one of the first references to the unit.  Markello 

and Read (1981) briefly describe the Rogersville Shale in their paper on the 
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Nolichucky Shale.  Byerly et al. (1986) describe a classic outcrop of the 

Conasauga Group at Thorn Hill in which the Rogersville Shale is mentioned.  

Haase et al. (1985) is a thorough description of the formations within the 

Conasauga Group.  Their paper is a review of the ORNL-Joy2 core which this 

investigation is based on.  Hasson and Haase (1988) describe the lithofacies and 

palaeogeography of the formations of the Conasauga Group.  The most recent 

investigation of the Rogersville Shale was done by Walker et al. (1990).  

The conclusion of this study is in contrast to Walker et al. (1990), who 

estimated water depths of 100-250m, perhaps substantially more, for deposition 

of the Rogersville Shale.  Their estimate of water depth was based on five 

particular observations: 

1. The presence of paper-laminated shales 

2. The presence of allochthonous carbonate beds (resulting from both 

debris flows and turbidites) 

3. The absence of bioturbation 

4. The abundance of glauconite 

5. The pyritic nature of the shale 

Some of these five characteristics were not found to exist within the Rogersville 

Shale when observed on the scale of thin sections, while others were interpreted 

differently.  When combined, the five observations made by Walker et al. (1990) 

lead to an interpretation of the paleoenvironment that is different than the findings 

of this research.    
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General Geologic Setting 

 After the Late Precambrian to Early Cambrian breakup of the 

supercontinent Rodinia, the passive margin of Laurentia was established (Bond 

et al. 1984) (Figure 1).  According to Glumac and Walker (1997, 1998, 2000, and 

2002) the margin of what is now eastern North America developed a broad 

carbonate platform throughout the early Paleozoic.  To the west an intercratonic 

basin was formed.    

N 

Figure 1.  Diagram showing the margins of Laurentia and the Iapetus 
Ocean during the Middle Cambrian (Lochman-Balk, 1971).  The red dot 
represents the location of the Conasauga Group in the study area 
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Figure 2.  Geologic map of Tennessee with sample location marked with a 
black dot. [http://www.tn.gov ]   

 

Figure 2, a geologic map of Tennessee show the location of the sample location 

within the study region.  The Conasauga Group in eastern Tennessee represents 

the interfingering and overlapping of carbonates from the east and clastic 

material in west (Figure 3).   

 

Figure 3.  Middle to Upper 
Cambrian stratigraphy of the 
eastern Tennessee 
Appalachians.  The Conasauga 
Group represents a complex 
overlapping and interfingering of 
carbonate and siliclastic units.  
[Glumac and Walker, 2000, p. 
953] 
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Glumac and Walker (2000) believed the Conasauga Group can be divided into 

three grand cycles characterized by three different clastic to carbonate transitions 

resulting in six different stratigraphic formations (each formation represents a 

half-cycle).  Glumac and Walker (2000) cite several different authors (Aitken 

1978; Bond et al. 1988; Rankey et al. 1994; Walker et al. 1990; Srinivasan and 

Walker 1993) in establishing the complex interdependency of the factors that 

ultimately led to the deposition of the Conasauga Group.  These conditions 

include eustatic sea-level changes, tectonism, rate of sedimentation and 

sediment supply.  

The intermixed carbonate and clastic rocks of the Conasauga Group are 

broadly transitional between the underlying Rome Formation, which is essentially 

carbonate-free, and the overlying Knox Group, which is essentially clastic-free 

(Haase et al. 1985).  The summary presented here starts with the lowest (oldest) 

stratigraphic unit the Rome Formation and finishes with the youngest formation, 

the Copper Ridge Dolomite of the Knox Group (Figure 4).  
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Figure 4.  Stratigraphic column representing the lithology present in the 
ORNL-Joy2 core.  The stratigraphic column ranges from the Rome 
Formation, through the six stratigraphic units of the Conasauga Group and 
into the Copper Ridge Dolomite of the Knox Group.  Biostratigraphic data 
is compiled from Glumac & Walker (1998), Sundberg (1989), and Hasse et 
al. (1985).  Formation thickness data is also from Hasse et al. (1985). 

 

 

39 m 
Craig Member 
     Rogersville Shale 
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Legend for lithologies in Figure 4 
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ORNL-Joy2 Core    

The core was drilled by the U. S. Department of Energy (DOE) to 

determine the stratigraphy of the Conasauga Group on the Copper Creek fault 

block on the U.S. DOE’s Oak Ridge National Laboratory on the Oak Ridge 

Reservation.  Drilled near Melton Lake, the ORNL-Joy2 core bore hole is located 

in Anderson County, Tennessee on the United States Department of Energy Oak 

Ridge Reservation (Figure 5).   

5 kmN 5 kmN

 

 

Figure 5.  Map of the Oak Ridge Reservation in eastern Tennessee and the 
ORNL-Joy2 drill core, marked with a red dot.  [From http://www.em.doe.gov ]  

The bore-hole, located on the Copper Creek fault block, is approximately 5km 

southwest of the Oak Ridge National Laboratory plant (Haase et al.1985).  
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Drilling operations were conducted by the Contract Drilling Division of Joy 

Manufacturing Company, Inc. from August 26, 1982 through December 15, 1982 

(Haase et al.1985).  The core was drilled to a depth of nearly 830 meters, 

penetrating the Copper Ridge Dolomite of the Knox Group, the six stratigraphic 

formations of the Conasauga Group, and the Rome Formation (Haase et 

al.1985).   

 

Descriptions of the ORNL-Joy2 Core 

Descriptions of the eight formation of the ORNL-Joy2 core are presented 

in the following section.  The descriptions are based on investigation of thin 

section samples of the core in addition to those of Haase et al. (1985), who 

provided a detailed summary of the ORNL-Joy2 core.   Descriptions of all eight 

formations are included to summarize the depositional history of the area.         

 

Rome formation 

Due to the location of several thrust faults in the Valley and Ridge 

Province in Tennessee, the Rome formation has experienced substantial 

deformation, causing intervals of lithology to be repeated or completely removed 

at the core site.  The ORNL-Joy2 core went through nearly 190m of the Rome 

Formation; although the true thickness of the formation is known to be 

significantly less in the area surrounding the bore hole.  The complex structural 

history of the area is particularly apparent in the lower Rome Formation; it is 
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generally characterized by “severe deformation and extremely chaotic 

stratification patterns” (Haase et al. 1985 pg. 52).  Preliminary investigations of 

the lithology of the lower Rome Formation, performed by Haase et al. (1985), 

reveal that nearly all the intervals contained within the lower member are 

lithologically the same as the upper Rome Formation, but have been repeated 

due to extensive tectonism.  Unlike the lower Rome Formation, the upper Rome 

Formation has not been affected by tectonic activity to the degree seen in the 

lower Rome Formation.  Deformation that does occur in the upper Rome 

Formation is generally localized and small in scale.  Lithologically, the upper 

Rome Formation is a complex mixture of several lithologically distinct sandstones 

interbedded with shales and mudstones.  Subarkosic to quartz arenitic 

sandstones within the upper Rome Formation account for 60 – 80% of the 

member.  The rest of the formation is composed of sandstones and siltstones 

interbedded with silty mudstone and shales (Haase et al. 1985).  

 

The Conasauga Group  

Pumpkin Valley Shale 

Moving up section into the Middle Cambrian, the lowermost clastic 

formation in the Conasauga Group is the Pumpkin Valley Shale, it is the first half 

cycle of the three grand cycles.  The Pumpkin Valley Shale has not been formally 

divided into different members, although it can be informally separated into an 

upper and lower member.  The lower member is characterized by interbedded 
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bioturbated siltstones and mudstones with abundant glauconite pellets in the 

bioturbated siltstone intervals (up to 40% in some instances).  The upper 

member is similar lithologically to the lower member- mudstones and is 

interbedded with subarkosic siltstones.  The upper member is not as strongly 

bioturbated as the lower member.  Glauconite in the upper member is ubiquitous 

throughout both the siltstone intervals (like the lower member) and the 

mudstones.       

 

Rutledge Limestone 

Overlying the Pumpkin Valley Shale is the Rutledge Limestone, a 30m 

thick ribbon-bedded carbonate that is clastic-rich in some intervals.  In the vicinity 

of the core, the Rutledge Limestone can be divided into an upper and lower 

limestone member separated by a third unusually clastic rich interval.  DeLaguna 

et al. (1968) referred to the lower member of the Rutledge Limestone as a 6m 

thick interval, with three limestone beds interstratified with two mudstone-rich 

intervals.  The middle clastic-rich interval of the Rutledge Limestone is composed 

of mudstones and shales and contains lenses of siltstones.  The upper member 

of the Rutledge Limestone is characterized by lenticular ribbon-bedded micrites, 

fossiliferous pelloidal wackestones and packstones, and lenticular bedded silty 

calcarenites.  The transition from the Rutledge Limestone to the overlying 

mudstones of the Rogersville Shale is abrupt.   

 

 - 11 -



Rogersville Shale 

The Rogersville Shale is characterized by massive to laminated 

noncalcareous mudstones and evenly bedded to wavy current-rippled 

calcarenites and subarkosic siltstones which exhibit substantial bioturbation 

(Haase et al. 1985).  At the core site, the Rogersville Shale is 39m thick including 

the characteristic shale member and the Craig Member, an informal sub-unit that 

is carbonate rich.  The lowermost portion of the Rogersville Shale is brownish 

grey and composed of mudstones that become interbedded with fining-upward 

subarkosic siltstones (Haase et al. 1985).  Glauconite pellets are common in 

these siltstone intervals and can constitute up to 10 – 30% of an individual 

siltstone interval.  Moving up section within the Rogersville Shale the next interval 

is reddish brown, massive to thinly bedded mudstone that serves as a marker for 

the top portion of the unit (Haase et al. 1985).  Unique to the region around the 

bore-hole location, the Craig Limestone Member is a 3m thick interval of upward-

coarsening carbonate situated on top of the shale member (Haase et al. 1985).       

 

Maryville Limestone 

In the vicinity of Oak Ridge National Laboratory, the Maryville Limestone is 

140m thick (Haase et al. 1985) although the reported thickness may be 

somewhat overestimated due to possible borehole inclination and because of 

several severely deformed intervals.  The Maryville Limestone can informally be 

subdivided into a lower and an upper member (Haase et al. 1985).  The lower 
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member is composed of thinly bedded to thickly laminated.  The beds and 

lamination are of calcareous mudstones interlayered with upward coarsening 

cycles of pelloidal wackestones and packstones, calcarenites and calcareous 

siltstones (Haase et al. 1985).  Glauconite pellets are common within the upper 

portions of upward-coarsening cycles.  The upper member is characterized by a 

flat pebble conglomerate (an intraclastic and locally oölitic packstone) which may 

account for 40 to 80% of the upper member.  In addition to the flat pebble 

conglomerate, the upper member contains calcarenites and mudstones, which 

decrease in abundance from bottom to top (Haase et al. 1985).    

 

Nolichucky Shale 

The Nolichucky Shale in the area of the Oak Ridge National Laboratory 

can be subdivided into three members: the Lower Shale, the Bradley Creek, and 

the Upper Shale members (Markello and Read 1981; Hasson and Haase 1988).  

The Lower Shale Member is 140m thick, consists of numerous repeating cycles 

of massive-to-thinly laminated maroon to red- brown/grey shales/mudstones 

interbedded with upward-fining calcareous siltstone beds and limestones that 

consist of silty calcarenites, oölitic packstones, and fossiliferous pelloidal 

wackestones (Haase et al. 1985).  The Bradley Creek Member is a 9m thick 

medium to dark grey lenticularly to wavy bedded algal wackestone and 

packstone with interstratified micrite layers and oölitic grain layers (Markello and 

Read 1981).  In the region around the bore hole, the Upper Shale Member is only 
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18m thick (Haase et al. 1985).  It occurs as interstratified wavy-to-evenly 

laminated dark grey calcareous mudstone with occasional upward-fining siltstone 

beds and a medium to light grey wavy, ribbon-bedded limestones to laminated 

micrites, wackestones and packstones (Haase et al. 1985).   

 

Maynardville Limestone 

The uppermost formation of the Conasauga Group is the Upper Cambrian 

Maynardville Limestone; it can be divided into two recognizable members.  The 

55m thick, Low Hollow Member consists primarily of wavy to evenly bedded 

calcarenites and micrites alternating with oölitic packstones and grainstones 

(Haase et al. 1985).  The 45m thick, Chances Branch Member, is a medium to 

thin-bedded, buff to light grey dolostone that has ribbon-bedded stringers of 

calcarenites, wackestones, and micrites, oölitic packstones, and grainstones 

(Haase et al. 1985).  Ribbon-bedded wackestones and oölitic packstones and 

grainstones are more abundant in the lower portions of this unit (Haase et al. 

1985).   

 

Knox Group 

Copper Ridge Dolomite 

In the vicinity of the study area, the Upper Cambrian Copper Ridge 

Dolomite (the basal portion of the overlying Knox Group), overlies the 

Conasauga Group.  The contact between the Copper Ridge Dolomite and the 
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underlying Conasauga Group is gradational over an interval of approximately 4m. 

Within this interval, dolomite increases dramatically and calcite content drops 

from over 90 % to nearly 0 (Haase et al. 1985).   About 40 m thick, the Copper 

Ridge Dolomite consists of two equally abundant and alternating microlithofacies 

(Haase et al. 1985).  The first lithology is a thinly bedded to laminated, evenly 

parallel stratified dark grey dolostone and micrite that grades into mottled 

dolostone (Haase et al. 1985).  The second lithology is a medium grey dolostone 

with wavy lenticular laminations that grades into ribbon-bedded dolostone with 

minor shale stringers (Haase et al. 1985).  

 

 

Glauconite 

The study of glauconite began with Keferstein (1828) and continued with 

authors such as Schneider (1927).  Modern investigations into the mineral 

glauconite continued with Cloud (1955), Burst (1958a & 1958b), Hower (1961), 

Bentor & Kastner (1964), Triplehorn (1966), Odin & Rex (1982) and Odin (1988).  

These authors described with great detail the conditions that characterize 

environments of ancient and modern glauconite formation (i.e.—depth, 

temperature, sediment accumulation rates, turbulence and spatial distribution).    

P.E. Cloud Jr. (1955) recognized the potential for glauconite to be a useful 

tool in paleoecologic investigations as a way to provide clues to the depositional 

environment.  In his 1955 paper, Cloud discussed the conditions he believed to 
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be necessary for glauconite formation.  He summarized the conditions as stating 

that  “the formation of glauconite appears to require marine waters of near 

normal salinity, reducing conditions, appropriate source material, high organic 

content in the sediment in which it forms, low or negative sedimentation rates, 

and finally a wide but not unlimited range of temperatures and depths”(1955, pp. 

484).  Cloud (1955, pp.484) explained that it was “this variety of limiting factors 

combined with the general ease of field recognition make glauconite much more 

useful in paleoecology than other accessory minerals, which are so far known to 

provide clues to depositional environments.”   

Information pertaining to the range of factors that may limit the occurrence 

of glauconite have been well documented (i.e. –depth, temperature, parental 

material, and turbulence) (Cloud 1955; Burst 1958a & 1958b; Hower 1961; 

Bentor & Kastner 1964; Triplehorn 1966; Odin & Rex 1982; Odin 1988).  In light 

of conflicting evidence pertaining to the formation of glauconite, Burst (1958a) 

suggested that glauconite formation is not strictly controlled by individual factors 

(i.e.—depth, temperature, parent material, and turbulence).   He suggested that 

because reports of temperature range, water depth, parent material and 

turbulence generally vary they probably are not in themselves controlling factors 

in the glauconitization process.  His suggestion puts less weight of physical 

parameters of an environment and more weight on the chemical conditions 

necessary for glauconite formation.     
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Burst (1958a pp. 316) recognized that there are several characteristics 

that are common to most glauconites, these include “consistent values of iron 

(20-25%), potassium (5-8%), and Fe3+ /Fe2+ ratio 5/8)”.  He acknowledged that 

there must be some set of standardized conditions necessary for glauconite 

formation because of the consistent values of Fe and K.  It appears these 

conditions may be chemical as opposed to physical.   

Burst (1958a) concluded that the formation of glauconite can be simplified 

as a two step process whereby parent material (argillaceous material) is 

deposited and collects and is then altered by the surrounding sea-water 

chemistry (micro-reducing environment).  

In the past glauconite has been thought to form under specific physical 

and chemical conditions, which would have made it an ideal tool to help decipher 

palaeoenvironmental conditions.  Today glauconitic minerals are typically formed 

in open marine continental shelf and slope environments (Figure 6) (Odin, 1988).  

In recent years, a number of authors have noted the occurrence of glauconite in 

palaeoenvironments that are not consistent with a restricted interpretation of 

glauconite formation (Figure 7).   
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Figure 6.  Recent distribution of glauconitic material.  Glauconite is 
forming in open marine settings such as a shelf/slope margins that 
range from 65° N latitude to 50° S latitude.  Black areas represent 
glauconite deposits and the hachured areas indicate presumed 
glauconite.  This appears to indicate that glauconitic materials today do 
not have a preferred latitudinal distribution.  [From G.S. Odin (1988) 
“Green Marine Clays” page 325.]  
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 Figure 7.  Reference list for the occurrence of glauconite in a variety of 
depositional settings [Amorosi, 1997] 
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Chapter 2 

Materials & Methods 

 

This section outlines the material used and the methods followed 

throughout the duration of this research.  A set of 21 thin section samples from 

the ORNL-Joy2 core have been used extensively in all aspects of this project.  

This slide set represents the bulk of the examined materials.  Methods discussed 

in this section include petrographic description and analysis of the thin sections, 

photography and analysis of digital images of Rogersville Shale samples using 

image analysis and image editing software, and finally maceration of palynologic 

samples collected from the ORNL-Joy2 core.   

 

Materials 

The Core 

Samples used in all portions of this investigation were collected from the 

ORNL-Joy2 core.       

 

Thin sections 

After the drilling was complete, a collection of thin sections was prepared 

from the ORNL-Joy2 core by a commercial laboratory (Baxter, 1989).  This set of 

thin sections was used in the primary core description (Haase et al. 1985) and in 

several earlier Masters Theses at the University of Tennessee (Baxter, 1989; 
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Weber, 1988).  In all, 21 thin section samples were available from the cored 

Rogersville Shale, and although several slides were damaged due to general 

degradation over time, all were used in this study.  Many thin sections throughout 

the core are damaged from bubbles or air pockets where the epoxy no longer 

adheres the sample to the glass slide.   

 

Palynologic Samples 

Samples for the palynologic portion of this investigation were collected by 

Professor P.K. Strother and J. Beck directly from the ORNL-Joy 2 core in 

December 2001.  However, not all of the palynologic samples correspond exactly 

to the location of the thin section samples.   

 

 

Methods 

One of the research tools was to use digital images and image analysis in 

the examination of petrographic thin sections.  I wanted to know if it were 

possible to use more efficient methods such as those commonly associated with 

the techniques of image analysis in lieu of the tedious and often time-consuming 

methods of traditional petrographic investigation.  For example, estimating 

mineral percentages by using comparison charts, measuring grain-size with the 

reticule, and estimating grain-roundness can all be determined with image 

analysis methods.  I also applied similar techniques of digital image analysis to 
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investigation of the biologic activity preserved in the Rogersville Shale.  The final 

investigation involved the study of the palynologic material contained within the 

Rogersville Shale to determine the paleobotanical populations present within the 

samples.  The methods used in the course of this work are outlined as a flow 

chart (Figure 8).   

Image Capture
(S1 Shooting Pro

Fuji Digital Camera)

Image enhancement / 
Image preparation

(Photoshop)

Image Processing
(NIH Image / Image J)

Results
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white images
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Figure 8.  This flow 
chart outlines the 
methods used in 
the course of this 
research starting 
with the initial 
stage of image 
capture and 
follows the 
process through to 
the end result.  
Each large box on 
the right 
represents a 
different step in 
the process and 
the smaller boxes 
on the left 
represent the 
outcomes of 
results of each 
step. 
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Petrographic Description and Analysis 

To begin, it was necessary to complete a detailed petrographic description 

and analysis on the Rogersville Shale samples (See Appendix I).  Each sample 

was examined to determine mineral content, physical characteristics of grains 

(such as size and shape), and texture.  The extent of bioturbation and overall 

fabric of the sample was described, a composite sketch of each thin section was 

made, and a photograph of each slide was taken.  Information from the thin 

section samples were compiled and examined (Appendix I).  This information 

lead to individual descriptions of the microlithofacies present within the 

Rogersville Shale.    

 

Photography and Digital Image Analysis of Thin sections 

Digital image analysis of thin sections was used in this research to 

examine glauconite grains within the different microlithofacies.  Glauconite was 

analyzed to determine if its presence in the different microlithofacies could relay 

information about the depositional environment.  Was the glauconite contained 

within the different microlithofacies unique?  To answer this question, the percent 

of glauconite in each thin section was examined.  The percentage of glauconite 

within the thin sections with relation to vertical position in the core was also 

examined.  The size of glauconite grains were measured as area of the image 

they cover.  The grain size numbers were reported as an average area.  In 
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addition, circumference of grains was measured as well as the length of the 

major axis.   

 

Image Analysis Technique  

Quantitative image analysis techniques were pioneered in the 1960’s.  

While examples of quantitative image analysis techniques in the field of geology 

appear at present to be somewhat limited, the medical health field has long been 

aware of the many applications for quantitative digital image analysis.  Ruzyla 

(1992) gives perspective as to suggested geologic procedures to follow, common 

sources of error and limitations of quantitative image analysis.  Van den Berg et 

al. (2002, 2003), Heilbronner (2000, 2002), Ehrlich et al. (1984), Yamaji and 

Masuda (2005), White  et al. (1998), Ruzyla (1992), Francus (1998), and 

Williams et al. (1998) are just a small subset of recent researchers who have 

attempted to utilize image analysis software programs to quantitatively analyze 

digital images of geologic samples.  Van den Berg et al. (2002, 2003), 

Heilbronner, (2000, 2002), White et al. (1998), and Francus (1998) have 

specifically used NIH Image to characterize physical parameters of grains and in 

some cases pore space.     

NIH Image is a public domain image analysis software program (currently 

available on the Internet at http://rsb.info.nih.gov/nih-image/ ) with many scientific 

applications.  The initial version, NIH Image was developed by the National 

Institutes of Health (NIH) to aid in the analysis of digital images for Macintosh 
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platforms up to versions OSX.  NIH then developed Scion Image, which is 

compatible with computers that run on a Microsoft Windows platform. In the 

following years, Image J was created.  This version is a Java application and will 

run on new Mac operating systems and is also compatible with Microsoft 

Windows.  All three software applications are essentially the same, and all were 

used during the course of this research.  To avoid confusion, I will refer to all 

three programs collectively as NIH Image from this point on.    

The procedures Van den Berg et al. (2002, 2003), Heilbronner (2000, 

2002), White et al. (1998), and Francus (1998) used to analyze digital images 

were all very similar.  Acquire a digital image, edit and prepare the image for 

analysis in Adobe Photoshop, analyze the image in NIH Image, and finally 

interpret the data (Figure 8).  Using these methods as outlined by Van den Berg 

et al. (2002, 2003), Heilbronner (2000, 2002), White et al. (1998), Ehrlich et al. 

(1984), and Francus (1998), I had to fine-tune the process for my specific needs.  

Determining the most advantageous set-up for acquiring digital images of the 

samples, editing and preparing images for analysis, and reporting the data 

collected was largely a process of trial and error to decipher what combination of 

steps in this process would work best together.  

 

Image Capture   

Beginning with image capture, several different approaches were 

attempted before determining what camera setup would work best.  Initially a 
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digital camera back with a macro lens mounted to a copy stand was used.  This 

proved to be the best scale at which to take the pictures but ultimately the 

images were not sharp because of shutter vibration.   

The next setup involved using a video camera to capture live images.  

This approach made it easy to capture an image of a specific area or feature.  

However, the images produced were highly magnified at a scale that was no 

longer useful.  Also the video camera only produced black and white images 

which later proved difficult to manipulate in Adobe Photoshop.   

The optimal set-up for image acquisition included a Wild M420 

macroscope attached to a S1 Fuji digital camera connected directly to a 

PowerMac computer running camera controlling software, S1 Shooting Pro.  This 

setup provided a direct link between the digital camera and the computer, and 

proved to be ideal for several reasons.  Captured images could be viewed 

instantly.  The means by which the camera was mounted on the macroscope 

reduced vibration produced by the camera shutter.  This setup produced a sharp, 

color, reasonably scaled digital image ready for image editing in Adobe 

Photoshop. 

 

Editing Digital Images 

Although the current camera setup produced optimal images (Figure 9), 

digital editing was necessary.  With Photoshop, colors of the thin section slide 

images were adjusted to appear as accurate as possible compared to the 
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microscope view, add sharpness, and better define individual features (in this 

case grains) (Figure 10).  Once the digital photo is opened in Photoshop the first 

adjustments are made to correct color.  Looking individually at the red (R), blue 

(B), and green (G) color channels of the color image and manually adjusting the 

associated pixel distribution histograms will ensure a normal distribution of light 

and dark colored pixels.  Adjusting these histograms can sometimes lead to 

images that are unnatural hues of red, blue and green.  A final adjustment of 

overall color is generally necessary to achieve a natural look for the images.  

This is done by viewing the RBG color channels simultaneously and correcting 

the overall histogram for the image.  Next, sharpness is added to the image. This 

helps to better define individual grain boundaries by increasing contrast of 

adjacent pixels, and focusing soft edges to increase clarity.  Adjusting the color 

and sharpness of an image ultimately makes it easier to distinguish between 

different mineral grains in the subsequent stages of this process.  

  

Figure 9.  Initial image 
taken from the 
camera.  This image 
has not been edited.   
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Figure 10.  
Digital image that 
has been 
adjusted for 
sharpness and 
color in Adobe 
Photoshop. 

 

Once an image has easily distinguishable shapes and colors (in this case 

different mineral grains), it is now ready to be separated into individual mineral 

components.  Because the photographs were taken at a known scale, a new 

window with the same dimensions is created.  In the original photograph, grains 

are selected based on their color (i.e. pixels of a specified color range can be 

individually selected) allowing the user to only select mineral grains of interest.  

Once all the grains of a specific mineral component are selected, they can then 

be copied, temporally removed from the original photo and pasted into the new 

window with the same spatial dimensions as the original photo.  This process is 

then repeated until all the mineral components of interest have been removed 

from the original (Figure 11).   
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Figure 11.  This 
image is of 
glauconitic mineral 
only.  They have 
been selected based 
on their green color. 

 

There are now several color images (i.e., one for each mineral of interest) 

these images are now ready to be converted into greyscale images as the final 

step in Photoshop before they can be opened in NIH Image.  Converting the 

color images to greyscale, discards the color information associated with each 

pixel and greatly reduces the file size leaving an 8-bit greyscale image, which 

can be used for analysis in NIH Image (Figure12).  

 

Figure12.  
The color 
information of 
the previous 
picture has 
been 
discarded 
and only a 
grey scale 
image 
remains.   
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Image Analysis 

Edited and prepared images are now ready to be quantitatively analyzed 

using NIH Image.  Upon opening the photos, the first task when quantitatively 

analyzing images is to set the scale.  This was done by taking a photo of a 

millimeter scale ruler at the same magnification as the thin sections.  The image 

of the ruler can then be opened in NIH Image and a scale can be created using 

the known distance on the ruler.  This scale can then be applied to the images of 

the thin sections allowing one to create real world measurements.   

Next, thresholding is done.  This is a process whereby an 8-bit greyscale 

image is changed into a binary image.  The pixels of interest (i.e. the grains) are 

converted to black and the background (i.e. the rest of the pixels) is converted to 

white.  

 

Limitations of Digital Image Analysis                    

A significant problem encountered during the course of this research was 

how to separate grains that are touching.  Ruzyla (1992) stated that the touching 

of particles is a persistent problem with digital images that prevent individual 

grain analysis.  If two or more grains are in contact, the image analysis software 

will count the touching grains as one, instead of recognizing the individual grains.  

Measurements and calculations based on the amalgamated grains can have a 

tendency to skew the results, creating some inaccuracy.  To achieve the most 
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accurate results possible, it was necessary to find a method to separate 

amalgamated grains, most preferably by automated means.   

Macros written for NIH Image are widely available on the Internet, some 

have specifically been written to perform the task of separating touching particles 

or grains by using different algorithms.  Several of these macros, Van den Berg’s 

Digital Cutting Method (DCM) (2002) and Heilbronner’s Lazy Grain Boundary 

method (LGB) (2000), have been written specifically in a geologic sense for 

separating touching particles.  The DCM and LGB macros proved to be difficult to 

use, requiring extensive programming skills in order to use them for grain 

separation.   A function within the NIH Image program called watershedding 

segmentation method (WSM) was found to produce results of a similar quality as 

the macros.  Van den Berg et al. (2002) found that the DCM and the WSM 

“produce a similar amount of erroneous separations…” and (2003) reported the 

DCM was “…slightly better than the watershedding method.”  So the decision to 

use the watershedding segmentation method was made because the technique 

did not require any additional effort, time or memory and produced reasonable 

results that were consistent with other separation methods that are considered by 

some to be more reliable. 

The watershedding segmentation method (WSM) works best on slightly 

rounded convex particles that do not overlap extensively            

(http://rsb.info.nih.gov/nih-image/).  It is recommended by Russ (1998) and Van 

den Berg et al. (2002) that an erosion and dilation cycle be performed prior to the 
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WSM.  This process smoothes edges and fills interior holes by subtracting 

(erosion) or adding (dilation) pixels to the grains.  This process may create slight 

changes in the grain boundaries, but ultimately will not significantly change grain 

morphology.  Using the binary image that has undergone thresholding, WSM 

begins by generating a Euclidian distance map (EDM) with Ultimate eroded 

points (UEP) (Figure13a and Figure13b).  An UEP represents the center point of 

a particle, and the EDM is the area around the UEP (i.e. the area of the grain 

within the grain boundary) represented as a decreasing grey value as distance 

away from the center (UEP) increases (http://rsb.info.nih.gov/nih-image/ ).  NIH 

Image then dilates each grain center (UEP) as far as possible until one of two 

situations occurs:  (1.)  the edge or grain boundary is reached, or (2.)  another 

growing grain center (UEP) is intersected (http://rsb.info.nih.gov/nih-image/ ).  If 

the growing UEP is not intersected, and can grow to the full extent of the grain 

boundary, no segmentation occurs.  If growing UEPs overlap, a segmentation is 

made where the EDMs meet (Figure13c) (http://rsb.info.nih.gov/nih-image/).     
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Figures 13a, 13b, and 13c.  
These images show step 
wise the procedure for the 
watersheding segmentation 
method (WSM).  Beginning 
with 13a, the initial image 
has many amalgamated 
grains.  The process 
continues with 13b, as a 
Euclidian distance map 
(EDM) and ultimate eroded 
points (UEP) are produced.  
The final stage of this 
process 13c, shows the 
resulting image in which 
the grains that were initially 
amalgamated are now 
separated and can be 
recognized as individual 
grains by NIH Image.  
[From the National 
Institutes of Health (NIH) 
website 
http://rsb.info.nih.gov ] 

13a 

13b 

13c  
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Measurements           

NIH Image can now make quantitative measurements on the thin sections.  

For the final preparations prior to making the measurements, the parameters the 

program will need to measure must be constrained.  To do so, several pull-down 

style menus are accessed from the tool bar, here the operator must specify a 

size range to be measured which is entered as a minimum and maximum particle 

size in number of pixels, how the data will be displayed, and finally the user must 

specify what measurement NIH Image should make.  For this, I requested 

measurements of area of particles, length of the perimeters, length of major axis 

(of a best fitting ellipse), length of minor axis (of a best fitting ellipse), angle of 

particle orientation measured away from bedding, and number of particles 

present within the field.  Once the measurements are made, NIH Image reports 

the data in a spreadsheet format that can be easily exported to Microsoft Excel or 

MatLab for further analysis.  Utilizing the quantitative measurements generated 

by NIH Image one can obtain estimates of grain size, grain shape, orientation of 

grains relative to a bedding plane, and number of grains within a field of view.     

To ensure the image analysis techniques were correct and the 

measurements produced by NIH Image were accurate a test case was created 

using an image of grains with known grain size, length of major and minor axes, 

orientation of the long axis, and percent composition.  These parameters were 

determined by conventional methods involving taking measurements, point 

counting, and visual estimation.  These measurements were compared with the 
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results of those produced by NIH Image.  Although amalgamated grains still 

produce some amount of inaccuracy, the measurements done by NIH Image are 

sufficiently accurate for grains that are not in extensive contact with each other. 

 

Analysis of Bioturbation 

Can the effects of bioturbation be responsible for producing recognizable 

differences in the microlithofacies contained within the Rogersville Shale?  To 

answer this question the difference between sediment that was bioturbated (i.e. 

sediment contained within a cross-sectional burrow) was compared to other 

randomly chosen samples, and finally to samples that were believed to have 

been bioturbated but not contained within a cross-sectional burrow. 

Identifying cross-sectional burrows and characterizing the fabric they 

contain was the first step in analyzing bioturbation.  Cross-sectional burrows 

were preferentially selected and images of these burrows went through the same 

process as previously outlined (refer back to Figure 4).  Mineral components 

were identified, grain-size was measured, and percent composition (expressed 

as a percent of the total area that the mineral covered) were analyzed; this 

information was compiled and averaged.  These characterizations were then 

compared to observations from the petrographic investigation to see if the 

amount of organic matter decreased and the amount of quartz increased with 

varying degrees of bioturbation.   
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In the final stage of this investigation, the data collected on the burrows 

was compared to the fabric that was believed to have been affected by biologic 

activity but was not contained within a cross-sectional burrow.  By comparing the 

three types of fabric samples, I was able to determine if a sample had been 

affected by biological activity by looking for a distinctive fingerprint.  If a sample of 

the fabric that was believed to have been bioturbated was found to be similar to a 

sample that is known to have been bioturbated (i.e. the fabric is contained within 

a cross-sectional burrow) this provides a better indication that the sample had 

indeed undergone some amount of biological reworking.      

 

Palynologic Investigation  

The palynologic portion of this research was conducted by Professor P.K. 

Strother. He examined the thin section samples as well as samples he collected 

from the ORNL-Joy2 core in an effort to characterize the acritarch and 

cryptospore populations.  Researching the palynologic populations contained 

within the ORNL-Joy2 core samples has lead to a determination of where the 

depositional site was located in relation to the paleoshoreline. 

Maceration of the samples collected directly from the ORNL-Joy2 core 

was necessary to release the paleobotanical material.  The samples were 

processed using a sequence of different acids (HCl, HF, and HNO3) to dissolve 

the rock material and leave behind organic material (Strother et al., 2004).  

Organic material, dissolved rock material, and a supersaturated solution of ZnCl2 
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are then centrifuged so that the organic residue can be decanted off from the rest 

of the liquid.  At this stage in the process the palynologic samples were isolated 

and mounted onto glass slides using glycerin gel.  Others samples to be used for 

the scanning electron microscope (SEM) were mounted onto aluminum stubs 

that are used in the SEM.  These images were scanned using 15 or 20 KeV on 

an Amray 1600 SEM at Weston Observatory and the images were captured on 

Fuji S1Pro digital camera.  From the point of image acquisition, the images were 

then edited and converted into greyscale images in Adobe Photoshop to ready 

them for analysis.          

 



Chapter 3 

Results 

 

Characterizing the lithologic microlithofacies of the Rogersville Shale will 

ultimately help to decipher the palaeoecologic conditions existing in this region 

during the Middle-to-Late Cambrian.  Detailed descriptions of the individual 

microlithofacies, morphologic forms of glauconite contained within the samples, 

effects of biologic activity evident from the trace fossils present, and 

palynomorphs within the Rogersville Shale will be presented in this section.  

Studies of the petrographic, ichnologic, and palynological aspects of the 

microlithofacies of the Rogersville Shale help to constrain how and where the 

sediments were formed.   

 

Microlithofacies Descriptions 

 The five lithofacies of the Rogersville Shale may be more accurately 

described as microlithofacies.  These microlithofacies exist on a small scale and 

are only clearly visible in thin section.  Five different microlithofacies of the 

Rogersville Shale were distinguished: a homogenous unlaminated mudstone, 

laminated mudstone, siltstone, bioclastic siltstone, and a limestone.  The 

descriptions of each microlithofacies follows.  Please note individual sample 

numbers in the text and in the appendix such as 1523 refer to down hole footage.    
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Microfacies I:  Homogenous Unlaminated Mudstone  

 The first microfacies can be characterized as a homogenous unlaminated 

mudstone (Figure 14).  Grain size is largely in the mud/ clay range and the clay 

particles appear to be oriented.  This mudstone contains a detrital fraction 

(approximately 17%), which consists of matrix supported, angular to sub-angular 

white quartz grains ranging from 0.023 mm to 0.17 mm.  Red-brown and grey-

brown to occasionally very dark brown (this may be due to an increase in organic 

material and opaque minerals) in color when viewed in thin section, this 

microfacies can exhibit a wide range of colors.  Generally homogenous, the 

mudstone itself contains no discernable laminations, although several small-

scale discontinuous laminations of detrital material are present within this 

microfacies.  These discontinuous laminations usually consist of very fine-

grained white quartz grains, white to very pale green and brown platy mica flakes 

as well as phosphotized (collophane) lingulid shell fragments and glauconitic 

material.  The glauconitic material and shell fragments exhibit parallel alignment.  

These discontinuous laminations are generally wavy or lenticular and have 

undulatory surfaces.  This microfacies also contains diffusely dispersed amounts 

of organic material and opaque reduced minerals, such as pyrite and hematite, 

which appear to have been formed secondarily.  This microfacies contains 

evidence of bioturbation in the form of cross-sectional burrows that are easily 

identified but are not abundant.  These burrows have a higher concentration of 

densely packed angular to sub-angular white detrital quartz grains than the 
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surrounding mud and clay material.  This higher concentration of quartz grains 

appears to be due to the removal of the matrix (i.e., the clay) by the burrowing 

animals and later infilling. 

 

Figure 14.  Microfacies I, 
Homogeneous 
Unlaminated Mudstone.  
This photograph is of a 
portion of sample number 
ORNL-J2-1523.  Defining 
characteristics of this 
Microfacies include lack of 
distinct laminations, 
oriented clays, and 
diffusely dispersed pyrite 
and organic matter. 

Table 1:  Mode Table for Microfacies I 

Microfacies I.  Homogenous Unlaminated Mudstone Average 
Grain Type Modal Grain Size (mm) 

Quartz 0.049 
Pyrite 0.027 

 

**Note—The clay fraction of Microfacies I was not analyzed for modal grain size.  
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Microfacies II:  Laminated Mudstone  

 Brown-beige to medium-red-brown in color when viewed in thin section, 

the mudstone of this microfacies can typically exhibit a variation in the color 

range (Figure 15). The mudstone within this microfacies is like microfacies I, the 

homogenous unlaminated mudstone.  Grain size is again in the clay range.  

Microfacies II however, also contains nearly 39% detrital grains, consisting of 

matrix-supported, sub-round to sub-angular, silt sized white quartz ranging in 

size from 0.065 mm to 0.34 mm.  The clay/mud fraction defines laminations that 

are more or less continuous.  Detrital grains occur as isolated pockets of silt.  

These silty pockets are wavy to lenticular often having undulatory margins.  

Clays appear to be drape over and in between these detrital pockets.  The matrix 

of this microfacies is largely composed of the mudstone and minor amounts of a 

“pseudomatrix” which is clay that was (partially) altered into authigenic 

glauconite.  This glauconite-clay intermediate occurs as a very pale green to 

nearly clear, clay and glauconite intermediates.  The pseudomatrix can also 

occupy an area that was previously void and/or pore space or a glauconite 

precursor material.  This microfacies will generally contain micro-stylolites and 

sparry calcite veins as features identifiable in thin section.  Some of the sparry 

calcite veins have been replaced by chert and dolomite.  In addition, microfacies 

II contains diffuse organic matter, phosphatic lingulid shell fragments 

(collophane), and glauconite, which often exhibit parallel alignment to each other.  

Microfacies II also contains opaque minerals such as pyrite and lesser amounts 
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of hematite.  Some bioturbation is evident although it is apparent that the effects 

of the biological activity were not widespread throughout this Microfacies 

because the presence of bioturbation is minimal.  Cross-sectional burrows and 

other trace fossils can be identified by areas of higher concentrations of densely 

packed detrital quartz grains, occurring throughout the mudstone of Microfacies 

II.  Perhaps the feature that most distinguishes the Microfacies I mudstone from 

the Microfacies II mudstone is the significant increase in quartz silt and other 

detrital material.  

 

Table 2:  Mode Table for Microfacies II 

Microfacies II. Laminated Mudstone 
Grain Type Modal Grain Size (mm) 

Quartz 0.185 
Glauconite 0.11 

Pyrite 0.04 
 

**Note—The clay fraction of Microfacies II was not analyzed for modal grain size.  
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Figure 15.  Microfacies II, 
Laminated Mudstone.  This 
photograph is of a portion 
of sample number ORNL-
J2-1523.  Defining 
characteristics of this 
microfacies include a 
mixture of silt and clay 
material, laminations 
defined by the clay 
material, and diffusely 
dispersed pyrite and 
organic matter. 

 

 

Microfacies III: Siltstone 

 Microfacies II is commonly interbedded to interlaminated with a 

(subarkosic) siltstone, microfacies III (Figure 16) (See appendix slides 1504 

through 1523 and 1535 through 1602 for examples of interlamination).  This 

siltstone is largely made up of the same angular to sub-angular, white quartz 

grains as found in the mudstones of microfacies I and II, some chert, and much 

lesser amounts of clays (50% < than microfacies I, and 25% < than microfacies 
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II) and feldspar.  Most quartz grains in the siltstone range from 0.053 mm to 

0.345 mm.  In addition to the quartz grains, other less common grains, include 

feldspar, mica flakes, chert, detrital glauconite (ranging from 0.11 – 1.621 mm), 

pyrite framboids (ranging in size 0.0391 – 1.42 mm), hematite, sparry calcite, and 

dolomite rhombs.  The detrital grains of this siltstone are surrounded by a clay 

matrix, which is very similar to the clay/mudstone of microfacies I and II.  This 

microfacies generally appears white to very light beige to sometimes pale brown 

in thin section with increasing amount of clay contained within the matrix.  As 

percentage of clays increases, from nearly 20% to approximately 40%, the 

resulting color takes on a more brownish hue overall.  Contained within the 

siltstone are discreet laminations of phosphatic lingulid shell fragments 

(collophane) and autochthonous glauconite pseudomorphs of the phosphatic 

shell fragments (Figure 23).  The glauconite and shell fragment lamination occur 

as sub-parallel to parallel laminations. Bedding typically shows fining upward 

cycles, with the largest silt laid down first, gradually fining upward through the 

laminations into the mudstone.  Occasionally very thin, more continuous, ribbon-

like laminations of the mudstone occur throughout the siltstone.  Very dark brown 

to nearly black in appearance, these ribbon-like laminations appear to contain 

significantly higher concentrations of organic material and opaque minerals than 

the surrounding sediment.  Other bedding features include small scale, mostly 

discontinuous cross-beds along with several microfaults.  Evidence of 

bioturbation in this microfacies occurs in the form of cross-sectional and 
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longitudinal burrows.  These burrows occur throughout the siltstone, where they 

are easily identified as the areas of considerably less clay or muddy material.   

        

Figure 16.  
Microlithofacies III, 
Siltstone.  This 
photograph is of a portion 
of sample number ORNL-
J2-1523.  Defining 
characteristics of this 
microfacies include a 
composition of quartz, 
glauconite, and 
carbonate grains, the 
presence of collophane 
shell fragments, and 
diffusely dispersed pyrite 
and organic matter.   

 

Table 3:  Mode Table for Microfacies III 

Microfacies III.  Siltstone  
Grain Type Modal Grain Size (mm) 

Quartz 0.11 and 0.24 
Glauconite 0.56 

Pyrite 0.07 
Shell Fragments 0.18 

Carbonate 0.34 
** Note—The clay fraction of microfacies III was not analyzed for modal grain 

size. 
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Microfacies IV: Bioclastic Siltstone 

 Microfacies IV is very similar to the siltstone of microfacies III, although 

this microfacies contains 4 % more glauconite grains as well as more bioclastic 

material in the form of phosphatic lingulid shell fragments (Figure 17).  Here, 

lingulid fragments are larger, ranging from 0.21 – 1.57 mm, and can be seen 

easily with the naked eye.  The glauconite grains in this microfacies range from 

0.12 to 0.37 mm.  The quartz grains are similar in size range to microfacies III.  

Microfacies IV is consistent with the description of microfacies III with the 

exception of having a higher concentration of bioclastic material and glauconitic 

grains.    

 

Table 4:  Mode Table for Microfacies IV 

Microfacies IV.  Bioclastic Siltstone 
Grain Type Modal Grain Size (mm) 

Quartz 0.09 
Glauconite 0.21 

Pyrite (Framboids) 0.27 
Shell Fragments 0.95 

** Note—The clay fraction of microfacies IV was not analyzed for modal grain 

size. 
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Figure 17.  Microfacies IV, Bioclastic 
Siltstone.  This photograph is of a 
portion of sample number ORNL-J2-
1524.  The bioclastic siltstone is very 
similar to the siltstone of microfacies III, 
with the exception of the amount and 
size of the collophane shell fragments 
present.  Like microfacies III, this 
microfacies is composed of quartz, 
glauconite, and carbonate grains.  
What distinguishes this microfacies 
from the other siltstone is the 
significant increase in the amount and 
size of the shell fragments present.  
The phosphatic shell fragments are 
thought to be lingulellids.   

 

Microfacies V:  Carbonate (Craig Limestone) 

 Microfacies V occurs exclusively within the top several meters of the 

Rogersville Shale as an informal subunit, the Craig member limestone (Figure 

18).  Aside from the Craig limestone, no other appreciable amounts of carbonate 

occur within the Rogersville Shale.  Off white to buff in color, the carbonate unit 

occurs as ooids, sparry calcite and tiny rhombs of dolomite.  A horizon of 

carbonate ooids exists within this Microfacies, located on slide number ORNL-

Joy2 1486 (Figure 18).  The ooids range in size from 0.939 to 1.2992 mm.  This 

Microfacies also contains lesser amounts of clay, organic material, shell 
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fragments, glauconite and chert.  This microfacies represents the transition from 

the clastic Rogersville Shale to the overlying carbonate Maryville Limestone and 

the shifting of depositional environments. 

 

Figure 18.  
Microfacies V, 
Carbonate (Craig 
Limestone).  This 
photograph is of 
a portion of 
sample number 
ORNL-J2-1486.  
Defining 
characteristics of 
this microfacies 
include ooids.   

Table 5:  Mode Table for Microfacies V 

Microfacies V.  Craig Limestone Member 
Grain Type Modal Grain Size (mm) 

Öoid 0.55 
 
 

Summary & Discussion 

  When the ORNL-Joy2 core is viewed macroscopically, slight color 

variations are visible.  These color variations represent the difference between 

the darker clay-rich layers and the lighter silt-rich layers.  Aside from these color 

variations, most other details are not recognizable at this scale.  Not until the thin 
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sections are viewed microscopically do the fine details of the five microlithofacies 

become apparent.  

Although no formal analysis was done to determine if the five 

microlithofacies occur in non-random order no patterns are evident at this point.  

Microfacies thickness can range from approximately less than 1 mm to just over 

3 cm.   With the exception of the three thin sections (ORNL-J2-1484, ORNL-J2-

1486 & ORNL-J2-1524), the rest of the thin sections contain more than one 

microlithofacies per slide (See appendix slides 1490.5 – 1523 and 1535 – 1602).  

Table 6 shows what microlithofacies are present per slide (See Table 6).  With 

the exception of the Craig member (Microfacies V) the four other microlithofacies 

are found closely interlaminated.  They vary vertically on a very small scale that 

is not evident at the macroscopic level.  Horizontally most laminations are 

continuous across the thin section although some discontinuous laminations due 

occur.  The nature of these samples do not lend themselves to determine if the 

microlithofacies vary laterally beyond the edges of the thin section.    
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Table 6:  Microfacies per Down-hole Footage 

Down-hole 
Footage 

Microfacies 
I 

Microfacies 
II 

Microfacies 
III 

Microfacies 
IV 

Microfacies 
V 

1484     X 
1486     X 

1490.5 X X    
1496.5 X X    
1504 X X X   

1512.5 X X X   
1519.5 X X X   
1523 X X X   

1524.5    X  
1535 X X X   
1541 X X X   
1549 X X X X  
1550 X X X X  
1558 X X X   
1563 X X X   

1572.5 X X X   
1581 X X X   
1586 X X X   
1594 X X X   

1599.5 X X X   
1602 X X X   

                       

The five microlithofacies of the Rogersville Shale exhibit several major 

similarities and some important differences.  Overall mineral composition is a 

good example of a major similarity.  Certain minerals are common to all five 

microlithofacies although in different proportions; these include quartz, 

glauconite, mud-clay, organic matter, chert, pyrite, hematite, collophane, calcite 

and dolomite.  The more silty microlithofacies are largely composed of the silt-

sized quartz grains (i.e.—the siltstone microfacies III and IV) in contrast to the 

higher mud-clay matrix in microfacies I and II.  While the mudstone microfacies 
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are composed mostly of mud and clay material, they also contain smaller amount 

of the silt common to microfacies III or IV, though finer.  Although the same 

minerals occur through the formation, the ratios in which they occur vary widely.   

 

Table 7:  Percent Composition for Microlithofacies I through IV 

Microfacies Average % 
Glauconite 

Average % 
Mud-Clay 

Average %Qtz. 
& Carbonate Total 

I. 
Homogenous 
Unlaminated 

Mudstone 

10.7 69.7 17.7 98.1 

II.  Laminated 
Mudstone 15 44.8 38.5 98.3 

III.  Siltstone 23.7 19.4 56.7 99.8 
IV.  Bioclastic 

Siltstone 27.5 8.5 63.6 99.6 

 

 

Glauconite Content 

Glauconite is common throughout the Rogersville Shale, however the 

percentage of glauconite varies between the microlithofacies although not a great 

deal despite significant differences in the silt-clay ratio.  For example the 

siltstones of microfacies III and IV contain greater proportions of glauconite with 

the bioclastic siltstone containing 27.5% (on average) and the siltstone of 

microfacies III containing slightly less with 23.7% (on average).  Microfacies II 

mudstone contains 15% (on average) glauconite and the mudstone of 

microfacies I contains 10.7% (on average).  The occurrence of glauconite grains 

within the carbonate microfacies (microfacies V) is rare and was therefore not 

 - 51 -



measured.  While the percentage of glauconite ranges from 10.7% to 27.5% 

within the four microlithofacies, the ratio between the silt and clay fractions vary 

greatly.  This is one indicator that glauconite appears to be ubiquitous throughout 

the Rogersville Shale, i.e., independent of depositional region.       

 

Degree of Bioturbation        

Differences arise between the five microlithofacies when the degree of 

bioturbation is compared.  The mudstone of microfacies I exhibits the least 

bioturbation of all the microlithofacies, it is generally homogeneous and distinct 

trace fossils are also rare.  Microfacies II contains nearly 21% more detrital 

quartz than microfacies I.  This may indicate an increase in the degree of 

bioturbation.  The organisms responsible for producing these trace fossils were 

likely seeking the organic matter that makes up a large part of the mud-clay 

matrix (as a food source) and leave behind residual silt.  It is reasonable to 

believe that the decrease in organic material is linked to an increase in 

bioturbation that can be seen in these microlithofacies.  This conclusion also 

holds true if one examines the microfacies IV. This microfacies exhibits the 

highest degree of bioturbation and contains the least amount of the mud-clay 

matrix.     

On a larger scale, it appears that there is an inverse relationship between 

the amount of mud-clay matrix and amount of glauconite present.  For example 

microfacies I contains 69% mud-clay material and 10% glauconite.  Whereas 
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microfacies IV contains 8.5% mud-clay material and 27% glauconite.  Also there 

appears to be a positive correlation between glauconite and bioturbation. For 

example, microfacies IV contains the most glauconite (27%) and has the most 

observed evidence of bioturbation.  The conditions creating the chemical 

environment necessary for autochthonous glauconite formation are not found in 

the homogenous unlaminated mudstone, whereas these conditions abound in 

the bioclastic siltstone.    

Microfacies I contains the least amount of glauconite (8.5%) and very low 

degree of bioturbation but, has the highest concentration of the mud-clay matrix 

(69%).  Because high concentrations of the mud-clay matrix exist within 

microfacies I and there is little evidence of bioturbation, one can assume these 

conditions were not as highly favorable for glauconite formation.   Because 

bioturbation is nearly absent, the micro-reducing environment necessary for 

autochthonous glauconite formation was not produced.  Conversely the bioclastic 

siltstone contains the highest degree of bioturbation and consequently the least 

amount of mud-clay matrix material and the highest concentration of glauconite 

making it the ideal environment for the formation of glauconite.          

                          

Glauconitic Minerals in the Rogersville Shale 

Both authigenic and allogenic morphologic forms of glauconite are present 

within the Rogersville Shale.  Authigenic glauconite forms include glauconite/ 

clay intermediates, replacement of shell fragments and detrital grains, and some 
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vermiform or zebra grains.  Allogenic glauconite forms include pelloidal, platy, 

and potentially some vermiform or zebra grains.  All the aforementioned 

morphologic types of glauconite will be described in detail later in this chapter.     

Grain morphology is thought to be an indicator of the physical and 

chemical history of glauconite grains (Warshaw (1957); Ellmann et al. (1963); 

Triplehorn (1966)).   Warshaw (1957) suggested that there is an apparent 

connection between physical appearance, degree of crystalline order (internal 

structure), extent of mixed layering in clays, and occurrence of glauconite.  

Ellmann et al. (1963) determined that it was likely that observations based on the 

physical appearance of glauconite may provide information similar to that 

obtained by more complex physical and chemical measurements.  Triplehorn 

(1966) recognized the potential of different glauconite forms being useful for 

stratigraphic correlation and environmental determination.   

I applied these ideas to the glauconite grains within the Rogersville Shale 

to differentiate whether they were formed authigenically or allogenically.   In 

addition, differences in the physical and chemical properties exhibited by 

glauconite grains provided clues about the palaeoenvironmental conditions that 

prevailed during the deposition of the Rogersville Shale.  
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Morphologic Forms of Glauconite 

Pelloidal  

 Spheroidal or ovoidal glauconitized pelloids are generally larger (on the 

order of medium to coarse sand) than the surrounding quartz or clay matrix.  

Glauconitic pelloids are common in the Rogersville Shale, but are most prevalent 

in the siltstone and bioclastic siltstone Microfacies.  Pelloids can be whole or 

occur as broken fragments.  Broken pelloidal fragments may be evidence of grain 

transport.  Most pelloids appear to have a randomly oriented internal structure 

(Figure 19).  Pelloids are found both as constituents of the burrow fill within the 

mudstone and as larger component within the siltstone and the bioclastic 

siltstone (Figure 17).  A likely precursor for these glauconite grains is that of fecal 

pellets of the organisms that produced the burrows.  The burrows these grains 

are contained within almost certainly would have provided the locally reducing 

microenvironment necessary for glauconite formation.  Remnants of the organic 

material, algal cysts and cryptospores these organisms sought can still be seen 

within some of the pelloids (Figure 19).  Within the pellet, it appears that the clay 

or fecal material has undergone the glauconitization process, leaving some 

refractory organic matter unchanged.  Due to the shape of these pellets it is clear 

to see that they would be easily transported.   
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Figure 19.  Pelloidal 
glauconite.  This 
photograph depicts 
a pelloidal 
glauconite grain.  
This grain was likely 
a fecal pellet prior to 
undergoing the 
glauconitization 
process.  This grain 
is quite unique in 
that is still contains 
preserved organic 
matter and 
cryptospores.  
Sample Number 
ORNL-J2-1523.   

 

 

Clay / Glauconite Intermediates 

 An intermediate form of glauconite within the Rogersville Shale has a 

structure that is transitional between glauconite and its clay precursor (Figure 

20).  The clastic grains within the siltstones of Microfacies III and IV are 

surrounded by mud/clay mixtures.  Clays in this matrix may partially undergo the 

glauconitization process.  The clay-glauconite intermediates are generally barely 

green to very pale green.  Incomplete glauconitization of the clay matrix seems to 

indicate that physical and/or chemical conditions may have changed or shifted 

during early phases of the glauconitization process.   Due to the nature of these 

grains, the glauconite-clay intermediates were interpreted to have formed in 

place. Thus, they are autochthonous.   
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Figure 20.  Clay-
Glauconite Intermediate.  
Contained within the box 
on the left side of the 
photograph is an 
example of the clay-
glauconite intermediate 
morphologic form.  This 
form of glauconite 
generally occurs in 
between detrital grains 
and is very pale green in 
color.  Sample Number 
ORNL-J2-1523 

 

 

Platy Grains 

 These grains have a length that far exceeds their thickness and internal 

layering, most closely resembling pages of a book (Figure 21).  The book-like 

appearance of these grains can be attributed to cleavage planes on precursor 

micas or thin clay lamina.  Platy grains are generally found as a constituent of the 

siltstone and the bioclastic siltstone of Microfacies III and IV, but also occur (in 

lesser amounts) within the mudstones of Microfacies I and II.  Although their form 

sometimes appears somewhat delicate, some of these grains appear to have 

been transported.    
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Figure 21.  Platy 
Glauconite.  This 
glauconite grain has 
a length that far 
exceeds the 
thickness, which is 
characteristic of all 
platy grains.  
Sample Number 
ORNL-J2-1549.   

  

Vermiform or Zebra Grains 

 These grains have “zebra-like” stripes, especially when viewed under 

cross-nicols (Figure 22).  Galliher (1935) saw this morphologic form of glauconite 

as evidence of direct derivation from a micaceous parent material, more 

specifically biotite.  Zebra-like grains alternate layers of ordered internally 

structured glauconite with unordered (random) internally structured glauconite 

(Burst 1958b).  This appearance may be related to the micaceous cleavage 

planes which are now perpendicular to the longest axis of the grains (Triplehorn, 

1966).  Not only does the mica flake appear to gradually transform into (ordered 

internal structure) glauconite, but glauconite seems to form (with random or 

unordered internal structure) in between the sheets (Triplehorn, 1966).  The 

zebra grains generally exhibit a slight curvature of the long axis; some grains 

appear almost crescent-shaped.  Triplehorn (1966) suggested that these grains 
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form in place because the micaceous structure of the grains is not known to be 

suitable for transport.  Since whole zebra-like grains are quite common in the 

siltstones of Rogersville Shale, this may be evidence that glaucony was forming 

quite locally during sediment accumulation.  Broken fragments of zebra-like 

grains also exist within the Rogersville Shale, which may also suggests some 

degree of transport was involved subsequent to glaucony formation (Figure 22). 

 Figure 22.  Vermiform or Zebra Grains.  These grains have the 
characteristic appearance of having zebra-like stripes.  This 
characteristic is especially apparent when viewed under cross-nicols.  
Another feature common to this type of grain is a slight curvature to 
the long axis of the grain.  This feature is apparent on the grain on the 
left.  Sample Number ORNL-J2-1549.

 

 

 

 
Same scale for both images. 
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Replacement of Shell Fragments and Detrital Grains 

 Authigenic replacement of organic material, shell fragments (Figure 23) 

and other detrital grains is another morphologic form for the glauconitic material 

contained within the Rogersville Shale.  Replacement of the original or parent 

material by glauconite seems to be a reasonably common occurrence in the 

Rogersville Shale, as it is one of the more prevalent morphologic forms for 

glauconite to take.  Replacement of a parent material is generally easily 

determined by simply looking at grain in question.  For example shell fragments 

have a characteristic elongate or platy appearance.  Shell fragments also have a 

unique texture.  Glauconitic material takes the form of the parent material such 

as the phosphatic shells that it replaces (Figure 23).  The glauconite in Figure 23 

has replaced the phosphatic shell material.  The original texture of the shell is 

preserved in the glauconite.   

 

   

Figure 23.  Replacement of a 
collophane shell fragment.  
The arrowhead in this 
photograph shows the point 
where the shell fragment 
changes in glauconitic 
material.  The glauconite has 
retained the morphologic 
form of the shell fragment 
that it has replaced.  This is 
an example of authigenic 
glaucony. Sample Number 
ORNL-J2-1549.   
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Location and Distribution of Glauconite Grains 

 The occurrence of glauconite appears to be ubiquitous throughout the 

siltstone and the bioclastic siltstone microfacies of the Rogersville Shale.  

Glauconite is present, but far less prevalent, in the homogenous unlaminated 

mudstone, the laminated mudstones microlithofacies and the Craig Limestone 

Member.  However, unequal distribution of glauconite among the different 

microlithofacies may be evidence of a thorough reworking of the siltstone and 

bioclastic siltstone Microfacies due to biological activity, whereas the mudstones 

of Microfacies I and II may be areas that have experienced lesser to no biological 

reworking.  The clay/mud material was likely removed or consumed during the 

processes associated with bioturbation in Microfacies III and IV.  Because 

glauconite is more prevalent in the siltstone and bioclastic siltstone microfacies, 

there may be a connection between biologic activity and conditions favorable for 

glauconite formation or accumulation.  A less likely possibility to explain the 

variable glauconite distributions would be geochemical/ geologic conditions that 

may have alternated between being favorable or not favorable for glauconite 

formation throughout the duration of deposition of the Rogersville Shale.  This 

would suggest that geochemical conditions or sedimentation regions that 

prevailed during the deposition of fine particulate matter were significantly 

different from those during deposition of the larger clasts, but the microfacies 

scale of this variation would make this less likely.  Graph 1 show the vertical 

distribution of glauconite throughout the ORNL-Joy2 and thin section samples.   
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Graph 1.  The percent of glauconite per slide vs. down hole footage (slide#). 
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Summary & Discussion 

 In early work, glauconite was seen as a deep marine indicator associated 

with distal shelf and slope deposits.  Glauconite occurs in many different kinds of 

sedimentary facies not associated with distal shelf/ slope deposits, but, because 

of this assumption made early on, it was generally considered allochthonous 

when found elsewhere (Figure 24).   Many researchers (Figure 7) are now 

questioning this classic view (Chafetz 1978; Chafetz & Reid 2000; Baldwin et al. 

2004; el Albani et al. 2005; Rose 2003).   More recent studies still attribute 

glauconite to a marine origin, although there appears to be a significant landward 
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shift in the environment for glauconite formation, most notably during the 

Cambrian and Ordovician.   

   

 

 

 

 

Figure 24.  This cross-sectional diagram shows the different 
environments in which glauconitic materials have been found.  The grey 
area represents where autochthonous glauconite was classically thought 
to have been capable of formation.  Under that assumption, glauconite 
found elsewhere was thought to be allochthonous.  Recent studies of 
glauconite have found this mineral capable of forming in a wide range of 
depositional environments.  [Amorosi, 1997, page 136]    

 

Evidence of glauconitic minerals forming in shallow water has emerged 

from different localities spanning several different time periods (Figure 7).   The 

Middle Cambrian margins of Laurentia have produced shallow water glauconite 

deposits, two of which will be discussed here the Bright Angel Shale of the 

eastern Grand Canyon region (Rose (2003); Baldwin et al. (2004)), and the 

Rogersville Shale of eastern Tennessee.  New geochemical, mineralogical, and 
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paleontological evidence has shown that the Bright Angel Shale formed in a 

restricted estuarine environment (Rose (2003); Baldwin et al. (2004)), rather than 

the open marine environment previously suggested by McKee & Resser (1945) 

and Martin (1985).  Based on similar sedimentologic and paleontological aspects, 

the Rogersville Shale of eastern Tennessee is believed to have had a shallow 

estuarine or lagoonal environment for deposition as well.  

 

Evidence of Cambrian Shallow Water Glauconite  

Chafetz (1978) provides evidence of shallow water glauconite deposition 

in a tidal inlet and associated lagoon in the Cambrian Riley Formation of central 

Texas.  He found both autochthonous and allochthonous glauconite deposited as 

part of transgressive-regressive shifts in the location of the environment of 

deposition.  

 Chafetz & Reid (2000) revisited the Cambrian-Ordovician glauconitic 

formations of central Texas, reviewing the Moore Hollow Group containing the 

previously examined Riley Formation and the Ordovician Wilberns Formation.   

The upper part of the Riley Formation accumulated as part of the lateral 

migration of a tidal inlet complex associated with a barrier bar / lagoonal system.  

They suggested that the Wilberns Formation was deposited in an environment 

that was very shallow, subtidal to intertidal water depths (Chafetz & Reid, 2000).  

Chafetz & Reid (2000) also studied the glauconite containing Cambrian Bliss 
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Formation of southwestern New Mexico, which formed under very shallow-water 

to tidal flat conditions.   

El Albani et al. (2005) reported a Lower Cretaceous glauconite-containing 

formation resulting from a shallow lagoon and brackish water estuary from the 

Aquitaine Basin in southwestern France.  They found evidence of autochthonous 

glauconite forming in two distinct shallow water environments: (1) An argillaceous 

dolomitic sediment from a saline shallow lagoon, and (2) a marl-limestone 

alternation deposited in a brackish water estuary.  In addition to the alternating 

lithologies, there is the rare occurrence of ripples and other high energy 

sedimentary structures in this formation and marcasite crystals in the carbonate 

matrix.  This team also found fossils typically of eurhaline and freshwater 

environments, with little to no other fossils present.   

Rose (2003) and Baldwin et al. (2004) investigated the Bright Angle Shale 

(BAS) of the eastern Grand Canyon.  The BAS contains lithologies and pelloidal 

glauconite which are similar to those of the Rogersville Shale.  The BAS was also 

found to have a minimal marine influence due to the lack acritarchs found within 

the sediment.  The abundance of cryptospores suggests a freshwater 

environment of formation.  This idea is further supported by the lack of fossils 

except for the rare Linguella which is generally viewed as a brackish water 

indicator.     

The glauconite within the Rogersville Shale is consistent with other 

shallow water glauconite deposits of the Middle to Late Cambrian and 
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Cretaceous (Chafetz 1978; Chafetz & Reid 2000; El Albani et al. 2005; Rose 

2003; Baldwin et al. 2004).  The presence of glauconite indicates that the 

environment in which it formed would have been slightly reducing in an overall 

well oxygenated environment.  The most likely scenario involves the formation of 

glauconite just under the surface of the substrate or inside of the burrows.  These 

locations would have been ideal for creating the micro-reducing conditions 

necessary for glauconite formation.   Glauconite found to have formed 

authigenically within the Rogersville Shale (Figure 23) would indicate the 

environment would have been mildly reducing (within a micro-reducing 

environment) in an overall well oxygenated environment.  In addition, the 

sediment the glauconitic material is contained within, and its degrees of 

bioturbation, is consistent with other shallow water deposits such as lagoons and 

estuaries.                

 

Ichnology 

 The Rogersville Shale was found to contain abundant and diverse trace 

fossils.  The degree of bioturbation within the Rogersville Shale has helped to 

characterize the five microlithofacies.  Six different types of trace fossils were 

found to exist within the Rogersville Shale.  The abundance and diversity of trace 

fossils within the Rogersville Shale described by this study is in stark contrast to 

Walker et al. (1990) who claimed there was a lack of bioturbation within the 

Rogersville Shale.      
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Degree of bioturbation 

Several degrees of bioturbation have been found in the microlithofacies of 

the Rogersville Shale.   Intact primary laminations indicate little to no bioturbation 

(Figure 25).  Mixed fabrics preserve both primary laminations and bioturbated 

laminae (Figure 26).  Others are heavily bioturbated (Figure 27), or completely 

reworked.   

 
Figure 25.  Preservation of Primary Laminations.  Because the primary 
laminations of this fabric are clearly visible and well preserved there is 
little evidence of trace fossils.  The effects of burrowing organisms are 
slight, and therefore the degree of bioturbation is low.  Other interesting 
features in this slide include several surface burrows (circled in red) and 
fining upward sequences.  Sample Number ORNL-J2-1586. 
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Figure 26.  Mixed Fabrics.  This photograph depicts an intermediate 
degree of bioturbation.  This sample contains both primary laminations 
and burrows (circled in red).  Sample Number ORNL-J2-1504.   
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Figure 27.  Heavily 
Bioturbated Fabric.  
This fabric is 
characteristic of heavily 
bioturbated sediment 
with many preserved 
burrows and no visible 
primary laminations.  
The fabric appears to 
be nearly completely 
reworked.  Sample 
Number ORNL-J2-
1602. 

 

The degree of bioturbation preserved within the samples of the Rogersville 

Shale is a measure of several interrelated factors, such as how prolific the 

burrowing organisms were, the availability of food, the availability of oxygen and 

finally the sedimentation and burial rate.        
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Types of preserved trace fossils 

 Distinct trace fossils preserved within the thin section samples of the 

Rogersville Shale include several different types of burrows such as, surface 

traces, shallow surface burrows, below substrate circular-shaped tubes, evidence 

of subsurface mining, escape/vertical burrows and “cryptic” burrows.  These 

burrow forms are distinct from one another, and their individual characteristics 

are discussed below.    

 

Surface traces 

Surface traces occur as a small generally semicircular or “U” -shaped 

depression in an unlithified or unconsolidated substrate or laminae comparable to 

the clay/mudstones of microlithofacies I and II (Figure 28).  These types of traces 

were most likely produced as burrowing animals made their way through a soupy 

surface substrate.  Quartz silt, (like that of Microfacies III and IV) was 

subsequently deposited on top of the substrate, filling and preserving the surface 

trace.  
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Figure 28.  Surface Trace 
Fossil.  This photograph 
depicts a cross section of a 
surface trace fossil within 
the darker mudstone 
(Microfacies II) and 
preserved by the lighter 
colored siltstone 
(Microfacies III).  The 
burrow is semicircular.  
This type of burrow is 
produced by organisms 
moving through a soupy 
nonconsolidated substrate.  

 

Shallow surface burrows 

These traces occur as cross-sectional and longitudinal burrows that would 

have been located (at the time of deposition) within the substrate just below 

surface (Figure 29).  These burrows are generally so shallow that they are barely 

covered by sediment of the lamina that they are contained within.  Depending on 

how well the traces are preserved within the thin section, some of the burrows 

retain their roughly circular shape and others become lens-shaped due to 

subsequent compaction.  These burrows generally occur in the mudstones of 

Microfacies I and II.  They contain detrital material similar to the siltstones of 

Microfacies III and IV, as infillings that are largely free of clay and mud material. 
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Figure 29.  Shallow Surface Trace Fossil.  This photograph contains 
several well preserved examples of shallow surface burrows.  The easily 
identifiable cross sectional burrows are within a mudstone (Microfacies I).  
Some of the burrows appear to be so shallow that several are barely 
covered by overlying sediment.  Sample Number ORNL-J2-1490.   

 

Below substrate, “Circular” tubes 

Burrows that occur in this form are easily identifiable in thin section.  They 

occur as roughly circular cross-sectional burrows, which exhibit a wide range of 

sizes (Figure 30).  The burrows are again contained within the mudstones of 

microlithofacies I and II, and contain quartz silt like that of Microfacies III and IV, 

with virtually no clay or mud material as burrow fill.  Some of the burrows have 

taken a more elongate shape, which is likely due to compaction over time, with 

their shape resembling an eye.     
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Figure 30.  Below Substrate Circular Tubes.  This trace is most 
easily identified as a burrow due to its characteristic shape.  This 
type of burrow occurs in a wide range of sizes.  Some burrows have 
a slightly more elongate shape which may be due to compaction 
over time.  The below substrate circular burrow occur within 
Microfacies I or II, the mudstones and contain siltstones like 
Microfacies III and IV as burrow fill.  Sample Number ORNL-J2-
1523.   

 

Evidence of subsurface mining 

Evidence of subsurface mining is present but not abundant within the 

samples of the Rogersville Shale.  Only two such examples were found in thin 

section, ORNL-Joy2 1496 (Figure 31) and ORNL-Joy2 1541.  The shape of these 

traces is unique.  Unlike the other burrows, this trace is more spread out.  They 

are not contained within lamina as they generally occur in massive sediment.  

These trace fossils are seen within the homogenous unlaminated mudstone 

(Microfacies I).  Another characteristic that distinguishes these traces from other 

burrows within the Rogersville Shale is that the burrow fill material has a fair to 
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considerable amount of clay or mud material still contained within it.  This may be 

a sign of incomplete bioturbation.  

 

Figure 31.  Evidence of Subsurface Mining.  This type of trace is unique 
with only two such examples within the Rogersville Shale.  The Shape of 
this trace is different in that it is very spread out compared to other burrow 
shapes.  This burrow occurs in Microfacies I.  An additional interesting 
feature on this slide is an escape burrow.  Sample Number ORNL-J2-
1496.   

 

 

 

 

Escape / Vertical disruptions 

A feature unique to the escape burrow is their vertical nature (Figure 32), 

the other burrows contained within the Rogersville Shale are almost strictly 

narrow and horizontal (Figure 28, Figure 29, Figure 30, Figure 31).  While the 

burrows are not completely vertical, at some point they cease being flat-lying and 

the organism that created the burrow appeared to have moved upward.  This 
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may ultimately be an indication of the chemistry in the area of the vertical 

disruption.  If sediment was continually being deposited, the zone where the 

animals lived would also be continually moving upward.  Perhaps these burrows 

represent a sudden shift in chemical conditions or sedimentation rate from those 

that are suitable for sustaining life to those that are not suitable, and the 

escape/vertical disruptions represent the organisms burrowing to quickly get out 

of these horizons or lamina.  

  

 Figure 32.  Escape/ Vertical Disruption.  A feature unique to this type 
of trace is the vertical nature of the burrow.  Other burrows are almost 
strictly horizontal.  Sample Number ORNL-J2-1496.    
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The escape/vertical disruptions are again confined to the mudstones of 

Microfacies I and II.  The burrow fill material is very much similar to that seen in 

the surface mining burrows.  The burrow fill material contains less clay /mud 

material than the surrounding material but still contains a considerable amount of 

fine sediment, which may suggest incomplete bioturbation.      

            

“Cryptic” burrows 

The cryptic burrows are the most problematic of the trace fossils found 

within the microlithofacies of the Rogersville Shale.  The problematic nature of 

these burrows actually lies in determining if they are burrows at all, because the 

shape of these burrows is generally elongate in cross-section.  When viewed 

longitudinally cryptic burrows look similar to discontinuous lamination of 

siltstones.  The forms of these cryptic burrows are significantly different than that 

of the other traces fossils found within the Rogersville Shale samples, for this 

reason the cryptic burrows are generally overlooked as burrows altogether 

(Figure 33).  Such is the case with Walker et al. (1990) who, after their 

examination of the ORNL cores, state specifically that there is a lack of 

bioturbation in the Rogersville Shale.  In this case one of two possibilities could 

have occurred: either Walker, Foreman and Srinivasan (1990) were not 

considering these cryptic burrows as trace fossils and overlooked them, or the 

Rogersville Shale is variable over its lateral extent. 
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Figure 33.  “Cryptic” Burrows.  These represent the most problematic trace 
fossils within the Rogersville Shale.  Because the cryptic burrows are not 
readily identifiable as burrows they may have been overlooked in the past 
during previous investigations of the Conasauga Group. 
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Walcott’s (1898) Fossil Medusæ provides an example of early knowledge 

of trace fossils existing in the vicinity of the Rogersville Shale in the Middle 

Cambrian.  Illustrations in Plates XXXVI (pg. 177) and XXXVII (pg. 179) of Fossil 

Medusæ are taken from sections within a 5 mile radius of Rogersville 

Tennessee, and contain examples of trace fossils.  At the time Walcott and 

others believed these traces to be eophyton or casts of plants (such as seaweed) 

and imprints of the trailing tentacles of medusa.  Through Walcott’s investigation 

we also know that some of them may potentially be casts of burrows.   

                     

Summary & Discussion 

 The types of trace fossils found within the microlithofacies of the 

Rogersville Shale are characteristic of oxygenated environments.  While by 

themselves the burrows of the Rogersville Shale do not help to constrain the 

depositional environment, they do help to characterize the different 

microlithofacies.  The burrows indicate that the microfacies of the Rogersville 

Shale were not anaerobic.          

Comparing the findings of this investigation to the investigation done by 

Walker et al. (1990) has produced some differences with regards to bioturbation.  

Walker et al. (1990) state that there is a lack of bioturbation within their samples 

of the Rogersville Shale.  A potential reason for this discrepancy may have 

resulted from the scale at which Walker et al. (1990) investigated the sample of 

the Rogersville Shale.  Walker et al. (1990) may have used hand samples from 
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the ORNL Joy-2 core and field observation of outcrop samples in their 

investigation (they made no mention of using thin sections in their paper).  

Observation of distinct ichnofossils within the samples made at this level may 

have been difficult.  Thus observations made by Walker et al. (1990) about 

bioturbation were likely based on field observations rather than on a microscopic 

level of investigation.   This difference in the scale at which the samples were 

investigated could provide a potential explanation as to why Walker et al. (1990) 

reported an absence of bioturbation in the samples of the Rogersville Shale.  

However, looking at the same stratigraphic section of the Rogersville Shale in 

thin section, this investigation was able to differentiate six different styles of trace 

fossil present in varying degrees in all the microlithofacies.   

Rankey et al. (1994) examined the Rogersville Shale as part of a larger 

investigation of the Conasauga Group, in which they scrutinized different 

sedimentary fabrics.  It seems Rankey et al. (1994) interpreted what we have 

identified as burrows as an example of fabric-selective dissolution.  Figure 7D of 

Rankey et al. (1994 pg. 307) appears to be a burrow that may have later been 

subaerialy exposed and subjected to fabric-selective dissolution, the void (or 

burrow) may have later filled in with equant calcite.  This may explain why 

Rankey et al (1994) also reported finding no evidence of bioturbation within the 

Rogersville Shale.                
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Palynology 

Characterizing the populations of cryptospores and acritarchs present 

within the samples of the Rogersville Shale has aided in the determination of the 

palaeoenvironment of the area during the Middle Cambrian.  Cryptospores 

represent the remains of subaerial plants, as such they should be considered 

markers of terrestrial influx into the depositional setting.  Acritarchs on the other 

hand represent marine depositional settings.  Because cryptospores and 

acritarchs are believed to indicate distinctly different environments, their 

presence and proportions in samples have lead to a better understanding of the 

type of environment that is responsible for producing the microlithofacies of the 

Rogersville Shale, thereby placing further constraints on paleoenvironmental 

conditions.      

 

Cryptospores 

According to Strother & Beck (2000), “cryptospores are considered to be a 

class of organic-walled microfossils of probable terrestrial origin, but whose 

provenance is not necessarily known.”   Cryptospores presumably are spore-like 

remains of early subaerial plants, which lack the trilete mark that characterize 

vascular plant spores (Strother & Beck 2000).  Cryptospores represent the 

characteristic non-marine palynomorphs from Paleozoic strata (Strother & Beck 

2000).         
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The cryptospore species recovered from the samples of the Rogersville 

Shale are unlike freshwater algae, and they do not resemble any known alga or 

plant (Strother et al. 2004).  The phylogenetic position of these Middle Cambrian 

cryptospores is said to be intermediate between the green algae and the 

vascular plants (Strother et al. 2004).  Because cryptospores are of probable 

terrestrial origin when found in what is thought to be marine sediment, their 

presence can be considered to be the result of a shallow, near shore lagoonal or 

estuarine depositional environment, perhaps with a meteoric water input as a 

source for this probable terrestrial material.     

Within the samples of the ORNL-Joy2 core, collected by Strother and 

Beck, several species of cryptospores have been found (Figure 34).  Cryptospore 

tetrads within the Rogersville Shale have a considerable size range from less 

than 10 μm to over 30 μm in overall diameter (Strother & Beck 2000).  Dyads are 

also quite abundant within the Rogersville Shale.  Because published literature is 

lacking in information pertaining to cryptospores the taxonomy of many 

cryptospore species found within the Rogersville Shale is at present still 

unresolved.  
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Figure 34.  Cryptospores.  These images are example of 
cryptospores populations contained within the Rogersville Shale 

 

Cryptospores have been found largely as a component of the 

homogenous unlaminated mudstone and laminated mudstone in unbioturbated 

fabric that contains higher concentrations of mud.  The cryptospores are found in 

the undisturbed material or the material that “escaped” (as it was never subjected 

to the burrowing) action of the organisms.  We can also find a cryptospore in a 
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fecal pellet that has undergone glauconitization (Figure 19).  Whether 

intentionally ingested or not, the cryptospores made up at least part of the 

burrowing organisms’ diet.  This logic works because if the cryptospores were at 

least part of the burrowing organism’s potential food source, they should be more 

abundant in sediment the organisms have not disrupted (i.e. Microfacies I and II) 

as opposed to lesser quantities of cryptospores in material that has already been 

passed through the gut of the burrowing organisms like the siltstone and 

bioclastic siltstone Microfacies.       

 

Acritarchs 

Like cryptospores, acritarchs are organic-walled microfossils that cannot 

be placed within any existing classification of organisms and again have 

uncertain origins (Mendelson, 1993).  What differentiates the two microfossils is 

that acritarchs have been consistently recovered from marine sediments 

(Mendelson, 1993).  When acritarchs are found in great abundance within 

sediment, the sediment can be thought of as having a marine origin.  Within the 

samples of the Rogersville Shale, Strother and Beck have recovered very few 

species of acritarchs (Figure 35) (Strother, 2006).  The acritarchs are far out 

numbered by the cryptospore population (Strother, 2006).       

The presence of the few acritarchs was likely the result of the depositional 

setting of the Rogersville Shale being temporarily or intermittently inundated with 

seawater perhaps due to a tidal influence.   While the Rogersville Shale was 
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likely deposited in a shallow water near shore environment with terrestrial input 

(probably a restricted estuarine or lagoonal environment), it still may have 

received some components of marine waters, which can explain how some 

acritarchs are found within the Rogersville Shale.   

 

Figure 35.  Acritarchs.  These images are example of acritarchs 
populations contained within the Middle to Late Cambrian Rogersville 
Shale.   

 

 

Summary & Discussion 

Most cryptospore assemblages described to date have come from shallow 

marine to paralic sequences (Strother & Beck, 2000).  Palynomorphs from the 

Rogersville Shale have been valuable in constraining the depositional setting.  

Based on the amount of cryptospores within the microlithofacies of the 

Rogersville Shale the palaeoenvironment was determined to be the result of a 

shallow water, near-shore environment with input of terrestrial waters rather, than 
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that of a deeper marine setting previously associated with the deposition of the 

Rogersville Shale.  Estuarine or lagoonal environments existed throughout the 

Middle to Late Cambrian along the margins of Laurentia.      

There are many parallels between the Rogersville Shale and the Bright 

Angel Shale (Baldwin et al., 2004).  The Bright Angel Shale of the eastern Grand 

Canyon region was at one time assumed to be the result of a deep marine 

palaeoenvironment (McKee and Resser, 1945).  McKee and Resser (1945) 

based their ideas on the presence of thinly laminated shale layers.  But when 

revaluated with additional information, such as trace fossils and palynomorph 

data, views of the formation changed.  The Bright Angel Shale is now generally 

accepted as being a shallow nearshore marine environment (Baldwin et al., 

2004).         

The large number of cryptospores and a general lack of acritarchs within 

the microlithofacies of the Rogersville Shale has indicated a palaeoenvironment 

that is more closely associated with fresh water and land plants than previously 

thought.  Palynology suggests the depositional environments for the 

microlithofacies of the Rogersville Shale were more heavily influenced by the 

terrestrial input and presumably located in a near shore, in a shallow estuary or 

lagoon.   
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Conclusion of Results               

 The Rogersville Shale of the Conasauga Group is a complex intermixing 

of mudstones and siltstones that, like the Conasauga Group itself, represents 

sea levels that fluctuated throughout the Middle Cambrian.  The suite of minerals 

in the mudstones of Microfacies I and II are basically the suite of minerals that 

make up the siltstone and bioclastic siltstone of Microfacies III and IV.  The ratio 

between the different materials changed, resulting in the different microlithofacies 

present within the Rogersville Shale.   

 The occurrence of glauconite in the Rogersville Shale has helped to 

constrain the range of palaeoenvironmental conditions that were responsible for 

producing these rocks.  Because several glauconite grains were observed to 

have grown in situ (Figure 17) it can be inferred that the chemical environment 

would have been locally micro-reducing in an overall well oxygenated 

environment that could support an active subsurface fauna. 

 The organisms that created the wide variety trace fossils present in the 

Rogersville Shale may have also been responsible for creating the chemical 

environment necessary for glauconite formation.  The micro-reducing condition in 

an overall well oxygenated environment needed for glauconite formation may 

have resulted from organisms burrowing through initially oxygenated sediment.  

As the organisms moved through the sediment and they were buried, the 

chemical environment transitioned from being well oxygenated to being slightly 

reducing.  As the organisms passed through the sediment they used up the 
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oxygen in the sediment during respiration and created microenvironments with 

reducing conditions within the burrows.               

The presence of abundant cryptospores within the Rogersville Shale 

indicate that deposition occurred in close proximity to the palaeoshoreline.  

Cryptospores are believed to be non-marine in origin, they must have been 

transported by water with terrestrial origins.  Because cryptospores out number 

acritarchs within the Rogersville Shale, it is reasonable to believe the deposition 

occurred in a shallow near shore palaeoenvironment.   

 



Chapter 4 

Summary and Conclusions 

 

Summary  

The following conclusions about the Middle to Late Cambrian Rogersville 

Shale of the Conasauga Group in eastern Tennessee were ascertained from this 

research.  Each conclusion helped to constrain the depositional setting for the 

Rogersville Shale. 

 

Glauconite  

Glauconite is abundant in the Rogersville Shale, and is enriched in the 

siltstone and bioclastic siltstone microfacies (average 5 – 8% respectively).  The 

chemical environment in which glauconite is formed is consistent with the 

environment produced by the biologic activity within the Rogersville Shale.  The 

micro-reducing environment the burrowing organisms created would have been 

the ideal location for the formation of glauconite (and pyrite).  By knowing that at 

least some of the glauconite grains within the Rogersville Shale are 

autochthonous, it has helped determine the local environment below the water 

surface as reducing.    
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Trace Fossils   

Abundant trace fossils within the Rogersville Shale indicate the substrate 

would have had adequate oxygen with an ample food supply.  Burrowing 

organisms (that produced the biologic activity) may have chemically altered the 

environment in which they lived.  As the organisms respired and eventually 

expire and decomposed, they would have used up the available oxygen, creating 

micro-reducing conditions within the burrows.  These reducing conditions allowed 

for organic preservation, glauconite and pyrite formation.  

 

Lingulid Shell Fragments 

Some shell fragments within the siltstone and bioclastic siltstone facies 

have been identified as lingulids. The presence of lingulid fossils is another 

environmental indicator.  According to Strother and Beck (2004), lingulids have 

long been viewed as a species that is considered to indicate very shallow water 

depth.  Rudwick (1970, p.158) indicated that “Lingulids may well have tolerated 

brackish conditions, so that an estuarine setting for Linguella is by no means out 

of the question”.  The presence of lingulid fragments and the virtual absence of 

other shelly fossils is a clear indication that the environment of deposition of the 

Rogersville Shale most certainly would have been that of a shallow restricted 

marine setting or estuary that was heavily influenced by terrestrial runoff.   
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Cryptospores 

Cryptospores contained within the Rogersville Shale indicate that the 

depositional environment was influenced by terrestrial runoff, and was not greatly 

influenced by deep marine conditions.  Because acritarchs are rare within the 

Rogersville Shale it seems likely that the environment was not greatly influenced 

by marine conditions.  Instead the influence is shifted to that of the terrestrial 

runoff that must have been entering the environment.  This runoff contained 

cryptospores that are found throughout the Rogersville Shale.   
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Conclusions 

 

 Environmental Indicator Conclusion 

Glauconite 

 
• Autochthonous glauconite 

indicates that the environment 
of formation was mildly 
reducing but over all well 
oxygenated 

 
• Burrows would have been the 

ideal location for glauconite 
formation 

 
• Glauconite is nearly 20% 

more abundant in siltstone 
microfacies than in mudstone 
microfacies 

 

Glauconite most likely 
formed within or adjacent 

to burrows where the 
chemical environment 

would have been mildly 
reducing 

 
These burrows are 

believed to be 
characteristic of shallow 

water near shore 
environments 

Presence of 
Cryptospores 

 
• Are abundant in the 

Rogersville Shale  
 
• Indicates a depositional 

environment that is more 
heavily influenced by 
terrestrial runoff 

 
• Greatest numbers are found in 

the Homogenous Unlaminated 
Mudstone and Laminated 
Mudstones 

 
 
 
 
 
 
 

The abundance of 
cryptospores within the 

Rogersville Shale 
indicates the 

depositional environment 
was likely near shore 
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Environmental Indicator 
 

Conclusion 

Lack of  
Acritarchs 

 
• There is a general lack of 

acritarchs within the 
Rogersville Shale  

 
• Acritarchs indicate a 

depositional environment that 
is heavily influenced by 
marine waters 

The lack of acritarchs 
within the Rogersville 

Shale indicates that the 
depositional environment 

was greatly influenced 
by marine waters 

Abundant 
Trace Fossils 

 
• Indicates the depositional 

environment would have been 
adequately oxygenated and 
contained an ample food 
supply 

 
• As burrowing organisms 

respired they would have used 
up available oxygen creating 
mildly reducing condition 
where by preserving organic 
material and allowing for 
glauconite formation 

 

The activity of burrowing 
organisms would have 
likely provided the ideal 

condition for the 
formation of glauconite 

Lingulid Shell 
Fragments 

 
• Lingulids indicate very shallow 

water depth 
 
• May have tolerated brackish 

water (terrestrial runoff) 
 

• Virtual absence of other shelly 
fossils 

 

The presence of Lingulid 
shell fragments and 
general lack of other 
fossils indicates the 

environment would have 
likely been very shallow 

and possibly had 
terrestrial runoff 
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 While individually the different components of this investigation may 

not resolve the questions of its origin and environment, in combination they 

produce major constraints on the environment during the time of its deposition.  

The picture is one of a near-shore shallow water probable restricted estuarine or 

lagoonal environment that had a component of terrestrial runoff (and likely 

contained brackish waters) that existed on the margins of Laurentia during the 

Mid-to-Late Cambrian.   
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SPECIMEN # 1484' Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER Craig Member   
      
TEXTURE:     
     Median GS 0.523 mm   
     Sorting Poor   
     Roundness Subangular → Subround   
     Sphericity Low   
     Packing Dense   
      
      
GRAINS:   PRESENT 
QUARTZ   X 
  Round    
  Broken Round    
  Angular   
  Qtz. Overgrowth   
      
FELDSPAR     
  K-Spar   
  Plagioclase   
      
CARBONATES     
  Calcite X 
       Sparry X 
       Micrite X 
       Void Filling   
  Dolomite X 
       Replacement Dolomite X 
      
GLAUCONITE     
  Pelloidal   
  Clay-Glauconite Intermediate   
  Platy   
  Vermiform or Zebra   
  Replacement    
      
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert   
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets   
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ACCESSORIES   PRESENT  
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
      
FOSSILS     
  Shell Fragments X 
  Other:   
      
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
      
CEMENTS     
  Calcite X 
       Sparry X 
       Micrite X 
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate   
  Quartz   
  Clay   
      
SECONDARY     
  FEATURES: Vugs   
  Stylolites X 
  Soft Sediment Deformation X 
      
SEDIMENTARY Laminations   
STRUCTURES:      Finely Laminated   
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward   
  Burrows:   
       Surface Trace   
       Shallow Surface Trace   
       Below Substrate Circ Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic   
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Hand Lens Observations:    
Glauconite Present? None  
Laminations: N/A  
Bioturbation:    
     None: X  
     Slight:    
     Moderate:    
     Extensive::    
Micro-faulting  N/A  
Organic Rich Layers None  
Facies Present Limestone (Craig)  
   
   
OVERALL LITHOLOGIES Limestone   
 Mudstone   
  Siltstone   
  Argillaceous Limestone X 
  Calcareous Mudstone   
  Argillaceous Siltstone   
  Dolomite   
  Dolomitic Limestone   
   
   
   
Points of Interest:   

 

• Micro-spar is present in some of the cements 
• Phosphatic shell fragments present 
• Soft sediment deformation 
• It appears that sparry calcite was formed after the 
   soft sediment deformation 
• Calcite overgrowth  
• Dolomite replacement 
• Minor amounts of pyrite present 
 

 
Percent Composition: 

Brown  2.5 
Grey 46.6 
White  51.5 
Total 100.6 
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Thin Section : 
 

Scale Bar = 1 mm 
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SPECIMEN # 1486 Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER Craig Limestone   
TEXTURE:     
     Median GS 0.743 mm   
     Sorting Poor   
     Roundness Subround→ Round   
     Sphericity Moderate   
     Packing Dense   
COLOR: Brownish Red   
GRAINS:   PRESENT 
QUARTZ     
  Round    
  Broken Round    
  Angular   
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar   
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite X 
GLAUCONITE     
  Pelloidal   
  Clay-Glauconite Intermediate   
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane)   
  Chert   
  Clay   
  Biotite   
  Muscovite   
  Ooids X 
  Fecal Pellets X 
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ACCESSORIES   
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?)   
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments   
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite   
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate   
  Quartz   
  Clay   
SECONDARY     
  FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY      Finely Laminated   
STRUCTURES:      Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward   
  Burrows:   
       Surface Trace   
       Shallow Surface Trace   
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic   

 



Hand Lens Observations:    
Glauconite Present? N  
Laminations: N/A  
Bioturbation:    
     None: X  
     Slight:    
     Moderate:    
     Extensive::    
Micro-faulting     
Organic Rich Layers X  
Facies Present V  
   

Limestone X OVERALL LITHOLOGIES 
Mudstone   

  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone   
  Dolomite   
  Dolomitic Limestone   

 
Öolitic limstone with hematitic and/or phosphatic coating 
Concentric ring are visible on many of the grains 
 

 
 
 
 
 
 
Percent Composition: 

Brown  N/A 
Green N/A 
White  N/A 
Total N/A 
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Thin Section:  
  

Scale Bar = 1 mm 
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SPECIMEN # 1490.5’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER Craig Limestone   
TEXTURE:     
     Median GS 0.0474 mm   
     Sorting Poor   
     Roundness Subangular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ   X 
  Round    
  Broken Round    
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar   
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry X 
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal   
  Clay-Glauconite Intermediate   
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets   
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ACCESSORIES    
  Organic Matter X 
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?)   
FOSSILS     
  Shell Fragments   
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite   
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate   
  Quartz   
  Clay   
SECONDARY Vugs   
  FEATURES: Stylolites   
  Soft Sediment Deformation   
       Finely Laminated   
SEDIMENTARY      Thickly Laminated   
STRUCTURES:      Wavy Laminated X 
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic   
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight: X  
     Moderate:    
     Extensive::    
Micro-faulting  X  
Organic Rich Layers X  
Facies Present I, II  
OVERALL LITHOLOGIES Limestone   
 Mudstone   
  Siltstone   
  Argillaceous Limestone X 
  Calcareous Mudstone   
  Argillaceous Siltstone   
  Dolomite   
  Dolomitic Limestone   

 
Percent Composition: 

Brown  29.2 
Green 12.0 
White  59.3 
Total 100.5 

 
Points of Interest: 
 

Large sparry clacite vein  
Wavy lamination is cut by vien 
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Thin Section:  
  

Scale Bar = 1 mm 
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SPECIMEN # 1496.5’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0482 mm   
     Sorting Poor   
     Roundness Subangular→ Angular   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round    
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry X 
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy   
  Vermiform or Zebra X 
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets   
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ACCESSORIES    
  Organic Matter X 
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
SECONDARY Vugs X 
  FEATURES: Stylolites X 
  Soft Sediment Deformation   
       Finely Laminated   
SEDIMENTARY      Thickly Laminated   
STRUCTURES:      Wavy Laminated X 
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace X 
       Shallow Surface Trace   
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical X 
       Cryptic X 
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Hand Lens Observations:   
Glauconite Present?  X  
Laminations:  X  
Bioturbation:    
     None: X  
     Slight:    
     Moderate:  X  
     Extensive::   
Micro-faulting    
Organic Rich Layers  X   
Facies Present I, II  
OVERALL 
LITHOLOGIES   
 Limestone   
  Silty Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone   
  Dolomite   
 Dolomitic Limestone   

 
Points of Interest 
 

Micro-hummocky and wavy laminations 
Glauconite is very abundant as a psedomatrix with clay 
Sparry calcite in veins 
some glauconite grains have an oxidation coating 

 
 
 
 
Percent Composition: 

Brown  73.6 
Green 12.0 
White  14.7 
Total 100.3 
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Thin Section:  
  

Scale Bar = 1 mm 
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Points of Interest:  
  

Scale Bar = 1 mm 
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SPECIMEN # 1504’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0251 mm   
     Sorting Poor   
     Roundness Subangular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round    
  Broken Round  X 
  Angular   
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite   
       Sparry X 
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter X 
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite   
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate   
  Quartz   
  Clay   
SECONDARY Vugs   
  FEATURES: Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY      Finely Laminated   
STRUCTURES:      Thickly Laminated   
       Wavy Laminated X 
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward   
  Burrows:   
       Surface Trace X 
       Shallow Surface Trace   
       Below Substrate Circular Holes   
       Subsurface Mining X 
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight:    
     Moderate: X  
     Extensive::    
Micro-faulting  X  
Organic Rich Layers X  
Facies Present I, II, III  
   
OVERALL LITHOLOGIES Limestone   
 Mudstone   
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   

 
Percent Composition: 

Brown  49.9 
Green 27.6 
White  23.0 
Total 100.5 

 
Points of Interest: 
 

Burrow interiors have an increaded chert content and sparry 
calcite 
Laminations are abundant, but vary in width 
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Thin Section:  
  

Scale Bar = 1 mm 
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SPECIMEN # 1512.5’ Down Hill Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0302 mm   
     Sorting Poor   
     Roundness Subangular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane)   
  Chert   
  Clay   
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets   
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite   
       Sparry X 
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate   
  Quartz   
  Clay   
SECONDARY Vugs   
  FEATURES: Stylolites   
  Soft Sediment Deformation   
       Finely Laminated   
STRUCTURES:      Thickly Laminated   
       Wavy Laminated X 
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward   
  Burrows:   
       Surface Trace   
       Shallow Surface Trace   
       Below Substrate Circular Holes   
       Subsurface Mining X 
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight: X  
     Moderate:    
     Extensive::    
Micro-faulting  X  
Organic Rich Layers X  
Facies Present I, II, III  
   
OVERALL LITHOLOGIES   
 Limestone   
 Silty Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   

 
Percent Composition: 

Brown  39.2 
Green 45.1 
White  16.0 
Total 100.3 

 
Points of Interest: 
 

Sparry calcite vein along a microfault 
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Thin Section:  
  

Scale Bar = 1 mm 
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SPECIMEN # 1519.5’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0421 mm Qtz, 0.679 mm Shell   
     Sorting Poor   
     Roundness Angular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite   
       Sparry X 
       Micrite   
       Void Filling   
  Dolomite X 
       Replacement Dolomite X 
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay   
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite   
       Sparry X 
       Micrite   
  Dolomite X 
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay   
 SECONDARY  FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward   
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining X 
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
 Laminations: X  
Bioturbation:    
     None:    
     Slight: X  
     Moderate:    
     Extensive::    
Micro-faulting     
Organic Rich Layers X  
Facies Present I, II, III  
OVERALL LITHOLOGIES Limestone   
 Mudstone   
  Siltstone   
  Argillaceous Limestone X 
  Calcareous Mudstone   
  Argillaceous Siltstone   
  Dolomite X 
  Dolomitic Limestone   
Points of Interest   

 
 

Abundance of dolomite 
 
Several large void spaces cover this slide  

 
 
Percent Composition: 

Brown  40.9 
Green 19.3 
White  33.3 
Total 93.5 

 
**There is a large void space in this photograph that is not represented in the total of the percent 
composition which may be a reason for the 6.5 % discrepancy in the total 
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Thin Section  
  

Scale Bar = 1 mm 
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SPECIMEN # 1523’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.4495 mm Qtz, 0.155mm Glauc.   
     Sorting Poor   
     Roundness Angular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy X 
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments   
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite   
       Sparry X 
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay   
SECONDARY Vugs   
  FEATURES: Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY      Finely Laminated X 
STRUCTURES:      Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes X 
       Subsurface Mining   
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Width of Laminations: 0.7795 mm (median)  
Bioturbation:    
     None:    
     Slight: X  
     Moderate:    
     Extensive::    
Micro-faulting     
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Silty Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   
Points of Interest:   

 
 

Note below substrate circular burrow in lower photograph 
 

 
 
 
 
 
Percent Composition: 

Brown  52.5 
Green 2.3 
White  45.9 
Total 100.7 
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Thin Section  
  

Scale Bar = 1 mm 
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Points of Interest:  
  

Scale Bar = 1 mm 
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SPECIMEN # 1524.5’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0746 mm Qtz,    
     Sorting Poor   
     Roundness Subangular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite X 
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy X 
  Vermiform or Zebra X 
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite   
       Sparry X 
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace   
       Shallow Surface Trace   
       Below Substrate Circular Holes   
       Subsurface Mining X 
       Escape / Vertical   
       Cryptic   
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight:    
     Moderate: X  
     Extensive::    
Micro-faulting     
Organic Rich Layers X  
Facies Present IV  
      
OVERALL LITHOLOGIES Limestone   
 Mudstone   
  Siltstone X 
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone   
  Dolomite   
  Dolomitic Limestone   
Points of Interest   

 
 

 
 

Other median grain sizes: 
     Pellets replaced by calcite 0.479 
     Pellets replaced by glauconite 0.379 
     Shell fragments 0.708 

 
 
 
Percent Composition: 

Brown  50.6 
Green 40.7 
White  8.3 
Total 99.6 
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Thin Section  
  

Scale Bar = 1 mm 
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Points of Interest:  
  

Scale Bar = 1 mm 
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SPECIMEN # 1535 Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0443 mm   
     Sorting Poor   
     Roundness Subangular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite   
       Sparry X 
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy X 
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets   
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining X 
       Escape / Vertical   
       Cryptic   
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight:    
     Moderate:    
     Extensive:: X  
Micro-faulting     
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Silty Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   
Points of Interest:   

 
 

 
 

Bedding is actually vertical in this slide.  Most likely part of a fold 
 
Pyrite is very abundant 
 

 
 
Percent Composition: 

Brown  35.4 
Green 0.9 
White  64.9 
Total 101.2 
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Thin Section  
  

Scale Bar = 1 mm 
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Points of Interest:  
  

Scale Bar = 1 mm 
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SPECIMEN # 1541’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0365 mm   
     Sorting Poor   
     Roundness Angular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite   
       Sparry X 
       Micrite X 
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy X 
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite   
       Sparry X 
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward   
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight: X  
     Moderate:    
     Extensive::    
Micro-faulting     
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Silty Mudstone   
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   
Points of Interest:   

 
 
 

 
 

Interesting feature in lower photograph.  Perhaps an unidentified 
type of burrow. 
 

 
 
Percent Composition: 

Brown  52.2 
Green 4.2 
White  42.2 
Total 98.6 
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Thin Section  
  

Scale Bar = 1 mm 
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Points of Interest:  
  

Scale Bar = 1 mm 
 
 



SPECIMEN # 1549’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0519 mm   
     Sorting Poor   
     Roundness Subangular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite   
       Sparry X 
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy X 
  Vermiform or Zebra X 
  Replacement  X 
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite   
       Sparry   
       Micrite   
  Dolomite   
  Chert X 
  Phosphate   
  Clay-Glauconite Intermediate   
  Quartz   
  Clay X 
 SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight:    
     Moderate:    
     Extensive:: X  
Micro-faulting     
Organic Rich Layers X  
Facies Present I, II, III, IV  
      
OVERALL LITHOLOGIES Limestone   
 Mudstone   
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   
Points of Interest:   

 
 

 
 

Glauconite and shell fragments are unusually abundant. 
   
One particular shell fragment measured 0.319 mm by 0.753 mm. 
 

 
 
Percent Composition: 

Brown  24.8 
Green 38.4 
White  35.6 
Total 98.8 
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Thin Section  
  

Scale Bar = 1 mm 
 
 

 

 - 155 -



Points of Interest:  
  

Scale Bar = 1 mm 
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SPECIMEN # 1550’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0284 mm   
     Sorting Poor   
     Roundness Subangular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite X 
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy X 
  Vermiform or Zebra X 
  Replacement  X 
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated   
       Thickly Laminated X 
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward   
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight:    
     Moderate: X  
     Extensive::    
Micro-faulting     
Organic Rich Layers X  
Facies Present I, II, III, IV  
      
OVERALL LITHOLOGIES Limestone   
 Mudstone   
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   
Points of Interest:   

 
 

Unusually glauconite rich. 
 
Other median grain sizes: 
    glauconite 0.273 mm 

 
 
 
 
 
Percent Composition: 

Brown  11.8 
Green 76.2 
White  10.9 
Total 98.9 
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Thin Section  
  

Scale Bar = 1 mm 
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Points of Interest:  
  

Scale Bar = 1 mm 
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SPECIMEN # 1558’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0367 mm   
     Sorting Poor   
     Roundness Subangular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 

 - 162 -



ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward   
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight:    
     Moderate: X  
     Extensive::    
Micro-faulting  X  
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone   
  Dolomite   
  Dolomitic Limestone   
Points of Interest:   

 
 

 
Microfaulting appears to have occurred after bioturbation 

 
 
 
Percent Composition: 

Brown  48.7 
Green 12.7 
White  36.6 
Total 98.0 
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Thin Section  
  

Scale Bar = 1 mm 
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SPECIMEN # 1563’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0364 mm   
     Sorting Poor   
     Roundness Angular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments   
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight: X  
     Moderate:    
     Extensive::    
Micro-faulting     
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Mudstone   
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   
Points of Interest:   

 
 
 

 
 

Pyrite is vary abundant 
 
Several fecal pellet have been completely replaced by pyrite 
 

 
 
 
 
Percent Composition: 

Brown  35.9 
Green 3.9 
White  60.1 
Total 99.9 
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Thin Section  
  

Scale Bar = 1 mm 
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SPECIMEN # 1572.5’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0323 mm   
     Sorting Poor   
     Roundness Angular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite   
       Sparry X 
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy X 
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated X 
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace   
       Shallow Surface Trace   
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic   
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight:    
     Moderate: X  
     Extensive::    
Micro-faulting     
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Silty Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone   
  Dolomite   
  Dolomitic Limestone   
   

 
 
 
 
 
 
 
 
 

Several large cracks throughout this thin section sample are evident in this photograph.  
This slide was one of several that were damaged.   

 
 
 
 
Percent Composition: 

Brown  75.6 
Green 3.7 
White  20.7 
Total 100.0 
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Thin Section  
  

Scale Bar = 1 mm 
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SPECIMEN # 1581’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0429 mm   
     Sorting Poor   
     Roundness Angular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight: X  
     Moderate:    
     Extensive::    
Micro-faulting  X  
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Silty Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   
   

 
 
 

 
 

 
Circled in red is a burrow completely fill with pyrite 

 
 
 
Percent Composition: 

Brown  67.8 
Green 13.9 
White  18.1 
Total 99.8 
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Thin Section  
  

Scale Bar = 1 mm 
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SPECIMEN # 1586’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0443 mm   
     Sorting Poor   
     Roundness Subangular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite X 
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate   
  Quartz   
  Clay   
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight:    
     Moderate: X  
     Extensive::    
Micro-faulting  X  
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Silty Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   
Points of Interest:   

 
 
 

 

 
 
 
 
Percent Composition: 

Brown  73.0 
Green 19.6 
White  7.3 
Total 99.9 
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Thin Section  
  

Scale Bar = 1 mm 
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SPECIMEN # 1594’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0436 mm   
     Sorting Poor   
     Roundness Subangular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry X 
       Micrite   
       Void Filling   
  Dolomite   
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy X 
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace X 
       Shallow Surface Trace X 
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight: X  
     Moderate:    
     Extensive::    
Micro-faulting  X  
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Silty Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone X 
  Dolomite   
  Dolomitic Limestone   
   

 
 
 

 
Circled in red are several burrows the smaller is a surface trace and the larger is a shallow 
surface trace 

 
 
 
Percent Composition: 

Brown  36.7 
Green 4.0 
White  58.5 
Total 99.2 
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Thin Section  
  

Scale Bar = 1 mm 
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Point of Interest  
  

Scale Bar = 1 mm 
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SPECIMEN # 1599.5’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0338 mm   
     Sorting Poor   
     Roundness Angular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite X 
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry   
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated X 
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward X 
  Burrows:   
       Surface Trace   
       Shallow Surface Trace   
       Below Substrate Circular Holes   
       Subsurface Mining   
       Escape / Vertical   
       Cryptic   
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight: X  
     Moderate:    
     Extensive::    
Micro-faulting  X  
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Silty Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone   
  Dolomite   
  Dolomitic Limestone   
   

 

 

 
 
Percent Composition: 

Brown  55.9 
Green 13.4 
White  32.2 
Total 101.5 
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Thin Section  
  

Scale Bar = 1 mm 
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SPECIMEN # 1602’ Down Hole Footage   
FORMATION Rogersville Shale   
MEMBER     
TEXTURE:     
     Median GS 0.0307 mm   
     Sorting Poor   
     Roundness Angular→ Subround   
     Sphericity Low   
     Packing Dense   
GRAINS:   PRESENT 
QUARTZ     
  Round  X 
  Broken Round  X 
  Angular X 
  Qtz. Overgrowth   
FELDSPAR     
  K-Spar X 
  Plagioclase   
CARBONATES     
  Calcite X 
       Sparry   
       Micrite   
       Void Filling   
  Dolomite X 
       Replacement Dolomite   
GLAUCONITE     
  Pelloidal X 
  Clay-Glauconite Intermediate X 
  Platy   
  Vermiform or Zebra   
  Replacement    
OTHER MINERALS     
  Phosphatic Material (Collophane) X 
  Chert X 
  Clay X 
  Biotite   
  Muscovite   
  Ooids   
  Fecal Pellets X 
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ACCESSORIES    
  Organic Matter   
  Heavy Minerals   
       Ironsulfide  (Pyrite?) X 
       Ironoxide (Hematite/Illmenite?) X 
FOSSILS     
  Shell Fragments X 
  Other:   
MICROFOSSILS     
  Cryptospores   
  Acritarchs   
CEMENTS     
  Calcite X 
       Sparry X 
       Micrite   
  Dolomite   
  Chert   
  Phosphate   
  Clay-Glauconite Intermediate X 
  Quartz   
  Clay X 
  SECONDARY FEATURES: Vugs   
  Stylolites   
  Soft Sediment Deformation   
SEDIMENTARY STRUCTURES:      Finely Laminated   
       Thickly Laminated   
       Wavy Laminated   
       Lenticular Laminated   
  Mud Cracks   
  Cross-Bedding   
  Graded-Bedding   
       Fining Upward   
  Burrows:   
       Surface Trace   
       Shallow Surface Trace X 
       Below Substrate Circular Holes X 
       Subsurface Mining X 
       Escape / Vertical   
       Cryptic X 
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Hand Lens Observations:    
Glauconite Present? X  
Laminations: X  
Bioturbation:    
     None:    
     Slight:    
     Moderate:    
     Extensive:: X  
Micro-faulting  X  
Organic Rich Layers X  
Facies Present I, II, III  
      
OVERALL LITHOLOGIES Limestone   
 Silty Mudstone X 
  Siltstone   
  Argillaceous Limestone   
  Calcareous Mudstone   
  Argillaceous Siltstone   
  Dolomite   
  Dolomitic Limestone   
   

 
 

 

 
 
 
 
Percent Composition: 

Brown  49.3 
Green n/a 
White  51.4 
Total 100.7 
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Thin Section  
  

Scale Bar = 1 mm 
 

 
 

 - 194 -



Point of Interest  
  

Scale Bar = 1 mm 
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