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ABSTRACT 

 Epilepsy is a prevalent disabling chronic and socially isolating neurological 

disorder that involves  recurrent abno rmal discharges of neurons.   Despite 

seizures afflicting about 10% of people worldwide, antiepileptic drugs (AEDs) are 

largely unable to m anage s eizures in m any persons with epilepsy.  As an 

alternative to AEDs, diet ary therapies poss ess a broa d therapeu tic potential in 

both humans and animals models of vari ous neurological and neurodegenerative 

disease etiologies.   My research focus was to identif y the therapeutic effic acy 

and potential mechanism(s) of action of calorie restriction (CR) and the ketogenic 

diet (KD) in both t he epileptic EL mouse model and the Mecp2 308/y mouse model 

of Rett syndrome.  My findings indicate  that both the KD and CR can reduc e 

seizure susceptibility  in EL  mice, a natural model for multifactorial idiopathic  

generalized epilepsy.  CR and c irculating glucose and ketone levels significantly 

influence the therapeutic efficacy of the KD .  A concurrent reduction in circulating 

plasma glucose lev els and elevation in c irculating plasma β-hydroxybutyrate 

levels was predicted to associat e with the anticonvulsant effect of these diets in 



EL mice.  For the first time , I was able to show that a KD fed in unrestricted 

amount is  able to reduce seizure thres hold in EL mice.   Interestingly,  

supplementation of c alories in t he form of  carbohydrate in the water of calorie-

restricted EL mice results in a diminish ed anticonvulsant efficacy of the K D.  In 

my effort to elucidate the neuroprotec tive mechanism (s) associated with these 

changes in metabolite availability, I start ed investigating the complex alterations  

occurring in multiple integrated neural a nd metabolic processes.  Furthermore, I 

showed that a res tricted KD diet improves aspects of the behavioral 

abnormalities seen in Rett mice, in particula r with respect to anxiet y.  Finally, for 

the first ti me, I provide a standardized pr otocol for the implementation of  diet  

therapies in the managem ent of an array of neurol ogical and neurodegenerative 

diseases, which ultimately may help el ucidate the complex neuroprotective 

mechanism(s) of CR and the KD.  This research overall has provided a ne w 

understanding in the therapeutic efficacy of diets in epilepsy and Rett Syndrome. 
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CHAPTER ONE 

INTRODUCTION 

 

Epilepsy 

 

Dating back to the ancient times, Greeks thought that epileptic seizures 

were caused by a supernatural power.  Hippocrates later suggested that epilepsy 

could be a hereditary disease and not connected to witchcraft.  Epilepsy is a 

disabling chronic and socially isolating neurological disorder involving recurrent 

abnormal discharges of neurons that produce epileptic seizures (Engel and 

Pedley, 1997; Johnston and Smith, 2008).  With the exception of stroke, epilepsy 

is one of the most prevalent human neurological afflictions affecting about 1% of 

the US population (Hauser, 1997; Seyfried and Todorova, 1999).  According to 

CDC data, worldwide, about 10% of people will experience a seizure sometime 

during their lifetime and about 3% will have had a diagnosis of epilepsy by age 

80.  Many persons with epilepsy manifest partial or generalized seizures without 

symptoms of brain abnormality or obvious structural pathology, such as 

idiopathic epilepsy (Baumann, 1982; Wolf, 1994; Engel and Pedley, 1997; Marini 

et al., 2004; Wolf, 2005).  In idiopathic epilepsies, the genetic defect responsible 

for the spontaneous recurrence of epileptic seizures presumably produces a 

disturbance in neuronal response, transmission, or wiring that is continuously 

present between seizures (Wolf, 1994; Engel and Pedley, 1997; Wolf, 2005).  
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Interestingly enough only for a few idiopathic epilepsies have the genes been 

identified (Marini et al., 2004).  Genetic heterogeneity, variable age of onset, and 

multifactorial inheritance has hindered progress in identifying the genetic and 

biochemical components responsible for the most common forms of human 

idiopathic generalized epilepsies (Tan et al., 2004; Todorova et al., 2006).  While 

some idiopathic epilepsies are inherited as simple Mendelian traits, most are 

multifactorial where more than one gene together with environmental factors 

contribute to the disease phenotype (Berkovic, 1998; Todorova et al., 1999a; 

Todorova et al., 2006).  In contrast to idiopathic epilepsy, symptomatic or 

acquired epilepsy often accompanies brain trauma, injury, or neurostructural 

defects. Generalized seizures tend to involve both cerebral hemispheres, 

whereas partial (also called local or focal) seizures are localized in one cerebral 

hemisphere (Hauser, 1982; Hauser, 1992).  Furthermore, symptomatic epilepsies 

result from a variety of underlying pathological processes that might be localized 

or diffuse, unilateral or bilateral, static or progressive (Engel and Pedley, 1997; 

Johnston and Smith, 2008).  

 

Epileptic Animal Models 

 

The epileptic EL mouse: A natural model of human idiopathic generalized 

epilepsy. 

 



 
 
 

3

  Since the early half of the 20th century, a great array of animal models for 

seizures and epilepsy have played a fundamental role in our understanding of 

the physiology and behavioral changes associated with human epilepsy 

(Sarkisian, 2001).  Many of the animal models of epilepsy range in diversity from 

drosophila to nonhuman primates, which can provide insight on the influence of 

environmental and genetic factors on the mechanisms of seizure onset 

(epileptogenicity), and anticonvulsant therapies (Putnam and Merritt, 1937; 

Engel, 1992; Engel and Pedley, 1997; Noebels, 1999, 2001; Sarkisian, 2001).  

Natural occurring models of epilepsy are especially important, since many of the 

non-natural models (e.g. PTZ-induced, kainic acid) draw mechanistic conclusions 

about epilepsy based on studies performed in normal and non epileptic brain, 

and the behavioral manifestations associated with each model can differ and look 

nothing like a human’s behavior (Stafstrom, 1999; Sarkisian, 2001). The epileptic 

EL mouse is a natural model for human multifactorial idiopathic epilepsy, and it 

was first discovered in 1954 in an outbred DDY mouse colony (Naruse and 

Kurokawa, 1992; Frankel et al., 1995a; Seyfried et al., 1999; Suzuki, 2004).  EL 

mice experience complex partial seizures, seizures limited to one cerebral 

hemisphere, causing impairment of awareness or responsiveness, with 

secondary generalization similar to those seen in humans (Seyfried et al., 1999; 

Todorova et al., 1999a; Suzuki, 2004).  Seizures in EL mice originate in or near 

the parietal lobe, quickly spread to the hippocampus and to other brain regions, 

and commence with the onset of sexual maturity (50-60 days of age) (Suzuki et 
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al., 1991; Kasamo et al., 1992; Ishida et al., 1993; Todorova et al., 1999a; 

Uchibori et al., 2002).  The seizures are accompanied by electroencephalo-

graphic (Di Pasquale et al.) abnormalities, vocalization, incontinence, loss of 

postural equilibrium, excessive salivation, and head, limb, and chewing 

automatisms (Suzuki, 1976; Suzuki and Nakamoto, 1977; Sato, 1985; Ishida et 

al., 1993; Nakano et al., 1994; Seyfried et al., 1999; Uchibori et al., 2002; Suzuki, 

2004) (Figure 1).  Epileptic seizures in EL mice also model Gowers’ dictum, 

where each seizure increases the likelihood and severity of recurrent seizures 

(Gowers, 1901; Todorova et al., 1999a; Pitkanen and Sutula, 2002; Stafstrom 

and Sutula, 2005).  Indeed, the EL mouse is the only known model of this 

hallmark of progressive epilepsy.  Adult EL male mice also experience a sexual 

dysfunction similar to that described in men with temporal lobe epilepsy 

(Todorova et al., 1999b).  EL mice express abnormalities of excitatory and 

inhibitory neurotransmission and develop a hippocampal gliosis with seizure 

progression (Flavin and Seyfried, 1994; Lambert et al., 1996; Fueta et al., 1998; 

Seyfried et al., 1999).  A reactive gliosis that accompanies seizure progression in 

adult EL mice, and involves both astrocytes and microglia, is not associated with 

obvious hippocampal neuronal loss or synaptic rearrangements (e.g., mossy 

fiber sprouting) (Brigande et al., 1992; Drage et al., 2002; Murashima et al., 

2005).  Seizure susceptibility in EL mice can be controlled with antiepileptic drugs 

(Phenytoin and Phenobarbital) as well as with diet therapies to include the 

ketogenic diet and calorie restriction (Nagatomo et al., 1996; Todorova et al., 
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2000; Greene et al., 2001).  The inheritance of seizure susceptibility in EL mice is 

complex and gene-environmental interactions play a significant role in the 

determination of seizure frequency and onset in EL mice (Frankel et al., 1995a; 

Frankel et al., 1995b; Poderycki et al., 1998; Todorova et al., 1999a; Marini et al., 

2004; Tan et al., 2004; Todorova et al., 2006), as also seen in many persons with 

multifactorial idiopathic generalized epilepsy.  Most recently, a novel Quantitative 

Trait Loci (QTL) analysis identified El-N as a potential QTL for age-dependent 

predisposition to seizures (Todorova et al., 2006).  EL-N was found on proximal 

Chromosome 9 in naïve EL mice that were tested for seizures once at 150 days 

of age (Todorova et al., 2006).  All aforementioned findings suggest that the EL 

mouse is a good model for evaluating not only gene-environmental associations 

but also the effects of dietary therapies in the management of generalized 

idiopathic epilepsies. 

 

Diet Therapies for the Management of Epilepsy 

 

Despite intensive antiepileptic drug (AED) research and development, 

seizures remain unmanageable or refractory in many persons with epilepsy 

(Jallon, 1997; Freeman et al., 2000; Browne and Holmes, 2001).  

Epidemiological data indicate that 20-40% of the patients with newly diagnosed 

epilepsy will become refractory to treatment, due to both environmental (e.g. 

trauma, prior drug exposure) and genetic factors that predetermine the rate of 
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drug absorption, uptake, and metabolism (French, 2007).  In addition, while many 

available AEDs provide seizure control to about 60-70% of all persons with 

epilepsy, their use is often associated with unanticipated and adverse side 

effects that diminish quality of life (Vermeulen and Aldenkamp, 1995; Porter et 

al., 1997; Gates, 2000; Browne and Holmes, 2001; Mattson, 2001; Wheless et 

al., 2001; Ortinski and Meador, 2004; Sheth, 2004; French, 2007; Kossoff et al., 

2008).  As an alternative to AEDs diet therapies have been shown to be effective 

in the management or control of epilepsy.  Diet therapies for the control of 

epilepsy are as old as the disease itself, with references of their usage dating 

back to the time of the ancient Greeks and Romans (Temkin, 1971; Eadie and 

Bladin, 2001).  Although, these early diet therapies were designed to rid the brain 

of toxic agents that were believed to underlie the development of epileptic 

seizures, the type or composition of antiepileptic diets  (e.g. fasting, calorie 

restriction, ketogenic diet) have been adapted over time to reflect new 

perspectives on the etiology and management of epilepsy (Eadie and Bladin, 

2001).   

 

Fasting and the Ketogenic Diet 

 

Fasting has long been recognized as an effective antiepileptic therapy for 

a broad range of seizure disorders (Lennox and Cobb, 1928; Lennox, 1960; 

Freeman et al., 2000; Greene et al., 2003; Seyfried et al., 2009b).  Interestingly, 
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reference to fasting as a cure for epileptic seizures can be found as back as the 

biblical times (Mark 9:14-29) (Seyfried et al., 2009b).  Using Conklin’s water-only 

diet, Lennox and colleagues, in 1928, demonstrated that although seizure 

incidence, or onset, actually increased over the first couple days of fasting, 

seizure susceptibility, or seizure frequency, was significantly decreased after 

three days in most patients (Lennox and Cobb, 1928; Lennox, 1960; Seyfried et 

al., 2004; Seyfried et al., 2009b) (Figure 2). This latter finding is of great 

importance in regard to brain energy metabolism and trying to decode the 

antiepileptic mechanism of action of fasting. Under normal physiological 

conditions brain cells derive most of their energy from glucose or glucose-derived 

metabolites (e.g. lactate, glycogen) (Clarke and Sokoloff, 1999; Bouzier-Sore et 

al., 2002; Kasischke et al., 2004).   However, during fasting or other forms of 

dietary energy restriction (DER) cerebral energy metabolism gradually transitions 

from glucose to ketone utilization in about 3-4 days (Bhagavan, 2002; Seyfried et 

al., 2004; Seyfried et al., 2008a).  This metabolic transition was also observed in 

Lennox’s patients, where blood glucose levels were reduced and blood ketone 

levels were increased (ketosis) upon fasting (Lennox, 1960).  Amazingly, after 

fasting was terminated through food intake some of Lennox’s patients remained 

seizure free for extended periods, indicating individual variability for the 

anticonvulsant (a phenomenon where only seizures are reduced) and 

antiepileptic (a phenomenon where all or some aspects of epilepsy are affected) 

effects of fasting (Lennox, 1960; Seyfried et al., 2004; Seyfried et al., 2009b). 
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The return of seizures was often associated with a rise in blood glucose levels 

and a subsequent fall in blood ketone levels.  

Although clinically effective in managing seizure disorders, fasting is 

impractical for the long-term seizure management due largely to issues of 

compliance (Seyfried et al., 2004).  As mentioned earlier, fasting produces 

ketosis.  It was originally thought that ketone bodies (β-hydroxybutyrate and 

acetoacetate) might play an important role in the antiepileptic effects of fasting 

(Wilder, 1921; Lennox, 1960).  Consequently, high fat, low protein, low 

carbohydrate ketogenic diets (KD) were developed to mimic the physiological 

effects of fasting without causing severe food restriction or starvation (Peterman, 

1928; Lennox, 1960; Freeman et al., 2000; Stafstrom and Bough, 2003).  

Although the KD significantly elevates circulating ketone body levels, subsequent 

studies have shown that ketone bodies alone were unable to account for the 

antiepileptic and anticonvulsant effects of the KD in humans or in animal epilepsy 

models (Appleton and DeVivo, 1974; Bough et al., 1999a; Likhodii et al., 2000; 

Thio et al., 2000; Todorova et al., 2000; Harney et al., 2002; Stafstrom and 

Bough, 2003; Mantis et al., 2004; Seyfried et al., 2004).  An explanation for this 

may stem from the fact that brain ketone utilization depends on the plasma levels 

of ketones, glucose, and other metabolites (Nehlig and Pereira de Vasconcelos, 

1993).  Thus associations between plasma ketone levels and seizure protection 

may be masked (Seyfried et al., 2004).  
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Currently, although the KD is widely used clinically as an effective therapy 

in managing refractory seizures in children, recent findings suggest that the KD 

has therapeutic efficacy across a wide variety of ages (including adults), seizure 

types and severities, as well as different etiologies (Kossoff et al., 2002; Mady et 

al., 2003; Kossoff and McGrogan, 2005; Bodenant et al., 2008; Mosek et al., 

2009).  Additional evidence also supports the view that the KD improves the 

long-term outcome in children with refractory epilepsy (Freeman, 2001; 

Hemingway et al., 2001; Marsh et al., 2006).  Moreover, from the reports of the 

diet’s efficacy worldwide in recent years, it appears that approximately half of 

patients receiving the KD will have ~50% reduction in their seizures, and ~33% of 

patients receiving the KD will have 90% reductions in their seizures (Hassan et 

al., 1999; Kankirawatana et al., 2001; Coppola et al., 2002; Klepper et al., 2002; 

Francois et al., 2003; Kim et al., 2004; Vaisleib et al., 2004).   

Based on all aforementioned findings, a great interest is developing in the 

natural therapeutic potential of the ketogenic diet in the treatment of neurological 

disorders other than epilepsy, including Alzheimer’s and Parkinson’s disease 

(Gasior et al., 2006). Studies in these neurodegenerative disorders have led to 

the hypothesis that the ketogenic diet may not only provide symptomatic benefit, 

but could have beneficial disease-modifying activity applicable to a broad range 

of brain disorders characterized by the death of neurons (Gasior et al., 2006; 

Gasior et al., 2007). Interestingly, the KD is most effective in reducing seizure 

susceptibility in children when administered with fasting or under restricted 
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caloric intake (Freeman and Vining, 1999; Freeman et al., 2000; Freeman et al., 

2007).  Clinical studies have also shown that the anticonvulsant efficacy of the 

KD is associated with body weight and blood glucose reductions of about 10% 

(Livingston, 1972).  Furthermore, patients who experience a rise in blood glucose 

levels, as in the case of those who gain weight on the KD or those who consume 

carbohydrates, the neuroprotective effect of the KD has have been shown to be 

ameliorated (Freeman et al., 2000; Freeman et al., 2007). 

Adverse effects of the KD occur only when the diet is given in ad libitum or 

unrestricted amounts for a prolonged period of time (usually occurring after 4 

weeks) (e.g. weight gain, hypercholesterolemia, diabetes, kidney stones, and 

cardiovascular disease) (Kang et al., 2004).   Although these adverse effects are 

important for neurologists and pediatricians to recognize, only infrequently do 

they cause a discontinuation of the KD treatment in patients (Freeman et al., 

2007).  Early-onset adverse effects associated with the initiation of the KD are 

transient and include acidosis, hypoglycemia, gastrointestinal distress, 

dehydration, and lethargy (Ballaban-Gil, 2004; Freeman et al., 2007).  Later 

adverse effects include dyslipidemia, kidney stones, and slowing of growth.  

Although cholesterol and lipids are shown to be affected by the diet, it is 

interesting to note that the lipid profiles of children maintained on the KD for 

greater than 6 years returned toward baseline (Kwiterovich et al., 2003).  Kidney 

stones occur in 5% of children on the KD and are thought to be secondary to a 

combination of acidosis, urine acidification, hypercalciuria, and hypocitraturia.  
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From all these findings, it is clear that the success and safety of the KD are best 

achieved when administered to patients in restricted amounts by close 

supervision of an experienced medical team (the physician, dietician, or nurse). 

Previous findings have shown the KD to have both an 

antiepileptic/anticonvulsant and antiepileptogenic effect in various animal models 

of epilepsy (Bough et al., 2000; Todorova et al., 2000; Mantis et al., 2004).  Table 

1, illustrates some of the correlatives that have been observed in mice and 

humans when treated with the KD by Stafstrom et al., 2004 (Stafstrom, 2004).  

While the mechanisms by which the KD inhibits seizure susceptibility remain 

unresolved, alterations in brain energy metabolism are likely involved (Mantis et 

al., 2004; Maalouf et al., 2009). Since the KD manages epilepsy best when 

administered in restricted amounts and since fasting lowers blood glucose levels, 

it is our contention that calorie restriction might contribute to the antiepileptic and 

anticonvulsant effects of the KD (Greene et al., 2001; Greene et al., 2003; Mantis 

et al., 2004). Furthermore, administration of the KD in restricted amounts would 

also reduce the adverse effects of the diet’s high fat content (e.g. weight gain, 

hypercholesterolemia, diabetes, and cardiovascular disease) if the diet were to 

be administered ad libitum for extended periods of time.  Based on all presented 

findings, we consider that an energy restricted high fat ketogenic diet, or calorie 

restriction alone, would be more therapeutic for the management of seizures in 

both humans and animal models of epilepsy (such as the EL mouse), by 

transitioning brain energy metabolism from glucose to ketone bodies. 
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My dissertation research sought to examine the therapeutic efficacy of 

different dietary regimes, such as calorie restriction (CR) and the KD, in the 

management of both neurological and neurodegenerative diseases, including 

epilepsy and the Mecp2308/y mouse model of Rett Syndrome.  Very few studies 

have investigated the relationship among ketones, glucose, and seizure 

susceptibility under long-term antiepileptic diet therapies. This thesis provides 

new evidence in the antiepileptic and neuroprotective mechanism of both calorie 

restriction and the KD.  Investigation of blood metabolite changes in calorie-

restricted mice further supports the role of ketone bodies (β-hydroxybutyrate) and 

glucose in the neuroprotective effect of CR and the KD.  The molecular 

biomarkers that were investigated might provide additional evidence in the 

therapeutic efficacy of CR and the KD.  Finally, my thesis provides the first 

guidelines for standardizing the implementation of diet therapies in the 

management of an array of neurodegenerative, neurological, or other types of 

diseases. 
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Figure 1.  The Epileptic EL Mouse. The EL mouse is a model for multifactorial 

human idiopathic epilepsy.  The mouse expresses excessive salivation, and 

head, limb, swallowing, and chewing automatisms.  The arching Straub tail is 

indicative of seizure spread to spinal cord. 
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Figure 2.  Influence of Fasting on Human Epileptic Seizures.  The Y-axis 

represents the percentage of seizures taking the prefasting number as 100%.  

The X-axis represents days of fasting.  The heavy solid line is the average of the 

five curves.  The initials of Lennox’s patients are shown within the various data 

curves.  Figure is reprinted with permission from Lennox and Cobb, Arch. Neurol. 

Psychiat. 20:771-779, 1928. 
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Table 1:  Animal Models of the Ketogenic Diet.  Observations and Clinical Correlates1

Observations in Animal ModelsClinical Correlates

1This table is modified from Stafstrom et al., 2004.

Several days to weeks

Rapid (hours)

A reduction in circulating 
glucose is necessary for the 
anticonvulsant properties of 

Reduced glycolysis 
(reduction in circulating 
glucose)

A reduction in circulating 
glucose is necessary for the 
anticonvulsant properties of the 

KD is effective in a wide 
variety of seizure types and 

Children utilitize ketones more 
efficiently than adults

Anticonvulsant properties 
(reduces seizures)

Ketosis A threshold level of ketosis is 
necessary but not sufficient 
for the anticonvulsant 

Ketosis is necessary but not 
sufficient 

Latency to KD 
effectiveness

Several days

Reversal of the 
anticonvulsant effects 

Rapid (hours)

Calorie or energy 
restriction

Anticonvulsant properties 
(increases seizure threshold)

KD is effective in a wide 
variety of seizure 

Seizure type

Age range Younger animals respond 
better to KD
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CHAPTER TWO 

Management of Multifactorial Idiopathic Epilepsy in Adult EL Mice with Calorie 

Restriction and the Ketogenic Diet: Role of Glucose and Ketone Bodies 

 

INTRODUCTION 

 

 

The Influence of Calorie Restriction in the Management of Idiopathic Epilepsy in 

Adult EL Mice 

 

CR is a natural dietary therapy that improves health, extends longevity, 

and reduces the effects of neuroinflammatory diseases in rodents and humans 

(Weindruch and Walford, 1988; Greene et al., 2001; Duan et al., 2003; Greene et 

al., 2003).  CR is produced from a total dietary restriction and differs from acute 

fasting or starvation in that CR reduces total caloric energy intake without 

causing anorexia or deficiencies of any specific nutrients (Mantis et al., 2004; 

Seyfried et al., 2004).  In other words, CR extends the health benefits of fasting 

while avoiding starvation.  Recently, we showed that a 40% CR in the inbred 

control C57BL/6J mice produced changes in serum lipids similar to those seen in 

humans following therapeutic fasting or very low calorie dieting (below 500 

kcal/day) (Mahoney et al., 2006). Besides improving health, CR has both 

antiepileptic and anticonvulsant effects in EL mice and in other animal epilepsy 
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models (Bough et al., 1999b; Todorova et al., 2000; Greene et al., 2001).  

Although the mechanisms underlying the neuroprotective effects of CR are 

unknown, it is believed that neuroprotection is associated with reduced 

circulating glucose levels and elevated ketone body levels.  With regard to 

epilepsy, the metabolic transition from glucose to ketone bodies as the primary 

cerebral energy source under CR conditions has been shown to reduce seizure 

frequency in epileptic rodents and humans by inducing synaptic changes that 

ultimately attenuate neuronal hyperexcitability thus increasing the extent to which 

these hyperexcitable foci are inhibited (Greene et al., 2003; Mantis et al., 2004; 

Seyfried et al., 2009b).  

Glucose uptake and metabolism increases more during epileptic seizures 

than during most other brain activities (McIlwain, 1969; Meldrum and Chapman, 

1999; Cornford et al., 2002).  Also, blood glucose levels positively correlate with 

flurothyl-induced seizures in rats and high levels of glucose may exacerbate 

human seizure disorders (Schwechter et al., 2003).  Neuronal excitability and 

epileptic seizures are directly related to rapid glucose utilization and glycolysis 

(McIlwain, 1969; Ackermann and Lear, 1989; Meric et al., 1994; Clarke and 

Sokoloff, 1999; Meldrum and Chapman, 1999; Cornford et al., 2000; Knowlton et 

al., 2002; Ikemoto et al., 2003; Schwechter et al., 2003).  It is not yet clear, 

however, to what extent enhanced glycolysis is related to the cause or effects of 

seizure activity (Greene et al., 2003).  Nevertheless, a transition in brain energy 

metabolism from glucose utilization to ketone body utilization reduces neural 
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excitation and increases neural inhibition through multiple integrated systems 

(Greene et al., 2003; Seyfried et al., 2004).  Based on these observations (Ting 

and Degani, 1993; Li et al., 2000; Knowlton et al., 2002; Vielhaber et al., 2003), 

we proposed that most epilepsies, regardless of etiology or causality, might 

ultimately involve altered brain energy homeostasis (Greene et al., 2003).   

In this study, we compared the antiepileptic and anticonvulsant effects of 

both the KD and CR in adult EL mice that experienced at least 15 recurrent 

complex partial seizures.  The results show that seizure control in EL mice is 

more associated with the amount than with the origin of dietary calories, and that 

CR underlies the antiepileptic and anticonvulsant action of the KD in EL mice.  A 

report of these findings has been presented (Mantis et al., 2003; Mantis et al., 

2004).  

 

 

MATERIALS AND METHODS 

 

Mice 

 

   The inbred EL/Suz (EL) mice were originally obtained from J. Suzuki 

(Tokyo Institute of Psychiatry).  The mice were maintained in the Boston College 

Animal Care Facility as an inbred strain by brother x sister mating.  The mice 

were group housed (prior to initiation of study) in plastic cages with Sani-chip 
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bedding (P.J. Murphy Forest Products Corp., Montville, N.J.) and kept on a 12-hr 

light/dark cycle at approximately 22oC.  Cotton nesting pads were provided for 

warmth when animals were individually housed.  All cages and water bottles 

were changed once per week.  Only females were used for these studies as 

adult males die sporadically with age from acute uremia poisoning due to urinary 

retention (Todorova et al., 2003).  The procedures for animal use were in strict 

accordance with the NIH Guide for the Care and Use of Laboratory Animals and 

were approved by the Institutional Animal Care Committee. 

 

Seizure Susceptibility and Seizure Testing 

 

  Seizure onset in EL mice (Figure 1) is generally between 60-70 days of 

age as previously described (Todorova et al., 1999a).  These seizures occur 

occasionally during routine cage changing.  Our recently developed seizure 

handling protocol was used to regularly induce seizure susceptibility in EL mice 

(Todorova et al., 1999a; Greene et al., 2001).  Briefly, the testing procedure 

included repetitive handling and simulated the stress normally associated with 

weekly cage changing, i.e., picking the mouse up by the tail for short intervals 

and transferring it to a clean cage with fresh bedding.  The test included two trials 

that were separated by 30 min.  In each trial, a single mouse was held by the tail 

for 30 sec at approximately 10-15 cm above the bedding of its home cage.  After 

30 sec, the mouse was placed into a clean cage with fresh bedding for 2 min.  
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The mouse was then held again for 15 sec before being returned to its home 

cage.  Trial 2 was performed even if the mouse experienced a seizure in trial 1.  

The epileptic seizures commenced during holding or soon after the mice were 

placed on the clean bedding.  Mice that developed an epileptic seizure while 

handled were placed immediately in either the clean cage or their home cage 

depending on the testing stage.  Mice were tested each week for a total of 13 

measurements over a 12-week period using this method.  Mice were undisturbed 

between testing phases (no cage changing) and testing was performed between 

12 to 3 pm.   

 

Seizure Phenotype 

 

  Mice were designated seizure susceptible if they experienced a 

generalized seizure during seizure testing.  Generalized seizures in EL mice 

involve loss of postural equilibrium and consciousness, together with excessive 

salivation, head, limb, and chewing/swallowing automatisms.  An erect forward-

arching Straub tail, indicative of spinal cord activation, was also seen in most 

mice having generalized seizures.  Mice that displayed only vocalization and 

twitching without progression to generalized seizure were not considered seizure 

susceptible (Todorova et al., 1999a; Greene et al., 2001).  Seizure susceptibility 

scores were generated for each mouse according to the seizure severity scores 

previously described (Table 2) (Todorova et al., 1999a).  Mice having a score of 
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4 or 5 were assigned a susceptibility score of 1.0, whereas mice having a seizure 

severity score less than 4 were given a susceptibility score of 0.  The seizure 

susceptibility for each mouse was then averaged over multiple tests and the 

mean seizure susceptibility for a mouse dietary group was determined. 

 

Diets 

 

All mice received PROLAB RMH3000 chow diet (SD) prior to 

experimentation (LabDiet®).  This is the standard food pellet diet (SD) and 

contained a balance of mouse nutritional ingredients.  According to the 

manufacturer's specification, this diet delivers 4.4 Kcal/g gross energy, where fat, 

carbohydrate, protein, and fiber comprised 55 g, 520 g, 225 g, and 45 g/Kg of the 

diet, respectively.  The ketogenic diet was obtained from the Zeigler Bros., Inc. 

(Gardners, PA, USA) in butter-like form and also contained a balance of mouse 

nutritional ingredients.  According to the manufacturer's specification, the KD 

delivers 7.8 Kcal/g gross energy, where fat, carbohydrate, protein, and fiber 

comprised 700 g, 0 g, 128 g, and 109 g/Kg of the diet, respectively.  The fat in 

this diet was derived from lard and the diet had a ketogenic ratio (fats: proteins + 

carbohydrates) of 5.48:1.  The individual % composition of each dietary energy 

component for the SD and KD diets used in our studies is shown on Table 3. 
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Pre-Trial Period 

 

 Seizure susceptibility, body weight, and food intake were measured four 

times over a three-week period in 24 singly caged female EL mice 

(approximately 210 days of age).  All mice received the SD during the pre-trial 

period and food intake was determined by subtracting the weight of food pellets 

remaining in the food hopper after one week from the initial amount given (200 

g).  The difference was then divided by seven to estimate the average daily food 

intake.  Thus, all mice were highly seizure susceptible at the initiation of the diet 

therapy. 

 

Dietary Treatment 

 

After the three-week pre-trial period, the mice were placed into four groups 

(n = 6 mice/group) where the average body weight of each group was similar 

(about 31.0 ± 1.5 g) (Figure 3).  All mice were then fasted for 14 hr to establish a 

similar metabolic set point at the start of the experiment (arrow, Figure 3).  The 

mice in each group were then given one of four diets to include: 1) the standard 

diet fed ad libitum or unrestricted (SD-UR), 2) the KD fed ad libitum or 

unrestricted (KD-UR), 3) the SD restricted to achieve a 20-23% body weight 

reduction from the pre-trial weight (SD-R), and 4) the KD restricted to achieve a 

20-23% body weight reduction from the pre-trial weight (KD-R).  Each mouse in 



 
 
 

25

the two R groups served as its own control for body weight reduction.  Based on 

food intake and body weight during the pre-trial period, food in the R-fed mouse 

groups was reduced until each mouse achieved the target weight reduction of 

20-23%.  In other words, the daily amount of food given to each R mouse was 

reduced gradually until it reached 77-80% of its initial (pre-trial) body weight.   

The mice in the SD-UR group received 200 g of food in the hopper/week 

as in the pre-trial period.  For mice in the SD-R group, weighed food pellets were 

dropped directly inside each cage for easy access.  The KD was administered to 

the mice in a modified plastic Falcon tissue culture dish (60 mm x 15 mm).  The 

dish edges were shaved to reduce the height from 15 mm to about 6 mm.  After 

placing about 5 g of KD in the dish for the KD-UR mice, the dish with the weighed 

KD was inverted and placed on the top of the food hopper.  An empty water 

bottle was placed on top of the dish to prevent dish movement during animal 

feeding.  The butter-like consistency adhered the KD to the inverted dish.  This 

feeding apparatus allowed the mice easy access to the KD and prevented KD 

contact with bedding material.  After about 24 hr, the amount of KD consumed 

was determined by measuring the left over KD in the dish and another 5 grams of 

fresh KD were added to the dish.  The KD was therefore given fresh every day 

without moving or disturbing the mice.  The total amount of KD consumed per 

day was summed each week and divided by 7 to obtain the average weekly food 

intake of each mouse.  For the KD- R mice, a calculated restricted amount of KD 

was placed directly on top of the food hopper bars for easy access.  The R-fed 
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mice licked the bars clean of the KD.  The dietary treatment was implemented for 

nine weeks. 

 

Measurement of Plasma Glucose and β-Hydroxybutyrate 

 

Blood was collected approximately 1 hr after seizure testing except for the 

pre-trial period where blood was not collected.  Blood was first collected from all 

mice about 24 hr prior to the initiation of the 14 hr fast (arrow on Figure 3).  Mice 

were anesthetized with isoflurane, USP (Halocarbon, River Edge, NJ, USA) and 

blood was collected in heparinized tubes by puncture of the retro-orbital sinus 

using a borosilated capillary tube (FHC, Bowdoinham, ME, USA).  The blood was 

centrifuged at 6,000 x g for 10 min, the plasma was collected, and aliquots were 

stored at –80oC until analysis.  Plasma glucose concentration was measured 

spectrophotometrically using the Trinder Assay (Sigma-Aldrich, St. Louis, MO, 

USA).  Plasma β-hydroxybutyrate concentration was measured using either the 

Stanbio β-Hydroxybutyrate LiquiColor® procedure (Stanbio, Boerne, TX, USA), 

or a modification of the Williamson et al. procedure (Williamson et al., 1962). 

Briefly, for measuring β-Hydroxybutyrate using Williamson’s modified 

assay, 50 μl of a substrate containing cocktail buffer, containing: 0.5 ml of 1 M of 

2-Amino-2-methylpropanol (AMP)  (pH 9.9), 3 ml of 50 mM NAD+, 0.2 ml of 100 

mM EDTA, and 1.3 ml ddH2O was pipetted in each well of a half-area clear 

microplate.  Pipet in triplicate 50 μl of ddH2O (Lin et al.), 50 μl of β-
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hydroxybutyrate standards (0.25 mM, 0.165 mM, 0.0825 mM, 0.04125 mM, 

0.033 mM, 0.0165 mM), and finally 50 μl of your plasma/serum sample in each 

corresponding well. Initial absorbance for all samples is read at 340 nm, using a 

5 min kinetic absorbance mode on a SpectaMax M5 spectrophotometer.  

Absorbance is then corrected using the pathcheck function (normalize the well 

absorbance to a cuvette of an equivalent 1 cm pathlength) on the plate reader. 5 

μl of a 2.6-fold diluted 1.33% (w/v) β-hydroxybutyrate dehydrogenase enzyme 

dissolved in 3.2 M (NH4)2SO4 is then pipetetd in each well. After absorbance is 

corrected once more using the pathcheck function, and the final absorbance for 

all samples is read at 340 nm, using a 40 min kinetic absorbance mode.  After 

making a standard curve by plotting the corrected change of absorbance (Absfinal- 

Absinitial) for each standard, the β-hydroxybutyrate concentration for each sample 

was calculated.  An analytical version of this assay is shown on Appendix C. 

 

Statistical Analysis 

 

Both ANOVA and a two-tailed t-test were used to evaluate the significance 

of differences of body weight, seizure susceptibility, plasma glucose levels, and 

plasma β-hydroxybutyrate levels between unrestricted and restricted groups.  

Chi-square analysis was performed on the association between glucose and 

seizures.  Pearson bivariate correlation analysis (SPSS software) was used to 

determine the relationship between body weight, food intake, plasma glucose 
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levels, plasma β-hydroxybutyrate levels, and seizure susceptibility.  Binary 

logistic regression (SPSS) was used to determine the relationship between 

seizure susceptibility, plasma glucose, and β-hydroxybutyrate levels on mice fed 

either the SD or the KD.  Differences were considered significant at P ≤ 0.01.  All 

values are expressed as mean ± SEM.  All statistical data were presented 

according to the recommendations of Lang et al., (Lang and Secic, 1997). 

 

 

RESULTS 

 

Diet Composition and Tolerance 

 

The composition of each diet is shown in Table 3 and in the Methods.  No 

adverse effects of the diets were observed in either R-fed mouse group.  Despite 

the 20-23% body weight reduction, mice in both R-fed groups appeared healthy 

and were more active than the mice in the UR-fed groups as assessed by 

ambulatory and grooming behavior.  With the exception of oily fur, the KD-fed 

mice appeared active and healthy throughout the study as previously found 

(Todorova et al., 2000).  No signs of vitamin or mineral deficiency (e.g. reduced 

life span, kidney and eye abnormalities) were observed in the R-fed mice 

according to standard criteria for mice (Hoag and Dickie, 1968).  These findings 

are consistent with the well-recognized health benefits of mild to moderate caloric 
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restriction in rodents (Keenan et al., 1999), and support our previous findings that 

both the KD and a moderate CR are well tolerated by EL mice (Todorova et al., 

2000; Greene et al., 2001). 

 

Influence of Calorie Restriction on Body Weight 

 

All mice were matched for age (approximately 210 days) and body weight 

(approximately 31.0 ± 1.5 g) before the start of the dietary treatment (Figure 3).  

All mice lost approximately 7-9% of their body weight during the 14 hr fast.  Body 

weight remained relatively stable over the nine-week treatment period in both 

UR-fed mouse groups (Figure 3).  The 20-23% body weight reduction was 

achieved in the R-fed groups after about two weeks of gradual food restriction.  

However, more difficulty was encountered initially in maintaining a stable body 

weight reduction for the KD-R group than for the SD-R group.  This difficulty may 

result from the high caloric content of the KD that produces greater body weight 

changes per calorie adjustment than the SD.  We also estimated that the degree 

of CR necessary to maintain the 20-23% body weight reduction was about 38-

45% for the SD and about 45-52% for the KD. 

 

Influence of Diets on Seizure Susceptibility in Adult EL Mice 
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All mice had at least 15 recurrent seizures before the start of dietary 

treatment (arrow, Figure 3).  The seizures occurred occasionally during routine 

cage changing prior to the pre-trial period and regularly from handling during the 

pre-trial test period.  Seizure susceptibility was analyzed in all mouse groups 

after the R-fed mice achieved a stable body weight reduction, i.e., week five of 

treatment (Figures 3 and 4).  Seizure susceptibility was high for both UR-fed 

groups throughout the study.  In both R-fed groups, seizure susceptibility 

decreased from 1.0 to about 0.3 after two weeks and remained significantly lower 

than that of the UR-fed control groups from treatment weeks 5-12 (Figure 4).  

Only a single mouse in the KD-R group had a break-through seizure on week 8.  

Taken together, our findings show that seizure management in EL mice is more 

associated with the amount than with the origin of dietary calories. 

 

Influence of Diets on Plasma Glucose and β-Hydroxybutyrate Levels 

 

Plasma glucose levels were analyzed in all mouse groups after the R-fed 

mice achieved a stable body weight reduction (Figures 3 and 5).  Glucose levels 

remained high for both UR-fed groups throughout the study and were stable over 

treatment weeks 5-12.  However, plasma glucose levels were somewhat lower 

(about 8 mM) in both UR-fed groups between treatment weeks 3-5 compared to 

the pre-trial glucose levels (about 10 mM).  This reduction might result from a 

combination of repetitive handling, seizures, blood collection, and the initial fast 
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(Figure 5).  In both R-fed mouse groups, the plasma glucose levels decreased 

from about 10 mM to about 5.0 mM after three weeks and remained significantly 

lower than those of their respective UR-fed control groups. 

Plasma β-hydroxybutyrate levels were also analyzed in all mouse groups 

after the R-fed mice achieved a stable body weight reduction (Figures 3 and 6).  

These levels remained low in the SD-UR group throughout the study and were 

stable for treatment weeks 5-12 (Figure 6).  β-hydroxybutyrate levels were 

significantly higher in the R-fed groups than in their respective UR-fed control 

groups.  These levels were also significantly higher in the KD-UR group than in 

the SD-UR group.  The levels increased from about 0.4 mM to about 1.7 mM in 

the SD-R group and to about 3.0 mM in the KD-R group.  These findings 

demonstrate that circulating β-hydroxybutyrate levels were inversely related to 

circulating glucose levels and that elevated β-hydroxybutyrate levels alone are 

not associated with seizure susceptibility.  

 

Statistical Relationships Among Variables 

 

The relationship between body weight, food intake, plasma glucose levels, 

plasma β-hydroxybutyrate levels, and seizure susceptibility was determined 

using Pearson bivariate correlation analysis (Table 4).  All variables were 

significantly (P < 0.01) correlated with each other.  Positive correlations were 

found among body weight, food intake, glucose, and seizure susceptibility.  On 
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the other hand, β-hydroxybutyrate was negatively correlated with all variables.  

The correlations among glucose, β-hydroxybutyrate, and seizure susceptibility 

were also apparent from the data in Figures 4-6.  Plasma glucose was 

significantly (P < 0.001) associated with seizure susceptibility in the EL mouse, 

as determined by Chi-square analysis (Figure 7).  These results support our 

previous findings that glucose levels are predictive of seizure susceptibility in 

adult EL mice (Greene et al., 2001; Greene et al., 2003). 

Binary logistic regression was also used to determine the relationship 

between seizure susceptibility, plasma glucose, and plasma β-hydroxybutyrate 

levels when mice were fed either the SD and/or the KD.  The data indicate that 

regardless of diet, glucose could predict seizure susceptibility with an 

approximate 75 to 78 % accuracy (Table 5).  Although β-hydroxybutyrate could 

also predict seizure susceptibility, we previously showed that β-hydroxybutyrate 

levels were dependent on and were inversely related to plasma glucose levels 

(Greene et al., 2001). 

 

 

DISCUSSION 

 

We found that restriction of either a high carbohydrate low fat standard 

diet or a high fat low carbohydrate KD was equally effective in reducing seizure 

susceptibility in adult EL mice with active epilepsy.  Moreover, seizure 
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susceptibility remained similarly high in these mice when either diet was fed ad 

libitum or unrestricted.  These findings indicate that the KD, when fed 

unrestricted, is unable to reduce seizure susceptibility in adult EL mice.  Although 

the KD delays epileptogenesis in young seizure naïve EL mice when fed ad 

libitum, the effect is transient (Todorova et al., 2000).  These findings are 

interesting since previous observations with children suggest that the 

antiepileptic and anticonvulsant effects of the KD are best when the diet is 

administered in restricted amounts (Freeman et al., 2000; Stafstrom and Bough, 

2003).  Indeed, seizure protection is often less in children that gain weight than in 

those who maintain or reduce body weight on the KD (Freeman, personal 

communication).  Previous studies also indicate that restriction of high 

carbohydrate diets elevate seizure threshold (Eagles et al., 2003).  Our findings 

in EL mice support these observations and suggest that CR may be necessary 

for the antiepileptic and anticonvulsant effects of the KD.   

We previously showed that mild to moderate CR delayed epileptogenesis 

and reduced seizure susceptibility in seizure naïve juvenile and adult EL mice by 

reducing blood glucose and elevating ketone bodies (Greene et al., 2001).  

Although our data show that circulating β-hydroxybutyrate levels are inversely 

related to circulating plasma glucose levels, elevated ketone body levels are not 

directly associated with reduced seizure susceptibility in EL mice.  This 

conclusion derives from the finding that seizure susceptibility is high in the KD-

UR mice despite elevated β-hydroxybutyrate levels and from finding that seizure 
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protection was similar in the SD-R and KD-R groups despite significantly higher 

β-hydroxybutyrate levels in the KD-R than in the SD-R group.  These results are 

consistent with previous studies in EL mice and in non-genetic seizure models 

that elevated ketone bodies alone are unable to account for the antiepileptic or 

anticonvulsant action of the KD (Appleton and DeVivo, 1974; Bough et al., 

1999a; Likhodii et al., 2000; Thio et al., 2000; Todorova et al., 2000; Harney et 

al., 2002; Stafstrom and Bough, 2003; Seyfried et al., 2004). 

Under normal physiological conditions brain cells derive most of their 

energy from glucose or glucose-derived metabolites, e.g., lactate (Clarke and 

Sokoloff, 1999; Bouzier-Sore et al., 2002; Kasischke et al., 2004).  Also, brain 

glucose uptake is greater during epileptic seizures than during most other brain 

activities (Meldrum and Chapman, 1999).  During fasting or calorie restriction, 

however, circulating glucose levels fall causing brain cells to rely more heavily for 

energy on ketone bodies that gradually increase with food restriction (Owen et 

al., 1967; Greene et al., 2003).  It is the transition from glucose to ketone bodies 

for brain energy that is thought to underlie the antiepileptic and anticonvulsant 

effects of calorie restriction (Greene et al., 2003).  Although the KD we used 

contained no carbohydrates, the mice eating this diet maintained high glucose 

levels and seizure susceptibility.  The persistence of high glucose levels in the 

KD-UR group would prevent the transition to ketones for energy despite high 

levels of circulating ketone bodies.  Our results show that circulating glucose 
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levels accurately predict seizure susceptibility in EL mice regardless of diet 

composition or circulating ketone body levels.   

We used a new experimental design for calorie restriction in this study 

(Chapter 5 addresses this rationale further).  Briefly, instead of restricting calories 

in the R-fed mice based on the average food consumption of the UR control mice 

as previously done (Greene et al., 2001), each R-fed mouse served as its own 

control to achieve and maintain a 20-23% body weight reduction.  The new 

experimental design reduces variability in body weights and in caloric intake 

among mice fed diets widely different in nutritional composition and caloric 

content.  In using body weight, rather than caloric intake, as an independent 

variable we were able to more accurately measure the statistical associations 

among circulating energy metabolites and seizure susceptibility.  Thus, this type 

of experimental design is recommended for those studies attempting to evaluate 

the relationships among nutrition, metabolism, and disease phenotype. 

We conclude that seizure susceptibility in EL mice is dependent on 

plasma glucose levels and that seizure control depends more on the amount 

than on the origin of dietary calories.  A reduction of glucose and a subsequent 

increase in ketone bodies results in the zone of seizure management in the EL 

mice (Figure 8).  Also, we found that CR underlies the antiepileptic action of the 

KD in EL mice.  A transition from glucose to ketone bodies for energy is predicted 

to manage EL epileptic seizures through multiple integrated changes of inhibitory 

and excitatory neural systems. A detail biochemical and molecular analysis of the 
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anticonvulsant mechanism of calorie restriction and the ketogenic diet is shown 

in Chapter 6. 
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 Table 2.  Severity Scores for Handling Induced 
Seizures in EL Micea  
    

Scores   Response to handling stimulation  
    
         1  Squeaking  

    
2  Immobility, blinking, mild facial clonus  
    
3  Catatonic posture with erect tail  
    
4  Forelimb clonus  
    
5  Generalized tonic convulsion  
       

    
aReprinted with permission from Todorova et al., 2000.   
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Components Standard Diet Ketogenic Diet KetoCal(R) Diet
       (SD)         (KD)         (KC)

Carbohydrate 62 0 3,3
Fat 6 75 80
Protein 27 14 16,7
Fiber 5 12 0
Energy (Kcal/gr) 4,1 7,8 7,2
1 According to manufacturer's specifications (see Methods).

Table 3. Composition (%) of the Standard Diet, and Various Ketogenic 
Diets1
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Figure 3. Influence of Diet on Body Weight in Adult EL Mice Fed the SD (A) or 

the KD (B).  Asterisks indicate that the body weight of the R-fed mice was 

significantly different from their respective UR-fed groups (P< 0.01) during weeks 

5-12.  Squares represent the pre-trial period when all mice were fed the SD-UR.  

Circles and triangles represent the UR-fed and R-fed groups, respectively.  

Values are expressed as the mean ± SEM (n = 6 mice per group).  Arrow 

indicates initiation of CR. 
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* ** * * 
*
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Figure 4. Influence of Diet on Seizure Susceptibility in Adult EL Mice.  Seizure 

susceptibility was significantly lower (*P < 0.001) in the R-fed groups than in their 

respective UR-fed groups.  Values were pooled from treatment weeks 5-12 (see 

Figure 1) and are expressed as the mean ± SEM (n = 6 mice per group). 
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Figure 5. Influence of Diet on Plasma Glucose Levels in Adult EL Mice.  Plasma 

glucose levels were significantly lower (*P < 0.001) in the R-fed groups than in 

their respective UR-fed groups.  Other conditions are as in Figures 1 and 2.  
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Figure 6. Influence of Diet on Plasma β-Hydroxybutyrate Levels in Adult EL Mice. 

Plasma β-hydroxybutyrate levels were significantly higher (*P < 0.001) in the R-

fed groups than in their respective UR-fed groups.  In addition plasma β-

hydroxybutyrate levels were significantly higher ( P < 0.001) in the KD-UR group 

than in the SD-UR group.  Other conditions are as in Figures 3 and 4. 
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Figure 7.  Association of Plasma Glucose and Seizure Susceptibility in Adult EL 

Mice.  Data were obtained from all four dietary groups over treatment weeks 3-12 

for a total of 234 seizure and glucose measurements.  Seizure frequency in the 

three plasma glucose groups (< 6.5 mmol, 6.5-8.5 mmol, and > 8.5 mmol/L) was 

8/234, 44/234, and 70/234, respectively.  The association between glucose and 

seizure susceptibility was highly significant as determined by Chi-square analysis 

(P < 0.001). 
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Figure 8. Relationship of Circulating Glucose and Ketone Levels to Seizure 

Management in Epileptic EL Mice. 
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Parameter Body weight   Food Intake    Glucose     Ketones     Seizure
        (g)        (Kcal)       (mM)        (mM) Susceptibility

Body weight  
(g)       1.000

Food Intake 
(Kcal)       0.488*        1.000

Glucose     
(mM)       0.509*        0.382*       1.000

Ketones            
(mM)      -0.379*       -0.379*      -0.429*       1.000

Seizure 
Susceptibility       0.512*        0.464*       0.616*      -0.510*       1.000

* All correlations were significant at the 0.01 level (2-tailed).

Table 4  - Pearson Bivariate Correlation of Body Weight, Food Intake, Plasma 
Glucose Levels, Plasma β-hydroxybutyrate Levels, and Seizure Susceptibility in 
Adult EL Mice1      

1 Data were obtained from all four dietary groups over the treatment weeks 3-12 for a total 
number of 210 seizure and glucose measurements (see figure 1). 
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Dietary groups   Parameter         Df2         B3      SEM4    Wald x2 5    p value6

SD   Glucose        1    0.774    0.139    30.962     0.01

  Constant        1    -5.484    1.013    29.292     0.01

KD   Glucose        1    0.787    0.157    25.033     0.01

  Constant        1   -5.801    1.180    24.177     0.01

Both Diets   Glucose        1    0.752    0.102    54.682     0.01

  Constant        1   -5.507    0.759    52.625     0.01

2 Df, degrees of freedom.
3 B, Estimate of the association between glucose and seizure susceptibility.

6 The probability of Type I error. 

Table 5  - Binary Logistic Regression Analysis of the Maximum Likelihood Estimates Between 
Plasma Glucose, and Seizure Susceptibility in Adult EL Mice Fed Either the SD or KD1

1 Data were obtained from all four dietary groups over the treatment weeks 3-12 for a total number of 
210 individual measurements of plasma glucose and seizure susceptibility. 

5 The Wald test statistic was computed from the data compared by using x2 distribution with 1 degree 
of freedom.  The test statistic is used to determine the p value.

4 The estimated error of the mathematical weighting, indicating the precision of the estimated 
coefficient.
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CHAPTER THREE 

Glucose Reduces the Antiepileptic and Anticonvulsant Effects of the Ketogenic 

Diet in EL mice 

 

INTRODUCTION 

 

The influence of KetoCal® in the Management of Idiopathic Epilepsy in Young 

Adult EL Mice 

 

Our research focuses on the use of diets as a therapy for neurological and 

neurodegenerative diseases.  We previously found that CR underlies the 

anticonvulsant and antiepileptic effect of the KD in reducing seizure susceptibility 

in adult EL mice (Greene et al., 2001; Mantis et al., 2004; Seyfried et al., 2009b).  

Also as previously found, this anticonvulsant effect of CR and the KD was 

associated with a significant reduction in circulating plasma glucose levels and a 

subsequent elevation of ketone body levels (Mantis et al., 2004; Seyfried et al., 

2009b).  Furthermore, we have shown that the KD when given in unrestricted or 

ad libitum amounts has a transient effect in delaying the epileptogenesis (seizure 

onset) in young EL mice (Todorova et al., 2000).  Interestingly, viewing together 

all our previous findings indicate that the seizure control in the EL mice using CR 

or the KD is associated more with the amount rather than the origin of dietary 

calories.  
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Currently, several types of ketogenic diets are being employed for 

epilepsy treatment (Gasior et al., 2006).  The most frequently used therapeutic 

KD is the traditional ketogenic diet, developed by Wilder in 1921, which is based 

on long-chain fatty acids (Wilder, 1921).  A medium-chain triglyceride diet was 

introduced in the 1950’s, which startlingly produces greater ketosis, due to a 

faster rate of fatty acid oxidation (Huttenlocher et al., 1971; Huttenlocher, 1976).  

This stems from the fact that ketosis was originally believed to underlie the 

anticonvulsant effects of fasting (see Chapter 1 for additional information) 

(Wilder, 1921; Lennox, 1960).  This modification has not been widely accepted 

because it is associated with bloating and abdominal discomfort and is no more 

efficacious than the traditional ketogenic diet (Gasior et al., 2006).  A third 

variation on the diet, known as the Radcliffe Infirmary diet, represents a 

combination of the traditional and medium-chain triglyceride diets (Schwartz et 

al., 1989; Gasior et al., 2006).  Its efficacy is also similar to the traditional 

ketogenic diet. 

In contrast to other ketogenic diet formulations (lard-based or medium 

chain triglyceride diets), which are not standardized or commercially available, 

KetoCal®, (KC), is a nutritionally balanced soy oil-based KD that has been 

approved by the FDA for the management of seizures in children with intractable 

epilepsy (Zhou et al., 2007; Mantis et al., 2009).   According to the 

manufacturer’s (Nutricia North America) recommendation for the management of 

seizures, KC is administered in restricted amounts.  This involves a 65–70% 
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recommended daily allowance of calories or an approximate 30–35% calorie 

restriction. Hence, as seen with a restricted KD this recommended administration 

of KC should not only reduce the adverse effects of the diet’s high fat content 

(Kang et al., 2004; Sampath et al., 2007; Marsh et al., 2008a), but also provide 

maximum therapeutic antiepileptic and anticonvulsant efficacy (Mantis et al., 

2004; Zhou et al., 2007; Raffo et al., 2008; Coppola et al., 2009; Seyfried et al., 

2009b).  This suggests that the neuroprotective effects of both the KD and that of 

KC could only be achieved under CR conditions (Zhou et al., 2007).  

Interestingly, in clinical settings, it has been shown that the antiepileptic efficacy 

of the KD or that of fasting is usually lost as a result of administration of excess 

calories (Lennox and Cobb, 1928; Huttenlocher, 1976; Freeman et al., 2000; 

Freeman et al., 2007; Seyfried et al., 2009b).  Similar observations are seen in 

energy-restricted animals weaned away from the KD to an unrestricted high 

carbohydrate diet, which has resulted in a loss of the anticonvulsant effects of the 

diet (Bough and Rho, 2007).   

As mentioned previously, since epileptic seizures depend on glucose 

uptake and metabolism (McIlwain, 1969; Meldrum and Chapman, 1999; Cornford 

et al., 2002), it will be interesting to know whether supplementation of the free 

form of D-glucose has a similar effect in abolishing the antiepileptic efficacy of 

the KD in calorically restricted EL mice.  In accordance to our previous findings 

where an unrestricted KD was shown to transiently delay epileptogenesis in 

young naïve (not yet seizure susceptible) EL mice (30 days-old), we propose that 
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KC could also have a positive antiepileptic and anticonvulsant effect in young 

sexually mature EL mice with active epilepsy, and that glucose supplementation 

in dietary restricted EL mice may result in marked change of the therapeutic 

efficacy of CR. 

In this study, we evaluated the antiepileptic and anticonvulsant efficacy of 

KC in young adult EL mice.  Our results are consistent with our previous findings 

that seizure control in the EL mice is associated more with the amount rather 

than the origin of dietary calories.  We also confirmed that CR underlies the 

anticonvulsant action of the KD in EL mice, and that the neuroprotective effect of 

CR was associated with a significant reduction in circulating plasma glucose 

levels and a subsequent elevation of ketone body levels.  Although a restricted 

KC was able to reduce seizure susceptibility in young adult EL mice, 

supplementation of glucose in the drinking water of restricted mice resulted in a 

reduced anticonvulsant efficacy of CR.  Finally, for the first time we were able to 

show that KC fed in unrestricted amounts was able to reduce the severity and 

frequency of seizures in young EL mice. 

 

 

MATERIALS AND METHODS 

 

Mice 
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The EL mouse model used in this study is previously described in the 

Materials and Methods section of Chapter 2. 

 

Seizure Susceptibility, Seizure Testing, and Seizure Phenotype 

 

 The seizure susceptibility paradigm for testing EL mice, along with the 

seizure phenotype of these mice is previously described in the Materials and 

Methods section of Chapter 2. 

 

Diets 

 

Similarly to what was previously described for adult EL mice (see Chapter 

2), all mice received the SD prior to experimentation.  The KetoCal® ketogenic 

diet was obtained as a gift from Nutricia North America (Rockville, MD, formally 

SHS International, Inc.).  The KetoCal® diet (KC) is a nutrient balanced soy oil-

based high fat, low carbohydrate KD diet that delivers 7.2 kcal/g of gross energy 

where fat, carbohydrate, protein, and fiber comprised 720 g, 30 g, 150 g, and 0 

g/Kg of the diet, respectively (Zhou et al., 2007; Mantis et al., 2009).  There are 

also minor differences between the SD and KC for the content (g/kg of diet) of 

amino acids, vitamins, minerals and trace elements.  KC has a ketogenic ratio 

(fats: proteins + carbohydrates) of 4:1 and the fat was derived from soybean-oil.  

KC was fed to the mice in paste form (water: KC; 1:2) within the cage as 
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previously described (Zhou et al., 2007; Mantis et al., 2009).  The specific 

feeding regimen for the SD-R and the KC-R mice was performed accordingly to 

what was described previously (Mantis et al., 2004; Zhou et al., 2007).  Briefly 

both the SD and KC diets are calorie restricted to reduce mouse body weights by 

15-18% compared to their pre-trial body weight.  Water was provided ad libitum 

to all mice throughout the study.   The energy composition of the SD and the KC 

diets is shown in Table 2.  

 

Pre-Trial Period 

 

 Seizure susceptibility, body weight, and food intake was measured 5 times 

over a 6-week period in 34 singly housed young adult female EL mice (about 40 

days old) fed the SD unrestricted as previously described (Chapter 2) (Mantis et 

al., 2004).  Mice were approximately 80 days of age at the end of the pre-trial 

period. All mice were highly seizure susceptible at the initiation of the diet 

therapy, and had experienced at least 3 recurrent complex partial seizures prior 

to diet initiation. 

 

Dietary Treatment 

 

After the 6-week pre-trial period, the mice were placed into five groups (n 

= 6-8 mice/group) where the average body weight of each group was similar 
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(about 26.2 ± 0.5 g) (Figure 8).  All mice were then fasted for 14 hr to establish a 

similar metabolic set point at the start of the experiment.  The mice in each group 

were then given one of five diets: 1) the standard diet fed ad libitum or 

unrestricted (SD-UR), 2) the KC fed ad libitum or unrestricted (KC-UR), 3) the KC 

restricted to achieve a 15-18% body weight reduction from the pre-trial weight 

(KC-R), 4) the KC restricted to achieve a 15-18% body weight reduction from the 

pre-trial weight, with the supplementation of D-glucose (25 mM) in the drinking 

water 0.5hr before seizure testing (KC-R + 0.5hr [Glu]), and 5) the KC restricted 

to achieve a 15-18% body weight reduction from the pre-trial weight, with the 

supplementation of D-glucose (25 mM) in the drinking water 2.5hr before seizure 

testing (KC-R + 2.5hr [Glu]).  Each mouse in the three R groups served as its 

own control for body weight reduction.  Based on the food intake and body 

weight during the pre-trial period, food in the R-fed mouse groups was reduced 

until each mouse achieved the target weight reduction of a 15-18%.  In other 

words, the daily amount of food given to each R mouse was reduced gradually 

until it reached 82-85% of its initial (pre-trial) body weight.  The dietary treatment 

period lasted for nine weeks. 

The feeding paradigm for the SD-UR and KC mouse groups is similar to 

that of the SD-UR and KD mouse groups described in the Materials and Methods 

section of Chapter 2. The two KC-R mouse groups that were supplemented with 

glucose in their drinking water also were fed similarly to KD-R group described 

previously in the Materials and Methods section of Chapter 2, with the exception 
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that 25 mM of D-glucose was provided ad libitum in their drinking water 0.5 hr or 

2.5 hr prior to seizure testing.  For the KC-R mouse group that no had no glucose 

on its drinking water, KC was administered as previously described in the 

Materials and Methods section of Chapter 2.  For all KC-R mice, a calculated 

restricted amount of KC was placed directly on top of the food hopper bars for 

easy access. 

 

Measurement of Plasma Glucose and β-Hydroxybutyrate 

 

Blood was collected approximately 1 hr after seizure testing every three 

weeks, as described in the Materials and Methods section of Chapter 2.  In 

various animals it has been shown that exposure to stressors, such as eye 

bleeding, can cause a varying effect of physiological changes in the animal body 

weight, growth, and food intake regulation (Armario et al., 1988; Marti et al., 

1993; Marti et al., 1994; Valles et al., 2000). Plasma glucose and β-

hydroxybutyrate concentrations were measured spectrophotometrically, using the 

StanBio® Enzymatic Glucose Assay (1075-102) (StanBio Laboratory, Boerne, TX, 

USA) and a modification of the Williamson et al., enzymatic procedure 

(Williamson et al., 1962), respectively. Detailed description of the β- 

hydroxybutyrate assay is shown in the methods and materials of Chapter 1 and 

also in Appendix C.  
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Statistical Analysis 

 
Both ANOVA and a two-tailed t-test were used to evaluate any significant 

differences in body weight, seizure susceptibility, plasma glucose levels, and 

plasma β-hydroxybutyrate levels between unrestricted and restricted groups. 

Differences were considered significant at P ≤ 0.01.  All values are expressed as 

mean ± SEM.  All statistical data were presented according to the 

recommendations of Lang et al., (Lang and Secic, 1997). 

 

 

RESULTS 

 

Influence of KC on Body Weight and Diet Tolerance 

 

Similarly to what we have observed in brain cancer management using 

KC, no adverse effects, or signs of vitamin and mineral deficiency were observed 

in the KC-R fed mouse groups.  Despite the 15-18% body weight reduction, KC-

R fed mice appeared healthy and more active than mice in the UR-fed groups.  

With the exception of oily fur, the KC-fed mice appeared active and healthy 

throughout the study as previously found (Zhou et al., 2007).  These findings 

indicate that KC was well tolerated by EL mice and moderate calorie restriction 

has the well-recognized health benefits in rodents (Keenan et al., 1999).  
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Throughout the study, the body weights remained relative similar (e.g. 

about 30 g at the end of the study) in the two unrestricted mouse groups (Figures 

9A and B), despite major differences in calorie and compositional content of 

these diets (Table 3).  In the R-fed groups, a significant loss of body weight was 

noticed within the first week of the treatment (Figure 9A).  The suggestive 15-

18% body weight reduction was achieved and maintained in all R-fed groups by 

week three of the dietary treatment.  Supplementation of D-glucose prior to 

seizure testing had no effect in body weight.  These findings indicate that KC 

when given in restricted amounts produced noticeable improvement in health and 

vitality, in concurrence with the body weight reduction. 

 

Influence of KC on Seizure Susceptibility in Young Adult EL Mice 

 

 All mice had experienced at least three complex partial seizures with 

secondary generalization prior to the initiation of the diet.  Feeding young EL 

mice with unrestricted amounts of either the KC or the SD had a varying effect on 

seizure susceptibility.  Although seizure remained relative high for the duration of 

the study in both UR-fed groups, the seizure susceptibility in the SD-UR group 

increased significantly compared to the seizure susceptibility in the KC-UR mice 

at the end of the study (Figures 10 and 11).  On the other hand, mean seizure 

frequency was reduced by almost 50% in all KC-R fed groups by week three of 

treatment (data not shown).  In addition, the mean seizure susceptibility in the 
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KC-R group remained significantly lower than that of the two UR-fed groups for 

the duration of the dietary treatment (Figure 10).  Moreover, supplementation of 

D-glucose 0.5 hr or 2.5 hr prior to seizure testing in the drinking water of 

restricted KC mice resulted in a marked increase in the seizure susceptibility of 

these mice compared to the seizure susceptibility of the KC-R mice (Figure 10). 

More importantly, supplementation of glucose 2.5 hr prior to seizure testing 

increased seizure susceptibility to the same levels as that of the KC-UR group 

(Figure 10).  Interestingly, supplementation of 50 mM β-hydroxybutyrate (given 

ad libitum daily) in the drinking water of another group of mice fed the KC-R diet 

did not result in a better anticonvulsant efficacy of the restricted KC diet alone 

(data not shown).  These findings support our previous notion that the 

antiepileptic efficacy of the high fat ketogenic diet is best when given in restricted 

amounts and that seizure management in EL mice is dependent on a reduction 

of body weight and thus glucose levels.  Furthermore, whereas glucose 

supplementation resulted in an increase of the seizure susceptibility, 

administration of KC in unrestricted amounts reduced seizure susceptibility in 

young EL mice.  This latter finding might suggest that unrestricted KC reduces 

the influence of Gower’s dictum, that “seizures beget seizures”, in the seizure 

susceptibility of EL mice. 

 

Influence of KC on Plasma Glucose and β-Hydroxybutyrate Levels 
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 Plasma and ketone body levels were analyzed every three weeks during 

the diet treatment period.  Plasma glucose levels were similar in both UR-fed 

mouse groups and remained relative high throughout the study (Figure 12).  

Contrary to that, glucose levels were significantly lower in the KC-R group 

compared to either unrestricted group (Figure 12).  Supplementation of glucose 

had no effect on the glucose levels of the KC-R mice (Figure 12).  In contrast to 

glucose, circulating β-hydroxybutyrate levels were significantly different in the 

KC-UR group compared to the SD-UR mice throughout the study (Figure 13).  

Interestingly, this marked increase of ketone levels in the KC-UR was evident by 

the third week of dietary treatment (data not shown).  As previously shown, 

ketone levels in the SD-UR group remained low and were stable for the duration 

of the experiment.  Similar to the effect in glucose levels, supplementation of 

glucose had no effect on the ketone levels of the KC-R mice (Figure 13).  

Interestingly, ad libitum supplementation of 50 mM β-hydroxybutyrate in the 

drinking water of another group of mice fed the KC-R diet resulted in similar 

glucose and ketone levels as in the three KC-R groups (data not shown).  These 

findings are consistent with our previous studies in mice showing that the high fat 

KD does not lower plasma glucose levels when administered in unrestricted 

amounts and that a transition from the glucose to ketone bodies for energy 

underlies the anticonvulsant and antiepileptic effects of the KD and that of calorie 

restriction.   



 
 
 

65

 

 

 

DISCUSSION 

 

 Our current findings demonstrate that KetoCal ® (KC), a new nutritionally 

balanced soy oil-based high fat, low carbohydrate KD, has both antiepileptic and 

anticonvulsant properties in reducing seizure susceptibility in young adult EL 

mice.  This neuroprotection was associated more with the amount rather than the 

origin of dietary calories.  These observations are consistent with the already 

known neuroprotective properties of the traditional KD (Gasior et al., 2006; 

Freeman et al., 2007; Seyfried et al., 2009b).  Despite recent findings indicating a 

distinct increase of seizure threshold in a pentylenetetrazol (PTZ)-induced 

seizure rat model by KC (Raffo et al., 2008), no prior studies have evaluated the 

therapeutic efficacy of KC in a natural model of epilepsy, such as the EL mouse.  

Most of the studies involving the study of the antiepileptic mechanism(s) of the 

KD have been based on acute seizure models (e.g. PTZ and kainic acid), and 

not on developmental natural epilepsy models (Bough and Rho, 2007).  Since, 

those models may not recapitulate all essential features of the human epileptic 

condition (Stafstrom, 1999), the need of studying the therapeutic efficacy of the 

KD in natural model of epilepsy is further validated. 
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Consistent with our previous findings that CR is important in the seizure 

control of EL mice, our current results show that the anticonvulsant efficacy of KC 

is best when given in restricted amounts (Mantis et al., 2004; Seyfried et al., 

2009b).  Also as previously found, this anticonvulsant effect of KC was 

associated with a significant reduction in circulating plasma glucose levels and a 

subsequent elevation of ketone body levels (Mantis et al., 2004; Seyfried et al., 

2009b).  The aforementioned findings are in accordance with clinical studies, 

which indicate that the antiepileptic and anticonvulsant efficacy of the traditional 

KD is best when the diet is administered in restricted amounts and is associated 

with body weight and blood glucose reductions of about 10% (Livingston, 1972; 

Freeman et al., 2000; Freeman et al., 2007; Seyfried et al., 2009b).   Recent 

findings have also shown a restricted KC to have both anti-tumor and anti-

angiogenic effects in experimental mouse and human brain tumors mainly due to 

a reduction of total caloric content and circulating glucose (Zhou et al., 2007; 

Seyfried et al., 2008a). 

Interestingly we show for the first time that an unrestricted KD is able to 

reduce seizure severity and frequency without a corresponding reduction in body 

weight or circulating glucose levels.   Nevertheless, this reduced epileptogenicity 

in the KC-UR group was correlated with an elevation in plasma ketone (β-

hydroxybutyrate) levels compared to the levels of the SD-UR mice.  This is 

important, since it was initially thought that the antiepileptic action of the KD was 

largely due to ketosis, a phenomenon also observed both in fasted humans 
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(Wilder, 1921; Peterman, 1928; Lennox, 1960; Freeman et al., 2000) and in 

animal models fed the KD (DeVivo et al., 1978; Bough and Eagles, 1999; Eagles 

et al., 2003).  During states of reduced glucose availability brain cells can 

transition from glucose to ketone bodies for energy (Owen et al., 1983; Greene et 

al., 2003; Mantis et al., 2004; Seyfried et al., 2009b).  However, ketone utilization 

by the brain is dependent not only on plasma ketone levels, but also the levels of 

circulating glucose and other metabolites (Nehlig and Pereira de Vasconcelos, 

1993).  Hence, although the persisted high glucose levels observed in the KC-UR 

group may prevent the complete transition to ketone metabolism, it is clear that 

some degree of sustained ketosis is needed for the therapeutic efficacy of the 

KD.  Furthermore, ketone bodies alone, especially acetoacetate and acetone, 

have also been shown to be anticonvulsant in both humans and various animal 

models (Helmholz and Keith, 1930; Yamashita et al., 1976; Rho et al., 2002; 

Likhodii et al., 2003; Bough and Rho, 2007).  

The reduced seizure threshold of the KC-UR group can also be explained 

in part by a similar transient antiepileptogenic effect as seen in young (32 days 

old) seizure naïve EL mice fed with the lard-based KD in unrestricted amounts 

(Todorova et al., 2000).  Specifically, we showed that the KD delayed 

epileptogenesis in young EL mice without affecting glucose levels (Todorova et 

al., 2000).  It is known that seizures in the EL mice commence with the onset of 

sexual maturity (60-75 days of age) and progressively get worse with age (model 

Gower’s dictum) (Suzuki et al., 1991; Kasamo et al., 1992; Ishida et al., 1993; 
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Todorova et al., 1999a; Uchibori et al., 2002).  While Gowers’ dictum, “seizures 

beget seizures”, stipulates that the incidence and severity of future seizures 

depends on the incidence and severity of any previous seizure (Gowers, 1901; 

Todorova et al., 1999a; Pitkanen and Sutula, 2002; Stafstrom and Sutula, 2005), 

administration of KC in this critical stage of seizure development and progression 

(mice were fed KC starting at about 80 days of age) reduces the influence of 

Gower’s dictum on EL seizure susceptibility.  Furthermore, with the emergence of 

recent clinical evidence suggesting that the KD has both short- and long-term 

efficacy (Freeman, 2001; Hemingway et al., 2001; Marsh et al., 2006; Kossoff 

and Rho, 2009), it becomes even more apparent that although the KD has a dual 

anticonvulsant and antiepileptogenic effect, its potential mechanism(s) of action 

may vary.  

Glucose supplementation, prior to seizure testing, resulted in an increase 

of seizure susceptibility in young adult EL mice fed a calorically restricted 

regimen.  Although, the reduction in seizure susceptibility was independent of 

any changes in glucose or ketone levels, this finding is consistent with previous 

reports.  Specifically, supplementation of glucosamine, a carbohydrate analog, 

resulted in no net change in fasted blood glucose levels (Tannis et al., 2004).  

Also as seen with the influence of glucose ingestion after prolonged exercise in 

glucose absorption kinetics (Jeukendrup et al., 1999b; Jeukendrup et al., 1999a; 

Vannucci and Vannucci, 2000), supplementing glucose in R-fed EL mice will too 

result in a rapid clearance of circulating glucose for energy metabolism or seizure 
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induction.  Neuronal excitability and epileptic seizures are directly related to rapid 

glucose utilization and glycolysis (McIlwain, 1969; Ackermann and Lear, 1989; 

Meric et al., 1994; Clarke and Sokoloff, 1999; Meldrum and Chapman, 1999; 

Cornford et al., 2000; Knowlton et al., 2002; Ikemoto et al., 2003; Schwechter et 

al., 2003).  

Furthermore, supplementation of calories in the form of carbohydrate or 

protein in energy-restricted KD animals usually translates in diminished 

anticonvulsant efficacy due to an increase in the pool of metabolic substrates for 

gluconeogenesis (Appleton and DeVivo, 1974; Huttenlocher, 1976; Bough and 

Rho, 2007; Freeman et al., 2007).  Thus to confirm the role of glucose in seizure 

susceptibility, in a follow up study, previously seizure controlled R-fed EL mice 

were reverted back to ad libitum conditions. Our findings indicate that re-feeding 

of either the SD or the KD in previously R-fed EL mice resulted in a progressive 

reduction of the anticonvulsant effects of CR (data not shown).  Specifically, we 

showed that seizure susceptibility in the re-fed restricted mice returned by the 

fourth week of ad libitum feeding.  This finding is in accordance with our previous 

findings in C57BL/6J mice, suggesting that CR was able to establish a new 

homeostatic state for mice (Mahoney et al., 2006).  Surprisingly, although body 

weight returned to pre-restricted levels within a week of re-feeding, glucose and 

ketone levels returned to pre-restricted levels more gradually (data not shown). 

This latter finding is also consistent with the findings of Lennox et al., 1928, 

where the return of seizures after termination of fasting were often associated 
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with rising blood glucose levels and falling blood ketone levels (Lennox and 

Cobb, 1928; Seyfried et al., 2009b).  Interestingly, in a clinical setting 

breakthrough seizures are believed to also result from a rise in blood glucose 

levels, as evident with the loss of the anticonvulsant effect of the KD in patients 

who gain weight on the KD or those who consume excess carbohydrates (e.g. 

“sneak” a cookie) (Huttenlocher, 1976; Freeman et al., 2000; Freeman et al., 

2007). 

Although the exact neuroprotective mechanism of the KD still eludes us, it 

is thought to result from a combination of the reduction in metabolite availability, 

oxidative damage, the increase in glutathione antioxidant properties, 

mitochondrial biogenesis, increased cerebral ATP and phosphocreatine levels, 

as well as an increase in GABA levels (Cheng et al., 2003; Ziegler et al., 2003; 

Cheng et al., 2004; Sullivan et al., 2004; Dahlin et al., 2005; Yudkoff et al., 2005; 

Bough et al., 2006; Seyfried et al., 2009b).   Hence, the neuroprotective effect of 

CR or the KD may be in large due to adaptations to ketosis rather than ketosis 

directly influencing the therapeutic efficacy of those diets (Bough and Rho, 2007). 

In conclusion, our results indicate that KC alone has both anticonvulsant 

and antiepileptic properties and that CR underlies the neuroprotective action of 

KC in EL mice.  Interestingly, supplementation of glucose decreases the 

anticonvulsant action of the KD, without affecting restricted glucose and ketone 

levels.  A further detailed biochemical and molecular analysis of the 
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anticonvulsant and antiepileptogenic mechanism of KetoCal® is shown in 

Chapter 6. 
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Figure 9.  Influence of the High Fat Soybean-oil KC Diet on Body Weight in 

Young Adult EL Mice.  Asterisks indicate that the body weight of all KC-R groups 

was significantly lower compared to the body of the KC-UR mouse group (P < 

0.001).  Body weight was similar between the two UR groups. A. Values are 

expressed as the mean ± SEM for the duration of the study including the pre-trial 

period (weeks 0-9) (n = 8-10 mice per group).  Arrow indicates initiation of the 

dietary treatment; B. Values are expressed as the mean ± SEM for the duration 

of weeks 3-9 of the dietary treatment period (n = 8-10 mice per group). 
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Figure 10. Influence of the KC Diet on Seizure Susceptibility in Young Adult EL 

Mice.  Double asterisks indicate that seizure susceptibility in the KC-R and KC-R 

+ 0.5hr [Glu] groups were significantly lower compared to the KC-UR mouse 

group (P < 0.001).  Double cross indicates that seizure susceptibility in the KC-

UR group was significantly lower compared to the SD-UR group (P < 0.001). 

Asterisks indicate that the seizure susceptibility of the KC-R + 0.5hr [Glu] and 

KC-R + 2.5hr [Glu] groups were significantly higher compared to the KC-R group 

(P < 0.02).  Other conditions are as in Figure 9. 
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Figure 11. Comparative Analysis of the Influence of the KC Diet on the Seizure 

Susceptibility in Young Adult EL Mice on Weeks 0 and 9 of the Study.  Asterisk 

indicates that at week 9 of the study seizure susceptibility of the SD-UR group 

was significantly higher than that at the beginning of the diet treatment (P < 0.05).  

No increase in seizure frequency was observed in the KC-UR group at the end of 

the study.  Other conditions are as in Figure 9. 
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Figure 12. Influence of the KC Diet on Plasma Glucose Levels in Young Adult EL 

Mice. Asterisks indicate that plasma glucose levels in all KC-R groups were 

significantly lower compared to the KC-UR mouse group (P < 0.001).  Other 

conditions are as in Figure 9. 
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Figure 13. Influence of the KC Diet on Plasma β-Hydroxybutyrate Levels in  

Young Adult EL Mice. Asterisks indicate that plasma β-hydroxybutyrate levels in 

all KC-R groups were significantly higher compared to the KC-UR mouse group 

(P < 0.001).  Double cross indicates that plasma β-hydroxybutyrate levels in the 

KC-UR group was significantly higher than that of the SD-UR mouse group (P < 

0.001).  Other conditions are as in Figure 9. 
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CHAPTER FOUR 

Improvement of Motor and Exploratory Behavior in Rett Syndrome Mice with 

Restricted Ketogenic and Standard Diets  

 

INTRODUCTION 

 

Rett Syndrome 

 

Rett syndrome (RTT) is an X-linked dominant neurodevelopmental 

disorder that affects about 1 in 9,000 girls (Bebbington et al., 2008).  Girls with 

RTT develop normally for about 6-18 months after birth before exhibiting signs of 

speech and behavioral regression in addition to progressive motor impairment 

(Guy et al., 2001; Zoghbi, 2002; Williamson and Christodoulou, 2006). Many 

symptoms of RTT are age dependent and include hand wringing, reduced 

muscle tonicity, anxiety, microencephaly, indications of mental retardation, and 

seizures, among other autistic-like behaviors (Witt Engerstrom, 1992; Mount et 

al., 2001; Mount et al., 2003; Jian et al., 2007). Although RTT patients show 

abnormal neuronal morphology, no neuronal loss is evident.  The relatively low 

incidence of RTT in humans often results from misdiagnosis of the disorder as 

autism or, to a lesser extent, as Angelman syndrome (Jedele, 2007).  

About 80% of girls with RTT have a mutation in the Mecp2 (Methyl-CpG-

binding protein 2) gene (Renieri et al., 2003; Percy and Lane, 2005; Zoghbi, 
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2005), which encodes a protein involved with transcriptional regulation, and more 

specifically with histone deacetylation and methylation-dependent gene silencing 

(Amir et al., 1999; Percy, 2002; Shahbazian et al., 2002b).  Males with mutations 

in the Mecp2 gene often die before birth or in infancy due to severe neonatal 

encephalopathy (Wan et al., 1999).  A small number of males with a Mecp2 

mutation, however, have developed signs and symptoms similar to those of 

classic Rett syndrome (Villard et al., 2000; Dayer et al., 2007; Villard, 2007).  

Some of these boys have an extra X chromosome in many or all of the body's 

cells.  Several mouse Mecp2 gene mutants have been generated including a 

partially truncated form of the MeCP2 protein (Mecp2308/y) that is commonly 

found in girls with RTT (Chen et al., 2001; Guy et al., 2001; Shahbazian et al., 

2002a). In contrast to humans, male Rett mice exhibit the classical RTT 

phenotype much earlier in life than female mice, and thus are predominately 

used for animal studies.  Importantly, Mecp2308/y mice exhibit several symptoms 

associated with RTT in humans, to include behavioral abnormalities and impaired 

social interactions (Chen et al., 2001; Guy et al., 2001; Shahbazian et al., 2002a; 

Moretti et al., 2005; Moretti et al., 2006).  More specifically, around 6 weeks of 

age Mecp2308/y mice begin to display learning and memory deficits that are 

indicative of synaptic dysfunction as well as other symptoms of RTT progression.  

The RTT phenotype in the female Mecp2 mice is milder and shows greater 

variability, presumable due to differences in the pattern of X chromosome 

inactivation (Young and Zoghbi, 2004; Metcalf et al., 2006).  Skewed X-
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inactivation is also believed to be responsible for the mild and hardly 

recognizable RTT phenotype in girls with RTT (Huppke et al., 2006; Takahashi et 

al., 2008). 

RTT children are generally smaller than normal children and these 

differences become increasingly exaggerated over time (Oddy et al., 2007).  Girls 

with RTT tend to be disinterested in social interactions and are often emotionally 

withdrawn (Thommessen et al., 1992).  They also have elevated circulating 

levels of pyruvate, lactate, and glucose, which could be indicative of an abnormal 

metabolic phenotype (Haas et al., 1986; Haas et al., 1995a; Haas et al., 1995b).  

Interestingly, Mecp2-null mice also have reduced levels of brain glutamine, 

glutamate, choline, N-acetyl aspartate, and ATP, further indicating that RTT 

could be associated with abnormal neuronal and glial cell metabolism (Saywell et 

al., 2006; Ward et al., 2009).  These findings, viewed together, indicate that 

abnormal energy metabolism may contribute to the growth failure associated with 

RTT, and also suggest that diet therapies, and in particular restricted diet could 

help delay the onset or at least mitigate severity of the RTT phenotype (Rice and 

Haas, 1988; Motil et al., 1994; Reilly and Cass, 2001; Oddy et al., 2007).  This 

hypothesis has been confirmed in (some) girls with RTT who demonstrated 

modest improvements in behavior and motor performance when maintained on a 

ketogenic diet (Haas et al., 1986; Liebhaber et al., 2003).  

 

Diet Therapies in the Treatment of Autism  
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The ketogenic diet (KD), as previously described, is a high fat, low 

carbohydrate diet that has been shown to have antiepileptic, anticonvulsant, and 

other neuroprotective effects in both rodents and humans (Mantis et al., 2004; 

Seyfried et al., 2004; Freeman et al., 2007; Hartman et al., 2007; Hartman and 

Vining, 2007; Baranano and Hartman, 2008; Maalouf and Rho, 2008).  We 

previously showed that although an unrestricted KD could delay the onset of 

seizures in EL mice with a genetic predisposition to epileptic seizures (Todorova 

et al., 2000), greater seizure control could be achieved in these mice when fed a 

calorically restricted KD (KD-R) (Mantis et al., 2004) (see also Chapter 2 for 

additional information).  Interestingly, the KD has been shown to positively 

influence the behavior of autistic children (Evangeliou et al., 2003), and produce 

metabolic alterations in the brain and in the body that enhance energy 

expenditure and ultimately reduce body weight (Kennedy et al., 2007).  Similarly 

to the KD, calorie restriction (CR) is a natural dietary therapy that too has long 

been recognized to improve health, promote longevity, and to reduce the 

incidence as well as delay the onset and/or severity of symptoms associated with 

a variety of neurochemical and neurobehavioral disorders, including epilepsy 

(Weindruch and Walford, 1988; Greene et al., 2001; Greene et al., 2003; Mantis 

et al., 2004; Maswood et al., 2004; Halagappa et al., 2007; Seyfried et al., 

2009b). These latter findings suggest that a KD-R has a greater neuroprotective 
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effect than an unrestricted KD, at least in rodent models of epilepsy (Mantis et 

al., 2004). 

Thus, in light of the evidence described above, in this study we evaluated 

whether CR could have a positive influence on the anxiety behavior and motor 

characteristics of a mouse model of RTT.  Our preliminary results indicate that 

calorically restricted diets can be of clinical importance since CR improved 

symptoms of behavioral abnormalities in Rett mice, particularly with respect to 

reduced anxiety involving exploratory activity within an unfamiliar environment.  A 

report of these findings was recently presented (Mantis et al., 2009). 

 

 

MATERIALS AND METHODS 

 

Mice 

 

The inbred B6.129S-Mecp2tm1Hzo/J (Mecp2308/y) Rett mice were originally 

obtained from JAX laboratories (Maine).  Mice were generated as previously 

described by Shahbazian et al., 2002 (Shahbazian et al., 2002a).  The mice were 

maintained through brother-sister inbreeding and kept in the Animal Care Facility 

of Boston College with all procedures in strict adherence with the NIH Guide for 

the Care and Use of Laboratory animals and approved by the Institutional Animal 

Care Committee.  The mice were group housed (prior to initiation of study) in 



 
 
 

87

plastic cages with Sani-chip bedding (P.J. Murphy Forest Products Corp., 

Montville, N.J.) and kept on a 12-hr light/dark cycle at approximately 22°C.  

Cotton nesting pads were provided for warmth when animals were individually 

housed.  All cages and water bottles were changed once per week.  Only males 

were used for these studies since female Rett mice have a less severe disease 

phenotype (Shahbazian et al., 2002a).   

 

Genotyping Rett Mice 

 

DNA from 30-day old Rett mice was isolated from ~3 mm of tail using the 

Qiagen DNeasy tail tissue protocol. The PCR reaction was set up similar to that 

of the JAX genotype protocol for the Mecp2308/y mice with the following 

modifications as previously described (Seyfried et al., 2008b).  Briefly, 1 μL of 

DNA (~50-100 ng) was amplified with 5 μL of 5X Buffer, 0.5 μL dNTPs, 5 μL 

Forward primer (10 mM), 2.5 μL AR Primer (10 mM), 2.5 μL BR primer (10 mM), 

0.25 μL GoTaq DNA Polymerase (Promega) and 8.25 μL water for a 25 μL total 

reaction volume.  The DNA PCR amplification protocol used was: 94°C for 2 min, 

followed by 31 cycles of 94°C for 45 sec; 62˚C for 45 sec; and 72°C for 45 sec, 

with a final extension at 72°C for 5 min following the last cycle. The forward and 

AR primer set amplified a 396 bp fragment from the wild-type allele, whereas the 

forward and BR primer set amplified a 318 bp fragment from the knockout allele.  



 
 
 

88

PCR products (5–15 µL) were separated on 1% agarose gels containing ethidium 

bromide, visualized with UV light.   

 

Diets 

 

All mice were fed SD prior to experimentation (see Chapters 2 and 3 for 

additional information on diet composition).  Briefly, the SD is a nutrient balanced 

low fat, high carbohydrate diet that delivers 4.1 kcal/g of gross energy (Mantis et 

al., 2004), whereas the KetoCal® diet (KC) is a nutrient balanced soy oil-based 

high fat, low carbohydrate KD diet that delivers 7.2 kcal/g of gross energy and 

has a ketogenic ratio (fats: proteins + carbohydrates) of 4:1 (Zhou et al., 2007).  

KC was used in this current study because it is a more palatable form of the KD.  

The feeding regime for the SD-R and the KC-R mice was previously described 

(Mantis et al., 2004; Zhou et al., 2007).  Briefly both the SD and KC diets are 

calorie restricted to reduce mouse body weights by 20-23%.  Water was provided 

ad libitum to all mice throughout the study.   The energetic composition of the SD 

and the KC diets is shown in Table 3.   

 

Pre-Trial Testing Period for Rett Mice 

 

12 wild-type Mecp2+/y (control) and 18 Mecp2308/y (Rett) mice (188 days of 

age) were selected for the study and were individually housed for an 11-day pre-
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trial period.  Young adult symptomatic male Mecp2 mice were selected in 

contrast to female Mecp2 mice because of the greater degree of RTT phenotypic 

similarities of the male Mecp2 mice to RTT children.  All mice were fed the SD ad 

libitum during the pre-trial period and the daily food intake of each mouse was 

determined (Mantis et al., 2004).  This pre-trial period was used to establish 

baseline physiological (metabolism) and behavioral (motor coordination, 

proprioception, and exploration) parameters for each mouse. The experimental 

protocol for each behavioral test used is summarized below. 

 

Testing Battery 

 

All behavioral testing was conducted before body weights or food/water 

intakes were determined for each mouse.  Only one behavioral test was 

performed on a given mouse in a given day.  The following behavioral tests 

sensitive to motor and sensory function were employed: 1) grip strength, 2) 

incline latency, 3) righting reflex, 4) visual placing, 5) light-dark compartment, 6) 

rotorod, and 7) open-field.   

1) The grip strength test examined defects in motor neurodevelopment 

related to muscle strength (Meyer et al., 1979).  The test was performed in 

triplicate with 60 sec being the maximum allowable time for mice to 

grab/hold with their forelimbs and/or hindlimbs onto a wire suspended two 
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feet above a soft, padded surface.  Only the maximum grab/hold time for a 

mouse to accomplish the task was considered for statistical analysis. 

 

2) The incline latency test (negative geotaxis) was performed to examine 

proprioceptive neurodevelopment and the ability to sense gravitational 

forces (Pryor et al., 1983).  The test was performed in triplicate with 60 sec 

being the maximum allowable time for mice to reorient themselves 180o 

(head facing upward) after being placed head facing downward on a soft, 

high friction surface with a negative 40o from horizontal slope.  Only the 

maximum time for a mouse to accomplish the task was considered for 

statistical analysis.   

 

3) The righting latency test was also performed to examine proprioceptive 

neurodevelopment necessary to restore the body to an upright spatial 

position (Fox, 1965).  The test was performed one time unless a mouse 

demonstrated a reduced ability to turn over onto its belly (position itself in 

an upright position - all 4 limbs) after being placed gently on its back atop 

a flat padded surface.  Only the maximum time for a mouse to accomplish 

the task (60 sec trial) was considered for statistical analysis. 

 

4) The placing latency test examined neurodevelopmental defects in 

visual proprioception necessary to see and grasp an approaching solid 



 
 
 

91

surface.  Mice were lifted gently by the tail, suspended briefly in mid-air, 

and then lowered slowly towards the edge of a table/mouse cage rack that 

mice were able to reach by extending their forelimbs.  The test was 

performed one time unless a mouse demonstrated a reduced ability to 

grab/extend forelimbs towards an edge 2-3 cm away.  Only the maximum 

time for a mouse to accomplish the task (60 sec trial) was considered for 

statistical analysis.  

 

5) The light-dark latency test examined anxiety and the propensity of a 

mouse to explore a novel environment (Crawley et al., 1997; Crawley, 

1999; Bourin and Hascoet, 2003).  The test was performed one time for 

each mouse.  The testing apparatus consisted of two compartments: a 

dark compartment and a light compartment.  The dark compartment, a 

standard mouse cage covered with a solid box, served as the control 

environment and the light compartment, an uncovered mouse cage, 

served as the novel environment.  The mouse was initially placed in the 

dark compartment and was allowed to move freely between the light and 

dark compartments.  The length of time that it took for a mouse to 

completely enter the lighted compartment, the amount of time that the 

mouse spent in the lighted compartment, and the total number of times 

that the mouse entered and exited this compartment were considered for 

statistical analysis.  Each test lasted for 5 min. 
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6) The rotorod test examined defects in mouse motor neurodevelopment 

related to coordination and balance (Crawley, 2007).  The test was 

performed in duplicate at four different speeds (20, 30, 40, and 60 rpm) 

with 60 sec being the maximum allowable time for mice to stay on a 

rotating bar/rough edge cylinder positioned over mouse bedding.  Mice 

were allowed to rest for 30 sec between trials at the same speed, and for 

2 min between trials at different speeds.  The average length of time that a 

mouse remained on the bar for a given speed was considered for 

statistical analysis.     

 

7) The open field test examined defects in mouse locomotor/exploratory 

activity, anxiety, and rearing events using the SmartFrame Cage Rack 

System (Kinder Scientific, San Diego, CA) (Crawley and Paylor, 1997; 

Paylor et al., 1998).  Photobeams along the frame of the system track 

mouse movement within the cage and register mouse location, distance, 

and rearing capabilities.  A mouse was placed in the center of the open-

field apparatus and behavior was measured for 15 min.  The data were 

analyzed using the MotorMonitor software (Kinder Scientific, San Diego, 

CA).  Locomotor activity was measured as the total distance traveled in 

either the center or in the periphery (in cm), as well as the basic (all 

horizontal beam breaks) and fine (a change in a single beam while all 
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other beams remain unchanged – e.g. grooming and/or head activities) 

movements the mouse performed during the 15-min period.  Rearing 

events were measured as the number of times the mouse stood on its 

hind legs.  Anxiety was measured as the degree of avoidance the mouse 

showed in exploring the center of the apparatus (number of entries in the 

center). 

 

Dietary Regimen 

 

On the 11th day of the pre-trial period, the mice were separated into the 

following diet groups: 1) a wild-type (Mecp2+/y) mouse group fed the standard diet 

ad libitum or unrestricted (SD-UR), 2) a wild-type mouse group fed the KetoCal® 

diet restricted (KC-R), 3) a wild-type mouse group fed the standard diet restricted 

(SD-R), 4) a Rett (Mecp2308/y) mouse group fed the SD-UR diet, 5) a Rett mouse 

group fed the KC-R diet, and 6) a Rett mouse group fed the SD-R diet.  Mice in 

each of the wild-type mouse groups were matched for body weight (29.5 ± 1.7 g), 

as were the mice in each of the Rett mouse groups (30.5 ± 1.5 g).  All mice were 

then fasted for 17 hours before the diets were initiated in order to establish a 

similar metabolic starting point.  The feeding regime for all KC-R and SD-R group 

mice was designed to reduce mouse body weights by 20-23% compared to each 

mouse’s individual pre-trial body weight as we previously described (Mantis et 

al., 2004; Zhou et al., 2007).  The recommended body weight reduction was 



 
 
 

94

achieved and maintained during the dietary treatment period by adjusting the 

food intake of the R-fed mice every three days.  Mice in the SD-UR groups were 

provided with ~200 g of fresh SD food pellets on a weekly basis. The body 

weights and food intakes of all mice were measured every three days.  No KC-

UR groups were included in these studies because this particular feeding 

regimen was not found to be neuroprotective in mouse models of brain cancer 

(Zhou et al., 2007), nor was the KD-UR found as effective as the KD-R in 

reducing seizure frequency in a mouse model of epilepsy (Mantis et al., 2004).  

At the end of the dietary treatment period the same battery of behavioral tests 

was performed for each mouse to evaluate the effect of the diet on the behavior 

of these mice. 

 

Statistical Analysis 

 

Both ANOVA and a two-tailed t test were used to evaluate the significance 

of differences of body weight, and each behavioral parameter between 

unrestricted and restricted groups (SPSS software). Differences were considered 

significant at P ≤ 0.05.  The three-way mixed factor ANOVA statistical analysis 

was also performed to verify any significant effect between the diet, the mice, 

and the performance of the mice on the various rotorod speeds and the open-

field.  All values are expressed as mean ± SEM.  All statistical data were 
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presented according to the recommendations of Lang et al. (Lang and Secic, 

1997). 

 

 

RESULTS 

 

Influence of Diet on Behavior 

 

All mice were tested prior to the initiation of the dietary treatment period 

(see Methods) in order to establish baseline information pertaining to their 

behavioral features.  At the end of the one-month dietary treatment period, all 

mice from each of the six groups were subjected to the same battery of 

behavioral tests to evaluate the effects of the calorically restricted KC diet or the 

restricted SD on their behavior.  Consistent with the well-recognized health 

benefits of mild to moderate calorie restriction in rodents, no adverse effects 

were observed in either mouse group fed a calorically restricted diet.  Despite a 

20–23% body weight reduction, all R-fed mice appeared healthy and more active 

than mice in the groups fed ad libitum, as assessed by ambulatory and grooming 

behavior.  Furthermore, nesting behavior was similar for all dietary groups 

(empirical observation).  It is important to mention that no epileptic seizures were 

observed throughout this study in the Rett mice. 
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Influence of Diet on Body Weight and Food Intake  

 

All Rett (Mecp2308/y) and wild-type (Mecp2+/y) mouse groups were matched 

for age (~ 199 days) and body weight at the beginning of the dietary treatment 

period.  The average daily food intakes for the wild-type and Rett groups over the 

pre-trial period were 4.2 and 4.6 g, respectively.  All mice lost approximately 8-

13% body weight over the course of the 17-hour fast at the beginning of the 

treatment period.  Mice in both the KC-R and the SD-R groups achieved the 

desired 20-23% reduction in body weight within 2-3 weeks of the initiation of 

dietary treatment (Figure 14).  The degree of CR needed to maintain the 20-23% 

body weight reduction was approximately 50%.  No significant differences in 

body weight were observed between the wild-type (29.3 g) and the Rett (30.0 g) 

SD-UR mouse groups (Figure 14). 

 

Influence of Diet on Grip Strength 

 

The grip strength test was used to distinguish motor neurodevelopment 

deficits between the Rett mice and the wild-type control mice.  The suspension 

time was significantly less in the Rett SD-UR mice (16.7 sec) than in the control 

SD-UR mice (47.5 sec) (Figure 15).  Restriction of the KC diet or the SD did not 

improve the performance of the Rett mice on the wire (21.9 and 23.7 sec, 

respectively) compared to the Rett mice fed SD-UR (Figure 15).  Moreover, CR 
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of either diet had no effect in improving performance of wild-type mice on the grip 

strength test. These findings indicate that the Rett mice have a motor deficit and 

that restriction of either the KC or the SD diet does not improve this Rett 

phenotype. 

 

Influence of Diet on Incline Latency 

 

The incline latency test measured the ability of a mouse to orient (face 

upward) itself against gravitational forces when placed facing downward on a 

negative 40o slope.  No significant differences in the incline latency to face 

upwards were observed between the wild-type (40.2 sec) and the Rett (41.4 sec) 

SD-UR mouse groups (Figure 16).  The incline latency of both KC-R mouse 

groups was significantly reduced relative to their respective SD-UR groups 

(Figure 16).  In addition, the latency of the wild-type SD-R mouse group was 

significantly reduced compared to the Rett SD-UR mouse group.  Although, CR 

of the SD had no significant effect (P = 0.058) in improving the incline latency in 

the Rett mice (Figure 16), a definite trend of improved behavior is evident in 

these mice as well.  These findings suggest that restriction of either the KC or the 

SD diet improves overall reorientation (face upwards) to negative geotaxis. 

 

Influence of Diet on Righting Reflex 
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 The righting reflex test was used to measure each mouse’s proprioception 

and reflex response to revert back on its four limbs after being placed on its back.  

No differences were found between the Rett and wild-type mice (all mice 

performed the task within 0-2 sec).  In addition, restriction of KC or the SD had 

no effect on this behavior (data not shown). 

 

 Influence of Diet on Visual Placing 

 

 The visual placing test was used to measure the visual proprioception of 

the Rett mice.  No differences were found between the Rett and wild-type mice 

(all mice performed the task within 0-2 sec). In addition, restriction of KC or the 

SD had no effect on this behavior (data not shown). 

 

Influence of Diet on the Light-Dark Compartment Test 

 

 The light-dark compartment test was used to measure the ability or 

tendency of the mice to explore a novel environment.  Rett mice significantly 

underperformed in their ability to emerge from the dark or stay in the lighted 

compartment (Figures 17 and 18).  The emergence from dark to the light of the 

wild-type SD-UR mouse group (98.0 sec) was significantly earlier than in the Rett 

SD-UR mouse group (289.6 sec) (Figure 17).  In addition, the time spent in the 

light was significantly longer in the wild-type SD-UR mice (64.2 sec) than in the 
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Rett SD-UR mice (2.6 sec) (Figure 18).  Restriction of either KC or SD 

significantly improved the emergence time into the light and the total time in the 

light of the Rett mice compared to their respective Rett SD-UR mice (Figures 17 

and 18).  Furthermore, CR of the SD increased the total time the wild-type mice 

spent in the light compared to their respective wild-type SD-UR mice (Figure 18).  

The transition frequency between the two compartments was significantly greater 

in the wild-type SD-UR mice than in the Rett mice fed the SD-UR (Table 6).  

Restriction of the SD significantly increased the transition frequency between the 

light and dark compartments for both the Rett and the wild-type mice (Table 6).  It 

is important to mention that although the restricted KC diet moderately increased 

the number of transitions between the two compartments in both the wild-type 

and Rett mouse groups, these differences were statistically significant only for 

the Rett mice (Table 6).  Overall, these findings suggest that the Rett mice have 

an exploratory deficit and that restriction of either the KC or the SD diet reduces 

that deficit by increasing the activity of the Rett mice compared to Rett mice fed 

the SD unrestricted.  

 

Influence of Diet on Rotorod Performance 

 

 The rotorod was used to measure motor development, coordination, and 

balance in the Rett mice. At the three lower speeds (20, 30, and 40 rpm), the 

performance in the Rett SD-UR mice was significantly worse than in the wild-type 



 
 
 

100

SD-UR mice (Table 7).  Restriction of KC did not increase the time the mice 

spent on the bar (Table 7).  On the other hand, restriction of the SD significantly 

increased the time that the Rett mice spent on the bar compared to the Rett SD-

UR mice (Table 7).  No significant differences were found between the four 

groups in the rotorod performance at 60 rpm.  The three-way mixed ANOVA test 

further verified that the Rett SD-UR mice significantly unperformed on the rotorod 

compared to the wild-type SD-UR mice; however, the restricted KC diet had no 

significant effect on the rotorod performance.  These findings indicate that the 

Rett mice have a motor coordination/balance deficit.  Although, the restricted KC 

diet had no effect on improving this deficit, the restricted SD was able to do 

improve the time the Rett mice spent on the bar. 

 

 Influence of Diet on Open-Field Performance 

 

 The open-field test was performed to measure motor defects in locomotor 

activity and rearing events in the Rett mice during a 15 min testing period.  No 

significant differences were observed between the Rett SD-UR mice and the 

wild-type SD-UR mice in all the behavioral parameters we measured (Table 8).  

Total time and rest time in each zone (center and periphery) was also similar 

between Rett and the wild-type mice (data not shown). The restricted KC diet 

significantly increased the number of entries in the center and the periphery of 

the open-field apparatus as well as the number of rearing events in the Rett mice 



 
 
 

101

compared to the Rett mice fed the SD-UR (Table 8).  Furthermore, the restricted 

KC diet significantly increased all behavioral parameters measured in the wild-

type mice compared to the wild-type mice fed the SD-UR (Table 8).  Restriction 

of the SD also improved both the number of entries in the center and in the 

periphery of the open-field apparatus as well as the number of rearing events of 

the wild-type mice compared to the wild-type mice fed the SD-UR (Table 8).  

Although the average total distance traveled in the center of the open-field 

apparatus by the wild-type SD-R mice was greater than that traveled by the wild-

type SD-UR mice, this difference did not reach a statistical significance (P = 

0.058) (Table 8).  Furthermore, although restriction of either diet significantly 

increased the basic movement in all R-fed groups compared to respective UR-

fed mice, fine movement was not significant different (data not shown).  These 

findings indicate that the locomotor activity is similar in normal and Rett mice and 

that restriction of either the KC or the SD diet increases the locomotor activity in 

mice. 

 

 

DISCUSSION 

 

Therapeutic diets, such as the KD, have been shown to have a wide range 

of neuroprotective effects (e.g. antiepileptic, anticonvulsant, antitumorigenic) in 

both humans and in rodent disease models (Seyfried et al., 2003; Mantis et al., 
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2004; Veech, 2004; Gasior et al., 2006; Freeman et al., 2007; Hartman et al., 

2007; Prins, 2008), as well as improve the behavior of some girls with RTT (Haas 

et al., 1986; Liebhaber et al., 2003).  The KD can also positively influence the 

behavior of autistic children (Evangeliou et al., 2003), and can produce metabolic 

alterations in the brain and in the body that enhance energy expenditure and 

ultimately reduce body weight (Kennedy et al., 2007).  A reduction of circulating 

glucose levels coupled with an elevation of circulating ketone body levels is 

thought to underlie the therapeutic effects of the KD (Greene et al., 2003; Mantis 

et al., 2004; Zhou et al., 2007).  These neuroprotective effects of the KD suggest 

that a restricted KD could improve behavioral abnormalities and motor 

dysfunction in mouse models of RTT (Haas et al., 1986; Evangeliou et al., 2003; 

Liebhaber et al., 2003; Mantis et al., 2004; Seyfried et al., 2004).  Our current 

findings support our prior evidence that the neuroprotective effects of either the 

KD or that of CR stem primarily from a reduction in total calorie intake rather than 

caloric origin (e.g. from carbohydrates, protein, or fats) (Mantis et al., 2004; 

Denny et al., 2006).  Administration of the KD in restricted amounts also reduces 

the adverse effects of the diet’s high fat content (e.g. weight gain, 

hypercholesterolemia, diabetes, kidney stones, and cardiovascular disease) if the 

diet were to be administered ad libitum for extended periods of time (Kang et al., 

2004; Sampath et al., 2007; Marsh et al., 2008a).  Hence, we considered a 

restricted KD to be more therapeutic for the management of behavioral 
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abnormalities in RTT mice than the unrestricted KD.  This latter observation 

further supports our rational for omitting an unrestricted KetoCal® mouse group.  

In agreement with the findings previously reported by Shahbazian et al., 

our results show that adult Rett (Mecp2308/y) mice are deficient in their ability to 

hang on a suspended wire or perform adequately on the rotorod motor test 

compared to control wild-type (Mecp2+/y) mice (Shahbazian et al., 2002a).  In 

contrast, the performance of the Rett mice on the open-field test was not 

significantly different from that of the wild-type mice.  Although this particular 

finding is not consistent with that previously observed (Shahbazian et al., 2002a), 

it is important to mention that the length of the testing period between the two 

open-field tests in the two studies was different, and could hence explain this 

discrepancy in our findings.  More specifically, our test was performed for a total 

of 15 min, whereas Shahbazian et al. performed the test at 10 min intervals for a 

total of 30 min.  In the aforementioned study, the performance of the Rett mice 

was not significantly different from the wild-type mice after 10 min, but 

differences were observed at the 20 and 30 min time points (Shahbazian et al., 

2002a).  Consistent with prior evidence that the Mecp2308/y mice display 

interaction deficiencies (Shahbazian et al., 2002a; Moretti et al., 2005), our 

findings from the light-dark latency test also suggest that Mecp2308/y mice express 

deficits in the exploration of a novel environment.  The failure of the Rett mice to 

explore novel environments may reflect a heightened level of anxiety (Paylor et 

al., 1998).  It is important to mention that the performance of the Rett SD-UR 
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mice on the light-dark compartment test is consistent with previous findings in 

rodents (Li and Quock, 2001, 2002; Blanco et al., 2009).   

Previous studies showed that both CR and the KD increase the activity 

and exploratory behavior of rodents (Ziegler et al., 2005; Faulks et al., 2006).  

Our current findings in the Rett mice support these observations and suggest that 

CR underlies the mechanism of the increased activity observed in mice fed either 

the restricted KC or SD diets.  Interestingly, we observed that calorie restricted 

Rett mice exhibited not only an increased ability or tendency to explore a novel 

environment (i.e. the light-dark paradigm test) but also an increased number of 

entries in the center of the open-field apparatus (i.e. the open-field test) as 

compared with Rett mice fed a SD-UR.  These findings are consistent with prior 

evidence in rodents that CR increases the number of entries, and the total 

amount of time spent, in the center of the open-field apparatus (Geng et al., 

2007; Levay et al., 2007).  It is important to mention that both the light-dark test 

(the emergence time to the light and the total time spent in the lit environment) 

and the open-field test (the entry into the center of the open-field apparatus) are 

measures of anxiety (Paylor et al., 1998).  Hence, these data suggest that 

restriction of either the KC, or the SD could reduce anxiety associated with the 

RTT phenotype.  Furthermore, CR of either diet enhanced the performance of 

Rett mice on both the incline latency test (proprioception) as well as on the 

number of rearing events on open-field test (motor function) relative to Rett mice 

fed the SD-UR.  
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Although seizure susceptibility was assessed using our established 

handling induced seizure susceptibility protocol for the epileptic EL mice (Greene 

et al., 2001; Mantis et al., 2004); no myoclonic episodes were observed in the 

Mecp2308/y mice that we studied.  Consequently, we are unable to determine if 

the restricted KD could reduce seizure susceptibility in Rett mice as was shown 

previously in girls with RTT (Haas et al., 1986; Liebhaber et al., 2003).  As an 

aside, although nesting is a measure of home-cage activity related to both social 

behavior and motor function (Moretti et al., 2005), it is important to point out that 

neither the restricted KC diet nor the restricted SD was able to improve nesting 

behavior in the Rett mice (empirical observation).  In general, R-fed mice spent 

significantly less time interacting with their nesting material compared to mice fed 

an unrestricted diet due to a persistent search for food.  Thus, our data, viewed 

together, suggest the possibility that the increased activity observed in the Rett 

mice may be associated with increased hunger resulting from CR.  Nevertheless, 

the restriction of either the KD or SD diet can be of clinical importance since the 

diet improved symptoms of certain behavioral abnormalities in Rett mice, 

particularly those with respect to reduced anxiety involving exploratory activity 

within a novel environment and the number of entries in the center of the open-

field apparatus. 

It seems likely that the beneficial effects of the KD in human patients with 

RTT are similar to those observed in Rett mice in the present study.  Because 

girls with RTT are withdrawn emotionally and hesitant, and because the 
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restricted KD appeared to reduce some of the cautious tendencies in Rett mice, 

our results suggest that a restricted KD could be administered to help mitigate 

anxiety or fearfulness in females with RTT.  Our results also suggest that the KD 

cannot, by itself, correct neurodevelopmental deficits associated with the RTT 

phenotype, but that it may help to confer emotional stability in RTT patients, thus 

leading to reduced anxiety, and increased activity and exploratory behavior.  

Furthermore, it is important to mention that since girls with Rett are smaller and 

have reduced body weights (Thommessen et al., 1992; Oddy et al., 2007); CR of 

any diet should be implemented with caution under a careful clinical supervision 

(Bhagavan, 2002; Crowe, 2005; Dirks and Leeuwenburgh, 2006). 

Interestingly, supplementation of dietary choline increased N-acetyl 

aspartate levels; a marker of neuronal integrity, in young Mecp2-null mice 

(Mecp21lox) further suggests that nutritional supplementation may be therapeutic 

in improving neuronal function in girls with RTT (Nag and Berger-Sweeney, 2007; 

Ward et al., 2009).  Finally, it is important to mention that alternative dietary 

therapies to the KD or CR, such as the Atkins diet, the Low-Glycemic-Index diet, 

or even a diet enriched with Omega-3 fatty acids, could also have a positive 

influence in the behavior of girls with Rett.  Previous studies showed that both the 

Atkins and the Low-Glycemic-Index diet have similar effects to the KD and CR in 

reducing seizures in human patients with epilepsy (Pfeifer and Thiele, 2005; 

Kossoff et al., 2007), so it would be of interest to know whether those diets show 

similar results to what we found with the Rett mice. 
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In conclusion, our results demonstrate that CR of either the ketogenic diet 

or the standard diet could improve behavioral abnormalities in a mouse model of 

RTT, particularly by reducing anxiety associated with the exploration of an 

unfamiliar environment.  Considering that we used adult Rett mice, which 

displayed the full spectrum of symptoms associated with RTT, it would be 

interesting to determine whether a restricted KD or SD diet could help to delay 

the onset or, at least, reduce the severity of motor and exploratory 

neurodevelopment deficits in juvenile Rett mice that have not yet become fully 

symptomatic. 
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Figure 14. Influence of Diet on Body Weight in Mecp2+/y and Mecp2308/y Mice. 

Asterisks indicate that the body weight of the R group mice was significantly 

lower (P < 0.001) than their respective SD-UR groups; n = 4 for all Mecp2+/y 

mouse groups, and for the Mecp2308/y SD-R group, whereas n = 7 for both 

Mecp2308/y (Rett) SD-UR and KC-R mouse groups. 
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Figure 15. Influence of Diet on Wire Suspension Latency in Mecp2+/y and 

Mecp2308/y Mice. Asterisks indicate that the grip strength of the Rett mouse 

groups was significantly lower (P < 0.05) than the wild-type SD-UR group.  Diet 

had no effect on improving the ability of the Rett mice to suspend from the wire.  

Other conditions are similar as those shown in Figure 14. 
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Figure 16. Influence of Diet on Incline Latency (Negative Geotaxis) in Mecp2+/y 

and Mecp2308/y Mice.  Asterisk indicates that the performance of the mice in both 

KC-R mouse groups and in the Mecp2+/y SD-R was significantly improved in 

orientating themselves against negative geotaxis (P < 0.01) compared to the 

mice in their respective SD-UR groups. The average incline latency by the 

Mecp2+/y SD-R mice was greater than that of the Mecp2+/y SD-UR mice, but this 

difference did not reach a statistical significance (P = 0.058). Other conditions are 

similar as those shown in Figure 14. 
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Figure 17. Influence of Diet on Dark to Light Emergence in Mecp2+/y and 

Mecp2308/y Mice. Cross indicates that the Mecp2308/y SD-UR mice emerged 

significantly later into the light compared to the Mecp2+/y control SD-UR (P < 

0.01).  Asterisk indicates that the Mecp2308/y KC-R mice emerged to the light 

significantly earlier than the Mecp2308/y SD-UR (P < 0.05).  Double asterisk 

indicates that the Mecp2308/y SD-R mice emerged to the light significantly earlier 

than the Mecp2308/y SD-UR (P < 0.01).  Other conditions are similar as those 

shown in Figure 14. 
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Figure 18. Influence of Diet on Total Time in the Light in Mecp2+/y and Mecp2308/y 

Mice. Cross indicates that the Mecp2308/y SD-UR mice spent significantly less 

time in the light compared to the Mecp2+/y control SD-UR (P < 0.05). Asterisk 

indicates that the Mecp2308/y KC-R mice spent significantly more time in the light 

than the Mecp2308/y SD-UR (P < 0.05).  Double asterisk indicate that the 

Mecp2308/y SD-R mice spent significantly more time in the light than the 

Mecp2308/y SD-UR (P < 0.01).  Double cross indicates that the Mecp2+/y SD-R 

mice spent significantly more time in the light than the Mecp2+/y SD-UR (P < 

0.05).  Other conditions are similar as those shown in Figure 14. 
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Table 6: Mean light-dark compartment transitions1

Group

Mecp2+/y SD-UR

Mecp2+/y KC-R

Mecp2+/y SD-R

Mecp2308/y SD-UR

Mecp2308/y KC-R

Mecp2308/y SD-R

10.25 ± 1.18a

3.71 ± 1.67c

c  Mecp2308/y KC-R significantly different from Mecp2308/y SD-UR 
group at P < 0.05 (as determined from the Anova analysis).
d  Mecp2308/y SD-R significantly different from Mecp2308/y SD-UR 
group at P < 0.05 (as determined from the Anova analysis).

4.50 ± 1.32

Light-dark transitions

b  Mecp2308/y SD-UR significantly different from control Mecp2+/y SD-
UR group at P < 0.05 (as determined  from the Anova analysis).

1 Data are expressed as Means ± SEM for all six groups of mice.

5.25 ± 1.65d

6.00 ± 1.73

0.29 ± 0.29b

a Mecp2+/y SD-R significantly different from Mecp2+/y SD-UR group at 
P < 0.05 (as determined from the Anova analysis).
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Table 7: Mean walking time on the bar1

Group Time on bar (20 rpm) Time on bar (30 rpm) Time on bar (40 rpm)

Mecp2+/y SD-UR

Mecp2+/y KC-R

Mecp2+/y SD-R

Mecp2308/y SD-UR

Mecp2308/y KC-R

Mecp2308/y SD-R

18.14 ± 3.58a 27.64 ± 7.18a

59.62 ± 0.37

44.88 ± 7.56

59.63 ± 0.38

b  Mecp2308/y significantly different from control Mecp2+/y SD-UR group at P < 0.01 (as determined 
from the Anova analysis).

41.38 ± 10.52 52.50 ± 3.97

43.00 ± 11.68c 53.75 ± 6.25c

52.25 ± 5.42 60.00 ± 0.00

c  Mecp2308/y SD-R significantly different from Mecp2308/y SD-UR group at P < 0.05 (as determined 
from the Anova analysis).

27.50 ± 9.05 38.36 ± 8.44

57.37 ± 2.62

24.5 ± 7.64

1 Data are expressed as Means ± SEM for all six groups of mice.

19.14 ± 3.61b

a  Mecp2308/y significantly different from control Mecp2+/y SD-UR group at P < 0.05 (as determined  
from the Anova analysis).

30.07 ± 6.06

59.62 ± 0.37
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Table 8: Performance of Mecp2 mice in the open-field task1

Mecp2+/y SD-UR

Mecp2+/y KC-R

Mecp2+/y SD-R

Mecp2308/y SD-UR

Mecp2308/y KC-R

Mecp2308/y SD-R

1 Data are expressed as Means ± SEM for all six groups of mice (N = 4 - 7 mice per group).

b Mecp2+/y KC-R group mice are significantly different from control Mecp2+/y SD-UR group mice at P < 0.05 (as determined from the Anova 
analysis).

e Mecp2308/y SD-R group mice are significantly different from Mecp2308/y SD-UR group mice at P < 0.01 (as determined from the Anova 
analysis).

d Mecp2308/y KC-R group mice are significantly different from Mecp2308/y SD-UR group mice at P < 0.05 (as determined from the Anova 
analysis).

c Mecp2+/y SD-R group mice are approaching significance level compared to control Mecp2+/y SD-UR group mice at P = 0.058 (as determined 
from the Anova analysis).

Number of entries 
in center Rearing events

859.15 ± 86.80 410.21 ± 61.43 36.00 ± 3.70 35.25 ± 3.70 68.00 ± 10.45

Total distance in 
periphery (cm)

Total distance in 
center (cm)

Number of entries in 
periphery

159.75 ± 23.88a

954.40 ± 120.56 646.43 ± 65.57c 64.50 ± 11.03a 64.00 ± 11.30a 128.50 ± 16.76a

1225.55 ± 96.17a 737.23 ± 149.31b

812.80 ± 64.02 402.77 ± 81.46 36.29 ± 5.76 35.71 ± 5.84

55.25 ± 12.00835.66 ± 51.22 725.17 ± 27.79e 63.25 ± 3.33e 62.75 ± 2.78e

Group

a Mecp2+/y KC-R or Mecp2+/y SD-R group mice are significantly different from control Mecp2+/y SD-UR group mice at P < 0.01 (as determined 
from the Anova analysis).

58.86 ± 10.72

953.95 ± 45.16 528.32 ± 28.93 54.29 ± 2.56d 53.71 ± 2.51d 93.71 ± 11.66d

74.25 ± 8.57a 73.75 ± 8.82a
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CHAPTER FIVE 

Implementation of Calorically Restricted Diets for the Management of 

Neurological and Neurodegenerative Disease in Murine Models 

 

INTRODUCTION 

 

Influence of Diet Therapies on Disease Phenotype 

 

Diet therapies, especially calorie restriction (CR) and the ketogenic diet 

(KD), possess therapeutic potential in clinical settings and also delay or reduce 

symptoms associated with a range of age-associated pathologies in laboratory 

rodents (Tables 9 and 10).  CR is a natural dietary therapy that has long been 

recognized to improve health, promote longevity, and to reduce the incidence 

and symptoms of a broad spectrum of neurological and neurodegenerative 

diseases (Tables 9 and 10).   Those diseases include epilepsy (Azarbar et al., ; 

Bough et al., 1999b; Greene et al., 2001; Mantis et al., 2004; Seyfried et al., 

2009b), aging (Weindruch and Walford, 1988; Forster et al., 2003; Smith et al., 

2004; Everitt and Le Couteur, 2007; Barzilai and Bartke, 2009; Sohal et al., 

2009), Sandoff’s disease (Denny et al., 2006), Alzheimer’s disease (Qin et al., 

2006; Halagappa et al., 2007; Qin et al., 2008), Parkinson’s disease (Maswood et 

al., 2004), Huntington’s disease (Duan et al., 2003), ALS (Hamadeh et al., 2005), 
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neuronal damage (Anson et al., 2003), and brain cancer (Seyfried et al., 2003 ; 

Mukherjee et al., 2004; Zhou et al., 2007; Marsh et al., 2008b).  CR also reduces 

some of the symptoms associated with diabetes (Kelley et al., 1993; Pedersen et 

al., 1999; Minamiyama et al., 2007 ; Ugochukwu and Figgers, 2007; Jazet et al., 

2008), cardiovascular diseases (Ahmet et al., 2005; Mager et al., 2006; Fontana, 

2008; Hammer et al., 2008), hypertension (Zimmerman and Wylie-Rosett, 2003; 

Fontana, 2009), other types of cancer (Mukherjee et al., 1999; Jiang et al., 2008; 

Bonorden et al., 2009; Mavropoulos et al., 2009), and non-neurological diseases 

(Fenton et al., 2009; Fontana, 2009).  While the exact neuroprotective 

mechanism(s) of CR are not completely understood, we suggest that the 

protection conferred by the diet in the majority of disorders is associated (i) with a 

reduction in circulating glucose levels and (ii), from a concomitant and indeed 

compensatory elevation of ketone body levels (Tables 9 and 10) (Mantis et al., 

2004; Seyfried et al., 2009b).  This transition could be thought as a “normal” 

physiological cerebral/somatic adaptation to the implementation of CR. It has 

been postulated, that the therapeutic effects of CR stem from caloric restriction 

per se and not from the pre-defined restriction of any specific dietary component 

such as proteins, vitamins, mineral, fats, and/or carbohydrates (Tannenbaum, 

1959; Seyfried et al., 2003; Mantis et al., 2004; Barzilai and Bartke, 2009; 

Seyfried et al., 2009a).  Although CR in mice mimics therapeutic fast in humans 

(Mahoney et al., 2006), it is important to emphasize that CR differs from acute 

fasting or starvation in that CR reduces total caloric intake without producing 
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anorexia or malnutrition (Tannenbaum, 1959; Cahill, 1970; Weindruch and 

Walford, 1988; Mantis et al., 2004; Seyfried et al., 2009a). 

Historically, the high fat, low carbohydrate ketogenic diet (KD) has been 

reported to produce antiepileptic, anticonvulsant, and other neuroprotective 

effects similarly to that seen in CR in both human and animal models of 

seizures/epilepsy (Table 9) (Appleton and De Vivo, 1973; Todorova et al., 2000; 

Greene et al., 2003; Mantis et al., 2004; Nylen et al., 2005; Yamada et al., 2005; 

Freeman et al., 2007; Hartman et al., 2007; Bough, 2008; Samala et al., 2008; 

Fenoglio-Simeone et al., 2009).  Hence, the KD has garnered increasing interest 

as a novel alternative therapy for a variety of neurological disorders (Table 10).  

Those include Rett Syndrome (Liebhaber et al., 2003; Mantis et al., 2009), 

Alzheimer’s disease (Van der Auwera et al., 2005; Gasior et al., 2006), 

Parkinson’s disease (Maswood et al., 2004), brain cancer (Zhou et al., 2007; 

Marsh et al., 2008a), and Amyotrophic Lateral Sclerosis (Zhao et al., 2006; 

Mattson et al., 2007).  In addition, CR has been reported to reduce the acute loss 

of neural parenchyma during ischemic and/or hemorrhagic stroke, as well as 

following traumatic brain injury or insulin-induced hypoglycemia (Table 10) 

(Yamada et al., 2005; Gasior et al., 2006; Prins, 2008; Puchowicz et al., 2008).  

This neuroprotective effect of CR most likely stems from the ability of the brain to 

utilize ketones during low glycolytic conditions (Vannucci and Simpson, 2003; 

Pierre and Pellerin, 2005).  Furthermore, the KD has been shown to positively 

influence the behavior of autistic children (Evangeliou et al., 2003), as well as 
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produce cerebral and somatic metabolic alterations that enhance energy 

expenditure and ultimately reduce body weight (Kennedy et al., 2007).  This latter 

phenomenon serves as the marketing platform of the high fat, low carbohydrate 

Atkins diet as a weight loss paradigm (Kossoff et al., 2007; Wylie-Rosett and 

Davis, 2009).  As illustrated in Figure 22, the therapeutic efficacy of the KD is 

best when the diet is administered in restricted amounts (Mantis et al., 2004; 

Freeman et al., 2007; Seyfried et al., 2009b).  Although the role glucose and 

ketone bodies (β-hydroxybutyrate [β-OHB] and acetoacetate) in potentiating the 

protective effects of the KD in various disease processes remains unclear, it is 

our contention that alterations in brain/parenchyma cell energy metabolism are 

likely involved, as seen with CR (Tables 9 and 10) (Mantis et al., 2004; Marsh et 

al., 2008a; Maalouf et al., 2009; Seyfried et al., 2009b). 

 

ISSUES WITH DIET IMPLEMENTATION 

 

One of the most promising advances in delineating the mechanism(s) by 

which CR extends survival and regresses multiple disease processes was the 

observation that the physiological adaptations incurred by the onset of CR to 

improve health are evolutionary conserved (Klass, 1977; Weindruch and Walford, 

1988; Jiang et al., 2000; Bross et al., 2005; Goldberg et al., 2009).  Organisms 

have evolved to sense and adapt to environmental cues for their survival when 
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compromising conditions such as food depletion or various forms of energy 

stress are present (Vaquero and Reinberg, 2009).  The sirtuin family of proteins 

has been implicated as such a potential evolutionarily conserved mechanism for 

life span regulation and aging retardation (Blander and Guarente, 2004; 

Guarente and Picard, 2005; Bishop and Guarente, 2007; Feige et al., 2008b; 

Hipkiss, 2008).  Specifically in mammals, SIRT1 deacetylates many key 

transcription factors and co-factors, thereby affecting crucial cellular pathways 

involved in stress resistance and metabolism (Westphal et al., 2007). 

Nevertheless, previous studies in rodents have shown that the effects of 

CR on extending lifespan are strongly correlated and dose dependent to the 

degree of caloric intake reduction (Weindruch et al., 1986; Merry, 2002).  

Furthermore, in drosophila D. melanogaster the neuroprotective effects of CR are 

very rapidly, given the short lifespan of the organism, suggesting that the 

measurements of the rate of age-specific mortality may require large numbers of 

animals (Mair et al., 2005).  Although comparisons of a variety of age/disease-

related changes have been made between energy-restricted and unrestricted 

rodents in an effort to identify the underlying physiological/biochemical 

neuroprotective process(es) of those diets many studies fail to provide a 

standardized regimen for diet implementation. Thus, the complexity of the 

physiology involved in determining the beneficial effects of CR as well as 

technical issues in experimental design, the therapeutic mechanism(s) of CR 

remain still elusive (Masoro, 2009).  As briefly indicated in Tables 9 and 10, in the 
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literature there is considerable evidence that the health beneficiary effects of CR 

or the KD are not consistent between various rodent models, thus resulting in 

discrepancies in data interpretation regarding the neuroprotective effects of those 

diets.  Therefore, the goal of this review is address issues of diet implementation 

in disease management and to provide proper implementation guidelines that 

may ultimately aid in the elucidation of the CR neuroprotective mechanism(s).  

We suggest that these diet implementation guidelines, on a working “standard” 

calorically restricted paradigm for disease animal models, should not only 

maximize the therapeutic diet efficacy but also normalize data interpretation for 

comparison within different animal studies by reducing laboratory artifacts.    

 

A. A Comparative Analysis of CR to Other Dietary Energy Restriction 

Regimens  

 

In the literature, CR is also referred to as dietary restriction (DR), dietary 

energy restriction (DER), and food restriction.  However, these terms are not 

synonymous (Table 11), thus one needs to be cautious when studying them 

(Thompson et al., 2003).  As illustrated in Table 11, CR specifically refers to a 

dietary regimen formulated so that animals are fed different number of calories 

while still receiving the same facet of all other nutrients (Thompson et al., 2003).  

Although several forms of DR have been reported to extend survival and 

increase life span in animal disease models (Piper and Bartke, 2008; Anderson 
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et al., 2009; Colman et al., 2009; Masoro, 2009), many studies inappropriately 

describe “intermittent fasting, (IF),” as a prototypical variant of CR (Anson et al., 

2003; Duan et al., 2003; Halagappa et al., 2007; Armentero et al., 2008).  Recent 

studies suggest that the daily food consumption and underlying therapeutic 

mechanism(s) of CR and IF may vary considerably (Goodrick et al., 1990; Martin 

et al., 2006; Masoro, 2009).  

In a typical IF regimen, food is provided ad libitum to animals on an 

“every-other-day” basis accompanied with a 24-hr fast in between feeding days 

(Figure 19).  However, each IF regimen usually results in varying degrees of 

body weight loss (Anson et al., 2003; Mattson and Wan, 2005; Bates et al., 2007; 

Marsh et al., 2008b; Froy et al., 2009; Katare et al., 2009; Madorsky et al., 2009).  

This probably is due to the influence of both the animal genotype and the age of 

the animal during diet initiation (Goodrick et al., 1990). In contrast to the 

aforementioned IF regimen, animals fed a calorie-restricted diet usually consume 

enough food to maintain a stable body weight loss relative to their initial body 

weight (Figure 22) (Mantis et al., 2004).  It is possible that the complex 

relationship of body weight to life span both between and within the various 

dietary groups makes it difficult to predict that lower body weight increases 

survival or that is neuroprotective (Goodrick et al., 1990).  Furthermore, IF-

treated mice eat roughly twice as much food compared to the mice eating ad 

libitum on the days they have access to food, a phenomenon also seen in rats 

during an IF regimen (Lueker et al., 1956; Anson et al., 2003; Descamps et al., 
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2005; Froy et al., 2009).  This finding suggests that rodents exhibit increased 

food consumption on the fed days in order to maintain similar body weights as 

those seen in rodents fed ad libitum.   

Interestingly, this binge-eating phenomenon is also observed upon re-

feeding of normal mice calorie restricted for 30 days (Mahoney et al., 2006).  As 

shown in Figure 20, re-feeding of restricted mice results in an approximate two-

fold increase in food intake compared to either their ad-libitum pre-restricted 

period food intake or the food intake of ad libitum fed mice (Grand and Millar, 

1990; Hagan and Moss, 1997; Hagan et al., 2002; Mahoney et al., 2006). 

Similarly, re-feeding adult EL previously restricted to 20-24% of their pre-trial 

body weight resulted in similar body weights at the end of the re-feeding period 

(Figure 21). However, while the body weight and plasma lipids returned to 

unrestricted levels, plasma glucose and food intake remained significantly lower 

in the re-fed CR mice (Mahoney et al., 2006).  Contrary to this, re-feeding of IF 

subjects resulted in no apparent differences in glucose levels (Halberg et al., 

2005; Becskei et al., 2008, 2009).  This suggests that CR establishes a new 

homeostatic state that persists following ad libitum feeding most likely by 

reducing thermogenesis, where IF does not (Lane et al., 1996; Overton and 

Williams, 2004; Mahoney et al., 2006).  Reduced thermogenesis and subsequent 

increased activity-related energy expenditure allows less energy to be lost as 

heat by modulating uncoupling proteins (UCP1) (Klaus et al., 2005; Neschen et 

al., 2008).  UCP1 is a major player in basal and regulatory thermogenesis, overall 
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energy balance, and body weight regulation.  

Moreover, IF generates cycles of lipolysis and fat storage that are not 

representative of the usual 30-45% reduction in caloric intake (Weindruch et al., 

1986; Feige et al., 2008a; Froy et al., 2009).  Interestingly, re-feeding of a high fat 

diet following periods of food deprivation results in a significant decrease in 

glyceraldehyde phosphate dehydrogenase (GAPDH) activity (Saggerson and 

Greenbaum, 1969). This enzyme catalyzes the conversion of glyceraldehyde 

phosphate to D-glycerate 1,3-bisphosphate during glycolysis, compared to other 

dietary forms of refeeding.  A decrease in GAPDH activity results in the diversion 

of carbohydrate metabolism away from fatty acid synthesis into the formation of 

glycerol phosphate, the precursor for triglyceride and phospholipids synthesis in 

liver and adipose tissue (Freedland, 1967; Jansen et al., 1968; Krizova and 

Simek, 1996; Hillgartner and Charron, 1998; Reshef et al., 2003).  Finally, it has 

been shown that IF can differentially effect circadian rhythms depending on food 

availability, suggesting that this regimen induces a metabolic state that affects 

the suprachiasmatic nuclei clock in mice (Froy et al., 2009).   Therefore, in 

contrast to the cyclic IF regimen where body fat deposition increases while 

decreasing energy expenditure (Lim et al., 1996), CR decreases energy intake, 

and expenditure along with metabolic rate without increasing fat deposition 

(McCarter et al., 1985; DeLany et al., 1999; Greenberg and Boozer, 2000; 

Ramsey et al., 2000; Faulks et al., 2006).  
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B. Importance of Body Weight as an Independent Measure During CR  

  

Most rodent diets are formulated to promote rapid post-weaning growth 

with the intent of maximizing body weight gain with age (Ward, 1981). When 

considering the specific nutrient requirements of mice, it is important to be 

cognizant of not only the animal age and genotype (male vs. female; wild-type 

vs. transgenic) (Goodrick et al., 1990), but also the tight association of energy 

status to physiology (e.g. metabolic energy status, daily energy expenditure, and 

genetic background) (Felber and Golay, 1995; Ferguson et al., 2008).  The 

observation that CR does not enhance survival in DBA mice despite an apparent 

reduction in body weight reinforces the importance of the genetic background 

and diet regimen in determining the neuroprotective effects of CR (Turturro et al., 

1999; Forster et al., 2003).  Many studies, for instance, evaluating the daily 

protein requirements for mice have found that a minimal 13.6% casein (~12% 

protein) is needed for adequate growth, reproduction, and lactation (Goettsch, 

1960).  This is an important issue regarding the effects of the KD and CR diets in 

regards to protein and vitamin intake (Likhodii, 2001; Cunnane and Likhodii, 

2004; Samala et al., 2008).  For example in rodents, interchanging casein and 

soy peptone as the source of dietary protein has resulted in different survival 

rates (Iwasaki et al., 1988).  Therefore, similar amounts of protein and vitamins 

are necessary for not only sufficient animal growth and prevention of malnutrition, 

but also correct data interpretation (Reeves et al., 1993). 
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The maintenance of metabolic homeostasis relies on the balanced intake 

of nutrients from food.  Although various forms of CR have been implemented 

each with different levels of feeding restriction, CR typically is administered as a 

25-60% decrease in total calorie intake (Martin et al., 2007; Feige et al., 2008a; 

Masoro, 2009).  The most widely used method for implementing CR is pair-

feeding.  During pair-feeding, CR animals are restricted 70-30% of the daily food 

intake of the ad libitum control group (Feige et al., 2008a).  However, measuring 

food intake for group-housed animals instead of individual housed, raises 

concerns regarding the efficacy of these diets and data interpretation (Feige et 

al., 2008a).  Usually, group-housing results in varying body weight between 

animal cohorts, which may result in body weight changes that are independent of 

any dietary manipulation (Giralt and Armario, 1989; Perez et al., 1997; Ruis et 

al., 1999; Nyska et al., 2002; Haseman et al., 2003; Ikeno et al., 2005).  Thus, 

housing animals singly reduces data discrepancies.  It is important to mention 

though that the initial stress of housing animals singly sometimes may result in 

body weight reduction independently of the ad libitum fed diet, which is largely 

due to the animals acclimating to the new environment (Figure 22) (Mantis et al., 

2004).  

Although it is commonly held that “a calorie is a calorie” and that diets of 

equal caloric content will result in identical weight change independent of 

macronutrient composition, the laws of thermodynamics do not support this 

notion (Feinman and Fine, 2004; Fine and Feinman, 2004).  Comparing iso-
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calorically restricted diets of different macronutrient composition has shown to 

induce different changes in body mass (Young et al., 1971; Rabast et al., 1978; 

Piatti et al., 1994; Golay et al., 1996; Baba et al., 1999; Layman et al., 2003).  In 

particular low carbohydrate diets, such as CR, result in a more significant weight 

loss than isocaloric diets of high carbohydrate or fat content (such an example is 

shown in Figure 23).  Thus implementing CR regimens as a percent of the daily 

caloric intake of the control animal may not be informative for data interpretation.  

Also when studying the efficacy of diet therapies on a disease phenotype 

or animal behavior, it is important to mention that exogenous factors as well as 

the environment modulate/regulate metabolism.  In particular, stress, 

glucocorticoids, G protein-coupled receptors, NPY along with its receptors, and 

hormones (e.g. leptin, ghrelin, cholecystokinin, peptide YY3-36, a-melanocyte 

stimulating hormone) all play a pivotal role in body weight and food intake 

regulation (Marti et al., 1994; Schwartz et al., 2000; Tamashiro et al., 2005; 

Morton et al., 2006; Beckers et al., 2009; Dietrich and Horvath, 2009; Ferrini et 

al., 2009).  In various animals it has been shown that exposure to stressors (e.g. 

surgery, various types of drugs or endotoxins, inflammation, etc.) can cause a 

varying range of biochemical, physiological, and behavioral changes (Armario et 

al., 1988; Marti et al., 1994; Valles et al., 2000).  Specifically, we have shown that 

tumor implantation reduces body weight (surgery is a body weight modulator) in 

mice (Zhou et al., 2007; Marsh et al., 2008b).  Thus, when CR needs to be co 

administered along with a stressor, body weight must be allowed to normalize 
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back to its pre-stressed (e.g. pre-surgery) levels before starting any dietary 

manipulation.  If body weight isn’t normalized then active body weight controls 

need to be used.   Similarly to the effect of surgery, the administration of insulin 

in a dietary animal group can too play a significant role in body weight and food 

intake regulation (MacKay et al., 1940; Lotter and Woods, 1977; Grossman, 

1986; Rushing et al., 2000; Schwartz et al., 2000; Woods et al., 2000).  

Additionally, drugs such as AEDs, TZDs, corticosteroids, THC, metformin, 

conglutin-gamma, and fish oil, all have been shown to affect various metabolic 

parameters, including body weight (Table 12) (Chan et al., 1996; Magni et al., 

2004; Yasuda et al., 2004; Gounarides et al., 2008; Hausman et al., 2008; 

Gonzalez-Periz et al., 2009; Mishra and Mohanty, 2009; Mannaerts et al., 2010).  

Hormone levels and intact adrenal glands have also been show to be essential in 

the regulation of food intake and subsequently body weight (Yaktine et al., 1998; 

Liu et al., 2002).  All aforementioned findings point on the modulating effect of a 

stressor, drug, or hormone levels on body weight regulation reaffirm the 

importance for the usage of active body weight controls in diet studies. 

Consequently, when dividing mice into the various dietary groups, it is 

important to separate them based on their body weight such that the average 

body weight is the same between cohorts (similarly to Figures 22 and 23).  It was 

mentioned earlier that CR has indeed a differential effect based on the genetic 

background of the animal (Forster et al., 2003).  It is also know that inbred strains 

of mice, kept under the same laboratory conditions, differ in body weight at the 
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same age due to genetic variation (Poiley, 1972).  Specifically, it has been shown 

that the food intake and metabolism of each mouse varies significantly due to 

gene copy variation (Roberts, 1981; Casellas et al., 2009; Hager et al., 2009; 

Orozco et al., 2009).  It has also been reported that the behavioral assessment of 

genetically identical mice varies in different environments or test sites and that 

the genetic background plays a pivotal role in gene expression (Crabbe et al., 

1999; Opsahl et al., 2002; Wahlsten et al., 2003; Lathe, 2004).  This genetic 

variation becomes even more important when employing knockout or transgenic 

mice in dietary studies, since different mouse genotypes or genetic backgrounds 

can have different behavioral, metabolic, or gene/protein response to a particular 

diet (Lathe, 1996; Wolfer and Lipp, 2000; Opsahl et al., 2002).   Because 

transgenic or gene knockout mice usually have reduced body weights compared 

to wild-type mice, further validates body weight as the independent variable when 

one is implementing a diet study (Joven et al., 2007; Reed et al., 2008).  

All aforementioned findings raise the importance of a pre-dietary treatment 

fasting period as well as active body weight controls when one is about to initiate 

CR or the KD in animal models.  Fasting in adult animals for about 14-16 hr prior 

to any dietary manipulation establishes a similar metabolic and potentially 

behavioral baseline at which all animals can start when separated in the various 

dietary groups (similarly to week 3 in Figure 22). For younger animals (still 

developing or before sexual maturity) a shorter fasting period (5-7 hr) may be 

used to avoid any growth retardation effects.  Interestingly, in the clinic, the 
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ketogenic diet is traditionally initiated on an inpatient basis, beginning with a fast, 

to 'jump-start' ketosis, and is followed by a gradual transition over several days to 

a diet with a ketogenic ratio of 3:1 or 4:1 (grams of fat to grams of carbohydrate 

plus protein) (Seyfried et al., 2008a; Seyfried et al., 2009a).  

Hence, we have established a new experimental design for the 

implementation of CR or other forms of DR in mice.  In contrast to implementing 

CR based on the average food consumption of the unrestricted control mice, 

each restricted mouse serves as its own body weight control.  This restriction 

paradigm reduces variability in body weights and food intake among rodents fed 

diets widely different in nutritional composition and caloric content (Figure 22) 

(Mantis et al., 2004).  As mentioned earlier, isocaloric restriction of the high fat, 

low carbohydrate KD was unable to reduce body weight to the same degree as 

that observed when restricting the high-carbohydrate, high fat standard chow 

rodent diet (SD) (Figure 23).  Using body weight as the independent measure for 

determining the percentage of CR rather than caloric intake, we can accurately 

measure blood metabolites, the disease phenotype, as well as study the effect of 

CR biochemical or behavioral processes (Mantis et al., 2004; Mantis et al., 

2009).  In addition, establishing metabolic (e.g. body weight, food intake, 

glucose, ketones, etc.), and disease phenotype (e.g. seizure frequency, 

behavior, etc.) pre-dietary baseline parameters for each animal further enables 

us to minimize any data discrepancies (Mantis et al., 2004).  

Thus knowing “where and how your animal has been treated” is very 
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important.  When obtaining already treated animals from various vendors for diet 

studies, one should use caution as to how those animals were housed (grouped 

vs. singly housed), what age or genotype are they, and of course whether each 

animal was used as its own body weight control.  Nevertheless, we ought to 

mention that due to raising costs in animal husbandry and per diem charges, if 

an investigator was to choose group housing for his/her animal diet studies, 

he/she should be aware of the limitations of this housing paradigm.  Employing 

statistical tools one could omit animals from a group-housed cohort that did not 

respond similarly to a specific diet treatment regimen (e.g. similar % body weight 

reduction), thus maximizing the dietary efficacy and normalizing data 

interpretation. 

 

C. Influence of Diet on Rodent Metabolism 

 

Implementation of the high fat KD is often difficult, as the diet tends to 

produce an unanticipated loss of body weight.  In many studies where the KD is 

fed to animals in unrestricted amounts the animals lose body weight (Tables 9 

and 10) (Su et al., 2000; Thavendiranathan et al., 2000; Likhodii et al., 2002; 

Ziegler et al., 2002; Noh et al., 2004; Silva et al., 2005; Yamada et al., 2005; 

Bough et al., 2006; Thio et al., 2006; Kennedy et al., 2007; Samala et al., 2008; 

Hansen et al., 2009).  This observation contradicts what our laboratory and 

others have observed regarding the effect of UR-fed KD on body weight.  Our 
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data show that when the KD is provided to adult animals in unrestricted amounts, 

it resulted in no significant reduction of body weight compared to the body weight 

of the control animals (Figure 22, and Tables 9 and 10) (Muller-Schwarze et al., 

1999; Rho et al., 1999; Likhodii et al., 2000; Mantis et al., 2004).  This body 

weight reduction in unrestricted KD fed mice may be due to “self-restriction” 

associated with the unpalatable diet.  It is possible that the various metabolic or 

behavior differences observed in the self-restricted KD group resulted from CR 

rather than from the KD alone, which can result in incorrect data interpretation. 

Thus, in order one to test the hypothesis of whether the underlying therapeutic 

mechanism of CR and the KD is possibly different, the animals that are fed the 

unrestricted KD should have similar body weights to normal control animals fed a 

standard diet (Figure 22) (Todorova et al., 2000; Mantis et al., 2004).  As 

previously shown, whenever the KD is fed unrestricted, the mice should not lose 

body weight compared to normal control (Figure 22, and Tables 9 and 10) 

(Muller-Schwarze et al., 1999; Rho et al., 1999; Likhodii et al., 2000; Mantis et 

al., 2004).   

Interestingly, we have previously shown that although an unrestricted KD 

could delay the onset of seizures in young EL mice with a genetic predisposition 

to epileptic seizures (Todorova et al., 2000), greater seizure control was 

achieved when these mice were fed a calorically restricted KD (KD-R) (Mantis et 

al., 2004).  This suggests that KD-R has a greater neuroprotective effect than 

unrestricted KD, at least in rodent models of epilepsy (Mantis et al., 2004).  A 
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similar observation, on the beneficial effects of a KD-R, was shown involving 

brain tumor bearing mice (Seyfried et al., 2003; Zhou et al., 2007).  Thus, the 

therapeutic benefits of the ketogenic diet in a variety of diseases may be 

enhanced further when the diet is carefully administered in restricted amounts to 

avoid malnutrition or growth retardation.  

However, this later notion of malnutrition becomes very important when 

performing calorically restricted dietary studies in young suckling animal, since 

the transition from the suckling (fed) state to a calorically restricted state could be 

associated with the development of malnutrition which in turn can produce a 

severe loss of body weight (Table 9) (Bough et al., 1999b; Harney et al., 2002; 

Thavendiranathan et al., 2003).  It is imperative that no developmental delays are 

evident to CR-fed young animals that may affect overall mouse behavior, 

phenotype (e.g. seizure susceptibility), or metabolism. Specifically, although both 

hypoglycemia and malnutrition increase seizure incidence in humans by most 

likely reducing the population of GABAergic neurons (Bennish et al., 1990; 

Andrade et al., 1995; Andrade and Paula-Barbosa, 1996; Crepin et al., 2009), 

malnutrition has varying effects on GABA metabolism, the major brain inhibitory 

neurotransmitter (Smith et al., 1974), as well as overall metabolism (James and 

Coore, 1970).   

Therefore, cautionary measures need to be implemented when dealing 

with growing/developing animals.  Specifically, the percent growth of the young 

mice in the R-fed mouse groups must be similar to the mice fed normal chow 
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unrestricted as previously described (Figure 24) (Todorova et al., 2000; Greene 

et al., 2001).  It is vital that the percent body weight reduction for young mice fed 

a restricted diet is not greater than 8-10%, in order to avoid malnutrition effects 

(Figure 24).  Based on experimental evidence, we propose that for older animals 

a 30-65% reduction in dietary calories should produce about a 15-25% decrease 

in body weight and that these parameters are acceptable for dietary studies.  The 

findings of the aforementioned studies further support our contention that it is 

imperative for each mouse to be used as its own control during the 

implementation of any DR or KD feeding regimen.  In contrast to young animals, 

older cohorts can withstand a greater degree of CR or body weight reduction 

without develop malnutrition, as we have previously shown (Mantis et al., 2004; 

Denny et al., 2005; Mantis et al., 2009).  Therefore, during dietary studies the 

stage of disease progression (early vs. late disease onset) and the suggestive 

percent of CR or body weight reduction need to be carefully examined. 

Taken together, the abovementioned observations suggest that active 

body weight control groups should be used when one is performing dietary 

animal studies.  Active body weight controls are produced by restricting the total 

calories consumed by a subgroup of control rodents so that the rodents achieve 

a similar degree of body weight relative to rodents that have been divided into the 

experimental or non-standard dietary treatment groups.  For example, if a new 

CR mimetic agent increases life span or improves behavior while also reducing 

body weight in experimental test cohorts, it is necessary for the investigators to 
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demonstrate the extent to which the increased survival effect is due specifically 

to the CR mimetic and not to an involuntary CR regimen.   

 

D. Measurement of Metabolite Biomarkers 

 

It is important to mention that serum metabolites (e.g. insulin, glucose), 

food intake, and the gastrointestinal/pancreatic response in the whole animal is a 

multi-dependent process and not just a simple stimulus-secretory response 

interaction (Gagliardino and Hernandez, 1971; Grossman, 1986; Efendic and 

Portwood, 2004; Sharma et al., 2008; Dietrich and Horvath, 2009; Ferrini et al., 

2009).  In light of the observation that circulating biomarkers/metabolites of 

energy status (e.g. glucose, ketones, insulin, glucagon, cortisol, free fatty acids, 

triglycerides, etc.) are influenced by the influx of dietary calories and that the 

levels of these markers fluctuate during the transition from the fed to the fasted 

state (Fabry and Tepperman, 1970; Romsos et al., 1978; Tunbridge et al., 1991), 

a subject must fast for at least 3-4 hrs prior to having the metabolites measured 

in the peripheral circulation.   

This is particularly relevant when measuring glucose, insulin, and ketone 

body levels because it takes at least 2-3 hours for the level of these metabolites 

to return baseline in the postprandial state.  This consideration is also important 

when one is attempting to connect a significant change in the level of a particular 

biomarker(s) with the development of a specific disease phenotype, a change in 
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gene/protein expression levels, or with the expression of a certain animal 

behavior (Hermus et al., 1994; van 't Veer, 1994; Lathe, 1996; Blanck et al., 

2003).  Although, biomarkers provide alternative measures of dietary intake, they 

can vary with absorption, metabolism, genetic background, and disease status.  

Thus they should be chosen in relationship to both the dietary intake and the 

chronology of exposure, since proper sample collection, storage, and analytical 

laboratory technique can all affect the specific level of each corresponding 

biomarker (Blanck et al., 2003). Interestingly, malnutrition has been shown to 

result in a slower reduction of blood glucose levels in both humans and mice 

(James and Coore, 1970; Okitolonda et al., 1987).  Thus, because glucose and 

ketone levels can vary based on prior food intake or malnutrition, blood 

metabolites should to be carefully measured using validated enzyme assays 

(Mantis et al., 2004; Zhou et al., 2007).  For example, both glucose and ketone 

body levels should only be measured in the blood (Turan et al., 2008), rather 

than in the urine (Penders et al., 2005).  That’s because both metabolites must 

exceed a specific concentration in the blood before they get excreted into the 

urine (Taboulet et al., 2007; Turan et al., 2008).  Thus, urine may not accurately 

represent the levels of the markers in the peripheral circulation (Gilbert et al., 

2000; Taboulet et al., 2007; Turan et al., 2008).  Moreover, the pH of the blood 

will also affect the extent to which ketone bodies, which are weakly acidic, get 

produced (ketogenesis) (Wu et al., 1991), or excreted into the urine (Behre, 

1931; Lemieux and Plante, 1968; Hood, 1985). 
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GUIDELINES FOR IMPLEMENTING CALORICALLY RESTRICTED DIETS FOR 

THE MANAGEMENT OF NEUROLOGICAL AND NEURODEGERATIVE 

DISEASES 

 

The first issue with therapeutic diet implementation is the non-

conventional and non-pharmacological nature of the diet therapy (Seyfried et al., 

2008a; Seyfried et al., 2009a).  Despite the availability of well-established 

procedures for acceptable clinical practice, modern medicine has not looked 

favorably on diet therapies for complex diseases (Seyfried et al., 2008a; Seyfried 

et al., 2009a), maybe with the exception of type II diabetes.  This latter fact is 

probably due to the lack of a standardized use protocol for implementing 

calorically restricted diets, which hinders the applicability of dietary therapies to a 

broad range of patients (Seyfried et al., 2008a; Seyfried et al., 2009a).  

Therefore, additional animal studies with proper standardized guidelines are 

needed to provide the clinical basis by which therapeutic diets can have a greater 

clinical relevance in disease management.  Although, similar concerns are often 

raised for implementing the ketogenic diet as a therapy for epilepsy, several 

medical groups have successfully established various protocols for implementing 

the ketogenic diet or low glycemic diets in children (Freeman et al., 2000; Pfeifer 

and Thiele, 2005; Seo et al., 2007; Kossoff et al., 2008).  

We suggest a sequential series of therapeutic phases for the dietary 

management of neurodegenerative diseases in mice, similar to what we have 
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recently proposed for the management of brain tumors using a restricted KD 

(Seyfried et al., 2008a; Seyfried et al., 2009a).  During Phase one we need to 

establish the baseline metabolic and behavior parameters of animals housed 

individually for 4-7 days (pre-trial period). During this pre-trial period animals 

should be maintained on normal control SD, while body weight, food intake [food 

intake should be calculated using the formula: FI (g/mouse/day) = (Wi – Wfx)/ndx, 

where Wi is the weight (g) of food initially given; Wfx is the amount of food 

remaining in the cage for x number of days; and ndx is the number of day for 

which FI is calculated] as well as plasma glucose, ketone, insulin, and glucagon 

levels will be measured for each cohort.  After, the initial pre-trial period, animals 

will be separated in their corresponding dietary groups where the average body 

weight of each group will be similar.  For adult mice, a 14-hr fast will then be 

followed (5-7 hr fast for younger mice).  This established pre-dietary baseline 

should help with data interpretation and reinforce any significant comparisons 

between groups.  It should be again noted that appropriate active body weight 

controls are needed especially if drugs, various stressors, or different forms of 

diet application (paste vs. pellet vs. powder) are used within a dietary group 

regimen.  Finally, during phase one, power analysis and other statistical tools are 

needed for determining cohort size and obtaining statistical significance between 

the various parameters.  Similarly to the hippocampal transciptosome changes 

observed in male and female rats under DR, statistics are important, because the 

level of dietary restriction influences differentially metabolism, reproductive 
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function, the development of age-related diseases, and even cognitive behavior, 

and gender-specific molecular responses (Martin et al., 2008).  

During Phase Two, we need to gradually lower circulating glucose levels 

and elevate circulating β-OHB levels over several days or weeks using restricted 

diets or therapeutic fasting (Figure 25) (Mantis et al., 2004; Mahoney et al., 2006; 

Zhou et al., 2007; Mantis et al., 2009).  The specific duration of dietary 

manipulation will depend on what type of genotype, or age of animal cohort we 

are studying. We suggest that a 20-25% body weight reduction for adult animals 

(Figure 22), and a 8-10% body weight reduction for younger animals while 

maintaining a constant rate of developmental growth (Figure 24), is sufficient to 

lower blood glucose levels between 6-7 mM (108-126 mg/dL) and β-OHB levels 

between 3-4 mM (31-42 mg/dL).  These blood metabolite levels are well within 

normal physiological ranges and should be effective for disease management 

(Figure 25).  This state in mice is referred as the zone of metabolic disease 

management (Figure 25).  The feeding paradigms for restricting the KD or the SD 

are similar to those previously described by our laboratory (Mantis et al., 2004; 

Denny et al., 2005; Mahoney et al., 2006; Marsh et al., 2008b, a; Mantis et al., 

2009).  Interestingly, with medical supervision, a similar paradigm can be 

employed for the management of neurodegenerative diseases in patients. 

Phase three commences when the animals have reached and maintained 

their corresponding body weight reduction for a couple days or weeks and are 

well within their zone of metabolic disease management.  During this final phase, 
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additional observations can be made regarding the influence of the diet on the 

disease phenotype, animal behavior, and even changes in specific biochemical, 

molecular (ie. genomic, proteomic, lipidomic analysis), and physiological 

parameters.  In addition to glucose and ketones, other blood biomarkers such as 

insulin, cholesterol, triglycerides, FFA, glucocorticoids, glucagon, leptin, 

adiponectin, glucagons, IGF-1, IGF binding protein -1, -2, -3, -5, and -6 may also 

be relevant to measure in order to confirm DR status.  Specifically, previous 

findings have shown that during CR, insulin, glucose, leptin, and IGF-1 are 

reduced, while ketone, and glucocorticoids are increased (discussed in the 

references of Tables 9 and 10) (Duan et al., 2003; Seyfried et al., 2003; Mantis et 

al., 2004; Bonorden et al., 2009; Fenton et al., 2009). 

Maintaining low blood glucose levels is very critical in disease 

management. Brain does not usually metabolize ketone bodies for energy unless 

circulating glucose levels are reduced, which is correlated with reduced body 

weight (Owen et al., 1967; Clarke and Sokoloff, 1999; Greene et al., 2003; 

Mantis et al., 2004). Specifically, elevated blood glucose levels have been shown 

to have detrimental effects on disease phenotype and symptomatology (Fabry et 

al., 1968; McIlwain, 1969; Fabry and Tepperman, 1970; Cornford et al., 2002). 

Similarly, with respect to the ketogenic diet, “more is not better, as consumption 

of excessive amounts of the ketogenic diet will maintain high blood glucose 

levels and thus result in no disease management (Seyfried et al., 2003; Mantis et 

al., 2004). Supplementation of vitamins and minerals should also not be a 
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problem as long as their consumption does not change any biochemical or 

physiological biomarkers (e.g. elevate circulating blood glucose levels). 

 

DISCUSSION 

 

Even though various types of DR are beneficial in most animal models in 

extending survival and reducing the symptoms associated with 

neurodegenerative diseases, further research is needed to establish a 

standardized way of performing these studies in animals, before bringing the 

therapeutic efficacy of DR into the clinic.  Animal data need to be interpreted with 

caution, as restricted regimens in these animal cases may simply represent a 

transition from overeating to a healthier diet.  Furthermore, in contrast to 

therapeutic fasting, DR to humans may not work as effectively due to a number 

of health concerns, which may not be applicable to or impact the life of 

experimental animals, but may do so in humans (Dirks and Leeuwenburgh, 

2006).  Potentially, new dietary formulations can be designed with nutritional and 

caloric compositions more appropriate for managing neurodegenerative and 

other types of diseases in humans. This could also involve the use of low 

glycemic diets, which are effective in maintaining low circulating glucose levels 

and are easier to implement than some ketogenic diets (Kossoff et al., 2007; 

Pfeifer et al., 2008). 
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Figure 19. Influence of Intermittent Fasting (IF) on Food Intake in VM Mice. IF 

resulted in an approximately two-fold increase of the food intake during the 24hr 

feeding period of the IF. Values are expressed as means of 5 mice per group.  

The black arrow indicates the initiation of the IF.  Data were kindly provided by L. 

Shelton from the Seyfried laboratory at Boston College. 
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Figure 20. Influence of CR and Re-feeding on Food Intake (A) and Body Weight 

(B) in C57BL/6J Mice. Upon re-feeding CR mice consumed almost twice as 

much food compared to the unrestricted mice.  Values are expressed as means 

± SEM; n = 4–8 mice per group. The black arrow indicates the initiation of CR on 

day 8. The white arrow indicates the initiation of ad libitum re-feeding on day 30. 

Asterisks indicate that the food intake average of the days 38 to 50 of re-feeding 

for the R-RF mice was significantly less than their food intake prior to initiation of 

CR, as determined by the paired t-test (P < 0.05). Figure reprinted with 

permission from Mahoney et al., Lipids Health Dis., 5:13, 2006. 
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Figure 21. Influence of Re-feeding on Body Weight of Calorie Restricted Adult EL 

Mice fed SD (A) or KD (B).  Similarly to Mantis et al., adult EL mice (~ 240 days 

old) fed either a calorie restricted SD, or KD to achieve a 20-24% body weight 

reduction during a 9-week diet treatment period (Mantis et al., 2004), were 

switched back to ad libitum feeding for weeks 9-15.  Upon re-feeding, R-fed mice 

consumed almost twice as much food compared to their restricted food intake 

(data not shown), and gradually their body weights matched those of the 

unrestricted fed mice.  Values are expressed as means ± SEM; n = 8-10 mice 

per group for either UR fed group and n = 3-4 mice per group for either R-fed 

group.  The black arrow indicates the initiation of CR on week 2. The gray arrow 

indicates the initiation of ad libitum re-feeding on week 9. Asterisks indicate that 

the mean body weight for weeks 5 to 9 of the R-fed mice was significantly less 

than the body weight of the UR-fed mice, as determined by both the paired t-test 

and ANOVA (P < 0.01). No difference in body weight was observed after re-

feeding (weeks 10-15) between the UR and R-refed groups. 
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A. 

B. 

* * *

* *
*



 
 
 

153

Figure 22. Influence of Diet on Body Weight in Adult EL Mice Fed a SD (A) or the 

KD (B). Both R-fed mice lost approximately 20-23% of their pre-dietary body 

weight.  Body weight for both unrestricted groups was similar.  Squares represent 

the pre-trial period when all mice were fed the SD-UR. Circles and triangles 

represent the UR-fed and R-fed groups, respectively.  Values are expressed as 

the mean ± SEM (n = 6 mice per group).  Arrow indicates initiation of CR.  
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Figure 23.  Influence of Isocalorically Restricted Ketogenic and Standard Diets on 

Body Weight of Adult EL Mice. A four-week 40% isocaloric restriction of the KD 

and SD diet resulted in varying body weight loss in adult EL mice. Body weight 

values are expressed as the mean ± SEM (n = 6-7 mice per group) for the 4-

week diet treatment period. Asterisk indicates that the body weight of the SD-R 

mice was significantly reduced compared to their respective SD-UR group, as 

determined by ANOVA analysis (P < 0.01). 
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Figure 24. Influence of CR on Body Weight in Juvenile EL Mice. Although the 

mean body weight was significantly lower in the juvenile 15% CR mice compared 

to the ad libitum (AL) mice over weeks 1–10 (*P < 0.01), the relative growth of 

the CR mice was similar to that of the AL group. Values are expressed as the 

mean ± SEM. Figure reprinted with permission from Greene et al., Epilepsia., 

42(11):1371-78, 2001. 
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Figure 25. Relationship of Circulating Plasma Metabolites in the Management of 

Neurodegenerative and Neurological Diseases.  These values are within normal 

physiological ranges of glucose and ketones under fasting conditions in mice.  

We refer to this state as the zone of metabolic disease management. 
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Table 11:  Summary of Definitions of Various Dietary Regimens1

1This table is modified from Thompson et al., 2003.

Fasting Complete restriction of all available energy 
resulting in non-pathological conditions

Starvation Complete restriction of all available energy 
resulting in pathological conditions

Calorie or energy restriction Daily reduction of only total caloric intake

Intermittent fasting Reduction of total caloric intake every other

Restriction of available energy by limiting 
caloric intake in absence of an effect on energy 

Dietary energy restriction

Dietary or food restriction Reduction of caloric intake by restricted all 
nutrients and dietary factors
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CHAPTER SIX 

Biochemical and Molecular Correlatives in the Management of Seizure 

Susceptbility in EL mice using the KD and CR 

 

INTRODUCTION 

   

Considering all presented findings, while it becomes evident that both CR 

and the KD successfully reduce seizure susceptibility in young and adult EL 

mice, the underlying neuroprotective mechanism of these diets still remains 

elusive. The one clear emerging mechanism that we can draw from this work is 

that a reduction in circulating glucose and a subsequent increase in β-

hydroxybutyrate levels play an important role in the anticonvulsant efficacy of CR 

and the KD in EL mice (Mantis et al., 2004; Mantis et al., 2009; Seyfried et al., 

2009b).  Despite these intriguing observations, it is not yet clear what is the exact 

mechanism(s) for the neuroprotective effect of these diets. 

As described in Chapter 2, under normal physiological conditions the brain 

derives almost all of its energy from the aerobic oxidation of glucose, via the 

facilitation of its glucose transporters (GLUT-1) (McIlwain, 1969; Clarke and 

Sokoloff, 1999; Vannucci and Vannucci, 2000).  However, in altered metabolic 

states, such as fasting or CR, the energetic demands of the brain transition from 

glycolysis to beta-oxidation.  This leads to a production of ketone bodies, which 

are used as energy substrates.  Monocarboxylate transporter 1 (MCT1) and to a 
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lesser extent MCT2, play a pivotal role in the transfer of ketones bodies (e.g. β-

hydroxybutyrate, acetoacetate, and acetone) from the blood circulation into the 

brain (Nehlig and Pereira de Vasconcelos, 1993; Vannucci and Simpson, 2003; 

Morris, 2005; Pierre and Pellerin, 2005).  This transition in energy substrate 

metabolism results in part to an increase in ketone body levels, which in turn has 

been shown to alter the glutamate-glutamine cycle and thus the availability of the 

major inhibitory neurotransmitter, gamma-aminobutyric acid (GABA) in the brain 

(Yudkoff et al., 2004; Yudkoff et al., 2005).  GABA is synthesized from glutamate 

in a single rate-limiting enzymatic step by one of the two glutamic acid 

decarboxylase isoforms (GAD67 and GAD65) (Martin and Rimvall, 1993).  The 

gad1 and gad2 genes are responsible for coding these two isoforms, 

respectively. This alteration in the GABA neurotransmitter pool is important since 

previous findings have shown that GABA and glutamate mediate fast synaptic 

inhibitory and excitatory neurotransmission in the CNS, respectively, and plays a 

major role in epileptogenesis (Meldrum and Garthwaite, 1990; Soghomonian, 

1994; Bradford, 1995; Nishimura et al., 2005) (Yudkoff et al., 2001; Kaneez and 

Saeed, 2009).    

Although this single alteration in the glutamate-glutamine cycle may be 

important in the neuroprotective effects of CR and the KD, emerging evidence 

suggests that following periods of CR or the KD, a wide range of metabolic and 

neurochemical changes instead take place (Bough and Rho, 2007; Maalouf et 

al., 2009; Seyfried et al., 2009b).  More specifically, a notable improvement in 
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mitochondrial function, a decrease in the expression of apoptotic and 

inflammatory markers, an increase in the activity of neurotrophic factors, 

alterations in brain energy metabolism, and changes in neuronal activity and 

neurotransmission pool are all to some extent thought to play an important role in 

the antiepileptic and anticonvulsant effect of these diets (McIlwain, 1969; Veech 

et al., 2001; Mazarati and Wasterlain, 2002; Veech, 2004; Yudkoff et al., 2004; 

Yudkoff et al., 2005; Bough and Rho, 2007; Maalouf et al., 2009; Seyfried et al., 

2009b).  

In order to better elucidate the mechanism of action of DER, we sought to 

examine the influence of the KD and CR on gene and protein expression in the 

EL mouse.  Our results show that both CR and the KD have a multifaceted effect 

in the expression and regulation of various genes and proteins.   More 

specifically, we found that the enzyme glutamic acid decarboxylase (GAD67) and 

the monocarboxylate transporter 1 (MCT1) may be involved in the anticonvulsant 

and antiepileptic mechanism of the KD in EL mice.    

 

 

METHODS AND MATERIALS 

 

Mice 

The EL mouse model used in these studies has been described in the 

Materials and Methods section of Chapter 2.  DDY, an inbred non-epileptic EL 
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background mouse strain, was obtained originally from Clea Japan, Inc..  All 

mice were maintained and housed as described in the Materials and Methods 

section of Chapter 2. 

 

Mouse Tissue 

 

 At the end of each diet treatment period studying the influence of the diet 

in seizure susceptibility in adult and young EL mice, the brain, liver, spleen, 

kindney, heart, and lung, of all various dietary mouse groups were carefully 

dissected and stored at -80oC.  It should be noted that R-fed mice were not fed 

prior to tissue extraction.  Brain tissues were further dissected and separated in 

left and right cortex, left and right hippocampus, left and right cerebellum, and left 

and right brain stem.  Additional control brain samples were isolated from non-

diet treated EL and DDY mice at approximately 40 days, and 360 days of age.  

DDY mice served as a strain control. 

 

Antibodies, Primers, and Reagents 

 

Anti-GLUT1 (1:3000 dilution), MCT1 (1:1000), and MCT2 (1:1000) 

antiserum was kindly provided as a gift from I.A. Simpson (Department of Neural 

and Behavioral Sciences, Hershey Medical Center, Hershey, PA).  GAD67 

(1:3000) was purchased from Sigma Scientific.  COX2 (1:3000) was purchased 
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from BD Biosciences. Anti–β-actin (1:5000), -VEGF (1:1000), -BDNF (1:1000), 

goat anti-rabbit IgG-HRP (1:5000), and goat anti-mouse IgG-HRP (1:5000) 

antibodies were purchased from Santa Cruz Biotechnology, Inc.. The working 

dilutions for each antibody (shown in parenthesis for each protein) were made in 

either 5% milk or 5% bovine serum albumin in Tris-buffered Saline (TBS) 

containing Tween 20 (pH 7.6).  Oligo (dT) primers were purchased from MWG-

Biotech AG (High Point, NC).  

 

Semi-Quantitative RT-PCR 

 

Total RNA was isolated from either homogenized one half cerebral cortex 

or hippocampus tissues for each of the four dietary group described in Chapter 2 

(SD-UR, SD-R, KD-UR, and KD-R) using TRIzol Reagent (Invitrogen) following 

the manufacturer's protocol. RNA concentration and purity was determined by 

spectrophotometric measurements at 260 nm and 280 nm. Single strand cDNA 

was synthesized from total RNA (3 µg) using oligo (dT) primers (Promega, 

Madison, WI, USA) in a 20 µL reaction with Moloney murine leukemia virus 

reverse transcriptase (M-MLV RT; Promega) according to the manufacturer's 

protocol. Complementary DNA (cDNA) (3 µL) was used for PCR amplification of 

various genes (Table 10). Gradient PCR was performed to obtain optimal primer 

annealing temperatures.  In order to determine the optimal linear range for the 

amplification reaction, PCR was performed at increasing cycle numbers (see 
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Appendix D).  PCR amplification was performed with either Taq® DNA 

polymerase or GoTaq® DNA polymerase (Promega) using the following protocol: 

initial denaturation at 94°C for 2 min, followed by the previously determined 

optimal number of cycles (Table 10 and Appendix D) of denaturation at 94°C for 

1 min; annealing at the optimal primer annealing temperature for 30-45 sec 

(Table 10); extension at 72°C for 1 min; and a final extension at 72°C for 6 min 

following the last cycle. PCR products (5–15 µL) were separated on 0.8–1.5% 

agarose gels containing ethidium bromide, visualized with UV light, and analyzed 

using either the 1d Kodak Software (Eastman Kodak Co, Rochester, NY, USA) or 

the FluorChem 8900 software. RT-PCR was performed on the total RNA of each 

sample in the absence of reverse transcriptase to control for possible DNA 

contamination.  The relative expression of each gene analyzed was normalized 

to the expression of β-actin.  The difference in PCR number of cycles was also 

used in the normalization of each gene expression. 

 

Western Blot Analysis 

One half of the cerebral cortex or the hippocampus tissue from each 

dietary group were homogenized in either 500 ml or 200 ml of ice-cold 1X Lysis 

buffer (Cell Signaling), respectively.  Lysis buffer contained 20 mmol/L Tris-HCl 

(pH 7.5), 150 mmol/L NaCl, 1 mmol/L Na2EDTA, 1 mmol/L EGTA, 1% Triton, 2.5 

mmol/L NaPPi, 1 mmol/L -glycerophosphate, 1 mmol/L Na3PO4, 1 mg/mL 
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leupeptin, and 1 mmol/L phenylmethylsufonyl fluoride.  Lysates were transferred 

to Eppendorf tubes, mixed for 1 hr at 40C, and then centrifuged at 8,100 x g for 

20 min.  Supernatants were then collected and protein concentrations were 

estimated (Bio-Rad DC assay).  Either 5, 20, or 40 μg of total protein from each 

sample were denatured with either SDS-PAGE sample buffer (63 mmol/L Tris-

HCl (pH 6.8), 10% glycerol, 2% SDS, 0.0025% bromphenol blue, and 5% 2-

mercaptoethanol) or NuPAGE® 4X LDS Sample buffer (Invitrogen) and were 

then loaded and resolved by SDS-PAGE on NuPAGE 4% to 12% Bis-Tris gels 

(Invitrogen) at 120 Volts. 40 μg of protein were loaded only for the detection of 

BDNF and VEGF. Proteins were transferred to a PVDF membrane overnight at 4 

0C and blocked in either 5% nonfat powdered milk or 5% bovine serum albumin 

in Tris-buffered Saline (TBS) with Tween 20 (pH 7.6) for 1 to 3 hr at room 

temperature.  Blots were then probed with corresponding primary antibodies 

overnight at 4 0C.  The blots were then incubated with the appropriate animal 

specific whole HRP-conjugated secondary antibody for 1hr at room temperature.  

Protein bands were visualized using ECL-Plus chemiluminescence.  Blots were 

thoroughly washed in TBS with Tween 20 (pH 7.6) and then reprobed with 

additional primary antibodies.  The specific ratio of the indicated protein to β-actin 

was analyzed by scanning densitometry (FluorChem 8900 Software).  A similar 

protocol was used for the analysis of the control brain samples isolated from non-

diet treated EL and DDY mice at approximately 40 days, and 360 days of age. 
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Statistical Analysis 

 

Both ANOVA and a two-tailed t-test were used to evaluate the significance 

of differences in gene and protein expression between unrestricted and restricted 

groups (Statview).  Differences were considered significant at P ≤ 0.05.  All 

values are expressed as mean ± SEM.   

 

RESULTS 

 

Neuroprotective Effects of CR and the KD by Modulating Brain Glutamic Acid 

Decarboxylase Levels 

 

Western blot analysis showed that the protein expression of glutamic acid 

decarboxylase (GAD67) was significantly higher in the cortex and the 

hippocampus of adult EL mice fed the KD either in restricted or unrestricted 

amounts compared to the SD-UR fed mice (Figure 26).  KC fed either in 

unrestricted or restricted amounts also resulted in a similar significant increase in 

GAD67 expression in the cortex of young adult EL mice (Figure 27).  In order to 

confirm that the increased GAD67 protein expression levels was related to the 

diet and not due to some other factors, such as age- or mouse strain-related 

effects, GAD67 protein expression was compared between young seizure free 
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EL mice, and old EL mice highly seizure susceptibility.  Brain samples from DDY 

mice, an inbred non-epileptic EL background mouse strain, were used as 

additional tissue control.   Our results showed no differences on GAD67 protein 

expression in the cortex of young adult EL mice when compared to old EL and 

DDY mice (Figure 28).  This latter finding suggests no influence of age or mouse 

strain on GAD67 protein expression.   

To further validate any influence of the diet on GAD expression, gad1 

mRNA expression was analyzed in diet-treated EL mice.  The results showed 

that although gad1 mRNA expression was slightly increased in the KD groups 

compared to the normal control SD-UR mice, this change did not reach a 

significance level (Figure 29).  Contrary to the effect of the KD on GAD67 protein 

expression, restriction of the SD had no effect on GAD67 or gad1 expression 

(Figures 26 and 29).  Furthermore, we sought to determine whether our system 

is able to detect accurately even the smallest changes on protein expression 

levels.  For this purpose, a standard curve of increasing amounts of protein were 

loaded on a SDS-PAGE gel (similarly to the protocol described in the methods 

above) and the levels of GAD67 and β-actin were compared.  With the linear 

range of detection of our system being between 5-20 μg of protein (Figure 30), 

we are confident whatever changes observed are real. 

Overall, these data suggest that the KD resulted in a significant increase 

in the protein expression of GAD67 in EL mice, and thus may play a role in the 

anticonvulsant properties of the KD. 
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Influence of CR and the KD in the Expression of MCT1 and GLUT1 

 

Western blot analysis was also used to examine the influence of the diet 

on the protein expression of MCT1 in the cortex and hippocampus of adult EL 

mice.  Although both the KD fed unrestricted and restriction of either the KD or 

the SD resulted in a slight increase on the expression of MCT1 in both the cortex 

and the hippocampus of adult EL mice compared to the MCT1 levels in the SD-

UR mice, this effect was more evident in the hippocampus (Figure 31).  In 

particularly, the hippocampus of both the SD-R and KD-UR groups had a 

significantly higher expression of MCT1 levels compared to the the SD-UR mice 

(Figure 31).   No significant differences in the expression of MCT1 were observed 

in the cortex of adult EL mice. 

Similarly, in order to confirm that the changes in MCT1 protein expression 

was related to the diet and not due to some other factors, such as age- or mouse 

strain-related effects, MCT1 protein expression was compared between young 

seizure free and old highly seizure susceptibility EL mice, and DDY mice.  Our 

results, although not significant, indicate that young EL mice have a higher 

expression of MCT1 compared to both old EL and DDY mice (Figure 32).  This 

finding is consistent with the developmental profile of MCT1 expression in mice 

having just recently been weaned from their mother.  Furthermore, the diet had 
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no effect in the gene expression of glut1 mRNA (Figure 33).  Viewing these 

results together, we can suggest that both CR and the KD may up-regulate 

MCT1 in the brain of EL mice. 

 

 

Influence of CR and the KD in Neuroinflammation 

 

 Using RT-PCR, we sought to examine any potential effect that the diets 

may have on neuroinflammation.  Our results show that both the KD and CR had 

no effect in modulating inflammation in the cortex of adult EL mice (Figure 34).  

The only interesting trend we observed is a slight reduction of CD68 in the cortex 

of the KD-R group.   These findings suggest that both the KD and CR do not 

directly influence neuroinflammatory markers in EL mice. 

 

DISCUSSION 

  

In this study, we sought to further investigate the underlying 

anticonvulsant and neuroprotective mechanism of CR and the KD in EL mice.  

Our results are somewhat consistent with previous reports showing that both 

GAD67 and MCT1 may play a role in the neuronal and metabolic modulation that 

occurs in the diseased brain during various dietary regimes (Nehlig and Pereira 

de Vasconcelos, 1993; Cheng et al., 2003; Yudkoff et al., 2004; Yudkoff et al., 
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2005; Bough and Rho, 2007; Nehlig et al., 2009).  Specifically, we show for the 

first time that EL mice fed the KD in either restricted or unrestricted amounts 

resulted in an increase in cortical and hippocampal expression of GAD67 

compared to the mice fed the SD unrestricted. Similarly GAD67 was increased in 

young EL mice fed the commercially available KC compared to the SD-UR 

mouse group.   

It has been previously shown that GABA, a major inhibitory 

neurotransmitter of the brain, is involved in both the regulation of neuroendocrine 

function, as well as mediates glutamate fast synaptic inhibitory and excitatory 

neurotransmission in the CNS, and thus plays a major role in epileptogenesis 

(Soghomonian, 1994; Bradford, 1995; Meldrum, 1996; Nishimura et al., 2005) 

(Yudkoff et al., 2001; Kaneez and Saeed, 2009).  Specifically, it was shown that 

GAD67 mRNA levels are increased after lesions of dopaminergic afferent 

neurons in the striatum, or in the hippocampus of kainic-acid induced rats, and 

even in humans with temporal lobe epilepsy (Feldblum et al., 1990; 

Soghomonian and Chesselet, 1992; Baran et al., 2004; Malfatti et al., 2007; 

Yamamoto and Soghomonian, 2009).  In contrast to these findings, our gene 

expression analysis showed that gad1 was not significantly higher in the seizure 

susceptible SD-UR group compared to the other three dietary treated mice. This 

latter finding is somewhat also confirmed from our GAD67 protein analysis, 

where no significant differences were observed in GAD67 expression between 

old, highly seizure susceptible EL mice, and young, seizure free EL mice.  These 
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findings suggest that in this natural animal model of epilepsy, the increase in 

cerebral GAD67 protein levels may be a result of the diet and not an effect of the 

epileptic EL brain.  Thus, we can suggest that the neuroprotective effect of the 

KD may be by acting on brain excitability via an alteration in glutamate and 

GABA levels.  In particular, the KD may accelerate the flux through glutamate 

decarboxylase; hence, increasing the concentration and rate of formation of 

GABA and reducing epileptic hyperexcitability (Erecinska et al., 1996; Yudkoff et 

al., 2001). 

Furthermore, it has been suggested by others that convulsions may arise 

from either an impairment of GABAergic, or excessive glutamatergic function 

(Scheyer, 1998; Treiman, 2001; Mody and Pearce, 2004).  Since the brain 

expression of GAD67 (gad1) was similar between young and old EL mice, we 

can suggest that seizures in the EL mice aren’t a result of abnormalities in 

GABAergic function.  This finding is further supported by our previous work, 

where no aberrant GABA levels were measured in the brains of EL mice (Flavin 

et al., 1991; Flavin and Seyfried, 1994).  Interestingly, reports of altered gene 

expression in epilepsy are inconsistent, probably due to discrepancies from the 

experimental models used.  Seizure-induced nonspecific pathological changes, 

such as surgical lesion, hypoxia, stress, and cell degeneration may also induce 

alterations in gene expression that may be difficult to separate from effects of 

hyperactivity (Fengyi Liang and Jones E.G, J Neurosci. 1997).  Immunoreactivity, 

mRNA levels, and/or receptor binding for glutamic acid decarboxylase (GAD), 
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NMDA receptor and/or AMPA receptor subunits have been reported to be 

increased (Feldblum et al., 1990; Najlerahim et al., 1992; Pollard et al., 1993; 

Kamphuis et al., 1994; Kraus et al., 1994; Marianowski et al., 1995), unchanged 

(Lerner-Natoli et al., 1985; Akiyama et al., 1992; Friedman et al., 1994; Gerfen-

Moser et al., 1995), or decreased (Ribak et al., 1979; Gall et al., 1990; Akiyama 

et al., 1992; Mitsuyoshi et al., 1993; Obenaus et al., 1993; DeFelipe et al., 1994; 

Friedman et al., 1994; Lee et al., 1994; Bayer et al., 1995; Prince et al., 1995).   

In previous studies, it was reported that MCT1 protein and mRNA levels to 

be significantly increased during ketosis (Leino et al. 2001;(Noh et al., 2004).  

Although our changes in MCT1 expression were not as pronounced as those 

previously described, the KD was able to increase MCT1 expression in EL mice 

fed either the KD in restricted or unrestricted amounts.  In particular, MCT1 

expression was significantly different in the hippocampus of the KD-UR and SD-

R mouse groups compared to the control SD-UR mouse group.  This finding may 

support the notion that a metabolic transition in brain utilization of different 

energy substrates (away from glycolysis to beta-oxidation) has take place, and 

the up-regulation of MCT1 expression would facilitate the transport of ketone 

bodies in the brain as a source of energy (Owen et al., 1967; Clarke and 

Sokoloff, 1999).  MCT1 has long been considered a predominant factor in 

determining the rate at which the brain can use ketone bodies and the capacity of 

transport at the level of blood brain barrier endothelial cells (Halestrap and 

Meredith, 2004).  
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Based on the findings presented in Chapter 2, it was observed that the R-

fed mice as well as the KD-UR mice had significantly high plasma ketone body 

levels (Figures 6).   Hence the increased ketone levels observed in these mice 

along with the slight increase in MCT1 levels in the brain of the same EL mice 

may further support a metabolic transition in brain energy substrate utilization.  

Although, in this current analysis the KD and CR had no effect on glut1 

expression, these findings are consistent with previous reports.  Interestingly, 

such a report recently showed that the KD did not affect the level of expression of 

the GLUT1 or MCT1 and MCT2, in SWD rats (Nehlig et al., 2009).  Furthermore, 

a restricted KD was able to increase only parenchymal and not endothelial glut1 

expression in young rats (Cheng et al 2004 Eagles). 

Finally, previous findings have shown inflammation to be linked with 

seizure activity and vice versa (Jankowsky and Patterson, 2001; Peltola et al., 

2001; Ravizza et al., 2005; Vezzani, 2005b, a), and DR to differentially influence 

pro-and anti-inflammatory markers (Cullingford, 2004; Branch-Mays et al., 2008; 

Crujeiras et al., 2008; Pan et al., 2008; Jung et al., 2009; Reynolds et al., 2009).  

On Chapter 1, it was mentioned that the EL mouse is associated with gross 

neurochemical and neuropathological symptoms associated with human 

idiopathic epilepsy (Flavin et al., 1991; Murashima et al., 1992; Flavin and 

Seyfried, 1994; Lambert et al., 1996; Fueta et al., 1998; Drage et al., 2002; 

Todorova et al., 2006).  In this current mRNA analysis expression of the glial 

fibrillary acidic protein (GFAP) although present in the EL brain, it was not 
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differentially affected by either the KD or CR.  Also both the KD and CR had no 

effect in modulating the expression of the pro-inflammatory cytokine CD68.  

Taken these findings together, although, the anticonvulsant effect of the KD and 

that of CR does not seem to involve a reduction in GFAP or CD68 associated 

neuroinflammation, we can not exclude the influence of an inflammatory 

component in the development and progression of seizures in the EL mouse.   

Overall these data suggest that the anticonvulsant and antiepileptogenic 

effect of both the KD and that of CR in managing seizures in both young and old 

EL mice, is dependent on the reduction of glucose levels and the subsequent 

increase in ketone body levels.  This metabolic transition from glycolysis to beta-

oxidation seems to result in the alteration of the glutamate-glutamine cycle 

facilitated by an increase in GAD67 levels, thus increasing the production of 

GABA in the synapses of neurons.  This increase in GABA results in the 

hyperpolarization of synaptic membranes and consequently a decrease in 

neuronal excitability (seizures).  Despite these intriguing observations, the exact 

mechanism(s) for the neuroprotective effect of the KD and that of CR are not yet 

clear and remain(s) to be elucidated in future studies. 
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Table 13.  RT-PCR: Sequence of Primers and PCR Conditions

For 5'-CAC CAG CTG GGA ATC GTC GTT G-3'
Rev 5'-CCA AAG ATG GCC ACG ATG CTC AG-3'
For 5'-CTT CGA AAT TAT ACT CAA AAT ATA G-3'
Rev 5'-CAC GAT GGA GAG AAC AAT GTC TAT G-3'

Annealing 
Time (sec)

35

64

30

2767 95435

29

27

2870 64430

708

509

28

28

30

28

28

291

286

40930

581

544

70

67

70

65

30

35

30

30

58

64

65

65

126-639

137-844

553-1061

667-1310

261-841

95-638

bPrimer sequence for b-actin is based upon Kitakata et al., 2002

73-363

393-1346

For 5'-CAT CCT TCA CGA TGA CAC CTA CAG-3' Rev 
5'-CTC TGA TGT AGG TCC TGT TTG AAT C-3'

558-843

548-956

M23384

AB085609SCOT
aPrimer nucleotide positions are based on the CDS of each given gene

CD68

Glut1

GenBank 
Accession

NM007393

NM_023456NPY
For 5'-GAT GCT AGG TAA CAA GCG AATG G-3'       
Rev 5'-CAC ATG GAA GGG TCT TCA AGC C-3'

BC021637

AF326547GAD1

For 5'-GGA TTG GAT ATG GTT GGA TTA GC-3'       
Rev 5'-CAG ATG TCA GCT ACA GCC AAG-3'
For 5'-CCG GCG CAC AGA GAC CGA CTT C-3'       
Rev 5'-GTT TGG GCA CAG CCG CCA TGC C -3'

For 5'-TGG TCG AGC TGG ACG GCG ACG-3'       
Rev 5' -GTC ACG AAC TCC AGC AGG ACC ATG-3'GFAP 

NM_008078

NM_010277

GAD2

NPYr1

NPYr5

For 5'-GTC ACT TGC GGC GTT CAA GGA C-3'       
Rev 5'-GAA GAT GGT AAG GGG CAG CCA G-3'
For 5'-CTG TCT GGA CAC TGG GCT TTG-3'         
Rev 5' -GGT AAC ACG CAT GCC GTC TTC-3'

NM_010934

AF049329

Product 
size (bp)

Cycle 
Number

For 5'-TGT GAT GGT GGG AAT GGG TCA G-3'      
Rev 5'-TTT GAT GTC ACG CAC GAT TTC C-3'b-actin b 514 22

Nucleotide 
positionaPrimer sequenceGene

Annealing 
Temp. oC
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Figure 26. Influence of CR and the KD on GAD67 Protein Expression in the 

Cortex (A), and Hippocampus (B), of Adult EL Mice.  Degree of restriction was 

aimed to produce a 20-23% body weight reduction.  Values are expressed as the 

ratio of the normalized protein intensity to 1, relative to the normalized intensity of 

β-actin, and are represented as mean ± SEM.  Mean protein expression of 

GAD67 in the KD-fed groups was significantly higher than that in the SD-UR 

mice (*P < 0.05, Student's t-test). 5-20 μg of protein were loaded for each 

sample. For positive controls, fasted brain (F), or Heart (H) samples were used, 

whereas brain CT-2A tumor (T) samples served as our negative control.  

Conditions of dietary treatment are shown in Figure 3; (n = 3 mice per group for 

both cortex and hippocampus analysis). 
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Figure 27. Influence of CR and the KC Diet on GAD67 Protein Expression in the 

Cortex of Young Adult EL Mice.  Degree of restriction was such to produce a 15-

18% body weight reduction. Mean protein expression of GAD67 in the KC-fed 

groups was significantly higher than that in the SD-UR mice (*P < 0.05, Student's 

t-test).  5-20 μg of protein were loaded for each sample. For positive and 

negative controls, fasted brain (F), or Tumor (T) were used respectively.   

Conditions of dietary treatment are shown in Figure 9; (n = 4 mice per group for 

both cortex and hippocampus analysis). Similar protein normalization was 

performed as described in Figure 26. 
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Figure 28. Comparative Analysis of GAD67 Protein Expression in the Cortex of 

Young and Old EL Mice.  Although, the mean protein expression of GAD67 was 

slightly higher in the older mice, this difference was not significant.  5-20 μg of 

protein were loaded for each sample; (n = 3 - 4 mice per group). Similar protein 

normalization was performed as described in Figure 26. 
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Figure 29. Influence of CR and the KD on gad1 Gene Expression in the Cortex of 

Adult EL Mice.  Although the mean gene expression of gad1 in the KD-fed 

groups was higher compared to the gad1 expression in the SD-UR mice, this 

difference was not significant. Values are expressed as the ratio of each 

sample’s normalized gene expression intensity to 1, relative to the normalized 

intensity of β-actin after corrected for the difference in PCR cycle number, and 

are represented as mean ± SEM. Conditions of dietary treatment are shown in 

Figure 3; (n = 5 mice per group for both cortex and hippocampus analysis).   
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Figure 30.  Testing the Linear Range of Protein Detection in our Western Blot 

System.  Increasing amounts of protein were loaded on an SDS-PAGE gel and 

the linearity of our chemiluminescence detection was measured for GAD67 and 

β-actin.  Individual protein intensities (levels) are shown in Appendix E.  Our data 

indicate that the detection of GAD67 is linear up to 40 μg of protein. Similar 

protein normalization was performed as described in Figure 26. 
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Figure 31. Influence of CR and the KD on MCT1 Protein Expression in the Cortex 

(A), and Hippocampus (B), of Adult EL Mice.  Degree of restriction was aimed to 

produce a 20-23% body weight reduction.  The mean protein expression of 

MCT1 in the hippocampus was significantly higher in the KD-UR and SD-R 

mouse groups compared to the SD-UR mice MCT1 expression (*P < 0.05, 

Student's t-test). 5-20 μg of protein were loaded for each sample. For positive 

controls, fasted brain (F), or Spleen (S) samples were used, whereas Lung (L) 

samples served as a partial negative control, since MCT1 is partially (slightly) 

expressed in lung.  Conditions of dietary treatment are shown in Figure 3; (n = 3 

mice per group for both cortex and hippocampus analysis). Similar protein 

normalization was performed as described in Figure 26. 
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Figure 32. Comparative Analysis of MCT1 Protein Expression in the Cortex of 

Young and Old EL Mice.  Although, the mean protein expression of MCT1 was 

slightly lower in the older mice these values did not reach significance.  5-20 μg 

of protein were loaded for each sample; (n = 3 - 4 mice/group). Similar protein 

normalization was performed as described in Figure 26. 
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Figure 33. Influence of CR and the KD on glut1 Gene Expression in the Cortex of 

Adult EL Mice.  Although the mean gene expression of glut1 was higher in all 3 

dietary groups compared to the glut1 in the SD-UR mice, this difference was not 

significant. Conditions of dietary treatment are shown in Figure 3; (n = 5 mice per 

group for both cortex and hippocampus analysis). Similar gene normalization 

was performed as described in Figure 29. 
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Figure 34. Influence of CR and the KD on Neuroinflammation. Cortex expression 

of CD68 (A), and GFAP (B), of adult EL mice fed the KD or SD diet in 

unrestricted or restricted amounts. The mean gene expression of both CD68 and 

GFAP was the same for all groups. Conditions of dietary treatment are shown in 

Figure 3; (n = 5 mice per group for both cortex and hippocampus analysis). 

Similar gene normalization was performed as described in Figure 29. 
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CHAPTER SEVEN 

CONCLUSION 

 

Epilepsy is a disabling chronic and neurological disorder involving 

recurrent abnormal discharges of neurons that produce epileptic seizures (Engel 

and Pedley, 1997; Johnston and Smith, 2008), and afflicts about 1% of the US 

population.  Despite intensive antiepileptic drug (AED) research, seizures remain 

unmanageable in many persons with epilepsy (Jallon, 1997; Freeman et al., 

2000; Browne and Holmes, 2001).  As an alternative to AEDs diet therapies have 

been shown to be effective in the management or control of epilepsy. 

My dissertation research tested the therapeutic efficacy of different dietary 

regimes, such as calorie restriction (CR) and the ketogenic diet (KD), in the 

management of both neurological and neurodegenerative diseases, including 

epilepsy and a mouse model of Rett Syndrome.  We successfully investigated 

the relationship among ketones, glucose, and seizure susceptibility under long-

term antiepileptic diet therapies, and provided new evidence in the 

neuroprotective mechanism(s) of CR and the KD.  

Implementation of CR and the KD in adult seizure susceptible EL mice 

resulted in the seizure control of EL seizures.  This neuroprotective effect of the 

KD was mainly controlled through CR (Mantis et al., 2003; Mantis et al., 2004). 

Also seizure susceptibility in EL mice was dependent on circulating plasma 

glucose levels and that seizure control in EL mice depended more on the amount 



 
 
 

201

than on the origin of dietary calories (Mantis et al., 2003; Mantis et al., 2004).  A 

reduction of glucose and a subsequent increase in ketone bodies resulted in the 

zone of seizure management in the EL mice. A transition from glucose to ketone 

bodies for energy was predicted to manage EL epileptic seizures through 

multiple integrated changes of inhibitory and excitatory neural systems.  

KetoCal®, a commercially available KD, was later evaluated for its 

antiepileptic and antiepileptogenic efficacy in young adult EL mice.  The results 

supported our previous findings that seizure control in the EL mice is associated 

more with the amount rather than the origin of dietary calories.  Also KC has both 

an anticonvulsant and antiepileptogenic effect in EL mice.  Furthermore, my 

thesis for the first time showed that glucose supplementation in the drinking 

water of restricted mice prior to seizure testing resulted in the amelioration of the 

anticonvulsant efficacy of CR in a natural model of epilepsy, the EL mouse.  This 

thesis also indicated that an unrestricted KC diet was able to reduce the seizure 

severity in young adult EL mice.  Interestingly, this anticonvulsant effect of the 

KC was not depended on reduced glucose levels.   

Based on the above finding with the EL mouse, next we examined the 

therapeutic efficacy of the KD and CR in a mouse model of Rett Syndrome.  The 

results in this thesis showed that colorie restricted diets had a positive influence 

on the anxiety behavior and motor characteristics in Mecp2308/y mice.  In 

particular, CR and the KD reduced the anxiety associated with the exploration of 

an unfamiliar environment (Mantis et al., 2009).  These findings indicate that 
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calorically restricted diets may be of clinical importance in improving various 

aspects of the behavior in individuals with Rett. 

Although comparisons of a variety of age-related changes have been 

made between energy-restricted and unrestricted animals in an effort to identify 

the specific physiological and biochemical processes that may mediate the 

improvement of the disease phenotype, many studies fail to provide a 

standardized regimen for diet implementation.  This thesis sought to address 

some of the issues of diet implementation in disease management and to provide 

guidelines for data interpretation. The points raised in this thesis will help 

facilitate data analysis across various disease animal models and studies, as well 

as provide insight on the mechanism(s) by which restricted diet therapies might 

manage neurological and neurodegenerative diseases.   Moreover, these diet 

implementation guidelines, on a “standard” calorically restricted paradigm for 

disease animal models, should maximize the therapeutic efficacy of these diets 

while facilitating cross-study comparisons and data interpretation. 

Finally, this thesis discussed the potential biochemical mechanism(s) by 

which CR and the KD might reduce seizure susceptibility in EL mice.  We 

suggest that the transition from glucose to ketone bodies as a major energy fuel 

for the brain produces multiple changes in gene-linked metabolic networks.  It is 

these changes that gradually adjust neurotransmitter pools and membrane 

excitability to restore the physiological balance of excitation and inhibition 

(Greene et al., 2003).   This thesis showed that the metabolic transition from 
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glycolysis to beta-oxidation seems to result in the alteration of the glutamate-

glutamine cycle facilitated by an increase in GAD67 levels, thus increasing the 

production of GABA in the synapses of neurons.  This increase in GABA results 

in the hyperpolarization of synaptic membranes and consequently a decrease in 

neuronal excitability (seizures).   Interestingly, while the levels of γ-aminobutyric 

acid (GABA) are increased in synaptosomes via the increased action of glutamic 

acid decarboxylase during the metabolism of ketone bodies for energy, the levels 

of aspartate decrease due to the formation of glutamate (Yudkoff et al., 2001). 

In addition, this thesis showed that MCT1 expression was significantly 

different in the hippocampus of the KD-UR and SD-R mouse groups compared to 

the control SD-UR mouse group.  This finding may support the notion that a 

metabolic transition in brain utilization of different energy substrates (away from 

glycolysis to beta-oxidation) has take place, and the up-regulation of MCT1 

expression would facilitate the transport of ketone bodies in the brain as a source 

of energy. CR could also influence seizure susceptibility through the 

neuroendocrine system involving leptin signaling and increased levels of 

neuropeptide-Y, a peptide with antiepileptic and anticonvulsant effects (Mazarati 

and Wasterlain, 2002; Colmers and El Bahh, 2003; Husum et al., 2004; Richichi 

et al., 2004).    In addition, ketone body metabolism could increase membrane 

ionic pump activity (Kaur and Kaur, 1990; Veech et al., 2001).  Increased pump 

activity could increase membrane potential in neurons while also increasing 

neurotransmitter uptake in glia (Greene et al., 2003).  We do not exclude the 
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possibility that CR may reduce seizure susceptibility in EL mice through 

additional mechanisms (Schwartzkroin, 1999; Stafstrom and Bough, 2003).  

Some of the cellular systems that are described above and potentially are 

modulated through CR to influence brain excitability are illustrated in Figure 35 

(Mantis et al., 2004).  

Despite these intriguing observations, the exact mechanism(s) for the 

neuroprotective effect of the KD and that of CR are not yet clear and remain(s) to 

be elucidated in future studies.  Nevertheless, it is our contention that CR 

reduces seizure susceptibility through multiple integrated systems providing a 

multifactorial therapy to a multifactorial disease.   
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Figure 35. Perspectives on the Metabolic Management of Epilepsy Through a 

Dietary Reduction of Glucose and Elevation of Ketone Bodies.  A dietary 

reduction in blood glucose levels will increase ketone utilization for energy.  This 

is expected to shift the neural environment from excitation to inhibition through 

multiple integrated systems.  Abbreviations: GLUT-1 (glucose transporter), MCT 

(monocarboxylate transporter), PFK (phosphofructokinase), PDH (pyruvate 

dehydrogenase), SCOT (succinyl-CoA-acetoacetate-CoA transferase), β-OHB 

(β-hydroxybutyrate), β-HBDH (β-hydroxybutyrate dehydrogenase), NPY 

(Neuropeptide Y), GABA (gamma-aminobutyric acid).  The figure is modified 

from Mantis et al., Nutr Metab (London), 1(1):11, 2004 . 
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APPENDIX B. 

Sequencing Analysis of GluR4 in EL mice 

 

INTRODUCTION 

 

Glutamate and activation of its four different types of receptors (AMPA, 

NMDA, kainate, and metaboropic) play a critical role in brain development, such 

as synaptic plasticity, neuronal migration, and synaptogenesis, as well as 

neurotoxicity (Meldrum and Garthwaite, 1990; Collard et al., 1993; Yen et al., 

1993; Behar et al., 1994; Dingledine et al., 1999; Ritter et al., 2002; Cossart et 

al., 2005).  Epileptic seizures, in general, stem from an abnormal balance of 

excitation and inhibition, and thus considerable effort has been expended on 

characterizing inhibitory and excitatory neurotransmission abnormalities in the 

epileptic brain (Engel, 1992; Loscher, 1993; Chapman et al., 1996; Engel and 

Pedley, 1997).  Previous findings have shown both a decrease in GABAergic 

inhibition and an increase in glutamatergic excitation to be involved in the cellular 

mechanisms underlying epileptogenesis in human and animal models of epilepsy 

(Dichter, 1989; Löscher, 1989; Loscher, 1993; Chapman et al., 1996; Chapman, 

1998; Dingledine et al., 1999; Meldrum et al., 1999; Chapman, 2000; Silva et al., 

2002). 

Antagonists of glutamatergic NMDA and AMPA receptors have been 

shown to be anticonvulsant in many animal models of epilepsy (Meldrum and 
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Horton, 1980; Chapman et al., 1982; Meldrum et al., 1992).  Although, in epileptic 

mice several genetic alterations have been shown to be epileptogenic, no 

specific mutation relating to glutamatergic function has yet been linked to human 

epilepsy (Chapman, 1998).  We recently identified a novel QTL, El-N, for age-

dependent predisposition to seizures on proximal Chromosome 9 of naïve EL 

mice, that were tested for seizures only once at 150 days of age (Todorova et al., 

2006).  Although, this region of chromosome 9 had not been previously 

associated with seizures in other animal epilepsy models and no epilepsy locus 

has been mapped on human chromosome 11, which is syntenic to the region on 

mouse chromosome 9 containing El-N (Todorova et al., 2006), glutamate 

receptor subunit 4 gene (GluR4) maps to this same region of Chromosome 9.  

Interestingly, GluR4, one of four genes (GluR1-4) that code for the AMPA 

receptor, is differentially expressed in the brain (Sato et al., 1993; Myers et al., 

1999), and has also been associated with epilepsy (van de Bovenkamp-Janssen 

et al., 2006). 

In this study, we performed a sequencing analysis of GluR4, in epileptic 

and non-epileptic mice in order to identify potential seizure-associated 

polymorphisms of GluR4 in EL mice.  Our results revealed a few conserved 

single polymorphisms, suggesting that GluR4 may not be responsible for EL 

seizures. 

 

METHODS AND MATERIALS 
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Mice 

 EL, EL/Frk, DDY, and C57BL/6J were used in this study.  EL/Frk is a 

strain of EL mice that were obtained from The Jackson Laboratory (Bar Harbor, 

ME).  As mentioned in chapter 6, DDY mice, are an inbred non-epileptic EL 

background mouse strain. The C57BL/6J strain is another control non-epileptic 

strain.  All mice were maintained and housed as described in the Materials and 

Methods section of Chapter 2. 

 

GluR4 sequencing 

Total RNA was isolated from homogenized whole brain of EL/suz, EL/Frk, 

DDY, and C57BL/6J mice using TRIzol Reagent (Invitrogen) according to the 

manufacturer's protocol. cDNA libraries for the EL, DDY, and C57BL/6J mice, 

were made following a similar protocol as described in the RT-PCR protocol in 

the chapter 6 (n= 3 mice per group).  The whole cds sequence of GluR4 was 

then amplified using the GluR4_214F and GluR_2922R primer sets (Forward 5’- 

ATG AGG ATT ATT TGC AGG CAG ATT G-3’ and Reverse 5’-GGG GAA GCT 

TGG TGT GAT GAG-3’) (Figure 1).  PCR amplification was performed with Taq 

DNA polymerase (Promega) using the following protocol: initial denaturation at 

94°C for 2 min, followed by 33 cycles at 94°C for 1 min; annealing at 65°C for 

40 s; extension at 72°C for 2 min adding 3 s every cycle; and a final extension at 

72°C for 6 min following the last cycle.  Amplified PCR products were purified 
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using a PCR purification kit (MO BIO Laboratories, Solana Beach, CA) and were 

then visualized by 1% agarose gel electrophoresis. DNA concentration was 

estimated using a Low DNA Mass Ladder (Invitrogen, Carlsbad, CA) by gel 

electrophoresis. Approximately 25 fmol of the purified PCR product was used in 

the sequencing reaction following manufacturer's instructions for the CEQ DTCS 

kit (Beckman Coulter, Fullerton, CA). The amount of cDNA used varied 

depending on the size of the PCR fragment. The nested primers illustrated in 

Figure 1, were for the sequencing reactions to obtain double-stranded sequence 

of GluR4.  Their sequence is shown in Table 3.  

Sequencing reactions were performed at 96°C for 20 s, 50°C for 20 s, and 

60°C for 240 s based on a 32 cycle reaction. Sequencing products were ethanol 

precipitated in cold 95% ethanol, washed twice with cold 70% ethanol, dried for 

20 minutes, and then re-dissolved in sample loading solution provided by the 

manufacturer (Beckman Coulter, Fullerton, CA). The individual mouse strain 

cDNA sequence alignments were then compared to that of GluR4 from Mus 

Musculus [GenBank: AB022913]  

 

RESULTS 

 

The comparative sequencing analysis of GluR4 to the in-house C57BL/6J 

GluR sequence revealed a single nucleotide base pair change, at position 1029, 

found in EL, EL/Frk, and DDY mice.  This caused a C->A transition, but resulted 
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in no amino acid change (Table 1).  Another single nucleotide base pair change, 

at position 2338, was found only in EL mice, resulted in a G->A transition and 

caused an amino acid change from Glycine to Arginine (Table 1).  However, 

when compared to the Mus Musculus GenBank sequence [AB022913], this 

GluR4 change in EL mice was not observed (inferred from Table 2).  A third 

single nucleotide base pair change, at position 2344, was again found only in EL 

mice, which caused an amino acid change from Alanine to Proline (Table 1).  

However, once again this change was not observed between the EL and the 

GenBank GluR4 sequences (inferred from Table 2).  Finally, a fourth single 

nucleotide base pair change, at position 2358, was found only in EL mice when 

compared to the in-house C57BL/6J GluR4 sequence.  This latter A->C transition 

was though conserved. It should be noted that the same polymorphic changes 

were observed when partial GluR4 amplicons were TA cloned in a pCR® 2.1 

vector, subsequently transformed in E-coli, and then later purified and sequenced 

(data not shown). 

 

 

DISCUSSION 

 

The few GluR4 variations that we observed between the EL and in-house 

C57BL/6J inbred mouse strain were either conserved or not observed in the Mus 

Musculus GluR4 sequence previously published at GenBank [AB022913].  It is 
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not yet clear if this later discrepancy represents an error in the already published 

GenBank GluR4 sequence or a population genetic variation among B6 mouse 

strains.  However, since the two single polymorphisms that resulted in an amino 

acid change are only present in the EL mice and not in the epileptic EL/Frk mice, 

it is unlikely that GluR4 may be associated with the seizure phenotype in EL 

mice.   Taken together, we can conclude that GluR4 is not associated with the 

seizure phenotype in the EL mice. However, we cannot exclude the possibility 

that GluR4 expression might be influenced by different seizure testing 

environments (Naka et al., 2005). 
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Figure 1: GluR4 PCR Amplification and Sequencing Primer Construct.  Forward 

primer 167F and reverse primer 2922R were used for the amplification of the 

GluR4 cDNA libraries. All primers were used as nesting primers for GluR4 

sequencing. 
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Table 1.  Summary of GluR4 Nucleotide Variations in EL and DDY micea

Mouse strain Nucleotide 
position cDNA change Amino Acid 

change

EL 1029 C -> A Ala -> Ala
EL/Frk 1029 C -> A Ala -> Ala
DDY 1029 C -> A Ala -> Ala

EL 2338 G -> A Gly -> Arg

EL 2344 G -> C Ala -> Pro

EL 2358 A -> C Ala -> Ala

aNucleotide variation compared to the C57BL/6J GluR4 sequence from the 
Boston College animal facility at Higgins
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Table 2.  Summary of GluR4 Nucleotide Variations in EL and DDY micea

Mouse strain Nucleotide 
position cDNA change Amino Acid 

change

EL 1029 C -> A Ala -> Ala
EL/Frk 1029 C -> A Ala -> Ala
DDY 1029 C -> A Ala -> Ala

EL/Frk 2338 A -> G Arg -> Gly
DDY 2338 A -> G Arg -> Gly

EL/Frk 2344 C -> G Pro -> Ala
DDY 2344 C -> G Pro -> Ala

EL/Frk 2358 C -> A Ala -> Ala
DDY 2358 C -> A Ala -> Ala

aNucleotide variation compared to the GenBank [AB022913] mouse GluR4 
sequence from Sakimura & Ikeno, 1999 
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Rev 5' -GAA GCC TTT CTA TCT CAC AAT C-3'

741F

868R

Primer sequence

aPrimer nucleotide positions are based on the CDS of each given gene

Table 3.  GluR4 nested primer sequencesa

GluR4 primer s

582R

1863R

1728F

Rev 5'-GCC AAC CTT TCG AGG TCC TGT G3'

For 5'-GGT GCG AGA GGA GGT CAT CGA C-3'       

For 5'-GGC CAG GGA ATT GAC ATG GAG-3'       

1377R

Rev 5'-TTA TGG TAG GTC CGA TGC AAT GAC-3'

Rev 5'-GCA CAT CCA GAT CTC ATA GGC C-3'

2207F

2922R

For 5'-GTG AGA GAA  AGA GAG GAG AGC G-3'      
167F

2346R

2611F

For 5'-CAG AAA TTG CCT ATG GAA CAC-3'

Rev 5'-GCC CTC AGC TGT AGT TCT AGT G-3'

For 5'-GGT GAC TCC AAG GAC AAG ACG-3'

Rev 5'-GGG GAA GCT TGG TGT GAT GAG-3'

1231F

For 5'-GAA TGG ATG GCA TGT CAG TGC G-3'       
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APPENDIX C.     

Assay for the Sectrophotometric Measurement of β-Hydroxybutyrate (D-3-

hydroxybutyrate) 

  

METHODOLOGY 

 

A.  Assay Principle (ref. Williamson, D.H., and J. Mellanby, pp. 1836-1839, 

Bergmeyer) 

     β-HBDH 

β-Hydroxybutyric acid + NAD+      Acetoacetate + NADH + H+ 

 

Keq = [acetoacatetate][NADH][H+] / [b-hydroxybutyrate][NAD+] 

 

Notes: At pH 7, the Keq is 1.42 x 10-2 M and the formation of β-hydroxybutyrate is 

favored.  At pH 7, the formation of acetoacetate can also be determined from the 

above reaction without modifications.  Increasing the pH above 7 (lowering [H+]) 

the formation of acetoacetate can still be determined by shifting the equilibrium to 

the right. For i.e., at pH 9.5 the Keq becomes 4.5, but the formation of 

acetoacaetate is favored slightly. Finally, for β−OHB the molar absorptivity 

(extinction coefficient) is 6.22 1/M* cm, thus for 1M β-OHB the change in Abs 

should equal to 6.22. 
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B.  General Instrument/supplies Requirements 

 

1. Molecular Devices SpectraMax M2 or M5 microplate reader with a 340 nm 

excitation filter (wavelength). The program name is labeled as b-OHB new 2. 

2. Half-area clear microplates (Corning cat. No. 3695) (100 μl working volume, 

with flat bottom wells). 

3. Eppendorff repeater Plus pipette (2-20 μl volume), plus regular p20, p200, 

and p1000 pipettors. 

 

C.  Reagent/Buffers 

 

1. 1 M       pH 9.9   2-Amino-2-methylpropanol (AMP)  (pKa 9.7)* 

Notes: To prepare 10 ml of 1 M, add 959 μl of stock of 2-Amino-2-methylpropanol  

at a concentration of 10.43 M (Sigma cat. No. A-9199) to 6 ml of ddH2O.  pH 

solution to 9.9, then bring total solution volume to 10 ml using ddH2O.  Store 

AMP at room temperature.   

 

The purpose for AMP or a buffer with a free amine group is to remove the 

acetoacetate and the proton (H+) generated in the above reaction.   If 

acetoacetate remains in the rxn it can drive reaction backwards thus interfering 
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with the accurate estimation of β-hydroxybutyrate.  The acetoacetate is removed 

in a shift base reaction (see below) and the proton is captured by the high pH. 

Shift base rxn:   -C=O    +    -NH2        C=N    +     H2O  

 

2. 0.050 M  NAD+ dissolved in CO3/HCO3 buffer             0.0995 g/3ml 

Notes:  The NAD+ can be purchased from Roche Applied Science (cat. No. 

775762).  Store NAD+ at dessicator at 4oC.  If you make a 0.050M stock NAD+ 

solution you can store it at –20oC but it is recommended to make it fresh each 

time. 

 

3. 0.1 M EDTA                    .372 g/10 ml 

Notes:  Store 0.1M EDTA solution at room temperature 

 

4. 1.33% (w/v) β-Hydroxybutyrate  dehydrogenase (enzyme) dissolved in 3.2 M 

(NH4)2SO4 

Notes: β-Hydroxybutyrate dehydrogenase stock solution is made as follows:  

Weigh enzyme and dissolve it ddH2O (ie. 1.97 mg of enzyme in 1.5 ml ddH2O).  

Then add solid (NH4)2SO4 to get a 3-3.2 M solution (~0.62 grams for 1.5 ml).  

Upon adding ammonium sulfate the solution will turn turbid.  As soon as enzyme 

is dissolved, you can store it at 4oC indefinitely.  To run assay for a whole half 

size plate take 150 μl from enzyme stock and add 240 μl of ddH2O (a 2.6 fold 
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dilution), otherwise prepare as much enzyme as needed.  β-Hydroxybutyrate  

dehydrogenase can be bought from Biocatalytics Inc. (cat. No. HBDH-101).   

 

5. 1.2% BSA (Bovine serum albumin)                 1.2 g/100 ml 

 

6. (R)-(-)-3-hydroxybutyric acid, sodium salt 

Notes: β-hydroxybutyrate salt can be purchased from SigmaAldrich (cat. No. 

298360-1G).  Powder is stored at room temperature. 

 

 

D.  Collection and Perchloric acid Treatment of blood  (This step is optional since 

assay can be done on plasma or serum alone too) 

 

1. Collect blood in heparinized tube and spin at 6000 rpm for 10 minutes. 

2. Immediately separate plasma from pellet.  (Plasma may then be stored at -

80° C for later use in the assay). 

3. Plasma is then treated with 0.055 M Perchloric acid (denatures all 

proteins/enzyme that you may have in your blood sample that may interfere 

or degrade β-hydroxybutyrate) (3.6%) by a dilution factor of 5 (1 part plasma 

to 4 parts HClO4). Vortex sample and put it on ice for 15 minutes. 

4. Centrifuge sample for 2 minutes at ~12,000 rpm on table centrifuge (or 

maximum speed). 
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5. Take a known aliquot volume of acidified plasma and neutralize it with 3.0 M 

potassium bicarbonate to a pH of 5.0-6.5 (test with pH strips) (ie. 900 μl of 

acidified plasma add 90 μl of 3.0 M KHCO3). 

6. Let partially neutralized solution sit on ice for 15 minutes (longer incubation 

will result in complete neutralization—up to 1-2 hrs) with top open. 

Notes:  If you do not neutralize your sample with a base, the perchloric acid will 

degrade your β-hydroxybutyrate, thus making the above reaction go slower. 

 

7.  Centrifuge solution at about 12,000 rpm for 4 minutes and then aspirate 

supernatant to new tube for usage in the assay.  Store treated plasma in a 

few aliquots in –80oC.  As an option you can test again with pH strip to be 

sure of pH of solution. Final plasma is diluted approximately 5.2 times. 

 

 

E.  Cocktail Reagent Buffer:  (sufficient for a full half size microplate at 50 μl of 

cocktail/well) 

 

 

 

 

 

Amount 
(ml) 

Concentration in 
cocktail (mM) 

Reagent Concentration in 
well (mM) 

0.5 100.0 1M AMP pH 9.9  50.0 
3.0 30.0 50 mM NAD+ 15.0 
0.2 4.0 100 mM EDTA 2.0 
1.3  ddH2O  

5.0 ml  total volume 
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Notes: If not running a whole plate, make as much cocktail reagent buffer as 

needed.  Cocktail should be stored at room temperature after it is prepared and 

while waiting to run assay.  Cocktail should always be fresh for each assay run. 

  

 

F. Preparation of β-hydroxybutyrate standards 

 

1. Prepare a standard stock solution of β-hydroxybutyrate at a concentration of 

165 mM in ddH2O.  Stock standard should be stored at 4oC. 

Notes:  To prepare a 165 mM stock standard solution of β-hydroxybutyrate, 

dissolve 0.0208 gram of β-hydroxybutyrate in 1 ml of ddH2O (0.165 M * 0.001 L* 

126.09 g/mole). 

 

2.  Using the stock 165 mM solution, prepare the following β-hydroxybutyrate 

standards: 16.5 mM, 1.65mM, 0.25 mM, 0.165 mM, 0.0825 mM, 0.04125 mM, 

0.033 mM, 0.0165 mM.  All standards should be stored at - 20oC. 

 

 

G.  Enzyme protocol 

 

1. Prepare cocktail reagents as indicated above (sections C and E). 

2. Prepare Standards as indicated above (section F). 
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3. Pipette 50 μl of cocktail in each well (this depends on how many samples you 

have). 

4. Pipette first 50 μl of ddH2O in triplicate and then 50 μl of the standards. Set up 

a standard curve from your plate by pipetting the following standard solutions 

in rows 1-3 (in triplicate), wells A through H. 

 

Well   

(row 

1-3) 

Standard 

solution 

(μl) 

ddH2O 

(μl) 

Concentration 

in well (μg) 

Concentration 

in well (mM) 

Dilution factor 

(DF) of 

standards 

A 0 50  - - - 

B 50 of H 0 0.02080485 0.0165 10000 

C 50 of G 0 0.0832194 0.0330 5000 

D 50 of F 0 0.13003031 0.04125 4000 

E 50 of E 0 0.52012125 0.0825 2000 

F 50 of D 0 1.0402425 0.165 
 

1000 

G 50 of C 0 1.576125 0.250 
 

660 

H 0 50 - - - 

 

Notes: If your standard curve does not give you a good r2 value, you may want to 

make each of the standards individually, instead of making serial dilutions of 

other standards.   Also make sure pipette is calibrated, since that may affect your 

r2 value.  Using an automatic repeat pipette may reduce variability. 
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5. Pipet in triplicates your plasma samples to the rest of the plate (treated with    

perchloric acid or not) to make a final volume of sample or diluted sample of   

100μl per well. 

 

6. Open the bOHB template program at the microplate reader and read 

pathcheck.  This is plate one (P1) from the bOHB new 2 assay protocol from 

the lab assay menu (see left box below). 

Notes: Pathcheck measures the depth (optical pathlength) of your samples in the 

microplate reader and in coordination with the machine’s SoftMax®Pro software, 

the program automatically normalizes the well absorbance to a cuvette of an 

equivalent pathlength of 1cm.  This function allows you to eliminate standard 

curves, for compounds with known absorptivity and the concentration of a 

sample can be calculated directly from its absorbance. 

 

 

 

 

 

 

 

 
 

P1 P2 
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7. After reading the pathcheck (P1), read plate two (P2) (right box above) for 

baseline from the bOHB new 2 assay protocol.  This is your initial absorbance 

(Absinitial). 

 

8. After reading baseline, initiate reaction by adding 5 μl of β-hydroxybutyrate 

dehydrogenase enzyme to each well.  This enzyme solution is made by 

diluting 150 μl of the stock enzyme (see section C step 4) in 240 μl of ddH2O.  

Mix stock enzyme before making this enzyme solution, since the enzyme will 

precipitate over time due to the ammonium sulfate suspension. 

Notes:  If you are not planning to use whole 96-well plate, make as much enzyme 

as needed. 

 

9. After adding the enzyme to each well read pathcheck again.  This is plate four 

(P4) (see left box below) from the bOHB new 2 assay protocol. 

Notes:  The pathcheck principle function, is explained Step 6 (see above). 

 

10.  Follow reaction to completion by reading the plate for 40-50 times at 50-60 

sec intervals (assay usually takes about 50 minutes to got to completion), by 

reading plate three (P3) (see right box below) from the bOHB new 2 assay 

protocol.  This is your final absorbance (Absfinal). 
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11.  Prepare similar excel template in order to calculate standard curve and assay  

sample results (ie. my folder (John) > Research Protocols > Ketone assay > 

Veach’s > Spectr. bOHB spreadsheet). 

Notes: If you use a M2 or M5 microplate reader, export the data in excel format 

(from file menu > export data as .txt.  The open .txt file using excel). 

 

12.  Based on the standard curve (plotting well b-OHB concentration and net 

absorbance change), calculate the b-OHB concentrations of your unknown 

samples. 

Notes:  You may need to calculate the drift for both your standard and your 

samples, in order to get an exact estimate of your β−OHB concentrations.  Drift 

results from other metabolites (lactate, malate, etc) that may exist in your 

enzyme suspension that use or produce NADH or NAD+ in a metabolic reaction 

may interfere with the kinetics of your ketone assay, thus resulting in incorrect 

fluorescence reaction signal.  If drift is positive (positive slope) you need to 

 

P4 P3 
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subtract your drift from your DAbs �Absfinal - Absinitial), whereas if the drift is 

negative (negative slope) you need to add your drift to your DAbs �Absfinal - 

Absinitial).  An example is shown below. 
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Figure 2: Drifting analysis of ketone assay. 
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APPENDIX D. Analyses of Primer Cycle Optimization  

GAD2 cycle optimization

y = 462850x - 1E+07

R2 = 0.9547
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GAD1 cycle optimization

y = 927300x - 2E+07

R2 = 0.9897
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GFAP cycle optimization

y = 3272.6x - 57397
R2 = 0.9268
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GLUT1 cycle optimization

y = 129250x - 2E+06
R2 = 0.9902
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NPY cycle optimization

y = 1934x - 39927

R2 = 0.9858
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SCOT cycle optimization

y = 12462x - 252296

R2 = 0.9039
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NPY r1 cycle optimization

y = 5683.1x - 124302
R2 = 0.9719
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NPY r5 cycle optimization

y = 4001.3x - 78333

R2 = 0.8764
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APPENDIX E.  

 

Detection of Western Blot Linearity 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Detection of Western Blot System Linearitya

Protein (μg) GAD67 β-actin
2 48990 32660
5 48990 65320
10 138805 155135
20 269445 302105
40 310270 424580
60 351095 465405
80 400085 522560

100 440910 498065

a. Relative Intensity of GAD67 and β-actin using chemiluminesce
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