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Abstract

Exotic phases and associated phase transitions in low dimensions have been a fas-

cinating frontier and a driving force in modern condensed matter physics since the

80s. Due to strong correlation effect, they are beyond the description of mean-field

theory based on a single-particle picture and Landau’s symmetry-breaking theory of

phase transitions. These new phases of matter require new physical quantities to

characterize them and new languages to describe them. This thesis is devoted to the

study on exotic phases of correlated electrons in two spatial dimensions. We present

the following efforts in understanding two-dimensional exotic phases:

(I) Using Zn vertex algebra, we give a complete classification and characterization

of different one-component fractional quantum Hall (FQH) states[130], including their

ground state properties and quasiparticles.

(II) In terms of a non-unitary transformation, we obtain the exact form of sta-

tistical interactions between composite fermions in the lowest Landau level (LLL)

with ν = 1
2m
, m = 1, 2, · · · [131]. By studying the pairing instability of compos-

ite fermions we theoretically explains recently observed FQHE in LLL with ν =

1/2, 1/4[132, 190, 189].

(III) We classify different Z2 spin liquids (SLs) on kagome lattice in Schwinger-

fermion representation using projective symmetry group (PSG). We propose one most

iii



Abstract iv

promising candidate[129] for the numerically discovered SL state in nearest-neighbor

Heisenberg model on kagome lattice[240].

(IV ) By analyzing different Z2 spin liquids on honeycomb lattice within PSG

classification, we find out the nature of the gapped SL phase in honeycomb lat-

tice Hubbard model[136], labeled sublattice pairing state (SPS) in Schwinger-fermion

representation. We also identify the neighboring magnetic phase of SPS as a chiral-

antiferromagnetic (CAF) phase and analyze the continuous phase transition between

SPS and CAF phase. For the first time we identify a SL (0-flux state in Ref. [210]) in

Schwinger-boson representation with one (SPS) in Schwinger-fermion representation

by a duality transformation[128].

(V ) We show that when certain non-collinear magnetic order coexists in a singlet

nodal superconductor, there will be Majorana bound states in vortex cores/on the

edges of the superconductor. This proposal opens a window for discovering Majorana

fermions in strongly correlated electrons.

(V I) Motivated by recent numerical discovery of fractionalized phases in topolog-

ical flat bands, we construct wavefunctions for spin-polarized fractional Chern insula-

tors (FCI) and time reversal symmetric fractional topological insulators (FTI) by par-

ton approach. We show that lattice symmetries give rise to different FCI/FTI states

even with the same filling fraction. For the first time we construct FTI wavefunctions

in the absence of spin conservation which preserve all lattice symmetries[127]. The

constructed wavefunctions also set up the framework for future variational Monte

Carlo simulations.
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Chapter 1

Introduction

1.1 An introduction to condensed matter physics

Condensed matter physics studies the physical properties of a huge number (of

order 1023) of atoms/molecules which interact with each other and are highly concen-

trated in a system. The most familiar examples of condensed matters are solids and

liquids. The length scale ranges from the size of individual atoms to the macroscopic

scale. Different from chemistry, atomic/moleculer and nuclear physics which handle a

relatively small number of particles, condensed matter physics deals with a practically

infinite number of degrees of freedom and so does particle physics. Even when the

behavior of a single particle or a few particles is well understood, as a large number

of particles gather together and interact with each other, completely new collective

phenomena may emerge which reaches far beyond the scope of few-body physics.

The concept of emergence is incisively summarized in a famous quote of P. W.

Anderson[7]: more is different. Take helium-3 as an example[209]. As the isotope of

3
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inert noble gas element helium, one helium-3 nucleus consists of two protons and one

neutron and therefore a single helium-3 atom is a fermion. A macroscopic sample of

pure helium-3 however possesses a very rich phase diagram as shown in the left panel

of FIG. 1.1, including two superfluid phases (A phase and B phase) with different

symmetries in contrast to a usual solid-liquid-gas phase diagram. Helium-4 is an-

other isotope whose nucleus has two protons and two neutrons and hence is a boson.

Its phase diagram is different from that of helium-3, including a low-temperature su-

perfluid phase due to Bose-Einstein condensation of helium-4 atoms. On the other

hand, fermions don’t condense at low temperature and the superfluid 3He are very

different from superfluid 4He: e.g. stable gapless surface states appear in superfluid

3He-B phase but not in superfluid 4He. As we increase the complexity and go from

elements to binary, tertiary and quaternary compounds, the number of possible ma-

terials exponentiates by at least a factor of 100 at each stage[32]. Since materials

composed of different isotopes of one element can be so different and exhibit so many

different phases, potential discovery of fundamentally new phases of matter could be

made in the vast phase space of complex compounds. The phase diagrams of binary

compound UGe2 and tertiary compound CeRhIn5 are also shown in FIG. 1.1, featur-

ing coexistence of magnetism (ferromagnetism, FM or antiferromagnetism, AF) and

superconductivity in low temperature under certain pressure. The main challenge for

condensed matter physicists is to explore and understand new phases of matter and

the phase transitions between them.

The constituents of a condensed matter system are a myriad of interacting particles

(e.g. ions and electrons). People believe that such a many-body system is governed
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Figure 1.1: Phase diagrams of several different condensed matters: helium-3 and
helium-4 consisting of a single element, binary compound UGe2 and tertiary com-
pound CeRhIn5. All these materials exhibit a very rich phase diagram when temper-
ature, pressure and external magnetic field are varied.
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by quantum mechanics: once we solve the many-body Schrödinger equation involving

all the particles, we know all physical properties and time evolution of the system.

However for particles of order 1023 it’s practically impossible to either solve this many-

body Hamiltonian or to store the eigenstate vectors, simply because the dimension of

the Hilbert space grows exponentially with the particle number (e.g. the Hilbert space

of a system of N spin-1/2 quantum magnets is 2N -dimensional). In fact a classical

computer made by all atoms in our universe can only solve the Schrödinger equation

for about 100 particles. How can we understand the many-body physics in condensed

matters, without literally solving the many-body Schrödinger equation?

The building block of traditional many-body physics is mean field theory. Al-

though the many-body problem cannot be solved exactly, we can always diagonalize

a single-body Hamiltonian (at least numerically). The basic idea of mean field theory

is to reduce the many-body problem to a solvable single-body problem with an exter-

nal field. The interaction between one particle and all others is replaced by an effective

external field (mean field) for this particle. It turns out this single-body problem is a

good approximation to the actual many-body problem when the interaction between

particles is not too strong compared with kinetic energy. The ground states obtained

by filling single-particle levels (and the perturbation theory around this ground state)

give simple explanations to many ordered/disordered phases and transitions between

them. For example, it explains the origin of metal, insulator and semiconductor. In

solids the ions form a crystal and a single electron moving in the lattice of ions feels an

effective periodic (static) potential, which accounts for the interaction between this

electron and other electrons/ions. Solutions to such a single-body problem give rise
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to energy bands and electrons fill these bands one by one from the bottom. Metals

contain a partially-filled band while in insulators/semiconductors all bands are either

fully occupied or completely empty. Ordered phases such as magnetism and super-

conductivity can also be understood in terms of mean field theory and the associated

effective external field is called an order parameter. The order parameter corresponds

to a local physical quantity such as spin density. These mean-field ground states are

rather “classical” coherent states and the corresponding many-electron wavefunctions

are nothing but Slater determinants.

The physical concept behind mean field theory is long-range order, symmetry

breaking and order parameter. In this framework introduced by Landau[110] different

phases are characterized by their different symmetries. Associated with each ordered

phase there is an order parameter which breaks certain global symmetry of the original

microscopic Hamiltonian. e.g. in a magnetic phase the order parameter breaks spin

rotational symmetry while in a superfluid phase the order parameter breaks global

U(1) gauge symmetry. These phenomena only happen in the thermodynamical limit

(with infinite degrees of freedom) and are called spontaneous symmetry breaking of

continuous symmetries. In Landau and Ginzburg’s theory of phase transitions[112],

a continuous phase transition are always accompanied by symmetry breaking. To

be precise the symmetry group of the low temperature phase must be a subgroup

of that of the high temperature phase. The low energy excitations in an ordered

phase which breaks continuous symmetry is the long-wavelength fluctuations of the

order parameter, called Nambu-Goldstone bosons[145, 60]. Simplest examples are

spin waves in a magnetic phase (which breaks spin rotational symmetry) and phonon
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modes in a solid (which breaks translation symmetry in free space).

To summarize, the “conventional” ordered phases share the following characters:

• A phase is completely characterized by its symmetry and associated long-range

orders.

• Phase transitions from a high temperature phase to low temperature one are

characterized by symmetry breaking.

• Gapless Goldstone bosons are the elementary excitations corresponding to the

broken continuous symmetries.

• The low-energy effective theory are described by long-wavelength fluctuations

of local order parameters, i.e. Landau theory.

1.2 Exotic phases in two dimensions: an overview

For a long time people believed that all condensed matter phases and phase tran-

sitions can be described by mean field theory and symmetry breaking concept. How-

ever a series of experimental discoveries made since the 80s, such as fractional quan-

tum Hall effects[207] and high temperature superconductivity[20] reveals that lots

of exotic phases and phase transitions could happen at low temperature. In fact

traditional many-body physics (including mean field theory and Landau theory) pro-

vides a proper description for finite temperature phases and phase transitions where

thermal fluctuations dominate. When temperature is low enough (compared with

other energy scales) quantum fluctuations become important and fundamentally new
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states of matter emerge. These exotic phases and associated zero-temperature phase

transitions cannot be described by mean-field theory and symmetry breaking picture:

e.g. different phases can have exactly the same symmetry, and zero-temperature quan-

tum phase transitions (induced by tuning physical parameters such as pressure and

magnetic field) are not always symmetry-breaking type.

A common feature shared by these phases is that interaction (correlation) energy

scale in the system is comparable with (or larger than) the kinetic energy scale (or

band width). This strong correlation (or interaction) effect is believed to be the reason

why mean field theory and perturbation theory around the mean field ground states

fail. Correlation effects beyond mean field theory becomes more and more important

when the (spatial) dimension of the many-body system becomes lower. Intuitively in

a higher dimension one particle has more neighbors (or a larger coordination number)

and this makes it more accurate to approximate the interaction between particles by a

mean field. In general there is a critical dimension dc beyond which mean field theory

fails[86], e.g. for Landau’s free energy theory (Gaussian model) the critical dimension

is dc = 4. One important manifestation of correlation effects is quantum fluctuations

around the mean-field ground state. Sometimes these fluctuations are strong enough

to destroy the order in the mean-field ground states: e.g. in two spatial dimensions the

quantum fluctuation is so strong that there are no spontaneous symmetry breaking

(or associated true long range order) at any finite temperature[137, 85].

Aside from strong correlation effects, another special feature of two spatial dimen-

sions is nontrivial quantum statistics of free (hard-core) identical particles[121, 232].

Quantum statistics is the symmetry of many-body wavefunctions under exchange of



Chapter 1: Introduction 10

any two identical particles. In three (spatial) dimensions, adiabatically wrapping

one particle around another (i.e. interchange the two particles twice) is topologically

equivalent to a process in which none of the particles move at all. Since the many-body

wavefunction should be invariant under such an operation, the only two possibilities

are to change by a ±1 sign for the wavefunction under a single interchange, hence

the bosons and fermions in 3+1-D. In two spatial dimensions things are qualitatively

different: a particle loop encircling another particle in two dimensions cannot be con-

tinuously deformed to a point. The many-body wavefunction doesn’t necessarily go

back to the same state under such a braiding operation. As a result free hard-core

particles in two dimensions can be either bosons or fermions, and these exotic par-

ticles with nontrivial braiding statistics are called anyons [231]. When an adiabatic

(counter-clockwise) interchange of two particles brings only a phase factor e iθ for

the many-body wavefunction, the particles are called abelian anyons since the phase

factor forms a one-dimensional abelian representation of braid group. θ is called the

statistical angle of the particles. Notice that for bosons θ = 2π and for fermions

θ = π. In other cases the adiabatic interchange of two particles will evolve the many-

body system into a new state, corresponding to a non-abelian representation of braid

statistics. These identical particles are called non-abelian anyons. It has been shown

that anyons can be used to build fault-tolerant quantum computers[101]. As will

be discussed later, abelian and non-abelian anyons emerge as elementary excitations

of many exotic phases in two dimensions. In a system of correlated electrons these

elementary excitations (or quasiparticles) sometimes carry a fraction of the electron

quantum number (charge/spin) and this emergent phenomenon is called fractional-
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ization.

Exploring exotic phases in low dimensions is a frontier of condensed matter physics

and so far we only have partial understanding of these exotic phases. Compared with

the “conventional” phases described earlier, these exotic phases confront us with the

following new questions:

• Symmetry alone cannot characterize an exotic phase. What are the quantum

numbers fully characterizing an exotic phase?

• Quantum phase transitions at zero-temperature are not necessarily symmetry-

breaking type. What are the new mechanisms for these phase transitions?

• Examples of elementary excitations of exotic phases are fractionalized quasipar-

ticles in the bulk, and stable gapless states on the edge/surface.

• Landau theory cannot describe the low-energy physics. What are the low-energy

effective theory describing these quantum phase transitions?

In the following sections I’ll show several examples of exotic phases in two-dimensional

systems of correlated electrons. This thesis will focus on these exotic phases.

1.3 Fractional quantum Hall liquids

For a system of electrons gas confined in a two-dimensional plane, when a strong

external magnetic field perpendicular to the plane is applied, solutions to the single-

body (non-interacting) problem gives rise to Landau levels each of which has a large
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degeneracy. Electrons fill these Landau levels one by one from the lowest level. Con-

sidering the effect of disorder, the perfect degeneracy of each Landau level is lifted

and one Landau level now becomes a “Landau band” in the presence of disorder. Ex-

tended states which contribute to the conductance (if they are filled by electrons) are

located in the center of each Landau band, while non-conducting localized states are

on the edge of each band. The degeneracy of each Landau level (or Landau band) is

proportional to the amplitude of magnetic field B. As the magnetic field is tuned one

changes the filling fraction of Landau bands or effectively shift the Fermi level. As the

Fermi level lies in the extended states around the center of a Landau band, the elec-

tron state is a metallic one with non-vanishing conductance σxx 6= 0. However when

Fermi level lies in the localized states on the edge of a band, the corresponding elec-

tron state is an insulator with σxx = 0. Besides, each filled Landau bands contribute

a quantized Hall conductance of σxy = e2/h, which is a topological invariant from

linear response theory calculations[205]. The quantization of the Hall conductance is

extremely precise as in experiments because it’s based on gauge invariance[113, 71].

An intuitive way to understand this fact is the edge state picture: although the bulk

state is an insulator with energy gap ~ωc (ωc is the cyclotron frequency), the cyclotron

motion of electrons under the magnetic field gives rise to gapless current-carrying

states localized on the edge. It can be shown that the quantized Hall conductance

has a one-to-one correspondence with these edge states[78]. The above facts corre-

spond to the integer quantum Hall effect[105] (IQHE), which is featured by quantized

plateaus with Hall conductance σxy = ρ−1
xy = ne2/h, n = 1, 2, · · · as shown in FIG.

1.2. Integer quantum Hall effects can be explained in this simple picture in terms of
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Figure 1.2: Resistance measurements of integer and fractional quantum Hall effects.
Notice the relations between resistance and conductance are σxy = ρxy/(ρ

2
xy + ρ2xx)

and σxx = ρxx/(ρ
2
xy + ρ2xx). Figure from Ref. [234].

non-interacting electrons moving in a magnetic field in the presence of disorder. The

electron wavefunctions of IQH states are Slater determinants since they correspond

to band insulators obtained by filling single-particle states.

This is not the whole story. Later on in resistance measurements of cleaner sam-

ples, at lower temperature people found new “fractionally” quantized plateaus with

σxy =
p
q
e2/h, p, q being integers[207]. The associated filling fraction (of Landau lev-

els/bands) is also p/q. These phenomena are called fractional (or anomalous) quan-

tum Hall effects in comparison to integer quantum Hall effects. In integer quantum

Hall effects, a plateau with σxy = ne2/h corresponds to a insulating state with n filled

Landau bands. Such a band insulator has an energy gap of order ~ωc. It also has

stable edge states which contribute to the Hall conductance. In the case of fractional

quantum Hall effects (FQHEs), however, the topmost Landau band is only partially
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filled (with filling fraction [p
q
]) and naively the state should be a metallic one with

nonzero conductance σxx 6= 0. However this plateau corresponds to an insulating

state (σxx = 0) with a finite energy gap. The only possibility is that electrons form

an incompressible (meaning a finite gap) state at this filling fraction due to corre-

lation/interaction effect. Formation of this correlation-induced insulator in FQHE

requires the following conditions:

• Interaction energy is comparable with (or larger than) the band width which is

determined by disorder strength: hence cleaner samples are required.

• Since energy gap is determined by Coulomb interaction between electrons, the

gap ∼ e2/lB (lB is the magnetic length) in FQHE is smaller than that in IQHE

(∼ ~ωc): hence lower temperature is required.

How to understand these correlated insulating states? FQH states with different

Hall conductance have exactly the same symmetry (as the original two-dimensional

electron gas). Symmetry alone cannot describe these different incomprehensible

(meaning a finite energy gap for excitations above the ground state) liquids of elec-

trons in two dimensions. The first theoretical breakthrough was made by Laughlin[114]:

he simply guessed a correct many-body wavefunction for FQH states at filling fraction

ν = 1/m, m being an odd integer. Laughlin’s state is written as

Φ
(

{zi = xi + iyi}
)

=
∏

i<j

(zi − zj)m · e−
∑N

k=1 |zk|2/(4l2B) (1.1)

under symmetric gauge ~A = B(−y, x)/2 in a disc geometry. This wavefunction is

a holomorphic function of electron coordinates {zi = xi + iyi} (except for Gaus-

sian factor due to disc geometry) and it involves only single-particle states in the
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lowest Landau level (LLL). This many-body wavefunction is an exotic correlated

state which cannot be written as a Slater determinant unless m = 1 (correspond-

ing to a fully filled LLL). Elementary excitations of such a state are quasiholes and

quasielectrons[114] each of which carries a fractional charge e0 = ±e/m (e denotes the

electron charge) and fractional statistical angle θ = π/m[12, 73]. Although there is a

finite energy gap for quasihole/quasielectron excitations in the bulk, there are gapless

edge excitations[217] on the boundary of these correlated FQH liquids. Another im-

portant feature of these gapped FQH states is robust (against any local perturbations)

ground state degeneracy depending on the topology of the manifolds: e.g. Langhlin

state at filling fraction ν = 1/m have mg-fold degenerate ground states on a genus-g

Riemann surface. As a consequence these non-symmetry-breaking “orders” in FQH

liquids are termed ”topological orders”[218], since the physical properties such as

quasiparticle charge/statistics and ground state degeneracy are topological invariants

and stable against perturbations. Later Laughlin’s idea was generalized to other

filling fractions[67, 73, 94, 172] and associated ground state wavefunctions are con-

structed. These states all have quasiparticles obeying (anyonic) abelian statistics and

they are called abelian FQH states. It has be shown that the topological orders in

any abelian FQH state are fully characterized by a matrix whose elements are all in-

tegers, called K-matrix[219]. This K-matrix allows allows us to obtain all topological

properties of an abelian FQH state, such as quasiparticle charge/statistics, ground

state degeneracy and structure of edge states.

Possibility of quasiparticles obeying non-abelian statistics in FQH states is first

revealed by Moore and Read[140]. Their idea was to construct trial wavefunctions of
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FQH states as correlation functions of certain conformal field theories[36]. They found

that the FQH wavefunction constructed from Ising conformal field theory (CFT) has

quasihole excitations described by the disorder operator of Ising CFT, and these

quasiholes actually obey non-abelian statistics[147]. This so-called Moore-Read pfaf-

fian state is likely to be the true ground state of ν = 5/2 FQHE[234]. Other trial

wavefunctions of non-abelian FQH states have also been proposed for other filling

fraction[216, 176]. Unlike abelian FQH states, these non-abelian FQH states cannot

be characterized by their K-matrices. So a natural question is: how to systemati-

cally characterize the topological orders in these non-abelian FQH states? Or more

precisely, how to extract a set of data as the “ID” of a non-abelian FQH state from

its trial wavefunction? In Chapter 2 we will give a (partial) answer to this problem.

Recently non-abelian FQH states attracted lots of attention due to their potential

use in topological quantum computation[146]. To be precise, when there are mul-

tiple quasiparticles which obey non-abelian statistics in the system, the degenerate

ground states can serve as qubits in a fault-tolerant quantum computer and opera-

tions on the qubits can be realized by braiding these non-abelian anyons[34]. Among

these non-abelian states, Moore-Read pfaffian state is a most promising candidate

that might be realized in practical materials, i.e. ν = 2 + 1/2 = 5/2 FQHE[234]

of two-dimensional electron gas in GaAs/AlGaAs heterostructures. There is a sim-

ple explanation of this non-abelian FQH state based on the composite fermion pic-

ture of FQHE. The basic idea of composite fermion picture[94] is to attach an even

number of flux quanta to each electrons to form a “composite fermion” and these

composite fermions effectively see a different magnetic field than the external field.
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Although it’s difficult to figure out ground state of electrons, the composite fermions

may still form a rather “normal” state. This simple picture interprets a large class

of FQH states in a unified framework[96], e.g. the Laughlin state at filling fraction

ν = 1/(2m + 1), m = 0, 1, 2 · · · can be understood as one filled LLL of composite

fermions each of which combines one electron and 2m flux quanta. In this picture

Moore-Read pfaffian state corresponds to a chiral p+ip triplet superconductor of spin-

polarized composite fermions. By combining two flux quanta with one electron to form

a composite fermion, for filling fraction ν = 1/2 the composite fermions don’t see any

magnetic field on average and a “composite fermi liquid” has been proposed[74] to

be the ground state of a half-filled LLL. However due to the Aharonov-Bohm effect,

the composite fermions not only interact with each other through Coulomb force (in-

herited from electrons) but there are so-called statistical interactions between them

as well. Formally this statistical interaction is described by a Chern-Simons gauge

field[59, 243, 171] coupled to composite fermions. Fluctuations of this gauge field

around its saddle-point is important for a half-filled LLL since it might lead to in-

stabilities of the composite fermi liquid. Previous perturbative calculations of the

gauge field fluctuations are not controllable treatments and even lead to opposite

conclusions[62, 25]. Are there any non-perturbative way in which we can take care

of the gauge fluctuations and find a reliable ground state for composite fermions?

Recently FQHEs at ν = 1/2 and 1/4 have been observed in wide GaAs quantum

wells[132, 190, 189], whose electron density are higher than previous experiments that

reported no signs of FQHE. How to explain this experimental observation? These two

questions will be answered in Chapter 3.
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1.4 Quantum spin liquids

The simplest and most well-known model to study strongly correlated electrons

(e.g. in d-electron system) is the one-band tight-binding Hubbard model[14]:

Hhubbard = −t
∑

<ij>

∑

σ=↑,↓
c†i,σcj,σ + U

∑

i

c†i,↑ci,↑c
†
i,↓ci,↓ (1.2)

where < i, j > represents i, j being nearest neighbors (NNs) on the lattice. Hopping

parameter t controls the bandwidth while on-site Coulomb repulsion energy U controls

electron correlation in the system. At half-filling with one electron per site, the charge

fluctuations will be suppressed when U/t is large enough since Hubbard U provides

an energy barrier for any charge transfer. Such an interaction-driven insulator at half-

filling is intrinsically different from a usual band insulator (with an even number of

electrons per unit cell) and is called aMott insulator 1. In the weak coupling limit when

U/t is small, the ground state should be metallic with a half-filled band. Therefore

there is a metal-insulator transition (MIT)[87] called Mott transition2, occurring at

an intermediate value of U/t. Starting from half-filling, a Mott insulator can be

destroyed either by changing U/t (called bandwidth-controlled MIT of BC-MIT) or

by changing the carrier density (the average electron number per site) n through

doping (called filling-controlled MIT or FC-MIT) as shown in FIG. 1.3.

At half-filling the electron spin on each site is the only low-energy degree of freedom

1Strictly speaking a Mott insulator has an odd number of electrons per unit cell. However in
some cases even when there are even electrons per unit cell such as a half-filled band on honeycomb
lattice, in large U/t limit the insulating phase is driven by Hubbard interaction and cannot be
continuously tuned into a band insulator without a phase transition. In this sense we still term it a
Mott insulator.

2There is an exception in one dimension: it has been proved[125] that there is no Mott transition
for one-band Hubbard model in 1-D.



Chapter 1: Introduction 19

Figure 1.3: Metal-insulator phase diagram based on one-band Hubbard model in the
plane of U/t and filling n. Shaded area stands for the Mott insulator phase. Two
routes for the MIT (metal-insulator transition) are shown: the FC-MIT (filling-control
MIT) and the BC-MIT (bandwidth-control MIT). Figure from Ref. [87].
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in large U/t limit, and the low-energy effective Hamiltonian for the electron spins {~Si}

can be obtained by perturbation theory from (1.2):

Heff =
4t2

U

∑

<i,j>

~Si · ~Sj +O(
t3

U2
) (1.3)

The leading-order term can be calculated from 2nd-order perturbation theory[63]

and is called the (isotropic) spin-1/2 Heisenberg model. In many cases around half-

filling certain magnetic (depending on the lattice geometry) order will develop in

the Mott insulator due to the Heisenberg interaction. For example on square lattice

an antiferromagnetic Néel order as shown in FIG. 1.4 is formed to minimize the

interaction energy. This magnetic order generally exists in many bipartite3 lattices

in the strong-coupling limit of Hubbard model at half-filling. Notice that for the

classical spin configuration of Néel order can simultaneously minimize every single

term ~Si · ~Sj, < i, j > of the NN Heisenberg model. On the other hand, one can

see from FIG. 1.4 on a triangular lattice (not bipartite) in each plaquette the three

NN terms cannot be simultaneously minimized by any classical spin configuration.

This classical effect against ordering is called geometric frustration[15]. For a system

of spin-1/2 quantum magnets the quantum fluctuations around the classical ordering

pattern (or the saddle point) is also large. Both geometric frustration and quantum

fluctuation would jeopardize the ordering tendency at low temperature and therefore

frustrated quantum magnets have been considered as an promising candidate to look

for a king of exotic phases featured by disordered spins at zero temperature called

quantum spin liquids. The definition of spin liquids is given as follows[161]:

3A bipartite lattice can be divided into two sublattices, so that all nearest neighbors of sublattice
A belong to sublattice B.
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Figure 1.4: The effect of geometric frustration for nearest-neighbor antiferromagnetic
Heisenberg model: a pictorial illustration.

A spin liquid has a ground state in which there is no long-range magnetic or-

der and no breaking of spatial symmetries (rotation or translation) and which is not

adiabatically connected to the band (Bloch) insulator.

Theoretically spin liquid states have been shown to exist as the ground state of

certain artificial models which can be exactly solved[179, 138, 226, 101, 102]. They are

divided into four subclasses[225]: rigid (or gapped) spin liquids, fermi spin liquids,

bose spin liquids and algebraic spin liquids. Usually these spin liquid states have

fractionalized quaisparticles, such as spinons which carry only spin but no charge. For

example rigid spin liquid is described by spinons coupled with a gauge fields, where

the spectra of both spinon and vison (gauge flux excitations) have an energy gap

separating the ground states and excited states. Experimental signatures of quantum

spin liquids are also observed[115, 15]. However whether these exotic phases can be

the ground states of simple and physically realistic models (such as Hubbard model

and Heisenberg model) remains enigmatic for a long time.
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Figure 1.5: The two-dimensional kagome lattice. Figure from Ref. [240].

Recently there are evidences of spin liquid ground state in numerical studies of

NN spin-1/2 Heisenberg model on kagome lattice[240], which is a highly-frustrated

two dimensional lattice as shown by FIG. 4.1. A fully gapped ground state is found

which preserves all lattice symmetry as well as spin rotational symmetry. They even

observed signatures of Z2 gauge fields in this spin liquid state. What is the nature of

this spin liquid state? Can one construct a variational wavefunction for this exotic

state which allows further understanding of this quantum spin liquid? These questions

will be answered in Chapter 4.

Even on a bipartite lattice free from geometric frustration, quantum fluctuations

could be very strong close to the Mott transition and they can drive the system into a

disordered spin liquid state. Another remarkable numerical discovery made recently

on the honeycomb lattice Hubbard model (1.2) at half-filling[136]: by tuning U/t a
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Figure 1.6: The U/t phase diagram of half-filled Hubbard model on honeycomb lattice.
SM is short for semimetal, SL for spin liquid and AFMI for antiferromagnetic Mott
insulator. Figure from Ref. [136].

spin liquid phase emerges between antiferromagnetic (AF) Mott insulating phase and

the semimetal phase as shown in FIG. 1.6. This spin liquid is also a fully gapped phase

for both charge and spin excitations and it is connected to both the semimetal phase

and the AF ordered insulating phase by continuous phase transitions as suggested

by numerical results[136]. What is the nature of this spin liquid phase? How to

understand the continuous phase transitions between this spin liquid phase and the

other two phases? In Chapter 5 we’ll answer these questions and give a systematic

way to identify the neighboring phases of a spin liquid state.
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1.5 Topological superconductors and Majorana bound

states

It has long been believed that a superconductor is fully characterized by the sym-

metry of its pairing order parameter[9, 193]. Given a symmetry group related to the

structure of a specific material, the possible superconducting phases are believed to

be classified by the symmetry breaking pattern of the pairing order parameter. In

other words, the pairing order parameter (corresponding to the minimum of the as-

sociated Ginzburg-Landau free energy) breaks the original symmetry group4 into one

of its subgroup and this subgroup characterizes the superconducting state. However

this is not true: even with fixed symmetry of pairing order parameter, phase transi-

tions driven by e.g. doping or pressure can happen in a superconductor. Symmetry is

not enough to characterize such a superconductor, and we need new quantum num-

bers to label the superducting phases. In a large class of superconductors these new

quantum numbers are topological invariants robust against perturbations5 and these

superconducting phases are called topological superconductors.

Consider a two-dimensional superconductor which can be well described by the

following mean-field Hamiltonian of spinless fermions in momentum space

HMF =
∑

k

(ǫk − µ)c†kck +∆kc
†
kc

†
−k + h.c. (1.4)

where ǫk is the kinetic energy (or band structure) and ∆k is the pairing order param-

4The total symmetry group is generated by all lattice symmetries, time reversal symmetry, spin
rotational symmetry, and U(1) gauge symmetry associated with electromagnetic field.

5Some topological superconductors are protected by certain symmetries, such as time reversal
symmetry. They are robust against any perturbations that preserve these symmetries. The classifi-
cation of topological superconductors are studied in Ref. [186, 103, 49, 50].



Chapter 1: Introduction 25

eter. µ is the chemical potential which can be tuned by changing the carrier density.

For a chiral p− ip superconductor in the longwavelength limit we have ξk = ~
2k2/2m

and ∆k = v∆(kx− iky). With a fixed order parameter, as chemical potential µ changes

sign the system would go through a phase transition[176]. µ < 0 corresponds to a

trivial superconductor with no stable edge states or any bound states in the vortex

core, called the strong pairing phase. When µ > 0 the superconductor enters a topo-

logically nontrivial phase featured by stable gapless neutral modes on the edge and

majorana bound states in its vortex core[176], called the weak pairing phase. To be

precise, by solving the Bogoliubov-de-Gennes equation for a half-flux-quantum vortex

configuration, one find that there is a zero-energy bound state localized in the vor-

tex core. These half-flux-quantum vortices obey non-abelian statistics[91, 200] and

are analogs of fractional quasiparticles in the Moore-Read pfaffian state in ν = 5/2

FQHE6. The new quantum number which differentiate these two phases is the winding

number Q of the following “pseudospin vector”[5, 6]

~nk ≡
Re∆k,−Im∆k, ξk − µ

Ek

, Ek =
√

(ǫk − µ)2 + |∆k|2. (1.5)

in the whole momentum space7. Winding number is always an integer: Q = 0 in

the strong pairing state and Q = 1 in the weak pairing phase. In fact the winding

number is well defined for any fully gapped (singlet or triplet) superconductor and

for spin-unpolarized superconductors Q is proportional to the quantized Hall spin

conductance[176]. However if the superconductor is gapless (such as the critical point

6As mentioned earlier the Moore-Read pfaffian state is in fact a chiral p-wave superconductor of
composite fermions.

7Mathematically this winding number Q is the degree of the following mapping: k → ~nk. It
corresponds to the homotopy class of π2(S

2).



Chapter 1: Introduction 26

between strong and weak pairing phase) the winding number Q will not be well-

defined anymore.

In many strongly-correlated electronic systems such as high-Tc cuprates[118] and

heavy fermion compounds[126], unconventional (i.e. not conventional s-wave) singlet

superconducting orders appear in proximity or even coexists with magnetic orders in

low temperature. The phase diagram of CeRhIn5 in FIG. 1.1 is an example where

the superconducting order is likely to be d-wave singlet superconductor with nodal

excitations[238]. Can a topologically non-trivial phase arises in coexistence of nodal

singlet superconductivity and magnetic orders, which hosts majorana bound states

in its vortex core? In Chapter 6 we’ll give a positive answer to this question and

propose a new route to realize majorana fermion bound states in two-dimensional

strongly correlated electrons. These non-abelian quasiparticles, once realized, could

become the building block of a fault-tolerant topological quantum computer[146].

1.6 Novel correlated phases in partially-filled topo-

logical flat bands

The standard QHE was first discovered in semiconductor heterostructures[105,

207], where the electrons gas essentially lives in two-dimensional free space. The

mere effect of the surrounding lattice is to change the effective mass of electrons. On

the other hand, a uniform magnetic field does two things: it breaks time reversal

symmetry and it quantizes the electrons with Landau levels. Are these two factors

crucial for the QHE? The answer is no for integer QHE. In a landmark paper Haldane
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constructed a tight-binding lattice model which exhibits IQHE in the absence of

magnetic field[68]. In his model, time-reversal symmetry is broken by a spatially

inhomogeneous magnetic field with zero average, and the Hall conductance equals

the Chern number, an integer depending on the momentum topology of the band.

Such a band with nontrivial momentum topology is called a Chern band. The next

question is: can FQHE, driven by interaction/correlation effects in a fractionally

filled Landau level, also be separated from the weak lattice and uniform magnetic

field limit? More precisely, if it is true in weak correlation limit that a filled Chern

band is equivalent to a filled Landau level, is it also true in the strong correlation

limit?

The answer is yes, when the bandwidth of the Chern band is small compared

with interaction energy scale. Recently FQHE has been theoretically proposed[204,

202, 149] and numerically discovered[149, 191] in flat Chern bands. These phases are

lattice versions of FQH states and are called fractional Chern insulators. Numerical

results also suggest that these fractional Chern insulators (FCIs) preserve all lattice

symmetries. Since the symmetry group of any lattice is only a subgroup of the free

space symmetry group, with lower symmetry requirements could there be more than

one FCI states corresponding to a certain filling fraction?

Besides, in associated lattice models that preserve time reversal symmetry, each

flat Chern band is almost degenerate with its time reversal counterpart. What hap-

pens when such a pair of so-called Z2 flat bands are partially filled? Numerical

studies[148] suggest that a class of time-reversal-symmetric fractionalized phases,

called fractional topological insulators may appear. What are the nature of these
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phases realized in a lattice model? Can we write down some variational wavefunctions

which could help analytical understanding of these phases? All the above questions

will be answered in Chapter 7.



Chapter 2

Vertex algebra characterization of

non-abelian quantum Hall states

2.1 Introduction

Materials can have many different forms, which is partially due to the very rich

ways in which atoms and electrons can organize. The different organizations corre-

spond to different phases of matter (or states of matter). It is very important for

physicists to understand these different states of matter and the phase transitions

between them. At zero-temperature, the phases are described by the ground state

wave functions, which are complex wave functions Φ(r1, r2, · · · , rN ) with N → ∞

variables. So mathematically, to describe zero-temperature phases, we need to char-

acterize and classify the ground state wave functions with ∞ variables, which is a

very challenging mathematical problem.

For a long time we believe that all states of matter and all phase transitions

29
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between them are characterized by their broken symmetries and the associated order

parameters[110]. A general theory for phases and phase transitions is developed based

on this symmetry breaking picture. So within the paradigm of symmetry breaking,

a many-body wave function is characterized by its symmetry properties. Landau’s

symmetry breaking theory is a very successful theory and has dominated the theory

of phases and phase transitions until the discovery of fractional quantum Hall (FQH)

effect[207, 114].

FQH states cannot be described by symmetry breaking since different FQH states

have exactly the same symmetry. So different FQH states must contain a new kind

of order. The new order is called topological order[218, 223, 225] and the associated

phase called topological phase, because their characteristic universal properties (such

as the ground states degeneracy on a torus[218]) are invariant under any small per-

turbations of the system. Unlike symmetry-breaking phases described by local order

parameters, a topological phase is characterized by a pattern of long-range quantum

entanglement[104, 123, 124]. In Ref. [215], the non-Abelian Berry phases for the

degenerate ground states are introduced to systematically characterize and classify

topological orders in FQH states (as well as other topologically ordered states). In

this chapter, we further develop another systematic characterization of the topological

orders in FQH states based on the pattern of zeros approach.[229, 228]

In the strong magnetic field limit, a FQH wave function with filling factor ν < 1

is an anti-symmetric holomorphic polynomial of complex coordinates {zi = xi +

iyi} (except for a common factor that depends on geometry: say, a Gaussian factor

exp
(

∑

i
|zi|2
4

)

for a planar geometry). After factoring out an anti-symmetric factor
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of
∏

i<j(zi − zj), we can describe a quantum Hall state by a symmetric polynomial

Φ(z1, · · · , zN ) in the N → ∞ limit.[?] So the characterization and classification of

long-range quantum entanglements in FQH states become a problem of characterizing

and classifying symmetric polynomials with infinite variables.

In a recent series of work,[229, 228, 16] the pattern of zeros is introduced to

characterize and classify symmetric polynomials of infinite variables. The pattern of

zeros is described by a sequence of integers {Sa|a = 1, 2, ...}, where Sa is the lowest

order of zeros of the symmetric polynomial when we fuse a different variables together.

The data {Sa|a = 1, 2, ...} can be further compactified into a finite set {n;m;Sa|a =

1, 2, ..., n;n,m ∈ N} for n-cluster quantum Hall states. HereN = {0, 1, 2, ...} is the set

of non-negative integers. It has been shown[229, 228] that all known one-component

Abelian and non-Abelian quantum Hall states can be (partially) characterized by

pattern of zeros. It is also shown[229, 228] that, for any given pattern of zeros {Sa},

we can construct an ideal local Hamiltonian[67, 162, 62, 178, 175] H{Sa} such that the

FQH state with the pattern of zeros is a zero energy ground state of the Hamiltonian.

We would like to point out that, strictly speaking, a FQH state must be a state

with a finite energy gap. But in this chapter, we will use the term more loosely. We

will call one state a FQH state if it can be an zero energy state of an ideal Hamiltonian.

So our FQH states may not be gapped.

Due to the length of this chapter, in the following, we are going to summarize the

issues that we are going to discuss in this chapter. We will also summarize the main

results that we obtain on those issues.
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2.1.1 Sufficient conditions on pattern of zeros

Within the pattern-of-zero approach, two questions naturally arise: (1) Does any

pattern of zeros, i.e. an arbitrary integer sequence {n;m;Sa} corresponds to a sym-

metric polynomial Φ(z1, · · · , zN)? Are there any “illegal” patterns of zeros that do

not correspond to any symmetric polynomial? (2) Given a “legal” pattern of ze-

ros, can we construct a corresponding FQH many-body wave function? Is the FQH

many-body wave function uniquely determined by the pattern of zeros?

For question (1), it turns out that the pattern of zeros must satisfy some consistent

conditions[229, 228] in order to describe an existing symmetric polynomial. In other

words, some sequences {n;m;Sa} don’t correspond to any symmetric polynomials.

However, Ref. [229, 228] only obtain some necessary conditions on the pattern of zeros

{n;m;Sa}. We still do not have a set of sufficient conditions on pattern of zeros that

guarantee a pattern of zeros to correspond to an existing symmetric polynomial.

For the question (2), right now, we do not have an efficient way to obtain cor-

responding FQH many-body wave function from a “legal” pattern of zeros. Further

more, while some patterns of zeros can uniquely determine the FQH wave function, it

is known that some other patterns of zeros cannot uniquely determine the FQH wave

function: i.e. in those cases, two different FQH wave functions can have the same

pattern of zeros.[229, 195] This means that, some patterns of zeros do not provide

complete information to fully characterize FQH states. In this case it is important

to expand the data of pattern of zeros to obtain a more complete characterization of

FQH states.

We see that the above two questions are actually closely related. In this chapter,
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we will try to address those questions. Motivated by the conformal field theory

(CFT) construction of FQH wave functions,[140, 221, 230, 54, 11] we will try to use

the patterns of zeros to define and construct vertex algebras (which are CFTs). Since

the correlation function of the electron operator in the constructed vertex algebra

gives us the FQH wave function, once the vertex algebra is obtained from a pattern

of zeros, we effectively find the corresponding FQH wave function for the pattern of

zeros. In this way, we establish the connection between the pattern of zeros and the

FQH wave function through the vertex algebra.

In order for the correlation of electron operators in the vertex algebra to produce

a single-valued electron wave function with respect to electron variables {z1, · · · , zN},

electron operators need to satisfy a so-called “simple-current” property (see eqn. (2.23)

and eqn. (2.40)). Also the vertex algebra need to satisfy the generalized Jacobi iden-

tity (GJI) which guarantees the associativity of the corresponding vertex algebra.[151]

We find that only a certain set of patterns of zeros can give rise to simple-current

vertex algebras that satisfy the GJI. So the GJIs in simple-current vertex algebras

give us a set of sufficient conditions on a pattern of zeros so that this pattern of zeros

does correspond to an existing symmetric polynomial.

In this chapter, we first try to use the pattern of zeros {n;m;Sa} to define a Zn ver-

tex algebra. From some of the GJI of the Zn vertex algebra, we obtain more necessary

conditions on the pattern of zeros {n;m;Sa} than those obtained in Ref. [229, 228]

(see section 2.3). It is not clear if those conditions are actually sufficient or not.

Then, we try to use the pattern of zeros {n;m;Sa} to define a Zn simple-current

vertex algebra. From the complete GJI of the Zn simple-current vertex algebra, we
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obtain sufficient conditions on the pattern of zeros {n;m;Sa} (see section 2.4).

2.1.2 How to expand the pattern-of-zeros data to completely

characterize the topological order

If a pattern of zeros {n;m;Sa} can uniquely describe the topological order in a

quantum Hall ground state, then from such a quantitative description, we should be

able to calculate the topological properties from the data {n;m;Sa}. Indeed, this can

be done. First different types of quasiparticles can also be quantitatively described

and labeled by a set of sequences {Sγ;a} that can be determined from the pattern-

of-zeros data {n;m;Sa}[228]. Those quantitative characterizations of the quantum

Hall ground state and quasiparticles allow us to calculate the number of different

quasiparticle types, quasiparticle charges, fusion algebra between the quasiparticles,

and topological ground state degeneracy on a Riemann surface of any genus.[228, 16]

However, from the pattern-of-zeros data, {n;m;Sa} and {Sγ;a}, we still do not

know how to calculate the quasiparticle statistics and scaling dimensions, as well as

the central charge c of the edge states. This difficulty is related to the fact that some

patterns of zeros do not uniquely characterize a FQH state. Thus one cannot expect

to calculate the topological properties of FQH state from the pattern-of-zeros data

alone in those cases.

In this chapter, we will try to solve this problem. We first introduce a more com-

plete characterization for FQH states in terms of a expanded data set: {n;m;Sa; c}.

Then, we use the data set {n;m;Sa; c} to define a so called Zn simple-current ver-

tex algebra. The Zn simple-current vertex algebra contain a subalgebra, Virasoro
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algebra, generated by the energy-momentum tensor T and c is the central charge of

the Virasoro algebra. It contains only n primary fields ψa, a = 0, 1, ..., n − 1 of the

Virasoro algebra, with a Zn fusion rule ψaψb ∼ ψ(a+b) mod n, ψn = ψ0. Those ψa are

called simple currents. The extra data c is the one of the structure constants of the Zn

simple-current vertex algebra. One may want to include all the structure constants

{Cab} in the data set to have a complete characterization. But for the examples dis-

cussed in this chapter, we find that data set {n;m;Sa; c} already provides a complete

characterization. So in this chapter, we will use {n;m;Sa; c} to characterize FQH

states. If later we find that {n;m;Sa; c} is not sufficient, we can always add addi-

tional data, such as Cab. Every Zn simple-current vertex algebra uniquely define a

FQH state, and the data {n;m;Sa; c} that defines a Zn simple-current vertex algebra

also completely characterizes a FQH state.

We would like to remark that although the data {n;m;Sa; c} and the correspond-

ing Zn simple-current vertex algebras describe a large class of FQH states, they do

not describe all FQH states. For example let ΦAi
be the FQH wave function de-

scribed by a Zni
simple-current vertex algebra Ai, i = 1, 2. Then, in general, the

FQH state described by the product wave function Φ = ΦA1ΦA2 cannot be described

by a simple-current vertex algebra. Such a product state is described by the product

vertex algebra A1⊗A2, which is in general no longer a simple-current vertex algebra.

So a more general FQH state should have a form

Φ =
∏

i

ΦAi
. (2.1)

The study in Ref. [229, 228, 16] reveal that many FQH states described by pattern
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of zeros have the following form

Ψ({zi}) =
∏

a

Φ
Z

(ka)
na

({zi}) (2.2)

where Φ
Z

(ka)
na

({zi}) is the wave function described by Z
(ka)
na parafermion vertex algebra.[16]

The Zn simple-current vertex algebra mentioned above is a natural generalization of

the Z
(ka)
na parafermion vertex algebra, and eqn. (2.1) naturally generalizes eqn. (2.2).

(Note that there are many Zn simple-current vertex algebras even for a fixed n, so

there are many different Zn simple-current states.)

For the subclass of FQH states described by Zn simple-current vertex algebra

(which includes Virasoro algebra as an essential part), the quasiparticle statistics and

scaling dimensions, as well as the central charge c of the edge states can be calculated

from the data {n;m;Sa; c}. Certainly, we can also calculate the number of different

quasiparticle types, quasiparticle charges, fusion algebra between the quasiparticles,

and topological ground state degeneracy on a Riemann surface of any genus.

Obviously, not every collection {n;m;Sa; c} corresponds to a Zn simple-current

vertex algebra and a FQH state. GJIs of the Zn simple-current vertex algebra gen-

erate the consistent conditions on the data set {n;m;Sa; c}. Only those data sets

{n;m;Sa; c} that satisfy the GJIs can describe a Zn simple-current vertex algebra

and FQH states.

For some patterns of zeros {n;m;Sa}, we find that they uniquely define the vertex

algebras by completely determining the structure constants c and Cab. So those

patterns of zeros completely specify the corresponding FQH wave functions. While for

other patterns of zeros, we find that they cannot uniquely define the vertex algebras.

For those patterns of zeros, many different sets of structure constants can satisfy
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the GJIs for the same set of pattern of zeros. This corresponds to the situation

where there are many different FQH wave functions that share the same pattern of

zeros. In this case, the pattern of zeros does not completely characterize FQH wave

functions. We need additional data to completely characterize quantum Hall wave

functions. Here we choose to add the structure constant c of the Virasoro algebra

(which is the central charge) and use {n;m;Sa; c|a = 1, ..., n;n,m, Sa ∈ N; c ∈ R} to

characterize FQH states. For all the examples that we considered in this chapter, the

data {n;m;Sa; c} completely determine the simple-current vertex algebra.

Due to the limited length of this chapter, we refer Ref. [130] to interested readers

where i.e. lots of different FQH wavefunctions are discussed as examples of our Zn ver-

tex algebra description. The characterization of quasiparticles in these non-Abelian

FQH states are also discussed in Ref. [130].

2.2 Pattern-of-zeros approach to generic FQH states

In this section, we will review how to use the pattern of zeros to characterize and

classify different FQH states that have one component.[229, 228, 16] A discussion on

two-component FQH states can be find in Ref. [17].

2.2.1 FQH wave functions and symmetric polynomials

Generally speaking, to classify generic complex wave functions Φ(r1, · · · , rN) is

not even a well-defined problem. Fortunately, under a strong magnetic field, electrons

are spin-polarized in the lowest Landau level (LLL) when the electron filling fraction

νe is less than 1. The wave function of a single electron in LLL (we set magnetic length
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lB =
√

~/eB to be unity hereafter) is Ψm(z) = zm e−|z|2/4 in a planar geometry. m

is the angular momentum of this single particle state. Thus the many-body wave

function of spin-polarized electrons in the LLL should be

Ψe(z1, · · · , zN) = Φ̃e(z1, · · · , zN )e−
∑N

i=1
|zi|

2

4 (2.3)

where Φ̃e({zi}) is an anti-symmetric holomorphic polynomial of electron coordinates

{zi = xi + iyi}. The electron filling fraction νe is defined as:

νe = lim
N→∞

N

Nφ
= lim

N→∞

N2

2Np
(2.4)

where Nφ is the total number of flux quanta piercing through the sample, and Np is

the total degree of polynomial Φ̃e({zi}). For FQH states νe < 1, we can extract a

Jastraw factor
∏

i<j(zi − zj) and the remaining part

Φ(z1, · · · , zN) =
Φ̃e(z1, · · · , zN )
∏

i<j(zi − zj)
(2.5)

would be a symmetric polynomial of {zi}. We will concentrate on this symmetric

polynomial to characterize and classify FQH states.

For the symmetric polynomial Φ({zi}) we can also define a filling fraction ν in the

same way as in eqn. (2.4), only Np replaced by the total degree of bosonic polynomial

Φ({zi}). The electron filling fraction νe has the following relation with this bosonic

filling fraction ν:

νe =
1

1 + ν−1
< 1 (2.6)

2.2.2 Fusion of a variables: the Pattern of Zeros

The pattern of zeros[229, 228] is introduced to describe symmetric polynomials

Φ({zi}) through certain local properties, i.e. fusion of a different variables z1, · · · , za.
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More specifically, we bring these a variables together, viewing za+1, · · · , zN as fixed

coordinates. By writing the a variables in the following manner zi = λξi + z(a),

i = 1, · · · , a, where z(a) = z1+···+za
a

and
∑a

i=1 ξa = 0, we can bring these a variables

together by letting λ tend to zero. Then we can expand the polynomial Φ({zi}) in

powers of λ:

lim
λ→0+

Φ(λξ1 + z(a), · · · , λξa + z(a); za+1, · · · , zN) (2.7)

= λSaPSa
[z(a), (ξ1, · · · , ξa); za+1, · · · , zN ] +O(λSa+1)

In other words, {Sa} is the lowest order of zeros when we fuse a variables together.

The pattern of zeros, by definition, is this sequence of integers {Sa}. In this chapter,

we will only consider the polynomials that satisfy a unique fusion condition: the

fusion of a variables is unique, i.e. PSa
in eqn. (2.7) has the same form except for an

overall factor no matter how {ξi} are chosen.

There are other equivalent descriptions of the pattern of zeros. One of them is

the orbital description:

la = Sa − Sa−1 a = 1, 2, · · · (2.8)

where {la} labels the orbital angular momentum of the single-particle state occupied

by the a-th particle. Another is the occupation description in terms of a sequence of

integers {nl}[188, 22, 24, 23], denoting the number of particles occupying the orbital

with angular momentum l.
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2.2.3 Consistent conditions for the Pattern of Zeros

To summarize, the pattern of zeros for an n-cluster polynomial is described by a

set of positive integers {n;m;S2, ..., Sn}. Introducing S1 = 0 and

Sa+kn = Sa + kSn +mn
k(k − 1)

2
+ kma (2.9)

which define Sn+1, Sn+2, ..., we find that the data {n;m;S2, ..., Sn} must satisfy

Da,b = Sa+b − Sa − Sb ≥ 0

Da,a = even (2.10)

∆3(a, b, c) (2.11)

= Sa+b+c + Sa + Sb + Sc − Sa+b − Sa+c − Sb+c ≥ 0

for all a, b, c = 1, 2, 3 · · · .

The conditions (2.10) and (2.11) are necessary conditions for a pattern of zeros

to represent a symmetric polynomial. Although eqn. (2.10) and eqn. (2.11) are very

simple, they are quite restrictive and are quite close to be sufficient conditions. In

fact if we add an additional condition

∆3(a, b, c) = even (2.12)

the three conditions (2.10), (2.11), and (2.12) may even become sufficient condi-

tions for a pattern of zeros to represent a symmetric polynomial.[229, 228] However,

this condition is too strong to include many valid symmetric polynomials such as

Gaffnian,[194] a nontrivial Z4 state discussed in detail in section ??. We will obtain

some additional conditions in section 2.3.3, which combined with (2.10) and (2.11)
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form a set of necessary and (potentially) sufficient conditions for a valid pattern of

zeros.

2.2.4 Label the pattern of zeros by hsca

In this section, we will introduce a new labeling scheme of the pattern of zeros.

We can label the pattern of zeros in terms of

hsca = Sa −
aSn
n

+
am

2
− a2m

2n
. (2.13)

This labeling scheme is intimately connected to the vertex algebra approach that we

will discuss later.

The n-cluster condition (2.9) of Sa implies that hsca is periodic

hsc0 = 0, hsca = hsca+n (2.14)

The two sets of data {n;m;S2, ..., Sn} and {n;m; hsc1 , ..., h
sc
n−1} has a one-to-one cor-

respondence, since

Sa = hsca − ahsc1 +
a(a− 1)m

2n
. (2.15)

We can translate the conditions on {m;Sa} to the equivalent conditions on {m; hsca }.

First, we have

2nSa = 2nhsca − 2nahsc1 + a(a− 1)m = 0 mod 2n

nS2a = nhsc2a − 2nahsc1 + a(2a− 1)m = 0 mod 2n

m > 0, mn = even (2.16)

nS2n = 0 mod 2n in eqn. (2.16) leads to 2nhsc1 +m = 0 mod 2, from which we see

that 2nhsc1 is an integer. From 2nhsca − a(2nhsc1 ) + a(a − 1)m = even integer, we see
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that 2nhsca are always integers. Also 2nhsc2a are always even integers, and 2nhsc2a+1 are

either all even or all odd. Since hscn = 0, thus when n = odd, 2nhsca are all even. Only

when n = even, can 2nhsc2a+1 either be all even or all odd. When m =even, 2nhsc2a+1

are all even. When m =odd, 2nhsc2a+1 are all odd.

The two concave conditions become

hsca+b − hsca − hscb +
abm

n
= Dab = integer ≥ 0 (2.17)

hsca+b+c − hsca+b − hscb+c − hsca+c + hsca + hscb + hscc

= ∆3(a, b, c) = integer ≥ 0 (2.18)

The valid data {n;m; hsc1 , ..., h
sc
n−1} can be obtained by solving eqn. (2.14), eqn. (2.16),

eqn. (2.17), and eqn. (2.18).

Choosing 1 ≤ a, b < a+ b ≤ n in eqn. (2.18), we have

0 ≤ ∆3(a, b, n− a− b)

= (hscn−a−b − hsca+b)− (hscn−a − hsca )− (hscn−b − hscb )

= −∆3(n− a, n− b, a+ b) ≤ 0

which implies the following reflection condition on {hsca }:

hsca − hscn−a = a(hsc1 − hscn−1) = 0 (2.19)

From (2.19) we see that partially solving conditions (2.18) reduces the number of

independent variables characterizing a pattern of zeros from n− 1 in {S2, · · · , Sn} to

[n
2
] in {hsc1 , · · · , hsc[n

2
]}.
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2.3 Constructing FQH wave functions from Zn ver-

tex algebras

If we use {n;m; hsca } to characterize n-cluster symmetric polynomial Φ({zi}), the

conditions (2.16), (2.17), and (2.18) are required by the single-valueness of the sym-

metric polynomial. Or more precisely, eqns. (2.16), (2.17), and (2.18) come from a

simple requirement that the zeros in Φ({zi}) all have integer orders. However, the

conditions (2.16), (2.17), and (2.18) are incomplete in the sense that some patterns of

zeros {n;m; hsca } can satisfy those conditions but still do not correspond to any valid

polynomial.

2.3.1 FQH wave function as a correlation function in Zn ver-

tex algebra

To find more consistent conditions, in the rest of this chapter, we will introduce

a new requirement for the symmetric polynomial. We require that the symmetric

polynomial can be expressed as a correlation function in a vertex algebra. More

specifically, we have[140, 221, 230]

Φ({zi}) = lim
z∞→∞

z2hN∞ 〈V (z∞)

N
∏

i=1

Ve(zi)〉 (2.20)

where Ve(z) is an electron operator and V (∞) represents a positive background to

guarantee the charge neutral condition. This new requirement, or more precisely, the

associativity of the vertex algebra, leads to new conditions on hsca .
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The electron operator has the following form

Ve(z) = ψ(z) : e iφ(z)/
√
ν : (2.21)

where : e iφ(z)/
√
ν : (:: stands for normal ordering, which is implicitly understood

hereafter) is a vertex operator in a Gaussian model. It has a scaling dimension of 1
2ν

and the following operator product expansion (OPE)[36]

e iaφ(z) e ibφ(w) = (z − w)abe i (a+b)φ(w) +O
(

(z − w)ab+1
)

(2.22)

The operator ψ is a primary field of Virasoro algebra obeys an quasi-Abelian fusion

rule

ψaψb ∼ ψa+b + ..., ψa ≡ (ψ)a. (2.23)

where ... represent other primary fields of Virasoro algebra whose scaling dimensions

are higher than that of ψa+b by some integer values. We believe that the integral

difference of the scaling dimensions is necessary to produce a single-valued correlation

function(see eqn. (2.20)).

Let h̃sca be the scaling dimension of the simple current ψa. Therefore the a-cluster

operator

Va ≡ (Ve)
a = ψa(z)e

iaφ(z)/
√
ν (2.24)

has a scaling dimension of

ha = h̃sca +
a2

2ν
(2.25)

The vertex algebra is defined through the following OPE of the a-cluster operators

Va(z)Vb(w) = CV
a,b

Va,b(w)

(z − w)ha+hb−ha+b

+O
(

(z − w)ha+b−ha−hb+1
)

. (2.26)
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where CV
a,b are the structure constants. However, the above OPE is not quite enough.

To fully define the vertex algebra, we also need to define the relation between Va(z)Vb(w)

and Vb(w)Va(z).

The correlation functions is calculated through the expectation value of radial-

ordered operator product.[58, 36, 151] The radial-ordered operator product is defined

through

(z − w)αVaVbR[Va(z)Vb(w)]

=



















(z − w)αVaVbVa(z)Vb(w), |z| > |w|

µab(w − z)αVaVbVb(w)Va(z), |z| < |w|
(2.27)

where

αVaVb = ha + hb − ha+b. (2.28)

Note that the extra complex factor µab is introduced in the above definition of radial

order. In the case of standard conformal algebras, where αVaVb ∈ Z, we choose

µab = −e iπαVaVb if both Va and Vb are fermionic and µab = e iπαVaVb if at least one of

them is bosonic. But in general, the commutation factor can be different from ±1

and can be chosen more arbitrarily.

To gain an intuitive understanding of the above definition of radial order, let us

consider the Gaussian model and choose Va = e iaφ and Vb = e ibφ. The scaling di-

mension of Va and Vb are ha =
a2

2
and hb =

b2

2
. αVaVb = ha + hb − ha+b. We see that

αVaVb ∈ Z if a, b ∈ Z and such a Gaussian model is an example of standard conformal

algebras. If both a and b are odd, then ha and hb are half integers and Va and Vb are

fermionic operators. In this case αVaVb = −ab = odd. So under the standard choice
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µab = −e iπαVaVb , we have µab = 1. If one of a and b is even, αVaVb = −ab = even and

one of Va and Vb is bosonic operators. Under the standard choice µab = e iαVaVb , we

have again µab = 1. Even when a and b are not integers, in the Gaussian model, the

radial order of Va = e iaφ and Vb = e ibφ is still defined with a choice µab = 1. This

is a part of the definition of the Gaussian model. In this chapter, we will choose a

more general definition of radial order where µab are assumed to be generic complex

phases |µab| = 1.

The vertex algebra generated by ψ have a form

ψa(z)ψb(w) = Ca,b
ψa+b(w)

(z − w)h̃sca +h̃sc
b
−h̃sc

a+b

+O
(

(z − w)h̃sca+b
−h̃sca −h̃sc

b
+1
)

. (2.29)

where

Ca,b 6= 0. (2.30)

When combined with the U(1) Gaussian model, the above vertex algebra can produce

the wave function for a FQH state (see eqn. (2.20)).

We will also limit ourselves to the vertex algebra that satisfies the n-cluster con-

dition:

ψn = 1 (2.31)

where 1 stands for the identity operator. Those vertex algebras are in some sense

“finite” and correspond to rational conformal field theory. We will call such vertex

algebra Zn vertex algebra. We see that in general, a FQH state can be described by
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the direct product of a U(1) Gaussian model and a Zn vertex algebra. Some examples

of Zn vertex algebra are studied in Ref. [38, 37].

Note that the Zn vertex algebras are different from the Zn simple-current vertex

algebras that will be defined in section 2.4. The Zn simple-current vertex algebras

are special cases of the Zn vertex algebras. In this and the next sections, we will

consider Zn vertex algebras. We will further limit ourselves to Zn simple-current

vertex algebras in section 2.4 and later.

As a result

h̃sca = h̃sca+n, h̃scn = 0

µab = µa+n,b = µa,b+n, µn,a = µa,n = 1

Ca,b = Ca+n,b = Ca,b+n, Cn,a = Ca,n = 1

Ca,b = µa,bCb,a (2.32)

By choosing proper normalizations for the operators ψa, we can have

Ca,−a =











1, a mod n ≤ n/2

µa,−a, a mod n > n/2

Ca,b = 1, if a or b = 0 mod n (2.33)

To summarize, we see that the Zn vertex algebras (whose correlation functions

give rise to electron wave functions) are characterized by the following set of data

{n;m; h̃sca ;Ca,b, ...|a, b = 1, ..., n}, where m = n/ν. Here the ... represent other struc-

ture constants in the subleading terms. The commutation factors µab are not included

in the above data because they can be expressed in terms of h̃sca and are not indepen-

dent. Since the Zn vertex algebra encodes the many-body wave function of electrons,
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we can say that the data {n;m; h̃sca ;Ca,b, ...|a, b = 1, ..., n} also characterize the elec-

tron wave function. We can study all the properties of electron wave functions by

studying the data {n;m; h̃sca ;Ca,b, ...|a, b = 1, ..., n}. In the pattern-of-zero approach,

we use data {n;m; hsca } to characterize the wave functions. We will see that the

{n;m; h̃sca ;Ca,b, ...|a, b = 1, ..., n} characterization is more complete, which allows us

to obtain some new results.

2.3.2 Relation between h̃sca and hsca

What is the relation between the two characterizations: {n;m; hsca |a = 1, ..., n}

and {n;m; h̃sca ;Cab|a, b = 1, ..., n}? The single-valueness of the correlation function

Φ({zi}) requires that the zeros in Φ({zi}) all have integer orders. In this section,

we derive conditions on the scaling dimension h̃sca , just from this integral-zero con-

dition. This allows us to find a simple relation between {n;m; hsca |a = 1, ..., n} and

{n;m; h̃sca ;Cab|a, b = 1, ..., n}.

From the definition of Dab and the OPE (2.26), we see that

Da,b ≡ Sa+b − Sa − Sb = ha+b − ha − hb

= h̃sca+b − h̃sca − h̃scb +
ab

ν
= Db,a (2.34)

We see that D1,n = n
ν
. So n

ν
is an positive integer which is called m.

From eqn. (2.34), we can show that[229, 228]

Sa =

a−1
∑

i=1

Di,1 = ha − ah1 = h̃sca − ah̃sc1 +
a(a− 1)

2ν
(2.35)

and

h̃sca = Sa −
aSn
n

+
am

2
− a2m

2n
. (2.36)
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Therefore, the hsca introduced before is nothing but the scaling dimensions h̃sca of the

simple currents ψa (see eqn. (2.13)). In the following, we will use hsca to describe

the scaling dimensions of ψa. Thus the data {n;m; h̃sca ;Ca,b|a, b = 1, ..., n} can be

rewritten as {n;m; hsca ;Ca,b|a, b = 1, ..., n}. Those hsca satisfy eqns. (2.16), (2.17), and

(2.18).

As emphasized in Ref. [229, 228], the conditions (2.16), (2.17), and (2.18), although

necessary, are not sufficient. In the following, we will try to find more conditions from

the vertex algebra.

2.3.3 Conditions on hsca and Ca,b from the associativity of ver-

tex algebra

The multi-point correlation of a Zn vertex algebra can be obtained by fusing

operators together, thus reducing the original problem to calculating a correlation of

fewer points.[242] It is the associativity of this vertex algebra that guarantees any

different ways of fusing operators would yield the same correlation in the end,[151]

so that the electron wave function would be single-valued. The associativity of a Zn

vertex algebra requires hsca and Ca,b to satisfy many consistent conditions. Those are

the extra consistent conditions we are looking for. The consistent conditions come

from two sources. The first source is the consistent conditions on the commutation

factors µa,b. When applied to our vertex algebra (2.29), we find that some consistent

conditions on µa,b allow us to express µa,b in terms of hsca . Then other consistent

conditions on µa,b will become consistent conditions on hsca . The second source is

GJI for the vertex algebra (2.29). We like to stress that the discussions so far are
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very general. The consistent conditions that we have obtained for generic Zn vertex

algebra are necessary conditions for any FQH states.

A detailed derivation of those conditions on hsca and Ca,b is given in Ref. [130]. Here

we just summarize the new and old conditions in a compact form. The consistent

conditions can be divided in two classes. The first type of consistent conditions act

only on the pattern of zeros {n;m; hsca }:

nhsc2a − 2nahsc1 + a(2a− 1)m = 0 mod 2n,

m > 0, mn = even,

hsca+b − hsca − hscb +
abm

n
∈ N,

hsca+b+c − hsca+b − hscb+c − hsca+c + hsca + hscb + hscc ∈ N,

nα1,1 = even,

a2α1,1 − αa,a = even ∀a = 1, 2, · · ·n− 1,

∆3(
n

2
,
n

2
,
n

2
) = 4hscn

2
6= 1, if n = even, (2.37)

where hsca = hsca+n and αa,b = hsca + hscb − hsca+b.

The second type of consistent conditions act on the structure constants: For any

a, b, c

Ca,bCa+b,c = Cb,cCa,b+c = µa,bCa,cCb,a+c

if ∆3(a, b, c) = 0,

Ca,bCa+b,c = Cb,cCa,b+c + µa,bCa,cCb,a+c

if ∆3(a, b, c) = 1, (2.38)
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where µa,b is a function of the pattern of zeros {hsca }:

µij = (−1)ijα1,1−αi,j = ±1.

For any a 6= n/2

Ca,−a = Ca,aC2a,−a = 1 if ∆3(a, a,−a) = 0,

2Ca,−a = Ca,aC2a,−a if ∆3(a, a,−a) = 1. (2.39)

Here Ca,b satisfies the normalization condition (2.33). There may be additional con-

ditions when ∆3(a, b, c) 6= 0, 1. But we do not know how to derive those conditions

systematically at this time.

2.3.4 Summary

In Ref. [229, 228], we have seen that the conditions (2.16), (2.17), and (2.18) are

not enough since they allow the following pattern of zeros {n;m; hsca } = {2; 1; 1
4
}.

Such a pattern of zeros does not correspond to any valid polynomial. The conditions

(2.37) obtained in this chapter rule out the above invalid solution. So the conditions

(2.37) is more complete than the conditions (2.16), (2.17), and (2.18). However, the

conditions (2.37) is still incomplete, since they allow the invalid patterns of zeros such

as {n;m; hsca } = {4; 2; 14 0 1
4
} and {4; 4; 1 1 1}. Both of them can be ruled out by the

conditions (2.38) and (2.39).

The conditions (2.37), (2.38), and (2.39) are the consistent conditions that we

can find from some of GJI, based on the most general form of OPE (2.29). So those

conditions are necessary, but may not be sufficient.
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The correspondence between the patterns of zeros {n;m; hsca } and FQH states

is not one-to-one. There can be many polynomials that have the same pattern of

zeros. This is not surprising since the pattern of zeros only fixes the highest-order

zeros in electron wave functions (symmetric polynomials), while different patterns of

lower-order zeros could lead to different polynomials in principle. In other words, the

leading-order OPE (2.29) alone might not suffice to uniquely determine the corre-

lation function of the vertex algebra. The examples studied in this section support

such a belief. Explicit calculations for some examples suggest that the pattern of

zeros together with the central charge c and simple current condition would uniquely

determine the FQH state. This is a reason why we introduce Zn simple-current vertex

algebra in the next section.

2.4 Zn simple-current vertex algebra

In the last section, we discuss “legal” patterns of zeros that satisfy the consistent

conditions (2.37), (2.38), and (2.39) and describe existing FQH states. If we believe

that a “legal” pattern of zeros {n;m; hsca }, or more precisely the data {n;m; hsca ; c}, can

completely describe a FQH state, then we should be able to calculate all the topologi-

cal properties of the FQH states. But so far, from the pattern of zeros {n;m; hsca }, we

can only calculate the number of different quasiparticle types, quasiparticle charges,

and the fusion algebra between the quasiparticles.[228, 16] Even with the more com-

plete data {n;m; hsca ; c}, we still do not know, at this time, how to calculate the

quasiparticle statistics and scaling dimensions.

One idea to calculate more topological properties from the data {n;m; hsca ; c} is to
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use the data to define and construct the corresponding Zn vertex algebra, and then

use the Zn vertex algebra to calculate the quasiparticle scaling dimensions and the

central charge c. However, so far we do not know how to use the data {n;m; hsca ; c}

to completely construct a Zn vertex algebra in a systematic manner.

Starting from this section, we will concentrate on a subset of “legal” patterns of

zeros that correspond to a subset of Zn vertex algebra. Such a subset is called Zn

simple-current vertex algebras. The FQH states described by those Zn simple-current

vertex algebras are called Zn simple-current states. We will show that in many cases

the quasiparticle scaling dimensions and the central charge c can be calculated from

the data {n;m; hsca ; c} for those Zn simple-current states.

2.4.1 OPE’s of Zn simple-current vertex algebra

The Zn simple-current vertex algebra is defined through an Abelian fusion rule

with cyclic Zn symmetry for primary fields {ψa} of Virasoro algebra[242, 57]

ψaψb ∼ ψa+b, ψa ≡ (ψ)a. (2.40)

Compared to eqn. (2.23), here we require that ψa and ψb fuse into a single primary

field of Virasoro algebra ψa+b. Such operators are called simple currents. The Zn

simple-current vertex algebra is defined by the following OPE of ψa[242, 57]:

ψa(z)ψb(w) = Ca,b
ψa+b(w)

(z − w)αa,b
+O

(

(z − w)1−αa,b

)

(2.41)

ψa(z)ψ−a(w) =
1 + 2hsca

c
(z − w)2T (w)

(z − w)2hsca +O
(

(z − w)3−2hsca

)

(2.42)
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where we define

αa,b ≡ hsca + hscb − hsca+b (2.43)

ψ−a ≡ ψn−a and ψa = ψn+a is understood due to the Zn symmetry. In the context

the subscript a of Zn simple currents is always defined as a mod n.

We like to point out here that the form of the OPE (2.42) is a special property

of the Zn simple-current vertex algebra. For a more general Zn vertex algebra that

describes a generic FQH state, the correspond OPE has a more general form

ψa(z)ψ−a(w) =
1 + 2hsca

c
(z − w)2T (w)

(z − w)2hsca (2.44)

+
T ′
a

(z − w)2hsca −2
+O

(

(z − w)3−2hsca

)

where T ′
a are dimension-2 primary fields of Virasoro algebra ({T ′

a, a = 1, · · · , [n
2
]}

may not be linearly independent though). Also, for the Zn simple-current vertex

algebra, the subleading terms in (2.41) are also determined.

{Ca,b} are the structure constants of this vertex algebra. We also have conformal

symmetry

T (z)ψa(w) =
hsca

(z − w)2ψa(w) +
1

z − w∂ψa(w) +O(1) (2.45)

and Virasoro algebra

T (z)T (w) =
c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂T (w)

z − w +O(1) (2.46)

where T (z) represents the energy-momentum tensor, which has a scaling dimension

of 2. c stands for the central charge as usual, which is also a structure constant.

Using the notation of generalized vertex algebra[151], we have

[ψiψj ]αi,j
= Ci,jψi+j , i + j 6= 0 mod n (2.47)
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[ψiψ−i]αi,−i
= 1, [ψiψ−i]αi,−i−1 = 0,

[ψiψ−i]αi,−i−2 =
2hsci
c
T (2.48)

[Tψi]2 = hsci ψi = [ψiT ]2, [Tψi]1 = ∂ψi (2.49)

[ψiT ]1 = (hsci − 1)∂ψi

[TT ]4 =
c

2
, [TT ]3 = 0, [TT ]2 = 2T, [TT ]1 = ∂T (2.50)

with αT,ψi
= 2, αT,T = 4. We call it a special Zn simple-current vertex algebra if it

satisfies OPE’s (2.47)-(2.50). For example, the Zn parafermion states[178] correspond

to a series of special Zn simple-current vertex algebras. Two other OPE conditions

for quasiparticles (σγ+a with scaling dimension hscγ+a) are shown in Ref. [130]

[ψaσγ+b]αa,γ+b
= Ca,γ+bσγ+a+b (2.51)

[σγ+bψa]αa,γ+b
= µγ+b,aCa,γ+bσγ+a+b

[Tσγ+a]2 = hscγ+aσγ+a = [σγ+aT ]2, (2.52)

[Tσγ+a]1 = ∂σγ+a, [σγ+aT ]1 = (hscγ+a − 1)∂σγ+a

with αT,σγ+a
= 2.

The commutation factor µAB equals unity if either A orB is the energy-momentum

tensor T : µT,ψi
= µψi,T = µT,T = 1. Similarly we have µA,1 = µ1,A = 1 for the identity

operator 1 and any operator A. However, µi,j ≡ µψi,ψj
can be ±1 in general. In

deriving OPE (2.48) we have assumed that µi,−i = 1, ∀i, which is not necessary. For

example, the Z4 Gaffnian does not satisfy µi,−i = 1, ∀i. So, we will adopt the more
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general OPE in Ref. [130] instead of eqn. (2.48) to include examples like Gaffnian

which do give a FQH wave function. OPE (2.48) is for a special Zn simple-current

vertex algebra that satisfies µi,−i = 1, ∀i. For a more general Zn simple-current

vertex algebra, they become

[ψiψ−i]αi,−i
= Ci,−i, [ψiψ−i]αi,−i−1 = 0,

[ψiψ−i]αi,−i−2 =
2Ci,−ih

sc
i

c
T (2.53)

Ci,−i =











1, i ≤ n/2 mod n

µi,−i, i > n/2 mod n

so that we always have Ca,b = µa,bCb,a for any subscripts a and b in such an associative

vertex algebra.

The OPE’s (2.47), (2.53), (2.49), (2.50), (2.51) and (2.52) define the generalized

Zn simple-current vertex algebra, or simply Zn simple-current vertex algebra. The

Gaffnian state corresponds to a generalized Z4 simple-current vertex algebra with

µa,−a 6= 1. When µa,−a = 1, we have a special Zn simple-current vertex algebra.

What kind of pattern of zeros {n;m; hsca }, or more precisely what kind of data

{n;m; hsca ; c, Cab}, can produce a Zn simple-current vertex algebra? Since the Zn

simple-current vertex algebras are special cases of Zn vertex algebras, the data {n;m; hsca ; c, Cab}

must satisfy the conditions (2.37), (2.38), and (2.39). However, the data {n;m; hsca ; c, Cab}

for Zn simple-current vertex algebras should satisfy more conditions. Those conditions

can be obtained from the GJI of Zn simple-current vertex algebras. In Ref. [130], we

derived all those extra consistent conditions for a generic Zn vertex algebra, from the

useful GJI’s based on OPE (2.29). Now based on OPE’s summarized in this section,

we can similarly derive a set of extra consistent conditions for a Zn simple-current
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vertex algebra. These conditions are summarized in section ??. For those valid data

that satisfy all the consistent conditions, the full properties of simple-current vertex

algebra can be obtained. This in turn allows us to calculate the physical topological

properties of the FQH states associated with those valid patterns of zeros.

We like to point out that many examples of Zn simple-current vertex algebra have

been studied in detail. They include the simplest Zn simple-current vertex algebra

– the Zn parafermion algebra.[242, 241, 57] More general exmaples that have been

studied are the higher generations of Zn parafermion algebra[40, 41, 43, 42, 44] and

graded parafermion algebra.[152, 92, 93] In those exapmles, the Zn simple-current

algebras are studied by embedding the algebras into some known CFT, such as coset

models of Kac-Moody current algebras and/or Coulomb gas models. However, in

this chapter, we will not assume such kind of embeding. We will try to calculate the

properties of Zn simple-current vertex algebra directly from the data {n;m; hsca , c, ...}

without assuming any embedding.

The consistent conditions derived from useful GJI’s for a Zn simple current algebra

are listed in Ref. [130].

2.5 Summary

The pattern-of-zeros is a powerful way to characterize FQH states.[229, 228, 16]

However, the pattern-of-zeros approach is not quite complete. It is known that some

patterns of zeros do not uniquely describe the FQH states. As a result, we cannot

obtain all the topological properties of FQH states from the data of pattern of zeros

{n;m;Sa}.
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In this chapter, we combine the pattern-of-zero approach with the vertex algebra

approach. We find that we can generalize the data of pattern of zeros {n;m;Sa}

to {n;m;Sa; c} to completely describe a FQH state, at least for the many exam-

ples discussed in this Ref. [130]. Many consistent conditions on the new set of data

{n;m;Sa; c} are obtained from the GJI of the simple-current vertex algebra. Those

consistent conditions are sufficient: i.e. if the data {n;m;Sa; c} satisfy those condi-

tions, then the data will define a Zn simple-current vertex algebra and a FQH wave

function. Using the new characterization scheme and the Zn simple-current vertex

algebra, we can calculate quasiparticle scaling dimensions, fractional statistics, the

central charge of the edge states, as well as many other properties, from the data

{n;m;Sa; c}.

The study in this chapter is based on the Zn simple-current vertex algebra. But

the Zn simple-current vertex algebra makes some unnecessary assumptions. It is

much more natural to study FQH state based on the more general Zn vertex algebra.

This will be a direction of future exploration.



Chapter 3

Correlation-hole induced paired

quantum Hall states in lowest

Landau level

3.1 Introduction

The fractional quantum Hall effect (FQHE) observed at Landau level filling frac-

tion ν = 5/2 [234] signifies a new state of correlated electrons. This state is believed

to be described by the Moore-Read pfaffian (MRP) [140] and supports fractionalized

quasiparticle excitations [39, 166] that obey non-abelian statistics relevant for topo-

logical quantum computing [101]. An outstanding question has been whether such

non-abelian topological phases exist in the lowest Landau level (LLL). Several recent

experiments [132, 190, 189] indeed observed FQHE at ν = 1/2 and 1/4, suggesting

that these, too, may be in the MRP phase. Although the abelian two-component

59
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Halperin (331) and (553) states [72] can be strong contenders for these FQHE [154],

fresh experiments and numerical studies found strong evidence for the one-component

FQHE at ν = 1/2 and 1/4 in asymmetric wide quantum wells [189, 155]. Whether

the observed FQHE can be understood as pfaffians in the LLL is the focus of this

work.

The MRP is a chiral p-wave paired quantum Hall state [176]. In principle, it can

emerge as a p-wave pairing instability of the composite Fermi liquid (CFL), a gapless

state of electrons attached to flux tubes[74]. The leading-order statistical interaction

mediated by the Chern-Simons (CS) gauge field fluctuations can produce a p-wave

pairing potential for the composite fermion [62] (CF). However, since the coupling

between the CF and the CS gauge field is not small, diagrammatic perturbation theory

is not controllable. Within the random-phase approximation, the gauge fluctuations

are in fact singular and pair-breaking[25]. Therefore, the ground states at filling

fractions 1/2 and 1/4 remained enigmatic [157, 156].

The key to solve this problem is to properly account for the effects of the corre-

lation hole, i.e. the local charge depletion caused by attaching flux to an electron. A

CF feels the correlation hole of the other CFs, which is captured by the Jastrow factor

in the Laughlin wavefunction. In the unitary CF theory [94, 74], only an infinitely

thin flux tube associated with a U(1) phase is attached to each electron without ac-

counting for the Jastrow factor, i.e. the correlation hole. Read improved the concept

of CF by attaching finite size vortices to electrons [171, 173, 174, 181] such that the

Jastrow factor naturally appears in the ground state wavefunction. Binding zeros of

the wavefunction to electrons keeps them apart and lowers the Coulomb energy. The
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vortex attachment can be achieved through a non-unitary but nevertheless canonical

transformation on the electron operators [167]. The saddle point solutions of such

a non-unitary CF (NUCF) field theory recover the Laughlin state for the odd de-

nominator FQHE [167] and the Rezayi-Read CFL at ν = 1/2 [235]. The effective

interaction induced by the vortex attachment has also been studied at ν = 1/2 [142].

In this chapter, we show that paired quantum Hall states emerge in the LLL using

the NUCF field theory where a vortex with vorticity-φ̃ (φ̃ = even integer) is attached

to an electron at filling fraction ν = 1/φ̃. An important feature of attaching vortices

to electrons is that the diamagnetic coupling, quadratic in the gauge field, to the CF

density is canceled by its dual contribution from the correlation hole associated with

the vortex. As a result, we show that the gauge fluctuations can be integrated out

exactly, leading to an instantaneous statistical interaction between the NUCFs which

is attractive for chiral px− ipy pairing [142] and scales linearly with the vorticity φ̃. We

construct the variational ground state wavefunction for such a correlation-hole induced

paired quantum Hall state, introducing two canonically dual gap functions related by

the radial distribution function of the corresponding bosonic Laughlin wavefunction.

Variational calculations are carried out in the presence of the pair-breaking Coulomb

interaction Vc(r) = e2/4πǫrǫ0r = λ2
√
2νℓB
r

~ωc, where ℓB is the magnetic length and

λ is a dimensionless coupling constant. We find that for weak Coulomb interaction

λ < λc1, the ground state is a MRP in the long wavelength limit. However, the pairing

function deviates significantly from that of the MRP at shorter distances, consistent

with recent numeric studies in the projected LLL [139]. Remarkably, we find that

for intermediate Coulomb interactions, λc1 < λ < λc2, the paired state is different
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from the MRP even in the asymptotic long wavelength limit. The pairing function

in this new phase is oscillatory with its amplitude decaying as the inverse square

root of the distance. For sufficiently strong Coulomb interactions λ > λc2, the paired

state becomes unstable and the ground state undergoes a transition to the Rezayi-

Read CFL[181] phase. The topological properties and the effect of a short-ranged

interaction are also studied.

3.2 Formulation and results

We consider 2D spin-polarized interacting electrons described by the field operator

ψe in a uniform perpendicular magnetic field B. The electron density is ne and the

density operator ρ = ψ†
eψe. The vortex attachment is through the following non-

unitary transformation [167]:

Φ(r) = e−Jφ̃(r)ψe(r), Π(r) = ψ†
e(r)e

J
φ̃
(r), (3.1)

where Jφ̃(r) = Iφ̃(r)−
|z|2
4l2

φ̃

, ℓφ̃ =
√

~c
νφ̃eB

, and

Iφ̃(r) = φ̃
∫

d2r′ρ(r′) log(z − z′), z = x+ iy.

We set ~ = |e|/c = 1 hereafter. The imaginary part of Iφ̃ coincides with the unitary

CS transformation, while its real part describes the finite vortex core (correlation

hole) accompanying the flux attachment. Note that the fields Φ and Π are not

hermitian conjugate, Π = Φ†e
J
φ̃
+J†

φ̃. However, they form a pair of canonical fields

obeying fermion anti-commutation relations; the operator Π creates a NUCF while
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Φ annihilates one and ρ = ΠΦ. The transformed Hamiltonian reads

HCF = 1
2mb

∫

d2rΠ(r)[−i∇− (A− vφ̃)]
2Φ(r)

+1
2

∫

d2rd2r′δρ(r)Vc(r− r′)δρ(r′) (3.2)

where vφ̃(r) = − i∇Jφ̃ = a(~x)+in̂ × a(r) − i B
2
r with n̂ normal to the 2D plane and

the CS gauge field is

a(r) = φ̃∇
∫

d2r′ρ(r′)Im log(z − z′). (3.3)

The statistical magnetic field b = ∇× a = 2πφ̃ρ.

One of the physical justifications to introduce such a NUCF field theory lies in

the fact that the resulting mean-field states give rise to numerically well-tested wave-

functions [167, 235]. At the mean field level, one takes gauge field a to be a classical

one determined by (3.3) with a uniform density ρ̄(r) = ne, and ā(r) = − νφ̃B
2
n̂ × r.

Thus, the mean-field theory describes free NUCFs in an effective magnetic field

∆B = B − νφ̃B = ∇ × ∆A with ∆A = A − ā. At even-denominator filling frac-

tions ν = 1/φ̃, ℓφ̃ = ℓB and the effective ∆B = 0, the mean-field ground state is the

Rezayi-Read CFL [181].

An important, non-perturbative feature of this NUCF theory is that the usual

diamagnetic fermion density-gauge field coupling of the form ρδa2, where δa = a− ā,

is canceled in Eq. (3.2) by the contribution from the correlation holes since (δa ±

in̂ × δa)2 = 0. As a result, the gauge fluctuations in the CS action can be exactly
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integrated out to obtain a closed-form effective Hamiltonian:

HCF
eff =

∑

k

(ξk +
ωc
2
)ΠkΦk

+
πφ̃

mb

∑

q 6=0,k,p

k + p

q
Πk−qΠq−pΦ−pΦk

+
∑

q 6=0,k,p

vq
2
Πk−qΦkΠq−pΦ−pΦ−pΦk. (3.4)

Here ξk = ~2|k|2
2mb
− µ and ωc = |B|/mb is the cyclotron frequency. The second term

is the induced instantaneous statistical interaction written in terms of the complex

momenta k = kx+ iky (similarly for p, q). For k = p, it reduces to a singular pairing

interaction that scatters a pair of NUCFs with zero center-of-mass momentum from

(k,−k) to (k′,−k′) with momentum transfer q = k− k′. Expanding in the angular-

momentum channels (l):

1

2

k + p

k − k′
∣

∣

∣

p=k
= 1 +

∑

l 6=0

sign(l)

∣

∣

∣

∣

k′

k

∣

∣

∣

∣

l

e i lθkk′θ(1−
∣

∣

∣

∣

k′

k

∣

∣

∣

∣

l

)

where θkk′ = arg(k′)− arg(k), we see that the pairing potential is attractive for l < 0

with dominant px − ipy scattering. The Coulomb interaction in Eq. (3.4), where

vq = e2/2εrε0|q|, is purely repulsive in all channels. In the absence of Coulomb

interaction, it can be shown that the MRP, being an antiholomorphic function, is an

exact ground state of the NUCF Hamiltonian.

To study the variational ground state of Hamiltonian (3.4), we generalize the BCS

theory to the non-unitary case. Introduce the Dirac ket and bra

|G(l)〉 ≡ e
1
2

∑
k
g
(l)
k

ΠkΠ−k |0〉, 〈G(l)| = 〈0|e 1
2

∑
k
g̃
(l)
k

Φ−kΦk .

The corresponding electron wavefunction is Ψe({ri}) = Pf[g(l)(ri − rj)]
∏

i<j(zi −

zj)
φ̃e−

∑
i |zi|2/4. Here the the pairing function g

(l)
k is an eigenfunction of the angular
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Figure 3.1: (a): Radial distribution function gφ̃ with even φ̃ = 1/ν from Monte-Carlo

[31]. (b) and (c): Inverse pairing functions 1/Rk and 1/R̃k at ν = 1/4 for two different
Coulomb strengths λ in the MRP phase (b) and the OPS phase (c). (d) Real-space
chiral p-wave pairing function g(−1)(r) in the two phases (b) and (c). At ν = 1/4,
λc1 ≈ 1.0.
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momentum Lz = i~(ky∂kx − kx∂ky) = −i~∂θk , i.e. g
(l)
k = e i lθkRk with Rk = R(|k|) a

real function of |k|. The parity of the pairing function must be odd for spin-polarized

fermions, i.e. g
(l)
−k = −g(l)k ; thus l must be an odd integer. The expectation value of

an operator Ô is given by 〈Ô〉 = 〈G(l)|Ô|G(l)〉/〈G(l)|G(l)〉.

It is important to note that g̃
(l)
k is not independent of g

(l)
k in the physical Hilbert

space. The hermiticity of electron pairing,

〈ψ†
e(r+ x)ψ†

e(x)〉 = 〈ψe(x)ψe(r+ x)〉∗

implies, through relations (3.1), the following constraint between the two pairing

order parameters:

〈Π(r+ x)Π(x)〉 ≈ (gφ̃(r)〈Φ(x)Φ(r + x)〉)∗ (3.5)

where gφ̃(r) is, remarkably, the radial distribution function of the bosonic Laughlin

wavefunction ΨL
φ̃
({ri}) ≡

∏

i<j(zi − zj)φ̃e−
∑

i |zi|2/4 which is shown in Fig. 3.1(a) for

φ̃ = 2, 4, 6. This constraint describes mathematically how one NUCF feels the vortices

(correlation holes) around the others. Consequently, the two gap functions ∆k =

−
∑

k′ V (l)(k,k′)〈Π−k′Πk′〉 and ∆̃k = −
∑

k′ Ṽ (l)(k,k′)〈Φ−k′Φk′〉 are related through

the correlation holes. We find,

∆̃k = ∆k + Ek

∫ ∞

0

∆k′

Ek′
Hl(k, k

′)k′dk′ (3.6)

where Hl(k, k
′) = 1

(2π)2

∫ 2π

0
dθkk′ e

2i lθkk′hφ̃(|k− k′|) and hφ̃(|q|) is the Fourier trans-

form of the pair correlation function defined as hφ̃(r) ≡ gφ̃(r)− 1.

Minimizing the ground state energy E(l) = 〈ĤCF
eff 〉 with respect to Rk and R̃k, we

obtain the self-consistent Bogoliubov-de Gennes (B-dG) equations,

Rk =
Ek−ξ′k
∆̃k

= ∆k

Ek+ξ
′
k

, R̃k =
Ek−ξ′k
∆k

= ∆̃k

Ek+ξ
′
k

(3.7)
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where Ek =
√

(ξ′k)
2 +∆k∆̃k is the quasiparticle dispersion and ξ′k = ξk + ξPHk is the

renormalized dispersion due to the Coulomb interaction in the particle-hole chan-

nel where ξPHk = −2kF λ
mb

∫∞
0
nk′|k′|d|k′|M (0)

|k|,|k′| and M
(0)
|k|,|k′| is given by |k − k′|−1 =

∑

lM
(l)
|k|,|k′|e

i lθ. The dimensionless interacting strength λ measures the ratio of the

Coulomb interaction strength to the Fermi energy: λ = Vc(k
−1
F )/4ǫF = e2mb

8πǫ0ǫrkF

with kF =
√
4πne =

√
2ν/ℓB the Fermi wavevector. The momentum distribution

is nk = (Ek − ξ′k)/2Ek.

It is important to stress that the relation (3.6) between the two canonical conjugate

gap functions projects the non-unitary theory onto the physical Hilbert space. Assum-

ing ∆̄k = ∆∗
k [142] would violate this constraint and fail to capture the correlation-hole

effects. One can show that, if ∆̄k = ∆∗
k is assumed, the solution of the BdG equation

(3.7) is ∆̄k = ∆∗
k = 0 for all k.

We solved the BdG equations (3.7) under the constraint (3.6) for possible values

of l and found that the leading pairing instability has indeed l = −1, i.e. px − ipy

wave symmetry, which will be our focus. For weak Coulomb interactions λ < λc1,

the two conjugate gap functions are in-phase, i.e. ∆k∆̃k > 0 and RkR̃k > 0 for all

k, as shown in Fig. 3.1(b). In this case, the asymptotic solutions can be obtained

analytically in the long wavelength limit: ∆k, ∆̃k ∝ |k| as |k| → 0. Thus, the pairing

function g
(−1)
k ∝ 1/k and the paired state is asymptotically a MRP. To study the

paired state quantitatively for all k, we numerically solve for the gap functions using

an ultraviolet cutoff in momentum space, e.g., |k| ≤ Λ = 1.4kF . It is clear from

Fig. 3.1(b) that 1/Rk deviates significantly from the linear behavior such that the

wavefunction of the paired state Pf[g(−1)(ri − rj)]Ψ
L
φ̃
({ri}) is different from a MRP
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at shorter distances |ri − rj| ≤ ℓB.

Remarkably, a completely new paired state emerges for intermediate Coulomb

interactions. When λ > λc1, the gap function ∆̃k changes sign at k0 where Rk

is singular as shown in Fig. 3.1(c) and Fig. 3.2(a,b). This singularity causes the

pairing function g(−1)(r) to oscillate in real space as shown in Fig. 3.1(d). We

find that in the long-wavelength limit its amplitude decays as 1/
√
r according to

g(−1)(r) ∼ (
√

|z|/z) cos(k0|z| − 3
4
π). Despite the sign change in the gap function ∆̃k,

this oscillatory pfaffian state (OPS) remains fully gapped and topologically stable with

quasiparticle dispersions shown in Figs. 3.2(a,b). The topological winding number as-

sociated with the mapping, via the pairing function gk, from a compactified complex

plane k ≡ kx+ iky to the two-sphere n̂k ≡ (2 Regk, 2 Imgk, 1−|gk|2)/(1+ |gk|2) is one,

generic of a chiral p-wave paired state. This state can be detected by spectroscopy

measurements since the singularity at k0 produces a kink in the quasiparticle density

of states that moves toward the Fermi level as k0 approaches kF with increasing λ.

For λ > λc2, the paired state is destroyed and the Rezayi-Read CFL becomes the

variational ground state. This quantum phase transition is signaled by the closing

of the quasiparticle excitation gap ∆eff ≡ mink{Ek} shown in Fig. 3.2(a,b) near the

transition. We find that both λc1 and λc2 increase monotonically with φ̃ = ν−1, as

shown in Fig. 3.2(d).

Since the interaction at short distances is reduced efficiently by the correlation-

hole, the stability of the CFL against pairing must rely on the long-range part of

the Coulomb interaction. As a result, the effects of screening become important.

To illustrate this, we consider the 3D screened Coulomb interaction of the Yukawa
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Figure 3.2: (a) and (b): The evolution of the quasiparticle dispersion Ek, the gap
functions (∆k, ∆̃k), and the momentum distribution nk at ν = 1/4 with increasing λ.
The excitation gap closes at λc2 ≈ 1.8. (c): The effects of screening at fixed λ = 3.
The excitation gap ∆eff and the effective mass mk at the Fermi level (ξ′k = 0) are
plotted as a function of the inverse screening length κ. (d): The phase diagram of
the even-denominator FQHE at ν = 1/2, 1/4, 1/6.
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form: Vsc(r) = Vc(r)e
−κr, where κ is the inverse screening length. Fig. 3.2(c) shows

that a CFL stabilized by a large enough λ > λc2 can be driven through a continuous

transition into a paired state by increasing screening, i.e. reducing the screening

length. Concomitantly, the logarithmic divergence of the effective mass in the CFL

at κ = 0 [174] is removed. We note that the MRP has been shown to be more

stable when finite layer thickness is considered in the Coulomb interaction at ν = 5/2

[157, 156].

3.3 Summary

To summarize, we have shown that the correlation hole, i.e. the binding of elec-

trons to quantized finite-size vortices, is crucial for forming the paired quantum Hall

states. The effective interaction is gauge-field free, instantaneous, and favors chiral

p-wave pairing. The pairing potential is a direct consequence of the lowering of the

Coulomb energy due to the correlation hole. We find that, with increasing Coulomb

interaction strength, the ground state evolves from a p − ip state asymptotically

equivalent to the MRP, to a new oscillatory pfaffian state and finally to a CFL via a

continuous phase transition as illustrated in Fig. 3.2(d).

Recently, FQHEs at ν = 1/2 and 1/4 have been observed in wide GaAs quantum

wells[132, 190, 189] with higher electron density than in previous experiments that

reported no signs of FQHE. Indeed, there are direct evidences [132, 190] that the sig-

natures of FQHE become stronger with increasing electron density. This is consistent

with our theory since λ is proportional to k−1
F ∼ n

−1/2
e ; a smaller density would tend

to destabilize the paired state. Hence, the paired quantum Hall states proposed in
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this work can be prospective candidates for the observed even-denominator FQHE in

the LLL.



Chapter 4

Z2 spin liquids in the S=1/2

Heisenberg model on the kagome

lattice

4.1 Introduction

At zero temperature all degrees of freedom tend to freeze and a variety of orders

can develop in different materials, such as superconductivity and magnetism. How-

ever, it is natural to expect that a large zero-point energy can keep a quantum system

stay in a liquid-like ground state even at T = 0. In a system consisting of localized

quantum magnets, we call such a quantum-fluctuation-driven disordered ground state

a quantum spin liquid (SL)[116]. It is an exotic phase with novel “fractionalized” ex-

citations carrying only a fraction of the electron quantum number, e.g. spinons which

carry spin but no charge. The internal structures of these SLs are so rich that they are

72
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beyond the description of Landau’s symmetry breaking theory[110] of conventional

ordered phases. They are described by long-range quantum entanglement[123, 104]

encoded in the ground state, which is coined “topological order”[214, 225] in contrast

to the conventional symmetry-breaking order.

Geometric frustration in quantum magnets would lead to a huge degeneracy of

classical ground state configurations. As a result the quantum tunneling among these

classical ground states provides an ideal platform to realize quantum SLs. The quest

for quantum SLs in frustrated magnets (for a recent review see Ref. [15]) has been

pursued for decades. Among them the Heisenberg S = 1/2 kagome lattice model

(HKLM)

HHKLM = J
∑

<i,j>

Si · Sj (4.1)

has long been thought to be a promising candidate. Here < i, j > denotes i, j being

nearest neighbors. Experimental evidence of SL[135, 80, 88, 79] has been observed in

ZnCu3(OH)6Cl2 (called herbertsmithite), a spin-half antiferromagnet on the kagome

lattice. Theoretically, in lack of an exact solution of the two-dimensional (2D) quan-

tum Hamiltonian (4.1) in the thermodynamic limit, in previous studies either a honey-

comb valence bond crystal[134, 150, 198, 199, 47] (HVBC) with an enlarged 6×6-site

unit cell, or a gapless SL[97] were proposed as the ground state of HKLM. However,

recently an extensive density-matrix-renormalization-group (DMRG) study[240] on

HKLM reveals the ground state of HKLM as a gapped SL, which substantially low-

ers the energy compared with that of HVBC. Besides, they also observe numerical

signatures of Z2 topological order in the SL state.

Motivated by this important numerical discovery, we try to find out the na-
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(b)

Figure 4.1: (color online) (a) kagome lattice and the elements of its symmetry group.
~a1,2 are the translation unit vectors, C6 denotes π/3 rotation around honeycomb
center and σ represents mirror reflection along the dashed blue line. Here uα and
uβ denote 1st and 2nd nearest neighbor (n.n.) mean-field bonds while uγ and ũγ
represent two kinds of independent 3rd n.n. mean-field bonds. (b) Mean-field ansatz
of Z2[0, π]β state up to 2nd nearest neighbor. Colors in general denote the sign
structure of mean-field bonds. Dashed lines denote 1st n.n. real hopping terms
χ1

∑

<i,j>α(νijf
†
iαfjα + h.c.): red ones have νij = 1 and black ones have νij = −1.

Solid lines stand for 2nd n.n. hopping χ2

∑

<<ij>>α νij(f
†
iαfjα + h.c.) and singlet

pairing
∑

<<ij>>αβ ǫαβνij(∆2f
†
iαf

†
jβ+ h.c.): again red ones have νij = 1 and blue ones

have νij = −1. Here χ1,2 and ∆2 are real parameters after choosing a proper gauge.
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ture of this gapped Z2 SL. Different Z2 SLs on the kagome lattice have been pre-

viously studied using Schwinger-boson representation[182, 211]. We propose the can-

didate states of symmetric Z2 SLs on kagome lattice by Schwinger-fermion mean field

approach[19, 2, 18, 108, 144, 227, 119]. Following is the summary of our results. First

we use projective symmetry group[225] (PSG) to classify all 20 possible Schwinger-

fermion mean-field ansatz of Z2 SLs which preserve all the symmetry of HKLM, as

shown in TABLE 4.1. We analyze these 20 states and rule out some obviously unfa-

vorable states: e.g. gapless states, and those states whose 1st nearest neighbor (n.n.)

mean-field amplitudes are required to vanish by symmetry. Then we focus on the

four Z2 SLs in the neighborhood of the U(1)-Dirac SL[169]. In Ref. [169] it is shown

that U(1)-Dirac SL has a significantly lower energy compared with other candidate

U(1) SL states, such as the uniform resonating-valence-bond (RVB) state(or the U(1)

SL-[0, 0] state in notation of Ref. [169]). We find out that there is only one gapped

Z2 SL, which we label as Z2[0, π]β, in the neighborhood of U(1)-Dirac SL. Therefore

we propose this Z2[0, π]β state as a promising candidate state for the ground state of

HKLM. The mean-field ansatz of Z2[0, π]β state is shown in FIG. 4.1(b). Our work

also provides guideline for choosing variational states in future numeric studies of SL

ground state on kagome lattice.
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4.2 Schwinger-fermion construction of spin liquids

and projective symmetry group (PSG)

4.2.1 Schwinger-fermion construction of symmetric spin liq-

uids

In the Schwinger-fermion construction[19, 2, 18, 108, 144, 227], we represent a

spin-1/2 operator at site i by fermionic spinons {fiα, α =↑, ↓}:

~Si =
1

2
f †
iα~σαβfiβ. (4.2)

Heisenberg hamiltonianH =
∑

<ij> Jij
~Si·~Sj is represented asH =

∑

<ij>−1
2
Jij

(

f †
iαfjαf

†
jβfjβ+

1
2
f †
iαfiαf

†
jβfjβ

)

. Just like any other projective construction, this formulation enlarges

the Hilbert space of the original spin system. To obtain the physical spin state from a

mean-field state of f -spinons, we need to enforce the following one-f -spinon-per-site

constraint:

f †
iαfiα = 1, fiαfiβǫαβ = 0. (4.3)

Mean-field parameters of symmetric SLs are ∆ijǫαβ = −2〈fiαfjβ〉, χijδαβ = 2〈f †
iαfjβ〉,

where ǫαβ is fully antisymmetric tensor. Both terms are invariant under global SU(2)

spin rotations. After Hubbard-Stratonovich transformation, the lagrangian of the

spin system can be written as

L =
∑

i

ψ†
i∂τψi +

∑

<ij>

3

8
Jij

[1

2
Tr(U †

ijUij)

− (ψ†
iUijψj + h.c.)

]

+
∑

i

al0(i)ψ
†
i τ
lψi (4.4)
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where two-component fermion notation ψi = (fi↑, f
†
i↓) is introduced for reasons that

will be explained shortly. We use τ 0 to denote the 2× 2 identity matrix and τ 1,2,3 are

the three Pauli matrices. Uij is a matrix of mean-field amplitudes:

Uij =







χ†
ij ∆ij

∆†
ij −χij






. (4.5)

al0(i) are the local lagrangian multipliers that enforces the constraints Eq.(5.4).

In terms of ψ, Schwinger-fermion representation has an explicit SU(2) gauge re-

dundancy: a transformation ψi → Wiψi, Uij → WiUijW
†
j , Wi ∈ SU(2) leaves the

action invariant. This redundancy is originated from representation Eq.(5.3): this lo-

cal SU(2) transformation leaves the spin operators invariant and thus does not change

physical Hilbert space. One can try to solve Eq.(5.5) by mean-field (or saddle-point)

approximation. At mean-field level, Uij and a
l
0 are treated as complex numbers, and

al0 must be chosen such that constraints (5.4) are satisfied at the mean field level:

〈ψ†
i τ
lψi〉 = 0. The mean-field ansatz can be written as:

HMF = −
∑

<ij>

ψ†
i 〈i|j〉ψj +

∑

i

ψ†
i a
l
0τ
lψi. (4.6)

where we defined 〈i|j〉 ≡ 3
8
JijUij . Under a local SU(2) gauge transformation 〈i|j〉 →

Wi〈i|j〉W †
j , but the physical spin state described by the mean-field ansatz {〈i|j〉}

remains the same. By construction the mean-field ansatz does not break spin rotation

symmetry, and the mean field solutions describe SL states if lattice symmetry is

preserved. Different {〈i|j〉} ansatz may be in different SL phases. The mathematical

language to classify different SL phases is projective symmetry group (PSG)[225].
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4.2.2 Projective symmetry group (PSG) classification of topo-

logical orders in spin liquids

PSG characterizes the topological order in Schwinger-fermion representation: SLs

described by different PSGs are different phases. It is defined as the collection of all

combinations of symmetry group and SU(2) gauge transformations that leave mean-

field ansatz {〈i|j〉} invariant (as al0 are determined self-consistently by {〈i|j〉}, these

transformations also leave al0 invariant). The invariance of a mean-field ansatz {〈i|j〉}

under an element of PSG GUU can be written as

GUU({〈i|j〉}) = {〈i|j〉}, (4.7)

U({〈i|j〉}) ≡ { ˜〈i|j〉 = 〈U−1(i)|U−1(j)〉},

GU({〈i|j〉}) ≡ { ˜〈i|j〉 = GU(i)〈i|j〉GU(j)
†},

GU(i) ∈ SU(2).

Here U ∈ SG is an element of symmetry group (SG) of the corresponding SL. In

our case of symmetric SLs on the kagome lattice, we use (x, y, s) to label a site with

sublattice index s = u, v, w and x, y ∈ Z. Bravais unit vector are chosen as ~a1 = ax̂

and ~a2 =
a
2
(x̂+

√
3ŷ) as shown in FIG. 4.1(a). The symmetry group is generated by

time reversal operation T , lattice translations T1,2 along ~a1,2 directions, π/3 rotation

C6 around honeycomb plaquette center and the mirror reflection σ (for details see

Ref. [129]). For example, if U = T1 is the translation along ~a1-direction in Fig.4.1(a),

T1({x, y, s}) = {x + 1, y, s}. GU is the gauge transformation associated with U such

that GUU leave {〈i|j〉} invariant. Notice this condition (4.7) allows us to generate all
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symmetry-related mean-field bonds from one by the following relation:

〈i|j〉 = GU(i)〈U−1(i)|U−1(j)〉G†
U(j) (4.8)

There is an important subgroup of PSG, the invariant gauge group (IGG), which is

composed of all the pure gauge transformations in PSG: IGG ≡ {{Wi}|Wi〈i|j〉W †
j =

〈i|j〉,Wi ∈ SU(2)}. In other words, Wi = Ge(i) is the pure gauge transformation

associated with identity element e ∈ SG of the symmetry group. One can always

choose a gauge in which the elements in IGG is site-independent. In this gauge,

IGG can be the global Z2 transformations: {Ge(i) ≡ Ge = ±τ 0}, the global U(1)

transformations: {Ge(i) ≡ e iθτ
3
, θ ∈ [0, 2π]}, or the global SU(2) transformations:

{Ge(i) ≡ e iθn̂·~τ , θ ∈ (0, 2π], n̂ ∈ S2}, and we term them as Z2, U(1) and SU(2) state

respectively.

The importance of IGG is that it controls the low energy gauge fluctuations of

the corresponding SL states. Beyond mean-field level, fluctuations of Uij and al0

need to be considered and the mean-field state may or may not be stable. The low

energy effective theory is described by fermionic spinon band structure coupled with

a dynamical gauge field of IGG. For example, Z2 state with gapped spinon dispersion

can be a stable phase because the low energy Z2 dynamical gauge field can be in the

deconfined phase[213, 106].

Notice that the condition {Ge(i) ≡ Ge = ±τ 0} for a Z2 SL leads to a series

of consistent conditions for the gauge transformations {GU(i)|U ∈ SG}, as shown in

Ref. [129]. Gauge inequivalent solutions of these conditions (??)-(??) lead to different

Z2 SLs. Soon we will show that there are 20 Z2 SLs on the kagome lattice that can

be realized by a mean-field ansatz {〈i|j〉}.
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4.3 Z2 spin liquids on the kagome lattice and Z2[0, π]β

state

Following previous discussions, we use PSG to classify all possible 20 Z2 SL states

on kagome lattice in this section. As will be shown later, among them there is one

gapped Z2 SL labeled as Z2[0, π]β state, which is the most promising candidate for

the SL ground state of HKLM.

4.3.1 PSG classification of Z2 spin liquids on kagome lattice

Applying the condition Ge(i) ≡ Ge = ±τ 0 to kagome lattice with symmetry

group described in Ref. [129], we obtain a series of consistent conditions for the

gauge transformation GU(i). Solving these conditions we reach all the 20 different

Schwinger-fermion mean-field states of Z2 SLs on kagome lattice, as summarized in

TABLE 4.1. These 20 mean-field states correspond to different Z2 SL phases, which

cannot continuously tuned into each other without a phase transition.

As discussed in Ref. [129], from PSG elements GU(i) one can obtain all other

symmetry-related mean-field bonds from one using symmetry condition (4.8). There-

fore we use uα ≡ 〈0, 0, v|0, 0, u〉 to represent 1st nearest neighbor (n.n.) mean-

field bonds. uβ ≡ 〈0, 1, w|0, 0, u〉 is representative of 2nd n.n. mean-field bonds.

There are two kinds of symmetry-unrelated 3rd n.n. mean-field bonds, represented

by uγ = 〈1, 0, u|0, 0, u〉 and ũγ = 〈1,−1, u|0, 0, u〉. The consistent conditions for

these mean-field bonds due to symmetry are listed in Ref. [129]. Besides, the on-site
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chemical potential terms Λ(i) (which guarantee the physical constraint (5.4) on the

mean-field level) also satisfy symmetry conditions. We can show that Λ(x, y, s) ≡ Λs

for these 20 Z2 SL states. The symmetry-allowed mean-field amplitudes/bonds are

also summarized in TABLE 4.1.

From TABLE 4.1 we can see there are 6 states, i.e. #7 − #12 that don’t allow

1st n.n. mean-field amplitudes by symmetry. Moreover, they cannot realize a Z2 SL

with up to 3rd n.n. mean-field amplitudes. Therefore they are unlikely to be the

HKLM ground state. Ruling out these six Z2 SLs, we can see the other 14 Z2 SL

states fall into 4 classes. To be specific, they are continuously connected to different

U(1) gapless SL states on kagome lattice. These U(1) SL states in general have the

following mean-field ansatz

HU(1)SL = χ1

∑

<ij>

νij(f
†
iαfjα + h.c.) (4.9)

where νij = ±1 characterizes the sign structure of hopping terms with χ1 ∈ R.

Different such U(1) SL states are featured by the flux of f -spinon hopping phases

around basic plaquette: honeycombs and triangles on the kagome lattice.

The simplest example is the so-called uniform RVB state with νij ≡ 1 for all 1st

n.n. mean-field bonds. The hopping phase around any plaquette is 1 = exp[i0], and

thus the corresponding flux is [0, 0] for [triangle,honeycomb] motifs. The 4 possible

Z2 spin liquids in the neighborhood[130] of uniform RVB states (i.e. U(1) SL-[0, 0]

state in Ref. [169]) are classified in Ref. [129]. They are #1,#5,#15,#13 in TABLE

4.1. We label them as Z2[0, 0]A, Z2[0, 0]B, Z2[0, 0]C and Z2[0, 0]D states. They all

have gapped spectra of spinons.

The ansatz of two other U(1) SLs are shown in FIG. 4.2. They both have π-
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(a) (b)

Figure 4.2: (color online) Mean-field ansatz of (a) U(1) SL-[π, π] state
and (b) U(1) SL-[π, 0] state, with 1st n.n. real hopping terms HMF =
χ1

∑

<ij>α(νijf
†
iαfjα + h.c.). Colors again denote the sign structure of mean-field

bonds: red dashed lines have νij = 1 and black dashed lines have νij = −1.

flux piercing through a triangle basic plaquette. Following the above notations of

hopping phase in [triangle,honeycomb] motifs, with either π-flux or 0-flux through the

honeycomb plaquette, they are called U(1) SL-[π, π] state and U(1) SL-[π, 0] state.

There are three Z2 SLs in the neighborhood of both U(1) SL states, i.e. #3,#17,#19

around U(1) SL-[π, π] state and #4,#18,#20 around U(1) SL-[π, 0] state. All these

six Z2 SLs have gapless spinon spectra, inherited from the two gapless U(1) SLs

featured by a doubly-degenerate flat band and a Dirac cone at Brillouin-zone center.

This is in contrast to the numerically observed gap in two-spinon spectrum[240], thus

we can also rule out these 6 Z2 SLs for the HKLM ground state.

Another U(1) SL state is the so called U(1)-Dirac SL or U(1) SL-[0, π] state.

Its mean-field ansatz is shown by the 1st n.n. bonds in FIG. 4.1(b) and clearly π-

flux pierces through certain triangle plaquette with no flux through the honeycomb

plaquette. According to variational Monte Carlo studies[77, 169], this U(1)-Dirac

SL have substantially lower energy compared to many other competing phases, in

particular the uniform RVB state. Therefore we shall focus on those Z2 SLs in the
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neighborhood of the U(1)-Dirac SL in our search of the HKLM ground state. We need

to mention that although unlikely, the four Z2 SLs in the neighborhood of uniform

RVB state, or U(1) SL-[0, 0] state is potentially possible to be the HKLM ground

state.

4.3.2 Z2[0, π]β state as a promising candidate for the HKLM

ground state

How to find those Z2 SLs in the neighborhood of, or continuously connected to

the U(1)-Dirac SL? Naively, we expect the mean-field ansatz of these Z2 SLs can be

obtained from that of U(1)-Dirac SL by adding an infinitesimal perturbation. To be

specific, we require an infinitesimal spinon pairing term on top of the U(1)-Dirac SL

mean-field ansatz (4.9) to break the IGG from U(1) to Z2 through Higgs mechanism.

Mathematically, we need to find those Z2 SL states whose PSG is a subgroup of the

U(1)-Dirac SL’s PSG[130]. Such Z2 SL states are defined to be in the neighborhood

of U(1)-Dirac SL. Similar criterion applies to the neighboring Z2 SL states of any

U(1) or SU(2) SL state.

We find out all four Z2 SLs in the neighborhood of U(1)-Dirac SLs in Ref. [129].

They are states #6,#2,#14,#16 in TABLE 4.1, labeled as Z2[0, π]α, Z2[0, π]β,

Z2[0, π]γ and Z2[0, π]δ states respectively. Since the effective theory of a U(1)-Dirac

SL is an 8-component Dirac fermion coupled with dynamical U(1) gauge field[169, 83],

we can find out all symmetry-allowed mass terms that can open up a gap in the Dirac-

like spinon spectrum. Following detailed calculations in Ref. [129], we can see that

among the four Z2 SLs around the U(1)-Dirac SL, only one state, i.e. Z2[0, π]β (state
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#2 in TABLE 4.1) can generate a mass gap in the spinon spectrum while in other 3

states the Dirac cone in spinon spectrum is protected by symmetry. The mean-field

ansatz of Z2[0, π]β SL state up to 2nd n.n. is shown in FIG. 4.1(b):

HMF =
∑

i(λ3
∑

α f
†
iαfiα + λ1f

†
i↑f

†
i↓ + h.c.) (4.10)

+χ1

∑

<ij>α νij(f
†
iαfjα + h.c.) +

∑

<<ij>> νij(χ2

∑

α f
†
iαfjα +∆2

∑

αβ ǫ
αβf †

iαf
†
jβ + h.c.)

where ǫαβ is the anti-symmetric tensor. We only list up to 2nd n.n. mean-field

amplitudes because as shown in TABLE 4.1 (see also Ref. [129]), this Z2[0, π]β state

only needs 2nd n.n. pairing terms to realize a Z2 SL. We can always choose a proper

gauge so that mean-field parameters χ1,2 and ∆2 are all real. The sign structure

of νij = ±1 are shown in FIG. 4.1(b), with red denoting νij = 1 and other colors

representing νij = −1. As discussed in Ref. [129], the 2nd n.n. singlet-pairing term

∆2 6= 0 not only break the U(1) gauge symmetry down to Z2, but also opens up a mass

gap in the spinon spectrum. The on-site chemical potential λ1,3 are self-consitently

determined by the following constraint:

∑

i〈f
†
i↑f

†
i↓〉 =

∑

i〈fi↑fi↓〉 = 0,

∑

i(
∑

α=↑,↓ f
†
iαfiα − 1) = 0. (4.11)

For further n.n. mean-field ansatz see discussions in Ref. [129].

4.4 Conclusion

To summarize, motivated by the strong evidence of a Z2 SL as the HKLM ground

state in recent DMRG study[240], we classify all possible Z2 SL states in Schwinger-
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fermion mean-field approach using PSG. We found 20 different Schwinger-fermion

mean-field states of Z2 SLs on kagome lattice, among which 6 states are unlikely due

to vanishing 1st n.n. mean-field amplitude. In other 14 Z2 SLs only 5 possess a

gapped spinon spectrum, which is observed in the DMRG result[240]. Among these

five symmetric Z2 SL states four are in the neighborhood of uniform RVB (or U(1)

SL-[0, 0]) state, while the other one, i.e. Z2[0, π]β is in the neighborhood of U(1)-Dirac

SL state. Previous variational Monte Carlo study[169] showed that U(1)-Dirac SL

has a substantially lower energy in comparison to the uniform RVB state. Therefore

we propose this Z2[0, π]β state with mean-field ansatz (4.10) shown in FIG. 4.1(b)

as the HKLM ground state numerically detected in Ref. [240]. Our work provides

important insight for future numeric study of Gutzwiller projected wavefunctions.
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# η12 Λs uα uβ uγ ũγ Label Gapped?

1 +1 τ 2, τ 3 τ 2, τ 3 τ 2, τ 3 τ 2, τ 3 τ 2, τ 3 Z2[0, 0]A Yes

2 −1 τ 2, τ 3 τ 2, τ 3 τ 2, τ 3 τ 2, τ 3 0 Z2[0, π]β Yes

3 +1 0 τ 2, τ 3 0 0 0 Z2[π, π]A No

4 −1 0 τ 2, τ 3 0 0 τ 2, τ 3 Z2[π, 0]A No

5 +1 τ 3 τ 2, τ 3 τ 3 τ 3 τ 3 Z2[0, 0]B Yes

6 −1 τ 3 τ 2, τ 3 τ 3 τ 3 τ 2 Z2[0, π]α No

7 +1 0 0 τ 2, τ 3 0 0 - -

8 −1 0 0 τ 2, τ 3 0 0 - -

9 +1 0 0 0 τ 2, τ 3 0 - -

10 −1 0 0 0 τ 2, τ 3 0 - -

11 +1 0 0 τ 2 τ 2 0 - -

12 −1 0 0 τ 2 τ 2 0 - -

13 +1 τ 3 τ 3 τ 2, τ 3 τ 3 τ 3 Z2[0, 0]D Yes

14 −1 τ 3 τ 3 τ 2, τ 3 τ 3 0 Z2[0, π]γ No

15 +1 τ 3 τ 3 τ 3 τ 2, τ 3 τ 3 Z2[0, 0]C Yes

16 −1 τ 3 τ 3 τ 3 τ 2, τ 3 0 Z2[0, π]δ No

17 +1 0 τ 2 τ 3 0 0 Z2[π, π]B No

18 −1 0 τ 2 τ 3 0 τ 3 Z2[π, 0]B No

19 +1 0 τ 2 0 τ 2 0 Z2[π, π]C No

20 −1 0 τ 2 0 τ 2 τ 3 Z2[π, 0]C No

Table 4.1: Mean-field ansatz of 20 possible Z2 SLs on a kagome lattice. In our
notation of mean-field amplitudes 〈x, y, s|0, 0, u〉 ≡ [x, y, s], this table summarizes all
symmetry-allowed independent mean-field bonds up to 3rd n.n., i.e. 1st n.n. bond
uα = [0, 0, v], 2nd n.n. bond uβ = [0, 1, w], 3rd n.n. bonds uγ = [1, 0, u] and ũγ =
[1,−1, u] as shown in FIG. 4.1(a). Λs denote the on-site chemical potential terms to
enforce the constraint (4.11). τ 0,3 denotes hopping while τ 1,2 denotes pairing terms.#2
or Z2[0, π]β state is the most promising candidate of Z2 SL for the HKLM ground
state.



Chapter 5

Z2 spin liquid and chiral

antiferromagnetic phase in the

Hubbard model on a honeycomb

lattice

5.1 Introduction

A novel state of matter, quantum spin liquid (SL), has been recently discovered in

organic spin-1/2 triangular lattice experimental systems[192, 90, 239]. This class of

organic Mott insulators is in the vicinity of the Mott transition and can be driven into

a Fermi liquid by applying pressure. A quantum SL is the ground state of a Mott

insulator which does not break physical symmetries, and cannot be adiabatically

connected to a band insulator. After Anderson’s proposal of resonating valence bond

87
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(RVB) states[8], a lot of theoretical and experimental efforts have been made to show

the existence of such novel phases of matter with fractionalized excitations[153]. For

example, various exact or quasi-exact solvable models[180, 138, 226, 102] hosting

SL ground states have been constructed. The exciting experimental progress on the

triangular lattice organics raises an interesting question: can SL be naturally realized

in a Mott insulator close to the Mott transition?[143, 120] If this is true, it can serve as

a guideline in searching SLs in experimental systems. Physical intuition suggests this

is likely to be the case because in the neighborhood of the Mott transition, quantum

fluctuations of spins are strong which can suppress the classical spin ordering.

A recent remarkable numerical study[136] for the nearest neighbor Hubbard model

on the honeycomb lattice

H = −t
∑

<ij>σ

c†iσcjσ + U
∑

i

c†i↑ci↑c
†
i↓ci↓ (5.1)

provides another evidence of this guideline, where an insulating phase respecting

all physical symmetry is found in the neighborhood of the Mott transition. This

phase has attracted quite some theoretical attention[210, 237] because it cannot be

explained as a band insulator due to the honeycomb lattice structure. It should be a

SL with fractionalized excitations. There are many different SLs on the honeycomb

lattice, characterized by different topological orders[225]. Which SL is realized in the

simulated Hubbard model? And in a general context, is there a systematic way to

identify the SLs in the neighborhood of a Mott transition? We provide our answers

to these questions in this letter.

In Ref. [136], it is shown that this SL phase has a full energy gap, and is likely

to be smoothly connected (i.e. through a continuous phase transition) to both the
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semi-metal phase for small U/t and an antiferromagnetic (AF) phase for large U/t.

These three conditions strongly restrict the candidate SL phases.

There have been two popular approaches to describe SL phases: Schwinger-

fermion[19, 108, 3, 227] and Schwinger-boson[13, 180], in which the low energy spin

excitations are fermionic and bosonic spinons respectively. The fermionic approach

is more natural to be used in the viicinity of a continuous Mott transition, whereas

the bosonic model is more natural when close to a magnetic transition1. The possible

underlying relation between the two seemingly very different approaches has been a

long-standing puzzle.

In Schwinger-fermion representation, we classify all possible 128 different Z2 spin

liquids using projective symmetry group (PSG)[225]. In the vicinity of the Mott

transition in simulated Hubbard model[136], we will show that there is only one

natural SL among them, a Z2 state coined the sublattice pairing state (SPS) which has

a full energy gap and can be smoothly connected to the semi-metal phase. Moreover,

Schwinger-boson method has been used to describe the magnetic phase transition[210]

in the same system. It was found that only one SL phase, the 0-flux state, can be

smoothly connected to an antiferromagnetically (AF) ordered phase. The 0-flux state

is also a Z2 state with a full energy gap. However, it is not clear whether this 0-flux

state can be smoothly connected to the semi-metal phase. Can SPS be related to the

0-flux state? In this chapter, we will demonstrate that remarkably, SPS and 0-flux

state are identical by an explicit duality transformation in the low energy effective

1This is because close to a Mott transition, physically the low energy spinons should be the
electrons which lose their charge coherence. And bosonic spinon condensation can easily explain the
transition into a magnetic ordered phase.
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theory. This is the first identification of a state in both the Schwinger fermion and

the Schwinger boson methods.

We will also show that the magnetically ordered phase connected to SPS is rather

unusual and not the simple Neel phase, because it breaks the SU(2) spin-rotation

symmetry completely and has three Goldstone modes. We name this phase chiral-

antiferromagnetic (CAF) phase. Aside from the usual AF spin order parameter

~N = (−1)is ~Si where is = 0, 1 for A and B sublattices respectively, in CAF phase

there is another vector-chirality spin order parameter ~n =
∑

<<ij>> νij
~Si × ~Sj whose

expectation value satisfies 〈~n〉 ⊥ 〈 ~N〉. νij = +1(−1) if one goes from site i to j in

a clockwise(counterclockwise) manner, as shown by the arrows in FIG. 5.1(b). Since

the usual AF phase should exist in the large U/t limit[63], our results suggest a

hidden phase transition, which might happen in the “Neel” phase of the previously

mentioned numerical study[136] or at a larger U/t not studied before. We therefore

propose the schematic phase diagram as shown in Fig.5.2(a).

This chapter is organized in the following way. In section 5.2 we give a brief expo-

sition of SU(2) Schwinger-fermion approach to spin liquid states and projective sym-

metry group (PSG) classification of different spin liquids. Following the mathematical

classification of all Z2 spin liquids using PSG in Ref. [128], we discuss the possible

gapped Z2 spin liquids continuously connected to a semimetal phase in section 5.3.

We find out there is only one natural candidate, the sublattice pairing state (SPS). A

mean-field study of SPS in J1-J2 Heisenberg model is also given in Ref. [128]. In sec-

tion 5.4 we discuss the continuous phase transition between SPS and a magnetically

ordered phase and reveal a hidden order parameter of this chiral-antiferromagnetic
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(CAF) phase aside from Neel order parameter. In section 5.5 we identify our SPS

state with the 0-flux state in Schwinger-boson mean-field approach[210] through an

explicit duality transformation. Finally we summarize our results in section 5.6.

5.2 Schwinger-fermion approach and projective sym-

metry group (PSG)

In the large U limit at half-filling, the charge flucutation in Hubbard model (5.1)

is severely suppressed and the low-energy spin fluctuations are described by S = 1/2

Heisenberg model[133]

Hspin = −4t
2

U

∑

<ij>

Si · Sj +O(
t3

U2
) (5.2)

In Schwinger-fermion approach, a spin-1/2 operator at site i is represented by:

~Si =
1

2
f †
iα~σαβfiβ. (5.3)

A Heisenberg spin HamiltonianH =
∑

<ij> Jij
~Si·~Sj is represented asH =

∑

<ij>−1
2
Jij

(

f †
iαfjαf

†
jβfjβ+

1
2
f †
iαfiαf

†
jβfjβ

)

. Because this representation enlarges the Hilbert space, states need to

be constrained in the physical Hilbert space, i.e., one f -fermion per site:

f †
iαfiα = 1, fiαfiβǫαβ = 0. (5.4)

Introducing mean-field parameters ηijǫαβ = −2〈fiαfjβ〉, χijδαβ = 2〈f †
iαfjβ〉, where

ǫαβ is fully antisymmetric tensor, after Hubbard-Stratonovich transformation, the
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Lagrangian of the spin system can be written as[225]

L =
∑

i

ψ†
i∂τψi +

∑

<ij>

3

8
Jij

[1

2
Tr(U †

ijUij)

− (ψ†
iUijψj + h.c.)

]

+
∑

i

al0(i)ψ
†
i τ
lψi (5.5)

where two-component fermion notation ψi = (fi,↑, f
†
i,↓)

T is introduced for reasons that

will be explained shortly. Uij is a matrix of mean-field amplitudes:

Uij =







χ†
ij ηij

η†ij −χij






. (5.6)

al0(i) are the local Lagrangian multipliers that enforces the constraints Eq.(5.4).

In terms of ψ, Schwinger-fermion representation has an explicit SU(2) gauge re-

dundancy: a transformation ψi → Wiψi, Uij → WiUijW
†
j , Wi ∈ SU(2) leaves the

action invariant. This redundancy is originated from representation Eq.(5.3): this

local SU(2) transformation leaves the spin operators invariant[3] and thus does not

change physical Hilbert space.

One can try to solve Eq.(5.5) by mean-field (or saddle-point) approximation. At

mean-field level, Uij and a
l
0 are treated as complex numbers, and al0 must be chosen

such that constraints Eq.(5.4) are satisfied at the mean field level: 〈ψ†
i τ

lψi〉 = 0. The

mean-field ansatz can be written as:

HMF = −
∑

<ij>

ψ†
iuijψj +

∑

i

ψ†
i a
l
0τ
lψi. (5.7)

where uij = 3
8
JijUij . A local SU(2) gauge transformation modify uij → WiuijW

†
j

but does not change the physical spin state described by the mean-field ansatz. By

construction the mean-field amplitudes do not break spin rotation symmetry, and the
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Figure 5.1: Mean-field ansatz of (a) SPS phase and (b) CAF phase in terms of f -
fermion. νij = 1 if i → j is along the arrow direction. (c)The honeycomb lattice

and its Bravais lattice vector ~a1,2. ~d1,2,3 are the three vectors used in Eq.5.21. Two
generators of symmetry group are also shown: 60◦ rotation C6 the horizontal mirror
σ.

mean field solutions describe spin liquid states if translational symmetry is preserved.

Different {uij} ansatz may be in different spin liquid phases. The mathematical

language to classify different spin liquid phases is PSG[225].

PSG is the manifestation of topological order in the Schwinger-fermion representa-

tion: spin liquid states described by different PSG’s are different phases. It is defined

as the collection of all combinations of symmetry group and SU(2) gauge transfor-

mations that leave {uij} invariant (as al0 are determined self-consistently by {uij},

these transformations also leave al0 invariant). The invariance of a mean-field ansatz

{uij} under an element of PSG GUU can be written as

GUU({uij}) = {uij},

U({uij}) ≡ {ũij = uU−1(i),U−1(j)},

GU({uij}) ≡ {ũij = GU(i)uijGU(j)
†},

GU(i) ∈ SU(2). (5.8)

Here U ∈ SG is an element of symmetry group (SG) of the spin liquid state. SG on
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a honeycomb lattice is generated by time reversal T , reflection σ, π/3 rotation C6

and translations T1, T2 as illustrated in FIG. 5.1 (see also Ref. [128]). GU is the gauge

transformation associated with U such that GUU leaves {uij} invariant.

There is an important subgroup of PSG, Invariant Gauge Group (IGG), which is

composed of all the pure gauge transformations in PSG: IGG ≡ {{Wi}|WiuijW
†
j =

uij,Wi ∈ SU(2)}. One can always choose a gauge in which the elements in IGG

is site-independent. In this gauge, IGG can be global Z2 transformations: {Wi =

τ 0,Wi = −τ 0}, the global U(1) transformations: {Wi = eiθτ
3
, θ ∈ [0, 2π]}, or the

global SU(2) transformations: {Wi = eiθn̂·~τ , θ ∈ [0, 2π], n̂ ∈ S2}, and we dub them

Z2, U(1) and SU(2) state respectively.

The importance of IGG is that it controls the low-energy gauge fluctuations. Be-

yond mean-field level, fluctuations of Uij and a
l
0 need to be considered and the mean-

field state may or may not be stable. The low-energy effective theory is described by

fermionic spinon band structure coupled with a dynamical gauge field of IGG. For

example, Z2 state with gapped spinon dispersion can be a stable phase because the

low-energy Z2 dynamical gauge field can be in the deconfined phase[213, 106]. But

for a U(1) state with gapped spinon dispersion, the U(1) gauge fluctuations would

generally drive the system into confinement due to monopole proliferation[160], and

the mean-field state would be unstable. And an SU(2) state with gapped spinon

dispersion should also be in the confined phase because there is no known IR stable

fixed point of pure SU(2) gauge theory in 2+1 dimension. Because the purpose of

this chapter is to search for stable spin liquid phases that has a Schwinger fermion

mean-field description, we will focus on Z2 states.
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If GUU ∈ PSG and g ∈ IGG, by definition we have gGUU ∈ PSG. This means

that the mapping h : PSG→ SG : f(GUU) = U is a many-to-one mapping. In fact

it is easy to show that mapping h induces group homomorphism[225]:

PSG/IGG = SG. (5.9)

Mathematically PSG is an extension of SG by IGG.

Our definition of PSG requires a mean-field ansatz {uij}. With Eq.(5.9), one can

define algebraic-PSG which does not require ansatz {uij}. An algebraic-PSG is simply

defined as a group satisfying Eq.(5.9). Obviously a PSG (realizable by an ansatz)

must be an algebraic-PSG, but the reverse may not be true, because sometimes an

algebraic-PSG cannot be realized by any mean-field ansatz.

To classifying all possible Z2 Schwinger-fermion mean-field states, we need to find

all possible PSG group extensions of the SG with a Z2 IGG. Here SG is the direct

product of the space group of honeycomb lattice and the time-reversal Z2 group. In

Ref. [128] we show the general constraints that must be satisfied for such a group

extension. In Ref. [128], using these constraints, we find there are in total 160 Z2

algebraic-PSGs on honeycomb lattice. And at most 128 PSGs of them can be realized

by an ansatz {uij}. These 128 PSGs completely classifies all Schwinger-fermion mean-

field ansatz of Z2 spin liquids on a honeycomb lattice.
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5.3 Z2 spin liquids on a honeycomb lattice and the

SPS phase

Among the 128 states, can one further identify the candidate states for the spin

liquid discovered in the numerical study[136]? The answer is yes. Numerically the

spin liquid phase is found close to the Mott transition and it seems to be connected to

the semimetal phase by a continuous phase transition. What are the Z2 Schwinger-

fermion states in the neighborhood of the semi-metal phase?

Are there Schwinger-fermion mean-field states that can be connected to the semi-

metal phase via a continuous phase transition? Physically a continuous Mott transi-

tion is associated with the loss of charge coherence of the electronic quasi-particles.

The spinons in the Schwinger-fermion approach exactly describe these quasiparticles

whose charge coherence has been lost[51, 82]. The natural resulting SL phase is noth-

ing but the state with a spinon band structure identical to the electronic one on the

metallic side. In the present case this SL is the uniform Resonating-Valence-Bond

(u-RVB) state with a Dirac gapless spinon dispersion[82]. The nature of the Mott

transtion between the SM phase and the u-RVB SL (referred to as algebraic spin

liquid (ASL) in Ref. [82]) was studied by Hermele[82]. However numerically it was

shown that the SL phase is fully gapped. How to resolve this discrepancy?

This discrepancy is related to the stability issue of the ASL. The u-RVB (or ASL)

ansatz can be simply expressed as a graphene-like nearest neighbor hopping of f -

fermions:

HuRV B
MF = χ

∑

<ij>

f †
iαfjα, (5.10)
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where χ is real. The low energy effective theory of ASL is 2+1D SU(2) QCD with

Nf = 2 flavors of fermions[82], i.e. QCD3. In the large-Nf limit QCD3 has a stable

IR fixed point with gapless excitations and can be a stable ASL phase[10]. However

the Nf = 2 case remains unclear. When Nf = 0 the pure gauge QCD3 is in a confined

phase[64, 159]. This indicates a critical Nc and when Nf < Nc confinement occurs[10].

Although no controlled estimate of Nc is available, a self-consistent solution of the

Schwinger-Dyson equations[10] suggests Nc ≈ 64
π2 , indicating Nf = 2 u-RVB (or ASL)

state may not be a stable phase.

We find that the above-mentioned discrepancy can be resolved if we assume the

ASL is not a stable phase but has one or more relavant couplings λ in the renormal-

ization group sense. λ may be a four-fermion interaction. If λ is irrelevant at the

Mott transition point (λ is dangerously irrelevant in this case), the Mott transition is

still continuous and controlled by the fixed point studied in Ref. [82]. We present the

schematic RG flow in Fig.5.2(b), and propose this scenario for the Mott transition in

the simulated Hubbard model.

If this scenario is correct, the mean-field ansatz of the Z2 spin liquid should be

connected to the u-RVB ansatz by a continuous Higgs condensation driven by the

λ-flow, which breaks the SU(2) IGG down to Z2. During this transition, the u-RVB

ansatz {uuRV Bij } → {uuRV Bij + δuij} and the δuij amplitudes play the role of the Higgs

boson. We define a Z2 state to be around (or in the neighborhood of) the u-RVB when

the Z2 state can be obtained by an infinitesimal change {uuRV Bij } → {uuRV Bij + δuij}.

Therefore this scenario dictates the PSG of the Z2 state to be a subgroup of the PSG

of the ASL. We propose this group theoretical observation as a systematic way of
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Figure 5.2: (a)Proposed schematic phase diagram of the Hubbard model on the hon-
eycomb lattice. (b)Schematic RG flow of the Mott transition.

identifying the SLs close to a continuous Mott transition: the PSGs of these SL are

subgroups of the PSG of the “parent” SL whose spinon band structure is identical to

the fermi liquid.

In Ref. [128] we classify all these possible PSG subgroups with the Z2 IGG, which

allows us to construct all possible Z2 states around the u-RVB state. This technique

was firstly developed by Wen[225]. We find that among the 128 Z2 states, there are

totally 24 gauge inequivalent Z2 PSGs satisfying this condition, as listed in Table 5.1

in Ref. [128].

Can these 24 Z2 SL states have a full energy gap? We find not all of them can have

a gapped spinon spectrum. This can be understood starting from a Dirac dispersion

of the u-RVB state. To gap out the Dirac nodes, at least one mass term in the low-

energy effective theory of a given Z2 state must be allowed by symmetry. In Ref. [128]

we show that only 4 of the 24 Z2 states allow mass term in the low energy theory.

Thus only these 4 states are fully gapped Z2 spin liquids around u-RVB state. The

other 20 states have symmetry protected gapless spinon dispersions.

These four states are state #16,#17,#19, and #22 in Table 5.1 in Ref. [128].
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Figure 5.3: (color online) Honeycomb lattice and generators of symmetry group. uα,
uβ and uγ are representatives of 1st, 2nd and 3rd nearest neighbor (n.n.) mean-field
amplitudes.

We can generate their mean-field ansatzs by these PSGs. We find that up to the

3rd neighbor mean-field amplitudes u(α,β,γ) as shown in Fig.5.3, only one of these

four states can be realized, which is state #19. As shown in Ref. [128], mean-field

ansatzs up to the 3rd neighbor of the other three states actually have a U(1) IGG.

Only after introducing longer-range mean-field bonds can these three states have a Z2

IGG. In particular, state #16 requires 5th neighbor, state #17 requires 4th neighbor

and state #22 requires 9th neighbor amplitudes, while state #19 only requires 2nd

neighbor amplitudes. Because the t/U expansion of the Hubbard model give a rather

short-ranged spin interaction for the SL phase found in numerics[136] (t/U ∼ 1/4),

the other three states are unlikely to be realized in a Hubbard model on honeycomb

lattice.

SPS is a fully-gapped Z2 SL on the honeycomb lattice. Its mean-field fermionic
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spinon band structure, after choosing a proper gauge, is given as follows: (Fig.5.1 a)

HMF
SPS = t1

∑

<ij>

f †
iαfjα + t2

∑

<<ij>>

f †
iαfjα

− µ
∑

i

f †
iαfiα +∆

∑

<<ij>>

ǫαβf
†
iαf

†
jβ + h.c. (5.11)

where t1,2 are real numbers. In the Schwinger-fermion approach, f -spinons are coupled

to an SU(2) gauge field[3, 225]. However due to non-zero t2 and ∆, the SU(2) gauge

symmetry is reduced to Z2 through Higgs mechanism. Thus at low energy f -spinons

are coupled to a dynamical Z2 gauge field and stay in the deconfined phase. A

Schwinger-fermion mean-field study of J1-J2 Heisenberg model using SPS ansatz is

presented in Ref. [128].

5.4 Continuous phase transition from SPS to CAF

phase

We start from discussing the continuous phase transition from SPS to CAF phase

in the Schwinger-fermion approach. How to describe an AF order in this approach? In

Ref. [168], it is shown that the easy-plane AF order on a honeycomb lattice is described

by a quantum spin Hall (QSH) band structure of spinons (spin quantized along z-axis)

coupled with a dynamical U(1) gauge field. QSH effect binds the gauge fluctuation

to Sz spin density fluctuation, and the Goldstone mode of the easy-plane Neel order

is nothing but photon of the U(1) gauge field. Monopole quantum number[168] of

U(1) gauge field shows the spin order is antiferromagnetic.

In the present spin rotation symmetric system, we consider the phase described
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by a fluctuating O(3) QSH order parameter ~n, coupled with a U(1) gauge field aµ.

Its mean-field ansatz is: (Fig. 5.1b)

HMF
CAF = t1

∑

<ij>

f †
iαfjα + t2

∑

<<ij>>

f †
iαfjα

− µ
∑

i

f †
iαfiα + ~n ·

∑

<<ij>>

iνijf
†
iα~σαβfjβ. (5.12)

There are three gapless modes in this phase: two n̂ fluctuating modes and one photon

mode. The photon mode is in-plane spin wave of AF order ~N ( ~N ⊥ n̂)[168], and

the spin SU(2) symmetry is completely broken. Because n̂ has the same symmetry

as QSH order, Eq.(5.12) is the representation of CAF phase in Schwinger-fermion

method. The operation C6 ·T (T : time-reversal, C6: defined in Fig.5.1c) leaves both

order parameters invariant, indicating that the magnetic order in CAF phase is still

collinear.

Comparing Eq.(5.12) with Eq.(5.11), s-wave pairing ∆ of spinons in SPS phase

is replaced by the O(3) QSH order ~n in the CAF phase. If we group these orders

together into a 5-component vector ~V = (Re∆, Im∆, ~n), as pointed out in Ref. [65],

fluctuations of ~V has a Wess-Zumino-Witten (WZW) Berry’s phase[1]. Physically it

means that a skyrmion (anti-skyrmion) of n̂ in two spatial dimension actually carries

fermion charge 2(−2). The hedgehog instanton of n̂ in 2+1 dimension thus creates

a charge-2 s-wave fermion pair. Therefore a continuous phase transition between

a QSH insulator and an s-wave superconductor on the honeycomb lattice becomes

possible[65].

To discuss the CAF-SPS phase transition, it is convenient to introduce the CP 1

representation of the n̂ order parameter: n̂ = w†~σw, where w = (w1, w2)
T are two
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complex numbers satisfying |w1|2 + |w2|2 = 1. This representation has a U(1) gauge

redundancy and thus w-bosons couple to a U(1) gauge field Aµ. After integrating out

the f -spinons (see Ref. [128] for details), we obtain the effective Lagrangian2:

L =|(∂µ − iAµ)w|2 + r|w|2 + s|w|4 + 1

2g2a
f 2
µν

+
1

2g2A
F 2
µν +

i

π
ǫµνλAµ∂νaλ, (5.13)

where fµν = ∂µaν − ∂νaµ and Fµν = ∂µAν − ∂νAµ are gauge field strengths. The last

term, a mutual Chern-Simons (CS) term, is nothing but the WZW term in the gauge

representation: it is well-known that a skyrmion of n̂ is a 2π Aµ gauge flux, which

also carries 2 units of aµ gauge charge due to the WZW term.

What are the phases described by the effective Lagrangian Eq.(5.13)? When

r < 0, w-boson condenses and n̂ is ordered, corresponding to CAF phase. Here

the mutual CS term does not qualitatively modify the low-energy dynamics due to

the Higgs mechanism of Aµ. When r > 0, w-bosons are gapped and n̂ is disordered,

remarkably, Eq.(5.13) describes the Z2 SPS phase. The identification of a U(1) mutual

CS theory and a Z2 gauge theory has been studied before[75, 109]. Here with the

WZW term, we are able to further identify the PSG of the Z2 theory.

This identification is easily shown by studying the the monopoles of aµ and Aµ

in Eq.(5.13). In n̂ disordered phase, monopole events of both aµ and Aµ are allowed.

We denote their monopole creation operators as V †
a and V †

A respectively. The mutual

CS term clearly dictates that an aµ monopole creates 2 units of Aµ gauge charge,

and vice versa. These events mean that f †
αf

†
β and w†

αw
†
β pairing terms exist, which

2The constraint |w1|2 + |w2|2 = 1 can be enforced by a Lagrangian multiplier λ. (5.13) can be
obtained by the saddle point expansion of λ.
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break the U(1) gauge group down to Z2. The WZW term indicates that the f -spinon

pairing is s-wave, and thus the system is in SPS phase.

Mutual CS term also dictates that f -spinon and w-boson satisfy mutual semion

statistics. Namely they see each other as a π-flux and are dual degrees of freedom. We

can focus on either set of dual variables, f(V †
A) or w(V

†
a ), to write down the effective

theory. Because the phase transition from SPS to CAF phase is described by w-boson

condensation in Eq.(5.13), we will use w(V †
a ) variables in the next section.

5.5 Duality between Schwinger-fermion and Schwinger-

boson representations

In this section we focus on the dual variables of f -spinons: the w-bosons. The SPS

phase is then a Z2 phase with w-bosons as Z2 charges, but f -spinons as visons. In this

formulation SPS-CAF phase transition is naturally presented as a Higgs condensation

of w-bosons.

First we need to represent the order parameters of the CAF phase in terms of w.

The QSH order is n̂ = w†~σw, but what is the Neel order parameter? Neel order in

CAF phase corresponds to the monopole of aµ, namely a pairing of w-boson. There

are two spin-1 bosonic pairing order parameters satisfying this requirement, i.e. the

real and imaginary part of (iσyw
∗)†~σw:

n̂1 + in̂2 = (iσyw
∗)†α~σαβwβ. (5.14)

It is easy to verify that n̂ = n̂1× n̂2, so there are only two independent vectorial order

parameters. The issue is, which one is the Neel order parameter ~N : n̂1 or n̂2?
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A U(1) gauge transformation w → eiθw generates a rotation in the n̂1, n̂2 plane.

By fixing a proper gauge, we can always choose n̂1 as the Neel order. We will work

within this gauge ~N = n̂1 throughout the phase transition. Such a gauge fixing breaks

the U(1) gauge redundancy down to Z2: w → ±w.

The physical symmetries of the QSH (or vector spin chirality) and the Neel order

parameters completely determine the transformation rules of the w-boson up to a Z2

gauge redundancy:

T1, T2 : n̂→ n̂, ~N → ~N, w → w,

T : n̂→ n̂, ~N → − ~N, w → iw∗,

σ : n̂→ −n̂, ~N → − ~N, w → iσyw
∗,

C6 : n̂→ n̂, ~N → − ~N w → iw. (5.15)

where time-reversal transformation T is anti-unitary. The reason why there are no

further arbitrariness on the transformation rules of w can be easily understood by

the following construction. If we write w-boson as an SU(2) matrix:

U =







w1 w∗
2

w2 −w∗
1






, (5.16)

then the most general O(4) transformation leaving |w1|2 + |w2|2 = 1 is U → VLUVR,

where VL and VR are both SU(2) rotations (VL is spin rotation), and O(4) ∼ SU(2)L×

SU(2)R. In this representation, the vectors n̂1, n̂2, n̂ are the 1st, 2nd and 3rd columns

of a 3 by 3 rotation matrix R:[117]

Rab =
1

2
Tr(U †σaUσb) (5.17)

Clearly, to leave R invariant, the transformations VL,R must be ±1.
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These symmetry transformation rules allow us to reveal the connection between

the SPS state here and the 0-flux state in the Schwinger-boson representation obtained

by Wang[210]. In Wang’s work, the Neel order is represented by the z-boson as

~N = z†~σz in the effective theory. From Eq.(5.17), we can easily construct the duality

transformation between the w-boson and z-boson representations: Uw = UzVR, VR =

ei
π
4
σy , namely:

w =
1√
2
(z − iσyz∗) or z =

1√
2
(w + iσyw∗) (5.18)

Under duality transformation:

~N = Re[(iσyw
∗)†~σw] = z†~σz,

n̂ = w†~σw = −Re[(iσyz∗)†~σz]. (5.19)

From Eq.(5.15),(5.18), we can obtain transformation rules of z-bosons:

T1, T2 : z → z,

T : z → σyz,

σ : z → iσyz
∗,

C6 : z → σyz
∗, (5.20)

which are exactly the transformation rules found by Wang[210] for 0-flux state up

to a Z2 gauge arbitrariness. This explicitly confirms that the z-bosons constructed

in Eq.(5.18) are the same z-bosons discussed by Wang, and the SPS phase here is

identical to the 0-flux phase in Schwinger-boson description.

Following the discussion in Ref. [210], we can write down the general symmetry-
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allowed effective theory for the phase transition in terms of z-boson:

L =|∂τz|2 + c2|∇z|2 +m2|z|2 + u(|z|2)2

+ λH (iσyz
∗)†

[

∑

i

(~di · ∇)3
]

z + h.c. (5.21)

Here λH is the Higgs coupling which reduces the gauge degrees of freedom in the

z-boson formulation down to Z2. ~d1 = −~a1,~d2 = ~a2, and ~d3 = ~a1 − ~a2 as shown

in FIG. 5.1. For instance, the single time derivative term z†∂τz is forbidden by σ,

and zT (−iσy)∂τz is forbidden by C6. The Higgs coupling can also be written as a

pairing of w-bosons: λH (iσyw
∗)†

[
∑

i(
~di · ∇)3

]

w + h.c. By naive power counting λH

is irrelevant, therefore we have an O(4) critical point between the CAF (z-condensed)

phase and the SPS (z-gapped) phase. The critical behavior of this transition is well-

studied[30, 29, 89].

5.6 Summary

In this study, our main prediction is the CAF phase. Unlike usual AF (Neel) phase,

CAF phase has two order parameters: Neel order ~N and QSH order n̂. As CAF phase

is likely to be the magnetically ordered phase adjacent to the SL phase found in the

numeric study[136], in the following we propose explicit numerical methods to detect

the CAF phase.

One can directly measure QSH order by 〈~n(x) · ~n(0)〉 correlation function, or the

spin vector-chirality correlation 〈(νi+x,j+x~Si+x × ~Sj+x) · (νij ~Si × ~Sj)〉. Since QSH or-

der is odd under σ · T while Neel order is σ · T -even, one does not expect a long

range correlation of QSH order in a usual Neel phase. Therefore, the long range QSH
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correlation is an intrinsic signature of CAF phase. In addition, one can check that

the QSH vector is normal to the Neel vector. For example, one can pin the Neel

order by an infinitesimal (in thermodynamic limit) staggered magnetic field along

z-axis, and the measured QSH order parameters should only have x, y components.

Experimentally such an exotic SL may be realized in candidate systems such as ex-

panded graphene-like system in group IV elements[187, 26] and fermions in optical

lattices[45, 99].
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# gT gσ gC6 g1 g2

1 τ 0 τ 0 τ 0 τ 0 τ 0

2 τ 0 τ 0 iτ 3 τ 0 τ 0

3 τ 0 τ 0 iτ 3 e i 2π/3τ
1

e− i 2π/3τ1

4 τ 0 iτ 3 iτ 3 τ 0 τ 0

5 τ 0 iτ 3 iτ 3 τ 0 τ 0

6 τ 0 iτ 3 iτ 1 τ 0 τ 0

7 τ 0 iτ 3 e iπ/6τ
1

τ 0 τ 0

8 τ 0 iτ 3 e iπ/3τ
1

τ 0 τ 0

9 τ 0 iτ 3 iτ 1 e i 2π/3τ
3

e− i 2π/3τ3

10 τ 0 iτ 3 e i 2π/3τ
1

i( τ
1√
3
−

√

2
3
τ 2) i( τ

3√
2
− τ2√

6
− τ1√

3
)

11 iτ 3 τ 0 τ 0 τ 0 τ 0

12 iτ 3 τ 0 iτ 3 τ 0 τ 0

13 iτ 3 τ 0 iτ 1 τ 0 τ 0

14 iτ 3 τ 0 iτ 1 e i 2π/3τ
3

e− i 2π/3τ3

15 iτ 3 iτ 3 τ 0 τ 0 τ 0

16 iτ 3 iτ 3 iτ 3 τ 0 τ 0

17 iτ 3 iτ 3 iτ 1 τ 0 τ 0

18 iτ 3 iτ 3 iτ 1 e i 2π/3τ
3

e− i 2π/3τ3

19 iτ 3 iτ 1 iτ 1 τ 0 τ 0

20 iτ 3 iτ 1 iτ 2 τ 0 τ 0

21 iτ 3 iτ 1 τ 0 τ 0 τ 0

22 iτ 3 iτ 1 iτ 3 τ 0 τ 0

23 iτ 3 iτ 1 e iπ/6τ
3

τ 0 τ 0

24 iτ 3 iτ 1 e iπ/3τ
3

τ 0 τ 0

Table 5.1: A summary of all 24 different PSG’s with IGG = {±τ 0} around the u-RVB
ansatz. They correspond to 24 different Z2 spin liquids near the u-RVB state.



Chapter 6

Majorana fermions in nodal singlet

superconductors with coexisting

non-collinear magnetic orders

6.1 Introduction

A Majorana fermion is an electrically neutral fermion whose antiparticle is itself.

High energy physicists have been looking for this hypothetical particle in e.g. neutrino

physics and dark matter, but so far a confirmation for these speculations is still

lacking[233]. On the other hand, in recent years Majorana fermions have attracted

more and more attention of condensed matter physicists[146, 76, 164]. To be specific,

Majorana fermions can be realized by zero-energy bound states in the vortex core

(or on the edge) of certain two-dimensional superconductors. A particularly unusual

property of these vortices is that instead of usual bosonic or fermionic statistics,

109
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they obey non-Abelian statistics[140, 147, 52, 176, 91, 201] as a manifestation of

nontrivial topological order[218, 216] in such systems. Due to this feature MBSs have

been proposed to serve as topologically-protected qubits in fault-tolerant quantum

computation[101, 35, 146]. A variety of systems have been proposed to realize MBSs,

such as even-denominator fractional quantum Hall liquids[140, 147, 176, 131], p+ ip

superconductors[176, 91, 201] and superfluids[66, 33], s-wave-superconductor-strong-

topological-insulator interface[55], s-wave Rashba superconductor[184, 185, 4] and

spin-orbit-coupled nodal superconductors[183].

In this work we propose another realization of MBSs in non-centrosymmetric sin-

glet superconductors with nodal excitations, such as d-wave superconductors. We

show that when with a coexisting non-collinear magnetic order with a wavevector

connecting two nodes with opposite momenta, there will be MBSs in the vortex core

or the edge of such superconductors. We demonstrate our proposal explicitly by two

examples. The 1st one is a d + id superconductor with coexisting 1 × 3 coplanar

magnetic order on the triangular lattice. We show it’s likely to be realized in a

doped t-J2 model on triangular lattice. In particular this example is relevant for a

material: superconducting sodium cobaltate NaxCoO2 · yH2O with doping concen-

tration xc ≈ 0.25[246]. The 2nd example is a dx2−y2 superconductor with coexisting

Q = (Q0, Q0) coplanar magnetic order on the square lattice. We also show this state

might be realized in a doped t−J1−J2−J3 model on square lattice. Experimentally

the phase diagram of a wide range of strongly-correlated materials, from cuprates

to heavy-fermion compounds, are featured by d-wave superconductivity[206, 158] in

proximity of[119] or even coexisting with[158, 193] magnetic orders. Therefore our
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proposal opens a window for discovering non-Abelian MBSs in strongly-correlated

unconventional superconductors with gap nodes.

6.2 General discussions on the mechanism

The low-energy excitations of a nodal singlet superconductor are massless Dirac

fermions with linear dispersion around the nodes. First we discuss the mechanism of

creating a sinlge MBS by adding a proper mass term to these Dirac fermions. In the

mean-field level the quadratic Hamiltonian with singlet pairing terms can be expanded

around nodal points {qi}. We can write the low-energy effective Hamiltonian as

Heff =
∑

k

∑

i(c
†
qi+k,↑, c−qi−k,↓)Hi

k(cqi+k,↑, c
†
−qi−k,↓)

T where Hi
k are 2 × 2 Hermitian

matrices linear in small momenta k. Now let’s focus on one gap node at q0 and

without loss of generality we have

∑

k







cq0+k,↑

c†−q0−k,↓







† 





ξq0+k,↑ ∆q0+k

∆∗
q0+k −ξ−q0−k,↓













cq0+k,↑

c†−q0−k,↓







= H0
eff =

∑

k v(k1 + ik2)d
†
k↑d

†
−k↓ + h.c. (6.1)

which is formally the same as a spin-triplet p + ip superconductor. We defined

Dirac fermions (dk↑, d
†
−k↓)

T = U0(cq0+k,↑, c
†
−q0−k,↓)

T where U0 is an SU(2) matrix.

v is a constant and (k1, k2) are two-dimensional momenta in a certain coordinate

system. As pointed out in Ref. [176] the effective Hamiltonian (6.1) can be decoupled

into two independent spinless p + ip superconductors in the isospin basis dk,e/o ≡
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(dk↑ ± dk↓)/
√
2:

H0
eff =

∑

k v(k1 + ik2)(d
†
k,ed

†
−k,e − d

†
k,od

†
−k,o) + h.c.

Now let’s add a magnetic mass to the effective Hamiltonian (6.1) with m > 0

δH0 = m
∑

k c
†
q0+k,↑c−q0+k,↓ + h.c. = m

∑

k d
†
k↑dk↓

+ h.c. = m
∑

k(d
†
k,edk,e − d

†
k,odk,o) (6.2)

Remarkably this term drives one spinless p + ip superconductor of {dk,e} fermions

into non-Abelian weak-pairing phase and the other spinless p + ip superconductor

of {dk,o} fermions into Abelian strong-pairing phase[176]. Each weak-paired p + ip

superconductor contributes one single zero-energy MBS in the vortex core while a

strong-paired one contributes none. Therefore we obtain one single MBS from {dk,e}

fermions by introducing a magnetic mass term to nodal Dirac fermions (6.1). Our

proposal is in analogy to a doubled-layer ν = 1/2 fractional quantum Hall system,

where a phase transition from an Abelian (331) state to a non-Abelian (Moore-Read

pfaffian) state can be driven by a tunneling term between layers[84, 177, 176]. In the

electron basis apparently (6.2) corresponds to a non-collinear (coplanar) magnetic

order with wavevector 2q0. After a Fourier transformation we have

δH0 = m
∑

r e
− i 2q0·rc†r,↑cr,↓ + h.c. =

2m
∑

r

[

Sxr cos(2q0 · r) + Syr sin(2q0 · r)
]

where Sar =
∑

α,β=↑,↓ c
†
r,ασ

a
α,βcr,α/2, a = x, y, z is the electron spin operator on lattice

site r and σx,y,z are Pauli matrices. In general these non-collinear magnetic order can

be realized in frustrated spin models. We expect that residual spin-spin interactions
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between nodal Dirac fermions might induce the desired non-collinear magnetic order

coexisting with superconductivity. In the following we shall demonstrate the above

general discussions by two examples on triangular and square lattices.

It is crucial to require the magnetic order to be non-collinear : a collinear magnetic

mass term such as

Hcol = m
∑

k(c
†
q0+k,↑c−q0+k,↓ + c†q0+k,↓c−q0+k,↑) + h.c.

= 2m
∑

r S
x
r cos(2q0 · r)

will not only drive {dk,o} fermions associated with (cq0+k,↑, c
†
−q0−k,↓) into weak-pairing

phase, but also another branch of {d′k,o} fermions (with opposite spin) associated with

another Nambu pair (c−q0+k,↑, c
†
q0−k,↓). As a result there would be two weak-paired

spinless p + ip superconductors and hence two MBSs in the vortex core or the edge.

To be precise, on the edge there will be two counter-propagating Majorana modes,

one from Nambu pair (cq0+k,↑, c
†
−q0−k,↓) and the other from (c−q0+k,↑, c

†
q0−k,↓): the

two branches will scatter with each other and open up a gap in the edge spectrum.

As a result there will be no MBS in the gapped edge spectrum of a superconductor

with coexisting collinear magnetic order, as shown in FIG. 6.3 for a specific case on

triangular lattice.

6.3 d+ id superconductor with coplanar 1× 3 mag-

netic order on triangular lattice

In the 1st example we consider a d+ id superconductor on the triangular lattice.

Let’s start with 2nd nearest neighbor (NN) d + id pairing order parameter[246],
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Figure 6.1: (color online) (a) The 1st BZ of triangular lattice and the gap nodes {Ni}
of 2nd NN d+ id pairing gap function (6.3) inside 1st BZ. The dashed circle indicates
the Fermi surface crossing the 6 gap nodes. The arrow represents the momentum
of the magnetic order, which adds a magnetic mass to the nodal Dirac fermion and
creates the single MBS. (b) The spin configuration of the 1 × 3 magnetic order in a
S = 1/2 Heisenberg J2 model on the triangular lattice. ~a1,2 represent two Bravais

primitive vectors. Their corresponding reciprocal vectors are ~b1,2 with the convention

~ai ·~bj = δi,j.

i.e. ∆ij = ∆2e
2iθij if 〈〈i, j〉〉 is a 2nd NN pair, where θij is the angle of ri − rj. With

momentum denoted as k = k1~b1+k2~b2 (see FIG. 6.1), the gap function in momentum

space

∆
(2)
k = 2∆2

[

cos(k1 − k2) + e i 2π/3 cos(2k1 + k2)

+e i 4π/3 cos(k1 + 2k2)
]

(6.3)

has 7 gap nodes inside the 1st Brillouin zone (BZ): zone center O and Ni, i = 1, · · · , 6

as shown in FIG. 6.1(a). Such a 2nd-NN paired state is expected to be realized

in a doped t-J2 model on triangular lattice[212]. Such a d + id superconductor is

featured by quantized spin-Hall conductance[176] associated winding number W of

unit vector n̂k = (Re∆
(2)
k ,−Im∆

(2)
k , ξk)/Ek where ξk represents the kinetic energy

and Ek =

√

ξ2k + |∆
(2)
k |2. When the Fermi surface lies inside the dashed circle in
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FIG. 6.1(a) we have W = −2 and there are two counter-clockwise-propagating chiral

fermions on the edge the superconductor. Each of them is charge neutral but carries

spin 1/2. When the Fermi surface encloses the dashed circle and six gap nodes {Ni}

we have W = 4[246] and there are four clockwise-propagating chiral fermions on

the edge carrying only spin. When the Fermi surface crosses the 6 nodes {Ni} with

a proper doping concentration, however the winding number W is not well-defined

since the superconductor has gapless nodal excitations in the bulk. The question is,

can we introduce a proper mass term to these nodal Dirac fermions so that a gap is

opened, and the corresponding state can have a winding number W = +1 (the same

as a p+ ip superconductor[176]) and hence single MBS in the vortex core/edge? The

answer is yes. A magnetic mass (6.2) with a momentum pointing from Ni+3 to Ni

shown in FIG. 6.1 will do. We shown the edge spectrum of such a superconductor

with non-collinear magnetic order in FIG. 6.2. As we expected there is a single MBS

crossing k = 0. The corresponding spin configuration is shown in FIG. 6.1(b). On

the other hand, as discussed earlier for a generic case, a collinear magnetic order with

the same ordering vector will not create a MBS in the edge spectrum, although it

does open up a gap in the bulk dispersion as shown in FIG. 6.3. This means not all

mass terms can create MBS by opening up a gap for the nodal Dirac fermions.

Now another question rises: can the 1 × 3 non-collinear magnetic order be pos-

sibly realized on the triangular lattice? Notice that in the superconducting phase

of doped t − J2 model, when the Fermi surface crosses the 6 nodes {Ni}, the low-

energy physics are described by nodal Dirac fermions interacting through a residual

J2 interaction. The classical ground states of J2 model is well-known to have[100, 98]
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Figure 6.2: (color online) The edge spectra with momentum k along ~b2 direction of a
2nd-NN d+ id superconductor coexisting with 1×3 non-collinear (in-plane) magnetic
order as shown in FIG. 6.1(b). Among the in-gap edge states separated from the bulk
continuum, blue lines represent edge states on one edge, while red lines represents
edge states on the other edge. Note there is one single counter-clockwise-propagating
zero-energy MBS at k = 0 localized on the edges. We use the hopping parameters in
Ref. [246], i.e. (t1, t2, t3) = (−202, 39, 25) MeV, ∆2 = 150 MeV and magnetic mass
m = 100 MeV.
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Figure 6.3: (color online) The edge spectra with momentum k along ~b2 direction of
a 2nd-NN d+ id superconductor coexisting with 1× 3 collinear magnetic order with
magnetization along ẑ direction. Notations and parameters are the same as in FIG.
6.2. Note that there are no MBSs in the spectrum.

3 × 3 non-collinear magnetic order, i.e. on each of the three “sublattices” connected

by 2nd-NN bonds the spins exhibit in 120 degree coplanar order. There is a large

ground state degeneracy at classical level from the relative spin orientations of the

three “sublattices”, which is lifted by quantum fluctuations through ordering-due-to-

disorder mechanism[208, 81, 28]. The ultimate quantum ground state is nothing but

a 1×3 ordered one as shown in FIG. 6.1(b). We further carry out a Schwinger-boson

mean-field study1 of spin-S Heisenberg J2 model and find that when S is larger than

a critical value κc/2 ≈ 0.17 (such as spin-1/2), the system will develop exactly the

1 × 3 non-collinear order as shown in FIG. 6.1(b). This suggests the coexistence of

2nd NN d+ id pairing and non-collinear magnetic order 6.1(b) in a doped t-J2 model

and hence the MBS in the vortex core/edge.

Finally we want to discuss possible experimental realizations. Sodium cobaltate

1Yuan-Ming Lu and Ziqiang Wang, to appear.
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Figure 6.4: (color online) (a) The 1st BZ of square lattice. Black circles denote
the four nodal points {Ni}, i.e. the intersections between the Fermi surface and
nodal lines of NN dx2−y2 pairing gap function. After a non-collinear magnetic order
with momentum (π/2, π/2) (shown by the arrow) is introduced, the Brillouin zone is
reduced to the red rectangle and the nodal excitations shift to the momenta denoted
by red diamonds. (b) The spin configuration of (Q0, Q0) magnetic order with Q0 =
π/2. ~a1,2 represent two primitive vectors we’ve chosen. Their corresponding reciprocal

vectors are ~b1,2 with ~ai ·~bj = δi,j. Notice along ~a2 direction the unit cell is doubled by
the magnetic order.

NaxCoO2 is a layered triangular lattice electron system which becomes a water-

intercalated superconductor at low temperature with doping concentration x ≈ 0.3[203].

NMR measurements[56, 245, 244] suggest singlet pairing and there are signatures of

nodal excitations at doping xc ≈ 0.26. A 2nd-NN d + id pairing order parameter

with gap nodes {Ni} in FIG. 6.1(a) could explain all these facts. On the other hand

this suggests an effective J2 interaction which could lead to 2nd-NN d + id pairing.

Therefore NaxCoO2 with doping concentration around xc is a possible candidate to

realize such a “magnetic superconductor” with non-Abelian MBS.
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6.4 dx2−y2 superconductor with (Q0, Q0) coplanar mag-

netic order on square lattice

The 2nd example is a more familiar one: a NN dx2−y2 paired superconductor on

the square lattice. We consider only NN hopping (amplitude t). Writing momentum

as k = k1~b1 + k2~k2 (see FIG. 6.4) the mean-field Hamiltonian has a band structure

ξk = −2t
[

cos(k1 + k2) + cos(k1− k2)
]

− µ and gap function ∆k = 2∆
[

cos(k1 + k2)−

cos(k1 − k2)
]

. The four nodal points are shown in FIG. 6.4(a)

N1,3 : k2 = ±q0, k1 = 0; N2,4 : k1 = ±q0, k2 = 0.

with q0 = arccos(− µ
4t
). Now adding a magnetic mass e.g. with momentum Q0 = 2q0~b2

will gap out the (cN3,↑, c
†
N1,↓) branch and create a single MBS. In FIG. 6.4 we show

the particular case when µ = −2
√
2t and q0 = π/4. The spin configuration of such

a non-collinear magnetic order is shown in FIG. 6.4(b). In this specific case, such a

commensurate magnetic order will not gap out all nodal excitations since the Hamil-

tonian is still invariant under time reversal followed by a lattice translation[21]. As

shown in FIG. 6.4(a) when the non-collinear magnetic order is present, the original

four nodal points (each being two-fold degenerate with spin ↑, ↓) denoted by black cir-

cles are split into 6 nodes (each being non-degenerate) denoted by red diamonds. The

disappearing Dirac nodes is gapped out by magnetic mass and enters the weak-pairing

phase. Therefore despite the bulk gapless excitations in this particular case q0 = π/4,

we expect the non-Abelian MBS on the edge to be stable against impurities[183].

The corresponding edge spectra is shown in FIG. 6.5, which confirms the existence

of MBS on the edge. In a generic doping when q0 is an arbitrary number, the corre-
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Figure 6.5: (color online) (a) Left panel: Edge spectrum of a NN dx2−y2 supercon-
ductor with (π/2, π/2) non-collinear magnetic order shown by FIG. 6.4(b) on square
lattice, dispersing with momentum k2 along [1, 1] direction. Although there are bulk
gapless excitations, there is a zero-energy MBS at k2 = π, in the almost flat band
as shown by the blue line. Parameters are chosen as ∆ = 0.7t and m = 0.4t. (b)
Right panel: Edge spectrum of FIG. 6.5 zoomed in around k2 = π. The almost flat
(non-dispersing) band crossing k2 = π corresponds to the MBS (at k2 = π) localized
around one edge, as shown by the blue line.

sponding incommensurate non-collinear magnetic order might open up a gap for all

nodal excitations and leave the edge states as the only low-energy modes.

In fact, such a non-collinear magnetic order with momenta Q0 = Q0
~b1,2 can also be

realized in a microscopic Heisenberg J1-J2-J3 model. The classical ground state of J1-

J2-J3 is a non-collinear one with momenta Q0 = Q0
~b1,2 where cos(Q0) = −J1/(2J2 +

4J3), in the parameter range 4J3 + 2J2 ≥ J1 and J3 ≥ J2/2[170, 48]. There are

numerical evidences that such phases survive in the quantum S = 1/2 Heisenberg

J1-J2-J3 model in a wide parameter range[196, 197]. Therefore we expect such an

exotic non-Abelian phase, i.e. a d-wave superconductor with coexisting Q0 = Q0
~b1,2

non-collinear magnetic order might be realized in a doped t-J1-J2-J3 model.
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6.5 Summary

In this work we propose another possible realization of Majorana fermions in solid

state physics. We show that in general when singlet superconductivity with nodal

excitations coexists with non-collinear magnetic order with a proper wavevector, there

will be non-Abelian MBS in the vortex core (or on the edge) of such a superconductor.

We show such an exotic phase might be realized by extended t-J models on different

lattices. Relevant experimental realizations are also discussed. This proposal reveals a

new possibility to discover MBS in strongly-correlated electron systems, where phase

coexistence are observed in many different materials.



Chapter 7

Symmetry protected fractional

Chern insulators and fractional

topological insulators

7.1 Introduction

Phases of matters in condensed matter systems can almost always be character-

ized by the Landau-Ginzburg symmetry breaking theory[110, 111]. Experimental

discovery of integer and fractional quantum Hall states in 2-D electron gas under

a strong external magnetic field[105, 207] has provided striking counter examples of

this paradigm. The fractional quantum Hall liquids are particularly fascinating in the

sense that their low energy excitations are quasi-particles carrying fractional electric

charge[114] and obeying anyonic statistics[12]. Although these liquid phases do not

break physical symmetries, they are still different quantum phases. One measurable

122
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difference is their edge states: despite the fact that these liquids are all insulators

in the bulk, they all possess certain edge metallic modes[223]. In general different

bulk phases host different edge states which can be detected by various experimental

probes such as electric transport[222].

A few years after the experimental discovery of integer quantum Hall effect(IQHE),

Haldane showed that the essence of it is not the external magnetic field[68], by explic-

itly writing down a lattice model Hamiltonian of IQHE with zero net magnetic field.

However, it takes more than two decades for people to show that similar statement

is true even for FQHE. Recently in a series of model studies[204, 202, 149, 191, 148],

fractional quantum hall states have been shown to be the ground states of interacting

lattice models, in the absence of an external magnetic field. It is found that the

ground state is likely to respect the full lattice symmetry. Here we call these frac-

tional ground states spin-polarized “fractional Chern insulators” (FCI) to distinguish

from the traditional fractional quantum Hall states in an external magnetic field.

These proposed lattice models share a common feature: a partially filled nearly flat

two-dimensional band with non-trivial band topology.

The concept of band topology originates from the well-known TKNN index (or

Chern number) of an IQH insulator[205]. In the past few years, this concept has

been generalized to time-reversal symmetric systems, and triggers the theoretical and

experimental discoveries of topological insulators in spin-orbital coupled compounds

in both two and three spatial dimensions[165, 76, 141]. In two dimension (2D),

a time-reversal symmetric band insulator is characterized by a Z2 topological index.

Experimentally, HgTe quantum heterostructure has been shown to be a 2D topological
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insulator[107]. In the simplest limit, 2D topological insulator can be viewed as a direct

product of the up-spin and down-spin wavefunctions hosting opposite TKNN index.

It is then quite natural to ask whether similar time-reversal-invariant (TRI) ver-

sions of fractional topological insulators (FTI) exist or not[122]. In the simplest limit

when spin along z-direction is conserved, it can be understood as the direct product of

wavefunctions of the up spin and down spin with opposite FQHE. Clearly this direct

product is a fully gapped stable phase. In addition it must have non-trivial ground

state degeneracy on a torus even in the presence of a small Sz conservation breaking

perturbation, because the ground state degeneracy cannot be lifted by an arbitrary

local perturbation. So there is no question that in principle this fractionalized phase

could exist. One important open question is that whether TRI FTI can exist in a

reasonable Hamiltonian.

In order to realize the fractional topological insulators (FTI) in experiments, one

should find a compound with a nearly flat topological non-trivial band so that corre-

lation effect is strong. Naively this is unnatural because usually a flat band is realized

by spatially localized orbitals which do not support topological non-trivial hopping

terms. However, a very recent theoretical investigation[236] of transition metal oxide

interface indicates that a nearly flat topological non-trivial band can be naturally

realized in the eg orbital double-layer perovskite grown along [111] direction. Exact

diagonalization in the same work shows that fractional quantum hall state can be

realized in principle when the nearly flat band is partially filled. Because the tem-

perature scale of the FCI/FTI physics in this system is controlled by short-range

Coulomb interaction, it can be a high-temperature effect.
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Fractional quantum Hall states, especially the non-Abelian ones, have been shown

to be very useful building blocks of quantum computers. If high temperature FCI/FTI

physics can be realized experimentally, it will certainly have deep impact in condensed

matter physics, including the efforts on topological quantum computation[146].

Motivated by the recent progresses on FCI/FTI physics, in this paper we try

to address several important issues: what are the many-particle wavefunctions of

FCIs/FTIs? Can there exist more than one FCI/FTI phases with the same filling

fraction? If the answer is positive, can we classify these quantum phases (or ground

state wavefunctions)?

Historically, Laughlin’s wavefunctions of FQH states in a magnetic field[114] have

been shown to be one of the most important theoretical progress in many-particle

physics. It allows people to understand a lot of properties of FQH liquids in a compact

fashion, including the fractionalized quasi-particle excitations[12], topological ground

state degeneracies[70, 218], as well as constructing the low energy effective theories[59,

243, 171]. Here in the case of FCI systems, analytical understanding of the ground

state wavefunctions will help us extract various measurable information in a similar

way.

Recently there was interesting work to construct FCI wavefunctions by proposing a

one-to-one mapping between the lattice problem and the magnetic field problem[163].

We would like to emphasize that the wavefunction problem for FCI is related to that

for the magnetic field case, yet they are very different from each other. This is because

the lattice symmetry of FCI is fundamentally different from the continuum case of 2-D

electron gas. In fact, the recently discovered FCI states preserve all the lattice point
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group symmetry as well as translational symmetry1. Here in this paper, we point out

that as a consequence of the lattice symmetry, there exist many different quantum FCI

phases, all respecting the full lattice symmetry, even at the same filling fraction with

the same quantum Hall conductance. These different FCI phases are distinct in the

bulk in a more subtle way. One hand-waving statement is that the bulk quasi-particle

excitations of these phases carry different lattice quantum numbers. These distinct

FCI phases cannot adiabatically connect with each other without a phase transition

while the lattice symmetry is respected. Similar phenomena of distinct topologically

ordered phases protected by symmetry is known in the context of quantum spin

liquids[225] and other low dimensional topological phases[27].

Now we outline the content of this paper. We start with the spin-polarized FCI at

filling ν = 1
m

(m is an odd number). In section 7.2 the SU(m) parton construction of

the fractional quantum Hall states (or spin-polarized FCI states) is introduced on a

lattice, which is a natural generalization of the continuum case[114, 95]. We argue that

a general the FCI wavefunction could break the SU(m) gauge group down to Zm, and

consequently the low-energy dynamics is described by SU(m) Chern-Simons-Higgs

theory. We explicitly write down the form of the electronic FCI wavefunctions which

will be useful for future variational Monte Carlo study. We construct quasiparticle

excitations of such a FCI state. To demonstrate how lattice symmetry restricts the

structure of the wavefunctions, we introduce the concept of projective symmetry group

(PSG)[225] which serves as the mathematical language to classify different symmetry

1Because the wavefunction constructed in Ref. [163] is based on one-dimensional Wannier func-
tion which explicitly select a special direction of the lattice, the constructed wavefunctions do not
obviously respect the lattice point group symmetry.
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protected FCI phases. Due to the limited length, we won’t discuss explicit examples

of FCI states on specific lattices. Interested readers can find detailed examples in

Ref. [127]. We also propose spin-polarized FCI states with non-Abelian quasiparticles,

which might be realized in nearly flat bands with Chern number C > 1. Such non-

Abelian FCIs might be used to build a universal quantum computer[53, 146].

In section 7.3 we demonstrate that our parton construction can be used to compute

the topological ground state degeneracy, and to find the conformal field theory for

the edge excitations. This is particularly important for the Zm states, which belong

to a new class of FQH wavefunctions.

In section 7.4 we generalize our efforts to construct ground state wavefunctions

of TRI FTI. When the mixing between the up and down spins is weak, it is natural

to generalize our spin polarized results to this case. For filling fraction ν = 2
m

(on

average ν = 1
m

for each spin), we present classes of SU(m)↑ × SU(m)↓ and Z↑
m ×

Z↓
m wavefunctions and discuss their properties including quasi-particle statistics and

ground state degeneracies. We also propose a new parton construction formalism

which allows one to write down generic electron wavefunctions for TRI FTI states in

the absence of spin conservation. We can deform such a generic TRI FTI wavefunction

in the absence of spin conservation into a Sz-conserved TRI FTI wavefunction (where

spin-↑ and spin-↓ decouple) by continuously tuning a parameter.
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7.2 SU(m) parton construction of spin-polarized

Zm fractional Chern insulator states

7.2.1 A brief review of Laughlin’s FQH state from SU(m)

parton construction

Soon after the experimental discovery of fractional quantum Hall (FQH) effects[207],

Laughlin proposed a series of variational wavefunctions[114] which were shown[69]

numerically to be a very good description of FQH states at odd-denominator filling

fraction ν = 1/m. Later this idea of constructing trial wavefunctions was generalized

to other filling fractions[67, 73, 94]. An important lesson we can learn from Laughlin’s

wavefunction is that with a fixed filling fraction (or a fixed number of flux quanta

through the sample), the many-body wavefunction tends to vanish as fast as possible

when two electrons approach each other so that the repulsive Coulomb energy between

electrons could be minimized. As an example, Laughlin’s state at ν = 1/3 is nothing

but the cube of the wavefunction for a filled lowest Landau level of partons with

charge e/3: Φν=1/3({ri}) =
[

Φ′
ν=1({ri})

]3
=

∏

i<j(zi − zj)3 exp[−
∑N

i=1 |zi|2/(4l2B)] in

the disc geometry choosing symmetric gauge, where zi = xi + iyi are complex coor-

dinates, lB =
√

~/|eB| = l′B/
√
3 is the electron magnetic length and l′B is the parton

magnetic length. We can construct this wavefunction by splitting an electron into

three fermionic partons:

c(r) = f1(r)f2(r)f3(r) (7.1)
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and the electron wavefunction is obtained through the following projection

Φe({ri}) = 〈0|
N
∏

i=1

f1(ri)f2(ri)f3(ri)|MF 〉 (7.2)

where |0〉 represents the parton vacuum and |MF 〉 can be any mean-field state of

the three partons f1,2,3. When each of the three partons occupy the lowest Landau

level (LLL) one immediately obtains the Laughlin’s state Φν=1/3({ri}). Naturally

from (7.1) we can see each parton carries U(1) electric charge e0 = e/3 where e

stands for the electron charge. Since each kind of parton occupies a LLL, the electro-

magnetic response of the FQH state Φν=1/3({ri}) =
[

Φ′
ν=1({ri})

]3
is characterized

by Hall conductivity σxy = 3 · (1
3
)2 · e2

h
= 1

3
e2

h
. This reproduces the correct filling

fraction and many-body Chern number. Note that electron operator c(r) in (7.1)

is invariant under any local SU(3) transformation on the three partons (f1, f2, f3)
T .

The mean-field Hamiltonian density describing the Laughlin state is[224]

HMF =
1

2m∗

3
∑

α=1

f †
α(r)

(

− i∇− e0A(r)
)2
fα(r) (7.3)

where m∗ is the effective mass of each parton. This mean-field Hamiltonian preserves

the SU(3) gauge symmetry and partons will also couple to an SU(3) internal gauge

field. Its effective theory is the SU(3)1 Chern-Simons gauge theory, which explains

the 3-fold topological ground state degeneracy on a torus[220]. These f partons are

nothing but charge charge −e/3 quasihole excitations[114] of Laughlin state. Indeed

after projection (7.2) the three species of partons f1,2,3 becomes indistinguishable

thanks to the internal SU(3) symmetry: each f parton creates a charge −e/3 quasi-

hole upon acting on the ground state |MF 〉. It is straightforward to verify that the
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following wavefunction

Φe({ri}|w1,2,3) = (7.4)

〈0|f1(w1)f2(w2)f3(w3)
∏N−1

i=1 f1(ri)f2(ri)f3(ri)|MF 〉

reproduces the Laughlin wavefunction with three quasiholes at w1,2,3 up to a con-

stant factor. Hence these partons are indeed charge ±e/3 anyons obeying fractional

statistics with statistical angle θ1/3 =
π
3
.

7.2.2 Zm FCI state and its quasiparticles from SU(m) parton

construction

Since the three seemingly-different partons f1,2,3 are essentially the same quasihole

excitations with the same quantum numbers, physically it is attempting to include

the tunneling terms f †
αfβ, α 6= β in the mean-field Hamiltonian. By mixing different

partons, these terms will break the internal SU(3) gauge symmetry down to a a

subgroup of SU(3), which is Z3, the center of the SU(3) group, in the most generic

case where f †
αfβ, ∀ α 6= β terms are present. In general the projected Z3 wavefunction

(7.2) is always different from its parent projected SU(3) wavefunction. For a 2-D

electron gas in a magnetic field, however, people usually focus on the LLL within

which the many-body wavefunction is an analytic function (e.g. in the symmetric

gauge on a disc). It is straightforward to show that as long as the mixing terms act

inside the Hilbert space of LLL, the corresponding electron wavefunction (7.2) for

a Z3 state remains the same as that of its parent SU(3) state. This is because the

parton wavefunction describes a state with LLL fully filled. Mixing between different
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partons within the LLL Hilbert space only gives a unitary transformation of basis

and does not modify the parton wavefunction. For a lattice model, it is natural

to consider mixing terms acting between all bands (rather than within the filled

bands), and the corresponding electron wavefunction of a Z3 state will be a different

wavefunction from that of its parent SU(3) state. For a filling fraction ν = 1/m, our

discussion straightforwardly generalizes to the corresponding Zm (the center of the

SU(m) group) state and its parent SU(m) state.

To our knowledge, the Zm parton states of FQHE have not been proposed before.

For this new class of wavefunctions, several natural questions need to be answered.

What are the quasi-particles in the Zm state? What is the low-energy effective theory

of the Zm state? Will it preserves the topological properties, including ground state

degeneracy and edge states? We answer these questions in this paper and find the

topological properties of the Zm states are identical to the SU(m) states. Their dif-

ference lies in the projective symmetry group, which is protected by lattice symmetry.

In general, Zm states and SU(m) states both serve as candidate ground states for the

FCI states of a ν = 1/m filled band with Chern number one.

To begin with, let us consider the quasi-particle excitations in a Zm state. The

physical quasiparticle excitations in a Zm state are constructed by inserting fluxes in

the mean-field ansatz of f †
αfα terms and simultaneously creating vortices (or defects)

in the Higgs condensates 〈f †
αfβ〉, α 6= β. In 2-D, because π1(SU(m)/Zm) = Zm, these

defects are the point-like vortices carrying Zm gauge fluxes. Because the Zm flux can

be considered to be localized in a single plaquette, one can effectively interpret it

as a overall U(1) gauge flux of all the f -partons. Namely when a f -parton winds
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Q1

Q2

Figure 7.1: (color online) A pair of anyonic quasiparticle and its antiparticle in a Zm
state on the honeycomb lattice. The dashed line denotes the string of e i 2πk/m phase
shift connecting the two plaquettes where quasiparticle Q1 and its antiparticle Q2 are
located. On top of the ground state mean-field ansatz, any mean-field bond crossing
the string should pick up a phase shift e i 2πk/m. Here we only demonstrate the phase
shift of nearest-neighbor (NN) mean-field amplitudes by triple arrows in the figure.

around a fundamental vortex, it experiences a 2π/m flux. Due to the Chern numbers

of the filled parton bands, this vortex also binds with a single f -parton gauge charge

and thus carries electric charge e/m. Because this object carries both flux and gauge

charge, the fractional statistical angle θ = π/m results. These are exactly the same

charge and statistics a quasihole carries in the SU(m) state. We conclude that the

topological properties of quasiparticles are the same in both the Zm and its SU(m)

parent state.

Following the above discussions, we can write down the wavefunctions with low-

energy anyonic excitations in a Zm state. At filling fraction ν = 1/m, in order to
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create one quasiparticle Q1 at w1 and its antiparticle Q2 at w2, we need to insert

2πk/m flux in a plaquette Pw1 at position w1 and −2πk/m flux in a plaquette Pw2

at position w2 with k = 1, · · · , m. Q1 carries 2πk/m flux and ek/m charge while

Q2 carries −2πk/m flux and −ek/m charge. Both Q1 and Q2 have statistical angle

θ = k2π/m and their mutual statistical angle is θ′ = −k2π/m. They are realized by

creating e i 2πk/m phase shift for all mean-field amplitudes on the string connecting two

plaquettes Pw1 and Pw2, on top of the mean-field ansatz for the ground state. An

example of such a pair of quasiparticle and its antiparticle in a Zm state on honeycomb

lattice is shown in FIG. 7.1. The corresponding electron wavefunction is obtained by

the projection on this new mean-field ansatz for excited state.

The ground state degeneracy of a Zm FCT state at ν = 1/m on a torus can also be

understood once we know its quasiparticle statistics[218, 153]. Consider the following

tunneling process T1: a pair of quasiparticle (with flux 2π/m and charge e/m) and its

antiparticle (with flux −2π/m and charge −e/m) are created and the quasiparticle is

dragged around the non-contractable loop X1 along x1 direction on the torus before

it is finally annihilated with it anti-particle. This tunneling process will leave a string

of e i 2π/m phase shift (as shown in FIG. 7.1) along this loop X1, therefore has the same

physical effects as adiabatically inserting a 2π/m flux in the non-contractable loop X2

along x2 direction on the torus. Notice that when the quasiparticle-anti-quasiparticle

pair carries flux ±2πk/m and charge ±ke/m the corresponding tunneling process

is realized by T k1 . Similarly we can define a tunneling process T2 by dragging the

fundamental quasiparticle around non-contractible loop X2 once, which is physically

equivalent to inserting 2π/m flux in non-contractible loop X1. In the thermodynamic
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limit, the Hilbert space of degenerate ground states should be expanded by these

tunneling processes[153]. The two tunneling operators satisfy the following “magnetic

algebra”:

T1T2 = T2T1e2π/m (7.5)

This is straightforward to understand from Aharonov-Bohm effect point of view.

Another way to understand it is because the tunneling process T −1
2 T −1

1 T1T2 can de

continuously deformed into two linking loops[218] and corresponds to a phase of

2θ1/m, where θ1/m = π/m is the statistical angle of the fundamental quasiparticle.

All degenerate ground states can be labeled by e.g. eigenvalues of unitary operators

T1 and T m2 (since they commute with each other). In this basis T2 acts like a ladder

operator and changes the eigenvalue of T1 by a phase e i 2π/m. In this way one can see

the ground state degeneracy of a Zm state on torus is m-fold. We can easily generalize

this discussion to a genius-g Riemann surface with g pairs of non-contractible loops

and the corresponding ground state degeneracy is mg-fold. This is consistent with

the ground state degeneracy calculated from the low-energy effective theory as will

be shown in section 7.3 in a formal way.

Because the discussion on low-energy effective theory the Zm state involves more

technical details, we postpone it to Section 7.3, where we compute its ground state

degeneracy and extract the edge conformal field theory. We’ll show that the ground

state degeneracy of a Zm state is the same as that of a SU(m) state: mg-fold on a

genus-g Riemann surface. We’ll also show that the Zm state and SU(m) state share

the same edge conformal field theory.
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7.2.3 Regarding lattice symmetries

In the numerical simulations of FCI phases[191, 149], only the m-fold topologi-

cal degeneracy of ν = 1/m FCI is observed on torus. This indicates that the FCI

wavefunctions respect the full lattice symmetry, since otherwise there should be extra

degeneracies due to lattice symmetry breaking. This motivates us to write down the

fully symmetric FCI wavefunctions.

In the following we outline the general strategy to construct fully symmetric FCI

states on a lattice in the parton approach. Here we focus on spin-polarized FCI states

with filling fraction ν = 1/m through SU(m) parton construction. The electron

operator is given by

c(r) =
m
∏

α=1

fα(r) (7.6)

where r is the coordinate of a lattice site. For simplicity we assume there is only

one orbital per lattice site. As mentioned earlier, this parton construction has a

local SU(m) symmetry since the electron operator c(r) is invariant under any local

transformation fα(r) →
∑

β Gαβ(r)fβ(r) where G(r) ∈ SU(m). A generic parton

men-field ansatz is written as

HMF =
∑

r,r′

∑

αβ

f †
α(r)Mαβ(r|r′)fβ(r′) (7.7)

where M(r|r′) = M †(r′|r) is a m ×m matrix. Under a local SU(m) gauge transfor-

mation {G(r)} it transforms as M(r|r′)→ G(r)M(r|r′)G†(r′). Again once we obtain

a mean-field state |MF 〉 with the right filling number from (7.7), the corresponding

electron wavefunction is obtained through

Φe({ri}) = 〈0|
N
∏

i=1

c(ri)|MF 〉 = 〈0|
N
∏

i=1

m
∏

α=1

fα(ri)|MF 〉, (7.8)
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whose explicit form is a Slater determinant as given later in (7.10).

Notice that not all parton mean-field ansatz correspond to a ν = 1/m FCI state.

Let’s start from a SU(m) mean-field state HMF
α =

∑

α f
†
α(r)T (r|r′)fα(r′) where each

flavor of the parton has the same filling number as the electron. For ν = 1/m FCI

states in topological nearly flat bands, the filling fraction is such that on average there

is one electron (hence one parton with each flavor) per m unit cells. If the mean-field

ansatz (7.7) has explicit lattice translation symmetry, however, the corresponding

state with ν = 1/m filling would most likely be a gapless metallic state2 since only

a fraction (1/m) of the lowest band is filled. How to construct a gapped mean-field

ansatz of FCI with filling fraction 1/m?

The answer lies in the SU(m) gauge structure of the parton construction (7.6).

Briefly speaking, the mean-field state itself can explicitly break lattice symmetries

(such as lattice translation) by inserting fluxes in each plaquette, as long as the

mean-field ansatz is invariant under a symmetry operation followed by an SU(3)

gauge rotation. By inserting e.g. 2π/m flux in each plaquette one can enlarge the unit

cell by m times. Therefore the corresponding mean-field state with filling ν = 1/m

corresponds to a state filling lowest m bands of mean-field ansatz (7.7). Although the

mean-field Hamiltonian (7.7) explicitly breaks lattice symmetry, the corresponding

electron wavefunction (7.8) preserves all the lattice symmetries. If each of the m

2When there are parton mixing terms which breaks the gauge symmetry from SU(m) down to
Zm, one can construct a gapped state with filling ν = 1/m by just filling the lowest parton band,
since there is on average one parton (including all flavors) in each unit cell. However, the Hall

conductance of such a state is σxy = C
m2

e2

h
where C is the Chern number of lowest parton band.

Unless this lowest parton band has Chern number C = m (which is unlikely), this gapped state
at filling ν = 1/m will have a Hall conductance different from σxy = e2/(mh) and is not a good
candidate for the FCI states realized in recent numerical studies.
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lowest bands have a Chern number +1, the mean-field state filling these m bands

would have Chern number +m, and the corresponding Hall conductivity is

σxy = m · ( 1
m
)2 · e

2

h
=

1

m

e2

h
, (7.9)

because each parton carries U(1) electric charge e/m. This gives the correct electro-

magnetic response of a ν = 1/m spin-polarized FCI state. The technique of enlarging

the unit cell bym times without physically breaking any lattice symmetry will be gen-

eralized to the case of time-reversal-invariant FTI state with filling fraction ν = 2/m,

as will be discussed in section 7.4.

Following this strategy, we always require the parton mean-field ansatz of ν = 1/m

FCI state breaks lattice translation symmetry explicitly and enlarges the unit cell by

m times, so that the resultant mean-field state is an insulator. We require the partons

to fill the lowest m bands of the mean-field spectrum and the corresponding electron

state after projection would still be gapped. Now that the number of momentum

points of each band in the (reduced) 1st Brillouin zone equals the electron number
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N , we can see the electron wavefunction (7.8) is nothing but a Slater determinant

Φe({ri})Zm
= det (7.10)
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where φkn
j
(rαi ) represents the eigenvector of mean-field Hamiltonian (7.7). To be

specific, φkn
j
(rαi ) corresponds to the fα parton component in momentum-kj single-

particle eigenvector of the bottom-up n-th band. Here α, n = 1, · · · , m and i, j =

1, · · · , N where N is the total electron number at filling fraction ν = 1/m. Note that

for an SU(m) mean-field ansatz (7.15) in the absence of mixing terms, the lowest m

bands are all degenerate and we have φkn(rα) = φk(r)δn,α. The corresponding electron
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wavefunction (7.10) reduces to the product of m copies of a Slater determinant:

Φe({ri})SU(m) =
{

det
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}m

(7.11)

where φkj
(ri) is the momentum-kj single-particle eigenvector of parton mean-field

Hamiltonian HMF
α = f †

α(r)T (r|r′)fα(r′) with ∀α = 1, · · · , m. This is a lattice ver-

sion of Laughlin’s state in free space[114]. However once we add lattice-symmetry-

preserving parton mixing terms which breaks gauge symmetry from SU(m) to Zm,

the electron wavefunction (7.10) of a Zm FCI state, as well as its projective symme-

try group which will be introduced shortly, will immediately become different from

its parent SU(m) state (7.11). We emphasize again that only when the unit cell is

enlarged by m times, we will have the same number of momentum points kj as the

electron number N . The mean-field amplitudes can be determined by variational

Monte Carlo study of the energetics of electronic wavefunctions (7.10).

Considering flux insertion in order to enlarge the unit cell in mean-field ansatz

(7.7), there is another question: can there be more than one way of inserting fluxes

into each plaquette without breaking physical lattice symmetries? If yes, how to

classify different mean-field ansatz (7.7)? The answer of the 1st question is yes and

to answer the 2nd question, we need to introduce a mathematical structure: projective

symmetry group (PSG)[225] in order to characterize different ways of flux insertion

and corresponding different “universality classes” of symmetric FCI states. In the

following we give a brief introduction to the idea of PSG.
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Note that there is a many-to-one correspondence between parton mean-field states

and physical electron states due to the above projection operation: any two parton

mean-field states related to each other by an SU(m) gauge transformation {G(r)}

correspond to the same electron state. As a result, although the physical electron

state preserves all lattice symmetry, its parton mean-field ansatz may or may not

explicitly preserve these lattice symmetries. More precisely, in a generic case the

parton mean-field ansatz (7.7) should be invariant under a combination of lattice

symmetry operation U and a corresponding gauge transformation {GU(r) ∈ SU(m)}:

M(U(r)|U(r′)) = GU(U(r))M(r|r′)G†
U(U(r

′)) (7.12)

Different universality classes of parton mean-field ansatzs are characterized by dif-

ferent PSGs[225], i.e. different SU(m) gauge transformations {GU} associated with

symmetry operations U :

PSG = {GU(r)U |U ∈ symmetry group} (7.13)

The low-energy gauge fluctuation of a mean-field ansatz is controlled by its invariant

gauge group[225] (IGG)

IGG = {Ge ∈ SU(m)|GeM(r|r′)G†
e
=M(r|r′), ∀ r, r′}

where e represents the identity operator of the (lattice) symmetry group (SG). In

other words, IGG is a subgroup of the internal gauge group (which is SU(m) here)

that keeps the mean-field ansatz (7.7) invariant. Hereafter we would call a parton

mean-field state with e.g. IGG = SU(m) state an SU(m) state. We can see that the

IGG of mean-field ansatz (7.7) always contains the following Zm group as a subgroup:

Zm = {e i 2πa
m · Im×m|a = 1, 2, · · · , m} (7.14)
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where Im×m is the m×m identity matrix. This Zm group is the center of the SU(m)

group. A mean-field ansatz {M(r|r′)} with IGG = Zm is called a Zm state. The low-

energy theory of this Zm state will be described by fermionic partons fα interacting

with Zm gauge fields.

The classification of PSGs with IGG = SU(m) (which we call SU(m) PSGs in

this paper) are easy to carry out. The only gauge invariant quantities of a SU(m)

ansatz is the gauge-invariant flux through each plaquette, which must belong to the

center of the SU(m) gauge group, namely the Zm group in Eq.7.14, because otherwise

the SU(m) gauge group would be broken and IGG cannot be SU(m). Two SU(m)

states have the same PSG if and only if they have the same Zm gauge flux in each

given plaquette. Therefore distinct SU(m) PSGs have different Zm gauge flux pattern

and vise versa.

The classification of PSGs with IGG = Zm (which we call Zm PSGs in this paper)

involves more technical details and we leave this analysis for the honeycomb lattice

model[68] and the checkerboard lattice model[202, 149] in Ref. [127].

7.2.4 Possible non-Abelian states by partially filling a nearly

flat band with Chern number C > 1

It has been shown[216, 220] that in SU(m) parton construction, when each parton

species fills n Landau levels, the effective theory of the corresponding electron state

is the SU(m)n Chern-Simons theory and the system has non-Abelian quasiparticle

excitations when n > 1. Moreover, the non-Abelian quasiholes of this state can be

used as topologically-protected qubits in a universal quantum computer[146] as long
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asm > 2. This motivates us to propose possible realization of non-Abelian FCI states

realized in a partially-filled nearly flat band with Chern number C > 1. When this

band is partially filled with a filling fraction e.g. ν = 1/m, the Hall conductance of

the corresponding FCI state would be σ = C
m
e2

h
. If the lowest m parton bands all have

Chern number C instead of +1, the SU(m) FCI state obtained by filling m lowest

parton bands indeed has Hall conductance σ = m
Ce20
h

= C
m
e2

h
with e0 = e/m. This

SU(m) FCI state can be a promising candidate for ν = 1/m-filled nearly flat band

with C > 1.

Take the C = 2 case as an example. In Ref. [127] using SU(3) parton construction,

we show two examples of SU(3) FCIs, one on honeycomb lattice and the other on

checkerboard lattice, both have 3 lowest parton bands with Chern number +2. These

two SU(3) FCIs with ν = 1/3 and σ = 2
3
e2

h
are non-Abelian FCIs. Their low-energy

effective theory of these SU(3) states is SU(3)2 Chern-Simons theory[220], featured by

6-fold ground state degeneracy on the torus and non-Abelian quasiparticle excitations.

These results indicate that once a nearly flat band with Chern number C > 1 is found,

by partially filling it one may realize non-Abelian FCIs, which have the potential to

build a universal quantum computer[53, 146].

7.3 Effective theory of spin-polarized Zm FCI states:

ground state degeneracy and edge excitations

As mentioned earlier, the partons in our construction not only couples to the

external electromagnetic gauge field, but also couples to an internal gauge field. These
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internal gauge fields “glue” the partons together to form an electron. Since the

parton mean-field state is essentially a Chern insulator of partons with a band gap,

its low-energy physical properties (e.g. its ground state degeneracy on a manifold with

no boundary, such as torus[218, 220]) are completely determined by fluctuations of

internal gauge fields. The topological properties of a SU(m) state has been studied

before[220, 224]. In this section we will analyze the low-energy effective theory of

spin-polarized Zm FCI state (7.7) from SU(m) parton construction. We’ll try to

answer the following questions: what is the ground state degeneracy of the Zm FCI

state? Is it the same as or different from that of a SU(m) FCI state? How to describe

the gapless edge states of a Zm FCI state?

7.3.1 Effective theory of spin-polarized Zm FCI states: when

Chern-Simons encounters Higgs

We start from an SU(m) mean-field state which has been shown[220] to describe

the ν = 1/m Laughlin state in the continuum limit. Its mean-field ansatz is

Mα,β(r|r′) = δα,β T (r|r′) (7.15)

In other words, there is no hopping between partons of different species and the m

species of partons have exactly the same band structure. As shown in (7.11) its

electron wavefunction is a lattice version of Laughlin state[114]. Apparently this

mean-field state doesn’t break the SU(m) gauge symmetry which leaves the electron

operator (7.6) invariant. Since here the partons couple to both U(1) and SU(m)



Chapter 7: Symmetry protected fractional Chern insulators and fractional topological
insulators 144

gauge fields, the Lagrangian writes

LSU(m) = (7.16)

∫

dt
{

∑

α

∑

r f
†
α(r, t)

[

i∂tfα(r, t)−
∑

r′ t(r|r′)fα(r′, t)
]

−∑

α,r,r′ f
†
α(r, t)T (r|r′) ·

e− ie0
∫
r
′

r
~A(x,t)· ~dxP

[

e− i
∫
r
′

r
~a(x,t)· ~dx]fα(r

′, t),

where P means path-ordered integral. Aµ and aµ are U(1) and SU(m) gauge fields

respectively. Strictly speaking they are both defined on the link of a lattice here. To

linear order the above action can be written as

LSU(m) = (7.17)

∫

dt
{

∑

α

∑

r f
†
α(r, t)

[

i∂tfα(r, t)−
∑

r′ T (r|r′)fα(r′, t)
]

−e0
∑

r J
U(1)
µ (r, t)Aµ(r, t)

−
∑

r

(

J
SU(m)
µ

)

α,β
(r, t) aµα,β(r, t)

}

where Aµ(r) stands for electromagnetic U(1) gauge field while aµ(r) represents the

internal SU(m) gauge field. e0 = e/m is the electric charge of each parton. Here

JU(1)(r) and J
SU(m)
µ (r) are conserved U(1) and SU(m) parton currents respectively.

To be precise, J
U(1)
0 =

∑

α f
†
αfα and (J

SU(m)
0 )αβ = f †

αfβ. In the long-wavelength limit

the spatial components of the parton currents in momentum space (with momentum

q) writes:

−−−→
J
U(1)
µ,q =

∑

k
~∇kTk

∑

α f
†
α,k−q/2fα,k+q/2

(

−−−−→
J
SU(m)
µ,q )α,β =

∑

k
~∇kTkf

†
α,k−q/2fβ,k+q/2
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Since the partons form a band insulator, the band gap allows us to safely integrate out

the partons and obtain an effective action L[A, a] for the gauge fields. Let’s assume

all the filled m lowest parton bands have Chern number +1. Upon integrating out

partons {fα, f †
α}, the effective Lagrangian density writes

LSU(m)[A, a] =
me20
4π
ǫµνλAµ∂νAλ (7.18)

+ 1
4π
ǫµνλTr

(

aµ∂νaλ +
i
3
aµaνaλ

)

the first term corresponds to the quantized Hall conductance σxy = me20/h, while

the second term, i.e. a SU(m)1 Chern-Simons term describes the low-energy gauge

fluctuations. As shown in Ref. [127], the Chern-Simons theory of SU(m) gauge field

aµ can be reduced to Chern-Simons theory of U(1) gauge fields aIµ, I = 1, · · · , m−1.

The gauge field configuration is given by (aµ)α,β =
∑m−1

I=1 a
I
µg

I
α,β where gI are m×m

matrices defined in Ref. [127]. In the a0 = 0 gauge, a1 and a2 are conjugate variables

since the Lagrangian density for internal gauge fields aµ writes

LSU(m)1 [a] =
1

4π

m−1
∑

I=1

I(I + 1)
(

aI1∂ta
I
2 − aI2∂taI1

)

According to uncertainty principle, aI1 and aI2 cannot be determined simultaneously

and we choose to fix the configuration of aI2. Aside from these U(1) gauge symme-

tries, there are also discrete symmetries associated with essentially all permutations

between partons (for details see Ref. [127]). Taking all these into account we can ob-

tain the ground state degeneracy as the number of gauge-inequivalent configurations

of {aIµ}. As shown in Ref. [127], the m-fold degenerate ground states correspond to
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the following gauge field configurations:

aI2 = 0, (I = 1, 2, · · · , m− 2);

am−1
2 = 2π

L2

k
m
, k = 1, · · · , m. (7.19)

Physically this means once we insert 2πk/m flux in the hole along x1 direction of

the torus for each parton, the original ground state is transformed into a different

degenerate ground state. This is a “small” gauge transformation for the partons since

they transform as

fα → exp
[

i
∑

i=1,2

x2

m−1
∑

I=1

aI2g
I
αβ

]

fβ (7.20)

Now we add Higgs terms Mα,β(r|r′) which break the original SU(m) gauge sym-

metry down to Zm. Does the corresponding Zm state have the same ground state

degeneracy as an SU(m) state? The answer is positive. In the long-wavelength limit

we introduce the Higgs fields φαβ which carry no electric U(1) charge but carry the

internal gauge charge. As an example, the f †
1(r)M1,m(r|r′)fm(r′) terms in the lattice

model will introduce Higgs field φ1,m(x1, x2) in the long-wavelength limit. The Higgs

field φ1,m carries aI charge +1 for I = 1, · · · , m− 2 and am−1 charge +m. Likewise,

for example, φ2,m carries a1 charge −1, aI charge +1 for I = 2, · · · , m− 2 and am−1

charge +m. In general for a Higgs field φα,β = φ∗
β,α, α < β associated with mixing

term f †
αfβ has aIµ charge QI

α,β where

QI
α,β =

{

0, I ≤ α− 2 or I ≥ β

α− 1, I = α− 1

+1, α ≤ I ≤ β − 2

β, I = β − 1

(7.21)
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In the end one can see that the condensation of Higgs field can be viewed as adding

a potential in the phase space of gauge field configurations to SU(m)1 Chern-Simons

action (7.19). To be specific, once we integrate out partons with the presence of Higgs

fields the effective Lagrangian density for internal gauge fields becomes

Leff [aI , φα,β] = LSU(m)1 [a]

+LHiggs
[

(∂µ − i
∑

I Q
I
α,βa

I
µ)φα,β

]

Note that the above action is invariant under the following “large” gauge transfor-

mations

(aI1, a
I
2)→ (aI1 +

2πp1
L1
, aI2 +

2πp2
L2

),

φα,β → φα,β exp
[

i2π
∑

I Q
I
α,β

(

p1x1
L1

+ p2x2
L2

)

]

where p1,2 are integers so that φα,β is a single-valued function on the torus. Besides

there are other large gauge transformations as listed in Ref. [127]. And all the discrete

symmetries associated with permutations between partons are present, such as P1,2

f1 ←→ f2, a
1
µ → −a1µ, φ1,2 ←→ φ2,1.

Upon integrating out the fluctuations of Higgs fields δφα,β around their mean-field

values φ̄α,β in Leff [aI , φα,β] we have

LZm
[a] = LSU(m)1 [a]− V [aI1, a

I
2]

The exact shape of potential V [aI1, a
I
2] depends on e.g. magnitudes of Higgs fields

φα,β, but it has certain robust features determined by the gauge charges QI
α,β of

Higgs fields φα,β which condense[218]. More precisely, this potential is periodic in
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aµ configuration space, with periodicity 2π/L1 for aI1, I ≤ m − 2 and 2π/L2 for

aI2, I ≤ m−2. It also has periodicity 2π/(mL1) for a
m−1
1 and 2π/(mL2) for a

m−2
2 . The

minima of this potential sits exactly on the configurations shown in (7.19) of the m-

fold degenerate ground states of SU(m)1 Chern-Simons theory. Besides these features

associated with large gauge transformations, the potential V [aI1, a
I
2] are not invariant

under the discrete symmetries associated with parton permutations such as P1,2. This

is essentially because the introduced mixing terms (or Higgs condensation) breaks the

SU(m) gauge symmetry. The action (7.22) actually describes the motion of particles

in a magnetic field[220, 46] and a periodic potential: the I-th particle associated with

aIµ experiences a magnetic field of I(I + 1) flux quanta piercing through the torus.

Due to the periodicity of potential V [aI1, a
I
2], the m-fold ground state degeneracy (as

calculated in Ref. [127]) is still present when the gauge symmetry is broken from

SU(m) down to Zm by introducing mixing terms between different partons (or Higgs

fields).

This can be understood physically: by threading a 2πk/m flux of gauge field

am−1
µ in the hole along x1 direction on the torus, one creates a vortex (or 2π phase

winding) in the φI,m, I = 1, · · · , m − 1 condensates in the non-contractible loop

along the x1 direction. This operation exactly corresponds to the tunneling process

T k2 mentioned in section 7.2 and will cost zero energy in the thermodynamic limit.

Therefore the presence of Higgs fields will not lift the m-fold ground state degeneracy

in the thermodynamic limit.

We’ve shown that the ground state degeneracy of a Zm FCI state is m on a torus.

The above analysis for the torus case can be easily generalized to study the ground
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state degeneracy on a genus-g Riemann surface. There are g pairs of non-contractible

loops {Aa, Ba|a = 1, · · · , g} on a genus-g Riemann surface where each pair is just like

the two non-contractible loops on a torus. Thus one can straightforwardly show that

the ground state degeneracy of a Zm FCI state is mg on a genus-g Riemann surface.

7.3.2 Edge states of spin-polarized Zm FCI states

One of the hallmark of FQH states is the presence of chiral edge modes[214, 222]

localized on the boundary of the sample. The topological order in a FQH state is also

encoded in its edge spectrum[223]. The edge states of an SU(m) FCI state is known

to be described by U(1)m/SU(m) coset theory[220, 224]. How is the edge state in a

Zm FCI different from that of an SU(m) state? In this section we demonstrate that

the edge excitations of spin-polarized Zm FCIs are still described by U(1)m/SU(m)

coset theory and has the same edge counting as Laughlin state. We focus on the

Abelian states with filling fraction ν = 1/m, m being an odd integer.

Edge excitations are collective modes of electrons that propagate on the edge of

the sample. For a 2D electron gas in a magnetic field Bẑ, it can be seen as edge

electrons drift[223] along the direction perpendicular to the in-plane electric field E

with a drift velocity v = cE/B. Once we quantize this drift motion of electrons we

obtain the effective theory of edge states, which is a 1+1-D conformal field theory

with central charge c = 1 (for Abelian FQH liquids). For example the edge state of

a filled Landau level can be represented by a chiral fermion field ψ(z) whose scaling

dimension is hψ = 1/2, where z = x+it and x is the coordinate along the edge. Parton

construction also provides a representation of the chiral edge states in ν = 1/m FCI
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states. In the SU(m) parton construction each parton fills one Landau level, so each

has an edge mode described by a chiral fermion (actually a fermionic chiral parton)

ψi. The question is, not all the excitations generated by these fermionic chiral partons

ψi are real physical excitations. The physical excitations after projection (7.8) must

be invariant under SU(m) gauge transformations, and have to be local with respect

to the electron operator[224]. In the following we will show how to construct the

physical edge excitations in both an SU(m) state and a Zm state.

First note that in our SU(m) construction the partons fill m lowest bands, each

of which have Chern number +1 (in the Abelian case). As a result, there are m

branches of independent chiral edge modes, each described by a free chiral fermion

ψi. Each chiral fermion forms a representation of U(1) Kac-Moody algebra (which is

a conformal field theory) with the following operator product expansion (OPE)[36]

ψ†
i (z)ψi(w) =

1

z − w+ : ∂ψi(w)ψi(w) : +O(z − w) (7.22)

Here : Ô : denotes the normal ordering of operator Ô. Even in the Zm parton mean-

field state, the chiral fermion modes ψi on the edge are related to the partons by a

unitary transformation

ψi =
∑

α

Sαi fα (7.23)

obtained by diagonalizing the mean-field band with boundaries. The electron oper-

ator (7.6) is invariant under any similar transformation Sαi with unit determinant

(detSαi = 1). Therefore we have

Ψe(z) =:

m
∏

α=1

fα(z) :=:

m
∏

i=1

ψi(z) : (7.24)
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which is exactly the same as in an SU(m) FCI state[224].

The physical edge excitations are all invariant under SU(m) gauge transformations

and should be generated by the electron operators[224] Ψe and Ψ†
e. As a result, we

conclude that the edge excitations of a Zm FCI is described by the same conformal

field theory as the SU(m) state. More precisely, the edge excitations are still described

by U(1)m/SU(m) coset theory[61]. The OPE of electron operators can be worked out

easily from (7.22) and (7.24)

Ψ†
e(z)Ψe(0) =

1
zm

+ ρ(0)
zm−1 +O(z2−m), (7.25)

Ψe(z)Ψ
†
e(0) =

1
zm
− ρ(0)

zm−1 +O(z2−m).

where we defined the following SU(m) gauge-invariant parton density operator

ρ̂(z) ≡
m
∑

i=1

: ψ†
i (z)ψi(z) :=

∑

α

f †
α(z)fα(z) (7.26)

The higher-order terms in OPE (7.25) are all descendants of either the electron oper-

ators {Ψe,Ψ
†
e} or the density operator ρ̂. For example the next term in OPE (7.25) is

z2−mÔ2(0) where Ô2 =
∑

i : ∂ψ
†
iψi : + : ρ̂2 :. In other words, the electron operators

and density operators create the whole Hilbert space while higher-order terms from

the OPE don’t bring in any new physical states.

One can verify that the electron operators and density operators form a closed

algebra and the OPEs between them don’t further create new operators:

ρ̂(z)Ψ†
e(0) =

Ψ†
e(0)
z

+O(z),

ρ̂(z)Ψe(0) = −Ψe(0)
z

+O(z),

ρ̂(z)ρ̂(0) = 1
z2

+O(1).
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In the following we show how to construct the edge state with momentum k. All

the edge “phonon” modes in spin-polarized Zm FCI states are generated by density

operator (7.26):

k = 0 : |GS〉,

k = 1 : ρ̂k=1|GS〉,

k = 2 : ρ̂k=1ρ̂k=1|GS〉, ρ̂k=2|GS〉,

k = 3 : ρ̂k=1ρ̂k=1ρ̂k=1|GS〉, ρ̂k=1ρ̂k=2|GS〉, ρ̂k=3|GS〉,

· · · · · · · · ·

where |GS〉 represents the mean-field ground state. The physical electron state are

again obtained by projection (7.8) on mean-field states. We can see such construction

gives us the {1, 1, 2, 3, 5, · · · } counting of edge states with increasing momentum (or

angular momentum) along the edge, the same as in Laughlin’s state.

7.4 Parton construction of time-reversal-invariant

FTI states

7.4.1 SU(m)↑×SU(m)↓ parton construction of TRI FTI states

In our previous construction of Zm FCI states, we focused on spin-polarized FCI

states. Taking into account spin degrees of freedom, nearly flat bands with time-

reversal-invariant (TRI) Z2 index[202] can exist. When a pair of bands carrying Z2

index are partially filled, can a fractionalized topological phase preserving both time

reversal and lattice symmetries be realized? In principle the answer is yes. As a direct
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generalization of spin-polarized SU(m) and Zm FCI states, when the pair of nearly

flat Z2 bands are filled partially with ν = 2/m, by SU(m)↑×SU(m)↓ parton approach

we can construct a TRI fractionalized phase which we term as SU(m)↑×SU(m)↓ and

Z↑
m×Z↓

m FTIs. In a simple way, the SU(m)↑×SU(m)↓ (Z↑
m×Z↓

m) FTI with ν = 2/m

is a direct product of a spin-polarized SU(m) (Zm) FCI state with σxy = e2/(mh)

for spin ↑ and its time-reversal counterpart: a spin-polarized SU(m) (Zm) FCI state

with σxy = −e2/(mh) for spin ↓. In a TRI SU(m)↑ × SU(m)↓ (Z↑
m × Z↓

m) FTI there

are no mixing terms f †
α,↑fβ,↓ between partons with different spins and thus the total

spin is a conserved quantity. As in the case of spin-polarized SU(m) and Zm FCI

states, we still use the technique of enlarging the unit cell by m times, to guarantee

that the ground state with the correct filling fraction is an insulator with a band gap.

As a fully gapped topological phase, this phase is stable at least when the electronic

mixing between spin ↑ and spin ↓ is weak.

The mean-field ansatz of a generic spin-conserved FTI is written as

HMF
0 =

∑

r,r′

∑

σ,σ′ f
†
α,σ(r)M̃α,β(r, σ|r′, σ′)fβ,σ′(r

′),

M̃α,β(r, σ|r′, σ′) =

δσ,σ′
[

Mα,β(r|r′)δσ,↑ +M∗
α,β(r|r′)δσ,↓

]

(7.27)

where σ, σ′ =↑, ↓ are the spin indices. Mα,β(r|r′) can be any mean-field ansatz of

a SU(m) (or Zm) FCI state constructed in section 7.2 and demonstrated in section

??, and the corresponding FTI state is a SU(m)↑× SU(m)↓ (Z↑
m×Z↓

m) FTI. Appar-

ently (7.27) is invariant under time-reversal symmetry while preserving all the lattice

symmetry.

Again the N -electron wavefunction (with N/2 electrons for each spin here in the
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Sz-conserved case) is obtained by projection on mean-field state |MF 〉 = |MF↑〉 ⊗

|MF↓〉

Φe({r↑i }; {r↓j}) = 〈0|
N/2
∏

i=1

c↑(r
↑
i )

N/2
∏

j=1

c↓(r
↓
j )|MF 〉, (7.28)

which is simply a product of two Slater determinants (7.10) for spin up and down

partons. Since in the SU(m)↑×SU(m)↓ (Z↑
m×Z↓

m) FTI the spin-↑ and spin-↓ parts are

essentially decoupled, it is nothing but a direct product of two spin-polarized SU(m)

(Zm) FCI states which are the time-reversal conjugates of each other. Following

our discussion in section 7.3, the ground state degeneracy of this SU(m)↑ × SU(m)↓

(Z↑
m × Z↓

m) FTI is m
2 on a torus and there are quasiparticle excitations (with both

spin) with electric charge ±e/m.

The SU(m)↑×SU(m)↓ (or Z↑
m×Z↓

m) FTI wavefunctions constructed above explic-

itly conserve the both the ↑ and ↓ electrons. However, in a spin-orbit coupled system

where the Sz conservation is not a symmetry, the true ground state wavefunction

must involve mixings between the two spin species. Of course it is possible that this

true ground state is in the same universality class as those spin-conserved FTI states,

because they are gapped stable topological phases. Nevertheless it is still interesting

to explicitly write down a FTI state without spin-conservation.

There is a natural question that needs to be answered in the current formalism:

when spin mixing terms f †
α,↑fβ,↓ are present in the parton mean-field Hamiltonian

Eq.7.27, is the corresponding electronic state Eq.7.28 a TRI FTI without spin con-

servation? The answer is negative. Below we study the properties of this state in

details.
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The mean-field Hamiltonian including spin mixings between partons is

HMF = HMF
0 +

∑

αβ

[

f †
α,↑(r)M̃α,β(r, ↑ |r′, ↓)fβ,↓(r′)

+ h.c.
]

(7.29)

Note that upon mixing partons with different spins, e.g. for a Z↑
m × Z↓

m FTI the

internal gauge symmetry is further broken from Z↑
m × Z↓

m (one Z↑
m for spin-↑ parton

and another independent Z↓
m for spin-↓ parton)

fα,σ(r)→ e i
2πaσ
m fα,σ(r), a↑, a↓ = 1, 2, · · · , m. (7.30)

to a single Zm symmetry (for partons with both spin ↑ and ↓)3:

fα,σ(r)→ e i
2πa
m fα,σ(r), a = 1, 2, · · · , m. (7.31)

In this paper, we define the FTI phase as the phase of matter which is in the

same universality class as the direct product of two FCI states of opposite spins while

preserving the time-reversal symmetry. Following this definition, the Zm state defined

in Eq.7.29 with spin mixings is not a FTI state.

One clear difference between the Zm state Eq.7.29 and the Z↑
m × Z↓

m FTI state

is their quasiparticle statistics. In a Z↑
m × Z↓

m FTI state, the Z↑
m fluxes and the Z↓

m

fluxes bind with parton charges due to the Chern numbers of the parton bands, and

are anyons with statistical angles θ = ± π
m
. But in a Zm state Eq.7.29, the Zm fluxes

do not bind with parton charges, and are bosons. This indicates that the Zm state

3For a SU(m)↑×SU(m)↓ FTI, the internal gauge symmetry is further broken down to an overall
SU(m) by mixing of partons with different spins but the same flavor. The unbroken SU(m) gauge
field does not have a Chern-Simons term. Consequently, this state suffers from the well-known
confinement problem of the dynamical SU(m) gauge field and does not have a stable mean-field
description. We therefore do not discuss this state in this paper.
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Eq.7.29, which is described by a regular Zm lattice gauge dynamics with bosonic flux

excitations, must separate from the Z↑
m × Z↓

m FTI state by a phase transition.

Another observation that we have is that, in the SU(m)↑ × SU(m)↓ parton con-

struction, the Zm state Eq.7.29 cannot preserves both time-reversal symmetry and

lattice translation symmetry simultaneously. Essentially the technique of enlarging

unit cell m times by inserting fluxes fails to generate a translation symmetric wave-

function when partons with opposite spins are mixed. In a TRI Z↑
m × Z↓

m FTI state,

when 2π/m fluxes are inserted in each unit cell for spin ↑ partons, an opposite −2π/m

fluxes are inserted in each unit cell for spin ↓ parton to preserve the time-reversal sym-

metry. After the partons with opposite spins are mixed, the gauge flux pattern of

the partons no longer enjoys well-defined ±2π/m value per plaquette. As a result

physical translation symmetry is broken. This simple argument dictates that, using

SU(m)↑ × SU(m)↓ parton construction, when partons with opposite spins are mixed,

either time reversal symmetry or lattice translation symmetry must be broken to form

a gapped state with filling fraction 2/m (ν = 1/m for each spin on average). In

Ref. [127] we prove this statement by a careful PSG analysis.

The analysis in this subsection seems to suggest that it is difficult to explicitly

construct a FTI wavefunctions breaking the Sz conservation. In fact, this difficulty is

due to the formalism of SU(m)↑ × SU(m)↓ parton construction. In the next subsec-

tion, we propose another parton construction formalism which allows us to explicitly

write down FTI wavefunctions with spin mixings.
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7.4.2 Parton construction of generic TRI FTI states in the

absence of spin conservation

In the following we demonstrate that in a new parton construction formalism,

one can write down the electron wavefunctions for fully symmetric TRI FTI states

breaking the Sz conservation, and with mean-field terms mixing partons with different

spins. We introduce the following parton construction (m being an odd integer and

θ is an arbitrary real number)

c↑(r) = cos θ
∏m

α=1 fα,↑(r) + sin θ
∏m

β=1 gβ,↑(r),

c↓(r) = − sin θ
∏m

α=1 fα,↓(r) + cos θ
∏m

β=1 gβ,↓(r).

(7.32)

where fα,σ and gβ,σ are all fermionic partons each of which carries electric charge e/m.

It’s straightforward to see that the electron constructed in this way is indeed a fermion

with electric charge e. The N -electron wavefunction at filling fraction ν = 2/m (with

N↑ spin-↑ electrons and N↓ = N −N↑ spin-↓ electrons) is obtained by projection

Φe({r↑i }; {r↓j}) = 〈0|
N↑
∏

i=1

cσ(r
↑
i )

N−N↑
∏

j=1

cσ(r
↓
j)|MF 〉 (7.33)

where |MF 〉 is the parton mean-field ground state as will be described later. N↑ can

be any integer between 0 and total electron number N .

The mean-field ansatz can be written as

HMF =
∑m

α,α′=1

∑

σ,σ′=↑,↓
∑

r,r′

(

f †
α,σ(r)Mα,α′(r, σ|r′, σ′)fα′,σ′(r

′)

+g†α,σ(r)M
′
α,α′(r, σ|r′, σ′)gα′,σ′(r

′)
)

(7.34)
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where HamiltonianM ′
α,α′(r, σ|r′, σ′) is the time reversal conjugate ofMα,α′(r, σ|r′, σ′):

M ′
α,α′(r, σ|r′, σ′) = σσ′M∗

α,α′(r,−σ|r′,−σ′) (7.35)

We use spin index σ = ±1 to denote spin ↑, ↓. In the simplest case whenMα,α′(r, σ|r′, σ′) =

δα,α′M(r, σ|r′, σ′), the mean-field ansatz has SU(m) gauge symmetry or in other

words IGG = SU(m). As discussed earlier in section 7.2, in a generic case par-

ton mixing terms f †
α,σfβ,σ′ , α 6= β could exist and the IGG of the parton mean-

field Hamiltonian Mα,α′(r, σ|r′, σ′) could be Zm, which is the center of group SU(m).

Here Mα,α′(r, σ|r′, σ′) can be any mean-field ansatz as a solution of the PSG con-

straints on the lattice, so that the N -electron wavefunction obtained by projection

(7.33) preserves all the lattice symmetries. More precisely, mean-field Hamiltonian

Mα,α′(r, σ|r′, σ′) should be invariant under a symmetry operation U followed by a

SU(m) gauge rotation GU(r, σ) on f -partons. For example the lattice symmetry

group are shown in Ref. [127] for honeycomb lattice and for checkerboard lattice for

spin ↑ / ↓. The constraints for GU(r, σ) will still be those in Ref. [127] in the case

when IGG = Zm. Namely GU(r, ↑) and GU(r, ↓) can be any two solutions of PSG

constraints. The symmetry-allowed mean-field Hamiltonian Mα,α′(r, σ|r′, σ′) can be

obtained in the same way shown in Ref. [127]. It’s easy to check that spin-mixing

terms in mean-field Hamiltonian Mα,α′(r, σ|r′, σ′) is in general allowed by these PSG

constraints.

Meanwhile time reversal symmetry is also preserved since the anti-unitary time

reversal operation T is realized by complex conjugation C combined with the following

operation

fα,σ(r)↔ σgα,−σ(r) (7.36)
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where spin index σ = ±1 denotes spin ↑ / ↓. One can easily check that under

time reversal T the spin-1/2 electron operators indeed transform as cσ(r)→ σc−σ(r).

Apparently the above time reversal operation T leaves the mean-field ansatz (7.34)

invariant. At filling ν = 2/m (1/m filling for each spin on average) we still use the

technique of inserting flux to enlarge the unit cell by m times. Notice that when 2π/m

flux is inserted into each unit cell for f -partons, an opposite −2π/m flux must be

inserted in each unit cell for g-partons to keep the time reversal symmetry. Then we

fill the lowest m bands for both f -partons and g-partons. Each filled band contains

N/2 f -partons (or g-partons) which correspond to a filling fraction of 1/m. It’s

straightforward to see the electron filling fraction of state (7.33) is indeed ν = 2/m.

There can be symmetry-allowed mixing terms between partons with different spins

in ansatz Mα,α′(r, σ|r′, σ′). The mean-field ground state in (7.33) is a direct product

of f -parton state and g-parton state: |MF 〉 = |MF f〉 ⊗ |MF g〉.

Notice there is a real parameter θ ∈ [0, π/4] which can be continuously tuned in

our parton construction (7.32). This parameter controls the many-body entanglement

between spin-↑ and spin-↓ electrons in wavefunction (7.33). It should be considered as

a variational parameter in variational Monte Carlo studies of projected wavefunctions.

When θ = 0 clearly there must be equal number of spin-↑ and spin-↓ electrons: N↑ =

N↓ = N/2 since other components of the many-body wavefunction with N↑ 6= N↓

all vanish in (7.33). In this case the electron wavefunction (7.33) is nothing but

a direct product of spin-↑ wavefunction Φ↑(r
↑
i ) = 〈0|

∏N/2
i=1

∏m
α=1 fα,↑(r

↑
i )|MF f〉 and

spin-↓ wavefunction Φ↓(r
↓
j) = 〈0|

∏N/2
j=1

∏m
α=1 gα,↓(r

↓
j)|MF g〉. This corresponds to the

spin-conserved limit when there is no entanglement between electrons with different
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spins. If the filled lowest m bands of f -partons have a nonzero total Chern number,

there will be chiral edge modes for spin-↑ electrons and its time reversal counterpart

for spin-↓ electrons. When θ is nonzero, many-body entanglement between electrons

with different spins is encoded in electron wavefunction (7.33) as long as there are

spin mixing terms in mean-field Hamiltonian (7.34). And in general the many-body

wavefunction components with an arbitrary number of spin-↑ electrons ∀ 0 ≤ N↑ ≤ N

should be nonzero. In a generic case with θ 6= 0 the many-body wavefunction (7.33)

is very complicated and cannot be written as a Slater determinant. Now one can see

the parton construction (7.32) allows us to write down generic electron wavefunctions

for TRI FTI states in the absence of spin conservation. The spin-conserved TRI FTI

wavefunction (θ = 0) can be deformed into a generic TRI FTI state in the absence

of spin conservation (θ 6= 0) by continuously tuning parameter θ, while keeping the

mean-field Hamiltonian (7.34) unchanged. In the process of tuning θ continuously,

we expect the low-energy effective theory and quasiparticles of such a TRI FTI state

to remain the same.

In the end we comment on the low-energy effective theory of such a TRI FTI state.

In the simplest case when Mα,α′(r, σ|r′, σ′) = δα,α′M(r, σ|r′, σ′), the mean-field ansatz

(7.34) has a SU(m) × SU(m) gauge symmetry or in other words IGG = SU(m)f ×

SU(m)g. Let’s assume the filled lowest band ofM(r, σ|r′, σ′) for {fα,↑/↓|α = 1, · · · , m}

partons has a Chern number k. Then due to time reversal symmetry the filled lowest

band for {gα,↑/↓|α = 1, · · · , m} partons will have a Chern number −k. And its low-
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energy effective theory is a SU(m)k × SU(m)−k Chern-Simons theory:

Leff = k
4π
ǫµνλTr

(

aµ∂νaλ +
i
3
aµaνaλ

)

− k
4π
ǫµνλTr

(

bµ∂νbλ +
i
3
bµbνbλ

)

(7.37)

where aµ is the SU(m) gauge field coupled to f -partons and bµ is the SU(m) gauge

field coupled to g-partons. Such a SU(m)f × SU(m)g TRI FTI state will host non-

Abelian quasiparticles if k > 1.

When k = 1 this is an Abelian TRI FTI state with ground state degeneracy m2

on a torus and anyonic quasiparticles. When parton mixing terms f †
α,σfβ,σ′ , α 6= β

are present, again the IGG is reduced from SU(m)f ×SU(m)g to Zm
f ×Zmg and the

low-energy effective theory is described by Chern-Simons-Higgs theory, i.e. effective

action (7.37) with a periodic potential due to Bose condensation of Higgs fields.

Such an Abelian Zm
f × Zm

g TRI FTI has the same topological properties as an

Abelian SU(m)f × SU(m)g FTI, such as ground state degeneracy and quasiparticle

charge/statistics. In the parton construction (7.32), both SU(m)f × SU(m)g and

Zm
f × Zmg TRI FTI states are possible candidates for a symmetric TRI FTI state

in the absence of spin conservation: which state is realized depends on the IGG of

mean-field amplitudes Mα,α′(r, σ|r′, σ′) and should be determined by energetics of

wavefunctions (7.33) in variational studies.

7.5 Conclusion

To summarize, we show that a large class of Abelian (and non-Abelian) fraction-

alized topological phases can be constructed on a lattice using parton construction.
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These states preserve all the lattice symmetry and are featured by e.g. fractional-

ized excitations and topological ground state degeneracy. In the spin-polarized case

when the time reversal symmetry is broken, we construct two classes of wavefunc-

tions, SU(m) states and Zm states, with filling ν = 1/m. Their low-energy physics

is described by SU(m)1 Chern-Simons theory and SU(m) Chern-Simons-Higgs the-

ory respectively, and they both have m-fold degenerate ground states on a torus.

We explicitly construct the ground state wavefunctions, bulk quasiparticles and edge

excitations on the lattice. We demonstrate our construction by several explicit ex-

amples, including non-Abelian FCIs which may be realized in a nearly flat band with

Chern number C > 1. Furthermore, we show that when time reversal symmetry is

present, classes of fractionalized phases preserving both time reversal symmetry and

lattice symmetries can be constructed. These TRI FTI states are characterized by

SU(m) × SU(m) or Zm × Zm gauge groups. Their electron wavefunctions on the

lattice, which are essentially products of spin-polarized FCI states for spin ↑ and its

time reversal conjugate, are provided. These are stable topological phases even when

Sz conservation is not a symmetry in the electronic system. In order to explicitly con-

struct TRI FTI wavefunctions with entanglement between opposite spins, we propose

a new parton construction formalism. It allows one to write down generic electron

wavefunctions of TRI FTI states, which preserve both time reversal and lattice sym-

metries in the absence of spin conservation. Our work provides important insight for

future numeric study using variational Monte Carlo method.
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