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ABSTRACT

NOVEL ELECTRONIC STATES IN NaxCoO2

MENG GAO

Dissertation Advisor: Dr. Ziqiang Wang

Transition metal oxides occupy an important arena in strongly correlated materials. We

focus here on the triangular lattice sodium cobaltates which display a very rich phase

diagram as a function of Na doping x with many new surprises. We review a spectrum

of recent experiments and argue that strong correlation and Na dopant potential play

essential roles in understanding the unconventional behaviors of the charge, spin, and

orbital degrees of freedom of the Co 3d electrons.

The strong Co intra-atomic Coulomb repulsion renormalizes the crystal field splitting

and the bandwidths of the t2g complex in NaxCoO2, resulting in a single band crossing

the Fermi level at all doping levels x explored by ARPES experiments. On this basis, we

study the electronic states using a minimal one-band Hubbard model with large U on the

triangular lattice. The strong correlation renormalizes the Stoner criterion and stabilizes

the paramagnetic state for x < xc ' 0.67.



The important role played by the off-plane Na dopants is taken into account by includ-

ing the ionic electrostatic potential. In the Na rich part of the phase diagram, the high

density of off-plane Na dopants (or dilute Na vacancies) increases the tendency toward

carrier localization in the Co plane, which competes with in-plane ferromagnetic (FM)

correlations described by a renormalized Stoner theory and leads to an inhomogeneous

FM state, exhibiting nonmagnetic Co3+ patches, AF correlated regions, and FM clusters

with AF domains.

We argue that the newly discovered x=11/13 phase associated with Na vacancy order

can be described by the interplay between the sodium potential and the strong correlation,

which gives rise to the coexistence of FM itinerant carriers and local moments.
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CHAPTER 1

Introduction

Understanding materials containing strongly correlated electrons represents both the

challenge and the vitality of condensed matter physics. It is invigorated by the con-

tinuing discovery of new materials and physical properties that demand new ideas and

approaches for a deeper understanding of the quantum many-body and statistical physics.

The study of electron correlation in transition metal oxides occupies an important area

in condensed matter and materials physics. A few recent examples include the high-Tc

cuprates, the CMR manganites, and the unconventional pairing state in the ruthenates.

We focus on the physics of electron correlation in sodium doped cobaltates, NaxCoO2.

The sodium cobaltates provide a unique low-spin, triangular lattice fermion system with

strong electronic correlation and geometrical frustration in the charge, spin, and orbital

sectors.

The cobaltates had been studied primarily for their high thermal electric performance

[1, 2], until early 2003 when experimentalists at NIMS announced the discovery of a new

superconductor, NaxCoO2·yH2O, shown in Fig. 1.1, with a Tc of about 5 K [3]. It is the

first layered superconductor to replace copper in the copper with cobalt. Since then, it has

received growing, widespread interests both theoretically and experimentally. A broad

spectrum of experiments such as NMR, µSR, ARPES, electric and thermal transport,

optical absorption, and neutron diffraction have been performed, yielding a rich phase

diagram and many unexpected and exotic behaviors. A detailed phase diagram is plotted
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Figure 1.1. Structural views of Na0.7CoO2 (left) and Na0.35CoO2· 1.3H2O
(right) [3], where Na and H2O sites are partially occupied.

by Foo et al across a wide doping range to explore the connection between different

electronic states, shown in Fig. 1.2. At x∼ 2

3
, where NaxCoO2 exhibits an unusually large

thermopower [1], it displays a surprising Curie-Weiss magnetic profile [4]. At x = 0.5,

which is not a natural commensurate filling on a triangular lattice, an unexpected charge

ordered insulating phase emerges. For
1

3
< x <

1

4
, when it is intercalated with water,

NaxCoO2, superconductivity has been found with Tc close to 5K [3, 5, 6, 7].

Sodium cobaltates, NaxCoO2, are electron doped transition metal oxides with a lay-

ered, hexagonal lattice structure. The layered structure has already been shown in Fig. 1.1

by Takada et al, before and after water intercalation. Before the oxidation process,
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Figure 1.2. Phase diagram of sodium doped cobaltates NaxCoO2 [8]
.

Na0.7CoO2 has a hexagonal layered structure consisting of the two-dimensional CoO2

layers and alternating charge-balancing Na+ ions. A remarkable increase in c axis is

observed after the oxidation process . a slightly decreases from 2.8292 A in the parent

compound to 2.8230 A, probably because Co3+ ions are partially oxidized to smaller Co4+.

Meanwhile, c increases remarkably from 10.9628 A in the parent compound to 19.6207

A after the oxidation process. An amplification of CoO2 layer is shown in Fig. 1.3. It

consists of octahedra as in Fig. 1.3(a) with cobalt atoms at the center surrounded by six

neighboring oxygen atoms. The CoO6 octahedra share edges with the nearest octahedra

within the same CoO2 layer, and all the oxygens are not on the Co layer. If one views



4

a) b)

Figure 1.3. a)CoO6 octahedron, red spheres represent oxygen; the center
blue is Co; the yellow spheres above and below the octahedron are Na ions.
The octahedron is largely tilted. b) Top-down views of a single CoO2 layer
found in the new cobalt oxide superconductor and related sodium cobalt
oxide bronzes [9]. In this hexagonal lattice, cobalt atoms and oxygen atoms
are represented by blue and red colors, respectively. Any antiferromagnetic
ordering is frustrated by the triangular arrangement of the cobalt atoms,
which does not allow for a single minimum energy configuration of opposing
spins.
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the CoO2 layer along c axis, the projection on the cobalt layer is shown in Fig. 1.3. From

band calcualtion, there are Co 3f bands and O 2p bands. The Co d-O p hybridization is

weak [10], since the Cod bands are cleanly separated from O2p bands.

Furthermore, the atomic orbitals are presented in Fig. 1.4(a). Without any extra field,

cobalt atoms with atomic number 27 have 5 degenerate 3d orbitals. Each Co is located

at the center of an octahedron. The CoO6 octahedron is largely tilted. First, the oxygen

octahedral field splits the 3d orbitals into eg and t2g complex. Then because of the tilting

of the octahedron, it generates a trigonal field, which further splits the t2g complex into 2

degenerate e
′
g bands and 1 lower a1g level. In our study, the electron fillings are only up

to e
′
g and the eg bands are well separated from t2g complex, so we will only focus on the

t2g complex.

Electronically, Co has partially filled 3d orbitals. Co4+ is in the 3d5 configuration, with

5 electrons occupying the three lower t2g orbitals similar to the ruthenates (Sr2RuO4).

The low-spin state of Co4+ is S = 1/2. Adding sodium corresponds to electron doping.

With a sodium content x, the average Co valence is Co(4−x)+, evolving from an open

shell Co4+ with S = 1/2 at x = 0 to a closed shell Co3+ with a low-spin state S = 0

at x = 1, as shown in Fig. 1.3. Thus, the cobaltates provide an almost ideal system of

spin-1/2 triangular lattice fermions for studying the physics of correlation and geometrical

frustration in the charge, spin, and orbital sectors.

This dissertation is organized as follows. In Chapter 2, we propose to investigate how

strong correlations not included in LDA promote inter- orbital carrier transfer, leading to

an orbital polarized state with the FS topology and band narrowing observed by ARPES.
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Figure 1.4. a)the degenerate 3d orbitals are split into degenrate eg bands
and t2g complex under the octahedral field, and t2g complex are further split
into e

′
g bands and a1g band under trigonal field by the octahedral tilting.

The 2 octahedrons in the plot are schematic plots of CoO6 and the tilting
of it. b)Atomic occupation scheme for the Co ions in cobaltates. The eg

bands are clearly separated from t2g with an energy difference about 2.5 eV
[10]. On the left, when x=0, lower a1g band and one e

′
g band are fully filled

with the other e
′
g band half filled. Co atoms form Co4+ ion and the low

spin state is S=1/2 due to open shell occupation. On the right hand side,
it shows the filling scheme when x=1. All 3 bands in the t2g complex are
fully filled, resulting a close shell Co3+ and the low spin state S=0.
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This is an important and necessary step toward understanding the origin of superconduc-

tivity in this material. We adopt the “standard model” of transition metals and consider

a three-band Hubbard model for the t2g complex. We carried out a LDA+U analysis,

which amounts to an orbital Hartree-Fock (HF) approximation, and elucidated the dy-

namics of orbital carrier transfer. The LDA+U analysis shows that the “sinking” of the

six FS pockets is the physics of large U/JH . However, the theory itself becomes unreliable

in this regime. To correctly capture the basic strong-coupling physics, we considered the

limit U→ ∞. We extended the Gutzwiller approximtion to the projected wavefunctions

to the multi-orbital case. The most important feature of the strong-coupling approach

is that there is no unphysical self-energy cost that scales with U. The band center shifts

according to the average Gutzwiller projected kinetic energy in a specific band. The com-

bined effect of orbital dependent Gutzwiller band-narrowing and the band center shifts

causes holes to move out of the e
′
g band into the a1g band. We obtained both band nar-

rowing and the disappearance of the FS pockets for a wide range of doping, which are

consistent with the ARPES experiments.

The FS topology measured by ARPES and calculated using our strong-coupling theory

described in the last section suggests that the orbital degrees of freedom are confined by

strong correlation. In Chapter 3, we propose that a single, strongly correlated a1g t-U-V

model as a minimal model for the low energy physics. Using this model, we show that

the same strong correlation is also required to give a proper description of the magnetism

in the system. In previous studies, LDSA+U which is equivalent to the HF approach

shows that the paramagnetic state is always unstable and the system stays ferromagnetic

state throughout the entire doping range [11]. Meanwhile experiments observe single
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spin degenerate FS for x<0.72 [12] and that FM order emerges only when x is above

0.75. The FM instability in such a weak-coupling theory is of the Stoner-type, i.e. due

to the large density of states combined with the unphysical self-energy corrections that

scales with the interaction strength U. Here we address the stability of the paramagnetic

state before the emergence of FM. Our basic idea is that the Stoner criteria is strongly

renormalized and weakened by correlation effects. In the strong-coupling approach, the

interaction strength U that enters the Stoner susceptibility is replaced by the difference

in the spin-dependent chemical potential (fugacity) that scales with the average kinetic

energy in each spin sector. Our results obtained for the single a1g band t-U-V model

in the unrestricted Gutzwiller approximation show that strong correlation makes the

paramagnetic state stable against FM order for x<xc=0.67.

A further exploration for the magnetic properties in the sodium rich region provides a

theoretical description of the experimental observations [13, 14, 15] in Chapter 4. At x =

0.82, we estimated that the ordered moment detected by neutron scattering [13] is about

0.13 µB. The physical picture is that the high density of Na atoms enhances the dopant

potential which causes a fraction of the doped electrons to localize and form nonmagnetic

Co3+. The same argument implies that a fraction of holes will be localized and form

S=1/2 Co4+ near the Na vacancy. Indeed this picture is consistent with 59Co and 23Na

NMR measurements that find distinct Co and Na sites indicative of Co4+/Co3+ charge

disproportionation in the Na-rich samples [15]. In order to allow inhomogeneous solutions,

we propose to develop and advance a spatially unrestricted Gutzwiller approximation

(SUGA) in the variational space spanned by spatial and spin dependent renormalization

factors. The key to understand this problem is to realize that once the local density is
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allowed to be nonuniform, there are an infinite number of unprojected Slater determinant

states, each corresponding to a choice of the local fugacity. We found that it is possible

to choose the fugacity such that the projection is performed along the path of conserving

local densities.

A randomly distributed sodium ion potential has been taken into account. At x=0.8

and x=0.97, the inhomogeneous charge and spin distributions are presented. Due to the

large electrostatic potential fluctuation, it has been presented the coexistence of localized

and itinerant electronic states with inhomogeneous FM order, exhibiting nonmagnetic

Co3+ patches, AF correlated local regions, and FM clusters with AF domain walls. For x

close to one, we study the cobaltate from the point of view of a hole-doped band-insulator

Na1−δCoO2. We take into account the superlattice potential of the Na and consider the

dilute Na vacancies that dope and tend to trap the doped holes to form local moments.

Lastly in Chapter 5, a special doping x = 0.84 in the sodium rich regime is studied

based on the single one band model with a1g character on a triangular lattice. A unique

sodium ordering of
√

13 × √13 has been found, which imposes the same superstructure

on Co accordingly [16]. A state of one local moment and one itinerant carrier has been

proposed. The experiment of Shubnikov-de Haas effect also shows much smaller than

expected FS pockets [17] at x = 0.84, consistent with the proposition of the coexistence

of local and itinerant holes. We start with the standpoint of strong correlation plus sodium

dopant potential and show the interplay of strong electronic correlation and
√

13 ×√13

sodium ordering leads to the semi metal state, where there are 2 holes per supercell, one

localized and one itinerant.
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Compared to the cuprates, the cobaltate phase diagram covers a much wider doping

range from the intermediate x∼0.3 to high Na concentration x∼ 0.9. The diverse electronic

properties involving charge, spin, and orbital degrees of freedom as well as the dopant

potential as a function of varying sodium concentration x make the cobaltates a very

useful and fascinating class of materials to study the physics of electronic correlation.
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CHAPTER 2

Electron Correlation and Fermi Surface Topology of NaxCoO2

The electronic structure of NaxCoO2 revealed by recent photoemission experiments

shows important deviations from band theory predictions. The six small Fermi surface

pockets predicted by LDA calculations have not been observed as the associated e′g band

fails to cross the Fermi level for a wide range of sodium doping concentration x. In addi-

tion, significant bandwidth renormalizations of the t2g complex have been observed. We

show that these discrepancies are due to strong electronic correlations by studying the

multi-orbital Hubbard model in the Hartree-Fock and strong-coupling Gutzwiller approx-

imations. The quasiparticle dispersion and the Fermi surface topology obtained in the

presence of strong local Coulomb repulsion are in good agreement with experiments.

2.1. Theoretical calculation of band structure

Density functional theory (DFT) is a very popular approach used for electronic struc-

ture calculation in physics. It is also an ab initio method which is based entirely on theory

from first principles. DFT introduces a computationally low cost way to solving problems

in many body systems, comparing to conventional many-electron wave-function. Mean-

while DFT maintains a satisfactory accuracy when comparing to experiments results.

This significant contribution is that it replace the wave-function Ψ of a N-electron sys-

tem, which has a dimension of 3N variables, with a electronic density as a function of −→r
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with only 3 variables.

(2.1) n(−→r ) = N

∫
d3r2

∫
d3r3 · · ·

∫
d3rNΨ∗(−→r ,−→r2 , · · · ,−→rN)Ψ(−→r ,−→r2 , · · · ,−→rN)

This moves E(Ψ) to the energy functional

(2.2) E(n) = T (n) + U(n) +

∫
V (−→r )n(−→r )d3r

This significantly reduces the computational effort needed to calculate and understand the

electronic properties of the system. By minimizing the energy functional E(n), the ground

state energy E0 could be obtained. T is the kinetic energy. V is an external potential. U

is the electron-electron interaction energy for the N-electron system. The functional T (n)

and U(n) are called universal functional, while V (n) is called non-universal functional, as

it depends on the system under study. However, one of the main problems of the DFT

method is that the exact form of the universal energy density functional is unknown.

What we only know is that there exist such a functional in principle. In other words, if

we write an effective single-particle potential in a form

(2.3) Vs(
−→r ) = V (−→r ) +

∫
e2ns(

−→
r
′
)

|−→r −−→r ′|d
3r
′
+ VXC [nx(

−→r )]

(2.4) ns(
−→r ) ≡ n(−→r )

if Vs could be written as

(2.5) Vs = V + U + (T − Ts)



15

where Ts denotes the non-interacting kinetic energy. VXC is called the exchange-correlation

potential and includes all the many-particle interactions.

Since there is no exact expression for the exchange-correlation potential, there are a

group of approaches approximate it. This group includes local density approximation

(LDA), generalized gradient approximation (GGA), Green’s function + screened interac-

tion potential, LDA + U (local density approximation of Hubbard U), LSDA calculation

(extends the LDA calculation to include electron spins), etc.

Local-density approximation (LDA) was first proposed by Kohn and Sham [1] in

1965 to approximate the exchange correlation energy potential in density functional the-

ory (DFT). LDA methods are exact for slowly varying density system and lead to a

self-consistent solution similar to Hartree-Fock equations. Kohn-Sham orbital equations

defines the LDA and are written as follows,

(2.6) [−1

2
52 +ν(r) +

∫
ρ(r′)
|r − r′|dr′ + υLDA

xc (r)]ψi = εiψi

The υLDA
xc is the exchange and correlation potential under the local-density approximation.

A LDA calculation of the paramagnetic band structure of NaCo2O4 has been per-

formed by Singh [2] in 2000. It was the first LDA calculation on cobaltates. From

Fig. 2.1 (b), the t2g manifold has been shown and enlargement of a1g is also displayed.

Fig. 2.1(a) shows the paramagnetic band structure along high symmetry directions

Γ, K,M and the corresponding A,L,H points in the kz = 0.5 plane. The O2p extend

from approximately -7 eV to -2 eV, relative to the Fermi energy, EF . Clearly, the O2p

is separated from the transition metal d bands lying above, so the hybridization between

Co 3d and O2p is very weak. The Co 3d consists of 5 degenerate orbitals and are crystal
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a)

 b)

c)

Figure 2.1. LDA prediction of the electronic structure of NaCo2O4 in para-
magnetic state. a)the electronic structure of NaCo2O4, the horizontal dot-
ted line denotes Fermi energy EF . b)the enlargement around Ef shows the
t2g manifold. c)LDA Fermi surfaces of NaCo2O4 in the k = 0 (on the left)
and kz = 0.5 (on the right) planes.
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field split in to a lower lying t2g and an upper lying eg bands in the CoO6 octahedral

environment, which are separated by approximately 2.5 eV. From Fig. 2.1(a), it is shown

the eg band is well separated from t2g due to the narrow band width, and is above EF .

The t2g width is 1.6 eV and the eg width is 1.2 eV.

In this case, it seems that the t2g manifold will be exclusively responsible for the

low energy properties. The trends for other octahedrally coordinated 3d transition metal

compounds would suggest an effective on-site Hubbard U of 5 ∼ 8 eV. As noted, this

manifold of t2g states is quite narrow, and in particular it is in the regime W ¿ U with

any plausible U. The t2g manifold around EF is enlarged in Fig. 2.1(b), which is further

split in the rhombohedral crystal field into one a1g and two e
′
g bands. The amount of

splitting is sensitive to the rhombohedral distortion of the O octahedra. The a1g band

tops at Γ point and has less electron occupation than e
′
g. It has a larger bandwidth but

a lower orbital energy than e
′
g. One of the e

′
g band which lying above the other along

Γ − K direction is defined as e
′
g1. The other e

′
g band is defined as e

′
g2. Based on LDA

calculation, the band structure is anisotropic. There is more band crossing along the

Γ−K direction than Γ−M direction. Along the Γ−K direction, the a1g band hybridizes

with the e
′
g2 band, but not with the e

′
g1 band. Along the A-H direction in the kz = 0.5

plane, a1g and e
′
g1 hybridize and open up a gap. In NaCo2O4 the states at the top of

the t2g manifold where EF sits have dominant a1g character. From Fig. 2.1 in particular,

the large cylindrical hole Fermi surfaces around the Γ − A direction have dominant a1g

character, while the small hole-like sections centred about 2/3 of the way out on the Γ−K

and A−H directions have mixed a1g and e
′
g character.
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Johannes et al [3] has shown the DOS calculation and Fermi surface at hydrated

Na0.3CoO2, in Fig. 2.2. From the DOS in Fig. 2.2(a), both a1g and e
′
g bands cross the

Fermi level, corresponding to the center big pocket and the 6 surrounding small pockets

in Fig. 2.2(b), respectively. The e
′
g pockets contribute much more to the DOS at the

Fermi level than the a1g pocket, although the latter one carries 2/3 of all holes. This

one-electron susceptibility calculation of hydrated Na1/3CoO2 also finds that the small

pockets are strongly nested [3], shown in Fig. 2.2(b). This nesting involves 70% of all

electrons at Fermi level and closely commensurates with a 2a × 2a superstructure. This

nesting creates a tendency to charge density waves and generates strong spin fluctuations,

which can be important for superconductivity.

Meanwhile, K.-W. Lee et al [4] also calculated the band structure and corresponding

DOS based on LDA. Their observation is consistent with Johannes’ result [3]. From

NaCoO2, the doped holes first go into a1g band. Based on a rigid band structure obtained

at x = 1/3 in Fig. 2.3, holes enter only a1g states unitl x ≈ 0.6, whereupon an e
′
g Fermi

surface begins to form, whose Fermi surface consists of one center a1g pocket and six e
′
g

pockets. The a1g character is strong at the bottom and the top of the t2g complex. The

DOS of a1g is higher than that of the e
′
g because of the particular structure and to a much

larger effective band width, although its centroid is somewhat lower. Nearly all of the e
′
g

states lie within a 1.0 eV region and a1g extends over 1.5 eV. The upward dispersion of

the a1g band around Γ is affected by interlayer coupling, which can depress the band at

k = 0.
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a) b)

Figure 2.2. a) The density of states of Na0.3CoO2 · yH2O and of the two
bands crossing the Fermi level. The a1g band, which carries 2/3 of all holes,
yields only about 1/3 of DOS(EF ). b) Fermi surface of Na0.3CoO2 · yH2O
with three main nesting types. Q1 in a solid line is the perfect nesting, Q2

in a narrow line and Q3 in a wide dashed line are shown as imperfect nesting.

2.2. Experimental results of the band structure

Angle-resolved photoemission spectroscopy (ARPES) is a powerful experiment tech-

nique to study the electronic structure of a material. Photoelectron spectroscopy is a

general term which refers to all techniques based on the photoelectric effect originally

observed by Hertz(1887). ARPES is the only truly momentum-resolved probe and it is

critical in the study of low dimensional and strongly anisotropic systems. This technique

can be used to measure 3 essential attributes of the electrons when studying electrons in
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Figure 2.3. Band structure (in the virtual crystal approximation) along
high symmetry lines (left panel) and the aligned density of states (right
panel) for the x=1/3 cobaltate in the local density approximation. The a1g

symmetry band is emphasized with circles proportional to the amount of
a1g character. The a1g density of states is indicated by the darker line.

a solid: energy, momentum and spin. ARPES has been playing a very important role

in the study of high-Tc superconductors. It is also a main probe in the study of the

electronic structure of the sodium doped cobaltates. In this section, the ARPES results

on the band structure of NaxCoO2 will be shown and later it will be compared to the

theoretical results discussed in the previous section.

When an incident photon with sufficient energy is incident on a solid, the photoe-

mission process occurs to emit an electron. By the energy conservation law, the kinetic
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energy Ek of the emitted electron is given by

(2.7) Ek = ~ν − φ− |Eb|

~ν is the energy of the incident photon, φ is the work function of the solid, and Eb is the

binding energy of the electron inside the solid.

By measuring momentum and kinetic energy of the electrons photoemitted from a

sample illuminated with radiation of energy larger than the material work function, it

is possible to gain information on both energy and the momentum of the electronic ex-

citations inside the solid. By collecting these photoelectrons using an electron energy

analyzer of a finite acceptance angle, the kinetic energy Ek of photoelectrons can be mea-

sured, along a given emission direction. In this case, the momentum of the photoelectrons

is also determined. This momentum can be divided into parallel and perpendicular com-

ponents regarding to the sample surface, K‖ = Kx +Ky and K⊥ = Kz, respectively. They

are expressed in terms of the polar (θ) and azimuthal (ϕ) emission angles.

Kx =
1

~
√

2mEksinθcosϕ(2.8)

Ky =
1

~
√

2mEksinθsinϕ(2.9)

Kz =
1

~
√

2mEkcosθ

Since the energy and momentum of these final states of outgoing electrons are known,

the binding energy of their initial states can be calculated from (2.7). For the momentum

of the initial state electrons, the momentum of the photons can be ignored, since it is very

small due to the photon energy used in ARPES (hυ < 100eV). When the system under
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study is periodic, k‖ = k‖ + G‖ due to the translational symmetry in the x-y plane. G‖ is

the reciprocal lattice vector. The symmetry is broken along z-axis.

Based on the discussion above, the intensity measured in an ARPES experiment on a

2D single band system can be written as,

(2.10) I(
−→
k , ω) = I0(

−→
k , υ,

−→
A )f(ω)A(

−→
k , ω)

−→
k =

−→
k ‖ is the in-plane electron momentum. ω is the electron binding energy with re-

spect to the Fermi energy. I0(
−→
k , υ,

−→
A ) depends on the electron momentum and the energy

and polarization of the incident photon. f(ω) is the Fermi function f(ω) = 1/(eω/kBT +1).

A(
−→
k , ω) is the one-particle spectral function. A(

−→
k , ω) = −(1/π)ImG(

−→
k , ω). G(

−→
k , ω)

is the Green’s function describing the propagation of a electron in a many-body system.

Thus ARPES can also provide information of many-body interaction in solids.

In principle, the momentum of the electrons can also be obtained as different momen-

tum electrons will escape at different angles from the surface of a material. However,

since the electrons are being projected through the surface, the momentum perpendicular

to the surface is not conserved. Therefore ARPES is especially attractive in application

to quasi-2D materials, where the principle momentum directions of interest are parallel

to the surface. In this case direct and complete experimental determination of the band

structure becomes possible.

Using ARPES technique, Yang et al [5] has pointed out that while the measured

Fermi surface is consistent with the large Fermi surface enclosing the Γ point from the

band theory, the predicted small Fermi surface pockets about 2/3 way out on in the Γ−K

point are missing. Also, comparing to the LDA band theory, the observed Fermi velocity
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Figure 2.4. a) Measured FS crossing compared to calculated FS in kz = 0
(black solid lines) and kz = 0.5 (red dashed lines) planes. The blue hexagon
is the 2D BZ. b) Extracted band positions (red dots) along Γ −M and a
tight binding fit with t=-44 meV. c) Extracted band positions along Γ−K
(red dots) and two tight binding fits with t=-12 meV(solid line) and t=-26
meV.

near EF band is renormalized and anisotropic along two principle axes (Γ −M, Γ −K).

The Fermi velocity is reduced by a factor of 3 long Γ−M , and 5-10 along Γ−K, shown

in Fig. 2.4.

In Yang et al ’s further study, they investigated a wide range of Na concentration

from x = 0.3 to x = 0.72. In all these metallic samples at different x, only a single

hole-like Fermi surface centred around Γ is observed. The single pocket found in the
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study also obeys the Luttinger theorem, in which the area of pockets changes with x,

shown in Fig. 2.5. They also observed a dispersion that lies below and never crosses the

Fermi level, shown by the black triangular markers in Fig. 2.5(f). In addition, the top

of this dispersion below EF shown in Fig. 2.5(g) is essentially temperature independent.

This feature rules out the possibility that the e
′
g1 band is gapped and what is observed

in ARPES is just the leading-edge associated with the gap opening. Thus, they argued

that the small FS pockets near the K point predicted by the LDA calculations are found

to sink below EF with a distance to the Fermi sea almost independent of doping and

temperature.

Consistent with Yang’s observation, Hasan et al also investigated on Na0.7CoO2 and

showed that first, only a hole-type Fermi surface is present, Fig. 2.6(a,b). Secondly, the

quasiparticle band is highly renormalized with a small Fermi velocity. This is reflected

in Fig. 2.6(c). The band is extrapolated to the zone boundary to get a measure for

bandwidth. The value of the bandwidth is between 70 and 100 meV. Lastly, the resonant

scattering of valence excitations indicates a large Hubbard U ∼5 eV, which supports the

strongly correlated nature of the system.

In conclusion, in ARPES experiments, the intensities of a1g and e
′
g bands have different

dependence on the photon energy. The character of each band can be identified by

studying its photon energy dependence in the ARPES intensity. One can obtain the

complete band dispersions of t2g complex in NaxCoO2 by repeating the measurement at

many photon energy levels. One detailed band structure evolution is shown by Yang et al

[6] and the bandwidth is renormalized approximately by a factor of 2. The outstanding

discrepancies between LDA prediction and ARPES observations are that, first, the e
′
g
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Figure 2.5. FS evolution in NaxCoO2. a)-c) Fermi surface intensity con-
tours at x = 0.3, 0.48, and 0.72 in the 1st Brillouin zone. d) Overlap of
the FS locations at different doping levels. e) Effective Na concentration x′

derived from FS area vs Na concentration x. The diagonal line is from the
Luttinger theorem.

FS pockets predicted by LDA along Γ − K direction are never observed by ARPES. In

ARPES, the e
′
g1 band approaches but never reaches EF . The absence of e

′
g pockets is also

demonstrated in the hydrated superconducting sample [7]. Secondly, the bandwidth of

the t2g complex is much smaller in ARPES measurement than what is predicted by LDA

calculation. Also, the narrow manifold of t2g states shows NaxCoO2 is in the strongly

correlated regime, W ¿ U , for any plausible U. U is predicted to be 5∼8 eV [8] and
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(c)

Figure 2.6. a)nk plot generated by integrating within 75 meV of Fermi
level. A hole pocket is centred around the Γ point. b) Comparison with
LDA calculation on NaCo2O4. Red dots indicate the location of measured
Fermi crossing in Na0.7CoO2. c)E vs k plots based on the extracted peak
positions in Γ−M (left) and Γ−K(right) directions.

measured to be around 5 eV [9]. All the properties obtained above suggest that the

strong electronic correlation play an important role in NaxCoO2.

2.3. Electron correlation and Fermi surface topology

The cobaltates (NaxCoO2) are doped 3d transition metal oxides in which the Co atoms

form a layered hexagonal lattice structure. In contrast to the high-Tc cuprates, where the

Cu2+ has a 3d9 configuration and occupies the highest single eg (dx2−y2) orbital near the
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Fermi level, the cobaltates are multi-orbital systems where the Co4+ is in the 3d5 config-

uration, occupying the three lower t2g orbitals, similar to the ruthenates (Sr2RuO4). The

unexpected discovery [10] of a superconducting phase of yet unknown origin in hydrated

NaxCoO2 around x ∼ 0.3 has generated renewed interests in this material. However,

such basic issues as the low energy electronic structure and Fermi surface topology in the

cobaltates have not been well understood. Band structure (LDA) calculations [11] find

that the trigonal symmetry of the Co site in the triangular lattice splits the t2g complex

into an a1g and two degenerate e′g states at the zone center (Γ point). The LDA pre-

dicts a large Fermi surface (FS) associated with the a1g band enclosing the Γ point and,

interestingly, six small FS pockets of mostly e′g character near the K points [2, 4].

However, recent angle-resolved photoelectron spectroscopy (ARPES) measurements

on the cobaltates revealed, remarkably, only a single hole-like FS centered around the

Γ point for a wide range of Na concentration x [5, 9, 12]. The area enclosed by the

FS exhausts the Luttinger volume, which is consistent with the observation that the

dispersion of the e′g bands associated with the LDA FS pockets lies below and never

crosses the Fermi level [5]. The absence of the FS pockets is unexpected and puts serious

constraints on several proposed theories of non-phonon mediated superconductivity as well

as magnetic properties based on the nesting conditions of the Fermi pockets [3, 13, 14].

Furthermore, the measured quasiparticle bandwidths are significantly narrower than the

LDA predictions [5]. These fundamental discrepancies between ARPES and LDA suggest

that the effects of strong electronic correlations are important in the cobaltates. The

effects of local Coulomb repulsion U have been considered in the LSDA+U approach,

which indeed finds the absence of the small FS pockets [15]. However, the latter is tied to
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the fully polarized ferromagnetic state in the LSDA+U theory that gives spin-split bands

and spin polarized FS with an area twice as large. This is inconsistent with ARPES and

likely an artifact of the LSDA+U approximation. A recent calculation based on the multi-

orbital Hubbard model and the dynamical mean-field theory finds that the FS pockets

become even larger in size than the LDA predications [16].

How strong correlations drive orbital polarization and the band narrowing observed

in ARPES are the focus of the present work. We adopt a generic multi-orbital Hubbard

model description where the noninteracting part is determined by fitting the LDA band

structure. The interacting part contains both the intra (U) and the inter-orbital (U ′)

local Coulomb repulsion as well as the Hund’s rule coupling JH .

First, a basis independent Hartree-Fock (HF) calculation is performed which is in

essence a LDA+U calculation in the paramagnetic phase. We find that for small U ′, the

HF self-energy renormalizes the atomic level spacing in such a way that the size of the

small FS pockets associated with the e′g band grows. Physically, this reflects the fact that,

multi-orbital occupation is favored through double occupancy since U > U ′ on general

grounds. This trend is however reversed when U ′ grows large and double occupancy

becomes energetically costly. In the HF theory, the size of the e′g FS pockets begins to

shrink for U ′/U > 3/5. To correctly capture the physics of strong correlation for large

U and U ′, we generalize the Gutzwiller approximation to the case of multi-orbitals. We

find that in the strong-coupling regime, orbital polarization is tied to Pauli-blocking, i.e.

the orbital occupation dependence of the Gutzwiller band renormalization factors. We

obtain both band narrowing and the disappearance of the FS pockets in good agreement

with the ARPES experiments.
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The non-interacting Hamiltonian is a multi-orbital tight-binding model on a 2-dimensional

triangular lattice.

(2.11) H0 = −
∑
ij,σ

∑

αβ

tij,αβd†iασdjβσ − ∆

3

∑
i,σ

∑

α 6=β

d†iασdiβσ,

where the operator d†iασ creates an electron in the α orbital with spin σ on the Co

site i and tij,αβ is the hopping integral between the α orbital on site i and the β orbital

on site j. The relevant valence bands near the FS consist of the Co t2g = {dxy, dyz, dzx}
orbitals and have an electron occupancy of 5 + x. The ∆ in Eq. (2.11) describes the

crystal field due to trigonal distortion that splits the t2g complex into a lower a1g singlet

and a higher e′g doublet, where a1g = (dxy + dyz + dzx)/
√

3, and e′g = {(dzx − dyz)/
√

2,

(2dxy−dyz−dzx)/
√

6}. dxy, dyz, dzx orbitals are degenerate and the band structure has six

fold symmetry. On the triangular lattice, hopping integrals ti,j are anisotropic. Subscript

i denotes the ith nearest neighbour hopping, which j denotes the direction of the hopping.

For example, in the first nearest neighbour hopping, each site has 3 equivalent hopping

directions. Intra-orbital hopping integral t1,1 6= t1,2 = t1,3, while inter-orbital hopping

shows t
′
1,1 6= t

′
1,2 = t

′
1,3.

For convenience, we will work in the hole-picture via a particle-hole transformation, in

which the band filling is 1−x. The structure of the tight-binding Hamiltonian in k-space

on the triangular lattice is

(2.12) H0 =
∑

k,σ

∑

αβ

Kd
αβ(k)d†kασdkβσ +

∆

3

∑

k,σ

∑

α 6=β

d†kασdkβσ.
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The hopping matrix K in the t2g basis is given by

(2.13) Kd(k) =




ε(t, 1, 2, 3) ε(t′, 3, 1, 2) ε(t′, 2, 3, 1)

ε(t′, 3, 1, 2) ε(t, 2, 3, 1) ε(t′, 1, 2, 3)

ε(t′, 2, 3, 1) ε(t′, 1, 2, 3) ε(t, 3, 1, 2)




,

with (1, 2, 3) = (k1, k2, k3) and due to the intra-orbital and inter-orbital integrals

symmetry discussed above,

ε(t, 1, 2, 3) = 2t1 cos k1 + 2t2(cos k2 + cos k3)

+ 2t3 cos (k2 − k3) + 2t4[cos (k3 − k1) + cos (k1 − k2)]

+ 2t5 cos (2k1) + 2t6[cos (2k2) + cos (2k3)] + · · · .(2.14)

Here k1 =
√

3kx/2− ky/2, k2 = ky, k3 = −k1 − k2, and (t, t′) denote the (intra,inter)-

orbital hopping respectively.

The hopping integrals tij,αβ and ∆ are fitted to LDA band dispersion. The fitting

results up to different nearest neighbours are plotted in Fig. 2.7 showing the fitting of the

tight-binding dispersions obtained by diagonalizing Eq. (2.12) to the LDA band structure

at x=1/3 [4]. We note that the fit with up to third-nearest-neighbor (NN) hopping or

more describes the LDA bands quite well. On the other hand, the tight-binding model

cannot reproduce completely the LDA dispersions even with up to eighth-NN hopping.

The discrepancy is most pronounced along the M-K direction where the two e′g bands

cross in the tight-binding fit (Fig. 1 (a)). Similar disagreement can be traced back to the

previous tight-binding fits [3, 14, 16]. We believe the difficulty arises from the hopping
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path via the O 2s and 2p orbitals. In another word, this is because the Oxygen is ignored.

If the oxygen is present, the tilt of Oxygen Octahedral will break the reflection symmetry

along z-axis, and resolve this problem. Nevertheless, the tight-binding model works very

well at low energies near the Fermi level. The FS consists of a cylindrical sheet around the

Γ-point and six hole pockets near the K-points as shown in Fig. 1(b)-(d). The central FS

has a dominant a1g character while the six FS pockets are mainly of the e′g character. The

hopping integrals obtained from the fit with up to third-NN are t=(-0.045, -0.009, 0.036,

0.006, 0.058, 0.037)eV and t′=(-0.158, -0.030, 0.037, 0.009, -0.012, -0.021)eV. The crystal-

field splitting ∆ is chosen to be 0.01eV, an estimate from the LDA magnetic susceptibility

[8]. In the rest of the paper, we use these parameters for H0. Note that although holes

are evenly distributed among the three degenerate t2g orbitals, in the a1g and e′g basis

(hereafter referred to as the {a} basis), the hole occupations are 0.123 (e′g) and 0.421

(a1g) respectively. However, holes favor the occupation of the a1g orbital not because of

its (actually higher than e′g by ∆) atomic level, but rather its larger bandwidth.

The correlation effects are described by the generic multi-orbital Hubbard model H =

H0 + HI , where H0 is the tight-binding Hamiltonian in Eq. (2.12) and HI represents the

local Coulomb repulsion U (intra-orbital) and U ′ (inter-orbital), Hund’s rule coupling JH ,

and pair hopping integral JP ,

HI = U
∑
i,α

n̂iα↑n̂iα↓ + (U ′ − 1

2
JH)

∑

i,α>β

n̂iαn̂iβ(2.15)

− JH

∑

i,α 6=β

Siα · Siβ + JP

∑

i,α6=β

a†iα↑a
†
iα↓aiβ↓aiβ↑.
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Here n̂iα and Siα are the density and the spin operators in the {a} basis of atomic orbitals

a1g and e′g. In this basis, the tight-binding part H0 is

(2.16) H0 =
∑

k,σ

∑

αβ

Ka
αβ(k)a†kασakβσ +

∑

k,α,σ

∆αa†kασakασ,

where ∆α = −∆/3, 2∆/3 for the e′g and a1g orbitals respectively. The hopping matrix

Ka(k) = OTKd(k)O, with O the orthogonal rotation from the t2g to the {a} basis.

(2.17) O =




0 −1/
√

2 1/
√

2

2/
√

6 −1/
√

6 −1/
√

6

1/
√

3 1/
√

3 1/
√

3




.

The interacting Hamiltonian HI is identical in these two bases of the t2g complex provided

that JH = JP ≡ J and U = U ′+JH +JP = U ′+2J [17]. The hierarchy of the interaction

strength is U > U ′ > J ≥ 0.

We first study the effects of interactions in the HF theory in the orbital sector. In the

paramagnetic phase, the interacting Hamiltonian is thus given by,

HHF
I =

∑

k,σ,α

(
1

2
Unα + U ′

eff

∑

β 6=α

nβ)a†kασakασ

+ (J − U ′
eff

2
)

∑

k,σ,α6=β

nαβa†kασakβσ − U

4

∑

k,α

n2
α

− U ′
eff

2

∑

k,α 6=β

nαnβ − 1

2
(J − U ′

eff

2
)

∑

k,α 6=β

n2
αβ,(2.18)

where nαβ = (1/Ns)
∑

k,σ nσ
αβ(k), nσ

αβ(k) = 〈a†kασakβσ〉, nα = nαα, and U ′
eff = U ′− J/2. In

essence, this HF analysis is equivalent to the LDA+U theory [18]. Since we are interested
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and the renormalized atomic level spacing ∆′.
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in the orbital dependent corrections, eliminating the double counting term for orbital

independent interaction effects included in the LDA is not important for our results.

Note that the HF theory is basis independent. It is thus convenient to stay in the {a}
basis where the local density matrix, and thus the HF self-energies are diagonal in orbital

space, i.e. nα 6=β = 0.

In terms of the average n̄ = (na1g + 2ne′g)/3 = (1 − x)/3 and the difference δ =

(na1g − ne′g)/3 between the hole occupation of the a1g and e′g orbitals, the HF self-energy

is given by

ΣHF
e′g =

1

2
n̄U(1 + 4η)− 1

2
δU(1− 2η),(2.19)

ΣHF
a1g

=
1

2
n̄U(1 + 4η) + δU(1− 2η),(2.20)

where η = U ′
eff/U is the relative strength of the inter-orbital interaction. The interaction

effect in the paramagnetic HF theory is to simply shift the atomic levels by ΣHF
e′g

and ΣHF
a1g

respectively, resulting in a renormalized atomic level spacing ∆′ = ∆ − 3δU(η − 1/2).

Interestingly, the direction of the charge transfer depends on the ratio η. Since the

majority of the holes resides in the a1g orbital in the noninteracting limit, δ > 0, Thus,

for η < 1/2, the level splitting renormalizes upward, ∆′ > ∆, and interactions induce

a transfer of carriers from the a1g to the e′g orbital. The self-consistent HF results are

shown in Fig. 2.8(a) at x = 1/3 for U = 3eV which is close to the value (3.7eV) estimated

from the LDA [19]. For η = 1/3, the size of the hole pockets indeed becomes larger

than that of the noninteracting/LDA ones. Physically, for weak correlations, in order

to minimize the interaction energy due to double occupancy, multi-orbital occupation is

favored to take advantage of the smaller intra-orbital Coulomb repulsion U ′ compared to
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the larger U . This tendency must stop, however, with increasing U and U ′ as it becomes

energetically costly to doubly occupy a site. This corresponds to increasing the value of

η ≤ 1. Interestingly, at η = η0 = 1/2 (U ′/U = 3/5), the self-energy corrections are equal

among the orbitals. The level splitting is thus unrenormalized, ∆′ = ∆. There is no

interaction induced charge transfer such that the noninteracting (LDA) band dispersions

and the Fermi surfaces remain unchanged as shown in Fig. 2(a). When η > 1/2, i.e.

U ′/U > 3/5, the level splitting renormalizes downward, ∆′ < ∆, triggering a transfer of

holes from the e′g to the a1g orbital. This leads to a reduction in the hole occupation in

the e′g band and hence a reduction in the area of the FS pockets. The six FS pockets

continues to shrink as the e′g band sinks with increasing η and disappears beyond a critical

ratio ηc, as shown in Fig. 2a for η = 2/3. We find that ηc(U = 3.0eV) ' 5/8.

The HF analysis shows that the disappearance of the six FS pockets near the K-

points is the physics of large U and U ′. In this case, the HF theory itself becomes

unreliable. Moreover, the localization tendency leading to the bandwidth reduction cannot

be captured by the HF theory. It is therefore instructive to study the problem in the

strong-coupling limit by projecting out the states of double-occupation prohibited by the

large on-site Coulomb repulsions. This can be achieved by Gutzwiller projection in the
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grand canonical ensemble. The projected wavefunction is expressed as

(2.21) |Ψ〉 = PG|Ψ0〉

where PG is the projection operator,

(2.22) PG =
∏

i,α6=β

∏

σσ′
ynα

iα (1− ni↑αni↓β)(1− niσαniσ′β)

PG removes the double occupancy by electrons from both the same and different orbitals of

the noninteracting state |Ψ0〉. |Ψ0〉 is an unprojected Slater determinant state. ynα
iα is the

local fugacity that maintains the equilibrium of the local densities upon projection. This

variational procedure is most conveniently implemented in the Gutzwiller approximation

where the effect of projection is taken into account by the statistical weighting factor

multiplying the quantum coherent state [20]. Specifically,

(2.23) 〈Ψ|a†iασajβσ|Ψ〉 = gαβ
t 〈Ψ0|a†iασajβσ|Ψ0〉,

where the Gutzwiller renormalization factor gt is given the ratio of the probabilities in

the hopping process in the projected |Ψ〉 and the unprojected |Ψ0〉. We find,

(2.24) gαβ
t =

x√
(1− niασ)(1− njβσ)

.

It is important to note that in a multi-orbital system gαβ
t depends on the occupation of the

orbitals connected by the hopping integral as seen in the denominator in Eq. (2.24). The

latter originates from the Pauli principle and represents the effects of “Pauli-blocking”

of double occupation by electrons in the same quantum states that should be separated
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from the “Coulomb-blocking” due to the large on-site U . It turns out that this factor is

crucial for carrier transfer and orbital-polarization in the strong-coupling limit. In the

uniform paramagnetic phase, the Gutzwiller factor becomes

(2.25) gαβ
t = 2x/

√
(2− nα)(2− nβ)

The orbital occupations are variational parameters determined by minimizing the ground

state energy of the Hamiltonian,

HGW =
∑

k,σ,αβ

gαβ
t Ka

αβ(k)a†kασakβσ +
∑
i,α,σ

∆αa†iασaiασ

+
∑
i,α

εiα(
∑

σ

a†iσαaiσα − niα),(2.26)

where εiα are the Lagrange multipliers enforcing niα =
∑

σ〈a†iσαaiσα〉, and are determined

by the self-consistency equation

(2.27) εα =
1

2
− nα

1

Ns

∑

k,β,σ

gαβ
t Ka

αβ〈a†kασakβσ〉.

In contrast to the HF theory, both the band-narrowing and the renormalization of the

level spacing ∆′ = ∆ + εa1g − εe′g contribute to the redistribution of holes among the

orbitals. In Fig. 2.10, we show the self-consistently determined band-narrowing factor

zα = gαα
t and the renormalized level spacing. For orbitals with a larger hole occupation,

the bandwidth reduction is smaller and the renormalized band energy is lower, resulting

in the transfer of more holes into these bands. The combined effects cause the holes to

move out of the e′g band into the a1g band. The calculated band dispersions and the FS

topology at x = 0.3, 0.5, 0.7 are shown in Fig. 2.10 in the strong coupling theory. The
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corresponding non-interacting case is also shown for comparison. The six hole pockets

are completely absent at all levels of sodium dopings due to strong correlation, leaving

a single hexagonal Fermi surface centered around the Γ point satisfying the Luttinger

theorem. This, as well as the band-narrowing due to strong Coulomb repulsion, is in very

good agreement with the photoemission experiments [5, 12, 21].

A detailed comparison of band structure between ARPES and LDA + large-U is shown

in Fig. 2.11 at doping x = 0.3 0.75 [21]. As expected on fundamental t2g symmetry

consideration, lower lying e
′
g bands are met at Γ point. This is consistent with our result.

Along Γ − M direction, 2 lower lying bands are observed and well separated from the

a1g band crossing Fermi surface. This band behavior also agrees between experiment and

theory. Along Γ−K direction, as opposed to the theory, the experiment suggests that a
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Figure 2.11. Experiment v.s. theory [21]: Compaison of a) experimental
band structure for x = 0.35, x = 0.48, and x = 0.75 with b) LDA + large-U
calculation.

gap formed between the a1g band and the upper e
′
g band to avoid crossings. In general,

the disappearance of 6 e
′
g pockets and band-narrowing due to strong Coulomb repulsion

from the experiment observation is in good agreement with the theoretical calculation.

In conclusion, we have shown that strong electronic correlation plays an important

role in understanding the electronic structure of NaxCoO2. The strong local Coulomb

repulsion pushes the e′g band below the Fermi level, leading to an orbital polarized state

with a single hole-like FS. The absence of the small FS pockets, which would contribute

significantly to the density of states in band structure calculations, further suggests that
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the large mass enhancement observed in the specific heat measurement [22] is due to

strong electronic correlation.
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CHAPTER 3

Stoner Magnetism

In the previous chapter, strong correlation plays an important role in the electronic

structure of the cobaltates and has resolved the discrepancy between observation from

APRPES experiment [1, 2] and theoretical LDA calculation [3]. Comparing to ARPES

experimental results, the LDA Fermi surface has six extra small pockets instead of a

centeral one in ARPES, and has a much wider bandwidth than ARPES. Strong correlation

has introduced significant bandwidth renormalization of t2g complex and the topology

shows the disappearance of 6 small pockets.

In this chapter, the magnetic property of the cobaltates is investigated. It has been

shown recently [7, 4, 5, 6] that correlation-induced corrections to the crystal field split-

ting and bandwidths of the LDA calculations [3] can produce a single renormalized band

of mostly a1g character at the Fermi level as observed by ARPES [1, 2, 8, 9]. Here

we show that the description of the magnetism in the cobaltates, too, requires a proper

account of the large Coulomb repulsion U at the cobaltate sites. Indeed, in the LSDA+U

theory [10], which accounts for the correlation effects in the Hartree-Fock approach, the

LDA paramagnetic (PM) state is always unstable and the ground state is a fully polarized

ferromagnet at all doping for U as small as 2eV. This disagrees with experiments that

ferromagnetic order emerges only at large doping x > 0.75 and a spin degenrate Fermi

surface is observed by ARPES at x < 0.72 [1]. The focus of this chapter is how strong
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correlation helps stabilizing paramagnetic states in low dopings and before the investi-

gation of strong correlation, results of weak coupling Hartree-Fock approximation is also

presented.

3.1. Single band model for sodium cobaltates: a minimal model

It has been shown recently [5, 6, 7, 4] that correlation-induced corrections to the

crystal field splitting and bandwidths of the LDA calculations [3] can produce a single

renormalized band of mostly a1g character at the Fermi level as observed by ARPES

[1, 2, 8, 9].

According to the 3d transition metal oxides structure of NaxCoO2, Co ions occupy the

3 lower orbitals of 3d5, t2g complex. The trigonal distortion further splits t2g into an a1g

and 2 degenerate e′g bands. As shown is the previous chapter, in the case of paramagnetic

LDA band structure in the strong U limit, bandwidth is renormalized. e
′
g is suppressed

and only a1g band crosses the Fermi level [4]. This result is consistent with experiments

[1, 2, 8, 9, 11]. A single band of mostly a1g character lies near the Fermi level. The

basic physics properties in low energy range can be represented by an effective minimal

single-band model, provided that the strong Coulomb repulsion is included at the Co

sites. The Hubbard model for the relevant low-energy quasiparticle band of approximate

a1g character is written as,

H = H0 + HI(3.1)

=
∑
i,σ

tija
†
iσaiσ +

∑
i,σ

Un̂i↑n̂i↓
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H0 is the tight-binding description of the LDA a1g band, and HI describes the Hubbard

physics on Co sites. a†iσ and aiσ are creation and annihilation operators of electrons on a1g

orbital, respectively, with spin σ. n̂i is the density operator. U is intra-orbital Coulomb

repulsion. tij are the intra-orbital hopping integrals.

Therefore, before going into the realistic case of 3d bands of NaxCoO2, we first inves-

tigate the effect of Hubbard U on a the single a1g band on a triangular lattice. In order to

restore the basic a1g band shape, up to the 3rd nearest neighbor hopping has to be taken

into account.

H0 can be written in k-space as

(3.2) H0 =
∑

k,σ

K(k)a+
kσakσ

K(k) is the hopping element of a single a1g band, defined on a triangular lattice, up

to 3rd n.n. hopping. From the symmetry of a1g band, the hopping is isotropic, i.e., the

hopping integral is orientation independent.

K(k) = 2t1[cos(k1) + cos(k2) + cos(k3)](3.3)

+2t2[cos(k1 − k2) + cos(k2 − k3) + cos(k3 − k1)]

+2t3[cos(2k1) + cos(2k2) + cos(2k3)]

= −2t1(cosky + 2cos

√
3kx

2
cos

ky

2
)

−2t2(cos
√

3kx + 2cos

√
3kx

2
cos

3ky

2
)

−2t3(cos2ky + 2cos
√

3kxcosky)



46

The hopping integrals obtained from the fit to LDA are (t1, t2, t3)=(−0.202, 0.035, 0.29)eV

[4]. The hole density ni = ni↑+ni↓ = 1−xi with xi as the electron doping is fixed by the

chemical potential µ. Due to the small direct Co-Co overlap and the 90◦ O-Co-O bond

angle, the AF superexchange J in the cobaltates is small [12], consistent with the value

J ∼ 5meV determined by inelastic neutron scattering [13]. We thus focus on the in-plane

magnetism of the kinetic origin and ignore the small interlayer exchange coupling that

only enables the 3D magnetic order at finite temperatures.

3.2. Stoner Magnetism

We start with a single band model on triangular lattice with the Hartree-Fock (HF)

approximation. Applying HF approximation to the a1g Hubbard model in Eq. (3.2), and

decoupling HI in the density channel, H is written as

H =
∑
i,σ

tija
†
iσaiσ +

∑
i

U(ni↑a
†
i↓ai↓ + ni↓a

†
i↑ai↑)

−
∑

i

ni↑ni↓(3.4)

niσ is the local charge density and we propose a uniform charge density situation

niσ = nσ. Density difference between spin up and spin down is defined as magnetization

satisfying,

M = n↑ − n↓(3.5)

nσ =
1

N

∑
i

〈a†kσakσ〉
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Fourier transform Hamiltonian in Eq. (3.4) into k-space,

H =
∑

k,σ

K(k)a†kσakσ +
1

2
U

∑

k,σ

nσa
†
kσakσ(3.6)

−1

2
U

∑

k

M(a†k↑ak↑ − a†k↓ak↓)

Magnetization M is calculated through the self-consistent approach. On-site coulomb

repulsion U is a variable parameter in Hamiltonian and is investigated at different val-

ues. Corresponding to each U , there is a critical xc at which the system transits from a

paramagnetic state(i.e. m = 0) into a ferromagnetic state(i.e. m 6= 0). This dependence

relation is plotted in Fig. 3.1. From the figure, it shows that the greater U is, the lower

xc is, which means a small U will stabilize paramagnetic states. When U is greater than

2 eV, the entire electron doping range will be ferromagnetic.

The mechanism of transition here can be well understood from the Stoner theory,

shown as follows.

M = n↑ − n↓

=

∫ ∞

0

1

2
(f 0(εk↑)− f 0(εk↓))N(ε)dε(3.7)

εkσ is the energy of each spin under a small external field H. Without the perturbation

H, the system is paramagnetic and has an energy ε(k) and a density of states N(ε)

εk↑ = ε(k)−H + Un↓

εk↓ = ε(k) + H + Un↓(3.8)
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In the limit of H → 0, T → 0,

(3.9) M =
HN(εf )

1− 1
2
UN(εf )

From which, susceptibility is derived as

(3.10) χ =
∂M

∂H
=

N(εf )

1− 1
2
UN(εf )

The susceptibility of the system will diverge when
1

2
UN(εf ) = 1. The paramagnetic

state becomes unstable, thus to induce a permanent magnetic moment. In the one band

HFA case, when U > Uc, e.g. 2 eV, the entire doping range becomes unstable in param-

agnetic states.

Whereas, in the large U region, HFA becomes unreliable, it will be more reasonable

to substitute U in the infinite limit for finite U in HFA. In the weak-coupling HF theory,

itinerant FM is due to the Stoner instability, i.e. the divergence of the uniform suscep-

tibility χ = χ0/(1 − UNF /2), where χ0 is the free-electron value and NF is the DOS at

the Fermi level. The large DOS of the cobaltates would lead to FM order for all x for

U greater than a value less than 2 eV [10], clearly inconsistent with experiments. The

in-plane FM order does not emerge until x > 0.75 and that a single spin-degenerate Fermi

surface of the Luttinger area is observed by ARPES for x < 0.72 [1]. We show that the

weak-coupling Stoner instability is unphysical when correlation is strong.

3.3. Single band in the strong coupling limit

The failure of the HF or LSDA+U theory lies in the spin-dependent self-energy correc-

tion that scales with U . This is unphysical for U larger than the bandwidth. For example,
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Figure 3.1. The division line represents xc and separates ferromagnetic state
(FM) and paramagnetic state (PM), corresponding to varying U

for large U , the system can simply avoid paying the energy penalty for double occupa-

tion in Eq. (3.2) by reverting to a fully spin-polarized state that involves only the kinetic

energy. This is the physics behind the Nagaoka theorem: on square lattices, the ground

state of the infinite-U Hubbard model doped with a single hole is a fully polarized FM.

At finite hole density, the Nagaoka state is lower in energy than the Gutzwiller projected

PM state at low doping [14]. Interestingly, on the triangular lattice the kinetic energy

is frustrated in the sense that hopping around an elemental triangle picks up a negative

sign, the Nagaoka state is not the ground state for a single hole [15]. To study FM at

finite electron doping, we consider the large-U limit captured by the projection of double

occupation. To make analytical progress, we treat the latter by Gutzwiller approximation

(GA) in the grand canonical ensemble where the projected wave function can be written
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as

(3.11) |Ψ〉 =
∏

i

y
n̂i↑
i↑ y

n̂i↓
i↓ (1− n̂i↑n̂i↓)|Ψ0〉.

Here Ψ0 is an unprojected Slater determinant state and yiσ is a spin-dependent local

fugacity that maintains the equilibrium and the local densities upon projection. The GA

is then equivalent to minimizing the energy of the renormalized Hamiltonian,

(3.12) HGA =
∑
i,j,σ

gσ
ijc

†
iσcjσ +

∑
i,σ

εiσ(c†iσciσ − niσ),

where the Gutzwiller renormalization factor,

(3.13) gσ
ij = 〈Ψ|c†iσcjσ|Ψ〉〈Ψ0|c†iσcjσ|Ψ0〉 '

√
xixj

(1− niσ)(1− njσ)
,

and εiσ is determined by ∂〈HGA〉/∂niσ = 0,

(3.14) εiσ =
1

2(1− niσ)

∑
j

gσ
ijtij〈c†iσcjσ + h.c.〉 − εi0.

Physically, εiσ is the local kinetic energy per doped spin-σ electron measured relative to

the average over both spins,

(3.15) εi0 = −
∑

σ

(1− niσ)εiσ
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In the uniform phase,

niσ = nσ(3.16)

gσ
ij = gσ

εiσ = εσ

(3.17) εσ =
1

(1− nσ)

∑

k

Ekσf(Ekσ + εσ − µ)− ε0,

In our single, uniform magnetic band case, Gutzwiller factor is express in terms of density

and spins.

(3.18) gσ =
x

1− nσ

In strong coupling limit, U → ∞, Gutzwiller projection is applied here to project out

double occupation on a single site. The general form of Gutzwiller factor for multiple

bands is written as

(3.19) gαβ =
x√

(1− niασ)(1− njβσ)

In the strong coupling cases, the occupation number nσ of each spin of a1g is restricted

by Lagrangian multiplier εσ to obey nσ = 1
N

∑
k〈a†kσakσ〉. Therefore, the Hamiltonian of

a single band Hubbard Model with infinite U is written as

(3.20) H =
∑

k,σ

gσK(k)a†kσakσ +
∑

k,σ

εσ(a†kσakσ − nσ)
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Figure 3.2. Phase diagram of a1g band, xc = 0.67

To minimize the ground state energy, we express εσ in self-consistent calculation, as

(3.21) εσ =
1

N

∑

k

x

(1− nσ)2
K(k)〈a†kσakσ〉

The kinetic part K(k) with 3rd n.n. hopping has been shown in Eq. (3.4).

Magnetization M is calculated and phase diagram is plotted in Fig. 3.2. It shows that

a magnetic phase transition happens around xc = 0.67. At small x, paramagnetic state

is stabilized and at x>0.67, the system is fully polarized and satisfies the linear relation

M = 1− x.

The mechanism of this phase transition is further explored in the following literature

as 2 parts.

The first explanation of the phase transition is inspired by that of HFA. Since UN(εf )

plays an important role in HFA and here U is set → ∞. The importance of N(ε) in the

magnetic phase transition will be demonstrated by the comparison between the 1st n.n.

and 3rd n.n. hopping integrated in the single a1g band.
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Figure 3.3. a)The density of states of a single 1st n.n. hopping band, on
the electron doped side, paramagnetic (PM) and on the hole doped side,
ferromagnetic (FM). b)Band structure at x = 0.1, electron doped.

For a single band with the 1st n.n. hopping on a triangular lattice, the hopping is

(3.22) K(k) = −2t(cosk1 + cosk2 + cosk3)

With t < 0, the band structure and the corresponding density of states in the Eq. (3.22)

are plotted in Fig. 3.3.

The entire e− doped range is paramagnetic, while almost the entire hole doped range

is ferromagnetic. Comparing the DOS and band dispersion plots between 1st n.n. hopping

in Fig. 3.3 and 3rd n.n. in Fig. 3.4. In 3rd n.n., there is an extra peak above the fermi
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level. This can be explained by the corresponding flat top of band dispersion at Γ point.

Comparing to band dispersion in Fig. 3.3, the velocity here at Γ is greatly enhanced, thus

push DOS up. If we recall the Stoner instability in Eq. (3.10), the high DOS provides the

possibility of divergence of susceptibility. The density of states of the 1st n.n. hopping

has only the long right tail in the electron doped range, which is not enough to induce a

diverging susceptibility as the extra peak in the 3rd n.n. does.

Although DOS plays an important role in the strong coupling limit as shown above,

comparing the paramagnetic DOS between 2 sides of xc, x = 0.5 and x = 0.7 in Fig. 3.5,

there is no apparent difference between them at fermi level. This tells us that although the
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peak of DOS above the fermi level enhance the probability of transition to ferromagnetic

state in general, it is not the only determinant in the strong coupling phase transition. The

reason is due to the Gutzwiller factor as in Eq. (3.19). The denominator is constrained

to 0 ≤ nσ ≤ 1− x, which makes the Gutzwiller factor always no more than 1 and has the

effect of band narrowing. At lower dopings, the bandwidth shrinks much more than at

higher dopings. This narrowing effect greatly squeezes DOS up at low dopings.

In order to understand the exact determinants of the magnetic phase transition in the

strong U limit, we derived the analytical expression of susceptibility, following a similar

route as Stoner theory. wTo drive a renormalized Stoner theory for the instability of the

PM phase against uniform FM order, we calculate the uniform magnetic susceptibility

χ = ∂M/∂h

where

M = (n↑ − n↓)µB
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is the magnetization due to an infinitesimal external magnetic field h. Including the

leading h-dependence of εσ in Eq. (2.27) we can obtain the renormalized Stoner equation.

In the strong coupling limit, with Gutzwiller factor εσ,

εk↑ =
x

1− n↑
K(k) + ε↑ −H

εk↓ =
x

1− n↓
K(k) + ε↓ + H(3.23)

In the limit of H → 0, T → 0,

M = n↑ − n↓

=

∫ ∞

0

1

2
(f 0(εk↑)− f 0(εk↓))N(ε)dε

=

∫ ∞

0

1

2
[(−∂f

∂ε
)(2H − (ε↑ − ε↓))(3.24)

− K(k)x

(1− 1
2
n)2

(n↑ − n↓)dε(3.25)

Plug in the expression of fugacity εσ in Eq. (3.21) and an analogy of Stoner susceptibility

is derived as

(3.26) χ =
χ0

1− 2KNF

, K = − 2

1 + x
(EkF

+ ε + ε0) ,

where NF is the renormalized DOS and K measures the energy per electron at the Fermi

level. The latter plays the role of the effective interaction strength, replacing the Hubbard-

U in the Stoner susceptibility. n = 1 − x is the number of holes per site; ε and N(εf )

are paramagnetic fugacity and the density of states, respectively. These paramagnetic

parameters are obtained self-consistently by enforcing n↑ = n↓ in Eq. (3.20).
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at xc = 0.67

Fig. 3.6 shows the doping dependence of χ which diverges at xc ' 0.67, corresponding

to the renormalized Stoner criterion 2KNF = 1, beyond which FM order develops at

T = 0. The self-consistently determined magnetization shown in Fig. 3.2 indicates a sharp

transition into the fully polarized FM, half-metallic state. Comparing to Stoner model,

the strong coupling susceptibility has the same structure, but with a more complicated

Ueff instead of Coulomb repulsion. Similarly, the critical doping is obtained when the

value is diverging. Fig. 3.6 shows susceptibility as a function of x and the divergence

happens around x = 0.67. This result consists with our numerical calculation previously

shown in Fig. 3.4.

So far, the phase transition is first explained by an analytical expression of suscepti-

bility as a function of DOS, fugacity, kinetic energy, and so on. Secondly, the consistency

between numerical and analytical calculation can be verified by another approach, energy

dispersion.
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Since χ is defined as ∂M
∂H

and free energy F ∝ MH, the following expression is derived.

(3.27) χ−1 ∝ ∂2F

∂M2

In numerical calculation, at each x, if we force the magnetization M to be a series of

values less than fully polarized M = 1 − x, then the ground state energy can be plotted

as a function of M , as shown in Fig. 3.7. Suppose F = a0 + a1M + a2M
2 and apply

a polynomial fit to the energy-magnetization curve up to the 2nd order. According to

the Eq. (3.27), χ−1 ∝ a2. When a2 is close to zero, χ approaches infinite, which should

correspond to a magnetic phase transition. From Fig. 3.7, x = 0.63 and x = 0.65 both

have a positive a2. When x steps across 0.67, a2 goes 0+ → 0−, which qualitatively shows

a transition around x = 0.67.

Hitherto, the presence of the DOS peak near the band top is important for the emer-

gence of the in-plane FM order. For example, with only the nearest neighbor hopping, the



59

FM order is completely suppressed by strong correlation [16]. Using a strong-coupling

Gutzwiller projection approach, we show that the Stoner criterion is strongly renormal-

ized and the spin dependent self-energy scales with the average kinetic energy instead of

U . The PM phase is in fact stable against itinerant FM below the critical electron doping

xc ' 0.67 above which in-plane FM order emerges. We have showed that in the strong

coupling limit, the magnetic phase transition is happened at x = 0.67 and explained the

mechanism of it from 2 different aspects, analytical and energy fitting. All of them have

presented a consistent result. This success in explaining the magnetic phase transition in

a1g case intrigues us to apply the same approach to the realistic cobaltate bands.

3.4. Magnetism in NaxCoO2

The previous results can be extended to the realistic three-band Hubbard model of

the t2g complex. The Hamiltonian is written as,

H = H0 + HI(3.28)

H0 =
∑

i,σ,α,β

Ka
αβ(k)a+

iασaiβσ +
∑
i,σ,α

4αa+
iασaiασ(3.29)

HI = U
∑
i,α

niα↑niα↓ + (U
′ − 1

2
J)

∑

i,α β

niαniβ(3.30)

−J
∑

i,α>β

Siα · Siβ + J
∑

i,α6=β

α+
iα↑α

+
iα↓aiβ↓aiβ↑

U is the intra-orbital Coulomb repulsion. U ′ is the inter-orbital Coulomb repulsion.

As discussed in the previous chapter, J is Hund’s rule coupling and J =
1

2
(U − U ′).
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Similar to the single band model, we first exam the behavior of 3-band model in the

Hartree-Fock Approximation. Taking the spins into account,

HI =
∑

k,σ,α

(2Unα + 2
∑

β 6=α

U
′
nβ)a+

kασakασ(3.31)

+
∑

k,σ,α6=β

(Jnσ,αβ + Jn∗σ,αβ + (J − U
′
)n∗σ,αβ)a+

kασakασ

−
∑

k,α

Umα(a+
kα↑akα↑ − a+

kα↓akα↓)

mα = < a+
kα↑akα↑ − a+

kα↓akα↓ >(3.32)

mα is equivalent to the moment measure in single band calculation. To simplify the

effect of parameters, U
′

takes the same value of U , which makes J = 0. Through self-

consistency calculation, a phase diagram at different doping level x has been shown in

Fig. 3.8(a). In the single band result, as long as U is greater than 2 eV, the system turns

in to FM throughout all the dopings. Similar to that result, there is a separation between

FM and PM at different values for different dopings. Although the larger the doping,

the less U is required to turn into FM, above 1.8 eV the 3-band model stays FM at all

dopins. Then we turn to exam the effects of both U and J at x=0.5, shown in Fig. 3.8(b).

Although there exist a partially polarized state, when U is greater than a certain value

it will transit into FM. Consistent with the behavior of 1 band model, but not consistent

with experimental observation [1].

As the conclusion made in the previous section, in Hartree-Fock approximation, mag-

netization is due to Stoner instability. The spin-dependent self-energy correction that

scales with U. The system can avoid paying the energy penalty for double occupation by

spin-polarization which only involves the kinetic energy. This is unphysical for U larger
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Figure 3.8. Phase diagram of the 3-band model. a)phase diagram of a
multi-band Hubbard model for NaxCoO2 as a function of U in Hartree-
Fock approximation. b) The interplay of J and U at x=0.5 in HFA. c) In
strong U limit, phase diagram at different doping levels.
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than the bandwidth. Then we investigate the magnetic behavior in strong-correlation

limit, setting U and U ′ to infinity, and J → 0.

H =
∑

k,σ,α,β

gαβ
tσ (k)a+

kασakβσ +
∑

k,σ,α

4αa+
kασakασ(3.33)

+
∑
α,σ

εασ(a+
kασakασ − nασ)

where εασ is the multi-band fugacity. gαβ
tσ is the multi-band Gutzwiller factor used to

project out double occupation. α and β indicates the three t2g band. In a density uniform

case, it is written as

gαβ
tσ =

x√
(1− nασ)(1− nβσ)

The phase diagram for the multi-band is presented in Fig. 3.8(c). It shows at low

doping x, the large U stabilizes the ground state at paramagnetic phase. At high doping

x, the system transits into a ferromagnetic state.

The results in this section from the three-band Hubbard model of the t2g complex are

consistent with our previous one band model and experiments qualitatively. The finding

of the fully polarized FM state at large x is consistent with the large FM moment of about

0.13µB per Co site at x = 0.82 observed by neutron scattering [13] comparing to 0.18µB

for a fully polarized FM state.
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CHAPTER 4

Itinerant and Localized Magnetism in Sodium Rich Phases of

NaxCoO2

We study the interplay between correlation, itinerant ferromagnetism and local mo-

ment formation on the electron doped triangular lattice of sodium cobaltates NaxCoO2.

We find the enhanced Na dopant potential fluctuations play a crucial role in the sodium

rich phases and lead to an inhomogeneous FM state, exhibiting nonmagnetic Co3+ patches,

antiferromagnetic (AF) correlated regions, and FM clusters with AF domains. Hole dop-

ing the band insulator at x=1 leads to the formation of local moments near the Na

vacancies and AF correlated magnetic clusters. We discuss these results in connections

to recent neutron, µSR, and NMR experiments.

4.1. Recent focus on magnetism in sodium rich phases

Since the discovery of unconventional superconductivity near x = 0.3 upon water-

intercalation in this material [1], a broad spectrum of experiments have been performed,

yielding a rich and complex phase diagram with many unexpected and novel properties.

Magnetism plays an essential role in the sodium rich region with x > 0.5.

The metallic transport coexists with a Curie-Weiss magnetic susceptibility leading to

a novel “Curie-Weiss metal” [2]. Neutron scattering and NMR experiments find strong

in-plane ferromagnetic (FM) fluctuations at high temperatures and magnetically ordered
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states emerge for x > 0.75 [3]. At x = 0.82, neutron scattering determined that in-

plane FM order and inter-layer antiferromagnetic (AF) order develops below a 3D Neel

temperature TN = 20K [4]. They have also extracted the magnetization value on each Co

to be 0.13± 0.02µB.

There is increasing experimental evidence for unexpected strong correlation effects

as the cobaltates approach the band insulating limit at x = 1. µSR experiment [5]

(2007) has investigated the magnetic properites of NaxCoO2 with x between 0.78 and

0.97. Their data suggests a nanoscopic coexistence of the magnetic and the non-magnetic

regions. They discover the emergence of AF correlated magnetic clusters and localized

magnetic moments for x > 0.96. They propose the magnetic clusters are Na vacancy

induced and remains isolated for x above 0.96. Below 0.96, the clusters percolate until a

homogeneous magnetic state is achieved near x = 0.75. This magnetic state is long-range

ordered and exhibits strong frustration. In Fig. 4.1, it shows at all investigated dopings,

x = 0.78, 0.87, 0.92, the 5 K ZF-µSR time spectra contains an oscillatory component and

it means magnetism exists in part of the volume.

Interestingly, the high thermoelectric power of the sodium cobaltate is found in the

sodium rich region which is likely to have a related magnetic origin [6]. The nature of the

magnetism in the sodium rich region has been the focus of several theoretical work [7,

8, 9, 10]. For example, Daghofer et al propose a spin-orbital-polaron model [10], shown

in Fig. 4.1(d), and explain how polarons account for the peculiar magnetic properties at

small hole concentration when x > 0.7. Polaron consists one Co4+ with s=1/2 in the

center and six adjcent Co3+ with S=1. When polarons evolves into clusters, different

parameters could drive two adjcent polarons into different magnetic orders. However it
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d)

Figure 4.1. a)-c) Zero-field µSR spectra for NaxCoO2 crystals with x=0.92,
0.87 and 0.78 which exhibit a rapidly increasing fraction of the oscillatory
signal at 5 K. d)Polaron model[10]: Co4+ with s=1/2 in the center, induced
spin S=1 on the six adjacent Co3+ sites. J, Jdiag, and J ′ are parameters for
nearest neighbour coupling on the ring, cross diagonal coupling and center
to the ring coupling, respectively.

needs Co3+/Co4+ charge order, thus inconsistent with our result and the current data

from µSR is insufficient to establish such a scenario [5].

It has been shown in the previous chapter that through a strong-coupling Gutzwiller

projection approach, the Stoner criterion is strongly renormalized and the spin dependent

self-energy scales with the average kinetic energy instead of U . The PM phase is in fact
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stable against itinerant FM below a critical electron doping xc ' 0.67, above which in-

plane FM order emerges. In this paper, we study the magnetic properties, both itinerant

and localized, of strongly correlated electrons on the triangular lattice, and present a

theoretical description of the novel magnetism observed by experiments in the sodium

rich phases.

4.2. Sodium structure

The crystal structure of NaxCoO2 consists of alternating layers of sodiums and trian-

gular CoO2 layers which octahedrally coordinated by oxygen. The charge on the CoO2

layers is controlled by the concentration of Sodium ions in the Na layer. Each sodium ion

added to the Na layer attract one electron in the Cobalt layer.

There are two possible sodium locations and are defined as Na(1) and Na(2), shown

in Fig. 4.2. If we project the location of Na ions onto the Cobalt plane, Na(1) reside right

on the cobalt sites and Na(2) reside at the center of the cobalt triangular shaped lattice.

Huang et al has shown the crystal structures of NaxCoO2 for 0.34 < x ≤ 1.0 [11].

It’s found that Na(1) are unambiguously defined for all dopings and Na(2) display a large

temperature factor. A refinement with Na(2), labeled as the Na(2)’ allows for displace-

ments of the Na(2) atoms from the centers of the ideal triangular prismatic coordination

polyhedra. 3 types of crystal structures are found across doping levels, shown schemat-

ically in Fig. 4.2. H1 phase refers to a state in which both Na(1) and Na(2)’ sites are

partially filled. H2 phase refers to that both Na(1) and Na(2) sites are partially filled.

In H3 phase only Na(2) sites are filled. Over different doping ranges, the compound is

described by one or two of the phases, shown in Fig. 4.3(a). From 0.34 to 0.74 with the



68

Figure 4.2. The three types of hexagonal structure in NaxCoO2 H1-H3.
Layers of edge-shared CoO6 octahedra are seen in a triangular lattice with
Na ions occupying ordered or disordered positions in the interleaving planes.
Three different Na ion sites are shown beneath.

exception of x=0.5, H1 phase describes the structure of its sodium content. Then a small

two phase region H1+H2 ranges from 0.72 to 0.76. H2 phase is found for 0.76<x<∼0.82.

From 0.82 to 0.97 is a mixture of H2+H3 phase. Above that, only Na2 sites are occupied,

designated as H3 phase. Fig. 4.3(b) shows structure characteristics at different dopings.

Even in the same sodium phase, the content ratio of Na(1) and Na(2) are different and

the fraction occupancies of the two types of sodium sites are a strong function of total Na

content.
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Figure 4.3. a)The general structural characteristics and compositional sta-
bility regions of the four NaxCoO2 phases, H1-H3, O1. Above the panel,
the sodium ion distributions are shown schematically. b). Fractional occu-
pancies of the two types of sodium sites.
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NMR study by Mukhamedshin et al has shown the magnetic properties of NaxCoO2

in sodium rich region for x>0.65 [12]. It shows the presence of Co3+ above doping x=0.65.

All the experimental results mentioned above lead to the question that if it is local moment

formation or spin state transition?

In our study, we focus on the region with x>0.8 and it relates to H2+H3 phase, where

Na(2) and Na(3) are partially occupied according to the fractional occupation. In the

sodium extreme rich region, we will only consider Na(2) sites. Na potential is taken into

Hamiltonian through the following equation with long range Coulomb screening.

(4.1) V (i) = Vd

NNa∑
I=1

n̂i√
|−→rI −−→ri |2 + d2

z

Vd is the potential strength. dz is the distance between Co and Na layers.

4.3. Itinerant and localized magnetism

In the sodium-rich region, we show that the enhanced electrostatic potential fluctua-

tions due to the disordered Na dopants lead to the coexistence of localized and itinerant

electronic states with inhomogeneous FM order, exhibiting nonmagnetic Co3+ patches,

AF correlated local regions, and FM clusters with AF domain walls. For very high Na

doping, the dilute Na vacancies enhance the strong correlation effects by increasing the

localization tendency of the carriers [13]. We consider the case of a few holes (Na va-

cancies) doped into the band insulator at x = 1, and find that the hidden correlation

effects are brought out upon the slightest amount of doping. Specifically, a single hole/Na

vacancy induces an S = 1/2 local moment. We address the interactions between the local

moments and the evolution into magnetic clusters and eventually to the macroscopic FM
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ordered state with decreasing Na doping and provide a theoretical description of neutron

[4], µSR [5] and NMR experiments [12].

We start with the Hubbard model for the relevant low-energy quasiparticle band of

approximate a1g character,

(4.2) H =
∑
i,j,σ

tijc
†
iσcjσ +

∑
i

Un̂i↑n̂i↓

where c†iσ creates a hole and U (∼ 5eV for the cobaltates [14]) is the on-site Coulomb

repulsion. To model the a1g band, we consider up to 3rd nearest-neighbor hopping

(t1, t2, t3)=(−0.202, 0.035, 0.029)eV [15]. The hole density ni = ni↑ + ni↓ = 1− xi with xi

the electron doping, is fixed by the chemical potential µ. Due to the small direct Co-Co

overlap and the large U and the 90◦ O-Co-O bond angle, the AF superexchange J in

the cobaltates is small [16], consistent with the value J ∼ 5meV determined by inelastic

neutron scattering [4]. We thus focus on the in-plane magnetism of the kinetic origin and

ignore the small interlayer exchange coupling that only enables the 3D magnetic order at

finite temperatures.

We solve the spatially unrestricted Hamiltonian in the strong correlated limit and

study the effects of the Na dopants. It is known that Na orders at x = 0.5 into
√

3 × 2

superstructure [17], which has been shown [15] to play an important role in alleviating

geometrical frustration for the emergence of the 2 × 2 AF ordered state observed by

neutron scattering [18]. For x 6= 0.5, Na ions are disordered, and occupy randomly the

preferred Na(1) and Na(2) sites directly above/below the Co or the middle of the Co

triangle respectively, with a ratio of 1 : 7 at x = 0.8 [17]. The electrostatic potential is
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Figure 4.4. The spin (colored arrows) and charge (local doping xi) distri-
bution in a typical Na(1) and Na(2) realization at x = 0.8 (a) and x = 0.97.
(c) The one-particle spectral intensity (top) and its spin resolved compo-
nents at x = 0.8.

described by adding to the Hamiltonian (4.2),

(4.3) HV = V
∑
i>j

n̂in̂j

|~ri − ~rj| + Vd

∑
i

NNa∑

`=1

n̂i√
|~r` − ~ri|2 + d2

z

,
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where Vd is the dopant potential strength, dz ' a the setback distance of Na to the Co

plane, and V the long-range Coulomb interaction that must be included to account for

carrier screening. Figs. 4.4(a) and 4.4(b) show the typical charge and spin distribution of

the inhomogeneous FM state at x = 0.8 and x = 0.97 on triangular lattices of 32×20 sites,

with V = 0.2eV and Vd = 0.6eV. Note that at such strength of (V, Vd), the ordered Na at

x = 0.5 only induces a weak charge modulation [15]. In contrast, the random distribution

of Na at x = 0.8 leads to large fluctuations in the local electrostatic potential, causing the

localization of the electrons and the formation of the nonmagnetic Co3+ clusters where

xi ' 1. This result is in line with NMR: the presence of Co3+ for x > 0.65 but not at

x = 0.5 [12, 19]. The one-particle spectral intensity in Fig. 4.4(c) clearly demonstrates

the coexistence of localized and itinerant band-like states. Interestingly, AF correlated

regions emerge at x = 0.8 in locally underdoped regions in Fig. 4.4(a). In these regions, x

is much smaller and the kinetic AF correlation imbedded in the Gutzwiller factor in Eq. (3)

prevails due to the alleviated AF frustration by charge inhomogeneity, as proposed for the

“0.5 phase” [15]. As a result, the average magnetic moment in Fig. 4.4(a) is reduced from

the fully polarized value to about 0.13µB per Co site, in qualitative agreement with the

finding of neutron scattering [4]. For stronger potential fluctuations, FM clusters with AF

domain walls emerge, as seen more prominently at x = 0.97 in Fig. 4.4(b). These glassy

behaviors arise because the localized states formed out of the majority spin band are

pushed above EF and occupied by holes, as shown in the spin-resolved spectral intensity

in Fig. 4.4(c).
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To further study the localized magnetism, we consider the limit x = 1 and ask what

happens when a few holes are doped into the band insulating NaCoO2 by the Na va-

cancy. The hidden correlation effects are brought out by the slightest amount of doping.

Fig. 4.5(a) displays the case of a single hole added by a Na(2) vacancy. Instead of adding

the hole into the minority of the spin-polarized bands, localized states are created and

pinned near the Fermi level (Fig. 4.5(a)) to accommodate the doped hole, leading to

the formation of the spin-1/2 local moment distributed near the Na vacancy as shown

in Fig. 4.5(b) for Na(1) and Na(2) respectively. The localized states induced by the Na

electrostatic potential [13] are spin-split by

(4.4) ∆i = εi↑ − εi↓ = (1/2xi)
∑

j

g↑ij〈tijc†i↑cj↑ + h.c.〉.

The latter has a localized profile whose amplitude Eb = ∆max−∆min is used as a measure

of the binding energy of the local moment. In Fig. 4.5(c), Eb is plotted as a function of

the bare Na potential Vd. The local moment develops (Eb > 0) for Vd as small as 0.2 eV.

Because the Na(1) vacancy is directly above a Co site, Eb is enhanced, making it easier for

the local moment to form near Na(1) vacancies. For even smaller Vd, it becomes difficult

for our finite size numerical calculations to discern the localized states and the values

of Eb, leaving open the possibility of self-trapped, spontaneous local moment formation

without the Na potential.

When the Na vacancies are isolated, the spin-1/2 local moments behave as free mo-

ments, contributing to significant spin entropy in the Na-rich part of the phase diagram.

As the vacancy density increases, i.e. as the average x reduces, the local moments begin

to overlap and their interactions become important. We find that nearby local moments
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have AF correlations. As shown in Fig. 4.5(d), since the AF frustration is alleviated by

the associated charge inhomogeneity, two Na(2) or Na(1) vacancies induce two AF cor-

related local moments with zero net magnetization. As the local density of Na vacancy

increases, FM clusters develop which eventually evolve into the macroscopic FM state.

Our findings provide a complimentary description of the evolution from local magnetic

clusters to macroscopic FM state observed by recent µSR experiments [5] and interpreted

in terms of a change in the Co3+ spin state that involves the higher Co-3d eg orbitals

[10, 20].

We conclude with a discussion of an outstanding puzzle in the ARPES experiments. A

large hole-like FS is observed at x = 0.8 with a volume much larger than what is expected

by the Luttinger counting in a PM state [21, 22]. A natural explanation is that this

corresponds to the minority spin band of the itinerant half-metallic state with in-plane

FM order. Such an interpretation, although in line with that of the neutron scattering

experiments [4], implies a filled majority band below the Fermi level which has yet to

be detected by ARPES. Our study suggests another possible scenario where the in-plane

FM order associated with the 3D A-type AF order does not develop on the 2D surface

at finite temperatures. The larger than expected FS comes instead from the loss of the

doped electrons due to Na-induced localization and are “taken out” of the t2g bands. For

example, a substantial fraction of the doped electrons on the surface can be localized

to form the nonmagnetic Co3+ similar to Fig. 4.4(a). This picture is appealing given

the recent finding by NMR of valence disproportionation associated with significant Co3+

formation for 0.65 < x < 0.75 [12]. Interestingly, the same picture within the present

theory suggests that in the extremely sodium rich phases x > 0.96, it is the localization
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of a fraction of holes near the Na vacancies that gives rise to the local magnetic clusters

observed by µSR experiments [5]. Further studies are clearly needed to better understand

the coexistence of itinerant and localized magnetism in the sodium rich cobaltates.
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Figure 4.5. (a)Spectral intensity of one-hole doped by a Na(2) vacancy at
Vd = 1.0 eV. (b) Spin and charge distribution of the S=1/2 local moment
near a Na(1) and a Na(2) vacancy. (c) The local moment “binding energy”
Eb as a function of Vd induced by a Na(1) or Na(2) vacancy at Vd = 0.6
eV. (d) Spin/charge distribution around two Na(1) and two Na(2) vacancies
shows AF correlations between the local moments.
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CHAPTER 5

Novel Electronic States at x=0.84

From the experimentally established phase diagram [1], strong correlation effects have

been observed in the sodium rich regime even though when x=1, NaCoO2 is a band

insulator. Sodium potential also plays an important role in the formation of various

electronic states[2, 3]. At x=0.84, a special sodium ordering is reported[4]. Within

the framework of an extended Hubbard model on the triangular lattice, we study the

formation of unconventional and inhomogeneous electronic states. These findings are

compared with recent experimental observations around x=0.84 [4, 5, 6, 7].

5.1. Na ordering and Na potential

Na ordering has been investigated in a wide range of doping levels [8]. From x = 0.15

to x = 0.75, a series of ordered Na superlattice has been found through electron diffraction,

as in Fig. 5.1. The Na contents order in different structures rather than simply maximizing

Na-Na separation. These superstructures provide a possibility of linking Na layer ordering

to the properties of cobaltates.

Previous evidence has shown that the interplay between Na ordering and strong cor-

relation plays an important role in the formation of the insulating state at x=0.5 [3].

From Fig. 5.1(b), at x=0.5 it shows a
√

3 × 2 chain ordering in sodium layers, which is

also the strongest superstructure in all investigated areas [8]. This ordering feature is

also observed by Huang et al in 2004 [9]. It is known that at x = 0.5 this cobaltates
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Figure 5.1. Models for the Na planes of NaxCoO2 with x = 0.15 ∼ 0.75.
Both the Na planes on z = 0 and z = 1/2 are given. Occupied Na positions
are given as black dots and Na vacancies as open circles. X indicates the
positions of the underlying Co atoms. Dashed lines indicate that only one
of the lines on z = 0 and z = 1/2 is occupied. The basic hexagonal unit cell
is indicated by dotted lines. Below the models are the calculated diffraction
patterns for a thickness of 10 nm and 200 kV.

shows an insulating behavior whereas the others show a metallic behavior. The
√

3 × 2

is arranged in a staggering way between 2 adjacent sodium layers. The sodium potential

exerting on the Cobalt layer is
√

3× 1 and the charges order in the same superstructure.
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Figure 5.2. Self-consistent x=0.5 states at different temperatures. From left
to right columns, charge- or spin-ordering patterns and unit cells; FS with-
out thermal broadening showing the anisotropic gapping of the FS; inten-
sified FS showing the band folding along zone boundaries of corresponding
charge or spin order.

The symmetry breaking makes AFM ordering energetically favorable by alleviating frus-

tration via weak charge inhomogenetiy, and also enables successive
√

3a × 1a AFM and

2a× 2a charge- or spin-ordering transitions at low temperatures, shown in Fig. 5.2. The

Fermi surface is truncated by the 2a × 2a zone boundary into small electron and hole

pockets.

Marianetti et al also propose that Na potential is a key element in forming the corre-

lation in the sodium rich regime where strong correlation is observed by experiments, by
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LDA + DMFT. To mimic the sodium potential, a fraction of (1-x) sites have a potential

ε1 while the others have a potential ε2. At x=0.75 a Curie-Weiss tail is formed, but this

behaviour is not developed at the Na poor region, e.g. x=0.3.

Na0.84±0.01CoO2 is one of the special doping levels, the limit of single phase stability

for high temperature melt growth. Above this limit, phase separation emerges. In 2008,

Chou et al [4] studied the material by synchrotron x-ray diffraction on single crystals. A

√
13 ×√13 Na order is discovered based on the formation of divacancies [4, 10], shown

in Fig. 5.3. This result leads to a coexistence of local moments and itinerant carriers. All

these results are important steps to understanding the rich properties of cobaltates [1].

The formation of
√

13×√13 superlattice proposed by the paper of Chou et al consists

of divacancy structures. This idea of divacancies is based on the study of Roger et al [10],

which proposes a dopant clustering concept. They use single-crystal neutron diffraction

supported by numerical simulations to determine the long-range three-dimensional super-

structures of ions. Their study of sodium ordering and its associated distortion field is

purely governed by electrostatics. The organizational principle is to stabilize the long-

range ordered charge droplets at some simple fractional fillings. In Fig. 5.4(a), a divacancy

structure is shown at the bottom left corner. It is formed by taking out 3 Na2 dopants

and replacing them by a Na1 dopant. The resultant divacancy cluster has net charge

2e− spread over three sites and has the lowest stabilization energy than vacancies three

to four sites apart. The formation of trivacancies and quadrivacancies follows a similar

process. Fig. 5.4 (b) is a comparison of ground-state energies of superstructures for differ-

ent dopant clusters. Although the result is different from Chou et al ’s conclusion which
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Figure 5.3. Proposed crystal structure of Na0.84CoO2. a) and b) are the
2D view of the Na layers A and B with superstructure of

√
13 × √

13,
shown by solid lines. c) shows the corresponding 3D structure of in-phase
stacking, although there is no way to tell in-phase and out of phase stacking
in experiments. There is a 180◦ rotation between two adjacent layers.

has the trend of increasing cluster size with decreasing x [4], the concept of Na dopant

clustering plays an import role in charge ordering, transport, and magnetic properties.

The effect of Na dopant potential is added to the Hamiltonian in the form of

(5.1) HVdopant
=

∑
i

Vd

NNa∑
I=1

n̂i√
|−→rI −−→ri |2 + d2

z

where Vd is the potential strength and dz ' a is the setback distance of Na to the Co

plane.
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a)

b)

Figure 5.4. a) Energy for two vacancies decreases with increasing distance
d, in the units of the hexagonal lattice parameter a, as expected for Coulomb
repulsion. The divacancy structure has lower stabilization energy than other
structures simply with sites apart. (b) Ground-state energies of super struc-
ture for mono-vacancies (black), divacancies (red), tri-vacancies (blue) and
quadri-vacancies (green). The inset shows the x=0.8 tri-vacancy phase.

5.2. Experimental evidence of coexistence of localized moments and

itinerant carriers

Chou et al ’s paper proposes a picture of coexistence of localized moment and itinerant

carriers. They argue that in the
√

13×√13 structure x = 0.84 is equivalent to
2

13
holes
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in the band. The strong potential of the divacancy can localize one hole, while the other

one remains itinerant. If the Kondo coupling dominates, the one hole localized one hole

itinerant scenario might become a Kondo insulator. Otherwise it would be a metal with

antiferromagnetically ordered moments. However, the ground state is observed to be

a ferromagnetic metallic state, as opposed to an antiferromagnetic metal or a Kondo

insulator.

Chou et al argues that the ferromagnetism is induced by the following features. The

extrapolated γ from temperature above the magnetic transition TN is 24 mJ/Co-mole,

corresponding to an effective mass 35 times of that of a free electron and a nearest band

hopping integral of 14 meV. This is a 6-7 times mass enhancement regarding to LDA

tight binding fit. If the number of carriers is assumed to be
1

13
per Co, the Fermi

temperature is 87 K, an exceptionally low energy. All these numbers can lead to an

expectation of ferromagnetism. The narrow band with low energy favors spin polarization

to gain exchange energy at the expense of kinetic energy, due to Stoner mechanism. This

overcomes the kondo coupling and will form a fully polarized ”half-metal”. They also

propose the fully polarized FS overlaps with the reduced Brillouin zone boundary. This

intersection will give rise to small hole pockets and electron pockets.

Other evidence of small FS pockets at x = 0.84 has been observed by Balicas’ group [5].

Their observation through the Shubnikov-de Haas effect indicates that the area of FS is

less than 0.6% of the 1st Brillouin zone, according to Onsager relation F = A(~/2πe)[11]

and measurement shown in Fig. 5.5(a). It shows 2 main detected frequencies, which

corresponding to Fermi surface area around 0.6%. While in a paramagnetic state, the FS



87

(a)

(b)

Figure 5.5. FS area measurement and topology scheme at x=0.84. a) Am-
plitude of the fast Fourier transform normalized by temperature T for sev-
eral values of T. Two main frequencies are detected: F1 = 125 T, F2 = 190
T. b)The superlattice-induced new Brillouin zone (blue dotted line) is 1/13
of area of the original FBZ, and the spin-polarized Fermi surface for 2 and
1 hole per unit formula, respectively, in black and purple. For 1 hole per
reconstructed unit cell, the originally depicted spin-polarized Fermi surface
intersects with the new Brillouin zone.

area at x=0.84 is predicted to be around 7.7%. The proposed Fermi topology is plotted

in Fig. 5.5(b), although the location of the small pockets can not be observed directly.
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5.3. Charge ordering with small sodium potential

We first consider cases at x=11/13' 0.84 without Na potential based on the one-band

t-U-V model on a triangular lattice.

(5.2) H t−U−V =
∑
i,j,σ

tijc
†
iσcjσ +

∑
i

Un̂i↑n̂i↓ + V
∑
i>j

n̂in̂j

|−→ri −−→rj |

where c†iσ creates an a1g hole with spin σ. n̂i is the hole density operator. U is the

on-site Coulomb repulsion. V is long range Coulomb repulsion and considered to help the

formation of charge ordered phases [3, 12]. Without V, the system is always considered

as a uniform paramagnetic or ferromagnetic state.

Based on the t-U-V model, our result shows Na11/13CoO2 is a uniform PM state. At

x=11/13, if charges on the triangular lattice order according to a
√

13 ×√13 structure,

the reconstructed 1st Brillouin zone will have an area of 1/13 of the original zone. This

will intersect with the paramagnetic Fermi surface since the FS is a center pocket of 1/13

area of the original 1st BZ according Luttiger theorem [13]. Previous study has found

that a spontaneous charge and spin ordering formation when the FS intersects with the

reconstructed 1st Brillouin zone at x=1/3 [3]. However, the charge and spin sectors are

coupled in the sense that the removal of inhomogeneity in either reinstates the uniform

PM phase.

The topology scenario of the x=11/13 case can be generalized at doping levels of

x = p/q when both p and q are integers. According to Luttiger theorem, the area of the

FS over the 1st BZ is 1/
2q

q − p
. In these cases, if the charge orders in a

√
2q

q − p
×

√
2q

q − p

superstructure, the 1st BZ reconstructs into an area same as the PM FS. The nesting of
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the FS and the reconstructed zone opens a gap across the Fermi level. A previous example

is given at x=1/3 and we will show the formation of novel electronic states at x=11/13,

when
√

13×√13 superstructure appears.

The
√

13×√13 structure is detected by Chou et al [4] at x=11/13 in each sodium layer

and how the stacking order develops is unknown. We apply a in-phase stacking sodium

potential to cobalt layers by adding sodium potential in Eq.(5.1). In-phase stacking is

defined as Na1 in two alternating sodium layers are along the same c-axis with Na2 sites

rotated by 60◦, as in Fig. 5.3. This configuration gives a
√

13 × √13 external potential

to the cobalt sites. Each unit cell is a tilted rhombus with the center of the divancies at

the its corners. The center of the divany consists of one Na1 replacing 3 Na2, so negative

potential troughs form at the corners of unit cells. They attract holes at these sites and

charges order in a
√

13×√13 way. Hamiltonian in the strong correlation limit is written

as

H =
∑
ijσ

gσ
ijtijc

+
iσcjσ +

∑
i,σ

εiσ(c+
iσcjσ − niσ)(5.3)

+ V
∑
i>j

n̂in̂j

|−→ri −−→rj | +
∑

i

Vd

NNa∑
I=1

n̂i√
|−→rI −−→ri |2 + d2

z

where, gσ
ij is the Gutzwiller renormalization factor,

(5.4) gσ
ij =

√
xixj

(1− niσ)(1− njσ)
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εiσ is a spin dependent local fugacity that maintains the equilibrium condition and

local densities upon Gutzwiller projection [14, 15].

(5.5) εiσ = − 1

2xi

(
niσ

1− niσ

∑
j

gσ
ijtij < c+

iσcjσ > +
∑

j

gσ
ijtij < c+

iσcjσ >)

Imposing such a super structure with a weak Vd, i.e. Vd ≤ 0.2 eV, the originally

uniform band dispersion folds into the reconstructed BZ and forms 13 quasi-particle bands,

as shown in Fig. 5.6 (a). The nesting opens a small gap but the first and the second bands

still cross the Fermi level. From Fig. 5.6(b), it shows that a semi metal state exists with

hole-like pockets at the BZ corners and electron-like narrow pockets along BZ sides. In

Fig. 5.6(c), it shows that a little stronger Vd, i.e. Vd > 0.2 eV, opens a gap wide enough

for the system to transit into a band insulator.

In a usual situation, when each unit cell of this superstructure contains of 2 holes,

the lowest energy level will accommodate them and the system becomes a band insulator.

This state is easily formed with very weak charge ordering in our discussion. However,

experiments show a metallic behaviour at this doping and the size of the FS suggests a

scenario with one local moment and one itinerant carrier [4, 5]. In the following study, we

would like to propose that above magnetic transition TN such a state exists as a Curie-

Weiss metal with the lowest energy level filled by one local moment due to the strong

on-site U. Below TN , as ferromagnetism comes in , the local moments can still appear

but solely due to Pauli principle.



91

 E
n

er
g

y
 (

eV
)

a)

b)

c)

Figure 5.6. PM states with small Vc = Vd = V at x=11/13. a) Band
structure with V=0.2 eV, semi-metal. b) FS of the semi-metal at V=0.2 eV.
Red lines indicate the reconstructed 1st Brillouin zone. c) Band structure
with V=0.3 eV is totally gapped and becomes a band insulator.

5.4. High temperature PM order

A-type antiferromagnetic ordering has been found at x=0.82 around T = 20K and

magnetic transition is observed at T = 22k [6, 16]. At dopings above the insulating state
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x=0.5, Curie-Weiss like χ and linear temperature dependent resistivity has been found up

to x=0.75, which is called a Curie-Weiss metallic state [1]. Strong correlation is obviously

playing an important role in the sodium rich regime. We investigate the possible states at

high temperature before the magnetic phase transition, and proposed that the state with

one local moment and one itinerant carrier is formed as a result of the interplay between

Na ordering and strong correlation.

As discussed in the previous section, the 1st reconstructured BZ overlaps with the

PM FS due to the existence of superstructure at 11/13. The band dispersion consists of

13 mini bands folded into the 1st BZ. With a minimal amount of sodium and long range

coulomb potential, the system can go into a band insulating state with the top band being

fully filled by 2 holes per supercell unit. This means if hopping exists among all the sites,

the top band is a band-like structure filled by 2 energy degenerate holes due to Pauli

principle.

Instead, we propose a state with only one local moment filling the top band. In this

case, there is no hopping from the local moment and top band is totally localized with

no band dispersion. From the structure of sodium potential, corner sites take the lowest

potential and are easily localized. No hopping between the these sites and the rest sites.

From the perspective view of the Hamiltonian, hopping involving the local sites is taken

out of the calculation. Since the hole density ni becomes 1 at these sites, it is no longer

a variable. When
∂H

∂ni

is calculated to find the minimum energy as in Eq.(5.5), εi of local

sites can not be determined this way and is set to be zero.

Following this method, Fermi topology and band structure are shown in Fig. 5.7 with

different parameters Vc = Vd ≡ V . The top band is a totally flat line representing the
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localized energy level. The occupation at this energy level is 1 local moment with arbitrary

spin, since the spins are degenerate. The second hole in this unit cell resides at the second

top band and remains itinerant. The second mini-band is half filled and crosses the Fermi

level. Fermi-surface consist of small pockets at zone corners and one large pocket in the

center. According to Luttiger’s theorem, the total area of pockets should be half the area

of the reduced zone. Across different potential ranges, the local energy level is adjusted

with different on-site sodium and coulomb potential, as in Fig. 5.7. However, since the

second band is always half-filled, the FS shapes remain unchanged. The structure of the

FS is determined by the shape of the second mini band, so it is different from a single

center pocket FS in the uniform half-filled case [17].

Since the wavefunctions of the state with 2 itinerant holes and the state with one

itinerant and one local holes are different, there is no connection between them in the

calculation. In order to argue the rationality behind the result above, the energy levels

of these 2 states are presented and compared from V=0.2 eV to 1.2 eV in Fig. 5.8. At a

low V range, the picture of 2 itinerant holes dominates. The crossover happens at V=0.8

eV. In summary, the system is a semi-metal below V=0.2 eV, a band insulator between

V=0.2 eV and 0.8 eV, and a metallic state with one hole localized above V=0.8 eV.

This novel metallic state in high potential range is justified by the strong correlation

U. In our infinite U limit, double occupation is totally projected out by the Gutzwiller

factor. If there is more than one hole localized at the lowest energy level, it translates

into a state with more than 1 hole on the local sites, which is prohibited due to large U.

Generally, in a Kondo problem, when the itinerant states and the local states start

to couple, local states becomes unstable under a critical Kondo temperature TK . Above
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Figure 5.7. Band Structure and Fermi surface of PM state with one local
moment and one itinerant carrier. K’ indicates points at the corner of the
reduced 1st Brillouin zone. M’ indicates points in the middle of 2 near-
est K’ points. The system maintains 6-fold symmetry. a),b)States with a
parameter V=0.6 eV c),d)States with a parameter V=1.2 eV

this temperature, the coupling is not relevant and local states stay. It seems puzzling,

but apparently, in this sodium rich region, the scattering is not important and TK is low,

so that doping around x=2/3 the local states are stable [18].

In conclusion, the metallic behaviour above TN can be originated from 2 possibilities.

One is the semi-metallic state with extremely small V≤0.2 eV. The other way to be metal-

lic is to form a state when half of the holes are local moments following the superstructure
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Figure 5.8. Energy comparison between the insulating state and the state
with one local and one itinerant holes, as a function of V.

and are decoupled from the rest itinerant carriers. Such a state exists when V is relatively

large, i.e. V>0.8 eV.

5.5. Low temperature FM order

In the sodium rich region x>0.75, NaxCoO2 develops a magnetically ordered ground

state [1]. For single crystals with x=0.82, A-type antiferromagnetism with antiferro-

magnetically coupled ferromagnetic layers has been reported below T=20K [16]. In the

low temperature range, our 2-D Hubbard model + strong U is ferromagnetically ordered
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when x>0.67 [19]. The same U also lifts the spin-degeneracy under
√

13 × √13 super-

structure. In Fig. 5.9(a), the spin split bands are folded inside the reduced zone, forming

26 quasi-particle bands in total.

With
√

13 × √13 superstructure, charges order according to the potential structure

with the corner sites of the formula units attracting most holes. The FM Fermi surface

is twice the size of the reduced 1st zone and cuts through the 2nd reconstructed zone

boundary, as shown in Fig. 5.9(b). FS forms 6 pockets around K ′ points and one central

hole by nesting, for the small sodium potential range V = 0.6 eV. From the band structure

in Fig. 5.9(a), the system is fully polarized and one spin totally sinks below the Fermi

level. The top band is completely filled, and the second and the third band cross Fermi

level and form a semi-metal. The central pocket is an electron pocket by the crossing of

the second band. The third band crossing makes hole pockets around K ′ point.

Increasing V makes the sodium potential with the long range Coulomb screening at

corner sites more negative, attracting more holes. With a stronger V = 1.2eV , the hole

density at these sites approaches 1 and this localization effect makes the top band narrower

and closer to a straight localized energy level than smaller V. The total band structure

shown in Fig. 5.9(c) is similar to the one with V = 0.6 eV and stays at a ferromagnetic

semi-metallic state. FS pockets however shrink comparing to the V = 0.6 eV state due to

band narrowing. In either case, each BZ contains 2 corner pockets and one center pocket

on average. The area of the central electron pocket is approximately twice of that of each

corner hole pocket.

In FM states, with certain amount of V , one moment can be localized with hole density

approaching 1 and the other hole carrier remains itinerant. However, the formation of this
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Figure 5.9. Band structure and Fermi surface of FM state with top band
filled by one hole with spin σ. a),b)States with a parameter V=0.6 eV
c),d)States with a parameter V=1.2 eV

scenario with one local and one itinerant hole is totally due to Pauli blocking, not strong

U as in the PM case at high temperatures. Although the single a1g band is polarized due

to strong correlation U [17], the prevention of the 2nd hole from localizing on the same

site is determined by Pauli principle. The spin split band can only be filled by one hole

and it is only due to obeying Pauli and not related to the strong U limit.

Thus our conclusion is different from Chou et al, in which they conclude the ferro-

magnetic metallic state is from the suppression of Kondo coupling by Stoner mechanism
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a) b)

Figure 5.10. A Kondo insulator with large Vc. a) Band structure with 2 hole
localized and AFM correlated. b) Madelung potential on real-space cobalt
sites. The first hole is localized on the blues sites. The second localized
hole can reside on any equivalent brown points within one unit cell due to
degeneracy.

[4]. We believe the origin of the this state is Pauli principle prohibiting the 2nd hole from

localization.

We would also like to discuss the effects of long-range Coulomb correlation in super-

structures. Long-rang Vc is equivalent to the intra-orbital U’ between quasi-particles as

in the multi-band calculation [17]. Increasing Vc enhances the correlation between local

moments and itinerant sites. With an intermediate Vd=0.6 eV and a larger Vc=2.0 eV,
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the second hole localizes inside the unit cell but not on the corner sites due to Pauli-

blocking. The Madelung potential is plotted in Fig. 5.10(b). Since they are energetically

degenerate, the final state is a glassy state with the second hole locating inside any one

of the degenerate sites. The 2 local moments are antiferromagnetically correlated, from

Fig. 5.10(a) and the system forms a Kondo insulator.

5.6. Thermal properties of Na11/13CoO2

We put some numbers to demonstrate the thermal properties at x=11/13. Above

TN ∼ 22 K, the specific heat is well described by C ∼ γT + βT 3 with the first term indi-

cating electronic contribution and the latter representing phonon contribution, shown in

Fig. 5.11(b) [7]. Extrapolating the linear contribution above TN gives γ ∼ 24 mJ/mol·K2.

This value is equivalent to an effective mass m∗ = 35me comparing to a spin unpolarized

parabolic band [4]. Schulze et al also measured this value by performing µ-SR on both

polycrystalline and single crystalline samples. There are 2 phase transition existing and

γ of intermediate temperature is extracted from the linear part above the first transition

temperature TN ∼ 22 K. γ is read around 25 mJ/mole ·K2 in Fig. 5.11(c)[6].

Without sodium potential, the tight-binding model with hopping integrals fit to LDA

bands at x=0.3 gives a γ ≈ 4.2 mJ/mole · K2, shown in Fig. 5.11(d). The electronic

contribution is totally linear. This number misses a factor of 2-3 comparing to DMFT

calculation, shown in Fig. 5.11(a)[20]. Their specific heat coefficient is proportional to

the ratio ρ(ef )/Z, where ρ is a local spectral function and Z is the quasiparticle weight

proportional to x. However, our band renormalization from Gutzwiller factor is
2x

1 + x
,
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Figure 5.11. Thermal properties of NaxCoO2 a)γ calculation from DMFT
method [20]. Different lines indicate different crystal field splitting values.
At large U values, γ is around 14 mJ/mole K2 b),c) Experimentally observed
specific heat linear coefficient.[6, 7] d) Calculated electronic contribution of
C/T at x=0.3 and x=0.84 with different parameters V. The linear coefficient
is extrapolated from the high temperature range.
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proportional to 2x. This difference gives rise to the factor of 2 in the specific heat calcu-

lation.

With superstructure
√

13 ×√13 at x=11/13, in the high temperature PM state, the

thermal property result is shown in Fig. 5.11(d) and only electronic contribution is taken

in to account. The C/T diverges in the low temperature range. Extrapolating γ from

high temperature at V = 1.2eV gives 14 mJ/mole ·K2, which is equivalent to an effective

mass 21 times of that of the free electron. Comparing to experiments results [4, 6, 7],

this number is smaller by a factor of 1.5-1.7. From our previous conclusion at x=0.3, this

difference could be rooted in our original model of Hubbard model + strong U.

5.7. Similar superstructure at x=12/13

For x=12/13, if the sodium divacancies still exist, it can form a 2
√

13×√13 superstruc-

ture on each layer. This structure satisfies the doping fraction. For 2 alternating layers

above and below a Co layer, if they are out of phase stacked, as shown in Fig. 5.12(a),

the sodium potential exerted on the Co layer still follows a
√

13 × √13 superstructure.

Each formula unit consists of 13 sites and the filling fraction of holes is 1/13.

In the high temperature range, paramagnetically ordered state have one hole per unit

cell. The band structure is shown in Fig. 5.12(b). The top band is very narrow and half

filled, resulting a nonmagnetic metal. In the low temperature range, as in Fig. 5.12(c), the

system is spin split and each quasi-particle band accommodates a hole. The filling fraction

of 1 hole per supercell makes the top band fully filled and becomes a band insulator.
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a)

b)

c)

Figure 5.12. a) Sodium arrangement of 2
√

13×√13 superstructure in each
layer. Solid dots and empty circles represent sodium ion in two adjacent
layers. The blue ones are Na1 and the green ones are Na2. b) Above
magnetic transition TN , PM metallic state with 1 hole per super unit. c)
Below TN , FM state is filled by 1 hole per super unit and becomes a band
insulator.
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5.8. Conclusion

Despite the proximity to the band insulating state at x=1, the strong electronic cor-

relation U plays an important role in the formation of unconventional electronic states in

the sodium rich regime. Starting from Hubbard model plus the strong correlation limit, a

sodium superstructure is taken into account. Below TN , the system is ferromagnetically

ordered. Na structure induces charge order. Brillouin zones reconstruct and nest with

FS, forming a semi-metallic state. At temperature above magnetic transition TN , the

interplay of strong electronic correlation and
√

13×√13 sodium order at x=11/13 leads

to a state of 2 holes per supercell, one localized and one itinerant. The system remains

as Curie metal, but the statement can only be made at this doping with experimental

observations of the superstructure. Even the well known phase diagram of NaxCoO2 [1]

are measured at discrete doping levels, in which superstructures are always present. These

doping levels are believed to be stable.
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