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We derive asymptotic expansions for semiparametric adaptive regression estima- 
tors. In particular, we derive the asymptotic distribution of the second-order ef- 
fect of an adaptive estimator in a linear regression whose error density is of 
unknown functional form. We then show how the choice of smoothing param- 
eters influences the estimator through higher order terms. A method of bandwidth 
selection is defined by minimizing the second-order mean squared error. We ex- 
amine both independent and time series regressors; we also extend our results to 
a t-statistic. Monte Carlo simulations confirm the second order theory and the 
usefulness of the bandwidth selection method. 

1. INTRODUCTION 

In estimation problems where a Gaussian assumption on the underlying distri- 
bution of the data is inappropriate, the so-called adaptive estimator provides an 
alternative to the conventional Gaussian maximum likelihood estimator (MLE) 
by replacing the Gaussian density function with a nonparametric estimate of 
the score function of the log-likelihood. It has been proven that an efficiency 
gain over the MLE can be achieved by adaptive estimators in many economet- 
ric models. Adaptive estimation was first studied by Stein (1956), who consid- 
ered the problem of estimating and testing hypotheses about a parameter in the 
presence of an infinite dimensional "nuisance" parameter. Beran (1974) and 
Stone (1975) considered adaptive estimation in the symmetric location model, 
whereas Bickel (1982) extended this to linear regression and other models. This 
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latter work provided a starting point for much future work in this area. Manski 
(1984) studied adaptive estimation in nonlinear models, Kreiss (1987) consid- 
ered stationary and invertible autoregressive moving average (ARMA) models, 
Steigerwald (1992) studied linear regression with ARMA error, and Linton (1993) 
considered the case of linear regression with autoregressive conditional hetero- 
skedasticity (ARCH). Jeganathan (1995) extended the theory to nonstationary 
models with i.i.d. error, and Hodgson (1998) further studied this case but with 
ARMA errors. 

Much of this literature has been devoted to first-order theoretical results 
and has used devices from mathematical statistics, such as sample splitting 
and discretization, that do not appeal to practitioners. As we argued elsewhere 
(Linton, 1995), the first-order asymptotics by no means always provide a good 
approximation to the sampling behavior of the semiparametric estimators; for 
confirmation of this see the simulation evidence in Hsieh and Manski (1987). 
Furthermore, computing the semiparametric estimates requires the selection 
of a smoothing parameter h, called the bandwidth, that determines the effec- 
tive degree of parameterization taken by the nuisance function for given sam- 
ple size n. Although the first-order approximation does not reflect the choice 
of h(n), the finite sample performance of the estimators depends greatly on 
the choice of bandwidth. 

We shall use higher order expansions as a means to solve some of the prob- 
lems presented by the first-order theory. Higher order expansions have a long 
history of application in econometrics (see, among others, Sargan, 1976; Phil- 
lips, 1978; Rothenberg, 1984). Applications of higher order approximations to 
bandwidth choice in semiparametric models have been studied by Hardle, Hart, 
Marron, and Tsybakov (1992), Linton (1995, 1996, 1998), Linton and Xiao 
(1997), Nishiyama and Robinson (1997), Powell and Stoker (1996), and Xiao 
and Phillips (1996) among others. In this paper, we derive higher order expan- 
sions for an adaptive estimator in linear regression. We do not require the error 
to be symmetrically distributed. In fact, we show how choices of smoothing 
parameters influence the semiparametric adaptive estimator by deriving the as- 
ymptotic distribution of the second-order effect. This distribution reflects the 
bandwidth and kernel used and suggests a method of bandwidth choice. We 
develop rule-of-thumb plug-in bandwidth selection methods for the estimation 
problem that are convenient to implement and reasonably insensitive to the true 
underlying density. We also extend the analysis to the t-ratio and to the case of 
regressors that are not strictly exogenous. The adaptive estimator is quite prom- 
ising relative to other semiparametric procedures because the nonparametric 
estimation only involves one dimensional smoothing and so does not suffer from 
the curse of dimensionality. In this case, the kernel procedures we employ can 
work well provided they are implemented appropriately. The main purpose of 
our asymptotic approximations is to show how the semiparametric adaptive es- 
timator is affected by the smoothing parameters to a higher order and to pro- 
vide the tools to effect good implementation. Throughout we allow the error 
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density to be zero at the boundary, which is required to make the situation "reg- 
ular." This necessitates the use of a trimming function. We use the smooth trim- 
ming adopted in Andrews (1995) and Ai (1997). 

The paper is organized as follows. The model and estimators are described 
in the next section. Results of the expansion are given in Section 3, and the 
details of these expansions can be found in the Appendix. In Section 4 we give 
some extensions to dependent regressors and t-statistics. Bandwidth selection 
is discussed in Section 5. In Section 6 we provide a small Monte Carlo exper- 
iment that evaluates the effectiveness of the second-order approximation. Sec- 
tion 7 concludes. 

For notation, we usef (j) to denote the jth derivative of a functionf and for a 
function g of functions a1,... ,ad, define the linear differential operator 

d g 

D,g(aj,...,ad)(X) = E - (a,,.. .,ad)(x).a> (x). 
j= I aj 

We also let |IAII denote the Euclidean norm of the array A = (ail i) defined 
as IJAII = (Ea7' i,)1/2. 

2. THE MODEL AND ESTIMATOR 

We consider the problem of estimating ,B E RP in the following regression 
model: 

yi / x?i + gS, i1,...,n, (1) 

where xi and -i satisfy the following assumptions. 

Al. s. and xi are independent and identically distributed (i.i.d.) random vari- 
ables and are mutually independent. Furthermore, E(xi) = 0, fx = E(xixT) is 
positive definite, and for some rq > 0 we have E[ x|J4 +,] < oo. 

A2. si has Lebesgue densityf(E), which has support supp(f) = [a, a], where 
a and a are unknown boundary parameters that satisfy -oo < a < d < oo and 
f(s) > 0 on (a, a). 

A3. The density function f(.) has uniformly bounded continuous partial de- 
rivatives up to the order r, and f(r)(E) is Lipschitz continuous on (a, a); i.e., 
there exists a constant c such that for all E, ? E (a, a), we have 

if(r)(8) -f(r)(a*)l C C|- |. 

Because we do not impose any additional restrictions on the density function 
of s, we cannot separately identify an intercept. Therefore, we shall absorb the 
intercept into the error density (which can have arbitrary mean) and assume for 
convenience that the regressors are mean zero in Al. Our other assumptions on 
the covariates are very weak. 
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In A2 we assume that f(e) has bounded support. Even though the second- 
order analysis on adaptive regression estimators can be extended to the case 
with unbounded support, our discussion in this paper is confined to the bounded 
support case, partly for simplification and partly for some technical reasons. 
We discuss this point further later (see Remark 5 in Section 3). Whenf is strictly 
positive on [a, a], the situation is nonregular. In some cases, this can lead to 
inconsistency of solutions of the likelihood score equations but perhaps to the 
potential for improved rates of convergence for other estimators. Therefore, we 
shall make an additional assumption. 

A4. f(s) and its first e - 1 derivatives vanish at a and a, whereasf( )(a) Y 
O and f () (a) 0 0 for some integer Q with 2 ? e < r. 

Assumption A4 guarantees that the density f vanishes at the boundary at a 
sufficiently fast rate so that the properties of regular estimation hold. In this 
case, one cannot estimate ,B at a rate better than root-n. See Akahira and Takeu- 
chi (1995) for a discussion of this issue. This assumption also implies that the 
Fisher information 

1(f) = fef(s)2f(E)ds, 

where f(c) = logf(s), exists as do various other integrals used subsequently. 
In the sequel we shall let /0 be the true parameter value. If the density f were 

known, the MLE of I3, denoted /,( could be obtained by setting the following 
average score function, 

I n 

s(/3) = s(,83;f) = - E Si (/;f) 
n i=1 

=__ (2) 

equal to zero, assuming an interior solution of course. Here, for any parameter 
value ,, i(/3) = yi -T8xi. This method works well in regular situations but 
can lead to inconsistent estimates in some cases of interest to us (for a discus- 
sion of this issue, see Bickel, 1975). An alternative method is given by taking 
one Newton-Raphson step from a preliminary root-n consistent estimator /3. 
That is, let 

/3NR = / + (`3;f)-1s(/A;f) 

where f is a consistent estimate of the information matrix I= QxIj(f). For 
example, 

1 xT f"(?i (/3)) _ ( I n i=1 
- f (S(il)) f((/3)) 1 
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This method has been investigated in Rothenberg and Leenders (1964) and 
Bickel (1975). It is first-order equivalent to the MLE when the MLE is consis- 
tent, and it has the added advantage of working in certain nonregular cases 
where the MLE is inconsistent. In econometrics it is common to refer to the 
estimator as linearized maximum likelihood or two-step, whereas the statistical 
literature uses one-step. In the regression case we study, there are many prelim- 
inary root-n consistent estimators: e.g., the ordinary least squares estimator. 

When f is unknown, we have to replace it by a nonparametric estimatef, say, 
and we thereby obtain the estimated average score function 

s(,) = s (/3;f )= Ei (3;f)=- -E x(3) 
nl j=1 n i=1 fe ') 

The semiparametric profile likelihood estimator I8PL sets ?(/3) equal to zero. 
Similar to the case where f is known, a one-step Newton-Raphson estimator of 
,8 can be obtained from a preliminary root-n consistent estimator ,8, 

/NR =- + 
f(;!)1s(f;f) (4) 

where 

n 
fill t (8-i ()) ti __i ( p))2 

n j=1 fi i(--i 0)) fi( ()2 

We shall work with this one-step estimator. An important ingredient in our es- 
timator is the error density estimatef. We consider the following leave-one-out 
kernel estimates of f(t) and f'(t) at the point t = 8(,3) using the residuals 
?j(/8) as data: 

fi 68()) = 
I 

EK( si(3 ?j8 ) (n -)hn j)i hn 

- E Khn1(/i() - 
( p8))v (n -1) i 

fi' (- i(p)) (n 1 )h, 2 1 K ( hn 

= I EKhn(ei(/) - ei(/8)) (n - 1) j # 

where Khn(t) = K(t/hn)/hn and Kh (t) = K'(t/hn)/h . Here, K(.) is the kernel 
function whose properties are given in Assumption A5, which follows, whereas 
hn is the bandwidth parameter. In principle, we may consider more general de- 
vices that use different bandwidth parameters in the estimation off andf'. How- 
ever, the additional smoothing parameter brings substantial complication to the 
higher order analysis, and we consider the simple case where the same hn is 
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used in estimating f and f ' (also see the subsequent discussion on trimming). 
Asymptotic results for the bias and variance in these nonparametric density es- 
timates are given in the Appendix. The estimator can be computed using only 
matrix computations, which makes it very fast. 

As in some other applications of kernel regression estimators, the random 
denominatorfi can be small and may cause technical difficulty. For this reason, 
we trim out small Ji as do Bickel (1982) and Manski (1984) (for a more recent 
discussion, also see Ai, 1997) . However, trimming brings an additional param- 
eter into the estimation and complicates the higher order expansions. 

We consider the following smoothed trimming (Andrews, 1995; Ai, 1997). 
Let g(.) be a density function that has support [0,1], g(0) = g(l) = 0, and let 

gb(x) b 

where b is the trimming parameter; then gb(x) has support on [b,2b]. Letting 

Gb(X) f gb(z)dz, 
-00 

we have 

O, x <b 

rx 
Gb(X) dz, b ' x ' 2b 

-x 

1, x> 2b. 

For example, if we consider the following Beta density 

g(z) = B(k + I) lzk(l - Z)k, 0 ? Z C 1, 

for some integer k, where B(k) is the beta function defined by 

B(k) = F(k)2/F(2k) Fr(k) is the Euler gamma function, 

then it can be verified that for b ? x ' 2b 

-1 (k !)2 k /k)2x - - 

Gb(X) = B(k ? 1)' (k) 
I (2k + 1)! 1 0(k-1l)!(k + I + 1)! b 

x 1- b k i' (1 

which is a (2k + 1)th order polynomial in (x - b)/b. The function Gb(x) is con- 
tinuously differentiable on [0,1]. This property is important because it allows 
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us to use standard Taylor series arguments, whereas indicator function trim- 
ming would preclude this. We now estimate the average score function (3) by 

in at 

n (8)= --E xi Gb (fi) (6) 
ni=l fi 

and the information matrix by 

n ll i [ti ( 2 b(i) -I; fi i[y - 

wherefi = f (?iC(O)) andf' - f'(--(i)). Thus we estimate /3 by the following 
one-step Newton-Raphson estimator: 

gB + Ifn(l; ) (n;f) (7) 

We study the higher order property of the adaptive estimator /3 given in (7). 
We make the following assumptions on the kernel function K(.) and the trim- 
ming parameter b. 

A5. The kernel K has support [- 1,1] and is symmetric about zero and sat- 
isfies fK(u)du = 1. It is twice differentiable on its support and K" is Lipschitz 
continuous, whereas K'(O) = 0. Furthermore, there exists an even positive in- 
teger q with 2 < q ' r - 3 such that 

fujK(u)du = 0, j = 1,...,q -1, and fuqK(u)du = 0. 

A6. The trimming function Gb(x) is (L + 1)th order differentiable for some 
L > 4. In addition, h -X 0 and nh5/log n -* oo, b -+ 0, and h/b -> 0 as n -i oo. 

These assumptions are similar to those used in the existing literature. Note 
that because b is of larger magnitude than h, our estimator will not suffer 
from boundary bias (for a discussion of boundary issues, see Muller 1988, 
pp. 32-36).1 

Define for any function K and integer q 

bt q(K) = !)f uqK(u)du; I K12 {f K(u) 2du1 

These notations will be used in the following sections for higher order 
asymptotics. 

3. THE EXPANSION 

Making a Taylor series expansion of n(/3) about Kn(/3O) and collecting terms, 
we obtain 
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n(,8 -0) =f_n(l30) 
- 

\I n (,8) 

+ {In,(/) 1 -fn(3) } n(s3) 

+ {I + (8)-l&n}(,pn*)}T(,-o) (8) 

where ,3* is an intermediate point, gn(fl) = ,n(13,f), and fn,(l) = fn(l f) 
whereas n(f8) = an(8)/a,8. A first-order analysis shows that \,n(p80) 
Op(l) and I,n(fo)10 = Op(l). Note that in the parametric case, both terms in (8) 
would be Op(n-112). In our case, this is true apart from some "trimming terms," 
which turn out to be of smaller order than our leading trimming terms (see the 
discussion that follows). Specifically, we obtain in the Appendix that 

n-A i) -i,n(80)Y' Is,n(/80) + T1 + OP(n 1/2), (9) 

where T1 is a small trimming term. 
We next derive an approximation to 11 (1 )1 fnn (i80). The random vari- 

ables AH = ?I(13o) - = and As =W{sn(,80) - s(/80)}, which are functions of 
nonparametric estimates of the residual densities and their derivatives, are now 
the two key elements in the expansion. Both quantities can be decomposed into 
the sum of different terms that are functions of the bias and variance effects in 
estimating the densities f and their derivatives. We show in the Appendix that 

As =7 X Op(hq) + Op ( (10) 

AH =TIH + O?(h?) + O ( n2h) + Op(1/2), (11) 

where f7 and TH are op(l) trimming effects (and note that Tj from (9) is of 
smaller order than Es and TH). These terms depend on the parameter b and on 
the boundary behavior of the densities f, g. By a geometric series expansion of 

In68(/)31 about I-1 we obtain 

I,(13o<1 = ?4y1 - 1A1 -IH fn + o (5n) = I-1 - IAH-T- + 
Op ) 

where 8,- max{hgq,l/q 3} is larger than n-1/2. Here, In= -s'(/30) and by 
the central limit theorem for independent random variables we obtain that In = 
I + Op(n-'12). This yields that 

- I0) = I s(13o) + I JI\H \fns(/30) + I-A ? +?(8n). (12) 

We then obtain the following stochastic expansion of the standardized estimator: 

\I (3-30) = X0 + T+ hq + V+o?p(f,) (13) 

where XO, 13, and V are zero mean Op(l) quantities and Tis an op(l) quantity. 
These quantities are defined in the Appendix. Here, XO = I' 'bns(fl30) is the 
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leading term, Tis the trimming effect, B reflects the bias effect in nonparamet- 
ric density estimation, and V reflects the variance effect in the nonparametric 
estimation. The random variables X0, T and B are all mean zero and sums of 
i.i.d. random variables, whereas V is a degenerate U-statistic. Note that 
,\n(X - 13o) = Xo + Op(n-1/2), where /3 is the infeasible estimator of ,3, so 
that 

(-,B 3) = + hqB3 ? + op(F+). 

The trimming effect T is an op(1) quantity whose magnitude is determined 
jointly by the trimming parameter b and the rate that the density f approaches 
zero on the boundary, but does not to first order depend on the bandwidth pa- 
rameter hn in the nonparametric density estimation. We are now ready to state 
the main result of the paper. 

THEOREM 1. Suppose that Assumptions A1-A6 hold and denote T = T+ 
hql3 + V/Nnhn. We have the following results. 

(la) If nh 2q+3 _ 0o, then 

h -q (T - ) =_: N(O, E 1), 

where 

[ kLq(K)[LR4M1R 1 +R-4M3R-1M3R-1 +2R-1M3-1M2-A 1] 

with I = fx1I(f) and M1 = Qxvar[Dqf(1)(e)], A42OxCOVWq t(1)(8) f(1) ()] 
MA3 =-ft,E [Dq t(2)(?] 

(lb) If n h2q+3 _> 0, then 

n 1/2h 3/2 (--T-) => N(O, 2), 

where 2 = ||K' 1I1S1kf -l with S1 = Qx(a- a). 
(1c) If hn = yn-1/(2q+3) for some 'y with 0 < y < oo, 

nql(2q+3) (T- T) => N (O, ), 

where E = 72qll + y-3 2. 

(2) Finally, 

b- (e - 1)/2 =T N(O, I), (14) 

where X, = (e, a,a, f ) f and p (o, a, d, f ) depends on both the trimming func- 
tion and the boundary behavior of the density. In particular, if we use the trim- 
ming function (5), 

wh(erec(Qf) = C(oeffcen(t) deenI+fn o (a) nd/e G 

where c (Q) is a coefficient depending on e and G. 
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Remarks. 

1. To minimize the "smoothing effect," we should set hn = yn-1/(2q+3) so that the 
second-order bias and variance effects are balanced, i.e., the "in probability" mag- 
nitude of - - Tis minimized. Note that 

D () =f(q+l) f(q)f(l) 
q 

f f2 

(2) f(q+2) f(q)f(2) f _(_) _f(q+) f_(q)f(_)_ 

q f2 7 =f-- f2 

The terms Mj, j = 1,2,3, arise from the bias of the nonparametric estimates f and 
f ', whereas the term SI comes from the variance of f'. Both terms are positive, 
and the overall effect is to increase variance above the first-order limiting vari- 
ance of /3. 

2. The magnitude of the variance of the trimming effect is 0(b(L-l)/Q), which in- 
creases with b and which is of larger order than h2q under our assumptions. The 
limiting variance of the trimming effect is given by (14); this depends on both the 
trimming function and the boundary behavior of the density function in a compli- 
cated manner. Nevertheless, the limiting variance of the trimming effect can be 
consistently estimated without knowledge of the parameter Q; specifically, b( 1)/ 

can be estimated by 

n~ ~~ ~[ -1tlt?)][ Gb( i)] )- (15) 

3. When f is strictly positive on [q, d], the situation is nonregular, and there is the 
potential for improved rate of convergence by other estimators. In this case, the 
two-step estimator 13 may not necessarily have adaptive properties, at least when 
a > -oo or a < oo, because it has too slow a rate of convergence; specifically, 
when f is known it is possible to obtain estimates with faster rate of convergence. 
However, ,B is consistent and asymptotically normal under our conditions in this 
case. Of course, trimming is no longer needed, and the untrimmed estimator then 
has the stochastic expansion Xo + h 13 + V / + o0(876). 

4. In the regular case, the two-step estimator ,B has the exact same second-order ef- 
fect as the profile likelihood estimator (for a similar result, see Linton, 1998). 

5. Finally we consider what happens when the error support is unbounded. As indi- 
cated in the analysis in the Appendix, in this case, the second-order variance ef- 
fect involves terms such as n-1 1/f() (which is related to the S1 term 
defined previously) that do not satisfy a law of large numbers if f has unbounded 
support like the Gaussian distribution. In fact, this random sequence grows to in- 
finity in probability at a rate determined by the tails of the distribution. In the 
Gaussian case, the rate is logarithmic. Thus the order in probability of the second- 
order terms will be larger and will depend on the tails of the distribution. Also, 
whether a central limit theorem for these terms operates remains to be seen. 
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4. EXTENSIONS 

4.1. t-Statistic 

In this section we derive the second order expansions for t-ratio statistics. Con- 
sider the linear hypothesis Ho: c T3 = co, where c is a p X 1 vector of constants 
and c0 is a scalar. The corresponding t-statistic is 

cA C-co c P -co 

se(c TI) in- CT_ )-C 

Under the null hypothesis that cT/- c0, t is asymptotically standard normal 
and first-order equivalent to the corresponding (infeasible) MLE based t-ratio 

c T\I- - ya 
i ~ CT I_ C~ 

where I -s'(/8). Under our conditions, 

[ T( )- C =]-1/2 = [CTI-XC]-1/2 - - [CT IC] 3/2C TIAHIlC 

+ higher order terms, (16) 

where AH is defined by (11). Denote the second-order effect as Tt - t and 
the op(l) trimming effect as tr. We have the following result. 

THEOREM 2. Suppose that Assumptions A]-A6 hold and that hn 
yn- 1/(2q+3) for some y with 0 < y < oo. Then, under Ho, 

nq(2q+3)(Tt- tr) =>N(O, ot2), 

where 

T I 

t crz s-y ,uq(K) 

c Tr C l4M2xlCCT f M3TI1C 3 C CTf +14 T-I 2 

{ (cTI-Ic)2 V cTi-, c 

The rate of convergence for rt - tr is the same as for r - T but the asymp- 
totic variance is slightly different, reflecting the estimation of the asymptotic 
variance of /3. The trimming terms are similar to those in Theorem 1. 

4.2. Time Series Regressors 

In this section, we extend our second-order analysis to more general models 
where the regressors contain lagged disturbances and thus are serially corre- 
lated. In particular, we consider the case where the regressor xi = (xi, . . . , xip)T 
satisfies Assumption Al'. 
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Al'. The stochastic process {xi} satisfies 

00 

Xi= 4X + E k?i-k, where Tk= (kl,.ifkp) ' (17) 
k=1 

where x, ei are i.i.d. random variables and are mutually independent. Further- 
more, there exists a p with 0 < p < 1 such that jqk] < pk for all j, k. We 
require also that E(xi) - 0, that Qx = E(xix7T) is positive definite, and that for 
some 'q > 0, we have E[1lxlI4+,7] < 00. 

This setting is general enough to include leading cases in time series models 
such as, say, stationary ARMA time series regression models. For example, we 
consider the case of a first-order univariate autoregressive regression described 
as follows: 

Yt ::::1yt- I + sst, t-=0,1,...,n, (18) 

where /31 < 1 and {si} are i.i.d. random variables with mean zero and finite 
variance o'J and satisfy Assumptions Al-A3 in Section 2. Then regression (18) 
corresponds to the special case in models (1) and (17) with x* = 0, and Tk = 
pk-1 

The semiparametric adaptive estimator ,3 is still consistent and asymptoti- 
cally normal for this specification of the covariate process. A similar expansion 

A 

for ,3 can be performed. The following theorem summarizes the higher order 
effects. 

THEOREM 3. Suppose that Assumptions A]' and A2-A6 hold and that hn- 
yn- /(2q+3) for some y with 0 < y < oo. Then, 

n q -(2q+3) ( I-) = 
N(O, *) 

where 

X q 2 7 (K) 

x [?T? I(M1 + F)-I + -M3R-M31T-1 + 27T-M31-4M2-] 

+ y-v3 j|K'j j2_-1SLI_-1, 

where I, M1, M2, M3 are defined as in Theorem 1 with % =E(x*x*T) + 

2(' -1 4k PkT) and 
00 x0 

F ( : E E TiT+j E2ID)E2[q (1)] 

Remarks. 

1. The second-order effects are similar in Theorem 3 to those in Theorem 1, but in 
model (17) the serial correlation in the regressors brings additional terms into the 
second order effect; these additional terms are summarized in r. They arise from 
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autocorrelations within some of the "bias related" terms. When 8 is symmetric 
about zero, F = 0, because Dqf(') is an odd function for q an even integer. 

2. In the special case that x* = 0 and Tk = 8k-1, 1/1 < 1, we reduce to the case of 
autoregression of order one, i.e., x, = Yt- , or, 

yt = 3yt- I + st, t = O,l,... ,n, 

and IT, M1, M2, M3 are defined as in Theorem 1 with 1x = o-,,2/(l - /32), 

whereas 

F = C-2 
2,8 E 2[Dq t (1) (0) 

5. BANDWIDTH SELECTION 

The results in the previous sections can be used to select bandwidth parameter 
hn for the semiparametric estimator /B and t-ratio. Here, we just consider the 
estimator in the i.i.d. setting, although similar comments apply to the test sta- 
tistic and to the dependent data design. The higher order effects generally de- 
pend on the bandwidth parameters and the trimming procedure. However, 
although in principle joint optimization over the trimming and bandwidth pa- 
rameters may be considered, the analysis would be substantially more compli- 
cated, not least because there is only a lower bound on b. In this paper, we 
confine our attention to the effect of bandwidth and keep the choice of trim- 
ming parameter fixed. Our analysis is not the best over all possibilities; how- 
ever, it provides a second best choice, and our analysis shows how the estimator 
is affected by these parameters. We shall try to minimize the second-order term 

- T = hqlI + n- /2h) h12V, which is mean zero and has asymptotic variance 

X [?T?1M1?fx + RlM3?T?'M3?V1 -F 2RlM3RlMjU1] 

+ h3 IK' 11RT1S1IT1 
nhn 

-2qQl+ 3 2 =hn h Q (K+ 

nhn 

Specifically, we define an optimal bandwidth as one that minimizes some scalar- 
valued convex loss function defined on the second-order mean square error ma- 
trix 1(h,). If the loss function is denoted as l(Y), then, by Taylor expansion, 
we obtain the following optimal bandwidth formula: 

= [ 3l vec{Q2} 1 n1/(2q+3) (19) 
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where I = l1(0)/avecl. Replacing the unknown quantities l, Q1, and Q2 in the 
bandwidth formula by their estimates l, Q1, Q2, we obtain a feasible optimal 
bandwidth choice. 

One way of estimating the optimal bandwidth parameter is the plug-in method. 
We consider the following rule-of-thumb method for bandwidth selection as in 
Silverman (1986) and Andrews (1991). We specify a parametric model for the 
error structure {fp(.; 0), 0 E O}, and estimators of these parameters, denoted 0, 
are used to obtain preliminary estimates of the density functions fp(. ; 0) and 
their derivatives f,()(;0). These preliminary estimates are then plugged into 
the formulae of I, M1, M2, M3, and S1 to get estimates of them. Let 

-~xxT pP p 

z=XXiT[( Xi ], 

A 1 n[ | f )f( )( ;(q+l) ) ;2 ) 1 F(i; 2 

= 1 Z EXi Xi | f ( ?i 6) 2 J LP f( ~ ) Ji 
1 n[[p f(q?2)(; 0 )t) 1i2f( )(; ) 

A 
n I Aiit(?;) 

M = ZXiX[1[t f (~~ L f~(;) 

n 2 [ fL(&i; 3) L gp(i; )f( 

n if (q (A . fq+I tv8 0) 

2 0 ,~~~~~~~~(~~) f 

S 1-~x.x T fP p 1( 

rl E i | f v( i; )3 j L t(^0 

n j=1 

xi~~~f( Axi (ql . A) fA A) 2 q 

where ?, - /3BTxi. Then let Q and Q2 be estimated by plugging, MJ, 
and S1 into the corresponding formulae. When the parametric specification is 
correct, these estimates are consistent. More generally, they will be not far 
from the truth. Plugging them into formula (19), we get an estimate of the 
optimal bandwidth. Under further conditions, this data-based method is second- 
order efficient in the sense that the corresponding effect Th - Thas the same 
asymptotic distribution as - T See Linton (1998) for a similar result. 

We now discuss further the choice of trimming parameter. Suppose we take 
b = h,l- for some 7 > 0. Then under Assumptions A1-A6 with q >2, we 
obtain the following expansion: 

~f~(fj -f3- ) = X0 + hnl 1)/2Q + h0B + 1 V ) 

E XiXT p ~ ~ ~ ~ nh 
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where To, 1, and V are all Op(1). The bias related term hqB is of smaller 
order than the trimming term, and the optimal choice of hn will now trade off 
h(1 -l)/2-12T against V/ nhn. The optimal choice of hn would be 

whose rate depends on -j and e, the first of which is arbitrary and the second of 
which is unknown. Note also that this bandwidth may not satisfy the restric- 
tions in A6 for some values of p. Therefore, this method is not appealing. 

If the trimming term is of some concern, one can estimate it using (15) and 
correct standard errors accordingly. 

6. MONTE CARLO RESULTS 

We conducted a Monte Carlo experiment to evaluate the second-order theory 
of the semiparametric adaptive regression estimators. We show by simulation 
how the semiparametric estimators are affected by the choices of smoothing 
parameters in finite sample. We evaluate the effect of a bandwidth selection 
criterion that minimizes the second-order mean squared error and the sampling 
performance of estimators that use different bandwidth choices. 

The model used for data generation was the following: 

Yi = 83xi + Ei, (20) 

with ,B = 1 and xi i.i.d. standard normal variates. Two different specifications 
of si were considered. In the first case, si are i.i.d. t-distributions with degree 
of freedom 5 and truncated at ?10. The second case considers the centered 
i.i.d. Beta(4,4) variates whose probability density vanishes on the boundary and 
is thus consistent with the requirements for regular estimation. See Devroye 
(1995) for a discussion on generating Beta random variables. These two spec- 
ifications of the residuals are denoted DGP(1) and DGP(2) in our analysis. The 
second-order effects for these examples are also calculated; readers are re- 
ferred to an early version of this paper (Linton and Xiao, 1998) for the formu- 
lae. Two sample sizes are tried, n = 100, 200. In our experiment, xi and Ei are 
independent of each other, and the number of replications is 500 in each case. 

The sampling performances of both the ordinary least squares (OLS) estima- 
tor and the semiparametric adaptive estimators were examined for each case. 
For the adaptive estimator, the following kernel function was used in the semi- 
parametric estimation: K(u) = 15(1 - u2)21( ul ? 1)/16. For purpose of com- 
parison, we also considered the MLE, which uses knowledge of the density 
function. In particular, we calculated the two-step Newton-Raphson estimator 
from the OLS preliminary estimator. 

Because we are especially interested in the effect of smoothing parameters 
on the finite sample performance of the adaptive estimators, different choices 
of bandwidth parameters were considered and compared. We examined the prop- 
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erties of the adaptive estimators with optimal bandwidth selection and several 
fixed bandwidth choices. Different trimming parameter values were used in the 
Monte Carlo experiment, and the effects of trimming parameter value on the 
sample performance of these estimators were also examined. 

Denoting the jth replication of estimator b as b (j), we calculated in each case 
the (average) bias (R-1 Ej= I b(j) - 1), the median bias (median of b - 1), the 
variance (R-1 ER 1(b(j) - b)2), the mean squared error (R-1 jR 1 (b(j) - 

1)2), and the interquartile range (IQR - the 75% quantile-the 25% quantile), 
where R is the number of replications. 

Table 1 provides the simulation results for the nonregular case where Si are 
i.i.d. truncated t-distributions whose density is strictly positive on its bounded 
support. Both n = 100 and n = 200 are reported. We calculated the OLS esti- 
mator, the MLE, and the adaptive estimators using optimal bandwidth (19), 
which was close to 0.035, and fixed bandwidth values h = 0.01, 0.03, 0.05, 0.1, 
in each case without any trimming. For this case, we can see that the mean 
squared errors of the MLE, the adaptive estimator with optimal bandwidth, and 
the OLS estimator are close, although small difference does exist. Substantial 
difference can be found among adaptive estimators using different bandwidth 
values. From these results we can see the influence of bandwidth choice on the 
adaptive estimator. 

Table 2 reports the results for DGP(2) where si are i.i.d. Beta(4,4) random 
variates and n = 100. The results for the n = 200 case are similar. Besides the 

TABLE 1. Simulation results where 8i are i.i.d. truncated t-distributions 

Estimators Bias Median Bias Variance MSE IQR 

n = 100 
OLS estimator 0.00176 -0.00144 0.0302 0.0303 0.0810 
MLE: 2-step from OLS 0.00316 -0.00166 0.0294 0.0294 0.0798 
ADAPI: optimal band 0.00320 -0.00178 0.0294 0.0294 0.0801 
ADAP2: h = 0.1 0.04815 -0.00132 1.2063 1.2086 0.0958 
ADAP3: h = 0.05 0.00406 -0.00267 0.0612 0.0612 0.1207 
ADAP4: h = 0.03 -0.00238 -0.00209 0.0437 0.0437 0.0823 
ADAP5: h = 0.01 -0.01958 -0.00239 0.2617 0.2621 0.0853 

n = 200 
OLS estimator 0.00251 -0.00163 0.0135 0.0139 0.0810 
MLE: 2-step from OLS 0.00254 -0.00208 0.0131 0.0135 0.0812 
ADAPl: optimal band 0.00246 -0.00131 0.0132 0.0136 0.0801 
ADAP2: h = 0.1 0.00372 -0.00166 0.0297 0.0304 0.0799 
ADAP3: h = 0.05 0.00255 -0.00239 0.0139 0.0145 0.0852 
ADAP4: h = 0.03 -0.0027 -0.00178 0.0131 0.0136 0.0801 
ADAP5: h = 0.01 -0.0021 -0.00207 0.0172 0.0178 0.0958 
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TABLE 2. Simulation results where si are i.i.d. Beta(4,4) random variates 

Estimators Bias Median Bias Variance MSE IQR 

b = 0.005 
OLS estimator -0.00251 -0.00214 0.000385 0.000391 0.0254 
MLE: 2-step from OLS -0.00213 -0.00132 0.000319 0.000323 0.0243 
ADAPI: optimal band -0.00250 -0.00154 0.000369 0.000375 0.0253 
ADAP2: h = 0.01 -0.00253 -0.00174 0.000372 0.000379 0.0250 
ADAP3: h = 0.003 -0.00236 -0.00084 0.000372 0.000378 0.0238 
ADAP4: h = 0.001 -0.00253 -0.00186 0.000376 0.000382 0.0249 

b = 0.05 
OLS estimator -0.00251 -0.00214 0.000385 0.000391 0.0254 
MLE: 2-step from OLS -0.00213 -0.00132 0.000327 0.000332 0.0243 
ADAPl: optimal band -0.00279 -0.00262 0.000382 0.000390 0.0242 
ADAP2: h = 0.01 -0.00262 -0.00247 0.000390 0.000397 0.0257 
ADAP3: h = 0.003 -0.00264 -0.00244 0.000386 0.000393 0.0258 
ADAP4: h = 0.001 -0.00249 -0.00208 0.000408 0.000414 0.0263 

OLS, MLE, and adaptive estimator with optimal bandwidth, which was close 
to 0.006, we also considered the adaptive estimators with fixed bandwidth h = 
0.001, 0.003, 0.01. We use the trimming function (5) and the following two 
values of trimming parameter b: 0.005 and 0.05, corresponding to the two parts 
of Table 2. Alternative choices of the trimming parameters were tried, and the 
results are quantitatively similar. These results confirm the previous finding from 
Table 1 that the finite sample performance of the adaptive estimator is affected 
by the choice of h. We also see that the efficiency gain from using the density 
information is relatively higher for DGP(2). A comparison within Table 2 indi- 
cates that the choices of trimming parameter values have important influence 
on the finite sample performance. 

In summary, these Monte Carlo results illustrated the influence of choices of 
smoothing parameters on the finite sample performance of the semiparametric 
adaptive regression estimators, and confirms the effectiveness of the second 
order theory. 

7. CONCLUSION 

The results of this paper readily extend to the multivariate SUR case where Si 
is a vector, see Jeganathan (1995) and Hodgson (1998) for first-order theory. In 
this case the corresponding second-order rate is nq/(2q+d?2), which worsens with 
dimensions. Our results also extend to the nonlinear regression function case as 
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in Manski (1984). Finally, when si has higher order dependence on xi, it may 
still be possible to justify our results provided that 

[ i f(i] 

This would happen for example if the conditional distribution of Si xi were 
symmetric about zero. See Hodgson (1999) for a first-order result in this direc- 
tion. However, in cases where ARCH effects are strong, it may be preferable to 
work with the adaptive ARCH estimator of Linton (1993). 

NOTE 

1. In any case, the density and its derivatives are zero at the boundary, so that the bias would be 
o(h,5) were we to be estimating there. 
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APPENDIX 

We shall use the notation Ei(-) to denote Ei(.FDi), where e = .i;xi,..., X,j. Note that 
the Lebesgue density of si(,/) = si - (,B- 80)Txi, denotedfp( ;13), is the convolution 
of f with the density or probability mass function of xi. We shall just treat explicitly the 
case where xi has a Lebesgue density fx, because the discrete case is similar. Note that if 
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xi has unbounded support, then so does si(,B). Let K(j)(u) = (l/hj+1)K(1)(u/hn),j = 

0,1,2. 

LEMMA 1. Forj = 0,1,2, we have as n - oo, 

hq 
Ei [Khj) (si () -ej (/3))] =f,i)(si(/3)) + (q)( uK(u)du o (hq), 

(A.1) 

Ei[Khj (ei(1)- e(/3))2] = +K()12 + o(h[21+1) (A.2) 

uniformly in S = {i :f(ni) > b} n {,s: 11,3 -,8o '1 c/\flr} with probability one. Here, 

f4i)(u) = ff(i)(u - (,8 -,/o)Tx)fx(x)dx. 

LEMMA 2. Suppose that Assumptions A]-A6 hold. Then, for j = 0,1,2, 

sup max if,6(ei(f3)) -f,6(ei(i8))t = Op(ho-) + ( iogn 

(A.3) 

sup max c (Si/ i (Si (X))lnGb (Ifi) = Op(hn) + +1 nh2'1) 

(A.4) 

In the remainder of this section we write f1, fi' lfa/pJ/3, and afJ/c3,8 (at the true ,Bo) in 
terms of their probability limits and correction terms involving "bias terms" and "vari- 
ance terms." We decompose f(6i) - f (i) in the following way: 

fi (?i ) - f (Si) [i (i) -Ei { fi (?i )}] + [Ei I{fi (ei )} -f t(if ]= Vi + Bi , (A.5) 

where 

Eii(ei)} = Ei {Kh (si - Ej)} =f(ei) + f(q)() K(u)du + o(hn) 

by identity of distribution and Lemma 1. Likewise, the derivative estimate can be writ- 
ten as follows: 

ft f'i(e) f '(i) + [EiiJ(?i) -f '(i)] + [(fi(?i) - Ei J(?i)] =f '(i) + B: + V;, 

(A.6) 

where 

Ei{7i (Ei)} = 7 n - E ji{Khn(`i 
- E)} =f'(Si) + 

q!(q+1)(6) n+ o(hn), 

using integration by parts. 
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For the derivatives with respect to ,3 of the density estimates, we have 

afi (Si ((p8)) 1 

o n' (- I (p )) = 1 E K,' -?j) (xi - xi) 

and we make the following decomposition: 

_fi_(__i_ 8)) -, r ( .6i(P)) - af (?i(/3)) E af(i(13)) 
0-- = 

i + -Ei 1 p -ftj + L 0/ -F / 

-J7 + Bi ? 1', (A.7) 

where 

1~~~~~~~~~~~~~~~~~~~~/) I' =- (xj - xi)f'(ni) x'i(A?( -Xi) =-x f'(ni) + 0,(n ) n - 1 

Bx = j 
- Xi) Ei Kh (?i ?j) fi 

-(_i) (X_i-Xi ) + f (q+ l (_) UqK(u)du(xi _-xi) -fi'+ o(hq) 

-xi ! f (q+ 1)(6.) JuqK(u)du + o(hq) + Op(n- 1/2), 

where xA_ = 1/(n - 1) Ejoi xj = Op(n 1/2). Finally, 

a0'i (i(3)) = [ {i (-i(/3)) + fi (?i(/)) { fi0 (Si(/3)) 
--dl =fill+ LEi I +, |p 

Ei a d 

=J7' + B' + VI'', (A.8) 

where 

1~~~~~~~~~~~~~~~~~~~~~/ = (xi - Xi)f (?i) f=f (8i)(A?i - xi) = -x f (i) + Op(n n - I 

Bi 1 I E (xj xi Ei Khn sj) fj 

hqf(q+2) (i) fuqK(q) =-f "(X-i -xi) + I K(u)du(.-i - xi) -fi- + o(h+ 

h -x ! q+2) (?iC)Uq + 
= -xi 

hq 
f(q?2)(8i) ~UqK(u)du +o(hq) +Opn / 
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As to the stochastic terms in (A.5)-(A.8), we have, for example, 

Ei [Vi Vi] 2 1] (xi [ExKi(e ? (n - 1) 

= -[(xj -Xi)(Xj-Xi)T]Ei [Kh (i- _j)2] + 0(n1) = O(nlhn 3). n~~~~~~~~~~~~~~~~~~~~ 

In conclusion, Bi, B:', Bf, B19 are Op(h q) uniformly in i. The stochastic terms Vi , Vi', 
Vi', and Vi" are mean zero sums of independent random variables with probability or- 
ders O, (n -'/2h,h-1/2), O (n- 1/2h-3/2), O (n -/2h)3/2), and Op (n- 1/2h5/2), respec- 
tively, which follows from Lemma 1. 

Proof of Lemma 1. We first use the law of iterated expectations to write 

EiIKh(zi(/3) -j(/3))] f [f Khi(i(p) 
- z( ))f (6)di lfx(xs)dxi. 

We work on the inner integral. Given the moment conditions in assumption Al and the 
bandwidth conditions in A6, and when 1L,B - ,Bo11 - c/NIn, we have (see the proof of 
Lemma 2) maxlcijn (63 - ,/30)T(x - xj) = op(b 1IP). Notice that on S we have f (Si) > b; 
thus, for small values of f (i), Ei - a or a - ei are of order b1/0 byA4. Under Assump- 
tion A6, they are larger in order of magnitude than h. As a result, by a change of vari- 
able ej ?-> u = (?i - ?j - (/3 - /3o)T(x, - xj))/h,, we have the following approximation: 

fKh (Si(/) - rj(13))f(SJ)dz1 f f(Si 
- (/3 -/o)T(Xi -Xj) + uhn)K(u)du 

on S. The following Taylor expansion off around ?J = si - (3 - f3o)T(x, - xj) is valid 
for q ' r 

f(8i + uhn) f (?ey) + uhnf'(6iJ) + ''' + !h (q)( 

+ (uhn)Jq q(1 - t)q {f (q) (E* + tuh )-f(ziJ)}dt 

by Dieudonne (1969, Theorem 8.14.3). Therefore, 

fJKh (z,(/) - -j(/8))f(cj)dzj = f( (E) + L! f(q)(?J) uqK(u)du + Rij, 

where, by Assumption A4, uniformly in i with probability one 

hq I 
JR j, = UqK(u) q q(I-) {f) ?7+tuh )fq(E:*)Idtdue 

c hnq+1 Juq+ lK(u)du 
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for some constant c, by Lipschitz continuity off (q). The final step is to integrate with 
respect to f -the integrals are finite because of Assumptions A1-A3. 

As for the derivatives, we use integration by parts (which is justified by Assumption 
A4). We have, e.g., 

f h2 :K' ( hI )j f(iv)df j =d h ff i(3)K( h-P ) dsj 

-ff'(i + uhn)K(u)du. 

We can then apply the same Taylor expansion as previously, this time of f ' around l 

. 

Proof of Lemma 2. The proof follows from an extension of Silverman (1978), as 
treated in Andrews (1995). In the second part of the theorem, note that Gb(0fil) ex- 
cludes observations too close to the boundary, so that we can apply the usual Taylor 
series expansion to treat the bias terms. In the first part of the theorem, the bias terms 
are small because the density (and its derivatives up to order e - 1) is zero at the bound- 
ary. With regard to the stochastic part in both theorems, uniform convergence over i 
follows from Masry (1996, Theorem 2). We concentrate on the uniformity with respect 
to /3. We first show that Pr[A] = o(1) for any c, -* ono, where 

A = sup I f,' (?i(f3)) - Ei{ft (.i(/3))}j > cnlg n 

The proof is made more complicated by the fact that we have not assumed that the 
support of xi is finite so that the density function f, could have unbounded support-or 
more relevantly, the range of the evaluation points {6i(P)}7= increases as n - oo. De- 
fine the events 

Cn (d) max xi dn l/2b/}. 

Then, by Assumption Al, we have 

Pr[Cc(d)] ' nPr[ xi.j > dn'/2bbll] 

B [ i x1j 4+,] 

n ~ ~~-0, (A.9) nd 4+n 2+77/2b(4 + 7)/e ' A9 

i.e., max, X, l/n /2 b1/ = op(1). We shall restrict attention to A n Cn(d), which can 
be justified by the argument that Pr[A] ? Pr[A n C] + Pr[CCI for any event A. 

Write / =I3B + b/shY for any /3 E A,n(c) = {/3: 11 3 - 6311 -?l c/X\f}. Because AVn(c) 
is compact it can be covered by a finite number of cubes In, with centers 3, = /3o + 
b, /W7 having sides of length 8(L), for I = 1,...,L. Note that 8(L) = O(L-'1P). We take 

L(n) (h lo)gn 
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We now make a standard decomposition 

sup I (,)) -Ei - (?i (8))Il 

' max sup Ifi (ei(/3)) _f/ (-i(/8l))j 1 c IAL fj (c) nlI,j 

lm aLIf( ?i (81 )) -Ei {f( ?i (,81 ))} I 

+ 1?1~ ~~~0L --0 

+ max sup (Ej{f-'i (81(01))} -Ei{f (?i(8))}t 

Q1 + Q2 + Q3. 

By the Lipschitz condition on the kernel and the Cauchy-Schwarz inequality, we have 
for any 8eE JAf (c) n mi, 

1 8(i(/31)-6?j(/31)\ __i ( ) _ Si _ _ ) 

C~ +2 max K i,)-? (i) 
hi+?1 h h) 

hn? l 3 lmaxn lx 

c8 (L) c( ___3lo_n_12 log n 0 
n 2 n h3 lon ( nh21+' ) 

for some constant c (which can be different from expression to expression) with proba- 
bility tending to one by (A.9). This gives a bound on Qi similar to (3.21) in Masry 
(1996). The Bonferroni inequality and an exponential bound are used to treat Q2. Spe- 
cifically, for any A > 0, we have 

Pr[ lmlaxL If-(?1ma E{f' ((6(/-1))}i > A] 

h j2 I ?i mn 

where m-=c/n/4+' is a bound on the random variable 

Z h 1 LK(J) ( 8im(a)- (Pl ) x 

and o-= /nh2+ = var[Zni]. We take A-=c,n og n/nhn2'+1. Note that the zi7=l1ro2 
term in the denominator of (A.10) dominates when nh1/log n 2 oo. It now follows that 
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the right hand side of (A.10) is o(l), provided the constants are taken large enough. 
Finally, the term Q3 is hounded in the same way as Q1.U 

Proof of Theorem 1. By a Taylor series expansion of &~/)about gj,80/), we have 

9n(I0) 
= 

n,(/3O) ? 9s1(/3*)( 
- 0) 

where 9' 3) aK(/3)/?J/ and /3* is an intermediate point. Thus 

,\- P- i30) = i(~-1 [FINJ9n(J80) + 9,6*)N/n(fi - I80)] + 'JJI n - 80) 

+~ nI/) Ign ) \/~~(f30) + {I + Tn 0 l) (/*)}F - /0)- 

Noticing that 9'(13 *) = gn(160) + in7(/3 **) (/3 - o), a first-order analysis shows that 
Op(l), with limit f,E{f".../f - 3fIf'/1(f )2 ? 2 (f'/f)3}1. Also observing the 

fact that /3-/o =0(n- 1/2 ), and /3* is an intermediate point between /3o and /,we 
have 9'(/3*) 9i,(/3) + Op(n-1/2 ). In addition, 

n j1 ' i(_ (6 ) 

The second term, (I1/n)~~ Ei IXi Xigb (fi)(') 21ji, is a higher order term that depends on 
the trimming parameter and on the boundary behavior of the densities. By a similar 
argument used elsewhere in this paper, we can show that it is o (b(,g 1)'2 Q). In particu- 
lar, notice that for small enough b, I gb (f) b, the leading term is asymptotically 

ELXi xiT (f) gb(fi)~ 

1xj L g} b(f(e))~ 1(b ?<f(_-) ?2b)f(s)de 
C f 82 

Ox c(a)(e - a)2(e-')gb ('(8)) de 

? n C(ii)(8 - d2o b( s)d 

Li_ b1 [c (g)f (8 a)~ 1)d8 + c(aa{9-:(de 

fl xb1 [c(a) + c(d)]b (2o - )/g 
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where 81, 2, 61, 2 are defined as in (A.15) and (A.16), which follow. Thus, we have 

II + -n(/3 - () /3n ) = 'T + Op(n 1/2), 

where '77 is a trimming effect of order op(b(-L).2e). 
For {In(/l)- In(I30)'}Wn(/3) first, it can be shown that In(I3)- 1O) = 

OP(n-12). Using the results given previously in this Appendix, we have 

fi (8i (0)) fi (Si (180)) 

1 
= - _ {Kh [(8, - 

?j) + (/3 -/ 3) (X - 
Xi)] Khn[- 

5 Kh (Si - ?j) (Xj - xi) (13-3) 

and similarly 

fj'(?i(13)) -i '(si(,80)) xif "(ei)(3 -8) = OP(n 1/2) 

Thus, using the definition of in(f3,f), we can show that In(13) - In(18O) = 1/2 

In addition, \Hsn(,830) = Op(l). Thus, by a geometric expansion we have 

ITn (I ) 
- 

?,(/3o) -}1sI- n (,) = Op (n -/) 

We now develop the expansions of the score function and the Hessian. By definition 

-n n (10) = - 1 I' Xi Gb(Ii)) 

For simplicity, we denote Gb( fi) as Gi. For the denominator 

1 1 _(?i) -f(8i) If(?i) f(_i) +R 

- ) o (? ) o (?)2 + ()3 R2 

where 

R- f()f() 
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Substituting Bi + Vi for f(ei) -f(i) and f'((i) + B[ + Vi' for f'(si(,Io)) and Taylor 
expanding, we get 

1 'Pf(Be,(130)) 
'\f1n 9n(I0) = - f xiGb(fi) 

in Bi + Vi fBi + Vi 2 

= - ~~ Ltx~~ - 
+ + 12J i I L(si) f (Bi)2 f (Si)3 + 2 

X [f'(?i) + B + Vi ]xiGb(Li) 

1n 
n 

) 1 B 

--i. f(S) N in =i. f(S)2 

1 n ' fI f'(s ) __ i_ _ 

1 ,xi Gi + f)2xi BiGi 

+ i= f f(si)2 XiVi) i /n i f( 3 xiBi2I 

-2 3 ' E xiB V G - 3 '3x3Vi2 

n v f( )2n iGi+t f( )2 Si) 2i C - 2 xiBiViGi+ - fI: B~xiGl 

1 n~ B' V.', 
>ti~~~B xif( )2VGi d- 

1)2 Bi xi iGi 

? VixiGi + = E V xi G;R 

11 

= 3 M1 + Remainder terms, 
j=o 

where the remainder term equals 

1 f ('( e)[ f(Si) -f(ei)]3 
3n 7 (A.11)i x G 
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and 

-1 - ' / i 

MO = - E ft) iiG;M4 =XE f( )A ii Gi; 

,\- i = I f(?e) -iXiGn M6 i = E I )2VXi 

M70= nf1 feI n 

MgI= st; Efe 3xiV 2Gi; M+ o = X E f(;x1B1G.- 
N/n i== I f ( ) .i .I f i2- 

I n 
,71 1 n B' 

M3 x. V. Gi; M4 Bi xiG.; 

-~~nBxiG=; M6=fVx(G, 

1 n~ VI' i I f 
M5 Bi Vxi G1; M8=6 .BG. 

1 n V., - 1 n I 

The leadingiterm, M0= x- isoGrdrO(.; W nwvr 

if heorderis of itheroteriaters Foirst bweet showot that Gthca e replced bqaiy Gafol)ow 

from Lemm 2pat 1, andi 2 ssmpion A6. Ih las (erm is op I ne Iu Iodtos 
GWefeprfr1 first- ordr epnonsi f,os) 

mg = i ) Gb( G = mx ) xi ) ( fi Gi )) 
whose nrorieim 

Mii 
= - ?- maxXi-fIjl(f>b) 

V-n i f ax - 1(. b)1 

wf heorders an ithermtediatermpoinstbeween andhoot that thf) a e seplcnd eqaiy Gbfolow 

We. als nepedrfurthfrt-rer expansionso b(j rudf eoti 

Gm(x I-b(i Gb(f) (fi max(I(f)(fi f)i + fi)~)f)f ) 

b 1- 15 

Whoe prsopneedfrtiesra bexpasimiarydeivd 
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We verify that under Assumption A6, MlI is of order Op(b(e-)'2e). We have 

I1 

n 

f; 

, 

(Si) Xi [I Gbi) 
f(e) 

+ 
L- 

I n f (,) g(S)ji-i)t 

+, - Xi gb 
(fi)(fi 

-fi)- 

1 1 P i1 (i 

+ Ef !- i.~)I)J~ )L 

It can be shown that under the assumptions, 

f(8 ) Ai [1 Gb(fi)] (A.12) 

is the leading term and is of order Op(b(Q-1)12Q). Notice that xi are mean zero and 
{ Xi, i }.= 1 are generated as an i.i.d. sample. We only need to calculate the second mo- 
ment of (A.2), which is 

E- 
E 

[f J iX b1 Gbt) }E[f? 1 (fi)]4 

Notice that Assumptions A2-A4 imply that in a small neighborhood around a, 

f(S) -f 
I 

)(e) (- a) (-, (A.13) 
Qo 

f (s) - I ) !.f( )(a)(s - a)L ' (A.14) 

for a ' E ? a + 6 and 6 is small. Similar results hold in small neighborhoods around d. 
Thus, if we use the trimming function given by (5), noting that Gb(x) is a polynomial in 
(x - b)/b, it can be shown that 

E f'(6) I [I1 Gb ()] 2} 

ra+8l ra~~~~!+62 -2k+2 

co(a)(E -a)e 2de +fclJ-c 
- L2(a)( _ bl-' dE 

ra r~~~~~~a-51 2k+2 

+ J Co(a)(8 - 2)2 d8 f + Cl(d)(8 - d)lp-2b1-1 dE, 
wr 1 ae62 

where 



EXPANSION FOR ADAPTIVE REGRESSION ESTIMATORS 1013 

and cl(a) are functions of f(0)(a) and e. By calculating the integrals, we obtain that 

Et f()- [I [1 Gb(fi)]2 } p (), a,a, f)b 

where 

(P (LO, a, la, f)=c (LO) I f ()a)le+ f e a / 

where c(e) is a coefficient that depends on e. In general, 

EtLf,() 
2 

[ 1 G(f;]}P(,af) 

We now calculate the magnitude of 

1 I f'(86.) (e) 
-~ e ! =1f(iX i gb (fj)(ji fi), f ,1, LL- 1 

and 

1 1 E~ f'(i) Xig(L)(jX(Ji fi) 

'\J- L! i f ej 

iL 

The random variable 

I 
EfE (i) 

Xi gb((i)(fi fi) 

is mean zero, and its second moment is 

E~~~~~~~~~ E (V]XX g2t) t i)2 QE ( [gb(fi](iJ) 

by iterated expectations. Notice that for small enough b 

I gb(f1i ) l< b -, for any i, 

and gb(-) has support on [b,2b]. By an application of Lemma 2, we have 

E[ b gb (t](fi 
i i)2 

cl(h2q + n-lh-1 logn)b-2E[ f( ; ]1I(b fi ? 2b) 

for some constant cl. Under Assumptions A2 and A4, we can use the approximations 
(A.13) and (A.14) and thus 
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Thus 

X 
I 

f Xi gb(fi)(Li Jfi) = op(b(g 1)12Q 

Similarly we can show that 

1 - xf (i) g(e)(fj)(f -f )e op(b( -1)/2D) forf 1,...,L- 1. 

For 

f \1 i= f (-i ) 

notice that 

jgL) (y) bL' 
I b () CbL 

for some constant C3, 

:- f - E ) Xi gb (di)(f fi)L 

bL?ii max IfIL xi I (b f<i2b) 

Notice that h/b - 0 as n -* oc andf, is an intermediate point, by the result of Lemma 2, 

ii 1 1 " f ( i) Xi gb i)(' i)L 

c 1 _ _ _ _ _i 

=L+l max fti fil ; i1 xi 1 (b fi -2b){1 + 

and 

max i fiL = O(L + n-L/hL/ JogLn). 

Thus, for L > 4, 

1j - E i xp gi(L)()( )L = )/2 

'F1- L! i f (8) 
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The next two terms are M1 and M2. Letting z 32 denote zzT for any vector z, we have 

n 1 n [if [If B'B' T 1 'f ]'jB iB X GI 
=E TfxikGG+ xi AiAk' k 

,k 1 f2f~2 kGikG n i, k= l fi fk n i, k= l i k 

[2n,fll BiBk f[2, ] XiX GiGkI 

= 22q [; ( q.X1) 2 XvXTG 2 } 

- Q(hnq). 

fFor M2, we write 

where (i = fht(i- j- Ei K,n(6; - n)}xiGi/f(5ni) satisfies t'i = 0. Furthermore, 

n i=1 k=lj#i sAk 

hin 

=E E + smaller terms 

n E n i 
xi T ) 

in - E Xi E[KJ (-T)G2Gxx[f(8 )-2 + smaller terms 
n 4i' - 

x 7 = jjhK' K h 

-= fl3 E h 3ffKf (u)2f( <1-f(i- uh)dud8e 

= 1 o(g) 

"~~~~ ivI h3i 1)\ = p- 
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The magnitudes of other terms follow by straightforward moment calculations, be- 
cause the random variables are U-statistics, of various orders, whose moments exist. 
For example, for 

M3 = 
f 
(f i2 xi ViGi, 

note that this is of the form j; cpn(Zi, Zj), where 

nh-- f (ej)2 i 0( h )-i( h )] 

which satisfies Eipn0(Zi,Zj) = and Ej1pn(Zi,Zj) 0. Furthermore, 

E [(Pn (Zi S Zj ) (P, (Zi S Zj )] 

n 3h2 E(() L)2 )2)xLKh )-EK(h)1) 

1 E (8?))\2l 2 G, K EI K 
n h2 JJ f(j)/)f(ji)2 L' h / 

? a2 n3h2 XEG7K( e)1 

n 3h2 Xf i~;)2 f (__)2 h7( 

=n3h 
f IK(U)2du f( 2 ))SG i 

n 3hx P 8i) f 

where the last line follows because 

JCO uCO 
( 

G2E 

f 02d8 -Xb 
bl/e 

And thus 

M3 = op(n- 1/2h-3/2) 

Similarly, it can be verified that the rest of the terms are of order op(n-"/2h-3/2) or 

op(h q). 
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For Rn2, by the Cauchy-Schwarz inequality, we obtain that 

Rn2 ct max ; Gi x . { f(j) xxxi 
1-i-n i/2 i/2 

where c is a constant, and we have 

-ni={f- )} ==G Op( ) 

max K = i bf6n3h -3 (iog n)6). 
I -i-n ti 

Thus, IRn2 112 is of order Op(h3qb-3 + n31/2h-3/2b-3(log n)3) and, under Assumption 
A6, is of smaller order of magnitude than Op(hq + n-112h-3/2). 

We now turn to AH = in(/30) - I. Notice that 

I [ 
af 

I 
i (801a f'( I 

)1 
in(o30) - I xiGb(fi) I _=,o n i=1 fi i~fs)2 ,J 
Expanding each of the estimates in the square brackets to the third term, we have 

'n(130V =?-Exi[j?+ B"?+V"'] [-- B? +K ? (B? )2(ti) n i=n [ fV f3 
+ -1xjf{ ti+ Bi+ VII ) I+ Bi + vi )B ) 

n ir f 

xL#[fi' BK +i f(BiV } +(f) 

V V+ X I "2B B;' 1K 3( i" + i) Gb" i 
f2 3~~~~~~~~~~~~f 42 f 

2 2 fjfi in >''JBit1K Bf'Bi B'B By. 
+ , ++V f+ + + 

+ i Gb2 f i Vi }2 

n i.,G f){ ii f+ f B f i + i fl+ i 

fi/V B'Vi' 1K'V7. ff'B 2 /B'Bi 

+2 '? ? -2 B~- 

-2 f_2 32 _ fi 

-2 -iB i_2 -iV i_2 -iB i_2 1K i 

f;3 f~~i3 f P 

fi3 f f3 fi3 

+ 3 ti+3 2 V+6 BV 

f4 f4 1~~~~~ j4ij 
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where we have writtenfi = f(si), etc., for convenience. After collecting terms and drop- 
ping higher order terms, 

n it f, t 2 16 16 

1l(180) i;;TJ + E Ze =1, + E Ze, 
n ( ? fi J =0 f0 

where 

I [ i I n f7 2 
n -- + - E Xi[T 

n S1i '=. , f,2 i n iGip fi i 
Z2 --zx Gi ]- Xi [j?i1, 

n Fv 1 

n n iG[ 2J -n I xi- n f 
1f + Xi e"r 1 2 B-FG'B' 1 i gi Bi 

2n j=1 iti n ti.B, n ti Bi 

i~-l tix,Z ExGj 3 VJ,Gi 

lF'' 1nF-V"Bl 

Z2 = Xi Gi i , 

n n V ifB'28gt iB 
Z3- E xic fi2 -nExi Gt g 3 

in BB i. n BrB 3" B'B 

ni f ni J -., 2 f f 

n i= i n n- 2 

" FVB 1~~~~Bf 3 fif' 

Z60 r xi Gi 2+ ]-nX i E xi (ji f4 

iG f 
1 n n7B22n 

ni~~~~~= ~ ~ I X1 if3 x ;' 

1n BjV1 2 n -. nJ7B,Vf' 

n in 
Zlo= i'BG[ 12 fjiV,fB 

2 f2 3B 7,V,6n fBV 
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n i ~iL Ii Vi1 nEXii ivg 
Z,4= - XiGi L 3l Z13=--E xi Gi[ J 

i? ni= 

Z16 = -- { xi f + [ Z] - ?A]}3} 

Combining the expansions for gn(/30) and ITn notice that In= I + O0(n-1/2). Drop- 
ping higher order terms, we get 

11 1611 

n(17N-1/) = 1 Mj + ( 0Ze)Ia E Mj 

-I1MO + R-TMI + R-1M11 + R-1M2 + 1 ZI -1Mo 

+ ?7'Z16--'MO + ?pOn) 

= Xo +T+ hq, + V+o(8) (A.17) 
nh 

where 8n = max{h , n- 1/2h13/2}, whereas 

xo= I-2M0 

'T= R-1M11 + -l'Z16R-'M0, 

13 = hqf{_-LlM1 + -1Zj-1M0}, 
V 

V= n 1/2h3/2f-T- 

where Z1 = E(Z1), and (A.17) follows because Z1 Z1 + Op(hqnn12) by a central 
limit theorem for independent random variables. Furthermore, note that the term 3, be- 
ing a sum of mean zero independent random variables, satisfies a central limit theorem. 
For the trimming effect T as we shown in the expansion of the score function, the first 
term, I-'Ml,, is of order Op(b(-1)/2e). By a similar argument, it can be verified that 
IT1Z16-h'M0 is Op(b(e-')0e) and thus of smaller order of magnitude than the leading 
term. 

We have E(r - T) = 0, and 

E(T - )(r-T) = h2 E(q3BT) + - E(VVT) 
nh, 

= R E(M1M[) +MT_ -1 Z11;E(MOMJT)R -1 ZT- 1 

+ 2-L1E (M1 M0T)R1ZT?-LI + R-1E(M2M2)11. 
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Previous calculation gives that E(Mj MT) - h 2qM + o(h2q). Also, we have 

E(MoMo) = Iand E(M1MOT) = hqM2 + o(hg). Finally, 

n ' !?L fi ] nx. [/L'B.R ] + n Fxin9lBl ] 
1 f 1 1 

it if 1 

+E- x. B- + - 
B ] 

- 

-hq 4t(K)f1x {EL [f (8) 2)1] 2 L' I 
8 

+ 2Ef [ fj( )I I- [ f2 

? o(hq) 

- -hqIq(K)ixDq&(2)(e) + o(hZ) 

and 

in f-f. 

E[M2MfT] Qx -i ,,h-3 JJ K'(u)2f(8)X1f(6 - uh)dud8e 

We now apply De Jong's (1987) central limit theorem for degenerate weighted U-statistics 
to the scalar quantity c TM2 for any vector c, and the result follows by an application of 
the Cramer-Wold device. U 

Proof of Theorem 2. For linear hypothesis Ho: cTf3 = c0, the corresponding t-statistic 
iS 

f (c ~ - ) - 

where I,, = -&' (/3) is the estimator of the information matrix. Under the null hypoth- 
esis that cTf = , 

C T r-ic 3 f _ 2 

Under our conditions, cTI7 l c = cT[-s'(/!3o)]-c + Op(n-'/2). Because f= =-'(/(3o)= 
I + Op(n-1/2), the expansions of [cT?T171 c]'-12 and 'f(,4 - /3) can be written as 

q~~~~~~~~ 

[CT -hq1/2 =[cT-lc]l/2 - - [cTl2lc]-3/2cT lAHolc + higherorderterms 

(A.l9) 
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and 

n(,B - /3) = [L-' + R -]AHR'17ni (fo) + higher order terms, (A.20) 

where AH is defined by (11). The expansions of AH and \fsf(p0) are given in the proof 
of Theorem 1. Substituting these expansions and (A.19) and (A.20) into (A.18), it can 
be verified that, after dropping higher order terms, 

t 
[c-Ic]1/2cTI- 

( 
1M1) 

+ 
[cT-IC]-1/2CT17l 

(zZ)r1 (z M ) 

1 F~~~~~~~~~~~~~~ i=O i= 1 i=o 

- [cT Ic]3/2CTII (= I- c (I Mij + higher order terms 2 L= 

[CTT-IC]-l/2CTI- X\5(/30) + [cTI lC]Y1/2CTIlMIi 

? [CT_-IC]-1/2CT-IlZ16-IMO - 
I 

[CT_Ic]3/2[cTI z16 ICC TIlMO 2 

? [CT 1C] 1/2CT1IM1 + [CT_ Tc]-l/2CT_lz I-IMO 

- [cTI lc]3/2cT1lz1lccTIlM 
2 

+ [CT_-f1C]-1/2cTT-RlM2 + higher order terms, 

where Mj and Zj are defined in the proof of Theorem 1. Thus the t-statistic can be ex- 
panded as the sum of a leading term, [cTI-lc]-1/2cTI- -\/s(,80), and 

Tt [CTI lC]L1/2CTIlMjI + [cTI_lc]-1/2CT_zi-6Z1M0 

I 
[c f -c] 3/2 [CT:Z IZI61-T_C C TI-IM0 2 

+ [cTI-lC]-1/2cT-1M1 + [CT 11C]1/2CT_I Z1PIMo 

- [cTI c]3/2cTRlzlccTRlM0 
2 

+ [CTI-lC]-l/2CTI_1M2. 

The term rt can be decomposed into a trimming effect 

tr - [CTI11C] 1/2CTT1M1 + [CT1-IC]-1/2CT_-1 z16-1MO 

2 [c71R'c]3 / [CTI 1Z16 IR1 C] C T-l MO 

and the nonparametric estimation biases and variances effect 

[CTPIC] 1/2CT_lM1 + [CT_-lc]-1/2CT_RlzI_-M0 

2 [cT_Ic]3/2c2TI_1ZJ II cc TI-Mo 
2 

? ECT_IiC]l/12CT_D1M2, 
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which is mean zero, and it can be verified that 

E(,- tr)2 = h2q{[CT-lc] -1 (CTITlM -1lc) 

+ [CTI lCl I (CTI41M31lM4 I lc) 

- -[CTI-lc]-2(CTI M3I C)2 4 

+ 2[cTI-lc]-1(CTIlM2I-M3I lC) 

- [CT_1lC1-2(CTI-4M2I lC)(CT? 4lM3Ilc)} 

+ n-'h-3[CT-iC]-l(CTI-IS I-IC), 

giving the result in Theorem 2. I 

Proof of Theorem 3. The steps of expansions for the adaptive estimator of models 
(1) and (17) are very similar to those in the previous section. Notice that x* and sj are 
i.i.d. and are mutually independent and that the analysis for the x* part is basically the 
same as those given earlier in this Appendix. The only thing that is substantially differ- 
ent from the previous section lies on the part of ' 

Pk8t-k, which has serial correla- 
tion. Specifically, the expansion (A. 17) holds with the same included terms and the same 
magnitude of approximation error. The two main differences arise in the properties of 
Ml and M2. 

Note that (f '(st)/f(et))xt is a martingale difference sequence because 

[ f (et)] 

for any regular density f. Therefore, 

E(MOMOT) E- E[j() Xl] I(f)E(x,x T) 

by stationarity and the assumption about the process x. Furthermore, Z1 - E(Z1) + 

op(n-1/2), just as in the i.i.d. case. 
Note that 

I 
X , { fi 

fi2 }x i { l + () =h q(K) E,7 (--i)xi Gi f1 + o (] )}, Tn1 ~fBJ7Bf 

where 

f(q+}l)(8i) fI (i)f() (i) 

f?i (ej) 
f 

2(?i) 

is not a martingale, because E [L(ei)] # 0. However, whenfis symmetric about zero it 
is a martingale because it is an odd function. In any case, E(M1) = 0 and M1 satisfies a 
central limit theorem for mixing processes. Indeed, 

E(M1 M) = hn2 uq(K)E [ I7) (8i)xi Gi 

n 
l - h2q I-kq(K)E _~7 7n(8i )Xi N (-k) k, 
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where 

n 

E E N j (i)xixT1 = E[ E([j)rx, 
-n j., 

2 n-I n-i 
E ,, (i) 7 k)XTc = - E [- (--i)xi 71 (_i+,)XT+ j 

n ik _k n i=1 r=1 

2 n-1 n-i oo oo 

=- '~'E E E * tVT 
n i=1 r=lj=QC=? 

X 

2 n-i n-i 0o 

- E EtPr+,f TTE[i(i )]E [r1 (Si+r)]E[e_Ie-] n i=l r-1 t=O 

1 n-IF n-i co 

- 2E2 [,(Si()]of8 - Y 
E 
YY'P PTr n i=1 r=1 f=o 

= 2E [ (e ()]o 1 E P O(l). 
r=1 f=0 

Similarly, we can show that 

E (MIMOT n Z(K) E - E F i) f'(8k) X 1Gix G E(M1MJ') 00 i= 
k=1 f (Sk) 

k j 

f(q+l) f,f f,f(q) f'I 
= h7Cq(X)xE;fi 

i 
iiz tiJ 00 hqtLq(K4UxEj f 2 y+ o(hq). 

The second main departure is in the term 

M2-n 
(n -1>J~n j,~ 

- ,At E {Kh (8i - ?j) -EiK,(Si - )lxi GiIf(?i) 

Note that M2 is not necessarily mean zero because when j < i, K,1 (Si- j) can be 
correlated with xi. 

However, 

1 n i-I 

E(M2) =0 _ E E [K h(zi -sj)xiGiIf 

1 n i-1 o0 
- ,- - E [Kh (ri - 

-j) i-f/f(? i 
(n 1)"vn i=2j=1 f=i 

1 1i i-I 

(n - l)n 1 E E Vj[Kh,(zi 
- zj)/f(zj)] (n 1 \fln7) i/=2j=i 

E[f'(rSjr--/f(z-j) + 0(hnq)] n n-i 
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Furthermore, var(M2) is the same as for the associated i.i.d. sequence (see Fan and Li, 
1996). Let M2* = M2- E(M2), where 

1 

(n 1) n i=1 j#i 

where *= eij - E(ejj). Therefore, it can be verified that the leading term in 

E(M2*MT) (1/(n - n) Ej E 1+ E (e ) is given as follows: 

n oo o 

(n 1)2 n 
E [he 

-= Sj 
2 

E TkSi-k I: AY 
?i-s (Si 

)-2 

n oo 

n-1)2n 
y E E [Khn(ei Xy](k> itf(Si) 

1 (n n - n i=KI j:* k- 

n - 1)2 E[Kh (1i - k 
? i-k)f(ei) (n - n i.1 [ -i 

In this expectation, if j 0 i - k, we get or (k=l kPkT)(1/(n - 1)2n)l=l X 

jsii E[Kh,(,i 
- 

_j)] 2f () 2, and for j i - k, there is correlation between 6i-k and 

Kh(?i- j), and we get 

n- ) E[Kh,( i ?j)]2(-i_jTiT Sj2)f(Ei)-2 
(n - )2n i=j-i_ 

For the first term, 

00 \ 1 
k ,k1 ) (n- 1)2n . EI [Kj h,- 

= 
(/E2 

Y Ak 1kT 1) (5 
Y, h -4 

J 
K f 

h (3Si?) -2f (eif )(ej) d?e dej k=i (n -l)n i.jif h4'(~~) 
f f f d 

= 
(2 ', ykqkT 3 ( 

,)2 Eh3 iK-U)If(6i)f(s, - uh)dudej 

(e (, Pk fkT 3 3 'Y, , Ef(eY) JK (u)2du 
k=1 n h i=tjii 

3 (E Tk k) Ef(E) K(U) du. 

Notice that i EjiJi_jTiT =O(n), and it follows that 

1 
( 1)2 ; E[Kh (?i - oj)]2(Ti ViT ?2)f (8i)-2 - -(n2 -3) 

(n c1n imi jeorem l o T 

The central limit theorem follows from Theorem 2.1 of Fan and Li (1996).U 
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