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1. Introduction

Estimation of models for conditional quantiles constitutes an essential ingredient

in modern risk assessment. And yet, often, such quantile estimation and predic-

tion rely heavily on unrealistic global distributional assumptions. In this paper

we consider new estimation methods for conditional quantile functions that are

motivated by parametric copula models, but retain some semi-parametric flexibil-

ity and thus, should deliver more robust and more accurate estimates, while also

being well-suited to the evaluation of misspecification.

We employ parametric copula models to generate nonlinear-in-parameters quan-

tile autoregression (QAR) models. Such models have several advantages over the

linear QAR models previously considered in Koenker and Xiao (2006) since, by

construction, the copula-based nonlinear QAR models are globally plausible with

monotone conditional quantile functions over the entire support of the condition-

ing variables. Rather than imposing this global structure, however, we choose in-

stead to estimate the implied conditional quantile function independently, thereby

facilitating an analysis of potential misspecification of the global structure.

Copula-based Markov models provide a rich source of potential nonlinear dy-

namics describing temporal dependence (and tail dependence). They also permit

us to carefully distinguish the temporal dependence from the specification of the

marginal (stationary) distribution of the response. Stationarity of the processes

considered implies that only one marginal distribution is required for the spec-

ification in addition to the choice of a copula. See, e.g., Chen and Fan (2006),

Ibragimov (2006), Patton (2008) and the references therein for more detailed dis-

cussions about copula-based Markov models.
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Choice of the parametric specification of the copula, C, and the marginal dis-

tribution F , is a challenging problem. In this paper, we restrict our attention

to settings in which the choices of C and F could be globally misspecified, yet,

they yield correct specification of a conditional quantile function at a particular

quantile. This is obviously a weaker condition than the direct assertion that we

have correctly specified C and F themselves, since each of the conditional quantile

functions we consider are permitted to have their own vector of quantile-specific

parameters. Indeed, this distinction between global parametric models and local,

quantile-specific, ones is essential throughout the quantile regression literature,

and facilitates inference for misspecification that arises from discrepancies in the

quantile specific estimates of the model parameters (see Koenker (2005)). More-

over, we are able to derive the consistency and asymptotic normality of our quan-

tile estimator under mild sufficient conditions. In particular, we only assume that

the underlying copula-based Markov model is stationary ergodic, without requir-

ing any mixing conditions, and our moment restrictions are only those necessary

for the validity of a central limit theorem (even for independent and identically

distributed data). Our results are relevant for estimation and inference about

extreme conditional quantiles (or value-at-risk) for financial time series data, as

such data typically display strong temporal dependence and tail dependence as

well as heavy-tailed marginals.

Chen and Fan (2006) and Bouyé and Salmon (2008) have also suggested meth-

ods for estimating copula-based conditional quantile models. Both papers assume

correct specification of the parametric copula dependence function C(·;α) (with-

out specifying the marginal distribution F ). Chen and Fan (2006) first estimate

the marginal F by a rescaled empirical marginal CDF, and then estimate the
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copula parameter α via maximum likelihood. Conditional quantile functions are

then obtained by plugging in the estimated copula parameter and the empirical

marginal CDF. This approach obviously relies heavily on the correct specifica-

tion of the parametric copula function. Bouyé and Salmon (2008) propose to

estimate several distinct, nonlinear quantile regression models implied by their

copula specification. This is essentially the approach adopted here. Bouyé and

Salmon (2008) refer to Chen and Fan (2006) for conditions and justifications of

the asymptotic properties of their estimator. While Chen and Fan (2006) derive

the asymptotic properties of their two-step estimator under the assumptions that

the parametric copula is correctly specified and the time series is beta-mixing with

fast enough decay rate, we obtain the asymptotic properties of the copula-based

quantile estimator allowing for misspecified parametric copula and without any

mixing condition.

The plan of the paper is as follows: We introduce the copula-based QAR model

in Section 2. Assumptions and asymptotic properties of the proposed estimator

are developed in Section 3. Section 4 briefly describes statistical inference and

Section 5 concludes. For simplicity of illustration and without loss of generality,

we focus our analysis on first order QAR processes in our analysis.

2. Copula-Based Quantile Autoregression Models

2.1. First-order strictly stationary Markov models

To motivate copula-based quantile autoregression models, we start with a first-

order strictly stationary Markov process, {Yt}n
t=1, whose probabilistic properties

are determined by the true joint distribution of Yt−1 and Yt, say, G∗(yt−1, yt).

4
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Suppose that G∗(yt−1, yt) has continuous marginal distribution function F ∗(·),
then by Sklar’s Theorem, there exists an unique copula function C∗(·, ·) such that

G∗(yt−1, yt) ≡ C∗(F ∗(yt−1), F
∗(yt)),

where the copula function C∗(·, ·) is a bivariate probability distribution function

with uniform marginals.

Differentiating C∗(u, v) with respect to u, and evaluate at u = F ∗(x), v =

F ∗(y), we obtain the conditional distribution of Yt given Yt−1 = x :

Pr [Yt < y|Yt−1 = x] =
∂C∗(u, v)

∂u

∣∣∣∣
u=F ∗(x),v=F ∗(y)

≡ C∗1(F ∗(x), F ∗(y)).

For any τ ∈ (0, 1), solving

τ = Pr [Yt < y|Yt−1 = x] ≡ C∗1(F ∗(x), F ∗(y))

for y (in terms of τ), we obtain the τ -th conditional quantile function of Yt given

Yt−1 = x :

QYt(τ |x) = F ∗−1(C∗−1
1 (τ ;F ∗(x))),

where F ∗−1(·) signifies the inverse of F ∗(·) and C∗−1
1 (·;u) is the partial inverse of

C∗1(u, v) with respect to v = F ∗(yt). Denote h∗(x) ≡ C∗−1
1 (τ ;F ∗(x)), so we may

rewrite the τ -th conditional quantile function of Yt given Yt−1 = x as1

QYt(τ |x) = F ∗−1(h∗(x)) ≡ H∗(x).

In this paper, we will work with the class of copula-based, first-order, strictly

stationary Markov models. We allow for most commonly used parametric copula

functions, excluding the Fréchet-Hoeffding upper bound and lower bounds.

1As we can see from the definition, both h∗ and H∗ depend on τ . We suppress τ from h∗

and H∗ for notational simplicity.

5
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Assumption DGP: {Yt : t = 1, ..., n} is a sample from a stationary first-order

Markov process generated from (F ∗(·), C∗(·, ·)), where F ∗(·) is the true invariant

distribution and is absolutely continuous with respect to Lebesgue measure on the

real line; the copula C∗(·, ·) for (Yt−1, Yt)is absolutely continuous with respect to

Lebesgue measure on [0, 1]2, and is neither the Fréchet-Hoeffding upper or lower

bounds: min {F ∗(Yt−1), F
∗(Yt)} or max {F ∗(Yt−1) + F ∗(Yt) − 1, 0} .

Denote f ∗(·) and c∗(·, ·) as the density functions corresponding to the marginal

distribution F ∗(·) and the copula function C∗(·, ·) respectively. Assumption DGP

is equivalent to assuming that {Yt : t = 1, ..., n} is a sample from a first-order

stationary Markov process generated from (f ∗(·), g∗(·|·)), where

g∗(·|yt−1) ≡ f ∗(·)c∗(F ∗(yt−1), F
∗(·))

is the true conditional density function of Yt given Yt−1 = yt−1.

2.1.1. The Autoregressive Transformation Model

As demonstrated in Chen and Fan (2006), all the copula-based first order Markov

models can be expressed in terms of an autoregressive transformation model. Let

Ut = F ∗(Yt), then under assumption DGP, {Ut} is a strictly stationary first-order

Markov process with the joint distribution of Ut and Ut−1 given by the copula

C∗(·, ·). Let Λ1() be any increasing transformation, then there exist monotone

increasing functions Λ2 and σ such that,

Λ1(F
∗(Yt)) = Λ2(F

∗(Yt−1)) + σ(F ∗(Yt−1))εt

or equivalently,

Ut = F ∗(Yt) = Λ−1
1 (Λ2(Ut−1) + σ(Ut−1)εt) ,

6
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where the conditional density of εt given Ut−1 = F ∗(Yt−1) = ut−1 is

fε|F ∗(Yt−1)=ut−1 (ε) = c∗(ut−1,Λ
−1
1 (Λ2(ut−1) + σ(ut−1)ε))/D(ut−1)

=
c∗(F ∗(Yt−1),Λ

−1
1 (Λ2(F

∗(Yt−1)) + σ(F ∗(Yt−1))ε))

D(F ∗(Yt−1))

where D(u) = dΛ1(Λ2(u)+σ(u)ε)
dε

, and satisfies the condition that

Λ2(ut−1) = E [Λ1(Ut)|Ut−1 = ut−1] =

∫ 1

0

Λ1(u) × c∗(ut−1, u)du.

In the special case that Λ1(u) = u, we obtain Ut = Λ2(Ut−1) + σ(Ut−1)εt, i.e.

F ∗(Yt) = Λ2(F
∗(Yt−1)) + σ(F ∗(Yt−1))εt,

with

Λ2(ut−1) = E [Λ1(Ut)|Ut−1 = ut−1] =

∫ 1

0

uc∗(ut−1, u)du = 1 −
∫ 1

0

C∗1(ut−1, u)du.

2.2. Copula-based parametric quantile autoregression models

In practice, neither the true copula function C∗(·, ·) nor the true marginal distribu-

tion function F ∗(·) of {Yt} is known. If we model both parametrically, by C(·, ·;α)

and F (y; β), depending on unknown parameters α, β, then the τ -th conditional

quantile function of Yt, QYt(τ |x), becomes a function of the unknown parameters

α and β, i.e.

QYt(τ |x) = F−1(C−1
1 (τ ;F (x, β), α), β).

Denoting θ = (α′, β′)′ and h(x, α, β) ≡ C−1
1 (τ ;F (x, β), α), we will write,

QYt(τ |x) = F−1(h(x, α, β), β) ≡ H(x; θ). (2.1)

This copula formulation of the conditional quantile functions provides a rich source

of potential nonlinear dynamics. By varying the choice of the copula specification

7
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we can induce a wide variety of nonlinear QAR(1) dependence, and the choice

of the marginal, choice of F enables us to consider a wide range of possible tail

behavior as well.

Copula-based models have been widely used in finance, especially in estimating

conditional quantiles as required for Value-at-Risk (VaR) assessment, motivated

by possible nonlinearity in financial time series dynamics. However, in many fi-

nancial time series applications, the nature of the temporal dependence may vary

over the quantiles of the conditional distribution. We would like to stress that al-

though the conditional quantile function specification in the above representation

assumes the parameters to be identical across quantiles, our estimation methods

do not impose this restriction. Thus, we permit the estimated parameters to vary

with τ and this provides an important diagnostic feature of the methodology.

The proposed QAR model is based on (2.1) but we permit different parameter

values over τ , and write the vector of unknown parameters as θ(τ) = (α(τ)′, β(τ)′)′.

With h(x, α, β) ≡ C−1
1 (τ ;F (x, β), α), we obtain the following nonlinear QAR

model:

QYt(τ |Yt−1) = F−1(h(Yt−1, α(τ), β(τ)), β(τ)) ≡ H(Yt−1, θ(τ)). (2.2)

This nonlinear form of the QAR model can capture a wide range of systematic

influences of conditioning variables on the conditional distribution of the response.

Koenker and Xiao (2006) considered linear-in-parameter QAR processes in study-

ing similar specifications. Maintaining a linear specification in the QAR model,

however, requires rather strong regularity assumptions on the domain of the asso-

ciated random variables imposed to ensure quantile monotonicity. Relaxing those

assumptions implies that the conditional quantile functions are no longer linear.

8
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From this point of view, copula-based models provide an important path toward

extending linear QAR models to nonlinear quantile autoregression specifications.

The above analysis may be easily extended to k-th order nonlinear QAR mod-

els, but we will resist the temptation to tax the readers’ patience with the notation

required to accomplish this.

2.3. Examples

Example 1: Gaussian Copula

Let Φα(·, ·) be the distribution function of bivariate normal distribution with

mean zeros, variances 1, and correlation coefficient α, and Φ be the CDF of a

univariate standard normal. The bivariate Gaussian copula is given by

C(u, v;α) = Φα(Φ−1(u),Φ−1(v))

=
1

2π
√

1 − α2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
exp

{
−(s2 − 2αst+ t2)

2(1 − α2)

}
dsdt.

Let {Yt} be a stationary Markov process of order 1 generated from a Gaussian

copula C∗(u, v) = Φα(Φ−1(u),Φ−1(v)) and a marginal distribution F ∗(·). Denote

Ut = F ∗(Yt), then the joint distribution of Ut and Ut−1 is

C(ut−1, ut;α) = Φα(Φ−1(ut−1),Φ
−1(ut)).

Differentiating C(ut−1, ut;α) with respect to ut−1, we obtain the conditional dis-

tribution of Ut given Ut−1 :

C1(ut−1, ut;α) = Φ

(
Φ−1(ut) − αΦ−1(ut−1)√

1 − α2

)
.

For any τ ∈ [0, 1], solving

τ = C1(ut−1, ut;α) = Φ

(
Φ−1(ut) − αΦ−1(ut−1)√

1 − α2

)
9

Pre-print version of an article published in Econometrics Journal 12(1): S50-S67. doi:10.1111/j.1368-423X.2008.00274.x.



for ut, we obtain the τ -th conditional quantile function of Ut given Ut−1 = ut−1 :

QUt(τ |ut−1) = Φ
(
αΦ−1(ut−1) +

√
1 − α2Φ−1(τ)

)
= Φ

(
αΦ−1(F ∗(yt−1)) +

√
1 − α2Φ−1(τ)

)
= h∗(τ ;F ∗(yt−1), α).

Let Zt = Φ−1(Ut) = Φ−1(F ∗(Yt)). Then {Zt} is a Gaussian AR(1) process

that can be represented by

Zt = αZt−1 + εt

where εt ∼ N(0, (1 − α2)) and is independent of Zt−1. We obtain the τ -th condi-

tional quantile function of Zt given Zt−1 :

QZt(τ |Zt−1) = b(τ) + αZt−1, with b(τ) =
√

1 − α2Φ−1(τ),

a formulation that is the familiar linear AR(1) specification, which induces the

simplest linear QAR model.

Example 2: Student-t copula

Let tν,ρ(·, ·) be the distribution function of bivariate Student-t distribution

with mean zeros, variances 1, correlation coefficient ρ, and degrees of freedom ν.

And let tν(·) be the CDF of a univariate Student-t distribution with mean zero,

variance 1, and degrees of freedom ν. The bivariate t− copula is given by, with

α = (ν, ρ)

C(u, v;α) = tν,ρ(t
−1
ν (u), t−1

ν (v))

=
1

2π
√

1 − ρ2

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

{
1 +

(s2 − 2ρst+ t2)

ν(1 − ρ2)

}−(ν+2)/2

dsdt.

Let {Yt} be a stationary Markov process of order 1 generated from a stan-

dard bivariate tν-copula function C∗(u, v) = tν,ρ(t
−1
ν (u), t−1

ν (v)) and a marginal

10
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distribution function F ∗(·). Let Ut = F ∗(Yt), then the τ -th conditional quantile

function of Ut given Ut−1 is given by

QUt(τ |Ft−1) = tν
(
ρt−1

ν (F ∗(Yt−1)) + σ(F ∗(Yt−1))t
−1
ν+1(τ)

)
= h∗(τ ;F ∗(Yt−1), ρ, ν),

where

σ(F ∗(Yt−1)) =

√
ν + [t−1

ν (F ∗(Yt−1))]
2

ν + 1
(1 − ρ2).

Moreover, the transformed process {Zt = t−1
ν (Ut) = t−1

ν (F ∗(Yt))} is a Student-t

process that can be represented by

Zt = ρZt−1 + σ(Zt−1)et,

where et ∼ tν+1, and is independent of Yt−1,

σ(Zt−1) =

√
ν + Z2

t−1

ν + 1
(1 − ρ2)

is a known function of Zt−1 = t−1
ν (F ∗(Yt−1)). (If and only if the true marginal

distribution F ∗ is also tν then Zt = t−1
ν (F ∗(Yt)) = Yt). The τ -th conditional

quantile function of Zt given Zt−1, is then given by

QZt(τ |Ft−1) = ρZt−1 + σ(Zt−1)t
−1
ν+1(τ).

Let θ(τ) = (ρ, α(τ), β(τ)), where

α(τ) =
ν(1 − ρ2)t−1

ν+1(τ)
2

1 + ν
, β(τ) =

(1 − ρ2)t−1
ν+1(τ)

2

1 + ν

we can rewrite the conditional quantile function as

QZt(τ |Ft−1) = ρZt−1 +
√
α(τ) + β(τ)Z2

t−1.

11
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This example can be generalized to any first-order Markov models that are gen-

erated from an elliptical copula2 and an elliptical marginal distribution of the same

form. The conditional mean is linear and conditional variance is homoskedastic if

and only if the copula is Gaussian with Gaussian marginal.

The Gaussian copula does not exhibit tail dependence, while the Student-

t copula and other elliptical copula have symmetric tail dependence. For many

financial applications, copulas that possess asymmetric tail dependence properties

are more appropriate.

Example 3: Joe-Clayton copula

The Joe-Clayton copula is given by:

C(u, v;α) = 1 − {1 − [(1 − ūk)−γ + (1 − vk)−γ − 1]−1/γ}1/k,

where ū = 1 − u, α = (k, γ)′ and k ≥ 1, γ > 0. It is known that the lower tail

dependence parameter for this family is λL = 2−1/γ and the upper tail dependence

parameter is λU = 2 − 21/k. When k = 1, the Joe-Clayton copula reduces to the

Clayton copula:

C(u, v;α) = [u−α + v−α − 1]−1/α, where α = γ > 0.

When γ → 0, the Joe-Clayton copula approaches the Joe copula whose con-

cordance ordering and upper tail dependence increase as k increases. For other

properties of the Joe-Clayton copula, see Joe (1997) and Patton (2006). When

coupled with heavy-tailed marginal distributions such as the Student’s t distri-

bution, this family of copulas can generate time series with clusters of extreme

2An elliptical copula is a copula generated from an elliptically symmetric bivariate distribu-
tion.
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values and hence provide alternative models for economic and financial time series

that exhibit such clusters.

For the Joe-Clayton copula, one can easily verify that

C1(ut−1, ut;α) = (1 − ut−1)
k−1(1 − ūk

t−1)
−(γ+1)

× [(1 − ūk
t−1)

−γ + (1 − ūk
t )
−γ − 1]−(γ−1+1)

× [1 − {(1 − ūk
t−1)

−γ + (1 − ūk
t )
−γ − 1}−1/γ ]k

−1−1.

For any τ ∈ [0, 1], solving τ = C1(ut−1, ut;α) for ut, we obtain the τ -th conditional

quantile function of Ut given ut−1 based on the Clayton copula:

QUt(τ |ut−1) = [(τ−α/(1+α) − 1)u−α
t−1 + 1]−1/α

Note that this expression and the similar expressions in the foregoing examples

provide a convenient mechanism with which to simulate observations from the re-

spective models. See Bouyé and Salmon (2008) for additional examples of copula-

based conditional quantile functions.

3. Asymptotic Properties

In this section, we study estimation of the copula-based QAR model (2.2). The

vector of parameters θ(τ) and thus the conditional quantile of Yt can be estimated

by the following nonlinear quantile autoregression:

min
θ∈Θ

∑
t

ρτ (Yt −H(Yt−1, θ)), (3.1)

where ρτ (u) ≡ u(τ − I(u < 0)) is the usual check function (Koenker and Bassett

(1978)). We denote the solution as θ̂(τ) ≡ arg minθ∈Θ

∑
t ρτ (Yt − H(Yt−1, θ)).
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Then the τ -th conditional quantile of Yt given Yt−1, can be estimated by

Q̂Yt(τ |Yt−1 = x) = H(x, θ̂(τ)) ≡ F−1
(
C−1

1

(
τ , F (x, β̂(τ)), α̂(τ)

)
, β̂(τ)

)
.

3.1. Consistency

To facilitate our analysis, we define

C1(u, v;α) ≡ ∂C(u, v;α)

∂u
; c(u, v;α) ≡ ∂2C(u, v;α)

∂u∂v
.

Denote C−1
1 (τ , u;α) as the inverse function of C1(u, v;α) with respect to the ar-

gument v, and H(x, θ) ≡ F−1(C−1
1 (τ , F (x; β), α); β).

We first introduce some simple regularity conditions to ensure consistency of

our QAR estimator θ̂(τ).

A1. The parameter space Θ is a compact subset in �k.

A2. (i) F (·; β) and F−1(·; β) (the inverse function of F (·; β)) are continuous

with respect to all their arguments; (ii) the copula function C(u, v;α) is

second order differentiable with respect to u and v, and has copula density

c(u, v;α); (iii) C−1
1 (τ , u;α) (the inverse function of C1(u, v;α) with respect

to v) is continuous in α and u.

A3. (i) The true τ -th conditional quantile of Yt given Yt−1, QYt(τ |Yt−1), takes the

form H(Yt−1, θ(τ)) ≡ F−1(C−1
1 (τ , F (Yt−1; β(τ)), α(τ)); β(τ)) for a θ(τ) =

(α(τ)′, β(τ)′) ∈ Θ for almost all Yt−1; (ii) The true unknown conditional

density of Yt given Yt−1, g
∗(·|Yt−1), is bounded and continuous, and there

exist ε1 > 0, p > 0 such that Pr [g∗(QYt(τ |Yt−1)) ≥ ε1] ≥ p.
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A4. For any ε > 0, there exists a δ > 0 such that, for any ‖θ − θ(τ)‖ > ε,

E {Pr [|H(Yt−1, θ) −QYt(τ |Yt−1)| > δ | g∗(QYt(τ |Yt−1)) ≥ ε1]} > 0.

A5. (i) E (supθ∈Θ |H(Yt−1, θ)|) <∞; (ii) {Yt} is stationary, ergodic and satisfies

assumption DGP.

Assumptions A1 - A4 and A5(i) are mild regularity conditions that are typ-

ically imposed even for parametric nonlinear quantile regression of Yt given xt

with i.i.d. data {(Yt, xt)}n
t=1. Thus they are natural conditions for our nonlinear

Markov model (with xt = Yt−1). Assumption A5(ii) is a very mild condition on

temporal dependence of {Yt}. Although we do not assume the correct specification

of the parametric functional forms of the copula C(·, α) and the marginal distri-

bution F (·, β), we assume that the parametric functional form of the conditional

quantile H(Yt−1, θ(τ)) is correct at the τ -th quantile (assumption A3(i)). Hence,

we do not need any beta-mixing decay rate condition on {Yt} that is assumed in

Chen and Fan (2006). See Beare (2008) for temporal dependence properties of

copula-based strictly stationary Markov processes.

Theorem 3.1. (Consistency) For any fixed τ ∈ (0, 1), under Assumptions A1 -

A5, we have: θ̂(τ) = θ(τ) + op(1).

3.2. Normality

We introduce the following additional notation:

Ḣθ(x, θ) ≡ ∂H(x; θ)

∂θ
, Ḧθθ(x, θ) ≡ ∂2H(x; θ)

∂θ∂θ�
.
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Given the consistency of θ̂(τ), we only need to impose the following additional

conditions in a shrinking neighborhood of θ(τ). Denote Θ0 = A0 × B0 = {θ =

(α′, β′)′ ∈ Θ : ‖θ − θ(τ)‖ = op(1)}. We assume:

A6. (i) Ḣθ(Yt−1, θ) and Ḧθθ(Yt−1, θ) are well defined and measurable for all

θ ∈ Θ0 and for almost all Yt−1; (ii) E[supθ∈Θ0

∣∣∣Ḣθ(Yt−1, θ)
∣∣∣2] < ∞; (iii)

E
(
supθ∈Θ0

∣∣∣Ḧθθ(Yt−1, θ)
∣∣∣) <∞; (iv) V (τ) and Ω(τ) are finite non-singular,

where

V (τ) ≡ E
[
g∗(QYt(τ |Yt−1))Ḣθ(Yt−1, θ(τ))Ḣθ(Yt−1, θ(τ))

�
]
,

Ω(τ) ≡ E
[
Ḣθ(Yt−1, θ(τ))Ḣθ(Yt−1, θ(τ))

�
]
. (3.2)

We impose assumption A6(i)(iii) for simplicity. We could replace assumption

A6(i)(iii) by assuming that only Ḣθ(Yt−1, θ) exists for θ ∈ Θ0 and satisfies some

milder regularity conditions such as those imposed in Huber (1967) and Pollard

(1985) for i.i.d. data, and Hansen et al. (1995) for stationary ergodic data, without

the need of the existence of Ḧθθ(Yt−1, θ) satisfying A6(iii).

Comparing our assumptions A1-A6 to the regularity conditions imposed in

earlier papers (e.g. Weiss (1991), White (1994), Engle and Mangenelli (2004), and

the references therein) on parametric nonlinear quantile time series models, we do

not need any mixing nor near epoch dependence of mixing process conditions (see

our A5(ii)), and our moment requirement is also much weaker than the existing

ones (see our A5(i) and A6(ii)(iii)). Both these relaxations are important for

financial applications that typically exhibit persistent temporal dependence and

heavy-tailed marginals.
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Denote f(·; β) as the parametric density of F (·; β), and

h(x, α, β) = C−1
1 (τ ;u, α)

∣∣
u=F (x,β)

= C−1
1 (τ ;F (x, β), α)

with C−1
1u (τ ;u, α) =

∂C−1
1 (τ ;u,α)

∂u
, ḣα(x, α, β) = ∂h(x,α,β)

∂α
and Ḟβ(x, β) = ∂F (x,β)

∂β
.

Then V (τ) and Ω(τ) defined in (3.2) can be expressed as follows:

V (τ) =

[
Vαα(τ) Vαβ(τ)
Vβα(τ) Vββ(τ)

]
, Ω(τ) =

[
Ωαα(τ) Ωαβ(τ)
Ωβα(τ) Ωββ(τ)

]
, (3.3)

where

Vαα(τ) = E

[
g∗(QYt

(τ |Yt−1))
{f(QYt

(τ |Yt−1))}2
ḣα(Yt−1; θ(τ))ḣα(Yt−1; θ(τ))�

]
;

Vαβ(τ) = E

[
g∗(QYt(τ |Yt−1))
f(QYt

(τ |Yt−1))
ḣα(Yt−1; θ(τ))

∂F−1(h(Yt−1; θ(τ)), β(τ))
∂β

�]

+ E

[
g∗(QYt

(τ |Yt−1))
{f(QYt

(τ |Yt−1))}2
ḣα(Yt−1; θ(τ))C−1

1u (τ ; F (Yt−1, β(τ)), α(τ))Ḟβ(Yt−1, β(τ))�
]

;

Vβα(τ) = Vαβ(τ)�;

Vββ(τ) = E

[
g∗(QYt

(τ |Y t−1))
∂F−1(h(Yt−1; θ(τ)), β(τ))

∂β

∂F−1(h(Yt−1; θ(τ)), β(τ))
∂β

�]

+ 2E

[
g∗(QYt

(τ |Yt−1))
f (QYt(τ |Yt−1))

∂F−1(h(Yt−1; θ(τ)), β(τ))
∂β

C−1
1u (τ ; F (Y t−1, β(τ)), α(τ))Ḟ β(Y t−1, β(τ))�

]
+ E

[
g∗(QYt(τ |Yt−1))

{f (QYt
(τ |Yt−1))}2

[
C−1

1u (τ ; F (Yt−1, β(τ)), α(τ))
]2 ·Ḟ β(Y t−1, β(τ))Ḟ β(Y t−1, β(τ))�

]
.

Ωαα(τ) = E

[
1

{f(QYt(τ |Yt−1))}2
ḣα(Yt−1; θ(τ))ḣα(Yt−1; θ(τ))�

]
;

Ωαβ(τ) = E

[
1

f(QYt
(τ |Yt−1))

ḣα(Yt−1; θ(τ))
∂F−1(h(Yt−1; θ(τ)), β(τ))

∂β

�]

+ E

[
1

{f(QYt(τ |Yt−1))}2
ḣα(Yt−1; θ(τ))C−1

1u (τ ;F (Yt−1, β(τ)), α(τ))Ḟβ(Yt−1, β(τ))�
]

;

Ωβα(τ) = Ωαβ(τ)�;
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Ωββ(τ) = E

[
∂F−1(h(Yt−1; θ(τ)), β(τ))

∂β

∂F−1(h(Yt−1; θ(τ)), β(τ))
∂β

�]

+ 2E

[
∂F−1(h(Yt−1; θ(τ)), β(τ))

∂β

C−1
1u (τ ; F (Yt−1, β(τ)), α(τ)) · Ḟβ(Yt−1, β(τ))�

f (QYt(τ |Yt−1))

]

+ E

[
[C−1

1u (τ ; F (Yt−1, β(τ)), α(τ))]2

{f (QYt
(τ |Yt−1))}2

· Ḟβ(Yt−1, β(τ))Ḟβ(Yt−1, β(τ))�
]

.

Theorem 3.2. For any fixed τ ∈ (0, 1), under Assumptions A1 - A6 and θ(τ) ∈
int(Θ), we have:

√
n
(
θ̂(τ) − θ(τ)

)
⇒ N(0, τ(1 − τ)V (τ)−1Ω(τ)V (τ)−1),

with V (τ) and Ω(τ) are given in (3.2) (or (3.3) equivalently).

Remark 1. When the marginal distribution function of Y is completely known

F (y, β) = F (y), V (τ) and Ω(τ) reduce to the following simplified forms:

V (τ) = E

{
g∗(QYt(τ |Yt−1))

[f(QYt(τ |Yt−1))]2
ḣα(Yt−1;α(τ))ḣα(Yt−1;α(τ))�

}
,

Ω(τ) = E

[
1

[f(QYt(τ |Yt−1))]2
ḣα(Yt−1;α(τ))ḣα(Yt−1;α(τ))�

]
.

Remark 2. When both the copula function C∗(u, v) = C(u, v;α) and the marginal

distribution F ∗(y) = F (y; β) are correctly specified, the parameters θ(τ) define an

explicit one-dimensional manifold in Θ, as illustrated in the examples of Section

2.3. To the extent that the estimated θ̂(τ) departs from this curve we can infer

various forms of misspecification. See, for example, Koenker and Xiao (2002).
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4. Inference

The asymptotic normality of the QAR estimate also facilitates inference. In or-

der to standardize the QAR estimator and remove nuisance parameters from the

limiting distribution, we need to estimate the asymptotic covariance Matrix. In

particular, we need to estimate Ω(τ) and V (τ). Let

Q̂Yt(τ |Yt−1) ≡ H(Yt−1, θ̂(τ)),

and let f̂ = f(·, β̂) be the plug-in estimate of the parametric marginal density

function. Then Ω(τ) can be estimated by

Ω̂n(τ) =

[
Ω̂n,αα(τ) Ω̂n,αβ(τ)

Ω̂n,βα(τ) Ω̂n,ββ(τ)

]
,

with

Ω̂n,αα(τ) =
1
n

n∑
t=1

1

{f̂(Q̂Yt
(τ |Yt−1))}2

ḣα(Yt−1; θ̂(τ))ḣα(Yt−1; θ̂(τ))�;

Ω̂n,αβ(τ) =
1
n

n∑
t=1

1

f̂(Q̂Yt(τ |Yt−1))
ḣα(Yt−1; θ̂(τ))

∂F−1(h(Yt−1; θ̂(τ)), β̂(τ))
∂β

�

+
1
n

n∑
t=1

ḣα(Yt−1; θ̂(τ))

{f̂(Q̂Yt
(τ |Yt−1))}2

C−1
1u (τ ; F (Yt−1, β̂(τ)), α̂(τ))Ḟβ(Yt−1, β̂(τ))�;

Ω̂n,βα(τ) = Ω̂n,αβ(τ)�;

Ω̂n,ββ(τ) =
1
n

n∑
t=1

∂F−1(h(Yt−1; θ̂(τ)), β̂(τ))
∂β

∂F−1(h(Yt−1; θ̂(τ)), β̂(τ))
∂β

�

+
2
n

n∑
t=1

∂F−1(h(Yt−1; θ̂(τ)), β̂(τ))
∂β

C−1
1u (τ ; F (Yt−1, β̂(τ)), α̂(τ))Ḟβ(Yt−1, β̂(τ))�

f̂(Q̂Yt
(τ |Yt−1))

+
1
n

n∑
t=1

[C−1
1u (τ ; F (Yt−1, β̂(τ)), α̂(τ))]2

{f̂(Q̂Yt(τ |Yt−1))}2
Ḟβ(Yt−1, β̂(τ))Ḟβ(Yt−1, β̂(τ))�.
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Next, the true (unknown) conditional density of Yt given Yt−1, g
∗(QYt(τ |Yt−1)),

can be estimated by the difference quotients,

ĝ(Q̂Yt(τ |Yt−1)) = (τ i − τ i−1)/(Q̂Yt(τ i|Yt−1) − Q̂Yt(τ i−1|Yt−1)),

for some appropriately chosen sequence of {τ i}’s. Then the matrix V (τ) can be

estimated by

V̂n(τ) =

[
V̂n,αα(τ) V̂n,αβ(τ)

V̂n,βα(τ) V̂n,ββ(τ)

]
with

V̂n,αα(τ) =
1
n

n∑
t=1

ĝ(Q̂Yt(τ |Yt−1))

{f̂(Q̂Yt(τ |Yt−1))}2
ḣα(Yt−1; θ̂(τ))ḣα(Yt−1; θ̂(τ))�;

V̂n,αβ(τ) =
1
n

n∑
t=1

ĝ(Q̂Yt
(τ |Yt−1))

f̂(Q̂Yt
(τ |Yt−1))

ḣα(Yt−1; θ̂(τ))
∂F−1(h(Yt−1; θ̂(τ)), β̂(τ))

∂β

�

+
1
n

n∑
t=1

[
ĝ(Q̂Yt

(τ |Yt−1))

{f̂(Q̂Yt(τ |Yt−1))}2
ḣα(Yt−1; θ̂(τ))C−1

1u (τ ;F (Yt−1, β̂(τ)), α̂(τ))Ḟβ(Yt−1, β̂(τ))�
]

;

V̂n,βα(τ) = V̂n,αβ(τ)�;

V̂n,ββ(τ) =
1
n

n∑
t=1

ĝ(Q̂Yt(τ |Yt−1))
∂F−1(h(Yt−1; θ̂(τ)), β̂(τ))

∂β

∂F−1(h(Yt−1; θ̂(τ)), β̂(τ))
∂β

�

+
2
n

n∑
t=1

ĝ(Q̂Yt
(τ |Yt−1))

f̂(Q̂Yt(τ |Yt−1))

∂F−1(h(Yt−1; θ̂(τ)), β̂(τ))
∂β

C−1
1u (τ ;F (Yt−1, β̂(τ)), α̂(τ))Ḟβ(Yt−1, β̂(τ))�

+
1
n

n∑
t=1

ĝ(Q̂Yt
(τ |Yt−1))

{f̂(Q̂Yt
(τ |Yt−1))}2

[C−1
1u (τ ;F (Yt−1, β̂(τ)), α̂(τ))]2Ḟβ(Yt−1, β̂(τ))Ḟβ(Yt−1, β̂(τ))�.

Wald type tests can then be constructed immediately based on the standard-

ized QAR estimators using Ω̂n(τ) and V̂n(τ). The copula-based QAR models and

related quantile regression estimation also provide important information about

specification. Specification of, say, the copula function may be investigated based

on parameter constancy over quantiles, along the lines of Koenker and Xiao (2006).
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In addition, specification of conditional quantile models can be studied based on

the quantile autoregression residuals. For example, if we want to test the hypoth-

esis of a general form:

H0: R(θ(τ)) = 0

where R(θ) is an q-dimensional vector of smooth functions of θ, with derivatives

to the second order, the asymptotic normality derived from the previous section

facilitates the construction of a Wald statistic. Let

Ṙ(θ(τ)) =

[
∂R1(θ)

∂θ
, · · ·, ∂Rq(θ)

∂θ

]∣∣∣∣
θ=θ(τ)

,

denote a p × q matrix of derivatives of R(θ), we can construct the following re-

gression Wald statistic

Wn,τ ≡ nR(θ̂(τ))�
[
τ(1 − τ)Ṙ(θ̂(τ))�V̂n(τ)−1Ω̂n(τ)V̂n(τ)−1Ṙ(θ̂(τ))

]−1

R(θ̂(τ)).

Under the hypothesis and our regularity conditions, we have

Wn,τ ⇒ χ2
q

where χ2
q has a central chi-square distribution with q degrees of freedom.

5. Conclusion

There are many competing approaches to broadening the scope of nonlinear time

series modeling. We have argued that parametric copulas offer an attractive frame-

work for specifying nonlinear quantile autoregression models. In contrast to fully

parametric methods like maximum likelihood that impose a global parametric

structure, estimation of distinct copula-based QAR models retains considerable

semiparametric flexibility by permitting local, quantile-specific parameters.
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There are many possible directions for future development. Inference and

specification diagnostics is clearly a priority. Extensions to methods based on

nonparametric estimation of the invariant distribution are possible. Finally, semi-

parametric modeling of the copula itself as a sieve appears to be a feasible strategy

for expanding the menu of currently available parametric copulas.
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6. Appendix: Mathematical Proofs

Proof of Theorem 3.1: We denote Yt−1 as xt. Then θ̂(τ) = arg minθ∈Θ

∑
t ρτ (Yt−

H(xt, θ)) where ρτ (u) ≡ u(τ − I(u < 0)). Define

εt ≡ Yt −QYt(τ |xt) ≡ Yt −H(xt, θ(τ)).

Then Qεt(τ |xt) = 0 and

Yt = H(xt, θ(τ)) + εt, Pr[εt ≤ 0|xt] = τ .

Denote

H(xt, θ) ≡ H(xt, θ) −H(xt, θ(τ)) and qτ (Yt, xt, θ) ≡ ρτ (εt −H(xt, θ)) − ρτ (εt),

and

Qn(θ) ≡ 1

n

n∑
t=1

qτ (Yt, xt, θ).

Then it is easy to see that

θ̂(τ) = arg min
θ∈Θ

Qn(θ) and θ(τ) = arg min
θ∈Θ

E [Qn(θ)] .

We apply theorem 2.1 of Newey and McFadden (1994) to establish consistency.

The compactness of Θ (assumption A1), continuity of E [Qn(θ)] with respect to

θ ∈ Θ (assumptions A2 and A3) are directly assumed. It remans to verify uniform

convergence (supθ∈Θ |Qn(θ) − E [Qn(θ)] | = op(1)), and that θ(τ) is the unique

minimizer of E [Qn(θ)].
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Notice that under assumptions A2 and A3, qτ (Yt, xt, θ) is continuous in θ ∈ Θ

and measurable in (Yt, xt). Since

sup
θ∈Θ

|qτ (Yt, xt, θ)| = sup
θ∈Θ

∣∣ρτ (εt −H(xt, θ)) − ρτ (εt)
∣∣ ≤ sup

θ∈Θ
|H(xt, θ) −H(xt, θ(τ))| ,

we have E (supθ∈Θ |qτ (Yt, xt, θ)|) < ∞ under assumption A5(i). These and com-

pactness of Θ (assumption A1) and stationary ergodicity of {Yt} (assumption

A5(ii)) together imply that all the conditions of proposition 7.1 of Hayashi (2000)

hold. Thus, by apply the uniform law of large numbers for stationary ergodic

processes (see, e.g., proposition 7.1 of Hayashi (2000)), we obtain the uniform

convergence: supθ∈Θ |Qn(θ) − E [Qn(θ)] | = op(1).

Next we verify that E [Qn(θ)] is uniquely minimized at θ(τ). Recall that the

true but unknown conditional density and distribution function of Yt given xt are

g∗(·|xt) and G∗(·|xt) respectively, and use the following identity

ρτ (u− v) − ρτ (u) = −vψτ (u) + (u− v){I(0 > u > v) − I(0 < u < v)}
= −vψτ (u) +

∫ v

0

{I(u ≤ s) − I(u < 0)}ds, (6.1)

where

ψτ (u) ≡ τ − I(u < 0), and by definition E [ψτ (εt)|xt] = 0.

we have, with simplified notation H t = H(xt, θ),

qτ (Yt, xt, θ) = ρτ (εt −H t) − ρτ (εt) = −H tψτ (εt) +

∫ Ht

0

{I(εt ≤ s) − I(εt < 0)}ds.
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thus E [Qn(θ)] = E {E[qτ (Yt, xt, θ)|xt]} and

E[qτ (Yt, xt, θ)|xt]

= E

{∫ Ht

0

{I(εt ≤ s) − I(εt < 0)}ds|xt

}

= 1
(
H t > 0

)
E

{∫ Ht

0

I(0 ≤ εt ≤ s)ds|xt

}
+ 1

(
H t < 0

)
E

{∫ 0

Ht

I(s ≤ εt ≤ 0)ds|xt

}
.

Notice that under Assumptions A3,

1
(
H t > 0

)
E

{∫ Ht

0

I(0 ≤ εt ≤ s)ds|xt

}

= 1
(
H t > 0

) ∫ Ht

0

[∫ s+QYt (τ |xt)

QYt (τ |xt)

g∗(y|xt)dy

]
ds

≥ 1
(
H t > 0

)
1 (g∗(QYt(τ |xt) ≥ ε1))

∫ Ht

0

[∫ s+QYt (τ |xt)

QYt (τ |xt)

g∗(y|xt)dy

]
ds

≥ ε1
2

1
(
H t > 0

)
1 (g∗(QYt(τ |xt) ≥ ε1))H

2

t ,

and similar result can be obtained for the case H t < 0. Thus,

E [Qn(θ)] ≥ ε1
2
E
[
1 (g∗(QYt(τ |xt) ≥ ε1))H

2

t

]
,

which, under Assumption A4, is strictly positive. Thus for any ε > 0, Qn(θ) is

bounded away from zero, uniformly in θ for ‖θ − θ(τ)‖ ≥ ε.

Proof of Theorem 3.2: We obtain the asymptotic normality using Pollard’s

(1985) approach. In particular, we apply Pollard’s (1985) theorem 2 except that

we replace his i.i.d. assumption by our stationary ergodic data assumption A5(ii),

(note that we could also apply theorem 7.1 of Newey and McFadden (1994)).

Recall that θ̂(τ) = arg minθ∈Θ
1
n

∑
t ρτ (Yt − H(xt, θ)), and under our theorem 1,
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θ̂(τ) ∈ Θ0 with probability approaching one. Note that ψτ (u) ≡ τ − I(u < 0)

is the right-hand derivative of ρτ (u) ≡ u(τ − I(u < 0)). (ρτ (u) is everywhere

differentiable with respect to u except at u = 0). Under assumption A6(i), the

derivative of ρτ (Yt −H(xt, θ)) with respect to θ ∈ Θ0 exists (except at the point

Yt = H(xt, θ)), and is given by

ϕtτ (θ) ≡ [τ − I(Yt < H(xt, θ))] Ḣθ(xt, θ).

By the mean value theorem,

ρτ (Yt −H(xt, θ)) = ρτ (Yt −H(xt, θ(τ))) + (θ− θ(τ))�ϕtτ (θ(τ)) + ‖θ − θ(τ)‖ rt(θ)

with

rt(θ) ≡ (θ − θ(τ))�[ϕtτ (θ) − ϕtτ (θ(τ))]

‖θ − θ(τ)‖ ,

where θ ∈ Θ0 is in between θ and θ(τ). Likewise,

E[ρτ (Yt−H(xt, θ))] = E[ρτ (Yt−H(xt, θ(τ)))]+(θ−θ(τ))�E[ϕtτ (θ(τ))]+‖θ − θ(τ)‖E[rt(θ)].

Since E[τ − I(Yt < H(xt, θ(τ)))|xt] = 0 under assumption A3, we have, under

assumptions A3, A5 and A6(i)(iv), that E[ρτ (Yt − H(xt, θ))] has a second-order

(i.e., E[ϕtτ (θ)] has a first-order) derivative at θ(τ) that is nonsingular, and is given

by

−V (τ) ≡ −E
{
g∗(H(xt, θ(τ)))Ḣθ(xt, θ(τ))Ḣθ(xt, θ(τ))

�
}
.

Thus condition (i) of Pollard’s (1985) theorem 2 is satisfied. Condition (ii) of

Pollard’s (1985) theorem 2 is directly assumed (θ(τ) ∈ int(Θ)), and his condition

(iii) holds due to our theorem 1 (
∥∥∥θ̂(τ) − θ(τ)

∥∥∥ = oP (1)). We shall replace his

condition (iv) by a CLT for stationary ergodic martingale difference data. Since

E[ϕtτ (θ(τ))|xt] = E
{
E (τ − I(Yt < H(xt, θ(τ)))|xt) Ḣθ(xt, θ(τ))

}
= 0,

V ar[ϕtτ (θ(τ))|xt] = τ(1 − τ)Ḣθ(xt, θ(τ))Ḣθ(xt, θ(τ))
�.
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Under assumptions A3, A5(ii) and A6(iv), we can apply the CLT for strictly

stationary ergodic martingale difference sequence (see, e.g., Hayashi (2000, page

106)), and obtain:

1√
n

n∑
t=1

ϕtτ (θ(τ)) ⇒ N(0, τ(1 − τ)Ω(τ))

with

Ω(τ) ≡ E
{
Ḣθ(xt, θ(τ))Ḣθ(xt, θ(τ))

�
}
.

Thus it remains to verify that condition (v) (stochastic differentiability) of Pol-

lard’s (1985) theorem 2 holds:

sup
θ∈Un

∣∣∣ 1√
n

∑
t (rt(θ) − E[rt(θ)])

∣∣∣
1 +

√
n ‖θ − θ(τ)‖ → 0 in probability

for each sequence of balls {Un} that shrinks to θ(τ) as n→ ∞. Since

rt(θ) ≡ (θ − θ(τ))�[ϕtτ (θ) − ϕtτ (θ(τ))]

‖θ − θ(τ)‖ ,

Pollard’s (1985) condition (v) holds provided that

sup
θ∈Un

∣∣∣∣∣ 1n∑
t

[ϕtτ (θ) − ϕtτ (θ(τ))] − E[ϕtτ (θ) − ϕtτ (θ(τ))]

‖θ − θ(τ)‖

∣∣∣∣∣→ 0 in probability

for each sequence of balls {Un} that shrinks to θ(τ) as n→ ∞.

Recall that ϕtτ (θ) ≡ [τ − I(Yt < H(xt, θ))] Ḣθ(xt, θ), we have:

ϕtτ (θ) − ϕtτ (θ(τ))

= Ḣθ(xt, θ) [I(Yt < H(xt, θ(τ))) − I(Yt < H(xt, θ))]

+
{
Ḣθ(xt, θ) − Ḣθ(xt, θ(τ))

}
[τ − I(Yt < H(xt, θ(τ)))]

≡ R1t(θ) +R2t(θ).
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Under assumption A6(i)(iii) we have: for all Un ⊆ Θ0,

E

(
sup
θ∈Un

∣∣∣∣ R2t(θ)

‖θ − θ(τ)‖
∣∣∣∣) ≤ E

(
sup
θ∈Θ0

∣∣∣Ḧθθ(xt, θ)
∣∣∣) <∞.

By assumption A3,

E[R2t(θ)] = E
({
Ḣθ(xt, θ) − Ḣθ(xt, θ(τ))

}
E{τ − I(Yt < H(xt, θ(τ)))|xt}

)
= 0.

Thus, under assumptions A5(ii) and A6(i)(iii), by the uniform law of large num-

bers for stationary ergodic processes, since Un ⊆ Θ0 ⊂ Θ we obtain:

sup
θ∈Un

∣∣∣∣∣ 1n∑
t

R2t(θ) − E[R2t(θ)]

‖θ − θ(τ)‖

∣∣∣∣∣ = oP (1)

for each sequence of balls {Un} that shrinks to θ(τ) as n → ∞. Consequently,

Pollard’s (1985) condition (v) holds provided that

sup
θ∈Un

∣∣∣∣∣ 1n∑
t

R1t(θ) − E[R1t(θ)]

‖θ − θ(τ)‖

∣∣∣∣∣ = oP (1) (6.2)

for each sequence of balls {Un} that shrinks to θ(τ) as n→ ∞.

For any positive sequence of decreasing numbers {εn}, denote Un ≡ {θ ∈ Θ0 :

θ �= θ(τ), ‖θ − θ(τ)‖ < εn}. Then, under assumption A.6(i)(ii), we have:

E

(
sup
θ∈Un

∣∣∣∣ R1t(θ)

‖θ − θ(τ)‖
∣∣∣∣)

≤ E

(
sup
θ∈Θ0

∥∥∥Ḣθ(xt, θ)
∥∥∥× E

[
sup
θ∈Un

|I(Yt < H(xt, θ(τ))) − I(Yt < H(xt, θ))|
‖θ − θ(τ)‖ |xt

])
For all θ ∈ Θ0, under assumption A6(i)(iii), we have

H(xt, θ) = H(xt, θ(τ))+ Ḣθ(xt, θ(τ))
�(θ−θ(τ))+

(θ − θ(τ))�Ḧθθ(xt, θ)(θ − θ(τ))

2
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with E
(
supθ∈Θ0

∣∣∣Ḧθθ(xt, θ)
∣∣∣) <∞. Therefore, under assumptions A3 and A6(i)(iii),

conditioning on xt, there exists a small ε(xt) > 0 such that for all θ ∈ Θ0 with

‖θ − θ(τ)‖ < ε(xt), we have that Yt−H(xt, θ(τ)) and Yt−H(xt, θ) are of the same

sign. Hence, under assumptions A3 and A6(i)(ii), conditioning on xt and for any

εn ≤ ε(xt) with εn ↘ 0, we have:

E

(
sup
θ∈Un

|I(Yt < H(xt, θ(τ))) − I(Yt < H(xt, θ))|
‖θ − θ(τ)‖ |xt

)
≤ E

(
sup

θ∈Un:‖θ−θ(τ)‖<ε(xt)

1{H t > 0}I(Yt < H(xt, θ)) − I(Yt < H(xt, θ(τ)))

‖θ − θ(τ)‖ |xt

)

+ E

(
sup

θ∈Un:‖θ−θ(τ)‖<ε(xt)

1{H t < 0}I(Yt < H(xt, θ(τ))) − I(Yt < H(xt, θ))

‖θ − θ(τ)‖ |xt

)
≤ const.g∗(H(xt, θ(τ))) × sup

θ∈Θ0

∥∥∥Ḣθ(xt, θ)
∥∥∥ ;

hence for εn ↘ 0,

E

(
sup
θ∈Un

∣∣∣∣ R1t(θ)

‖θ − θ(τ)‖
∣∣∣∣) ≤ const.E

(
{ sup

θ∈Θ0

∥∥∥Ḣθ(xt, θ)
∥∥∥}2 × g∗(H(xt, θ(τ)))

)
<∞.

This and the uniform law of large numbers for stationary ergodic processes now

imply that (6.2) holds. Therefore Pollard’s (1985) theorem 2 is applicable and

we obtain the desired normality result:
√
n(θ̂(τ) − θ(τ)) ⇒ N(0, V (τ)−1τ(1 −

τ)Ω(τ)V (τ)−1).
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