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Abstract

Peter C. B. Phillips has made fundamental contributions to unit root econometrics. This paper

provides a selective review of Peter�s contribution to unit roots, with a focus on unit root asymp-

totics, unit root tests, and testing for stationarity against the unit root alternative. The discussion

puts a relatively heavier weight on Peter�s most recent work.

1 lntroduction

In 1998, Phoebus J. Dhrymes published a book �Time series, unit roots and cointegration�. He dedi-

cated this book to Peter C.B. Phillips, �whose work on integrated processes infused clarity and depth

into the subject�(Dhrymes, 1998). This is unusual but is very indicative about Peter�s contribution

to unit root econometrics.

Nonstationarity is an important empirical feature in many macroeconomic and �nancial time

series. In the last 20 years, hundreds of economic time series have been examined by unit root tests.

Nowadays, unit root testing is a common exercise in macroeconomic time series applications. Peter
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Phillips�contribution to unit root time series analysis is fundamental, and the amount of his work on

this topic is enormous. Peter has made important contributions in almost every sub-�eld in unit root

analysis, and is still very active in research in this �eld. For these reasons, the current paper only

provides a relatively selective review of Peter�s contribution on unit root econometrics. In particular,

I will focus on selected papers about (1) Unit root asymptotics; (2) Unit root tests; and (3) Testing

stationarity against the unit root alternatives.

The �rst part on unit root asymptotics focuses on three papers: Phillips (1987a), �Time series re-

gression with a unit root,�Econometrica; Phillips and Solo (1992), �Asymptotics for linear processes,�

Annals of Statistics; and Ibragimov and Phillips (2008), �Regression Asymptotics using Martingale

Convergence Methods,�Econometric Theory. Phillips (1987a) is a classic paper in this �eld and has

in�uenced much of the research on unit roots in the last 20 years. Phillips and Solo (1992) provides

a powerful approach for time series asymptotic analysis. This approach is now widely used in econo-

metrics. The recent paper by Ibragimov and Phillips (2008) develops a new and conceptually simple

method that has great generality and a wide range of applicability.

The second part of this paper reviews the unit root tests. The semiparametric unit root tests

proposed in Phillips (1987a) and Phillips and Perron (1988) have numerous applications in econo-

metrics; the approach of nonparametric correction for serial correlation and endogeneity suggested by

Phillips (1987a) and Phillips and Hansen (1990) is now an important method in econometrics; the

local asymptotics of Phillips (1987b, 1988) provide a statistical foundation for local power analysis in

unit root tests; Peter�s work on nonlinear and nonparametric unit root models stimulates numerous

extensions and applications along these directions.

The third part of this paper considers testing stationarity against the unit root alternative -

the KPSS test of Kwiatkowski, Phillips, Schmidt, and Shin (1992). Testing the null hypothesis of

stationarity is subtle. Additional regularity conditions are necessary to guarantee a consistent test

against the unit root alternative. The KPSS test has had a huge impact on subsequent research on

this topic.

There are lots of other important contributions of Peter on unit roots that are not included in this

paper.
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Notation in this paper is standard, we use the symbol �)� to signify weak convergence of the

associated probability measures, continuous stochastic process such as the Brownian motion B(r) on

[0,1] are usually written simply as B and integrals like
R
are understood to be Lebesgue integrals

over the interval [0,1], the measure of integration � dr �being omitted for simplicity. In addition,

a standard Brownian motion is usually denoted by W (r), and BM(!2) signi�es a Brownian motion

with variance !2.

2 Unit Root Asymptotics

2.1 Unit root asymptotics via representations as polynomials in sample moments

Peter has made fundamental contributions to unit root asymptotics. Phillips (1987a) and Phillips

(1986) pioneered the use of functional limit theory in econometrics and showed for the �rst time how

to use this theory in regression problems with nonstationary data. In some ways, this was the most

immediate and long-lasting contribution in the �eld. It has been quickly adopted by econometricians

and there were many papers using this method and Brownian functionals even in general interest

economics journals.

Phillips (1987a) plays a crucial role in unit root econometrics. In this paper he derived, under

mixing conditions on the residual process, the limiting distribution of the unit root autoregression

estimator in stochastic process (Brownian motion) representations on function spaces, and proposed

semiparametric unit root tests that use a nonparametric treatment for weak correlation and endogene-

ity. In particular, functional limit theory for multilinear forms of weakly dependent mixing random

variables is derived by using their representations as polynomials in sample moments (via summation

by parts arguments) and then using standard weak convergence results for sums of weakly dependent

sequences. This classic work gives invariance principles for partial sums, sample variances and sample

moments, and convergence to stochastic integrals. Much of these results and analysis have been exten-

sively used in econometrics in the last 20 years, and the methods are part of the general econometric

toolkit.
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If we consider the following autoregressive process:

yt = �yt�1 + ut, (1)

where y0 is any random variable with �nite variance, and ut is a weakly dependent process such that

1. E(ut) = 0;

2. suptEjutj� <1, � > 2;

3. The long-run variance of ut, !2 = limn�1E (
Pn

t=1 ut)
2, and the variance of ut, �2u = limn

�1Pn
t=1Eu

2
t ,

exist and are positive;

4. ut is strong mixing with
P
�
1�2=�
m <1, where �m is the mixing coe¢ cient.

The ordinary least square estimator of � is given by

b� = Pn
t=2 yt�1ytPn
t=2 y

2
t�1

: (2)

Notice that

b� = �+

Pn
t=2 yt�1utPn
t=2 y

2
t�1

; (3)

the asymptotic behavior of b� is determined by limit theorems for the following bilinear forms:
nX
t=2

y2t�1, and
nX
t=2

yt�1ut.

When � = 1,

1p
n
y[nr] =

1p
n
y0 +

1p
n

X[nr]

j=1
uj =

1p
n

X[nr]

j=1
uj + op(1);

if we denote Yn(r) = n�1=2
P[nr]

j=1 uj , then Yn(r) ) B(r) = BM(!2) by the invariance principle for

mixing processes. The limiting behavior of the denominator of (3),
Pn

t=1 y
2
t�1, can then be immediately

derived from the invariance principle and the continuous mapping theorem:

1

n2

nX
t=2

y2t�1 =
1

n

nX
t=2

�
1p
n

Xt�1

j=1
uj

�2
+ op(1)

=
1

n

nX
t=2

"Z t=n

(t�1)=n
Yn(r)

2dr

#
+ op(1)

=

Z 1

0
Yn(r)

2dr + op(1)

)
Z 1

0
B(r)2dr:
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The numerator of (3),
Pn

t=2 yt�1ut, is the sample covariance between I(1) and I(0) components.

Phillips (1987a) analyzed this term using its representation as a polynomial in sample moments via

summation by parts. In particular, noticing that

1

n

Xn

t=2
yt�1ut =

1

n

Xn

t=2

�Xt�1

j=1
uj

�
ut + op(1);

and

1

n

Xn

t=2

�Xt�1

j=1
uj

�
ut =

1

2

�
1

n

�Xn

j=1
uj

�2
� 1

n

Xn

j=1
u2j

�
) 1

2

�
B(1)2 � �2u

�
=

1

2

�
B(1)2 � !2

�
+
1

2

�
!2 � �2u

�
=

Z 1

0
B(r)dB(r) + �;

where � = 1
2

�
!2 � �2u

�
is the one-sided long-run variance of ut and the last equality comes from Ito�s

Lemma. Consequently,

n (b�� 1) = 1
n

Pn
t=2 yt�1ut

1
n2
Pn

t=2 y
2
t�1

)
!2
R 1
0 W (r)dW (r) + �

!2
R 1
0 W (r)

2dr
: (4)

A detailed analysis of the above asymptotics is given by Phillips (1987a), and has been widely used

in the literature. Also see White (1958), Lai and Wei (1982), Solo (1984) and Chan and Wei (1988)

for related studies on this topic.

Recently, Ibragimov and Phillips (2008) show that the above results are a natural outcome of

convergence of a sequence of martingales to a continuous martingale. This is another important

contribution to unit root asymptotics, and is applicable to a wide range of econometric models. We

illustrate the basics of this approach in the following section.

2.2 Unit root asymptotics using martingale convergence methods

Ibragimov and Phillips (2008) develop a new and conceptually simple method based on martingale

convergence for obtaining weak convergence of partial sums and multilinear forms in independent

random variables and linear processes to stochastic integrals. The martingale convergence method

has great generality and a wide range of applicability. It can be used in developing weak convergence
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of di¤erent types of multilinear forms, giving invariance principles for partial sums, sample variances

and sample covariances; convergence to stochastic integrals; and asymptotics for general functionals

of partial sums. The approach reduces all asymptotics to the weak convergence of (semi)martingales,

i.e. convergence of a sequence of (semi)martingales to a continuous (semi)martingale. In particular,

under appropriate assumptions (including identi�cation of the limit), semimartingale convergence can

be derived based on convergence of its predictable characteristics. Using the martingale convergence

method, a uni�ed treatment of the asymptotics for stationary, near unit root, unit root, local to unit

root, and explosive autoregressions can be constructed.

To study unit root asymptotic distribution of the AR estimator using martingale convergence

theory, Ibragimov and Phillips (2008) consider the following recursive OLS estimator

b�r = P[nr]
t=1 yt�1ytP[nr]
t=1 y

2
t�1

, where r 2 (0; 1]:

Let us start with the simplest case with ut � iid(0; �2) in (1). In the presence of a unit root,

n (b�r � 1) = n�1
P[nr]

t=1 yt�1ut

n�2
P[nr]

t=1 y
2
t�1

: (5)

First, by Skorohod embedding as in Park and Phillips (1999), Ibragimov and Phillips (2008) construct

a probability space supporting St =
Pt

j=1 uj , Brownian motion B(r), and an increasing sequence of

nonnegative stopping times (Tt)t�0 such that

utp
n
=d B

�
Tt
n

�
�B

�
Tt�1
n

�
;

so that

1p
n

Xt

j=1
uj =d B

�
Tt
n

�
;

and

1

n

kX
t=1

yt�1ut =

kX
t=1

�
1p
n

Xt�1

j=1
uj

�
utp
n
+ op(1)

=
kX
t=1

B

�
Tt�1
n

��
B

�
Tt
n

�
�B

�
Tt�1
n

��
+ op(1):

We next construct the following sequence of processes:

Xn(r) =

[nr]X
t=1

B

�
Tt�1
n

��
B

�
Tt
n

�
�B

�
Tt�1
n

��
+B

�
T[nr]

n

��
B (r)�B

�
T[nr]

n

��
; (6)
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which is a martingale and is continuous in r. By Skorohod embedding, we have the following martin-

gale representation

[nr]X
t=1

�
1p
n

Xt�1

j=1
uj

�
utp
n

=

[nr]X
t=1

B

�
Tt�1
n

��
B

�
Tt
n

�
�B

�
Tt�1
n

��
= dXn

�
T[nr]

n

�
;

thus

1

n

[nr]X
t=1

yt�1ut =

[nr]X
t=1

�
1p
n

Xt�1

j=1
uj

�
utp
n
+ op(1) = Xn

�
T[nr]

n

�
+ op(1):

Using the above device, Ibragimov and Phillips (2008) show that the limiting behavior of n�1
P[nr]

t=1 yt�1ut

can be obtained from convergence of a sequence of martingales Xn

�
T[nr]
n

�
to the following continuous

martingale:

X(r) =

Z r

0
B(s)dB(s). (7)

Weak Convergence of (Semi)martingales. Using a very general convergence result for (semi)martingales

obtained by Jacod and Shiryaev (2003), and overcoming some technical problems in the existing litera-

ture, Ibragimov and Phillips (2008) show that the study of weak convergence for the (semi)martingales

is reduced to the study of convergence of their predictable characteristics.

In general, let (X(r); r � 0) be a continuous d-dimensional semimartingale on a probability space

(
;F ; P ) with respect to a �ltration F = (Fr; r � 0) of sub �-�elds of F , then X(r) can be decom-

posed into the summation of an initialization component X(0); a martingale component M(r); and a

predictable component A(r). More speci�cally, let X(r) =
�
X1(r); � � �; Xd(r)

�
, then X(r) admits the

following unique decomposition

Xj(r) = Xj(0) +M j(r) +Aj(r)

whereXj(0) are �nite valued F0-measurable random variables;M j(r) are continuous local F-martingales

with M j(0) = 0; and Aj(r) are continuous F-adapted �nite variation process.
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If we denote (the quadratic variation process) C(r) =
�
Cij(r); 1 � i; j � d

�
, where Cij(r) =

[Ci; Cj ](r) is the unique continuous process for which CiCj � Cij is a martingale, then the process

A(r) =
�
A1(r); � � �; Ad(r)

�
is called the �rst predictable characteristic ofX, and C(r) is called the second predictable characteristic

of X.

Given continuous locally square integrable semimartingalesXn = (Xn(r); r � 0) andX = (X(r); r � 0),

let their predictable characteristics be (An(r); Cn(r)) and (A(r); C(r)), and initializations be Xn(0)

and X(0), Jacod and Shiryaev (2003) provide su¢ cient condition for weak convergence of semimartin-

gales Xn
d! X. In particular, convergence of a sequence of martingales (Xn

d! X) holds if

1. Their predictable characteristics (An, Cn) and the initial distributions (Xn(0)) tend to those of

the limit martingale (i.e. A, C, and X(0));

2. The predictable characteristics of the limit process grow in a regular way;

3. The process X is the only continuous martingale with characteristics A and C and the initial

distribution X(0).

Intuitively, conditions 2 and 1 guarantee tightness of the sequence and the uniqueness condition

(Condition 3) guarantees identi�cation of the limit. For a rigorous and detailed treatment of the

martingale convergence analysis, see Jacod and Shiryaev (2003) and Ibragimov and Phillips (2008).

Going back to the recursive OLS estimator (5), let Xn and X be de�ned as (6) and (7), if we

consider the quadratic variation processes1 of Xn and X, denoted by [Xn]r and [X]r (existence and

uniqueness of the quadratic variation processes hold by the Doob-Meyer decomposition), notice that

the �rst predictable characteristics (An and A) corresponding to (Xn and X) are simply 0, and

conditions 2 and 3 above are satis�ed for the process X, Ibragimov and Phillips (2008) (also see Jacod

and Shiryaev (2003)) show that

Xn(r)
d! X(r)

1 If M(r) is a martingale, and its quadratic variation process is denoted by [M ]r, then M(r)
2 � [M ]r is a martingale.
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if the corresponding quadratic variation processes (the second predictable characteristics) converge in

probability:

Cn(r)
p! C(r) ;

i.e.

[Xn]r
p! [X]r .

This is true since

sup
t�n

����Ttn � t

n

���� a:s:! 0;

by Park and Phillips (1999) and Phillips and Ploberger (1996), and�
B

�
T[nr]

n

��
B (r)�B

�
T[nr]

n

���
r

= B

�
T[nr]

n

�2�
r �

T[nr]

n

�
�2

p! 0;

thus

[Xn]r =

[nr]X
t=1

B

�
Tt�1
n

�2�Tt
n
� Tt�1

n

�
�2 +B

�
T[nr]

n

�2�
r �

T[nr]

n

�
�2

�
[nr]X
t=1

B

�
Tt�1
n

�2�Tt
n
� Tt�1

n

�
�2

� �2
[nr]X
t=1

B
� s
n

�2 1
n

p! �2
Z r

0
B (s)2 ds = [X]r :

Consequently, n (b�� 1)) hR 1
0 B(r)

2dr
i�1 hR 1

0 B(r)dB(r)
i
as a result of martingale convergence.

The above martingale convergence analysis can be conveniently extended to the case where ut

is weakly dependent. Ibragimov and Phillips (2008) provide an analysis for linear processes using

martingale convergence arguments and the linear process method of Phillips and Solo (1992).

The linear process asymptotic theory of Phillips and Solo (1992) provides an extremely conve-

nient and powerful approach for time series asymptotic analysis. The basic idea of this method is to

use simple limiting theory and the algebra of the linear operator to extract limiting theory for linear

processes. This approach is based on martingale transformations of linear processes. Such transfor-

mations reduce complicated asymptotics for dependent linear processes to those of i.i.d., i.ni.d., or
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martingale di¤erence sequences, and deliver an ingenious approach to develop strong laws, central

limit theorems, functional laws, and laws of iterated logarithms for time series. The approach applies

not only to the linear process itself but also to products and multivariate processes, and it can be

further used in panel data and frequency domain problems.

We assume that

ut = C(L)"t; (8)

where "t is an i.i.d. sequence with Var("2t ) = �2", and

C(L) =
X1

j=0
cjL

j ;
X1

j=0
jjcj j <1; C(1) 6= 0; (9)

where L is the lag operator for which Lyt = yt�1. The initial condition in (1) is set at t = 0, and

again we assume that y0 may be a constant or a random variable with �nite variance. The second

and third conditions of (9) ensure that ut is covariance stationary and has positive spectral density

at the origin - see Phillips and Solo (1992) for discussions on various alternative settings for "t and

di¤erent summability conditions. Under the summability condition in (9), Phillips and Solo (1992)

validate the following expansion of the operator C(L)

C(L) = C(1) + eC(L)(L� 1); (10)

where eC(L) = P1
j=0 ecjLj and ecj = P1

s=j+1 cs: This expansion gives rise to an explicit martingale

di¤erence decomposition of ut

ut = C(1)"t + e"t�1 � e"t; with e"t = eC(L)"t: (11)

This decomposition is sometimes called the martingale decomposition in the probability literature (see,

e.g., Hall and Heyde, 1980) because, if f"tg is a martingale di¤erence sequence, the �rst term of (11)

is a martingale di¤erence and the partial sums
Pt

s=1 us correspondingly have the leading martingale

term C(1)
Pt

s=1 "s. The expansion is also called the BN decomposition due to the work of Beveridge

and Nelson (1981) on decomposing aggregated economic data into long run and short run components.

If yt is generated by (1) with � = 1, then

yt = C(1)
tX

s=1

"s + e"0 � e"t + y0;
10
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where C(1)
Pt

s=1 "s and e"0 � e"t + ys0 are the long run and short run components of yt; respectively.

Phillips and Solo (1992) show that

1p
n
y[nr] = C(1)

1p
n

[nr]X
s=1

"s + op(1)) C(1)B"(r) = B(r)

where B"(r) =BM(�2").

Ibragimov and Phillips (2008) analyzed the limiting behavior of n�1
Pn

t=2 yt�1ut under assumptions

(8) and (9). First, by the previous analysis in this section using the martingale convergence method

and Skorohod embedding, we have

1

n

[nr]X
t=2

 
t�1X
i=1

"i

!
"t )

Z r

0
B"(s)dB"(s) = �2"

Z r

0
W (s)dW (s):

Let � =
P1

j=1E(u0uj), and apply the BN decomposition (11) twice, we have

[nr]X
t=2

 
t�1X
i=1

ui

!
ut = C(1)2

[nr]X
t=2

 
t�1X
i=1

"i

!
"t + C(1)

[nr]X
t=2

(e"0 � e"t�1) "t + [nr]X
t=2

 
t�1X
i=1

ui

!
(e"t�1 � e"t) ;

thus ������ 1n
[nr]X
t=2

 
t�1X
i=1

ui

!
ut � r�� C(1)2

1

n

[nr]X
t=2

 
t�1X
i=1

"i

!
"t

������
=

������C(1) 1n
[nr]X
t=2

(e"0 � e"t�1) "t + 1

n

[nr]X
t=2

 
t�1X
i=1

ui

!
(e"t�1 � e"t)� r�

������
�

������C(1) 1n
[nr]X
t=2

e"0"t
������+
������C(1) 1n

[nr]X
t=2

e"t�1"t
������+
������ 1n

[nr]X
t=2

 
t�1X
i=1

ui

!
(e"t�1 � e"t)� r�

������ :
Notice that

1

n

[nr]X
t=2

 
t�1X
i=1

ui

!
(e"t�1 � e"t) = � 1

n

[nr]X
t=1

ute"[nr] + 1

n

[nr]X
t=1

ute"t;
thus ������ 1n

[nr]X
t=2

 
t�1X
i=1

ui

!
ut � r�� C(1)2

1

n

[nr]X
t=2

 
t�1X
i=1

"i

!
"t

������
�

������C(1) 1n
[nr]X
t=2

e"0"t
������+
������C(1) 1n

[nr]X
t=2

e"t�1"t
������+
������
0@ 1
n

[nr]X
t=1

ut

1Ae"[nr]
������+
������ 1n

[nr]X
t=1

ute"t � r�
������ :
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The BN decomposition can be used again to analyze the term n�1
P[nr]

t=1 ute"t � r�. Notice that

e"t = eC(L)"t, therefore we have
ute"t =

�
C(1)"t + eC(L)"t�1 � eC(L)"t� eC(L)"t

= h0(L)"
2
t +

1X
s=1

hs(L)"t"t�s;

where h0(L) =
P1

k=0 ckeckLk, hs(L) = P1
k=0 (ck+seck + ckeck+s)Lk. Applying the BN decomposition

again to hs(L) (s = 0; 1; � � �),

hs(L) = hs(1) + ehs(L)(L� 1);
we have

ute"t = h0(1)"
2
t + (L� 1)

heh0(L)"2t i+ "t
 1X
s=1

hs(1)"t�s

!
+ (L� 1)

 1X
s=1

ehs(L)"t�s! "t;
consequently

1

n

[nr]X
t=1

ute"t
= h0(1)

1

n

[nr]X
t=1

"2t +
1

n
eh0(L)"20 � 1

n
eh0(L)"2[nr]

+
1

n

[nr]X
t=1

"t

 1X
s=1

hs(1)"t�s

!
+
1

n

 1X
s=1

ehs(L)"�s! "0 � 1

n

 1X
s=1

ehs(L)"[nr]�s
!
"[nr]:

Thus, for all N 2 N = f1; 2; � � �g, and all r 2 [0; N ],

sup
0�r�N

������ 1n
[nr]X
t=2

 
t�1X
i=1

ui

!
ut � r�� C(1)2

1

n

[nr]X
t=2

 
t�1X
i=1

"i

!
"t

������
� sup

0�r�N

������C(1) 1n
[nr]X
t=2

e"0"t
������+ sup

0�r�N

������C(1) 1n
[nr]X
t=2

e"t�1"t
������+ sup

0�r�N

������
0@ 1
n

[nr]X
t=1

ut

1Ae"[nr]
������

+ sup
0�r�N

������ 1n
[nr]X
t=1

�
h0(1)"

2
t � �

�������+
���� 1neh0(L)"20

����+ sup
0�r�N

���� 1neh0(L)"2[nr]
����

+ sup
0�r�N

������ 1n
[nr]X
t=1

"t

 1X
s=1

hs(1)"t�s

!������+
����� 1n
 1X
s=1

ehs(L)"�s! "0
�����

+ sup
0�r�N

����� 1n
 1X
s=1

ehs(L)"[nr]�s
!
"[nr]

�����
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Noticing that � = h0(1)�
2
", and the following sequences: fe"0"tg, fe"t�1"tg, �h0(1)"2t � �	, f"t (P1

s=1 hs(1)"t�s)g,

are all martingale-di¤erences sequences with �nite variances, Ibragimov and Phillips (2008) show that

sup
0�r�N

������C(1) 1n
[nr]X
t=2

e"0"t
������ p! 0, sup

0�r�N

������C(1) 1n
[nr]X
t=2

e"t�1"t
������ p! 0,

sup
0�r�N

������ 1n
[nr]X
t=1

�
h0(1)"

2
t � �

������� p! 0, sup
0�r�N

������ 1n
[nr]X
t=1

"t

 1X
s=1

hs(1)"t�s

!������ p! 0.

In addition

sup
0�r�N

������
0@ 1
n

[nr]X
t=1

ut

1Ae"[nr]
������ p! 0,

���� 1neh0(L)"20
���� p! 0, sup

0�r�N

���� 1neh0(L)"2[nr]
���� p! 0,

����� 1n
 1X
s=1

ehs(L)"�s! "0
����� p! 0, sup

0�r�N

����� 1n
 1X
s=1

ehs(L)"[nr]�s
!
"[nr]

����� p! 0,

under the summability condition and appropriate moment conditions (Ibragimov and Phillips (2008)),

thus

sup
0�r�N

������ 1n
[nr]X
t=2

 
t�1X
i=1

ui

!
ut � r�� C(1)2

1

n

[nr]X
t=2

 
t�1X
i=1

"i

!
"t

������ p! 0;

and

1

n

[nr]X
t=2

 
t�1X
i=1

ui

!
ut ) r�+ C(1)2

Z r

0
B"(s)dB"(s) = r�+ C(1)2�2"

Z r

0
W (s)dW (s):

Notice that, by continuous mapping:

1

n2

nX
t=2

y2t�1 =
1

n

nX
t=2

�
yt�1p
n

�2
=

Z 1

0

�
1p
n
y[nr]

�2
dr ) C(1)2

Z 1

0
B2" (r)dr;

thus limiting distribution of â in the general case with weakly correlated ut can be obtained as a result

of martingale convergence:

n(â� 1) = n�1
Pn

t=1 yt�1ut
n�2

Pn
t=1 y

2
t�1

)
�+ !2

R 1
0 W (s)dW (s)

!2
R 1
0 W

2(r)dr
(12)

where !2 = C(1)2�2". Similarly, the limiting distribution of the t-ratio statistic is given by

t�̂ )
�+ !2

R 1
0 W (s)dW (s)

�u

h
!2
R 1
0 W

2(r)dr
i1=2 ; (13)

where �2u =Var(ut).
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2.3 General Autoregression Asymptotics

Peter�s contribution to autoregression asymptotic theory goes much beyond the exact unit root models.

Phillips (1987b, 1988) studied asymptotic theory for autoregressions with a root that is local to unity;

Phillips, Moon and Xiao (2001), Giraitis and Phillips (2004), Phillips and Magdalinos (2004, 2005)

studied asymptotic theory for autoregressions with moderate deviations from unity; and Ibragimov

and Phillips (2008) studied a wide range of autoregressive models.

The asymptotic analysis described in the previous section embeds n�1
P[nr]

t=1 yt�1ut in its continuous

version and thus convergence results are obtained based on weak convergence of continuous martin-

gales. Ibragimov and Phillips (2008) also show how to directly treat the discrete time martingales

and semimartingales using their third predictable characteristic as the predictable measure of jumps.

Such extensions provide a uni�ed formulation for limiting theory of stationary, unit root, local to

unit root models, and autoregressions with moderate deviations from unit root, as well as explosive

autoregressions.

For this purpose it is useful to introduce the compensator of [X]r - the conditional quadratic

variation process hXir (Phillips, 2005). In particular, the compensator of [X]r compensates [X]r to

make it into a martingale, i.e.

[X]r � hXir = martingale.

If we consider autoregression (1), with ut = i.i.d(0; �2), and � may be:

1. j�j < 1 : Stationary

2. � = 1 + c=nb, 0 < b < 1 and c < 0: Moderate deviations from unit root

3. � = 1 + c=n : Local to unit root

4. � = 1 : Unit root

5. � > 1 : Explosive autoregression

Ibragimov and Phillips (2008) consider the following standardization on the recursive OLS estima-
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tor b�r:  P[nr]
t=1 y

2
t�1

�2

!1=2
(b�r � �) = P[nr]

t=1 yt�1ut�P[nr]
t=1 y

2
t�1�

2
�1=2 ,

which, as will be more clear later, can be represented in martingale form as a ratio Xn(r)= (hXnir)
1=2,

and the limit theory can be delivered by martingale convergence in the form

Xn(r)

(hXnir)
1=2

d! X(r)

(hXir)
1=2

;

where X(r) is the corresponding limiting martingale process.

Stationary case: When j�j < 1, let

Xn (r) =
1p
n

[nr]X
t=1

yt�1ut, and X (r) = �

Z r

0
dBy(s) = �By(r),

where By(r) = BM(�2y), and �
2
y = �2=(1� �2), then

[Xn]r =
1

n

[nr]X
t=1

y2t�1u
2
t , hXnir =

1

n

[nr]X
t=1

y2t�1�
2

and, notice that X (r) is a continuous martingale,

[X]r = hXir = �2�2yr ,

thus  P[nr]
t=1 y

2
t�1

�2

!1=2
(b�r � �) = Xn (r)

(hXnir)
1=2

D! X (r)

(hXir)
1=2

=
�By(r)�
�2�2yr

�1=2 = N(0; 1):

Notice that if we consider

b�2r = 1

[nr]

[nr]X
t=1

bu2t ! �2, where but = yt � b�ryt�1;
then  P[nr]

t=1 y
2
t�1b�2r
!1=2

(b�r � �) D! X (r)

(hXir)
1=2

= N(0; 1):
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Moderate deviation from unity: If � = 1 + c=nb, for some b 2 (0; 1) and c < 0, notice that by

Phillips (1987b)

1p
nb
y[nbr]

P!
Z r

0
ec(r�s)dB(s) = Jc(r);

let

Xn (r) =
1

n(1+b)=2

[nr]X
t=1

yt�1ut, and X (r) =

r
�4

�2cW (r) = N

�
0;

�4

�2cr
�
,

then

hXnir =
1

n1+b

[nr]X
t=1

y2t�1�
2, and hXir =

�4

�2cr.

Thus,

Xn (r) =
1

n(1+b)=2

[nr]X
t=1

yt�1ut =
1

n(1�b)=2

n1�bX
�=1

nb�X
t=nb(��1)

�yt�1
nb=2

�� ut

nb=2

�

=
1

n(1�b)=2

n1�bX
�=1

Z �

��1
Jc(s)dB(s) + op(1):

and �� =
R �
��1 Jc(s)dB(s) is a martingale di¤erence sequence with variance

E
�
�2�
�
= E

�
�2
Z �

��1
J2c (s)ds

�
=

�4

�2c
�
1� e2c�

�
=

�4

�2c +O
�
e2c�

�
, c < 0,

thus,

Xn (r) =
1

n(1�b)=2

n1�brX
�=1

Z �

��1
Jc(s)dB(s) + op(1)

P!
r

�4

�2cW (r) = X (r)

and

hXnir =
1

n1+b

[nr]X
t=1

y2t�1�
2 =

1

n1�b

n1�brX
�=1

1

nb

nb�X
t=nb(��1)

�yt�1
nb=2

�2
�2

=
�2

n1�b

n1�brX
�=1

Z �

��1
J2c (s)ds+ op(1)

! �2 lim
n

1

n1�b

n1�brX
�=1

E
�Z �

��1
J2c (s)ds

�
=

�4

�2cr

= hXir

thus,  P[nr]
t=1 y

2
t�1

�2

!1=2
(b�r � �) = Xn (r)

(hXnir)
1=2

D! X (r)

(hXir)
1=2

= N (0; 1) :
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Local to unit root: In the case with � = 1+ c=n, notice that n�1=2y[nr]
P!
R r
0 e

c(r�s)dB(s) = Jc(r)

(Phillips 1987b), let

Xn (r) =
1

n

[nr]X
t=1

yt�1ut, and X (r) =
Z r

0
Jc(s)dB(s),

then

[Xn]r =
1

n2

[nr]X
t=1

y2t�1u
2
t , hXnir =

1

n2

[nr]X
t=1

y2t�1�
2

and

[X]r = hXir = �2
Z r

0
Jc(s)

2ds,

thus, the martingale convergence theorem delivers the following result: P[nr]
t=1 y

2
t�1

�2

!1=2
(b�r � �) = Xn (r)

(hXnir)
1=2

D! X (r)

(hXir)
1=2

=

R r
0 Jc(s)dB(s)�

�2
R r
0 Jc(s)

2ds
�1=2 =

R r
0 Wc(s)dW (s)�R r
0 Wc(s)2ds

�1=2 ;
where

Wc(r) =

Z r

0
ec(r�s)dW (s):

Unit root case: When � = 1, let

Xn (r) =
1

n

[nr]X
t=1

yt�1ut, and X (r) =
Z r

0
B(s)dB(s),

then,

[Xn]r =
1

n2

[nr]X
t=1

y2t�1u
2
t , hXnir =

1

n2

[nr]X
t=1

y2t�1�
2

and

[X]r = hXir = �2
Z r

0
B(s)2ds,

by martingale convergence we obtain P[nr]
t=1 y

2
t�1

�2

!1=2
(b�r � �) = Xn (r)

(hXnir)
1=2

D! X (r)

(hXir)
1=2

=

R r
0 B(s)dB(s)�

�2
R r
0 B(s)

2ds
�1=2 =

R r
0 W (s)dW (s)�R r
0 W (s)

2ds
�1=2 :

Explosive case: If � > 1, let

Xn (r) =
1

�[nr]

[nr]X
t=1

yt�1ut,
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then,

hXnir =
1

n2[nr]

[nr]X
t=1

y2t�1�
2:

Notice that

yt
�t
=
ut
�t
+
ut�1
�t�1

+ � � �+ u1
�

is a martingale, and

sup
t
E
� yt
�t

�2
=

1X
s=1

�2

�2s
=

�2

�2 � 1 <1;

by the martingale convergence theorem, as t!1, ��tyt
a:s:! Y� = y0 +

P1
s=1 �

�sus,

Xn (r) =
1

�[nr]

[nr]X
t=1

yt�1ut =

[nr]X
t=1

yt�1
�t�1

ut

�[nr]�(t�1)
a:s:! Y�U� = X (r) ,

with U� =
P1

s=1 �
�su0s where u

0
s is an i.i.d. sequence that is distributionally equivalent to us. The

limit X (r) is the product of two independent random variables Y� and U�, and

hXir = Y 2�

1X
s=1

��2s�2 =
�2

�2 � 1Y
2
� ,

thus we obtain P[nr]
t=1 y

2
t�1

�2

!1=2
(b�r � �) = Xn (r)

(hXnir)
1=2

D! X (r)

(hXir)
1=2

=
Y�U��
�2

�2�1Y
2
�

�1=2 = sign (Y�)� �2

�2 � 1

�
U�:

If y0 = 0, and ut = i.i.d. N(0; �2), then Y� and U� are two independent N
�
0; �2

�2�1

�
random

variables and the above limit becomes N(0,1).

.

The martingale convergence approach uni�es the limit theory for stationary, unit root and explosive

autoregressions. The above analysis immediately delivers the following results:
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p
n (b�� �) d! N(0; 1� �2), if j�j < 1;

n(1+b)=2 (b�� �) d! N(0;�2c), if � = 1 + c=nb;

n (b�� �) d!
R 1
0 W (s)dW (s)=

R 1
0 W (s)

2ds, if � = 1;

n (b�� �) d!
R 1
0 Wc(s)dW (s)=

R 1
0 Wc(s)

2ds, if � = 1 + c=n;

�n

(�2�1) (b�� �) d! U�
Y�
, where Y� and U� are independent, if � > 1:

This approach has great generality and can be used in a wide range of applications.

3 Unit Root Tests

Unit root testing is probably the most active area in unit root econometrics. A large amount of

research e¤ort on unit root studies is devoted to the development of unit root tests. A widely used

method in unit root testing is the semiparametric approach proposed by Phillips (1987a). The semi-

parametric procedures proposed in this paper not only provide important unit root tests, but also

provide a di¤erent direction of dealing with the serial correlation and endogeneity problem. Nowa-

days, the semiparametric unit root tests are widely used in time series applications, and the method

of nonparametric correction for serial correlation and endogeneity has become an important technique

in econometrics.

For a simple random walk with i.i.d. residuals ut, the limiting distributions of the OLS estimator

of � given by (2) and its t-ratio statistic tb� are free of nuisance parameters:
n(b�� 1)) hR 1

0W (r)dW (r)
ihR 1

0W (r)
2
i�1

; (14)

tb� ) hR 1
0W (r)dW (r)

ihR 1
0W (r)

2
i�1=2

: (15)

When the residual process ut is weakly dependent, analysis in Section 2 indicates that the limit

distributions of b� and tb� have additional bias terms due to the presence of serial correlation, and thus
these two statistics can not be directly used in testing for a unit root.
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Phillips (1987a) proposed a semiparametric approach to adjust b� and tb� based on nonparametric
estimates of the nuisance parameters ! and � to account for the serial correlation. This approach is

said to be semi-parametric since its treatment of the regression coe¢ cient � is parametric but it deals

with the correlation in the stationary residual ut nonparametrically.

Notice that !2 and � in (12) and (13) are nuisance parameters and may be consistently estimated

by nonparametric kernel methods (e.g., see, Phillips (1987a), Andrews (1991)), let !̂2 and �̂ be such

estimates, the semiparametric unit root tests can be constructed as follows:

Z� = n(�̂� 1)� �̂
�
n�2

Xn

t=2
y2t�1

��1
)
hR 1
0WdW

ihR 1
0W

2
i�1

;

Zt = �̂u!̂
�1t� � �̂

n
!̂
�
n�2

Pn
t=2 y

2
t�1
�1=2o�1 ) hR 1

0WdW
ihR 1

0W
2
i�1=2

:

The limiting null distributions of the above semiparametric statistics Z� and Zt are the same as those

given in (14) and (15).

The weak correlation in ut can also be handled in a parametric way as Dickey and Fuller (1979,

1981) and Said and Dickey (1984). The parametric approach assumes that the autocorrelation in the

stationary residual process ut can be captured by a parametric model. In particular, if ut is an AR(p)

process, the original model (1) can be re-written as

�yt = ayt�1 +
Xp

j=1
'j�yt�i + "t; (16)

where "t are i.i.d. with Var("2t ) = �2", and the unit root hypothesis corresponds to the hypothesis

a = 0, which can be tested by means of the regression coe¢ cient ba or its t-ratio statistic tâ; which have
the same limiting distributions as those given in (14) and (15). For more general time series processes

with a valid AR(1) representation (and fast enough convergence rate in the coe¢ cients), we may still

construct unit root tests based on autoregression (16) with p!1 as sample size n!1. These tests

are called the augmented Dickey�Fuller (ADF) tests. The t-ratio statistic corresponding to ba can be
directly used in unit root testing. A rescaled regression coe¢ cient ba can also be used in testing for a
unit root.

If we denote the long-run variance of ut and "t as !2 and �2 and let b!2 and b�2 be their consistent
estimates (which can be obtained from regression (16)), the ADF coe¢ cient test can be constructed
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as

ADF� = (b!=b�)nba:
We denote the t-ratio statistic corresponding to ba as ADFt, under the null hypothesis of unit root, if
p!1 at a rate less than n1=3,

ADF� =)
R
WdWR
W 2

, ADFt =)
R
WdW�R
W 2
�1=2 , as n!1.

Said and Dickey (1984) prove the validity of the ADF t-ratio test (ADFt) in general ARMA processes

of unknown order, and Xiao and Phillips (1998) studied the ADF coe¢ cient test (ADF�).

To study power properties of the unit root tests, it is useful to look at their behavior under the

local alternative hypothesis Hc : � = 1 + c=n. Phillips (1987b) shows that under the local alternative

Hc, yt behaves asymptotically like a linear di¤usion: n�1=2y[nr] ) Jc(r) = !Wc(r), and the limit

distributions of the unit root tests are functionals of Wc(r):

Z�, ADF� ) c+
hR 1
0Wc(r)dW (r)

ihR 1
0Wc(r)

2
i�1

,

and

Zt, ADFt ) c

�Z
Wc(r)dr

�1=2
+

�Z
Wc(r)

2dr

��1=2 Z
Wc(r)dW (r):

The corrections for residual serial correlation in ut do not lead to loss in asymptotic power.

The local asymptotic theory may be used to construct asymptotic power envelopes for unit root

tests. In the simplest framework where the model is a Gaussian AR(1) with unit error variance, the

Neyman�Pearson lemma can be used to construct the most powerful test of a unit root against a

simple point alternative. Such a test is point optimal for a unit root at the speci�c point alternative

that is selected. King (1988) provides a general discussion of such point optimal invariant tests, and

Dufour and King (1991) developed the family of exact most powerful invariant tests. Also see Elliott,

Rothenberg, and Stock (1996) for related studies.

Under the alternative that j�j < 1, Z�; ADF� = Op(n); and Zt; ADFt = Op(n
1=2) as n!1.

One assumption typically imposed in the literature is that the initialization y0 has no impact on

the limit theory under the unit root hypothesis. This is true if y0 is a constant, or any random variable

with �nite variance, as we assumed in the beginning. The limit results hold even if the innovations
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u�j go back into the distant past, as long as y0 is small relative to the sample size n, i.e. y0 = op(
p
n).

If y0 = Op(
p
n), the initialization will then a¤ect the limiting distribution and the above limiting

results will change. For example, if we consider a distant past initialization such that

1p
n
y0 ) B0(r0) = !0W0(r0)

for some Brownian motion B0(�) = BM(!20), then

1p
n
y[nr] =

1p
n
y0 + C(1)

1p
n

[nr]X
s=1

"s ) B0(r0) +B(r);

and the limiting distributions of b� and its t-ratio tb� will change correspondingly. In practice, the initial
condition is not observable or estimable, thus it is hard to directly use information about the initial

condition. However, the initial condition uncertainty does a¤ect the selection of, say, a more e¢ cient

detrending procedure (see later discussions on trending time series), and researchers want to take into

account of this uncertainty when selecting a detrending method. For additional discussions related to

initial observations, see, e.g. Phillips (1987a), Phillips and Lee (1996), Canjels and Watson (1997),

Muller and Elliott (2003), Andrews and Guggenberger (2008), Ayat and Burridge (2000), Harvey,

Leybourne and Taylor (2008).

Another important condition is the condition (9) imposed on the linear process coe¢ cients, which

ensures that ut is covariance stationary and has positive spectral density at the origin, thereby ensuring

that the unit root in yt does not cancel. In practice, if the root of the error process is close to the unit

circle, unit root tests have distorted sizes. Campbell and Perron (1991) and Blough (1992) indicated

that this property may a¤ect unit root tests. Perron and Ng (1996) analyzed the local asymptotic

properties and proposed some useful modi�cations to the semiparametric unit root tests. Faust (1996)

studied this issue and concludes that the two classes of processes: I(1) sequences for which C(1) 6= 0

and I(0) sequences for which C(1) = 0, are nearly observationally equivalent. This near observational

equivalence may be prevented by introducing a smoothness requirement on spectrum of e"t, which can
be accomplished by appropriate summability condition on the linear process coe¢ cients. It turns out

that a strengthening of the summability condition used in Phillips and Solo (1992) to validate the BN

decomposition is su¢ cient to rule out the pathology of I(0) sequences with near I(1) behavior. See

related discussions and additional literature in Section 4 on bandwidth selection in KPSS test.
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3.1 Unit Root Tests In The Presence of a Deterministic Trend

In practice, many observed time series display a tendency of growth. This characteristic is especially

evident in time series that represent aggregate economic behavior like GDP and industrial produc-

tion. To capture such secular movements in the series, deterministic trending functions (usually time

polynomials) are commonly included in the above mentioned regressions.

Consider an observed time series yt that can be written as the sum of a deterministic trend dt and

a stochastic component yst :

yt = dt + y
s
t ; t = 1; ::::; n; (17)

where dt = 
0xt, xt is a k-vector of deterministic trends and 
 = (
0; ::::; 
p)
0 is a vector of trend

coe¢ cient. If the trend is assumed to be a time polynomial, xt = (1; t; :::; tp)0. In practice, the leading

cases of the deterministic component are: (i) a constant xt = 1; (ii) a linear time trend xt = (1; t)0.

To develop an asymptotic theory it is assumed that there exists a scaling matrix Dn and a limiting

trend function X(r) such that D�1
n x[nr] ! X(r) as n!1 uniformly in r 2 [0; 1]. For example, if the

trend is a p-degree time polynomial, then Dn = diag(1; n; :::; n
p) and X(r) = (1; r; :::; rp)0.

The stochastic component yst is usually modeled as

yst = �yst�1 + ut; t = 1; ::::; n; (18)

where � is the largest autoregressive root, and the disturbances ut follow a general linear process

as described by (8). To take into account the deterministic trend, we may consider the following

regression model

yt = �0xt + �yt�1 + ut: (19)

The large sample theory for the coe¢ cient estimator b� in (19) and its regression t-ratio statistic
tb� can be derived by partitioned regression using the asymptotics given earlier in this paper:

n(â� 1))
h
!2
R 1
0WX(r)dW (r) + �

ih
!2
R 1
0W

2
X(r)dr

i�1
;

and

t�̂ ) ��1u

h
!2
R 1
0WX(r)dW (r) + �

ih
!2
R 1
0W

2
X(r)dr

i�1=2
;
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where �2u, !
2, and � are the same quantities as before and WX(r) is detrended Brownian motion

de�ned by the L2[0; 1] Hilbert space projection of W (r) onto the space orthogonal to the span of

X(r), viz.,

WX(r) =W (r)�
�Z 1

0
WX

� �Z 1

0
XX

��1
X(r);

and W (r) is standard Brownian motion. Again, let !̂2 and �̂ be consistent estimates of !2 and �,

and let yX;t be the residual from a regression of yt on xt, the following semiparametric tests can be

formed to test the unit root hypothesis:

Z� = n(�̂� 1)� �̂
�
n�2

Xn

t=2
y2X;t�1

��1
)
hR 1
0WXdW

ihR 1
0W

2
X

i�1
; (20)

Zt = �̂u!̂
�1t� � �̂

n
!̂
�
n�2

Pn
t=2 y

2
X;t�1

�1=2o�1 ) hR 1
0WXdW

ihR 1
0W

2
X

i�1=2
: (21)

Phillips and Perron (1988) developed the above semiparametric tests for the leading cases where xt = 1

and xt = (1; t)0. These tests are also called the Phillips-Perron tests in the literature and are widely

used in econometric applications. Ouliaris et al. (1989), and Park and Sung (1994) also gave various

extensions of the original semiparametric tests.

We may also introduce a deterministic trend into the ADF regression (16)

�yt = ayt�1 +
Xk�1

j=1
'j�yt�i + �

0xt + "t;

again the unit root hypothesis can be tested based on the regression coe¢ cient ba or its t-ratio statistic
tâ, which have the same limiting distributions as those given in (20) and (21).

The limit distributions of the detrended unit root tests depend on limiting trend functions. Nu-

merical tabulations for the leading cases can be found in Fuller (1976/1996) and many time series

textbooks. Ouliaris and Phillips (1994) provide critical values for the case of polynomial trends.

These limit distributions are asymmetric and have long left tails. In the case of the Z� test, for in-

stance, we reject the null hypothesis of a unit root at the 5% level if Z� < cv(Z�; 5%), the 5% critical

value of the test.
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3.2 Unit Root Tests Based on E¢ cient Detrending

The discriminatory power in unit root tests between models with a root at unity and a root close to

unity is generally low, and is reduced further by detrending the data. A careful comparison between

(17) and (19) reveals that there are surplus trend variables in the regression equation (19). The

inclusion of redundant trend variables in regression (19) ensures that the maximum trend degrees in

(19) and (17) are the same, and thus the limiting result is invariant to the parameters in the trend

function.

However, the redundant trend variables also lead to some ine¢ ciency in unit root testing. A large

amount of research e¤ort has been devoted to improving the sampling performance of detrended unit

root tests, including Sargan and Bhargava (1983), Shimidt and Phillips (1992), Stock (1995), and

Elliot et al. (1996), Xiao (2001b).

Sargan and Bhargava (1983) suggested using the von Neumann (VN) ratio (the ratio of the sample

variances of the di¤erences and the levels of a time series) for testing the Gaussian random walk

hypothesis, and Bhargava (1986) extends it to the case of a time trend. Using nonparametric estimates

of the nuisance parameter !2 to rescale the VN ratio, a unit root test against the stationary alternative

can be obtained. Stock (1995) does this for the case where there is a linear trend. Using a di¤erent

approach and working with polynomial trends, Schmidt and Phillips (1992) show that for a Gaussian

likelihood the Lagrange multiplier (LM) principle leads to a VN test. For the model (17) and (18),

under the null hypothesis and after di¤erences are taken, we get

�yt = �dt +�y
s
t : (22)

This equation is trend stationary, so that the trend function can be e¢ ciently estimated by an OLS

regression by the Grenander�Rosenblatt theorem (Grenander & Rosenblatt, 1957). Let �ŷst = �yt �

�d̂t be the residuals from the above detrending regression and let ŷst =
Pt

s=2�ŷ
s
t be the associated

estimate of yst , the rescaled von Neumann ratio is given by

RV N =
!̂2

�̂2
n�1

Pn
t=2(�ŷ

s
t )
2

n�2
Pn

t=1(ŷ
s
t )
2
)
hR 1
0 V̂

2
X

i�1
; (23)

The limit process V̂X(r) is a detrended generalized Brownian bridge, whose precise form depends on

the deterministic trend dt.
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Another way to improve the power of unit root tests is to perform the detrending regression in a

way that is e¢ cient under the alternative hypothesis as well, an idea that was suggested in Elliot et al.

(1996). To obtain large sample approximations, we consider an local alternative � = 1+n�1c for some

�xed c = �c. In this case, in order to e¢ ciently estimate the trend coe¢ cient under the alternative

hypothesis, we should use quasi-di¤erencing in the construction of the detrending regression. De�ne

the quasi-di¤erence (QD) operator �c as ��cyt = (1 � L � n�1�cL)yt = �yt � n�1�cyt�1, take quasi-

di¤erences of (17) and run the detrending regression

��cyt = ~

0��cxt +��c~y

s
t : (24)

Using the �tted coe¢ cients ~
 from the above regression, the levels data are detrended according to

~yt = yt� ~
0xt. The QD detrended data ~yt may be used in the construction of modi�ed semiparametric

unit root tests and ADF tests. Phillips and Lee (1996) show that such a regression leads to estimates

of the trend coe¢ cients that are asymptotically more e¢ cient than an OLS regression in levels.

The QD detrending procedure involves the choice of the prespeci�ed local parameter c that is used

in the quasi-di¤erencing, and the limit theory of unit root tests depends on �c. Elliot et al (1996) use

a default choice of �c to be the value for which local asymptotic power is 50%. Juhl and Xiao (2003)

discussed the choice of local parameter in related models. If the power function of the test is �(c; �c),

where c is the true value of the local parameter under the alternative and �c is the parameter used in

quasi-di¤erencing, then the power envelope is given by �(c; c). Juhl and Xiao (2003) suggest choosing

�c by

min
c

Z 1

0
[�(c; c)��(c; c)] dc: (25)

Notice that the power envelope is above the power function �(c; c); the di¤erence between �(c; c) and

�(c; c) is always non-negative. Juhl and Xiao (2003) derive power functions and envelopes of unit

root tests using covariates as developed in Hansen (1995) and unit root tests based on nonnormal

quasi-likelihood functions as in Rothenberg and Stock (1997). The power functions are calculated by

integrating the characteristic function as in Tanaka (1996).
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3.3 Unit Root Tests Against Trends With Structural Breaks

Since Nelson and Plosser (1982), many macroeconomic time series are found to contain a unit root

when standard unit root tests are applied. These �ndings are challenged by Perron (1989) who argues

that in the presence of a structural break, the standard unit root tests are biased towards the unit

root hypothesis.

Trend dummies can be used to capture structural breaks in trend. If we consider the vector of

polynomial trend xt = (1; t; � � �; tp)>, and the vector of trend dummy given by

xtb =

8><>: (0; 0; � � �; 0)>; t 2 f1; :::; bg

(1; t� b; � � �; (t� b)p)>; t 2 fb+ 1; :::; ng
;

to account for the presence of a structural change in the trend at the data point t = b+1, and assume

that 0 < � = limn!1(b=n) < 1, ADF type tests for the presence of a unit root in models allowing for a

broken trend against the alternative hypothesis of stationarity about a broken deterministic trend can

be constructed based on the coe¢ cient estimator ba and its t-ratio statistic in the following modi�ed
ADF regression

�yt = ayt�1 +
Xk�1

j=1
'j�yt�i + �

0xt + 

0xtb + "t: (26)

The limit theory for these trend break ADF statistics is similar to the traditional ADF tests, for

example, the limiting distribution of trend break ADFt test is given by

ADFtb )
hR 1
0WX�dW

ihR 1
0W

2
X�

i�1=2
;

where WX�(r) = W (r) �
hR 1
0 WX�

i hR 1
0 X�X

0
�

i�1
X�(r), and X�(r) is the limit trend function that

depends on the break point �. Similar extensions to trend breaks are possible for the other unit root

tests such as the semiparametric tests. Perron (1989) considered linear trends with a single exogenous

break point. Critical values of the above limiting test statistic are naturally further out in the tail

than those of the corresponding conventional unit root test. As a result, it is harder to reject the null

hypothesis of a unit root when the break point is introduced.

Notice that the limit theory in this case depends on the limiting trend functions that are dependent

on the break point �, in order to construct unit root tests that allow for such breaking trends, it is
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necessary to specify the break point b. Christiano (1992), Zivot & Andrews (1992) and Banerjee

et al. (1992) argue that the assumption of a known break date is subject to the criticism of "data

mining". An alternative approach is to treat the break point(s) as endogenous, and take into account

this fact in the construction of the unit root tests. In this case, alternative trend break unit root tests

have been suggested that endogenize the break point by choosing the value of b that gives the least

favorable view of the unit root hypothesis. If ADFt(b) denotes the ADF statistic given by the t-ratio

for a in the ADF regression (26), then the endogenous trend break ADFt statistic can be constructed

as

ADFt(b̂) = min
b�b�b

ADFt(b), where b = [n�]; b = [n�] and 0 < � < � < 1; (27)

and [ � ] signi�es the integer part of its argument. The limit theory for this trend break ADF statistic

is given by

ADFt(b̂)) inf
�2[�; � ]

hR 1
0WX�dW

ihR 1
0W

2
X�

i�1=2
: (28)

In the presence of endogenous breaks, critical values of the limiting test statistic (28) are even further

out in the tail than those of the exogenous trend break tests, and in practice it is harder to reject the

null hypothesis of a unit root when the break point is considered to be endogenous. Asymptotic and

�nite sample critical values for the endogenized trend break ADFt unit root test are given in Zivot

and Andrews (1992).

The trend break tests can be naturally extended to allow for multiple break points in the sample

and in the limit process without a¤ecting the general theory. See, inter alia, Lumsdaine and Papell

(1997), Bai and Perron (1998), Hansen (2001), Lee and Strazicich (2003), Kapetanois (2005).

Structural break models attribute the persistency in time series data to the e¤ect of structural

changes at particular times in the sample period (so that it can be parameterized by dummy variables).

Unit root models have persistent shocks throughout the entire history of the process. Such a di¤erence

makes it possible to test for a unit root model against stationary time series with a �nite number of

structural breaks. Simulations studies indicate that the introduction of trend break functions leads to

further reductions in the power of unit root tests and to substantial �nite sample size distortion in the

tests. Sample trajectories of a random walk are often similar to those of a process that is stationary
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about a broken trend for some particular breakpoints. Phillips (1998, 2002) explores these issues in a

systematic way.

Phillips (1998) shows that Brownian motion can be represented as an in�nite linear random com-

bination of deterministic functions of time. He argues that carefully chosen trend stationary models

can always be expected to provide reasonable representations of given random walk data, but such

models are certain to fail in post sample projections as the post sample data drifts away from the �nal

trend line. In particular, for a Brownian motion B (r), we have the following L2 -representation (the

Loeve-Karhunen expansion):

B(r) = !
p
2

1X
k=1

sin [(k � 1=2)�r]
(k � 1=2)� �k = !

1X
k=1

'k(r)�k; (29)

where the components �k are independently and identically distributed (iid) as N(0; 1) and the

functions 'k(r) form an orthogonal set in L2 [0; 1]. Consequently, empirical regressions of yt on

'K;t =
�
'1
�
t
T

�
; :::; 'K

�
t
T

��0 accurately reproduce in the limit the �rst K terms of the expansion

(29). Further, when K ! 1 and K=T ! 0 as T ! 1; such regressions succeed in reproducing

the entire representation (29). It follows that these deterministic functions are capable of successfully

representing a nonstationary time series like yt in the limit as T !1: Such regressions on determin-

istic functions then become an alternate way of modelling a nonstationary time series. Consequently,

one might mistakenly �reject� a unit root model in favor of a trend �alternative�when in fact the

alternative model is nothing but an alternative representation of the unit root process itself.

Phillips (2002) shows that unit root tests which involve deterministic functions will inevitably

lead to the rejection of the unit root hypothesis when K;T ! 1; and in this sense the conventional

critical values used in unit root tests are invalid asymptotically when the competing deterministic

functions that appear in the maintained hypothesis provide an alternative mechanism of modelling

the nonstationarity, as in cases like polynomial trends and trend break polynomials they will.

From a practical point of view, both the unit root models and stationary time series models with

structural breaks are useful alternative models to capture the empirical features in macroeconomic

time series. In practice, important external shocks such as institutional events may have substantial

impact on the dynamics of a time series. The number of such shocks is usually small and it is often
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of interest to identify the break points endogenously. If we allow for a large number of breaks in a

sample, the distinction between a unit root series and a stationary time series with broken trends is

less clear in empirical time series analysis.

3.4 Nonparametric Unit Root Tests

It is possible to construct nonparametric tests for a unit root, such tests having relative advantages

against nonlinear/nonparametric alternatives. Peter has made a fundamental contribution in devel-

oping nonparametric and nonlinear methods for unit root models.

Unit root tests constructed in the frequency domain have some nonparametric features. Choi and

Phillips (1993) consider a frequency domain regression of the AR model and constructed a unit root

test based on the frequency domain estimates of � and its t-ratio statistic. An important feature

of the frequency domain estimator is that no serial correlation correction is needed. The limiting

distribution of the AR estimator based on a �rst order autoregression of the Fourier transformation

is free of nuisance parameters.

Another direction to develop nonparametric tests for a unit root is to consider the class of processes

that are fractionally integrated:

(1� L)dyst = ut; (30)

where d may be fractional and the operator (1� L)d is de�ned by the formal binomial expansion

(1� L)d = 1 +
1X
j=1

(�d)j
j!

Lj ; (a)j = (�a)(�a+ 1); :::; (�a+ j � 1) (31)

whose convergence properties depend on the value of d. Within this family it is possible to test for

�unit root�nonstationarity by estimating d and test the null hypothesis d = 1 against the alternative

d < 1. Shimotsu and Phillips (2005) propose an exact local Whittle estimator bd for d that is consistent
for all d and show that

p
n(bd�d)) N(0; 1=4). This estimator can then be used to test the unit root

hypothesis H0 : d = 1 against alternatives such as H1 : d < 1.

Peter also made important contributions to asymptotic analysis of nonlinear or nonparametric

transformation on unit root processes. Park and Phillips (1998), Wang and Phillips (2006) studied

asymptotic theory for nonstationary density estimation and kernel regression with unit root processes.
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Consider the following �rst order autoregression model

yt = m (yt�1) + ut; t = 1; ::::; n; (32)

where ut are i.i.d. (0; �2) random variables satisfying appropriate regularity assumptions, the unit root

hypothesis corresponds to m (yt�1) = yt�1. If we estimate m (x) using the following nonparametric

kernel smoother:

bm (x) = PtKh (x� yt�1) ytP
tKh (x� yt�1)

where Kh (u) = h�1K(u=h), K (�) is a kernel function and h is the bandwidth parameter, under the

unit root hypothesis and regularity assumptions, Park and Phillips (1998), Wang and Phillips (2006)

show that bm (x) is a consistent estimator, but the convergence rate is slower than that in stationary
nonparametric autoregression. In particular,"

h
X
t

Kh (x� yt�1)
#1=2

(bm (x)�m (x))) N

�
0; �2

Z
K(u)2du

�
:

Nonparametric tests for the null of a unit root against nonlinear or nonparametric alternatives may

be developed based on the asymptotic analysis of Phillips and Park (1998), Wang and Phillips (2006).

If we rewrite (32) as

�yt = f (yt�1) + ut;

the unit root hypothesis corresponds to H0: f (yt�1) = 0. Nonparametric unit root tests can then

be constructed based on kernel estimates of f (yt�1). For example, notice that E(�ytf (yt�1)) =

E
�
f (yt�1)

2
�
> 0 if f (yt�1) 6= 0, replacing the expectation by sample average and f (yt�1) by its

kernel estimate, we may construct the following density-weighted nonparametric statistic

Un =
X
t

X
s6=t

Kh (ys�1 � yt�1)�ys�yt

and, under the unit root hypothesis

n�3=4
p
hUn ) N

�
0; �6

Z 1

0
K(u)2du

Z 1

0
L(� ;W (�))d�

�
where L(� ; v) = limr!0+

R t
0 1 (jW (s)� vj � r) ds is a local time. Let

Vn = n�3=2h
TX
t=2

t�1X
s=1

K2
h (ys�1 � yt�1) (�ys)

2 (�yt)
2
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then

n�3=4
p
hV �1=2n Un ) N (0; 1) ;

providing a unit root test for the simple AR(1) model. Also see Juhl (2008) for a similar test in the

predictive regression model.

3.5 Peter�s Shortcut and Robust Inference on Unit Roots

Phillips (1991) and Phillips (1995a) propose a "shortcut" to asymptotic analysis of estimators with

nonsmooth criterion function. The approach treats nonsmooth objective criterion functions as gener-

alized functions and uses generalized Taylor series expansions to represent their local behavior. This

approach provides a convenient way to construct unit root tests based on robust regressions such as

Least Absolute Deviation (LAD) regression.

To illustrate Peter�s shortcut, we may consider, say, the following ADF regression

�yt = �+ �yt�1 +

pX
j=1

�j�yt�j + ut (33)

where ut =i.i.d.(0; �2), with CDF F (�). If we consider a quantile regression estimation of the above

model:

min
X
t

�� (�yt � �� �yt�1 �
pX
j=1

�j�yt�j) (34)

the asymptotic behavior of the unit root quantile regression can be analyzed using Peter�s shortcut,

and unit root tests can be constructed based on such estimators. Let

� = (�; �; �1; � � �; �p)>, xt = (1; yt�1;�yt�1; � � �;�yt�p)>, Dn = diag(
p
n; n;

p
n; � � �;

p
n)

then the unit root quantile regression may be written as

b�(�) = argmin
�

X
t

�� (�yt � �0xt):

Denote

� = �(�) = Dn (� � �(�)) ;b�(�) = Dn

�b�(�)� �(�)� ;
�(�) = (�+ F�1(�); �; �1; � � �; �p)>;
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and de�ne

Zn(�) =
X
t

n
�� (ut� �D�1

n x>t �)� �� (ut� )
o

then

b� = argminZn(�):
Denote wt = �yt, and  � (u) = � � I(u < 0), under regularity assumptions :

n�1=2
[nr]X
t=1

(wt;  � (ut� ))
> ) (Bw(r); B

�
 (r))

> = BM(0;�(�))

where

�(�) =

264 �2w �w (�)

�w (�) �2 (�)

375
Following Phillips (1991, 1995a), under regularity conditions, notice that �� (u) can be treated as a

generalized function with a smooth regular sequence

��m(u) =

Z 1

�1
�� (v)S [m(v � u)]me�v

2=m2
dv

where S(�) is a smudge function whose role in ��m(u) is to smudge out �� (v) when v is outside the

interval (u�m�1; u+m�1) (see Phillips (1995a) for more discussions on smudge function and related

literature), then Zn(�) is a generalized process de�ned by the following regular sequence of processes

Znm(�) =
X
t

n
��m(ut� �D�1

n x>t �)� ��m(ut� )
o
:

Notice that �� (u) has �rst derivative everywhere except u = 0 and

_�� (u) = � � 1
2
+
1

2
sign(u)

has a regular sequence _��m(�) = � � 1
2 +

1
2signm(�), where

signm(u) =
Z 1

�1
sign(v)S [m(v � u)]me�v2=m2

dv:

In addition, �� (u) has second order derivative everywhere except u = 0 and

��� (u) =
1

2

dsign(u)
du

= �(u) = Dirac delta function
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has a regular sequence ���m(�) = (m=�)1=2e�mu
2
= �m(u). By Taylor expansion of Znm(�) around

� = 0, we have

Znm(�) = �
X
t

_��m(ut� )D
�1
n x>t �

+
1

2
�>

"X
t

���m(ut� � �D�1
n x>t �)D

�1
n xtx

>
t D

�1
n

#
� (35)

where _��m(�) and ���m(�) are �rst and second order derivatives of ��m(�) and � 2 (0; 1).

Following a similar argument as Example 3.5 in Phillips (1995a), it can be shown that

X
t

_��m(ut� )D
�1
n x>t � ) �>m�

where

�m ) � =

264 R
By(r)dB

�
 (r)

N(0; �(1� �)�p)

375 , as m!1:

For the second term on right hand side of (35), notice that the regular sequence �m(�) is di¤erentiable

and has bounded derivative,

������m(ut� � �D�1
n x>t �)� ���m(ut� )

��� � Cm

���D�1
n x>t �

���
thus �����X

t

h
���m(ut� � �D�1

n x>t �)� ���m(ut� )
i
�>D�1

n xtx
>
t D

�1
n �

�����
� Cm

X
t

���D�1
n x>t �

��� ����>D�1
n xtx

>
t D

�1
n �>

���
! 0, uniformly over � in compact sets.

In addition,

X
t

���m(ut� )D
�1
n xtx

>
t D

�1
n ) (E [���m(ut� )])�

where

� =

264 R
By(r)By(r)

>dr 0

0 �p

375 :
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Notice that E[���m(ut� )] is an ordinary function as long as density at F
�1(�) exists and continues, and

as m!1,

E [���m(ut� )]! f(F�1(�)) .

Then

Znm(�)) Z�m(�) = ��>m� + (E [���m(ut� )])
1

2
�>��,

and as m!1, over � on a compact set,

Z�m(�)) Z(�) = ��>� + f(F�1(�))1
2
�>��,

Notice that (1) Z�m(�) is convex; (2) Z�m(�)) Z(�); (3) Z(�) has an unique minimum at

1

f(F�1(�))
��1� = argmin

�
��>� + f(F�1(�))1

2
�>��

�
;

we have

Dn

�b�(�)� �(�)�) 1

f(F�1(�))

264 �R
BwBw

>��1 R BwdB
�
 

N
�
0; �(1� �)��1p

�
375

where Bw(r) = [1; Bw(r)]
>, N

�
0; �(1� �)��1p

�
is a p-dimensional normal variate with covariance

matrix �(1� �)��1p , and is independent with
R 1
0 BwdB

�
 . In particular

nb�(�)) 1

f(F�1(�))

�Z 1

0
B2w

��1 Z 1

0
BwdB

�
 ,

where Bw(r) = Bw(r)�
R 1
0 Bw is a demeaned Brownian Motion. Similarly, the corresponding t-ratio

statistic has the following limiting distribution

tn(�))
1p

�(1� �)

�Z 1

0
B2w

��1=2 Z 1

0
BwdB

�
 : (36)

For related literature, also see Knight (1989, 1998), Pollard (1991).

The above asymptotic results can be immediately used to construct unit root tests based on a

quantile regression. Like the conventional augmented Dickey-Fuller (ADF) t-ratio test, we may
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consider the corresponding t-ratio statistic tn(�). Following Phillips and Hansen (1990) and Phillips

(1995b) we have the following decomposition:Z 1

0
BwdB

�
 =

Z
BwdB

�
 :w + �! (�)

Z
BwdBw;

where �! (�) = �w (�)=�
2
w and B�

 :w is a Brownian motion with variance �2 :w(�) = �2 (�) �

�2w (�)=�
2
w, and is independent of Bw. The limiting distribution of tn(�) can therefore be decom-

posed as

�

�Z 1

0
W 1

2

��1=2 Z 1

0
W 1dW1 +

p
1� �2N(0; 1); (37)

where

� =
�w (�)

�w� (�)
=

�w (�)

�w
p
�(1� �)

:

Thus the limiting distribution of tn(�) is a mixture of the well-known Dickey-Fuller distribution and a

standard normal distribution (which is independent with the DF distribution), with the weight � being

simply the long-run correlation coe¢ cient between fwtg and f � (ut� )g. The limiting distribution (37)

is the same as that of the covariate-augmented Dickey-Fuller (CADF) test of Hansen (1995).

Koenker and Xiao (2004) studied unit root tests based on the above quantile regression. In the

special case � = 0:5, this gives the unit root tests based on LAD regression. Herce (1996) studied

semiparametric unit root tests based on LAD regressions. Hasan and Koenker (1997) developed rank

test of unit roots based on quantile regression.

4 Testing Stationarity Against the Unit Root Alternative

Evidence has been accumulated that many economic and �nancial time series contain a unit root.

Kwiatkowski, Phillips, Schmidt, and Shin (1992) argued that most standard testing procedures con-

sider the null hypothesis of a unit root, which ensures that it is accepted unless there is strong evidence

against it. Therefore, it is of considerable interest to propose tests of the null hypothesis that the time

series is trend stationary.

Kwiatkowski, Phillips, Schmidt, and Shin (1992) propose a LM test for the null of trend stationarity

against the alternative of a unit root. The original test was derived based on a component model where
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the observed time series yt can be decomposed into a deterministic trend �0xt, a (unit root) stochastic

trend yst ; and a stationary residual vt:

yt = �0xt + y
s
t + vt, yst = yst�1 + ut: (38)

The null hypothesis that yt is trend stationary then corresponds to the case �2u = var(ut) = 0. Under

Gaussian assumptions and iid error conditions, a LM test for the null of trend stationarity against the

alternative of a unit root can be constructed from testing H0: �2u = 0 against the one-sided alternative

H1: �2u > 0. Let bet be the residuals from the regression of yt on the deterministic trend xt and

b�2v = n�1
Pbe2t ; then the LM statistic can be constructed as follows:

LM =
1

n2b�2v
X
t

S2t ;

where St =
Pt

j=1 bej . Under the null hypothesis of trend stationarity, LM )
R 1
0 V

2
X , where

VX(r) =W (r)�
�Z r

0
X 0
��Z 1

0
XX 0

��1�Z 1

0
XdW

�
is a generalized Brownian bridge process.

In the case that vt is a general stationary residual with long-run variance !2v, consistent test

for stationarity can still be obtained by replacing the variance estimator b�2v by a long run variance
estimator b!2v:

KPSS =
1

n2b!2v
X

S2t : (39)

The KPSS test is widely used in time series applications. Intuitively, if yt is a stationary time series

around a deterministic function, it �uctuates around the deterministic trend function and cannot grow

inde�nitely. However, an unstable (unit root) or explosive process has unbounded variance and grows

over long period of time. As a result, the �uctuation of a unit root or explosive process is much larger

than that of a stationary process. Xiao (1999) proposes testing trend stationarity by looking at the

�uctuation in the detrended time series. If we look at the �uctuation from the partial sum process of

bet :
Un(r) =

1b!vpn
[nr]X
t=1

bet; (40)
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and use a continuous functional h(�) (say, the Kolmogoro¤-Smirno¤ type or Cramer-von Mises type

measures) to measure the �uctuation, we can construct h(Un(r)) as a test statistic for trend stationarity

against the unit root alternative. If we choose h(�) as the Cramer-von-Mises measure,

h(Un(r)) =

Z 1

0
Un(r)

2dr,

we obtain the KPSS test.

The KPSS test can be applied and extended along various directions: In particular, the KPSS

test can be extended to di¤erent models, di¤erent estimation methods, and alternative measurement

of �uctuation. Leybourne and McCabe (1994) suggested a similar test for stationarity which di¤ers

from the test of Kwiatkowski et al. (1992) in its treatment of autocorrelation and applies when the

null hypothesis is an AR(k) process.

The problem is particularly delicate and interesting in the multivariate case, where several time

series may have nonstationary characteristics and we are interested in testing the cointegration rela-

tionship among these I(1) variables. To test the null hypothesis of cointegration2, using a component

representation again and applying the KPSS test to the residual process of a cointegrating regres-

sion, Shin (1994) proposed a residual-based test. Xiao and Phillips (1998) show that the conventional

CUSUM test for structural change can be applied to cointegrating regression residuals, leading to a

consistent residual-based test for the null hypothesis of cointegration. In this residual based cointe-

gration test, nonparametric corrections are used to remove nuisance parameters associated with serial

correlation and endogeneity and the test is constructed based on the fully modi�ed (Phillips and

Hansen 1991) residuals. Again, like the univariate unit root tests and stationarity tests, the limiting

distributions of these cointegration tests are nonstandard, depending on not only the deterministic

trend function, but also the dimension of regressors. Consequently, critical values are dependent on

2Another important contribution of Peter is on testing the null of non-cointegration against the alternative of cointe-

gration. Unit root tests can be used to test the null of non-cointegration using residual based approaches. The tests are

used in the same way as standard unit root tests and have the same null hypothesis, but the data are the residuals from

a least squares cointegrating regression, and the alternative hypothesis (of cointegration) is now the main hypothesis

of interest (Engle and Granger, 1987; Phillips and Ouliaris, 1990). The limit theory for these residual based tests was

developed in Phillips and Ouliaris (1990).
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the trend function and dimension parameter and have to be generated by Monte Carlo experiments.

Extensive Monte Carlo experiments have been conducted to evaluate the �nite sample performance

of the aforementioned stationarity and cointegration tests. A well-documented fact is that the sampling

performance of these stationarity tests is sensitive to the bandwidth selection in the long-run variance

estimation.

In constructing the KPSS statistic given by (39), !2v is usually estimated by the nonparametric

kernel method and has the following form

b!2v = qX
h=�q

k

�
h

q

�b
vv(h); (41)

where b
vv(h) is the h-th order sample autocovariance of vt; k(�) is a kernel function, and q is the
bandwidth (lag truncation) parameter satisfying the property that q !1 and q=n! 0 as the sample

size n ! 1: The KPSS test is consistent because it diverges to 1 at rate n=q under the unit root

alternative.

A popular bandwidth choice in long-run variance estimation is the data-dependent plug-in band-

width

q = �k
b�(f; k)n1=(2p+1); (42)

where �k is a constant associated with the kernel function, �(f; k) is a function of the unknown spectral

density and is estimated using a plug-in (usually AR(1) plug-in) method, and p is the characteristic

exponent of the kernel. This bandwidth choice has been studied by Andrews (1991) in the context

of estimation of a covariance matrix for stationary time series. Such a bandwidth has the advantage

that it partially adapts the serial correlation in the underlying time series through the data-dependent

component b�(f; k). However, such a bandwidth choice is not appropriate in distinguishing between
I(0) and I(1) processes.

To test the I(0) hypothesis against an I(1) alternative, the bandwidth q should be large enough

to capture the short-range dependence under the null. On the other hand, it should not be too large

that it also captures dependence under the unit root alternatives. Unfortunately, the data-dependent

bandwidth (42) not only captures the short-range dependence under the null, but also captures the

dependence under the alternatives. This is re�ected on the value of the plug-in component b�(f; k) in
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(42). As the temporal dependence increases, the value of the data-dependent b�(f; k) becomes larger
and larger. For example, if we use the popular AR(1) plug-in, the magnitude of the bandwidth value

is determined by the �rst order autoregression coe¢ cient b� = (PtX
2
t�1)

�1(
P

tXt�1Xt); and

q = �k
b�n1=3; b� = � 2b�

1� b�2
�2=3

; for �rst order kernels, (43)

and

q = �k
b�n1=5; b� = � 2b�

(1� b�)2
�2=5

, for second order kernels. (44)

Under the unit root alternative, b� � 1 = Op(n
�1). Thus q = Op(n), and n=q 9 1, consequently the

KPSS test based on the data-dependent bandwidth will be inconsistent.

Bandwidths as �xed functions of n such as [8(n=100)1=3] or [12(n=100)1=4] provide consistent tests.

For many �xed functions of n, they generally have reasonable performance when the short-term

memory is strong, but have poor performance if the short-range dependence is weak. The data-

dependent bandwidth (42) is able to pick up the weak dependence in data under the null and generally

gives better size properties than other choices, but it also captures the strong dependency under the

unit root alternative and reduces the power to inconsistency. Xiao (1998) suggests a partially data-

dependent bandwidth choice: the data-dependent plug-in bandwidth �k\�(f; k)n1=(2q+1) coupled with

an upper bound. The upper bound is a �xed increasing function of the sample size n. Thus, the

suggested bandwidth is partially data-dependent and has the following form:

M� = minf�k\�(f; k)n1=(2q+1); B(n)g;

where B(n) is an upper bound function, say [8(n=100)1=4]. When the serial correlation is weak,

�k
\�(f; k)n1=(2q+1) generally has a smaller value than B(n) andM� is determined by the data-dependent

formula �k\�(f; k)n1=(2q+1) and gives better size than �xed bandwidth or �xed functions of n. Under

the alternative hypothesis, \�(f; k) is generally very large. In this case the upper bound function B(n)

prevents M� from being too big and thus retains reasonable power. Similar problems exist in other

types of stationarity tests, residual based tests for the null of cointegration, and testing for stationarity

against long memory alternatives. See Xiao (2003), Xiao and Phillips (2002), Sul, Phillips and Choi

(2005), Harris, Leybourne, and McCabe (2007) for related discussions on this issue.
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The power problem and the associated bandwidth selection problem in KPSS test are natural

consequences that the unit root (� = 1) is on the boundary of the stationary range j�j < 1, and

are again related to the observational equivalence issue mentioned in Section 3. The KPSS test

and other stationarity tests (against the unit root alternative) are consistent tests under regularity

conditions that ensure invariance principles to hold and long-run variance be consistently estimated.

The regularity assumptions are typically used in the literature and are su¢ cient, but not necessary,

for, say, the invariance principles. Without su¢ cient restrictions on the model, it is impossible to

consistently discriminate between I(0) and I(1) processes. For example, Pötscher (2002) shows that

the minimax risk for estimating the value of the long-run variance is in�nite. See Faust (1996) and

Müller (2008) for additional related discussion on this issue.

5 Conclusion

Peter has made the most important contributions to the development of unit root econometrics. Unit

root theory plays a major role in modern time series econometrics and weak convergence methods

and function space asymptotics have opened up the econometric analysis of nonstationary regression

models. This paper is only a very selective review of Peter�s contribution on unit roots. Lots of other

important topics, including nonlinear methods in unit root models, Bayesian inference in unit root

models, etc, are not discussed in this paper. In addition, Peter has a lot of ongoing research on unit

roots and we look forward to seeing this work in the literature.
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