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Abstract

This paper studies robust inference in unit root and cointegration models. The analysis covers

a range of important inference problems including: testing stationarity against unit roots; testing

for structure change in nonstationary regressions; and testing for cointegration. We analyze

these inference problems in a uni�ed regression framework, although seperate analysis is given

for each speci�c case when it is needed. The proposed inference procedures are constructed

based on residuals of robust M-estimations. The limiting behavior of the proposed tests is

investigated, and a monte carlo experiment is conducted. The proposed tests are easy to use

and have advantages in the presence of non-Gaussian data.
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1 Introduction

Nonstationarity is an important empirical feature in many economic and �nancial time series.
Since the in�uential article by Nelson and Plosser (1982), hundreds of economic time series have
been examined by unit root tests (against a stationary alternative) or stationarity tests (against
a unit root alternative). The problem is particularly delicate and interesting in the multivariate
case, where several time series may have nonstationary characteristics and the (cointegration)
interrelationships of these variables are the main object of study.

In the past two decades, econometricians have focused a great deal of attention on the devel-
opment of inference procedures in time series models with nonstationarity under the null or the
alternative. The majority of these procedures are constructed based on least square methods in
linear regression models and have likelihood interpretations when the data are iid Gaussian. In the
absence of Gaussianity, asymptotic results of these procedures generally still hold but these methods
are usually less e¢ cient than inference methods that exploit the distributional information. Monte
Carlo evidence indicates that the least squares estimator can be very sensitive to certain outliers,
and inference procedures based on the least square estimation may have poor performance in these
cases. In empirical analysis, many applications in nonstationary time series involve �nancial data
like exchange rates whose distributions are heavy-tailed and thus not normally distributed. It is
therefore important to consider estimation and inference procedures which are robust to departures
from Gaussianity and can be applied to nonstationary time series.

The current paper investigates robust inference in nonstationary time series models. The study
in this paper covers several important inference problems in unit roots and cointegration that have
attracted a great deal of research attention in the recent 20 years, including: testing for trend
stationarity against the unit root alternative; testing for cointegration against the alternative of
no-cointegration; and testing for structural change in time series regressions with nonstationary
regressors, as well as many other similar inference problems. We study these inference problems
in a uni�ed regression framework and construct testing procedures based on residuals from robust
M-estimations. Asymptotic results are developed, and separate discussions on each special case are
provided whenever necessary. A Monte Carlo experiment is conducted to compare the M-estimation
based inference with the OLS regression based inference.

Related to this topic, Phillips (1995) studied robust cointegrating regression estimation and
developed Fully Modi�ed M-estimators for cointegrating regressions. Juhl (1999) proposed a test
for cointegration using M estimators based on singular value decomposition. deJong, Amsler and
Schimidt (2007) developed an indicator based KPSS test for stationarity around mean. Xiao
(2009) studied quantile regression of cointegrated time series. Another related inference problem
(not covered in the current paper) is testing for the null of a unit root in autoregression processes
with nonnormal innovations. Cox and Llatas (1991) considered M-estimation and inference for
nearly integrated autoregressive models without deterministic trends. Xiao (2001(b)) studied M-
estimation and unit root testing for trending processes with nonnormal innovations. Lucas (1995)
considered unit root tests based on M-estimators. Herce (1996) studied a unit root test based on
LAD estimation and Koenker and Xiao (2004) proposed a quantile regression based unit root test.
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The rest of this paper is organized as follows: The inference problems and a uni�ed regression
model are introduced in Section 2; Section 3 proposes the testing procedures, asymptotic behavior
of these tests are analyzed. Further discussions related to the implementation of the proposed tests
are given in Section 4. Section 5 reports monte carlo results and concludes. A sketch of proofs is
provided in the Appendix.

2 The Inference Problems and A Uni�ed Regression Model

2.1 The Inference Problems

In this paper, we study robust inference in nonstationary time series based on a uni�ed regression
framework. For convenience, we �rst introduce three important inference problems in the unit
root and cointegration literature, and our later analysis in this paper will be focused on these
three problems. We emphasize that although our discussion only focuses on these three inference
problems, there is no doubt that these models can be modi�ed in various ways and the analysis in
this paper can be extended to other inference problems - for example, similar testing procedures
can be constructed in testing for fractional cointegration, or testing for stationarity against long
memory alternatives.

2.1.1 Testing Trend Stationarity v.s. Unit Root

The �rst inference problem is testing for trend stationarity against the unit root alternative. In this
problem, the observed time series yt is modelled as

yt = �0zt + ut, t = 1; ::::; n;

where the regressor is a deterministic component which can be expressed as �0zt, � is a vector of
coe¢ cient and zt is a deterministic function of known form, say, zt = (1; t; :::; tq�1)0. The leading
cases of the deterministic component are zt = 1 and zt = (1; t). The stochastic component of yt
is given by ut. We are interested in testing H01 : ut is a stationary (I(0)) process, against the
alternative HA1: ut is an unit root (I(1)) process.

2.1.2 Testing for Structure Change in Nonstationary Regression Models

The second inference problem is testing for parameter instability in regression models with I(1)
regressors. In particular, we consider the following regression

yt = �0tXt + ut,

where Xt = (z0t; x
0
t)
0 is a vector of nonstationary regressors and ut is an I(0) residual. More

speci�cally, xt is an p-dimensional vector of I(1) regressors, and zt is a q-dimensional deterministic
function of known form. We want to test the null of constant regression parameters �, i.e. H02 :
�t = �0, against alternatives that �t is not constant over t. To study asymptotic power properties
of the tests, we consider sequences of local alternatives HA2 : �t = �0 + n�1=2D�1

n g (t=n), where
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g (�) is an arbitrary k-dimensional bounded function de�ned on the [0,1] interval, k = p + q is the
dimension of X and Dn is a scaling matrix (that standardize the regressors) de�ned later in this
Section. In the simple special case g(r) = ��1(r � r�), this corresponds to the leading case of the
alternative with a one time shift.

2.1.3 Testing for Cointegration

In the third model we are interested in testing the null hypothesis of cointegration against the
alternative of no cointegration. In particular, we consider I(1) processes yt and xt (1 and p-
dimensional respectively) and test H03: yt and xt are cointegrated, against the alternative HA3: yt
and xt are not cointegrated.

The above inference problem can be tested based on the residuals of a cointegrating regression.
If we consider a regression of yt on xt,

yt = �0xt + vt; (1)

we may construct tests for cointegration based on stationarity of the residuals vt from the above
regression. However, in many economic applications of cointegration, the residual term vt in the
cointegrating regression (1) is correlated with regressors xt. To deal with this endogeneity problem,
we need to modify either the original regression (1) or the estimator b�. Several approaches have
been suggested in the previous literature to deal with endogeneity, including nonparametric fully-
modi�cation on the estimator from the original regression; augmented regression using leads and
lags of �xt; and the canonical regression method. In this paper, for the convenience of putting
these inference problems in a uni�ed regression framework (but notice that other methods can be
applied to M-estimation as well), we introduce leads and lags of �xt into the regression model to
absorb the correlation. In particular, we assume that vt has the following representation

vt =

KX
j=�K

�0j�xt�j + ut;

where ut is a stationary process under the null and E(�xt�jut) = 0, for any j, and consider the
following cointegrating regression with leads and lags:

yt = �0xt +
KX

j=�K
�0j�xt�j + ut:

More generally, we may allow for a general deterministic component zt in the cointegration
model and consider:

yt = �0zt + �
0xt +

KX
j=�K

�0j�xt�j + ut = �0Xt + ut: (2)

The null hypothesis of cointegration then corresponds to �the residual term ut in the cointegrating
regression (2) is I(0)�, and the alternative of no-cointegration corresponds to an integrated residual
process ut.
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2.2 A Uni�ed Regression Model

To analyze the inference problems that we list in Section 2.1, we consider the following linear
regression model

yt = �0Xt + ut, (3)

where yt is the observed time series, Xt is the k-dimension vector of regressors, and ut is the
residual process. The general form of the regressors can be written as Xt = (z

0
t; x

0
t; s

0
t)
0, where zt is

a q-dimensional deterministic function of known form; xt is an p dimensional vector of I(1) process;
and st is a p2-dimensional vector of I(0) process, k = p + q + p2. The three inference problems
discussed in Section 2.1 correspond to three special cases where Xt takes di¤erent forms:

1. In the �rst inference problem of decision between I(0) v.s. I(1), p = 0 and p2 = 0, Xt = zt
is a q-dimensional deterministic regressor. The residual process ut is I(0) (stationary) under
the null H01 and I(1) (unit root process) under the alternative HA1.

2. In inference problem 2 of testing for structure changes in nonstationary regression models,
p2 = 0, thus k = p + q, and Xt = (z0t; x

0
t)
0. In this model, the regressors zt and xt are

deterministic and stochastic trends. We want to test for parameter instability of �. The
residual ut is I(0) under both the null and the alternative.

3. In the third problem of testing the null of cointegration, Xt = (z0t; x
0
t; s

0
t)
0, where xt is I(1)

and st is an I(0) vector of leads and lags of �xt, i.e. �xt�j . The residual process ut is I(0)
under the null of cointegration between yt and xt; and ut is I(1) under the alternative of no
cointegration.

We construct testing procedures based on the residuals from regression (3). A common feature
of these inference problems is: The �uctuation of the regression residual processes from model (3)
under the alternative hypotheses is larger than the �uctuation under the null. Consequently, we
may formulate these inference problems based on regression (3) and test them by looking at the
�uctuation in the residuals. If the residuals display too much �uctuation, we should reject the null
hypotheses. This general principle applies to all three inference problems that we considered in
Section 2.1, and can be easily extended to other similar inference problems, although the detailed
behavior of the tests in these models are di¤erent.

If ut were known, we could look at its �uctuation via the partial sum process:

Un(r) =
1

!u
p
n

[nr]X
t=1

ut; (4)

where !2u is the long run variance of ut. Under the null hypotheses and appropriate regularity
assumptions, Un(r) converges weakly to a standard Brownian motion W (r). Consider a continuous
functional h(�) that measures the �uctuation of the partial sum process, we can use h(Un(r)) as a
test statistic for the null.

5

Post-print version of an article published in Journal of Econometrics 169(2): 211-223 (2012). doi: 10.1016/j.jeconom.2012.01.027



In practice, ut is unobservable. In order to test these hypotheses, we need to estimate � from
regression model (3) �rst and then look at the �uctuation in the estimated residuals. If we estimate
regression (3) by OLS method, denote the OLS regression estimator of � as ��, and denote the
residuals as �ut = yt � ��

0
Xt, then testing procedures can be constructed based the partial sum

process of the OLS estimated residuals �ut.
Residual based tests are important inference methods in unit root and cointegration models.

Based on OLS regression residuals, tests for trend stationarity against unit roots were proposed
by Kwiatkowski, Phillips, Schmidt and Shin (hereafter KPSS, 1992), Xiao (2001(a)); tests for
parameter instability in nonstationary regression models were studied by Hansen (1992), Hao and
Inder (1996); and tests for cointegration were studied by Shin (1999), Xiao and Phillips (2002)
among many other researchers.

Testing procedures based on least square residuals usually have relatively good performance
when the data are Gaussian, but are less e¢ cient than more robust methods in the presence of
non-Gaussianity. Giving the cumulated evidence of nonnormality in many �nancial and economic
time series, it is useful to consider inference procedures based on more robust methods. Following
the idea of Huber (1964) for the location problem, Relles (1968) and Huber (1973) introduced
a class of the so-called M estimators which generally have good properties over a wide range of
distributions.

If we consider a general criterion function �; the so-called M estimator of � based on model (3)
can be obtained from the following optimization problem:

b� = argmin
�

nX
t=1

�
�
yt � �0Xt

�
: (5)

In the simple case that ut are unobserved i.i.d. errors with log density ��(u),
P

t �
�
yt � �0Xt

�
is

the log likelihood function of the random sample and the above M estimator corresponds to the
conditional MLE estimator of �.

Examples

Example 1: If �� (�) is chosen as the log density of normal distribution, � (u) = 1
2u
2, the M

estimation reduces to the conventional OLS estimation.

Example 2: If we take �� (�) to be the log density of a logistic distribution, then

� (x) = � log f(x)

where

f(x) =
e�x

(1 + e�x)2
;�1 < x <1.

Example 3: If we take �� (�) to be the log density of a double exponential distribution, then
� (x) = jxj ;�1 < x <1.

In this paper, we study inference procedures for nonstationary time series based on residuals
from the above M estimation regression.
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2.3 Asymptotic Behavior of The M Estimators

For convenience of the asymptotic analysis, we �rst introduce some assumptions. We should stress
that we are not seeking to achieve the weakest possible regularity conditions in asymptotic analysis.
Some conditions are assumed for the simplicity of proofs, and may be replaced by weaker conditions
without a¤ecting the asymptotic results.

We �rst introduce some assumptions for the regression error ut and the regressors Xt.
Assumption 1: ut is strictly stationary and strong mixing with mixing numbers �(m) that satisfy
the summability condition:

P1
1 �(m)(b�a)=ba <1 for some b > a > 2.

Assumption 2: (i) zt is a q-dimensional deterministic function of known form, and there exists
a scaling matrix Gn such that G�1n z[nr] ! Z(r), as n ! 1, uniformly in r 2 [0; 1]. (ii) xt is an
p dimensional vector of I(1) regressors such that xt = xt�1 + �t; t = 1; � � �; n, where the initial
observation of xt is taken to be any random variable with �nite variance. f�tg satis�es the same
mixing assumption in Assumption 1 and has b-th moments. ( iii) st is an p2 dimensional vector of
random variables satisfy the same assumptions as �t.

Assumptions 1 and 2 assume that ut, �xt, and st are weakly dependent and satisfy the speci�ed
mixing condition. The above assumptions ensure some invariance principles that are convenient
for our asymptotic analysis and there is no doubt that they could be replaced by a variety of
similar conditions. Under Assumption 2, the partial sum process constructed from �t satis�es a
multivariate invariance principle:

n�1=2
[nr]X
t=1

�t ) B(r); 0 � r � 1;

where B(r) is a p dimensional Brownian motion with long-run variance 
: We assume that 
 is
nonsingular so that elements within xt are not cointegrated themselve. Since the regressors Xt are
di¤erent in the three models, the convergence rate of b� is dependent on the choice of model. We
introduce a standardization matrix Dn that take di¤erent forms in di¤erent models. Corresponding
to the general form of Xt = (z

0
t; x

0
t; s

0
t)
0, Dn = diag[Gn; G2n; Ip2 ], where G2n = diag[

p
n; � � �;

p
n] is

a p-dimensional diagonal matrix and Ip2 is a p2-dimensional identity matrix. In the �rst inference
problem, Dn = Gn. For the leading case of a linear trend, Gn = diag[1; n] and Z(r) = (1; r)0: If
xt is a general p-th order polynomial trend, Gn = diag[1; n; ::::; np] and Z(r) = (1; r; :::; rp). In the
second inference problem, Dn = diag[Gn; G2n]. For example, if the deterministic component is only
an intercept term, then Dn = diag[1;

p
n; ::::;

p
n]).

We also need some assumptions regarding the criterion function. The following assumption is
a standard condition in M-estimation asymptotic analysis.
Assumption 3: �(�) possesses derivatives  and  0.  (ut) has b-th moments for some b > a > 2;

E[ (ut)] = 0, � = E[ 0(ut)], and  0 is Lipschitz continuous.

The di¤erentiability of � enables us to conduct a Taylor expansion for the criterion function.
Many M-estimation procedures satisfy this assumption, but some do not. This assumption also
rules out example 3 in section 2.2. In example 3, ��(u) is the log density of a double exponential
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distribution and is not everywhere smooth. However, the derivative of �(u) = juj exists except at
the point u = 0, and is given by  (u) = 1�2I(u < 0). Residual based test may still be constructed
based on  (u). To facilitate asymptotic analysis of nonstationary M estimation with nonsmooth
criterion function like the case of example 3, we make the following assumption as an alternative
of Assumption 3.
Assumption 30: �(�) possesses derivatives  (�) and  0(�) everywhere except a �nite number of
points.  (�) and  0(�) are bounded measurable functions and can be treated as generalized functions.
ut has a continuous density with f(u) > 0 on U = fu : 0 < F (u) < 1g, E[ (ut)] = 0, � = E[ 0(ut)],
and  (ut) has b-th moments for some b > a > 2.

In Assumption 30, we allow for the criterion function to be non-di¤erentiability at a �nite number
of points, and assume that the criterion functions can be treated as generalized functions as Gel�fand
and Vilenkin (1964), Phillips (1995). The moment conditions on  (u) is needed to establish the
weak convergence results. The asymptotic behavior of the residuals but will be dependent on the
limiting bahavior of b�, which in turn depend on the weak limit of the partial sums of  (ut): Under
our mixing condition and moment conditions, as n goes to 1, n�1=2

P[nr]
1  (ut) ) B (r), where

B (r) is a Brownian motion with variances !2 .
The following assumption is simply an analog of the �rst order condition.

Assumption 4: The estimator b� satisfy n�1=2Pn
t=1D

�1
n Xt 

�
yt � b�0Xt

�
= op(1).

The results of this paper can be obtained under di¤erent types of identi�cation conditions. In
this paper, to cover a wide range of models and to focus on the discussion of testing procedures, we
follow a similar approach as Phillips (1995) and Xiao(2001b), and assume that the following high
level condition holds under the null.
Assumption 5: n1=2Dn(b� � �) = op(n

1=4).
Assumption 5 is standard in the development of M-estimator asymptotics. It is similar to

Assumption (b) in Theorem 5.1 of Phillips (1995) and the assumption on e"t � "t in Theorem 1 of
Lucas (1995). Notice that alternative regularity assumptions can be made in place of the above
assumptions. For example, we may derive the asymptotics based on, say, convexity of the criterion
function. For other types of regularity assumptions, see, e.g., Knight (1989) and Pollard (1991) for
asymptotic theory with convex criterion functions.

We summarize the asymptotic behavior of the M-estimator in Theorem 1.

Theorem 1: Under Assumptions 1 - 5, as n!1,

p
nDn(b� � �)) 1

�

" �R
B(r)B(r)0dr

��1 R
B(r)dB (r)

�

#
;

where the partition is conformable with dividing the regressors as (z0t; x
0
t)
0 and st, B (r) =

! W1(r), and B(r) = (Z(r)0; B(r)0)0, B(r) = 
1=2W2(r), W1(r) and W2(r) are 1 and p di-
mensional standardized Brownian motions and are independent with each other, and � is a p2
dimensional multivariate normal variate with covariance matrix equals to �s(0)�1
s �s(0)�1,
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where 
s =
P1

h=�1 
 (h)�s(h), 
 (h) =E[ (ut) (ut+h)], �s(h) =E
�
sts

0
t+h

�
. For the spe-

cial case corresponding to the �rst inference problem:

p
nDn(b� � �)) 1

�

�R
Z(r)Z(r)0dr

��1 R
Z(r)dB (r):

3 Inference Based on M-Estimation Residuals

3.1 The Tests and Their Limiting Behavior Under The Null

We want to construct testing procedures based on residuals from the above M-estimation regression.
In particular, we test the aforementioned inference problems by looking at the �uctuation in the
residual processes but = yt � b�0Xt. To look at the �uctuation in but, it might be natural to consider
constructing testing statistics based on the partial sum process

bUn(r) = 1b!upn
[nr]X
t=1

but;
where b!2u is a consistent estimator of !2u. Under the null hypotheses and additional regularity con-
ditions, the partial sum process bUn(r) converges to functionals of Brownian motions. For Inference
Problem 1,

n�1=2
[nr]X
t=1

but ) Bu(r)�
1

�

Z 1

0
dB (s)Z(s)

0
�Z 1

0
Z(s)Z(s)0ds

��1 Z r

0
Z(s)ds;

and for Inference Problems 2 and 3,

n�1=2
[nr]X
t=1

but ) Bu(r)�
1

�

Z 1

0
dB (s)B(s)

0
�Z 1

0
B(s)B(s)0ds

��1 Z r

0
B(s)ds;

where Bu(r) is the weak limit of n�1=2
P[nr]

t=1 ut, and B(�) is uncorreclated with Bu(r) and B (r).
The limiting variate of the M-estimator is generally a functional of the limiting trend function

Z(r) and B(s) and, more importantly, the Brownian motion B (r). Notice that Bu(r) and B (r)
are correlated Brownian motions and have di¤erent variances (unless OLS estimation is used). Thus,
the limiting processes of the partial sums of the residuals are dependent on nuisance parameters
that re�ect the correlation between Bu(r) and B (r): Consequently, a simple functional of bUn(r)
can not be used as test statistics for these inference problems.

For this reason, we consider the partial sum process based on the score transformation of but,
i.e. the process  (but), and construct residual based tests using the score process. The asymptotic
behavior of the partial sum of the score process  (but) is summarized in the following Theorem.
Theorem 2: Under Assumptions 1 - 5, as n!1,

n�1=2
[nr]X
t=1

 (but)) B (r)�
Z 1

0
dB (s)B(s)

0
�Z 1

0
B(s)B(s)0ds

��1 Z r

0
B(s)ds:
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For the special case corresponding to the �rst inference problem:

1p
n

[nr]X
t=1

 (but)) B (r)�
Z 1

0
dB (r)Z(r)

�Z 1

0
Z(s)Z(s)0ds

��1 Z r

0
Z(s)ds:

Remark 1: Notice that, the stationary covariates st do not a¤ect the limit of the partial sum
process, and thus the limits corresponding to the second and third models are the same.
However, although the limiting null process of the partial sum of the score process  (but) are
the same for these models, their asymptotic behavior under the alternatives are di¤erent -
see aditional results in Section 3.2.

Remark 2: An alternative approach to deal with the nuisance parameters in the residual process
is to use bootstrap or simulation-based inference.

After the transformation, the leading term and the drift term coming from the preliminary
estimation in the limiting partial sum process contain the same component B (r) which can be
removed by a simple standardization. Thus, we may test our hypotheses based on the following
standardized partial sums of the score process

fWn(r) =
1b! pn

[nr]X
t=1

 (but) ; (6)

where b!2 is a consistent nonparametric estimate of !2 ,
b!2 = X̀

j=�`
k(
j

`
)Cb b (j): (7)

In this formula, Cb b (j) is the sample covariance de�ned as n�1P0  (but) (but+j); whereP0 signi�es
summation over 1 � t; t+j � n; k(�) is the lag window de�ned on [�1; 1] with k(0) = 1, and ` is the
bandwidth parameter satisfying the property that `!1 and `=n! 0 as the sample size n!1,
(see, inter alia, Andrews, 1991). Inference procedures may be constructed based on a continuous
functional h(�) that measures the �uctuation of fWn(r). It will be convenient in what follows to
make the following assumptions about the functional h(�). In practice, the leading choices of h(�)
are the classical Kolmogoro¤-Smirno¤ or Cramer-von Mises type measures.
Assumption 6: h is continuous and h(��(r)) = ��h(�(r)) for some � > 0:

Limiting null distribution of the tests can be immediately obtained by the continuous mapping
theorem. We summarize the results of the proposed tests in Theorem 3.

Theorem 3: Under Assumptions 1 -6, as n!1,

h(fWn(r))) h(fW (r));
10
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where

fW (r) =W1(r)�
Z 1

0
dW1(r)W 2(r)

�Z 1

0
W 2(s)W 2(s)

0ds

��1 Z r

0
W 2(s)ds:

and W 2(r)
0 = (Z(r)0;W2(r)

0)0. For the special case corresponding to model 1:

fW (r) =W (r)�
Z 1

0
dW (r)Z(r)

�Z 1

0
Z(s)Z(s)0ds

��1 Z r

0
Z(s)ds:

Critical values of these tests depend on the choice of Z(r) and metric h(�), we provide sources
of critical values for the classical Kolmogoro¤-Smirno¤ or Cramer-von Mises measures in section 4.
Also see section 4 for more discussions on the choices of h.

Remark 3: We introduced the tests by looking at the �uctuation in the residuals. Corresponding
to certain choice of the metric h(�), the testing procedures can also be derived based on
alternative ways (say, based on a LM principle under appropriate additional assumptions).

Examples (Continued)

Example 1: If �� (�) is chosen as the log normal, the corresponding score function is simply
 (u) = u.

Example 2: If we take �� (�) to be the log density of a logistic distribution, then the corresponding
score function is the well-known Wilcoxon (or Hodges-Lehmann) score,

 (u) = �f
0(u)

f(u)
= 1� 2e�u

1 + e�u
=
eu � 1
eu + 1

:

Example 3: If we take �� (�) to be the log density of a double exponential distribution, the
corresponding score function is given by  (u) = 1� 2I(u < 0).

3.2 Asymptotic Behavior Under The Alternatives

The asymptotic behavior of the proposed test under the alternatives are di¤erent across the three
models in Section 2.1. In particular, the power properties of the �rst and third inference problems
are similar, and are di¤erent from the second inference problem - testing for structure changes.
We �rst analyze the power property of the second inference problem, and then investigate the
asymptotic behavior of the tests corresponding to the �rst and the third models.

For the second model, the asymptotic power property under the local alternatives HA2 : �t =

�0 + n
�1=2D�1

n g (t=n), is summarized in Theorem 4 below.
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Theorem 4: Under the local alternative HA2 and the other regularity assumptions, as n!1;

fWn(r)) fW (r) + �

! 

"Z r

0
g>B �

Z
g>BB

>
�Z

BB
>
��1 Z r

0
B

#

where fW (r) is the same as the limiting process in Theorem 3 andZ r

0
g>B =

Z r

0
g (s)>B(s)ds,

Z
g>BB

>
=

Z 1

0
g(r)>B(r)B(r)>dr,Z

BB
>

=

Z 1

0
B(s)B(s)0ds,

Z r

0
B =

Z r

0
B(s)ds.

For the �rst and the third inference problems, under the alternatives HA1 or HA3, the residual
process is an I(1) process. We �rst make the following assumption on the model behavior under
the alternatives HA1 or HA3.
Assumption 7: UnderHA1 orHA3, the regression residual process but is I(1), and n�1=2bu[nr] ) �(r),
where �(r) is a functional of Brownian motions.

For the purpose of analyzing asymptotic behavior of nonlinear transformation ( ) of an inte-
grated process, we introduce the following concept of asymptotically homogeneous function studied
by Park and Phillips (1999).

De�nition: A transformation G is said to be asymptotically homogeneous i¤

G(�x) = �(�)H(x) +R(x; �)

where H is locally integrable, and R has the following property:

1. jR(x; �)j � a(�)P (x), where lim sup�!1 a(�)=�(�) = 0, and P is locally integrable, or

2. jR(x; �)j � b(�)Q(�x), where lim sup�!1 b(�)=�(�) < 1, and Q is locally integrable and
vanishes at in�nity in the sense Q(x)! 0 as jxj ! 1.

For convenience of our asymptotic analysis, we make the following assumption about the score
function.
Assumption 8: The score function  (�) is asymptotically homogeneous.

Many score functions are asymptotically homogeneous with �(�) = 1.

Examples (Continued)

Example 1: Corresponding to the case of normal, the score function is simply  (u) = u, and thusfWn(r) reduces to eUn(r).
Example 2: If we take �� (�) to be the log density of a logistic distribution, then the corresponding

score function is the well-known Wilcoxon (or Hodges-Lehmann) score. We re-write the score
as

 (x) = 2
ex

ex + 1
� 1 = 2g(x)� 1;
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where g(x) is a �distribution function�-like transformation satisfying the property

g(x)!
�
1, x!1
0, x! �1 :

Thus, using the results of Park and Phillips (1999),  (x) is asymptotically homogeneous with
�(�) = 1.

Example 3: If we take �� (�) to be the log density of a double exponential distribution, the
corresponding score function is given by  (x) = 1� 2I(x < 0). Again, by results of Park and
Phillips (1999),  (x) is asymptotically homogeneous with �(�) = 1.

Under the alternative hypotheses HA1 or HA3, both the numeritor and the denominator infWn(r) diverge as n ! 1. However, the numeritor n�1=2
P[nr]

t=1  (but) diverges faster than the
denominator b! . In particular, under the alternatives and asymptotic homogeneity of the score
function, n�1=2

P[nr]
t=1  (but) = Op (

p
n�(

p
n)) and b! = op(

p
n�(

p
n)). Thus, the process fWn(r)

diverges to in�nity as n!1. The asymptotic properties of the tests for the inference problems 1
and 3 under the alternatives HA1 and HA3 are summarized below.

Theorem 5: Under HA1 or HA3 and Assumptions 6 - 8, as n!1, Pr
h
h(fWn(r)) > Bn

i
! 1 for

any nonstochastic sequence Bn = o(n1=2`�1=2).

Remark 4: The behavior of h(fWn(r)) under the alternative hypotheses HA1 or HA3 is similar to
that of other existing tests (say, the KPSS or CUSUM tests) in the sense that the divergence
rate of h(fWn(r)) under the alternative is dependent on the bandwidth expansion rate `.

Remark 5: The stationarity and cointegration tests (against the unit root alternatives) are con-
sistent tests under regularity conditions that ensure invariance principles to hold and long-run
variances be consistently estimated. Regularity assumptions such as the existence of long-run
variance estimators are typically used in the literature and are su¢ cient, but not necessary,
for, say, the invariance principles. These regularity assumptions restrict the processes into
subclasses of (the general sense) I(0) or I(1) processes. Without such type su¢ cient re-
strictions on the model, it is impossible to consistently discriminate between I(0) and I(1)
processes. For example, Pötscher (2002) show that the minimax risk for estimating the value
of the long-run variance is in�nite; Faust (1996) studied this issue and concludes that the two
classes of processes: I(1) sequences and I(0) sequences, are nearly observationally equivalent
if no further restrictions are imposed. See Müller (2008) for a recent study on this issue, and
additional discussions in Section 5 on its relation with data-dependent bandwidth selection.
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4 Implementation of the Tests

The previous section provides a general residual-based inference method. In principle, any metric
h that measures the �uctuation in fWn(r) can be used in constructing the tests. The classical
Kolmogoro¤-Smirno¤ or Cramer-von Mises type measures are of particular interest. In this section,
we discuss several important implementations of this general method.

4.1 The Kolmogoro¤-Smirno¤Test

The CUSUM type statistics based on the classical Kolmogoro¤-Smirno¤measure is a natural choice
of h. We may consider the following test based on the cumulated sum process fWn(r):

h(fWn(r)) = sup
r2R

���fWn(r)
��� ; (8)

where R � [0; 1]. Usually we take R = [0; 1], in this case, the testing statistic is

sup
0�r�1

���fWn(r)
��� = max

1�k�n

����� 1b! pn
kX
t=1

 (but)
����� :

Under Assumptions 1 - 5, as n!1;

sup
r2R

���e	n(r)���) sup
r2R

���fW (r)��� :
where fW (r) is given by Theorem 3. For inference problem 1, the limiting process given by

fW (r) =W (r)�
Z 1

0
dW (r)Z(r)

�Z 1

0
Z(s)Z(s)0ds

��1 Z r

0
Z(s)ds;

is a generalized Brownian bridge process. Critical values of these tests can be found in Xiao (2001a).
For inference problems 2 and 3, the limiting distribution of the test depends on both the trend and
the known dimension number p, and may be found from Hao and Inder (1996) and Xiao and Phillips
(2002).

4.2 The Cramer-von Mises Type Test

Another functional that is frequently used in measuring the �uctuation in a process is the Cramer-
von Mises metric. For a suitably chosen weight function w(r); we can construct the following
Cramer-von Mises type test:

h(fWn(r)) =

Z
r2R

w(r)[fWn(r)]
2dr;

where w(r) is a weighting function. Under the nullZ
r2R

w(r)[fWn(r)]
2dr )

Z
r2R

w(r)fW (r)2dr:
14
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In particular, choosing w(r) = 1; and R = [0; 1], we obtain the following test with the conventional
limiting distribution:

Z 1

0

fWn(r)
2dr =

1b!2 n2
nX
k=1

"
kX
t=1

 (but)#2 ) Z 1

0

fW (r)2dr: (9)

For inference problem 1, the limiting distribution is the same as the KPSS test, and critical values
for the leading cases can be found in KPSS (1992). For inference problems 2 and 3, the limiting
distributions of the tests are the same as that of the test of Shin (1999), where we can also �nd the
critical values for the leading cases.

4.3 Other Choices of h

In additional to the classical Kolmogoro¤-Smirno¤ or Cramer-von Mises measures, other choices of
h may be used. For example, the MOSUM or Range measures of �uctuation can be used. We may
consider the following MOSUM statistic:

h(fWn(r)) = sup
r2R(�)

���fWn(r + �)�fWn(r)
��� : (10)

where 0 < � < 1 is a prespeci�ed bandwidth parameter of moving windows, indicating the pro-
portion of but used to construct the moving sum. R(�) � [0; 1] is an interval such that both r and
r+ � 2 [0; 1] when r 2 R(�). Usually we choose R(�) = [0; 1� �] or R(�) = [�; 1� �� �]. Under H0,

sup
r2R(�)

���fWn(r + �)�fWn(r)
���) sup

r2R(�)

���fW (r + �)�fW (r)��� :
We may also use the range functional based on the di¤erence between the maximum and the

minimum values of the empirical process. Testing statistics based the range functional are con-
structed as follows:

h(fWn(r)) = sup
r2R

���fWn(r)
���� inf

r2R

���fWn(r)
��� ;

where R � [0; 1]. Under our conditions and the null,

sup
r2R

���fWn(r)
���� inf

r2R

���fWn(r)
���) sup

r2R

���fW (r)���� inf
r2R

���fW (r)��� :
5 Monte Carlo

We conduct a Monte Carlo experiment to examine the �nite sample performance of the proposed
inference procedures. There are many important factors (for example, the short run dynamics
and related bandwidth selection issue) that a¤ects the size and power properties of these tests,
and there has been a large amount of monte carlo study in the previous literature investigating
these issues for the OLS regression based tests. Since the main purpose of this paper is to develop
robust inference procedures, we focus our attention on the robustness issue in the monte carlo

15

Post-print version of an article published in Journal of Econometrics 169(2): 211-223 (2012). doi: 10.1016/j.jeconom.2012.01.027



study. For this reason, we consider mainly models with iid innovations with di¤erent tail thickness,
and compare the M-estimation based tests with the OLS regression based tests in the presence of
various tail behavior. We only consider a few representative cases with correlated errors terms,
instead of looking at a wide range short term dynamics.

For the M-estimation in our monte carlo, we consider the LAD estimation, corresponding to
example (3) in the previous sections where � (x) = jxj, and  (u) = 1 � 2I(u < 0). For choices of
the metric h that measures the �uctuation in fWn(r), we consider both the Kolmogoro¤-Smirno¤
measure and the Cramer-von Mises measure. Corresponding to the Kolmogoro¤-Smirno¤measure,
the testing statistic is given by

max
1�k�n

����� 1b! pn
kX
t=1

 (but)
����� ;

and corresponding to the Cramer-von Mises type measure, the testing statistic is given by

1b!2 n2
nX
k=1

"
kX
t=1

 (but)#2 :
We use the Bartlett kernel k(x) = 1 � jxj in estimating b!2 . For the bandwidth parameter `, we
consider two choices, denoted as `1 and `2. The �rst choice is a �xed bandwidth, we choose `1 = 0,
corresponding to the best choice with iid errors. For the second bandwidth choice, we use the
following partially data-dependent bandwidth suggested in Xiao (1998)

`2 = minf�kb�kn1=(2�+1); B(n)g; (11)

where �kb�kn1=(2�+1) is a data-dependent plug-in bandwidth that minimizes the mean squared error
in variance estimation in stationarity time series. In particular, �k is a constant associated with the
kernel function, �k is a function of the kernel and the error distribution, and � is the characteristic
exponent of the kernel. This bandwidth formula �kb�kn1=(2�+1) has been studied by Andrews (1991)
in the context of estimation of a covariance matrix for stationary time series. However, this data-
dependent bandwidth can not be directly used in distinguishing between I(0) and I(1) processes
because it diverges to 1 too fast under the alternatives (also see Xiao (2003), Xiao and Phillips
(2002) for related discussions on this issue). For this reason, we introduce an upper bound function
B(n) that prevents `2 from being too big under the alternatives1. We use B(n) = [2n1=3] in our
monte carlo. Corresponding to the Bartlett estimator that we use in our experiment, � = 1, �k =
1:1447; and, if we use AR(1) plug-in, b�k = 4�̂2=(1� �̂2)4, where �̂ is the �rst order autoregression
coe¢ cient. Thus

`2 = min

(
1:1447�

�
4�̂2n

(1� �̂2)4

�1=3
, [2n1=3]

)
:

We consider the three inference problems discussed in Section 2 based on model (3). For the
�rst problem of testing trend stationarity, we consider the model with Xt = (1; t)

0. Under the null,

1Although it would be desirable to consider a fully data dependent bandwidth, it is infeasible in our inference
problems. Such a problem is a natural consequence that the unit root (� = 1) is on the boundary of the stationary
range j�j < 1, and is again related to the observational equivalence issue mentioned in Remark 5.
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we consider the following two cases of errors: (1) Null1: ut = "t; and (2) Null2: ut = �ut�1 + "t,
where � = 0:5. For the model under the alternative hypothesis, we follow KPSS(1992) and consider
a component model ut = u1t+"2t, where u1t = u1;t�1+"1t, and "1t and "2t are iid random variables
with the same tail thickness and with variance �21 and �

2
2, and are independent with each other.

The variance ratio � = �1=�2 measures the relative importance of the random walk component.
We consider two cases with di¤erent variance ratios: (1) Alter1: � = 100; and (2) Alter2: � = 0:1.

Special attention is paid here to the performance of these tests in the presence of various tail
behavior of "t. In particular, we consider the following distributions for "t (or "jt, j = 1; 2): "t are
iid (i) normal, (ii) t3, (iii) t2, and (iv) t1. The true value of � is (0; 0). The sample size that we
use in the experiments is n = 200. The testing statistics are constructed based on OLS and M
regression of yt on Xt = (1; t)

0. The nominal size is 5% in our experiments.
Empirical size and power are reported in Table 1. We �rst look at the empirical sizes under

�Null1�for di¤erent error distributions. In general, the M-estimation based tests have more robust
size property than the OLS-based tests. As the tail thickness increases, the OLS-based tests tend
to under-reject the null. The under-rejection is particularly serious for the OLS-based Kolmogoro¤-
Smirno¤ test in both Case 3 (t2) and Case 4 (t1), and for the Cramer von-Mises test in Case 4
(t1). For the data generating process that we consider in this experiment, the Cramer von Mises
tests in general has better size properties than the Kolmogoro¤-Smirno¤ tests.

For the results corresponding to �Null2�, the tests using bandwidth `1 = 0 overrejects because
short run dynamics is not taken into account. The tests using the partially data-dependent band-
width `2 has reasonable performance in general. Again, results are qualitatively similar to the size
properties under �Null1�: the M-estimation based tests have more robust size property than the
OLS-based tests; as the tail thickness increases, the OLS-based tests tend to under-reject the null.

We next look at the power property of these tests. The power results are mixed. For a large �
(Alter1), the M-estimation based tests are not more powerful than the OLS-based tests even in the
presence of thicktailness. For small � (Alter2), the M-estimation based tests have lower power when
the errors are normally distributed, but have signi�cantly higher power than the OLS-based tests
in the presence of non-Gaussian errors. This is because that e¢ ciency gain of using M-estimation
is obtained in the presence of stationary non-Gaussian errors and is translated to more robust size
properties. When the regression errors are nonstationary non-Gaussian processes, the e¢ ciency
issue is more complicate and the bene�t from using M estimation may depend on the structure of
the process.
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Table 1: Testing for I(0) vs I(1): Empirical Size and Power
Kolmogoro¤-Smirno¤ Tests Cramer von-Mises Tests
OLS-Based M-Estimation OLS-Based M-Estimation

Bandwidth: `1 `2 `1 `2 `1 `2 `1 `2
Case 1: "t = Normal

Null1 0.0354 0.0322 0.0464 0.0406 0.0500 0.0466 0.0521 0.0506
Null2 0.5762 0.0220 0.4378 0.0378 0.5626 0.0716 0.3972 0.0688
Alter1 1 0.3730 0.9996 0.4700 1 0.7434 0.9998 0.7434
Alter2 0.6750 0.4198 0.5594 0.3492 0.7160 0.5698 0.5904 0.4736

Case 2: "t = t3
Null1 0.0310 0.0304 0.0464 0.0415 0.0486 0.0476 0.0530 0.0516
Null2 0.5792 0.0278 0.4970 0.0395 0.5544 0.0592 0.4388 0.0604
Alter1 1 0.4280 0.9996 0.4798 1 0.7488 0.9996 0.7078
Alter2 0.6696 0.4108 0.7630 0.5044 0.7206 0.5678 0.7816 0.6242

Case 3: "t = t2
Null1 0.0280 0.0260 0.0450 0.0434 0.0420 0.0392 0.0534 0.0524
Null2 0.5962 0.0248 0.550 0.0456 0.5770 0.0616 0.4806 0.0608
Alter1 1 0.5138 0.9998 0.4968 1 0.7592 1 0.7093
Alter2 0.6642 0.4274 0.8850 0.6444 0.7030 0.5624 0.8910 0.7416

Case 4: "t = t1
Null1 0.0248 0.0234 0.0438 0.0430 0.0244 0.0214 0.0548 0.0492
Null2 0.6142 0.0430 0.6090 0.0520 0.6398 0.045 0.6096 0.066
Alter1 1 0.7548 1 0.7014 0.9986 0.8168 1 0.7714
Alter2 0.6144 0.4826 0.9942 0.8492 0.6356 0.5324 0.9946 0.9066

The second experiment considers testing for the null of cointegration. The data were generated
from model (3) with Xt = (1; t; xt)

0, where xt = xt�1 + vt, and vt are iid random variables. We
consider the same error processes as the �rst experiment, i.e. �Null1�and �Null2�under the null
of cointegration, and �Alter1�and �Alter2�under the alternative hypothesis. "t (or "jt, j = 1; 2)
and vt are iid distributed random variables and are independent with each other. Again, our
attention focuses on the tail behavior of error distribution. In particular, we consider the following
combinations of error distributions: Case 1: "t(or "jt) = Normal, vt = Normal; Case 2: "t(or "jt)
= t3, vt = t3; Case 3: "t(or "jt) = t3, vt = Normal; Case 4: "t(or "jt) = t2, vt = Normal; Case 5:
"t(or "jt) = t1, vt = Normal. The true value of � is (0; 0; 1).

Results for the cointegration tests are reported in Table 2, and are similar to those results in
the �rst experiment. The OLS based display better performance in the �rst case where both "t and
vt are normally distributed. However, the M-estimation based tests have more robust size property
than the OLS-based tests, although the size distortion of the OLS based cointegration tests is
relatively smaller than the distortion of the OLS based stationarity tests. The power property of
cointegration tests is also similar to that of the stationarity tests.

18

Post-print version of an article published in Journal of Econometrics 169(2): 211-223 (2012). doi: 10.1016/j.jeconom.2012.01.027



Table 2: Testing for Cointegration: Empirical Size and Power
Kolmogoro¤-Smirno¤ Tests Cramer von-Mises Tests
OLS-Based M-Estimation OLS-Based M-Estimation
`1 `2 `1 `2 `1 `2 `1 `2

Case 1: "t = Normal, vt = Normal
Null1 0.0374 0.0342 0.0454 0.0416 0.0446 0.0438 0.0490 0.0484
Null2 0.5862 0.0354 0.4520 0.0478 0.5600 0.0666 0.3886 0.0672
Alter1 0.9998 0.3950 0.9994 0.4456 1 0.7062 0.9998 0.6304
Alter2 0.6016 0.3800 0.4882 0.3202 0.6438 0.5124 0.5212 0.4148

Case 2: "t = t3, vt = t3
Null1 0.0330 0.0360 0.0458 0.0428 0.0442 0.0450 0.0482 0.0526
Null2 0.5828 0.0396 0.5120 0.0506 0.5564 0.0720 0.4362 0.0724
Alter1 1 0.4338 0.9996 0.4428 1 0.7072 0.9998 0.6368
Alter2 0.5906 0.3772 0.7054 0.4644 0.6460 0.4970 0.7248 0.5598

Case 3: "t = t3, vt = Normal
Null1 0.0376 0.0354 0.0494 0.0468 0.0498 0.0508 0.0526 0.0544
Null2 0.5942 0.0428 0.5190 0.0485 0.5678 0.0714 0.4498 0.0728
Alter1 1 0.4506 0.9998 0.4594 1 0.7196 0.9998 0.6444
Alter2 0.6090 0.3858 0.7000 0.4664 0.6528 0.5086 0.7180 0.5650

Case 4: "t = t2, vt = Normal
Null1 0.0344 0.0324 0.0500 0.0502 0.0406 0.0428 0.0530 0.0536
Null2 0.6002 0.0464 0.5488 0.0488 0.5632 0.0682 0.4800 0.0702
Alter1 1 0.5224 0.9996 0.4796 1 0.7214 0.9996 0.6538
Alter2 0.6028 0.3882 0.8420 0.5884 0.6358 0.4780 0.8492 0.6608

Case 5: "t = t1, vt = Normal
Null1 0.0364 0.0380 0.0504 0.0486 0.0312 0.0332 0.0558 0.0540
Null2 0.7080 0.0778 0.7042 0.0526 0.6114 0.0636 0.6284 0.0750
Alter1 1 0.7534 0.9998 0.5726 0.9996 0.7752 0.9998 0.7312
Alter2 0.5700 0.4712 0.9908 0.7940 0.5842 0.4710 0.9906 0.8582

The last part of our experiment considers testing for structural instability in regressions with
nonstationary regressors. Notice that the behavior of the second inference problem and the third
inference problem are the same under the null, thus we focus our attention on the power analysis.
In particular, we consider, under the alternative, the following model:

yt = �0tXt + ut;

whereXt = (1; t; xt)
0;and �t = (0; 0; 1), for t = 1; ���; [n=2], and �t = (0; 0; 1:1), for t = [n=2]+1; ���; n.

We consider the same error distributions, i.e. Case 1 - Case 5, as in the second experiment, and
consider iid errors in the regression. The empirical powers are reported in Table 3. In the case
when "t is normal, the OLS based tests are more powerful than the M estimation based tests -
although the di¤erence is not huge. The M estimation based tests have much better power than
OLS based tests in the presence of non-Gaussian "t. The power of OLS based tests decreases as
the tail of error distribution gets thicker.

19

Post-print version of an article published in Journal of Econometrics 169(2): 211-223 (2012). doi: 10.1016/j.jeconom.2012.01.027



Table 3: Testing for Structural Break - Empirical Power
Kolmogoro¤-Smirno¤ Tests Cramer von-Mises Tests
OLS-Based M-Estimation OLS-Based M-Estimation
`1 `2 `1 `2 `1 `2 `1 `2

Case 1: "t = Normal, vt = Normal
0.4844 0.4572 0.4026 0.3606 0.5166 0.4912 0.4062 0.3890

Case 2: "t = t3, vt = t3
0.4650 0.4582 0.5666 0.5296 0.5014 0.4950 0.5750 0.5560

Case 3: "t = t3, vt = Normal
0.2610 0.2394 0.3528 0.3142 0.2920 0.2732 0.3558 0.3392

Case 4: "t = t2, vt = Normal
0.1344 0.1322 0.3350 0.3080 0.1634 0.1634 0.3284 0.3262

Case 5: "t = t1, vt = Normal
0.0406 0.0448 0.2730 0.2566 0.0334 0.0362 0.2778 0.2716

In summary, we conclude that, for testing the null of trend stationarity or the null of cointe-
gration, the M-estimation method-based tests have more robust size property than the OLS-based
tests. In particular, the M-estimation method-based tests have much better size in the presence of
non-Gaussian errors. Power properties of these tests are more complicate and depend on the struc-
ture of the error process. If we consider a component model like the KPSS (1992) paper, the M
estimation-based tests have better power in the presence of non-Gaussian errors for a small variance
ratio. If the error process is dominated by a simple random walk, the M-estimation based tests no
longer has power advantage over the OLS method. In this case, appropriate method that takes into
account of the nonstationarity should be combined with M estimation to improve the performance
of the estimation and inference procedure - of course, in such a case, the limiting distributions need
to be modi�ed correspondingly. For the second inference problem, the M-estimation based tests
have both better size and power properties in the presence of non-Gaussian errors.

6 Appendix: A Sketch of Proofs

Theorem 1. We �rst consider the case with smooth criterion functions. Notice that under the null
yt�b�0Xt = ut�

�b� � �0�Xt, and, under Assumption 3 - 5, by a Taylor expansion of  
�
yt � b�0Xt

�
around ut we obtain

n�1=2
nX
t=1

D�1
n Xt (ut)�

"
1

n

nX
t=1

 0 (ut)D
�1
n XtX

0
tD

�1
n

#
n1=2Dn(b� � �) = op(1): (12)

Consequently,

n1=2Dn(b� � �) = " 1
n

nX
t=1

 0 (ut)D
�1
n XtX

0
tD

�1
n

#�1
n�1=2

nX
t=1

D�1
n Xt (ut) + op(1):
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Notice that, under our assumptions, as n!1,

1

n

nX
t=1

 0 (ut)G
�1
n ztz

0
tG

�1
n

=
1

n

nX
t=1

E
�
 0 (ut)

�
G�1n ztz

0
tG

�1
n +

1

n

nX
t=1

�
 0 (ut)� E

�
 0 (ut)

��
G�1n ztz

0
tG

�1
n

! �

Z
Z(r)Z(r)0dr

and, similarly,

n�3=2
nX
t=1

G�1n ztx
0
t 
0 (ut) ! �

Z
Z(r)B(r)>dr;

n�2
nX
t=1

xtx
0
t 
0 (ut) = n�1

nX
t=1

xtp
n

x0tp
n
E 0 (ut) + op(1)) �

Z
B(r)B(r)0dr;

n�1
nX
t=1

sts
0
t 
0 (ut) ! ��s(0);

n�1=2
nX
t=1

G�1n zt (ut) =

nX
t=1

G�1n zt
 (ut)p

n
)
Z 1

0
Z(r)dB (r) ;

n�1
nX
t=1

xt (ut) =
nX
t=1

xtp
n

 (ut)p
n

)
Z 1

0
B(r)dB (r) ;

n�1=2
nX
t=1

st (ut) )
Z 1

0
dBs (r) = N (0;
s )

n�1
nX
t=1

G�1n zts
0
t 
0 (ut) =

1p
n

"
nX
t=1

G�1n zt
s0tp
n
 0 (ut)

#
= Op

�
1p
n

�

n�3=2
nX
t=1

xts
0
t 
0 (ut) =

1p
n

"
nX
t=1

xtp
n

s0tp
n
 0 (ut)

#
= Op

�
1p
n

�
;

notice that
R 1
0 dBs (r) = Bs (1) is a p2 dimensional normal variate with covariance matrix equals

to 
s . If we partition � into (�01; �
0
2)
0, where �1 is the sub-vector of coe¢ cient corresponding to

(z0t; x
0
t)
0, and �2 is the sub-vector of coe¢ cient corresponding to st, and let D1n = diag[Gn; G2n],

then
p
nD1n(b�1 � �1)) 1

�

�R
B(r)B(r)0dr

��1 R
B(r)dB (r), and

p
n(b�2 � �2)) 1

��.
In the case where  (�) is not everywhere di¤erentiable, de�ne

Hn(g) = n�1=2
nX
t=1

D�1
n Xt 

�
ut � n�1=2g0D�1

n Xt

�
:

Because  (�) is not everywhere di¤erentiable and we can not directly take a Taylor expansion with
 (�) to obtain (12), we proceed by treating the function  (�) as a generalized function with a
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smooth regular sequence  m (�) de�ned based on an appropriate set of test functions (see Phillips
(1995) for more discussions and related literature), then  m !  , and  0m !  0, as m!1. Hn(g)

is then a generalized process de�ned by the following regular sequence of processes:

Hnm(g) = n�1=2
nX
t=1

D�1
n Xt m

�
ut � n�1=2g0D�1

n Xt

�
:

Expanding  m (�) around ut gives

Hnm(g) = n�1=2
nX
t=1

D�1
n Xt m (ut)�

"
1

n

nX
t=1

 0m (ut)D
�1
n XtX

0
tD

�1
n

#
g

+

"
1

n

nX
t=1

�
 0m (ut)�  0m (u�t )

�
D�1
n XtX

0
tD

�1
n

#
g

where u�t is between ut and ut � n�1=2g0D�1
n Xt. Notice that  0m is a regular sequence which is

di¤erentiable with a bounded derivative for each m, thus�� 0m (u�t )�  0m (ut)�� � Kmn
�1=2 ��g0D�1

n Xt

��
for some Km > 0, and thus, for any g = op(n

1=4),




 1n
nX
t=1

�
 0m (u
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t )�  0m (ut)
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D�1
n XtX

0
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 � Kmn
�3=2 kgk
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3 ! 0

thus

Hnm(g) = n�1=2
nX
t=1

D�1
n Xt m (ut)�

"
1

n

nX
t=1

 0m (ut)D
�1
n XtX

0
tD

�1
n

#
g + g � op(1):

Let g = n1=2Dn

�b� � �0� and denote Hnm(n
1=2Dn

�b� � �0�), Hn(n
1=2Dn

�b� � �0�) as Hnm(b�)
and Hn(b�) for simplicity, then, under Assumption 5,

Hnm(b�) = n�1=2
nX
t=1

D�1
n Xt m (ut)�

"
1

n

nX
t=1

 0m (ut)D
�1
n XtX

0
tD

�1
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# h
n1=2Dn

�b� � �0�i
+
h
n1=2Dn

�b� � �0�i� op(1):
Thus,

n1=2Dn

�b� � �0� = " 1
n

nX
t=1

 0m (ut)D
�1
n XtX

0
tD

�1
n + op(1)

#�1 "
n�1=2

nX
t=1

D�1
n Xt m (ut)�Hnm(b�)# :

We now examine, as n ! 1, the limit behavior of each component in the above expression.
First,

n�1=2
nX
t=1

D�1
n Xt m (ut) =

24 n�1=2
Pn

t=1G
�1
n zt m (ut)

n�1
Pn

t=1 xt m (ut)

n�1=2
Pn

t=1 st m (ut)

35)
264
R 1
0 Z(r)dB m (r)R 1
0 B(r)dB m (r)R 1
0 dBs m (r)

375 ; (13)
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where B m (r) is a Brownian motion with variance !
2
 m

=
P1

h=�1E[ m (ut) m (ut+h)] and, as
m!1,

lim
m!1

264
R 1
0 Z(r)dB m (r)R 1
0 B(r)dB m (r)R 1
0 dBs m (r)

375 =
264
R 1
0 Z(r)dB (r)R 1
0 B(r)dB (r)R 1
0 dBs (r)

375 :
Next, notice that ut is uncorrelated with st, as n!1,

n�1
nX
t=1

 0m (ut)G
�1
n zts

0
t ! 0, n�3=2

nX
t=1

 0m (ut)xts
0
t ! 0, 8m
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n�1
nX
t=1

 0m (ut) sts
0
t ! E

�
 0m (ut) sts

0
t

�
= �m�s(0);

where �m = E
�
 0m (ut)

�
, thus"

1

n

nX
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 0m (ut)D
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n XtX

0
tD

�1
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#
)

24 �m
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R
Z(r)B(r)0dr 0
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B(r)Z(r)0dr �m
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B(r)B(r)0dr 0

0 0 �m�s(0)

35
Notice that limm!1 �m = � = E

�
 0 (ut)

�
, the right hand side quantity of the above expression

converges to

�

24 R
Z(r)Z(r)0dr

R
Z(r)B(r)0dr 0R

B(r)Z(r)0dr
R
B(r)B(r)0dr 0

0 0 �s(0)

35 , as m!1:

Finally notice that limm!1Hnm(b�) = Hn(b�) = op(1) under Assumption 4, we have

n1=2Dn

�b� � �0�) "
��1

�R
B(r)B(r)0dr

��1 R 1
0 B(r)dB (r)

��1�s(0)�1
R 1
0 dBs (r)

#
:

Theorem 2. If � is smooth, notice that but = yt�b�0Xt, by a Taylor expansion of  (but) around
ut we obtain
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�
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since 1
n

P[nr]
t=1 st ! 0.

If  (�) is not everywhere di¤erentiable, we again treat the function  (�) as a generalized function
as in the proof of Theorem 1. If we denote 	n(r) = n�1=2

P[nr]
t=1  (but), then 	n(r) is a generalized

process de�ned by the following regular sequence of processes

	n;m(r) = n�1=2
[nr]X
t=1

 m (but) :
Expanding  m (�) around ut gives

	n;m(r) = n�1=2
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 0m (ut) (b� � �)0Xt (14)
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where u�t is a middle value. We next show that n
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�
 0m (ut)�  0m (u�t )

�
(b���)0Xt

P! 0, and
derive the limiting variates of the �rst two terms in the above expansion. First, notice that  0m is

a regular sequence, thus
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2
P! 0, under Assumption 5.

For the �rst term on the right hand side of (14), as n ! 1, n�1=2
P[nr]

t=1  m (ut) ) B m(r),
where B m (r) is a Brownian motion with variance !

2
 m

=
P1

h=�1E[ m (ut) m (ut+h)] and, as
m!1, the limiting process of B m(r) is B (r). For the second term in (14), as n!1,
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Let m!1, 	1;m(r)) 	(r) = B (r)�
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Theorem 4. Under the local alternative HA2 : �t = �0 +
1p
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n g (t=n), use a similar analysis

as those in the proof of Theorem 1 and Theorem 2, we obtain that
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Thus
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Theorem 5: Notice that the residual process is I(1) under the alternative hypotheses, and the
score function  (�) is asymptotically homogeneous, by a similar argument as Park and Phillips
(1999, Theorem 5.3), n�1=2

P[nr]
t=1  (but) diverges at rate pn�(pn). On the other side, the nonpara-

metric spectral density estimate b!2 diverges as well. To prove consistency of the tests, we need to
show that, as n!1, b! = op(

p
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n)). Notice that
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Under the alternative, n�1=2bu[nr] ) �(r), where �(r) is a function of Brownian motions. In addition,
under Assumption 8,
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By similar arguments as Phillips (1991) and deJong, Amsler and Schmidt (2007), as n ! 1; we
have

1
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p
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p
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p
n=`).
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