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A new model of near integration is formulated in which the local to unity param- 
eter is identifiable and consistently estimable with time series data. The proper- 
ties of the model are investigated, new functional laws for near integrated time 
series are obtained that lead to mixed diffusion processes, and consistent estima- 
tors of the localizing parameter are constructed. The model provides a more com- 
plete interface between I(O) and I(1) models than the traditional local to unity 
model and leads to autoregressive coefficient estimates with rates of convergence 
that vary continuously between the 0 (Vf) rate of stationary autoregression, the 
0(n) rate of unit root regression, and the power rate of explosive autoregression. 
Models with deterministic trends are also considered, least squares trend regres- 
sion is shown to be efficient, and consistent estimates of the localizing parameter 
are obtained for this case also. Conventional unit root tests are shown to be con- 
sistent against local alternatives in the new class. 

1. INTRODUCTION 

Models with near unit roots have attracted much attention in recent years. These 
models lead to a class of near integrated time series that offer some additional 
flexibility over integrated processes in the modeling of nonstationary time se- 
ries. They were developed originally to provide a mechanism for studying lo- 
cal alternatives to unit root specifications, giving limit diffusion processes in 
place of Brownian motion (Bobkoski, 1983; Phillips, 1987a), unifying asymp- 
totics for stationary and nonstationary autoregressions (Chan and Wei, 1987; 
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Phillips, 1987a), having natural extensions to vector time series (Phillips, 1988), 
and delivering power functions and power envelopes for unit root tests (Ca- 
vanagh, 1985; Phillips, 1987a; Johansen, 1991). They have also been used in 
empirical econometric work to construct confidence bands that allow for auto- 
regressive coefficients and roots in the neighborhood of unity (Cavanagh, 1985; 
Stock, 1991). 

The simplest local to unity model is a triangular array for a time series Yt of 
the form 

C 
yt = ayt-I + ut, a 1+ -, t l,...,n () 

n 

with independent and identically distributed (i.i.d.) (0, o-2) innovations ut. 
Whereas the autoregressive coefficient a -4 1 as n -- oo, it is apparent that for 
any given sample size n in (1), the model accommodates a much wider range 
of autoregressive coefficients as the localizing parameter c varies, including 
both stationary (c < 0), explosive (c > 0), and unit root (c = 0) possibilities. 
This flexibility has helped to make the model popular in studying economic 
time series for which roots near unity are considered highly plausible but roots 
at unity are considered too restrictive. A feature of the local to unity model is 
that the localizing parameter is identifiable (c can be deduced from the condi- 
tional mean ayt_I and the sample size n) but is not consistently estimable. In 
particular, standardized observations from the model (1) satisfy the invariance 
principle 

n -1/2Y[nr] ==> Jj(r), (2) 

a linear diffusion process (Phillips, 1987a) that depends on c. So, writing the 
model in the form AYt = c(yt IIn) + ut, it is apparent that the sample second 
moment of the regressor x, = Yt- 1/n of c satisfies the weak convergence 

fJc(r)2dr 

and does not diverge as n -4 oo, thereby failing to satisfy the excitation condi- 
tion for least squares regression consistency. Put another way, the signal to noise 
ratio measured by 

1 Yt_ lI8 

Var(xt) n t=l 0 n J 

var (ut) O'2 p 

and so the signal from xt is too weak relative to the error variation to produce a 
consistent estimator of the localizing coefficient c. 

Although methods have been developed to utilize the way in which the limit 
distribution depends on the localizing coefficient (by virtue of the dependence 
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of the limit process J,(r) on c), the failure of consistent estimation has been an 
impediment to inference in models of this type. The dependence of the limit 
distribution on c also affects resampling procedures such as the bootstrap, which 
are known to be inconsistent in models of this type because of this very depen- 
dence (Basawa, Lallik, McCormick, Reeves, and Taylor, 1991). One way in 
which the signal can be strengthened is through the use of additional data. In 
fact, recent work by Moon and Phillips (2000) shows how panel data with in- 
dependent cross section observations are helpful in resolving the failure of con- 
sistency in time series models such as (1). This approach relies on the fact that 
the model (1) continues to apply with the same localizing coefficient across a 
section of N individual observations while N -* oo. Then, VK consistent esti- 
mation of c is possible. However, panel data for which the assumptions under- 
lying this approach are plausible, particularly that of cross section homogeneity 
of the localizing parameter, seem likely to be uncommon. So, these panel data 
results seem at present to be of more theoretical than empirical import. 

This paper offers a fresh approach to the problem of modeling time series 
with roots near unity. Our idea is to develop a new formulation of local to unity 
models that offers more flexibility than the traditional model (1). The new model 
leads to a class of different limit processes beyond simple diffusions, and it has 
the interesting property that the local coefficient is identifiable and consistently 
estimable with time series data, unlike (1). Consistent estimation opens up some 
new possibilities with respect to efficient estimation, trend elimination, and the 
construction of confidence intervals. The new model also provides a more com- 
plete interface between I(0) and I(1) models and between 0('IX) and 0(n) 
asymptotics. In the traditional model (1), the rate of convergence in autoregres- 
sive coefficient estimation is 0(n), just as in the unit root case c = 0, and there 
continues to be a discontinuity in the asymptotics between the stationary and 
nonstationary cases. Only as c -> -oo,+oo in the traditional model do we find 
results that correspond to the stationary and explosive autoregressions (Phil- 
lips, 1987a; Chan and Wei, 1987). By contrast, in our new model, the rate of 
convergence to the autoregressive coefficient is 0(n') for a E [, 1] and varies 
in a continuous way between that of stationary and nonstationary asymptotics. 
The new model also captures the power law asymptotics of explosive auto- 
regressions and shows that, in a well defined local region greater than unity, it 
is possible to obtain invariance principles, in contrast to standard results for the 
explosive autoregression. 

The paper is organized as follows. Notation is given in Section 2. The new 
model is laid out and some of its properties are analyzed in Section 3. A con- 
sistent estimator of the local to unity coefficient is constructed in Section 4 and 
cases of near stationarity, unit roots, and near explosive behavior are separately 
analyzed. Estimation of the local parameter in models with linear trends is dis- 
cussed in Section 5. Section 6 studies issues of efficient estimation of trend 
coefficients and trend extraction. Section 7 concludes and describes some use- 
ful extensions of the present model. Proofs are collected in the Appendix. 
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2. NOTATION 
__>a.s. almost sure convergence >, -d weak convergence 

-d distributional equivalence [-] integer part of 
definitional equality r A S min(r, s) 

Oa.s.(l) tends to zero almost surely equivalence 
-4p convergence in probability oP(l) tends to zero in probability 
Wk(r) standard Brownian motion Vk QD quasi-difference 
BM((02) Brownian motion with variance 

3. A BLOCIK LOCAL TO UNITY MODEL 

The time series model we propose is a block local to unity system defined as 
follows: 

Yk,t ayk,t-1 + Uk,t, t E Tm; k E KK 

Yk,O Yk-1,mX (3) 

c 
a ecim - 1 +- 

m 

where TM = {l..ml, TKK = {-K,-K + 1,.,,,.,}with K '! 0. This 
system defines a sequence of blocks with m observations of the time series 
{ Yk, t: t E T7m} in each block, and the observable blocks are taken to be k = 
1, .. . , M. The initial conditions in each block are set so that they correspond to 
the final observation in the previous block. In this sense, the model is articu- 
lated to capture the evolution of a single time series. The observable series is 
{Yk,t:t E lm;k = 1...,ml. 

The coefficient in the autoregression in each block of (3) is local to unity 
with localizing parameter c, which is the same in each block. In later sections 
of the paper, depending on the sign of c, we will allow for various initial con- 
ditions, and the index set KK for the blocks is introduced to provide this extra 
flexibility. Our initial conditions are described in the following assumption. 

Assumption 1 (Initial Conditions). 

(i) Infinite past initialization: K = o0 with index set K.C. 
(ii) Distant past initialization: K = 0 with index set 1Ko and 

K 

Y0,0 = I aju_l _j K= [mK], (4) 
j=O 

where the u-,,-j are independent of Uk,t in (3), and 

m- 1/2Yo,o J , c(-K), 

where JL,j(-K) = f20 e-(s?IK)cdB-I(s) is a reverse diffusion process and B-1 is 
a Brownian motion. 

We use a general linear process generating mechanism for the errors Uk,t in 
each block of (3). The idea is that there is an underlying sequence of innova- 
tions ej from whose present and past history the errors in each block are formed. 
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We further allow for the specific generating mechanism to change between 
blocks, thereby permitting some structural change across blocks in the short 
memory component of the model. The specific structure is laid out in the fol- 
lowing assumption. 

Assumption 2 (Linear Process Errors). 

(i) Is, is a sequence of i.i.d. (0, 1) variates with E| eI P < on for some p > 4. 
(ii) Uk,t = jj-O bk,j1 6k,t-j, where 6k,t = Emk+t- 

(iii) EJoijabj < on, for some a ' 1, where bj: = SUpkIbk,jI. 
(iv) Let w)2 = 27Jo bk,)2, and assume that infk W)k > 0. 

(V) A 2 = 1imM>00(1/M)k=l w7 and ,4 = limM 0(j/M)EM 1wk exist. 

Remarks. 

(a) When bk, j= bj for all k, the time series Uk, t have homogeneous (over k) generat- 
ing mechanisms as measurable functions of the primitive innovations St and dif- 
fer only in terms of the timing of the shocks with each new block k bringing in a 
new block of primitive innovations 8k, t. This special framework will apply, for 
example, when a single parametric model such as an AR(p) governs the forma- 
tion of the shocks Uk,t in every block k, so that the parameters in this model are 
the same for all k. 

(b) Condition (iii) on the majorizing sequence bj for the linear process coefficients 
bk,j ensures the validity of a BN decomposition for Uk,t for each k, as in Phillips 
and Solo (1992) (see the discussion in the Appendix of the current paper). It also 
ensures that supk a)k < ? 

(c) The moment condition in (i) and the summability condition (iii) ensure that fourth 
moments of ut are finite. 

(d) The parameters A 2 and L4 in (v) are average long run variance parameter and 
square of long run variance parameter over the blocks in (3), respectively. 

We write the data from a particular block as yk = (Yk, 1, . . . Yk,m)' and then 
combine data from M blocks to write y = (y , y2, .-,y Ml )t. In this case, the 
total sample size is n = mM. 

By recursive substitution we have the representation 

[mr]-I 

m Yk,[mr] = M1/2 e jc/muk, [mr]-j + m1/2e[mr] c/m Yk,O 
j=O 

[mr]-1 
= m-1/2 e jcUk[mrj 

+ m-1/2 e[mr] c/mYkm 
j=O 

[mr]-1 
= m-1/2 71 e jclmUk [mr]-j + e[mr] c/m 

j=O 

k-1 m-1 

X E1 e(k-l-f)c m- /2 ec/mufmj 
f=O_ j=O 

+ m-1/2e[mr]c/m ekcyoO 
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If c < 0 and the initial conditions are in the infinite past, then we can write 

[mr]- 1 

m Yk, [mr] m i1/2 E e Uk, [mr]-j 
j=? 

k-I m-1 

+ e[mr]c/m I e(k-I-f)c m-1/2 E ecumf f , (5) 
f=-oo j=O 

where the second series converges in the mean square sense (see the proof of 
convergence in mean square of (5) in the Appendix). 

LEMMA 1. Let U. = (uo,, . . ., UM,j)'. Then, under Assumption 2, for any 
fixed M, as m -< 00, 

[mr] 
E UjM =:> B m(r), 

where BM(r) = (Bo(r),. . .,BM(r))' BM(ftM), QM diag(w,. . .,M). 

As in Phillips (1987a), we have the weak convergence 

[mr]-1 r 

m -1/2 'Y, ef / TTm J c(rr ) =e rs)cdBm(s), (6) 
u[mr]- 

where JM'(r) = (JO,(r),. .. JM,c(r))' and Jk,c(r) - fore (r-s)cdBk(s) is a linear 
diffusion. It follows by the continuous mapping theorem that if the initial con- 
ditions are in the distant past at yO,o and satisfy Assumption 1 (ii), then we have 

k-i 

m1Y/2k, [mr] = Jk,C(r) + erc I e (k-l-f)c Jf(1) + e(r+k)cJ-c(-K) 

Hkc (r) (7) 

If c < 0 and the initial conditions are in the infinite past, it follows that 

k-1 

m-1/2Yk, [mrl =* Jk,c(r) + erc e (k-l-f)c Jfc(1) := Hk, c(r) (8) 
f=-oo 

(see the proof of equation (8) in the Appendix). Note that 1;4_2OO X 

e(k-l-f)cifc(1) converges because E?O4 e2ic < oo and E(JfC(1)2) < o and be- 
cause {Jf C(l)}7=-oo is a sequence of independent diffusion processes. 

Note that the limit processes Hk,C(r) and Hkc(r) involve linear combina- 
tions of independent (across f) diffusion processes Jf,c and are therefore both 
Gaussian. They may be called mixed diffusion processes. The expression Hk,C(r) 
is defined for c < 0. However, Hkc(r) involves only a finite linear combina- 
tion of terms when k is finite, so it is also well defined when c ' 0. Both 
these limit processes differ from the usual diffusion limit (2) that applies for 
the traditional local to unity model. The block structure of the model (3) en- 



AUTOREGRESSIVE ROOTS NEAR UNITY 35 

sures that the traditional diffusion limits apply within each block to linear com- 
binations of the shocks in each block, as in (6). But the observable data cover 
M blocks with progressive reinitializations of the process to assure the com- 
patibility of the block structure with the observed time series. The new limit 
processes Hk,c(r) and Hk"(r) of the normalized observed data take these pro- 
gressive reinitializations into account. 

The device of a block local to unity system facilitates the sequential asymp- 
totic analysis that is used later in the paper, and it also provides a statistical 
model for what may be described as "isolated regions of persistent behavior" 
for macroeconomic time series. Many macroeconomic time series are now well 
known to display a form of persistence whereby economic shocks have long 
run effects. However, it is possible that shocks may affect an economy for a 
long period of time but not forever. In other words, the effects of a shock may 
be highly persistent over a certain range (the region of persistent behavior) but 
then may begin to disappear outside this range. The region of persistent behav- 
ior may constitute a "little infinity" relative to the full sample. Consider a time 
series, {zj, which evolves over blocks of time in such a way that there is per- 
sistency inside each block but only short memory across blocks, i.e., 

Z1, Z2, *.Zm ,Zm+?1, ..Z2m, Zkm+l1, . . , Z(k+l)m . 

_y I 

Block 1 Block 2 Block k + 1 

The number of observations in each block is m, and the number of blocks is M. 
The block local to unity system (3) (when c < 0) is a simple model that has 
this property. Because there is persistent memory inside each block but short 
memory across blocks, we call this type of memory "regional persistence." As 
a result, the partial sums inside each block have nonstationary asymptotic be- 
havior, whereas partial sums over blocks behave like a stationary system. 

4. ESTIMATION OF THE LOCAL PARAMETER 

4.1. The Near Stationary Case: c < 0 

In this section we assume that the initial conditions are in the infinite past. We 
propose to estimate the autoregressive coefficient by the usual least squares 
estimator, which we write here in pooled form as 

M 

A Y-lY k=1 
a = - 

k=1 

From this estimator, we are able to extract a corresponding estimate of the lo- 
calizing coefficient c. Using the model formulation yk =ay_ + uk, we get 
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M 1lk' k 

k=1 M 
m(a' -a) =M k 

k-1 m 

Asymptotic results for this estimator can be obtained most conveniently by 
using sequential asymptotics in which m -* oo first, followed by M -e oo, 
which we denote by (i,M > ??)seq. This type of asymptotic analysis will be 
used throughout the paper. Sequential asymptotics are discussed in Phillips 
and Moon (1999), which also explores the connections between this type of 
asymptotic analysis and joint limit theory in which two indices such as (m, M) 
may pass to infinity simultaneously. Although less general than joint limit theory, 
sequential asymptotics are easy to obtain and will serve our purpose in this 
paper of revealing the main features of the block local to unity system. As the 
analysis in Phillips and Moon (1999) indicates, we can expect the main re- 
sults obtained here under sequential asymptotics to hold for joint limits under 
somewhat stronger conditions. 

For fixed M, we have, as in Phillips (1987a), that as m o- c, 

Y-i U k Hk,C(r)dBk(r) + Ak 
mo 

and 

ck 1 Hk,(r) 2dr( 

where Ak = I bk, obk,j . It follows that as m o oo, 

M I M rl 
E -Y-1 z JHk,CdBk + Ak 

Ak=l mi-1On 
m(a'-a) 

k=1 
M 

M 1 ki k 

2 Y-1Y-1 EJJ Hk c(rdr 
k=1 m k=1 0 

We may now employ the usual nonparametric corrections (Phillips, 1987b) 
to a that use consistent estimates Ak of Ak giving the following modified 
estimator: 

M 

E ( Y-1 Y mAk) 
,+ k=l 

a= M 

E -Y 
yk,_ . 
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It will be convenient in what follows to make the following high level assump- 
tion about the nonparametric estimates such as Ak that we use in our development. 

Assumption 3 (Nonparametric Estimation of Ak and Wk). Use 8 to represent 
both A and w in (i)-(iii). Then 

(i) -k >p 8k as m - , Vk. 
(ii) mh( k - 8k) -d N(O, Vk) as m -> oo, Vk, where h is the bandwidth used in the 

construction of the estimate 8k- 
(iii) SUpk Vk < 00. 

Parts (i) and (ii) of this assumption will be satisfied by a wide class of non- 
parametric estimates of 8k under Assumption 2 (see Hannan, 1970; Park and 
Phillips, 1988; Andrews, 1991). Part (ii) will typically be satisfied when there 
is undersmoothing of the estimate 8k through the choice of bandwidth h, to 
ensure the absence of bias in the limiting normal distribution. Part (iii) simply 
bounds the limiting variances Vk over k. 

The error in the estimator a" is 

@- k= I (mY Ak 

Mm (a" - a) = 1M 

E m- yklY 

1, [fJ Hk,CdBk + (Ak Ak)1 
1 M k=1 

ME JHkc(r)2dr 

M k=1 

,rE Hk, c dBk (0 

-M k=1i 

1 i f Hk,C(r) 2dr 

provided M k12 = (Ak -Ak) = op(l), which holds under Assumption 3, as 
shown in the Appendix. Now we consider taking limits as M - oo. By applying 
a suitable strong law of large numbers (SLLN) to (IIM) r f Hk C(r)2dr and 
a suitable central limit theorem (CLT) to (1/1i) [k= 1 f Hk c dBJI as M -* cc, 
it can be verified that a converges to a at the rate IiMm and, further, that 
\TKm(a+ - a) has an asymptotic normal distribution. In particular, we have the 
following result, the proof of which is in the Appendix. 
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THEOREM 2. Let Assumptions 1 (i), 2, and 3, hold and let c < 0. Then, as 

(m,M < OO)seq 

w_Mm (a"+- a) = N(0, Va) 

where 

Va =V,7 I im kwEI Hk~I V11 11 
(MOO>S M k=1 

and 

VH lim EE[ Hk,c] 

It is shown in the proof of Theorem 2 that 

1 1 [F 2 1 ?lM 1 

M >ok j k,cI MoMki 0kI 2c 2 
__im M k [f k1 2c (M->0 M k=] I 

and 

1 2 [ 2, 

M 
4) 1 

M<O k k=1c 2c M->00 M k= 1 
k 2c M-*>coM k_ = FH1~y -oM_ k 2c 

It follows that Va (-2c)(,u4/j_2). When the errors are homogeneous across 
k, we get wk = t2 for all k and then A 4 = A= 4 and Va = -2c. Because 
/.L4 ' ,2, V =-2c is a lower bound for the limiting variance in the general 
case where the long run variances vary across blocks. 

The weighting in the limit variance Va in the general case (11) indicates that 
we can improve the efficiency of the estimator a" by means of a weighted 
regression. Let di2 be a nonparametric estimate of w02 satisfying Assumption 3. 
Define the semiparametric weighted regression estimator 

M I1 3 1 ( Y-'1 ykk M ) 

A + k=k1 ( Wk 

M 1 

.E ^ -I Yk-Xy 
k=lI Ok 

The following result shows that the asymptotic theory of a. is very simple. 

THEOREM 3. Let the conditions of Theorem 2 hold. Then, for c < 0 and as 

(m,M - oo)seq7 

Mm (a^' - a) = N(O,-2c). (12) 

The limiting variance formula -2c in Theorem 3 has an interesting relation- 
ship to that of a stationary autoregression. In particular, the formula is identical 
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to the limiting variance of the autoregressive coefficient am in a stationary auto- 
regression with m observations, which is (1 - a2) 1 - (1 + (c/m))2 _ - 2clm. 
This suggests the approximation m (a'm - a) - N(O, - 2c), which corresponds 
to (12). 

Observe that in Theorems 2 and 3, we still get the unit root/near integrated 
process result of consistent estimation of a by a', a+, and a" in spite of serial 
dependence (Phillips, 1987b), provided the second order bias terms are not too 
large and satisfy Assumption 3. 

It follows from these asymptotics that 

ma+ -a) = M(a _ 1)- _+ O ( 1 ) 0 

and therefore 

c m(a+ - 1) -p c, 

giving us an 0(\A) consistent estimator of c. Of course, we have a corre- 
sponding estimator c^, m(a - 1) in the case of the weighted regression es- 
timator a+. In short, we have the following limit theory. 

COROLLARY 4. Let the conditions of Theorem 2 hold. Then, for c < 0 and 
as (m,M * OO)seq, C C( -X) p c and 

c^-c) = N(0,Va), @A(C, - c) => N(0,-2c). 

The rate of convergence of c depends on the number of blocks M and is 
therefore determined by the number of separate blocks of information about 
the localizing parameter c. So, the success of this estimator relies on the homo- 
geneity of the localizing parameter across blocks and the number of blocks in 
total. The form of the limit distribution of c, makes inference about c particu- 
larly easy in the case where c < 0. 

The estimator of the autoregressive coefficient a pools information within 
and across blocks and has a rate of convergence that depends on both m and M. 
The rate of convergence of a and a is \Fm, and this rate is intermediate 
between the O(\I) rate of a stationary autoregression and the 0(n) rate of 
unit root regression. For example, we may functionalize m and M on the sam- 
ple size n, as in m = n7, and M = nI-y, with 0 ? y ' 1. Then \f2i7m na with 
a = 2 + (y/2), and the rate of convergence, na, of a+ then varies continuously 
from \/i to n. In effect, the block to unity system (3) is a family of models that 
constitute an intermediate class between stationary and unit root autoregressions. 

When M is fixed, it is apparent from (9) that we have a class of nonnormal 
asymptotics, which reduce to the traditional case (Phillips, 1987a, 1987b) only 
when M =1 and the initial conditions are in the near or distant past (then Hk, 

is replaced by Hk c in (9) and K = 0 or K > 0 in (7)). When m is fixed, then the 
model has autoregressive parameter a - 1 + (c/m) < 1 and is stationary. 
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In the general case where m -X oo as n -> oo, the autoregressive parameter 
a -1 + (c/m) - 1. However, because a -1 + (c/m) < 1 + (c/mM) = 1 + 
(c/n), the block autoregressive system with coefficient a and M -e cc is "closer" 
to stationarity when c < 0 than a conventional near integrated model with auto- 
regressive coefficient 1 + (c/n) and the same localizing coefficient c. This ex- 
plains why the asymptotic distributions of c' and a" are normal and why there 
is enough discriminatory information in data from the block autoregressive sys- 
tem to consistently estimate the localizing parameter c. In effect, the model 
across blocks has a stationary autoregressive structure with coefficient ec < 1, 
as is apparent in the definition of Hk,c(r) in (8). 

However, when M is fixed, we have m = 0(n), and the autoregressive pa- 
rameter a -1 + (c/m) is in the same locality of unity as the conventional local 
to unity model. In this event, c is not consistent, and the situation is analogous 
to that of the conventional local to unity model. Nonetheless, the preceding 
analysis allows for a wider class of limit theory in this case, as indicated in 
(10) earlier, where the number of blocks M plays a role in the limit and the 
limit process Hk,c is a diffusion average, rather than a simple linear diffusion. 

In light of these remarks, it would appear that there are substantial advan- 
tages in modeling to working with the general case where both m and M -e oo. 
This is the situation that we will pursue in what follows and in our empirical 
application. 

4.2. The Unit Root Case: c = 0 and W2 = a,2 Vk 

Let the initialization of the process be in the distant past, rather than the infi- 
nite past, and let Assumption 1 (ii) hold. We will consider the homogeneous 
case where bk,j = bj. Homogeneity in the linear process coefficients across blocks 
ensures that WG2 = (02, Vk, so that the model is then comparable with a conven- 
tional unit root system that has a single long run variance parameter to2 and a 
single one sided long run covariance parameter A. 

From the analysis in Section 3, we have m-'12Ykj[mr] =* Hk c(r), as defined 
in (7). When c = 0, this limit process has the form 

k-I 

HkK0(r) = Bk(r) + , Bf(1) + Bo(-K), 
f=O 

a linear combination of independent Brownian motions, all with variance w 
Our limit theory for a'+ in this case is given in the following result. 

THEOREM 5. Let Assumptions 1 (ii) and 2 hold. Then, in sequential limits 
as (m, M -- OO)seqi 

mM(a+ - a) = (f U(s)2ds) f U(s) dU(s) := (u, 

where U(s) = BM(W2). 
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Hence, in the c = 0 case we get m(a" - 1) -h, 0, as required for &c 
m (a" - 1) to be a consistent estimator of c = 0. However, Mc' =* eu, and 
therefore the estimate of c has a limit distribution in the unit root class in this 
case. Furthermore, we revert to an 0 (n = mM) rate of convergence for a 
and move to an 0(M) rate of convergence for c when c = 0. 

4.3. The Near Explosive Case: c > 0 and W2 = w2 Vk 

In the case where c > 0, it turns out that a -> a at the rate e cMm, comparable to 
the power rate of convergence in an explosive autoregression. Again, we work 
with distant past initial conditions at y0o0 and homogeneity across blocks so 
that wj 2 w= - 2, Vk. The latter helps us to relate our results to those already well 
known in the literature for explosive autoregressions. The limit theory for this 
case is as follows. 

THEOREM 6. Let Assumptions 1 (ii) and 2 hold. Then, in sequential limits 
as (m, M -+ 00)seq, 

ec(M+l)m ec(M+l)m 
M Z(c) 

e2c1 a -a), e2c-1 (a ) Y(c) + Jo,c(-K)' 
(13) 

where Z(c) N(O, (w2/2c)), Y(c) N(O, (w2/2c)), and Z(c), Y(c), and Jo,j(-K) 

are independent. 

Remarks. 

(1) It is apparent from (13) that the second order bias term that arises in traditional 
unit root regression disappears in the near explosive case. A similar result was 
obtained in Phillips (1987a, Theorem 2(c)) using the traditional local to unity 
model (3) and sequential limits involving the localizing coefficient c -+ oo. The 
reason is that the signal from the regressor is strong enough in the explosive case 
to eliminate the bias effects as M -* oo. 

(2) The limit variate (13) is a ratio of independent normals, each with zero mean, 
and is therefore proportional to a Cauchy variate. Note that the initial condition 
distribution Jo,c(-K) plays precisely the same role in the limit distribution here 
as it does in the well known explosive case (e.g., see Anderson, 1959, Theorem 
2.5). However, unlike the conventional explosive model, the initial condition dis- 
tribution in our case is always normal as it arises from a preliminary limiting 
process within the initial block. 

(3) When the initial condition is at the origin and K = 0, then Jo,0(-K) = 0 and 
eC(M+l)m/(e2c - 1)(a - 1) has a limiting distribution that is standard Cauchy. 
This Cauchy limit (13) corresponds to the well known result from White (1958) 
and Anderson (1959, Theorem 2.7)1 about the limiting distribution of the least 
squares regression coefficient in an explosive model with Gaussian errors and 
zero initialization. However, unlike these standard results, the limit result here 
does not rely on Gaussian errors. The difference is a major one and can be ex- 
plained as follows. What happens in the block local model, in effect, is that as 
m -e oo within each block we get normality in the data from the first stage as- 
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ymptotics. The model across blocks then mirrors the structure in a Gaussian ex- 
plosive autoregression. The outcome is that an invariance principle operates in 
the block local model in the explosive vicinity of the unit root case. 

Theorem 6 implies that 

-m(a+- 1) -up c, 

giving us, in this case, an 0(eCM) consistent estimator of c > 0. In particular, 
we have the following result. 

COROLLARY 7. Let the conditions of Theorem 6 hold. Then, if K= 0 and 
c > 0, and as (m, M X ?)seq ,c -C,p c and 

ec(M+l) 
2c C 

where ( is a standard Cauchy variable. 

5. ESTIMATION WITH TRENDING DATA 

Our results in previous sections can be extended to more general models that 
allow for the presence of a deterministic trend in the original data. Such an 
extension is important because many macroeconomic time series, such as real 
GNP, consumption, money, and prices, are often characterized as integrated or 
near integrated processes with drifts. Our treatment here will deal with the case 
of a linear trend but it is easy to see how the approach applies for general poly- 
nomial trends. We also assume homogeneity in the linear process coefficients 
across blocks so that (w2 = W 2, Vk. Again, this is easily generalized using the 
results of the previous section. 

It is convenient to write the model in component form as follows: 

Yk,t dk,t + Yk*,t t E 7rm;k E IKK, (14) 

dk,t = Yo + y(km + t)= Y'Xk,t, Xk t = (l,kmk + t) (15) 

Yk, t=ak, t-l+ Uk, t , Yk*, = Yk*- l, m m a- / +c c'O 

(16) 

In (14) and (15), the deterministic component, dk,t, contains both a linear time 
trend t and a block specific component km that assures the continuity of the 
trend across blocks. The stochastic part, Ykt, in (14) corresponds to (3) in Sec- 
tion 3 and is a stochastic block local to unity process of the form 

t-1 k-i 1 
yk,t-e/Uk t - + etc/m E e[k 1-f]c e jcl/mui- 

j=O f=-K j-O 

+ etc/Me[k-1+K]cyKO 
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As in the simple case with no trend, the process Ykt has both a block index, k, 
and a within-block temporal index, t. However, by virtue of the sequence of 
block initializations Y*o =Y-, my the representation is consistent with a well 
defined evolution of a single time series sequence, this time with a linear drift. 
To simplify the analysis, it is sometimes useful to recognize this alternative 
representation by reindexing Yk, I in the following way: 

Zs = YLs/m],s-m[s/m]1 S 1 v 2,.. ., n -mM. 

We use this single indexed representation and also the block representation in 
what follows. It can be easily verified that 

Zs = Yo + 1 s + Zs? = y'Xs + Z, 

where x = (1, s)' is a single indexed linear trend and 4 Y[*s/m],s-m[s/m] For 
any k and t, Yk,t corresponds to Zkm?t. 

Our purpose is to construct a consistent estimator of the local to unity pa- 
rameter c in this model, and, to do so, appropriate detrending of Yk, is re- 
quired. The most natural procedure, as in the traditional model (1) with trend, 
is to apply linear least squares detrending by means of the regression 

Yk, t =YO Y+ e(km + t)+Yk,t oY Xk,t +Yk, t (7 

Here, the estimate of the trend coefficient is given by the following pooled 
regression formula: 

_M m --1 M m 
[ EXk, t Xk, t [ Xk, t Yk, t 

_k=l t=1 _k=1 t=1 

M m -1 M m 

=Y + L I Xk, t Xk, t E E Xk, t Yk, t. 

_k=1 t=1 _k-1 t=1 

The cases of primary interest are those where c < 0 and c = 0. As in the analy- 
sis of the model without trend, it is convenient to separate the analysis of these 
cases. We shall also consider the efficiency of this type of detrending by simple 
regression. 

5.1. The Near Stationary Case: c < 0 

To develop the limit theory, start by defining some scaling matrices for the 
deterministic trends. Let D = diag[1,n],F = diag[1,m], and G = diag[l,M]. 
Then, D = FG, and the deterministic components have the limits 

D-lX[nr] n-oo > X(r) = (1, r)', F - 1Xk [mr] -m-o- Xk(r) = (1, k + r)'. 

The following theorem gives the limit theory for the least squares trend coeffi- 
cient estimator Y. 



44 PETER C.B. PHILLIPS ET AL. 

THEOREM 8. Let Assumptions 1 (i) and 2 hold and suppose c < 0. Then, as 
(m,M >4 OO)seq 

m ( cy) o X(r)X(r))dr [ I X(r)dU(r)I, (18) 

where U(r) =BM(w2). 

The scaling matrix f7im-1D = diag[n1/2m-, n112M] in (18) indicates that 
consistent estimation of the intercept yo and also the slope yT in (15) is possi- 
ble when c < 0 provided that n 1/2m1 -> oo or, equivalently, Mlm -- oo. This 
is in contrast to the traditional local to unity model, where the intercept or any 
slowly evolving components in the deterministic trend are not consistently es- 
timable. The reason why yo can be consistently estimable in the block local to 
unity model can be explained as follows. From (14)-(16), the regression equa- 
tion can be written in the form 

AcYk,Tt 
= 

AXkT + AcYk,t t = YO + y I(+ ck (c k ) + uk,t 

(19) 

where AC = 1 - (1 + c/m)L is the quasi-differencing (QD) operator and L is 
the lag operator. The excitation condition for least squares regression consis- 
tency for the parameter yo holds when 

m 
c 

2 c2M 
'' __ =-~~-- oo. 
k=l t=1 m m 

For this to hold, we must have c 0 0 and Mlm -e so. In effect, yo is consis- 
tently estimable when the stationary element of the model (M blocks with auto- 
regressive coefficient ec < 1 for c < 0) dominates the nonstationary element 
(blocks of m observations with autoregressive coefficient 1 + (c/m)) in the sense 
that Mlm -- oo. 

The detrended time series is obtained from the residuals 
A * = _ A^, 

Yk, t Yk,t - Xk, t, 

whose asymptotic behavior is shown in the following lemma to be the same as 
that of the stochastic component of the series, yt *t 

LEMMA 9. Under Assumptions 1(i) and 2, and when c < 0, 

m /ljk, [mr] =* Hk, c(r) 

We now estimate the autoregressive coefficient in (16) by least squares re- 
gression on the detrended time series AYk giving 

Yk, t-I Yk, t 
k t 

k t 
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and construct the modified estimator of a as in Section 4.1, i.e., 

M 

E(EY_k, t-1I Yk,Mt mk) 
+ k=1 t 

m 
EE I(Y*k t)2 

k=1 t 

THEOREM 10. Suppose c < 0, Assumptions 2 and 3, and the distant past 
initialization condition 1(i) hold. Then, in sequential limits as (, M X OC)seq, 

Mm (a +- a) => N(O,-2c). 

It therefore turns out that the estimation errors that arise from detrending 
are negligible in the limit and do not influence the asymptotic distribution of 
the coefficient estimator when c < 0. As a result, the limiting distribution of 
wMm(d+ - a) is the same as that of VMm(a` - a) in Theorem 2. This is 
entirely analogous to the situation of a stationary autoregression about a de- 
terministic trend. 

Furthermore, in the same way as before, we may construct the localizing 
parameter estimates 

c^ = m (a+ -1)p c, 

giving us O(VAY) consistent estimators of c. Corollary 4 continues to hold 
for c. 

5.2.^ The Unit Root Case: c = 0 

When c = 0, we find that 

-/ D(' - y) = [fX(r)X(r)' X [fx(r) U(r)I 

where U(r) BM(wo2). The detrended time series are constructed as 

Yk, t Yk,t - Xk,t, 

=Zs - 
Zs = sy x S, 

and, as is usual in unit root theory, the detrending process influences the as- 
ymptotic behavior of the filtered data. In particular, we have the following con- 
ventional result. 

LEMMA 11. For c = 0 and under Assumptions 1 (ii) and 2, 

n 12j[nr] =w U(r)- LI u L xx X(r) := U(r). 
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Again, we estimate the autoregressive coefficient by least squares regression 
on the detrended time series 5* t, giving the pooled estimator 

1EYN E t- Yk*,t 
k t 

k t 

and construct a+ as before. Then we have the following asymptotics. 

THEOREM 12. When c = 0 and under Assumptions 2, 3, and 1 (ii), 

fUdU 

n(a+ - 1) =:> *(20) 
fu2 

An O(M) consistent estimator of c = 0 can be obtained immediately from 
this result because c = m(a+ - 1) -hp 0, and then 

IUdU 
M6 =d (21) 

fu2 

Thus, when c = 0, we revert back to unit root asymptotics, and the distribution 
(20) is identical to that of the traditional model. In particular, a' converges to 
a at rate Op(n), and the limit distribution is a function of a detrended Brownian 
motion that depends on the limiting deterministic trend function just as in Phil- 
lips and Perron (1988) and Park and Phillips (1988). Moreover, because the 
limit distribution of Mc, (21), is identical to that of the Za unit test in the tradi- 
tional model, it turns out that a significance test of the null hypothesis c = 0 
against c < 0 that is based on the statistic Za = Mc is identical to that of a 
conventional unit root test against a trend stationary alternative. As is apparent 
from Theorem 10, Za = Op(M) when c < 0, so our theory shows that the Za 

test is, in fact, consistent against local alternatives in the block local system 
with c < 0. Similar results can be shown to apply to other unit root tests. 

6. EFFECT OF QUASI-DIFFERENCING IN TREND ELIMINATION 

In the block local model (14)-(16), the residual process in the ordinary least 
squares regression (17) is near integrated, and it might appear at first blush that 
least squares estimation of the linear trend coefficient is not efficient, as is the 
case in the traditional local to unity model (Phillips and Lee, 1996). In the 
traditional model, an efficient estimator of the trend coefficients can be con- 
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structed by first quasi-differencing the regression equation. If we apply the same 
QD procedure to (14), we get, as in (19), 

AcYk,t 
- 

Y'AcXk,t + Uk,t, (22) 

where AC = 1 - (1 + c/m)L is the QD operator. Then, the trend coefficient can 
be fitted by regression on (22), giving 

M m -1 M m 

- E E [AcXk,t Acr k,t Ac Xk, t Ac yk, t 
Lk=1 t=l Lk=l t=1 

M m 1-1 M m 

= + ? 
E A cxk 5Xkj, t l E E Xk,tUk,t. 

-k=l t=l J k=l t=l 

Analogous estimates of the trend coefficient in the traditional model were used 
by Elliot, Rothenberg, and Stock (1996) to construct modified unit root tests 
(with a prespecified value of the localizing parameter c). 

In practical work, the local parameter is not known, and so the QD operation 
in (22) is not feasible, thereby explaining the use of prespecified values such 
as c. However, in block local models such as those considered here, c can be 
consistently estimated and used in a second stage QD detrending procedure. 
Thus, it might appear that there would be an advantage to QD detrending with 
an estimated operator. However, this turns out not to be the case. 

Suppose that c < 0 and we estimate c by c = m(d - 1), as in Section 5. Then 
c-c + OP(M-1/2). If we apply QD detrending with the operator Ae\ to model 
(14)-(16), we get 

AeYk,t =Y'AeXk,t + AYkY,t (23) 

The ordinary least squares (OLS) estimator of y from (23) is 

M m -1 M m 

nyf 1: I\ Xk, t Aec Xk', t EI\ c:A Xk, t AX c Yk, t 
Lk=l t=l i k=l t=l 

M m -1M m 

Y + AcXk,tA6X,j [ I XeXk, t l\Yk, t 
-k=l t=l _k=1 t=l. 

The limiting distributions of j and jf are given in the following theorem. 

THEOREM 13. Suppose c < 0, Assumption 2, and the distant past initial- 
ization condition 1(i) hold. Then, in sequential limits as (, M > ?O)seq, 

- D (y-* 7- D( - 
y) X-- [Jx(r)X(r)' ] JX(r)dU(r), (24) m m c 

where U(r)--BM(c)) 
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It follows from Theorem 13 that the errors arising from preliminary estima- 
tion of c are asymptotically negligible in the estimation of the trend coeffi- 
cients, and the limiting distribution of the feasible trend coefficient vector Yf is 
the same as that of j, the infeasible estimator that uses the true local parameter. 
Moreover, both these estimates are asymptotically equivalent to the least squares 
trend estimator 4 that uses no information about the localizing parameter c. 
Hence, the simple trend estimator ' is efficient in the sense that it is asymptot- 
ically equivalent to the generalized least squares (GLS) estimator, were we to 
know c. Thus, in the block local to unity model there is no need to apply QD 
procedures in fitting the trend coefficient, at least asymptotically. The explana- 
tion for this phenomenon is that when M -* oo, the deterministic trend be- 
comes a dominating characteristic across blocks (because of the continuity of 
the trend) and when c < 0 the behavior of the model across blocks is, as we 
have seen, essentially stationary. This produces a stochastic environment that 
validates the Grenander and Rosenblatt (1957) theory of efficient trend elimi- 
nation by least squares regression. 

7. CONCLUSIONS 

This paper introduces a new statistical model to capture the notion of near in- 
tegration. It has the advantage over the traditional model developed in earlier 
work (Phillips, 1987a; Chan and Wei, 1987) that the local parameter can be 
consistently estimated. The model also provides a more complete interface be- 
tween I(O) and I(1) models and between 0(\Fi) and 0(n) asymptotics. In fact, 
the rate of convergence to the autoregressive coefficient in the new model is 
0(n") for a E [J,1] and varies in a continuous way between that of stationary 
and nonstationary asymptotics. The model also captures the power law asymp- 
totics of explosive autoregressions and shows that, in a well defined local re- 
gion greater than unity, it is possible to obtain invariance principles, in contrast 
to standard results for the explosive autoregression. 

Some additional features of the model stand out. First, semiparametric esti- 
mation of the autoregressive parameter is possible using the methods of earlier 
work on unit root estimation, giving a robust estimator in models that are closer 
to stationarity than unit root models and traditional local to unity models. In 
other words, specification of the short memory component of the model is not 
necessary for consistent estimation, in contrast to stationary autoregression, 
where short memory error serial dependence induces inconsistency. Second, 
conventional unit root tests are seen to be consistent against alternatives that 
are local to unity in the new sense. Third, least squares regression estimates of 
deterministic trend components are asymptotically efficient, and it is not nec- 
essary to quasi-difference the data or to use GLS techniques to improve effi- 
ciency in trend elimination procedures. 

Implementation of the procedures given here requires the selection of the 
index parameters m and M. A serious study of this matter is likely to be com- 
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plex, as a result of the interactive role of the localizing parameter c and the 
block size m. Ideally, we would like to obtain data based rules, and, as in ker- 
nel estimation, this will require the use of a suitable criterion function and some 
more refined asymptotics than we have presented here. A further matter of in- 
terest is the extension of the present model to allow for heterogeneous deter- 
ministic trends across blocks. The blocking mechanism in the present model 
provides a natural structure for introducing such breaking trend functions. Of 
course, allowance for endogenously determined breaks would require the fur- 
ther extension of variable block sizes. Moreover, because the model allows for 
the number of blocks to pass to infinity, this extension effectively introduces 
an infinite number of nuisance parameters as M - coc. Although these and other 
interesting considerations extend beyond the limitations of this initial study, 
they serve to give an idea of the potential of block nonstationary systems in 
modeling time series economic data. 

NOTE 

1. The normalization factor in Theorem 2.7 of Anderson (1959) is aT/(a2 - 1), corresponding 
to a sample of size T. The normalization in (13) is ec(M+l)m/(e2c -1), which corresponds to aM+lm/ 

(a2 - 1). The reason for the exponent M + 1, rather than simply M, is that we have M blocks in the 
data but M + 1 blocks in the process from the initialization at y0,0. In an explosive model, a change 
in the initial conditions does affect the limit theory, and it figures here in the normalization factor. 
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TECHNICAL APPENDIX AND PROOFS 

BN decomposition of Uk,t. Following Phillips and Solo (1992) we decompose Uk.t as 

Uk,t = bk(l)6k,t + gk,t-1 - ?k,t 

where &k, t= c)O bk,j ek, t-j, bi -=J J+1 bk, and bk(l) = Ejo?o bk,j . Under the summa- 
bility condition in Assumption 2, it is apparent that there exist finite constants Ml and 
M2 such that 

E ?2 Ml (A.1) 

and 

EU2,tCM 

uniformly in k and t (see Moon and Phillips, 1998). 

Proof of Convergence in Mean Square of (5). Let Xf = m j12Jm- .0eic/m x 
Uk_l,m. Write Xk = m 1/2 ,n1 e jc!k m j and Rk ml/2(e[m-l/m] , - _k) + 
m-1/2 I27] e (-l)c]/mgk,mj(1 - eclm). Then, using the BN decomposition Of Uk,t, un- 
der Assumption 2, there exists a constant M such that 



AUTOREGRESSIVE ROOTS NEAR UNITY 51 

EX2 = E jcE ec/mUk-l-fm-i) 

= E(bk-l f(l)Xklf ? Rk-lI)2 <M (A.2) 

where the last inequality is proved in Moon and Phillips (2000) and holds uniformly in 
f. To finish the proof, we need only show that 

oo 2 

limE le fcX 0, 
n--oo f=n 

which holds because 

x \2 /x \2 

E (: e fcX) = E (i e (1/2)fce (1/2)fc Xf 

' ( , efc)E( , efcXI) ? M(J 2efc) 
f=n f=n f= n 

-*0 asn -oo, 

where the first inequality holds by the Cauchy-Schwarz inequality and the last conver- 
gence holds because c < 0 and yf= efc < ooU 

Proof of Lemma 1. From the BN decompositions of Uk, t, we have 

I [mr !0 [mr bo (1) so I o, go0, [mr] 

UMX j bM(1)6M,J 8M, - 8M, [mr] 

[mr] 

= g1/2 1 [ ( 

where the second line holds by the same argument as that in Phillips and Solo (1992, 
p. 978). Because 

80j ~ ~ ~ 7W0(r) [mr]/ \ (r 
-,\ 

F 
' V WM ( r)- WM(r)/ 

a (M + 1) vector standard Brownian motion, we have 

I [mr] |?'j /Bo (r)\ 
BM(flm) 

asM require. Bm(r) 

as required.U 
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Proof of (8). We start by introducing some notation and definitions. Suppose that 
the i.i.d. sequence {I,} in Assumption (2) (i) is defined on the probability space (Q, F, P). 
Define 

1 rn-i 

Xm, k = e jCM 
eiUk, m-iI Ymkr- r eck/2xrn,k, 

Xk = Jk,C(l) and Yk e k 
Xk, 

Y.r (Ymr,O,....,Ymr,k....) and Y= (YO,..., Yk,...) 

The terms Y,r and Y are Rh' (= X R) -valued random elements. We use the following 
distance metric between two elements of RE: 

d(x,y) = Sup Xk -Yk, (A.3) 
k20 

where x = (xl, x2 .... ), Y = (Yi, Y2 .... ) E R'. Let N be the set of non-negative integers, 
{0,1,2, ....}. The space 1X(N) is defined as the set of all uniformly bounded, real func- 
tions on N, i.e., all functions x: N -> 1R such that d(x,O) < so. 

By virtue of (A.2) 

00 00 

E(suPYm kl) 'E ElYm k = E eck/2E|Xmr,k| 
k-0 k=0 k=0 

W ec12 max{I,EXm k} C E e ck/2 max{1,M} < oc, 
k=O k=O 

and it follows that Y,r is a sequence of 1??(N) -valued random elements with probability 
one. Similarly, it is easy to verify that Y is also an lI'(N)-valued random element with 
probability one. Thus, we may restrict attention to the case where Y,r takes values in 
1w(N). 

For weak convergence in I c(N), we need only establish the following two condi- 
tions: (i) finite dimensional convergence and (ii) asymptotic tightness. In fact, accord- 
ing to Theorem 1.5.4 of van der Vaart and Wellner (1996), Ym converges weakly to Y 
if (i) 

Y., ki Ykl I 

.~ > . |(A.4) 

as m -* oo for an arbitrary subset ,kl,,..., kj} of N and (ii) Y,r is asymptotically tight. We 
already know that the finite dimensional convergence (A.4) holds by Lemma 1. For 
asymptotic tightness of Y,,, we appeal to part of Theorem 1.5.6 of van der Vaart and 
Wellner (1996): specifically, the sequence Yin: fl -- I00(N) is asymptotically tight if Ym,,k 
is asymptotically tight in 1R for every k and, for all e, - > 0, there exists a finite parti- 
tion N = U=1Nj such that 

lim suP P suP sup I Y, s- Ym t I > ?]| < 7. (A.5) 
m i rt=N 
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(In van der Vaart and Wellner, 1996, to define (A.5), an outer probability measure of P 
is used. However, because the index set N of I'X(N) is a countable set and there is no 
measurability problem on the sup operator on the set N, we use the underlying proba- 
bility measure P in defining (A.5).) 

Because the individual sequence of random variables Ym, k converges in distribution 
to Yk = ekc/2Jk,c(l) for all k, Ym, k is asymptotically tight in R for every k. Next, condi- 
tion (A.5) is satisfied if we show that for all e, r7 > 0, there exists a constant ko such that 

limsupIP{ sup IYin0 - Yi,t > 8 <. (A.6) 
m s, t-ko 

For, if (A.6) holds, we can choose Ni = {i} for i < ko and Nko = {t: t 2 ko}. Then, N = 

U,.Ni is a finite partition and (A.5) is satisfied. Note that 

D{ sup I YM} S Y., t > 
s, t-ko 

00 \A 

c I: I IY.,k+ I Ym, k > 8 
k=ko 

- ? E - Im,k1 mk )= E( E 
c1 e 1e 2Xmk X 

2 I e k/2 I( e /2 E(e /2Xm k+l -Xm k)2 ) (A.7) 
? k=ko k=ko 

where the last inequality holds by the Cauchy- !hwarz inequality. In view of (A.2), by 
choosing ko large enough, the right hand side of (A.7) can be made less than ?7. Thus, 
(A.5) is satisfied, and we have 

Ym =* Y 

as m -* so. 
Next consider the functional v: 1(N) -X IR defined by 

co 

V(X) Y. ekc/2xk. 
k=:O 

Then, it is easy to see that v (x) is continuous with respect to d in (A.3), and by the 
continuous mapping theorem, we have the required result. A 

Proof of Theorem 2. For fixed M, as m -* oo, under the assumption that the initial 
conditions are in the infinite past, we have as in (9) 

k= [o Hk,c dBk + (Ak - Ak)1 

xTMim(a' - a) M 1 + op(l). (A.8) 

I fHk,c(r)2dr 
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First, under Assumption 3 we have \h ( Akk- Ak) ->d k -N(O, Vk) as m -* cc, Vk, and 
{ek} is an independent sequence of normal variates with zero mean and variance that 
are bounded uniformly in k, because supk Vk < co. It follows that as m -* oo, 

1 M 1 M1 

as (m, M -? o?)seq. 

Next, we apply a strong law to (1/M) k=L fHI f C(r)2dr and a CLT to (1/%fM7) X 

Ek=i[f Hf kCdB] as M -- cc. To find the limit of (I/M) Zm41 fo Hk,, (r)2dr we write 

M , f c(r)2J dr 

I M r1 2 M Il k-1\ 
- I M ,dr + - 

Jk, ce "dr e(k1fc M)J 
Mk=1 M k=1 f= _oo 

I 11 M k-1 2 
+ e2rcdr - E I e(k f)CJfc(1) 

M k=1 \f=- /o 

= I+ + III, say. 

Now {Jk,c} is a sequence of independent normal variates, and because supk wk < c we 
have supk E(fo Jk,cdr)1+5 < oo. It follows from the Markov strong law for independent 
and nonidentically distributed (i.n.i.d.) sequences that 

1M 
JJi cdr 

M k- J 

as(lim 2 E o)E S2) (A.10) 
0Moo Mk=1 ? 

where Sj(r) = fore(r-s)cdW(s). Next consider term II. From the independence of {Jk,c}k 

and because 

(J1 k-1 )2 sup FE( Jk, ce 'dr ( e(k-lf)cj4c(1)) 
k Of=-co 

s sup E(f Jcercdr) supE t e(k-1-f)cj c(1)) < c, 
k Ok f=-x 

it follows that {If Jk,c e dr(jfko e (kf)Jfc(l())}k is a sequence of square integrable 
martingale differences with respect to the natural filtration, and by the strong law for 
martingale differences (e.g., Hall and Heyde, 1980, p. 36) 

H >a.s.? (A.ll) 

Before considering term III, under Assumption 2, we define 

Zc SUp I&)k| |Sc(l) , 
k 



AUTOREGRESSIVE ROOTS NEAR UNITY 55 

where SC(1) = fo e(1-s)cdW(s). Then, E(Z2)4 < oo, and Z is a dominating random 
variable for the martingale difference sequence {Jk,,(1)} in the sense that 

P{ 14,c(l) I > X} < P{|Z2C > x}. 

Also, we have 

Mk=1 
M 2 M 

k= M E EJk,c (1 ) -* 1 t Im M W2)Es( 1 ) 

and 

00 

I je 2JC < 
j=O 

Then, by Theorem 3.16 of Phillips and Solo (1992), we have 

p1 1 M X 2 

III= J e2rcdrj - I e jJk-l-j,c(l)) 
Mk=1 =I _ 

>a.s. f e2rcdr (lim M - 
(Op) (1 2c )ES0(1)2 

lim( 1 2) (k)2 (A.12) 
2C M---ccM __~k=1 F 

Combining (A.10)-(A.12), we have 

M a Hk,c (r) 2dr 

(M*a.s. (jim k) ((j S ) 2ESC(1)2) = VH (A.13) 

To reduce VH note that 

[E(f SC) (ES )()2 

f e2rc - 1 e2c-1 
dr - 

JO 2C 2c 2c 

= {-[ 2 (e2 -1) 1 2C 1 } 

21 (A.14) 
2c' 

so that VH = A2/-2c, where A2 = 
1iMM,oo(1/M)Mk-1 k, 
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We now derive the limit distribution of (t/ M) 1 LM Hk,CdBk. Let Zk,c = 

f' Hk, dBk. In view of the independence of Bk across k and the fact that 

sup EZ2 = sup wL E fHL1 
k k O _ 

=sup [4E ES2 + w2 ( e2[k-1If]cco2ES (1)2 e2rcdr 
k Of=--oo 

( [J )\.. fc )J 1 e]c 

4( w~[fS> 
2 ES c(1)2] 

we know that Zk,, is a sequence of martingale differences with respect to the natural 
filtration, and we may therefore employ a CLT for martingale differences. Let 2M- 

> I 1EZL . Define 

Zk ' ( Pkkd)( f 5k k + f ercdWk e( -e-fclSf, 1c)). 

It is easy to verify that Zk,C iS strictly stationary, Zk, Zk, cI Vk, and 

E(k,) 

- 2(sup2) E(f SkdWk) 

+ 2 (sup (k)2E ( e rc d Wk) 

X E(Sf ) 
1e2c) + (E ISfc(l))2 

CC 

for some constant C uniformly in k. Then, for any s > 0, 

m 2 z |2 >?} 
Zk k, c 

'E E Z c I {> kC J 

2 L 2 l{l -8 

F 22 22 

M F( Lz,) {[Zl2c>{ 7 M inC}1 2c)M 
12 2 

k=1 aM-*oo 
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where the second line holds by Zk, 2 Zk, J, the third line holds by the strict stationar- 
ity of 2 , the fourth line is well defined because infk E(Z c) > 0 in view of the fact 
that infk W2 > 0, and the last line holds by virtue of the fact that E(4k2 c) < C. There- 
fore, as M -4 oo 

,@ E 4F Hk,CdBk =*N y0, li z. 2 jH ,1) (A.15) 

Combining (A.9), (A.13), and (A.15), we have the required limit distribution. 
To simplify the variance formula, observe that as in (A.13) and (A.14) we have 

(k E H \, C 

K(M-*oo M kElk)((I c)21c 

1 
- lim4E4.--S () 

2c 
. 

Proof of Theorem 3. The proof follows the same lines as that of Theorem 2 given 
earlier, and so we simply outline the argument. For fixed M, as m X oo, we have as in 

(A.8) 

i@ E [JHk,cdBk + (Ak- Ak)] 

TKMm(a" - a) = 1 M 1 1 J+ op(1). 

J2 Hk, c(r) dr 
M k= IWk tO 

Then 

M k=1 (k kc .2c 2c 

as in (A.14). Further, in the same way as (A.15) we find 

; 2 Hk c dBk =*N 0, lim -E 2 E[ Hk,C) =N 09-2 - 
__ 

2 1M2 

@ k=l kk MLI HU 
M k=N( (k ?+) 

It follows that in sequential limits as (i,M --- ??)seq 

TAm (a + - a) = N(O,-2c), 

giving the stated result. 
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Proof of Theorem 5. If Assumptions 1 (ii) and 2 hold, then, as in (9) but using the 
fact that c = 0, it follows that as m -e oo for fixed M, 

_iE(_IY! uk mAk) 

1 M 1 

M2 IY-iY- 

M-E [ J HkodBk + (Ak. Ak)1 
M I 

M2EJHkKO(r)2 dr 

where HkKO(r) = Bk(r) + J;=-O Bf (1) + Bo(-K). As in the proof of Theorem 2, we have 

M 

(A Ak ) (1) (A.16) 

in sequential limit as (i, M -* ?O)seq 

Before proceeding further with the proof, note that the sequence {Bk(l)}k is i.i.d. 
N(O, W2). Then, by Donsker's functional law for partial sums of i.i.d. random variables 
we have, as M o no, 

[Mr] 

gi,Bf (1) U(r), 
f=O 

where U(r) =BM(w2). It follows that as M - no, 

I M Ilr 
M f H/O(r) dBk(r) = f U(s) dU(s) 

because 

M r1 
Ma O ?( r) dBk ( r) 

I M r 1 M Ik-1 

-M J Bk(r)dBk(r) + Ma a Bf(1) Bk(l) 

I M 

+ B0(-K)- > Bk(l) 
M k= 
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where the final line follows by using partial summation techniques, as in Phillips (1987b). 
Similarly, we have 

M2 ,E **f HkKo(r)2dr => U(r)2dr. (A.18) M k=l 
Thus, in view of (A.16)-(A.18), 

U(r) (r) 
mM(a+ +-1) , 1 1 

U(r)2ds 

as required. A 

Proof of Theorem 6. For fixed M, as m -> oo we have, as in (9), 

M1 

e M 
Y Ykj- IUk,j 

ecMm(a - a) = k=1 m j=1 

-2cM M 1 y e ,7 y2~- 
k=1 m 

2 k 

M I1 

e-cMH J H1K(r) dBk(r) + AMeCM 
k=l1 0 
k=1 - -.(A.19) M Il 

e 2 
c f Hk,c(r) 2dr 

k=1 

For the limit when M -* oo, we follow arguments similar to those of Basawa and Brock- 
well (1984). First, consider the numerator of (A. 19). 

Note that 

M Il 
e-cM f Hk C(r) dBk(r) + AMeCM 

k=l I 

M Il 

e cM f Jk c(r) dBk(r) 
k=1 

M k-I \ Ir 
+ E ecMVI e(k-1 f)CJL (1) + ekcJ- iC(-K)) f0 ercdBk(r) + o(l) 

e-cm e f ~+ ekcJ-,c( (--)jK)) feCdBk(r) + ol k=l f=O O 

M | k-I I o 
,e-cm e(k-1-f)cJf -1 k]1(K rdBk(r) + op(l), 

k=1 \f=O / 

(A.20) 

where the last line holds because 

e Cm Jk,c(r) dBk(r) = =p op (1) 
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Before proceeding further, define 

k-I 

X Il e(k-l-f)cjf c.(l) Xk-l 

Jk-l,c(1) + e cJk2, C(1) + *-. + e(k l)cJo, c() 

-N k, 1e 2(k-l-f )c2( 
2C 

-N(0 2 e2tC 1 ) 
'' 2c 

and 

Q U rcdB()=N(O,(02 (e2cO- 
Je r-2c Qk rdB 

k(r) 
N 0, 

7 2c 

Then, we have 

Xt = ecX t_ + Jt C(l) t = 0, .. ., k -1, 

where X_1 = 0. 
Also, note that 

e2(M+l)c- 
W,-CV \2 _ - 2cM. 2 sup E(e-MXM) -sup e M e 

M?O M20 2c 

e2c -e-2cM 2e2c 
=sup wi2 e 00. 

M0 2c 2c 

Then, e-CMXm is a martingale with respect to the filtration .FM -(JM,C(1), JM-l,C(l),....) 
and, by the martingale convergence theorem, we have 

e-cMXM >a.s. ecY(c), where Y(c) = N(0, 2). (A.21) 

In addition, it is easy to see that 

M-1 

Y. e-c(k+ 1) QM 
k=O 

a NO (E -2c(k+l)) <9(2c _ 

N N(O, 1 e2c 2c (e 1)) N(0, 2c) -Z(c). 

Moreover, the limit variates Z(c), Y(c), and J-1,c(-K) are independent, and Y(c) and 
Z(c) have the same normal distribution. 

Next consider the limit of (A.20). Proceeding as in Basawa and Brockwell (1984) we 
get 
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M k-I I 

I e-CM e(k-l-f)chJf(1) + ekcJ-l c(-K) f e dBk(r) 
k=1 f=OO 

E e c(Mh1)XM-h-1 ec (h+)QM-h 

= (1 
ecJ_1,c (-K)) 

h=O M- 
Q 

M-1 e-Yc(h) l) Q 
h=O 

M-1 

-ecMYC) + J_ 1, (- K)) E e c(h 1QM-h 
h=O 

= ec(Y(C) + J1, C(-K))Z(c), (A.22) 

where the third line holds because e -c(M-k- I)XM-k- 1C KC almost surely for some 
random variable KC (cf. Basawa and Brockwell, 1984, pp. 161-171) and we can apply 
dominated convergence. Thus, as M -4 co 

M Il 
ecm E f HkK(r) dBk(r) + AMe =* ec(Y(c) + J-1,c(-K))Z(C). (A.23) 

k=l I 

Now, we proceed to the denominator of (A.19). By definition 

1M 1 
2 

2C M JHkKc (r dr e k=I ? 

2CM 2 J Jk, c ( (r) d e k=l 

1 M 
krc 

k-I 

2dr 'Y' dr' (k-ef) Jfi 

+2CM EJ e k 
c(l) d ekcJf(1) + ek J-lc,-K)) 

1 M Ik-I 2 

+ e erdr 2M e( f)J() + ekC- c(K 
o e k=l f=O 

=I + 2II +III, say. 

It is easy to verify that, by the strong law for i.i.d. variates, 

I O a.s.( =0CM) 0 e 
a 2cM =?.() 

For III, note that 

M Ik-1 \2 

2cM z e(k-1 f)cjc(1) ? ekcJl,c(j- K)) e k= If=?I 

<o{e (M-k (XM- + 12 _(-K)M}k( 1 

k=O e(M-k- 1)c (XM-k 1 + e(Mk l)cecJ1(-) 

x/ 1 k x If -'k -zM - 1} P2(k+l)c )(A.24) 
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From (A.21) we know that for fixed k 

(XM-k + e(Mk )c ecJo,c(-K))} 1{O C k ? M- 1} 

4a.s. e 2c(Y(c) + Jo,c(-K))2, 

as M - oo. Because 

{ (M -k-c) (XM-k-1 + e(M-k- )cecJo,c(-K))} 1{0 c k ' M-1 

is almost surely dominated by a random variable as in (A.22), it follows by the domi- 
nated convergence theorem that 

e2c 

(A.24) 4a.s. (Y(c) + Jo,c(-K))2 22c (A.25) 
e - 

For II, by the Cauchy-Schwarz inequality, we have 

M / ri \2\1J2 
11? (c~cM t- (fJerJk,c(r) dr) " 

M /k-1 \2 1/2 

X 2cM , Y e( f 1 c () + e kcJo c-K)) 
e k=1 f=O 

= ( oY)o (l) = op(07 

where the first equality holds by (A.25). Thus 

1 M 1 e2c 

e2cM E J Hk,(r) dr a.s. (Y(c) + J0,, (-K)) 2c1* (A.26) 

Finally, combining (A.23) and (A.26), we have 

eCMm(a -a) = ecz(c) 

e2c - (Y(c) + Jo,c(-K)) 

It follows that 

ec(M+l)m Z(c) 

e2c (a ) Y(c) +J(-K) 

as stated. U 
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Proof of Theorem 8. For each k, 

-EF-1 Yk t, Xk (r) Hk,C (r) dr = ].(A.27) 

[J(k + r)Hk c(r)dr 

Notice that 

I M I 

V, E Hk ,(r)dr 

1 M r' 1 fM / k-1 
\(k--f)cj 

=JM k=1 J dr e dr e f (A.28) 
k=I J d 

O 
\ k=l f=-oo 

We start with the first member of (A.28), and use the relation (cf. Phillips, 1987a) 

rr 

Jk,C(r) = Bk(r) + Cf e(r-s)cBk(s)ds, (A.29) 

2 

where Bk(r) = BM(w2). Because {Bk(r)}jmL is an independent sequence of Brownian 

motions, it follows that (I/ 7)k=lM Bk(r) iS BM(o2) for all M and 

1 M 

' 2 Bk(r) => U(r) aBM(we2). (A.30) 

Hence, 

a , f Jk,cdr Uf [U(r) + cr e(rs)cU(s)ds dr 

jjr 

_JJe(r-s)cdU(s)dr 

1 ' 
ecJ e-scdU(s) - - U(1) (A.31) 

c oc 

by using partial integration. 

Next, for the second member of (A.28), let 

k-1 

Tc = E e(k-1-f)cjc(1) 
f=-0x 

Then 

1 M l c k- k f 
- M 

@ - JO erdr( e(k e f)cJf C\I - J ercdr 1 M 

The time series rik is a linear process of the form 

77k = a (L) Pk, 
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where {vk = Jk-l,c(l)} is a sequence of independent normal innovations and a(L) = 

ij7 = a jL, with aj eJ. Thus, following the approach of Phillips and Solo (1992), we 
can write 

1 M 1 M 

I qk= a( ) Jk-l,,(') + Op - 

- 1 I M (1I 

1 -ec JM Jk-l,,(l) + Op 

Then, as in (A.29) and (A.30), we obtain 

M rlr 
I Jk-1 c(l) =* U(1) + c e(ls)cU(s)ds J efs)cdU(s). 

The limit behavior of the second member of (A.28) is therefore 

e~( ercdr) 1ic 1 e(1-s)cdU(s)) 
1 M ((1 k1 

= e(1-s)cdU(s)) (A.32) 
c O 

Combining (A.28), (A.31), and (A.32) we obtain 

,g y t Hk,C(r)dr c f escdU(s) -c` U(1) (f e(1s)cdU(s)) 

U1) - 1 ul) XdU(s). (A.33) 
c cJo 

If we denote f, Hk, c(r)dr by 4k, under the assumption of homogeneity, <k is a stationary 
process, and, in a similar way to (A.33), the partial sum 

1 [Mt] 1 
,j Ek => B (t) - U(t). 

Thus 

4j= I f M Hk,c r) de (= M 
- 

Hk,c(r)dr + OP 

k(AM ) k k + I 

r- f r(A.34) 
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Thus, from (A.27), (A.33), and (A.34) we obtain 

1i 
1 > 

X Y G 1 -E F x1k 
-jz 

1 M 
D ,9tiE G-1 J Xk(r)Hk,C(r)dr 

k t ~ ~ \7k~=1 J 

M Xk~1f (kr)Hk(r)d] 
1 M JHk,,(r)dr 

k=l 1( k +r) 
H,(r)dr2 

- Wl(s)] 
=--l ;J=--J ~X(s)dU(s) 

in sequential asymptotics as (i, M -* ?C)se,q Further, in a straightforward way 

- , E D -t *x t D X(r)X(r)'dr. 
n k 

'k k 

In consequence, we have 

(! n D'xk,xk,Dk ) (>, t Dxk,tYk,r) 

zz> - c (f X(r)X(r)'dr) (f X(s) dU(s)), 

giving the stated result. U 

Proof of Lemma 9. 

in2" *mr = M n/2Y*[mr] M 1/2(j A Y)'Xk, [mr] 

= Y i,nm m Yk,[mr] 
m 
(_ Y ) 1k, [mr] 

-m-1/2Y 
* r + op(m 11) /k,y[mr] + 

=~Hk,C() 
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Proof of Theorem 10. 

ya f Y-k, t-l1 Uk, t 
k t 

z E (Yk, t- I 
k t 

(a - 1)-YY Xk, -l Y'kt-1 
k t 

+ 

Y 
E 

I 
k t 

(9-) YYE (Xk, t -Xk, t-1) Yk*,t- I 
k t 

U (k, t_1)2 
k t 

Thus 

\fM7m(d-a) 

@fM k M t 

M ( 2 z Yk, t- 1)) 

m(a- 1) [-y)'D Gi ][ 1 G1(- F1lxkt-l1, )] 

ME3/2+op7~ 1O( 1) 

As m -* oo 

y 4J I(f E nk t Xk, t Hk,cdBk+ Ak ) 
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Thus, if we consider the adjusted estimator a and take sequential limits as 
(m, M - 

oQ)seqg we have 

@ k (m~~~-k t k I Uk,t 
- 

Ak) 
-\TMm (da(a) k=t + op (1) =N(O,-2c). U 

Ma 
I 

E (Y'k, t-1 )2) 

Proof of Lemma 11. When c = 0, 

,6D( - y) = -ED-'xsxsD-1 [ D-lxS ] 
s 

= ~~~~~~~~sy 

[J ]~~-1 

By definition, 

Yk, t Yk, t - Y'Xk,t, 

4 =Zs xs- 

and thus 

nlZ[nr] f12Z[nr] - y )'DD1X 

=U(r) - [ux I[ xxj X(r) :=U(r). 

Proof of Theorem 12. Because 

Yk*, t- 1 Uk, t Y,(Y^ Y)/)' (Xk, t Xk, t- 1 )Yk- 
k t k t 

a-1+ - 2+2 
E E (k, t-1) U (t )2 
k t k t 

and 

,(z1-11,\1)(vs/-n- - y)'D[n-llnD-1Axs* /i]1 
n(-1) = n- z*l/ 

we get 

fJd Ud-fux' Lf xx' ] fxo u 
n(- - 1) r 
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where Xo(r) = X'(r) = (0,1)' = PX(r) with 

P = I 0. 

Because 

fxoU= Pfxu=o, 

we obtain 

fUdU 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n (a-1 + - 

u2 

giving the stated result. U 

Proof of Theorem 13. By definition, 

-M m --1 M m 

A,CXk,t ACXkj, L1 E A,Xk,tAcYk,t 
-k=l t=l -k-1t=l 

M m -1 M m 

=PY+ L 
AcXk,tAcXk,t 

1 L 
AcXk,tUkt1| 

k=lt=l k=lt=l 

Thus, 

-17iN( -y) = 
EN AcXk,IAcx',tN ] E N AcXk,tUk,t 

Xc [x(r)Xc (r)' ]xc(r)dU(r), 

where 

N = diag[m-, M], X,(r) -c(1, r)'. 

Simply noting that X,(r) = -cX(r) gives the stated result for Y. 
Suppose that c < 0 and we estimate c by c = m(d - 1), as in Section 5. Then c - c + 

Op(M 1"2). If we apply QD detrending to model (14)-(16) based on c^, we get 

A Yk,Yt ' AXk,t + AcYk, t (A.35) 

The OLS estimator of y from (A.35) is 
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Notice that 

AYk, t = Uk, t- ( c)m Yk,t-I 

and 

-E N- AcXk, t A6 Yk*, t 

1 1~~~~~ 1 
N-~k tYk,t- 

I 
- , E N1AeXk,tUk,t-t (C) N7-E N2'Axk t 

- ,6 EN 'AeXk,tUk,t + Op(M 1/2 

where 

N1 = diag[l,M], N2= diag[m ,1], N=N1N2. 

It can be verified that the error terms coming from the preliminary estimation of c are of 
smaller order of magnitude and 

\fiN(jf - 7) > [fXc(r)Xc(r)' 1 fXc(r)dU(r). 

The limiting distribution of the trend coefficient vector Yf is then the same as that of , 

the estimator using the true local parameter. X 
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