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This paper studies the asymptotic properties of a nonstationary partially linear 
regression model. In particular, we allow for covariates to enter the unit root (or 
near unit root) model in a nonparametric fashion, so that our model is an exten- 
sion of the semiparametric model analyzed in Robinson (1988, Econormetrica 56, 
931-954). It is proved that the autoregressive parameter can be estimated at rate 
N even though part of the model is estimated nonparametrically. Unit root tests 
based on the semiparametric estimate of the autoregressive parameter have a lim- 
iting distribution that is a mixture of a standard normal and the Dickey-Fuller 
distribution. A Monte Carlo experiment is conducted to evaluate the performance 
of the tests for various linear and nonlinear specifications. 

1. INTRODUCTION 

In recent years, statistical models incorporating nonlinearity have received 
increased attention in econometrics. One type of these models is the following 
partially linear regression: 

Yy = Y'Zt + g(xt) + e, t=1,...,N, (1.1) 

where g(-) is an unknown real function and y is the vector of unknown param- 
eters that we want to estimate. This type of specification arises when the pri- 
mary interest is in the parameter y, whereas the relation of the mean response 
to additional variables xt is not easily parameterized. Such a strategy provides 
an intermediate class of models that are more flexible than standard linear regres- 
sion, with the potential for greater precision than purely nonparametric models. 

There is a large literature in econometrics and statistics on the study of par- 
tially linear models. Wahba (1986), Engle, Granger, Rice, and Weiss (1986), 
and many others studied the penalized least squares method in partially linear 
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regression estimation. Heckman (1986), Chen (1988), Rice (1986), and Speck- 
man (1988) studied VN-consistency of y under different assumptions and 
using various methods. Using higher order Nadaraya-Watson kernel esti- 
mates to eliminate the unknown function, Robinson (1988) introduced a feasi- 
ble least squares estimator for y. Under regularity and smoothness conditions, 
'fN-consistency and asymptotic normality are obtained. Robinson also showed 
that when the errors are independently and identically distributed (i.i.d.) nor- 
mal, this estimator achieves the semiparametric information bound. A higher 
order asymptotic analysis of the partially linear regression estimators is given 
by Linton (1995). Fan, Li, and Stengos (1995) extended the \IK-consistency 
and asymptotic normality results for partially linear models with conditionally 
heteroskedastic disturbances. In time series, Fan and Li (1999) established these 
results for models with weakly dependent process x,. For other work on par- 
tially linear regression models, see Chen (1988), Shiller (1984), and Schick 
(1986), among others. However, all of the previous studies have been focused 
on either i.i.d. or stationary cases, and, to our knowledge, there has been no 
study in the existing literature on nonstationary partially linear models. The 
current paper attempts to provide a first step toward investigation of such mod- 
els. In particular, we consider a partially linear model with a unit root. 

Unit root models have been an important subject in econometric analysis 
and have attracted a large amount of research effort in the last 15 years. Test- 
ing for the presence of unit roots is now a common practice in applied macro- 
economics. Although the unit root hypothesis has been tested in hundreds of 
time series, it is well known that the discriminatory power of unit root tests is 
generally low. As a result, increasing power in unit root tests has become an 
important research topic. There has been a branch of unit root literature that 
uses various features of the time series data to increase power in recent years. 
For example, Hansen (1995) shows that inclusion of stationary covariates can 
generate more precise estimates of the autoregressive parameter, translating into 
higher power for unit root tests. Lucas (1995) uses M-estimators to take advan- 
tage of non-Gaussian errors in unit root tests. His results show that power gains 
are possible, even if the M-estimator does not coincide with the true likelihood. 
Elliot, Rothenberg, and Stock (1996) propose an estimation strategy that focuses 
on estimating potential trends under the local alternative hypothesis to effec- 
tively reach the Gaussian power envelope for unit root tests. Using rank-based 
tests, Hasan and Koenker (1997) are also able to realize increased power under 
certain error distributions while experiencing a small loss in power if the errors 
are actually Gaussian. Seo (1999) simultaneously estimates generalized auto- 
regressive conditional heteroskedasticity (GARCH) effects along with the auto- 
regressive coefficients to increase power. Shin and So (1999) and Beelders (1999) 
use adaptive estimation to nonparametrically estimate the density of errors, and 
again obtain large power gains, particularly if the error terms are heavy-tailed. 
In the current paper, we propose a partially linear unit root model to improve 
the power of unit root tests. 
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Although many observed time series seem to display nonstationary charac- 
teristics, nonlinearity also seems to be an important feature in a range of appli- 
cations. In fact, a lot of economic models do contain nonlinear elements (see, 
e.g., among others, Tong, 1990; Granger and Terasvirta, 1993; Granger, 1995). 
For this and other reasons, one of the directions in which the subject is pres- 
ently moving is the study of nonstationary models with nonlinearity. In partic- 
ular, to treat potential nonlinearities, Phillips and Park (1998) studied nonlinear 
autoregressive models and showed that the nonparametric estimator of the auto- 
regressive function converges at rate N'14 in the unit root case. 

In this paper, we consider a partially linear autoregression with nonstationarity: 

p 

Yt= Yt- + + i Ayt-i + g(xt) + Et, 
j=1 

where 8 is close to zero and x, is a vector of stationary covariates. When 8 is 
exactly zero, Yt follows a unit root process. Otherwise, it is characterized as a 
near unit root process. In this model, our primary interest is still the estimation 
and test of the parameter 8, but we allow for an unknown nonlinear function of 
covariates, g(xt), to influence the time series. The model can be viewed as a 
semiparametric extension of the covariate augmented Dickey-Fuller (CADF) 
regression of Hansen (1995). In allowing such a general structure, we hope to 
improve the efficiency in estimating the autoregressive (AR) parameter and fur- 
ther increase the power gains of unit root tests from using covariates, particu- 
larly if there is a nonlinear relationship with the chosen covariate. Because the 
form of the nonlinearity is unknown, we estimate this part of the model non- 
parametrically while modeling the autoregressive component linearly. The moti- 
vation stems from the fact that we are adding variables to the model with the 
hope that they may explain some of the variation in Yt. In this exercise, we 
have little information about the influence of series xt on Yt so it is natural to 
refrain from taking a stand on the functional form for g(xt). As we illustrate in 
the paper, the power loss associated with nonparametrically estimating the func- 
tion g(xt) (relative to a correct specification) is small, yet the power gain from 
nonparametric estimation relative to an incorrect specification is quite large. 

The proposed estimation strategy parallels that of Robinson (1988). How- 
ever, the technical issues addressed here are different than those treated in the 
stationary case. In particular, we must bound the average of the difference 
between an integrated variable and its local average over the x values. More- 
over, we must show that functions of the local average converge to known (non- 
standard) distributions. 

There are several findings in this paper. First, by using the compromise of a 
partially linear model, the convergence for the autoregressive component remains 
at rate N. This is an important extension of the result of Robinson (1988) to the 
nonstationary case. In addition, asymptotic distributions of partially linear esti- 
mates of 8 and its modified t-statistic are derived. The limiting distribution of 
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the resulting unit root test is identical to the distribution found in Hansen (1995), 
where covariates are used in a linear fashion. A limited Monte Carlo experi- 
ment reveals that there is little loss in using our more general test statistic when 
covariates enter the model linearly or not at all, and the power gains from using 
our partially linear model when there are nonlinear effects are substantial. Finally, 
in the course of proving our theorem, we show that, in the density-weighted 
regression, nonparametrically regressing an I(1) series on an I(0) series is asymp- 
totically equivalent to an ordinary least squares (OLS) regression of the I(1) 
series on a constant. 

The outline of the paper is as follows. In Section 2, we develop the model 
and provide a brief description of the estimation procedure. Section 3 provides 
the assumptions and asymptotic distribution of the estimator and the test statis- 
tic. Extensions to the case with weakly dependent covariates are discussed in 
Section 4. Section 5 reports some Monte Carlo results, and Section 6 applies 
the proposed tests to U.S. monthly macroeconomic time series. Notation is stan- 
dard with weak convergence denoted by =* and convergence in probability by 
4. Hadamard multiplication is indicated by the symbol 0. Integrals with respect 

to Lebesgue measure such as fo4 W(s) ds are usually written as fo W, or simply 
f W when there is no ambiguity over limits. All limits in the paper are taken as 
the sample size N -e oo, except as otherwise noted. 

2. THE MODEL AND THE ESTIMATOR 

We begin with the following time series model: 

p 

AYt = /L + 6Yt-I + jAYt-j +vt (2.1) 
j=1 

and denote the pth order polynomial H(L) = (1 - TI L - *-. - iLP). It is 
assumed that all roots of 11(L) lie outside the unit circle. We are interested in 
the case where the largest autoregressive root of Yt is close to unity. Thus we 
focus our discussion on the case where 8 is close to zero and assume for sim- 
plicity of exposition that yo = 0. Our primary interest is the estimation and tests 
on 8. We consider the model that contains a unit root under the null hypothesis 
Ho: 8 = 0 and allows for local departures from the hypothesis by setting 8 = 

-cfl (I)/N as the alternative. 
As argued in Hansen (1995), utilizing useful information contained in related 

time series can bring substantial power gain to the estimation and tests in unit 
root models. We assume that there are q additional stationary covariates, xt, 
that help explain vt, so that 

Vt = [ g (xt) - -] + Et, (2.2) 
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where g: Rq -> R and E(g(x,)) = p. For identification reasons, we absorb the 
"intercept" term into the nonlinear function g(xt); see the further discussion on 
this issue at the end of this section. Combining (2.1) and (2.2) gives 

p 

AYt =Yt-I + E Xj AYt-j + (Xt) + st (2.3) 
j=1 

Regression (2.3) would be used to test the unit root hypothesis against the alter- 
native of stationarity around a fixed mean. 

Another important model in the unit root literature is the case where the time 
series Yt contains a linear time trend t.1 In this case, we add a linear time trend 
in the regression and consider 

p 

AYt = 8Yt-I + Ot + E Tj AYt-j + (Xt) + st, (2.4) 
j=1 

where t is a simple time trend. In practice, (2.4) would be used to test if a 
series has a unit root with a drift versus (linear) trend stationarity. 

In this paper, we consider unit root tests based on partial linear regressions 
(2.3) and (2.4). We introduce the following notation: let Zt be the vector of 
(linear) regressors and y be the vector of unknown parameters associated 
with these regressors. Thus, corresponding to regression (2.3), Zt = (yt-i, 
AYt-I,...,AYt-p)', -y = (6, ITI...7lT-p)T; and corresponding to regression (2.4), 
Zt = (Yt- , t, AYt-I,II*,AYt-p) T, = (8,O, ITI...,iTp)T. Consequently, ourregres- 
sion models can be rewritten in the following general format of a partially 
linear regression: 

AYt = yzt + g(xt) + Et. (2.5) 

Conditional on the covariates xt, one gets 

E(Ay, Ixt) = y'E(z I xt) + g(xt). 

Taking the difference of the preceding two equations leads to 

AYt - E(Ayt xt) = '[zt- E(zt xt)] + et. 

If the conditional expectations were known, regressing Ayt - E(Ayt xt) on zt - 

E(zt xt) would give us an estimate of y. However, the quantities E(AytI x,) and 
E(ztlxt) are unknown. Thus, we consider the following procedure that esti- 
mates /3, and thus 8, by two steps. First, regress AYt and zt nonparametrically 
on xt and denote the nonparametric regression residuals as edt and ezt' respec- 
tively. Next, regress the residuals edt on ezt by least squares to get an estimate 
of y. 

The nonparametric estimation uses a Nadaraya-Watson kernel estimator that 
we illustrate subsequently. Let k(u) be the univariate kernel and denote K(u) = 

lr= I k(u,) if u is q-dimensional. In addition, let 
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Kt - xj 

where a is a bandwidth parameter. Let f (x) be the density of x, and denote 
f (xt) as ft; then we have 

N 

g=Na4 q Kj:ti 
E(Y ' Na q ft 

N 

_E Kt EzK 
A j~* (=yjx) t 

E(zt Ix) = q f/ 

and the nonparametric regression residuals are 

edt = xtY-.(AylXt) and ezt - tZ ) I X). 

The vector and matrix of these residuals are denoted ed and e4, respectively. 
Next, we estimate y by regressing ed on ez. The preceding kernel regression 

necessarily involves a random denominator, a problem we circumvent by using 
a density-weighted estimate as in Powell, Stock, and Stoker (1989) and Fan 
and Li (1999). Thus, we regress ed on ez using OLS and incorporating the den- 
sity weighting. Thus, we have 

^ = ((e Of)T(e Of )( Of)T(ed(i) (2.6) 

where 0 denotes the Hadamard product and f is the vector of the estimated 
density evaluated at each xt. 

Notice that by the nature of the semiparametric partially linear regression, 
an intercept term is not identified unless the model is further restricted. Conse- 
quently, the estimation of 8 on the model with no constant term is the same as 
with a constant term. The apparent lack of identification arises because we have 
already implicitly estimated an intercept in the nonparametric regression, and 
no such effect remains. As argued by Robinson (1988), the fact that one cannot 
separate these cases is less a drawback than a consequence of the generality of 
the semiparametric model. Furthermore, in practice one would at least estimate 
an intercept even in the simplest unit root test and even if an intercept is not 
present under the null hypothesis.2 

3. MAIN RESULTS 

We derive the asymptotic properties of the proposed partially linear regression 
estimation in this section. Our attention is focused on the case where the auto- 
regressive root is close to unity, and we consider statistical tests for the null 
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hypothesis of a unit root. For purposes of determining asymptotic distributions, 
we use local to unity asymptotics (Phillips, 1987; Chan and Wei, 1987) so that 
8 = -cH (1)/N. Under the null hypothesis of a unit root, c = 0, whereas under 
c # 0, the alternative hypothesis becomes increasingly difficult to detect as the 
sample size increases. We assume that the system is initialized by setting 
yo = 0 (or, more generally, any random variable with finite variance). We fol- 
low convention and denote WC(r) as the solution to the stochastic differential 
equation 

dWc(r) = -cWc(r) + dW(r), 

where W(r) is a continuous stochastic process. When W(r) is a Brownian 
motion, WC(r) is the conventional Ornstein-Uhlenbeck process. 

Following Hansen (1995), we define 

orvf =Cov(vt,ef2), (V2 = Var(v2), 2}= E(E27f4), 

2 

and p 2 2 2- 
?V Cef 

We establish the N-consistency and derive the limiting distribution of the par- 
tially linear regression estimator 8 under conditions similar to those used in 
Robinson (1988) and Fan and Li (1999). We will use the definitions for the 
class of kernel functions of order 1, /C1, and the class of regression functions !9 
as defined in Robinson (1988, pp. 937, 939). In particular, IC, characterizes the 
class of lth order kernels and g' imposes moment and smoothness conditions 
for the nonlinear function and the density of the covariate. We also assume the 
following assumptions to facilitate the asymptotic analysis. 

Assumptions. (Al) {xt} is i.i.d.; (A2) Et is i.i.d. with mean zero and is 
independent with x, E I 14 < X; (A3) x has probability density function (p.d.f.) 
f E g5, for some A > 0; (A4) g E 54, for some v > 0; (A5) as N -* oo, 
N-la - 0 N, Ja2min(A "v) -+ 0; (A6) k E IC1+n - for integers 1 and n such 
that 1 - 1 < A ' 1, n - 1 < v ? n; (A7) o]v2 > 0 and p2 > 0; (A8) 8 = 

-cfl (I)/N. 

Initially, we assume that {xt} and {Is} are i.i.d. for simplicity. We discuss 
extensions to more general cases in the following section. The following lemma 
provides an important and interesting result regarding nonparametric regres- 
sion of I(1) on I(0) processes. The proof of Lemma 3.1 also plays an important 
role in the proof of our main result. 

LEMMA 3.1. Under Assumptions AJ-A8, for any t = 2, .. ., N, 

1 
0 (1) 
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where =(1/N) t=I Yt and 

N 

E KtjYi-l 
j= ljot 

Yt- I Na q Yt-i 
~~~~ft 

The preceding result indicates that, in our density-weighted regression, if one 
nonparametrically regresses Yt- 1 on (stationary) xt, the predicted value behaves 
asymptotically as if we used the sample mean. The asymptotic distribution of 
the semiparametric partially linear regression estimator 6 is summarized in the 
following theorem. 

THEOREM 3.2. Under Assumptions A]-A8, 

N(S - ) * 1-(1) 'Et ((V1c) 2) 

x (pfTdWi + PIp2fVdW2), (3.1) 

where W2 and W1 are independent standard Brownian motions, WLc = Wlc(r) - 
fWlf(s) ds for model (2.3), and WLc = Wlc(r) + (6r - 4)f Wlc(s) ds - 

(12r - 6) fWlc (s)s ds for model (2.4) (with 0 = 0). 

The limiting distribution given in Theorem 3.2 is similar to Theorem 2 in 
Hansen (1995). To test the unit root hypothesis and apply the critical values in 
Hansen (1995), we construct a modified t-ratio. To this end, we denote t*(8) as 

(ff2S t * 0) sll 

where S 1 is the first entry of the matrix 

( ( Z f ) ( Z f 2 )f) 

and the terms &e and E(f2) are consistent estimators for o-ef and E f2). The 
consistent estimators are presented later in this section. The following theorem 
provides the limiting distribution of our modified t-ratio. 

THEOREM 3.3. Under Assumptions Al-A7, the t-statistic based on 8 has 
limiting distribution 

cE(f2) r wc\1/2 /(VI\) r1/2 
+*J )) + yJ(wp)) (3.dW2 

+ ~1- p~2N(0, 1), (3.2) 
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where the N(, 1) variable is independent of W1 and WiY(r) is defined as in 
Theorem 3.2. In particular, under the null hypothesis of a unit root, 

t *(G) (f(Wi ) 2)(pfi ,ddWI) + i-p2N(0, 1). 

The limiting distribution in Theorem 3.3 is identical to that in Hansen (1995) 
and very similar to other distributions appearing in various related unit root 
tests. In particular, nearly identical limiting distributions arise in Hasan and 
Koenker (1997) for their unmodified statistic ST based on ranks, in Lucas (1995) 
for unit root tests based on M-estimators, and in Seo (1999) for unit root tests 
allowing for GARCH effects. Beelders (1999) and Shin and So (1999) also 
obtained the same limiting distribution for unit root tests when adaptive esti- 
mation was employed. 

The distribution has the disadvantage that p is a remaining nuisance param- 
eter. There have been various approaches for dealing with the nuisance param- 
eter p, ranging from simulating critical values for each value of the parameter 
to using conservative critical values to cover the range of possible p. We must 
estimate p in addition to the other parameters used to construct the modified 
t-ratio. Consider the following consistent estimate of E( f 2): 

l N 

E(f2)=- Ef2. 
N t=j 

We estimate vt by the residual from an OLS regression of Ay, on zt, and we 
estimate etft by Jtft where 

et edt -P ezt 

The estimates vft and ?tft2 can then be used to obtain a consistent estimate of p 
as in Hansen (1995). Finally, with the estimated value of p in hand, we com- 
pare t*(8) to the critical values in Table 1 of Hansen (1995). 

4. EXTENSIONS 

In this section, we list several possible extensions to our simple model. In the 
previous section we assumed that the covariates xt are i.i.d. This assumption 
substantially simplifies the proof. However, xt is not i.i.d. in most empirical 
settings, and it is desirable to extend our results to allow for some dependence 
in xt. In stationary partially linear models, Fan and Li (1999) show that one 
can obtain the usual \IH convergence rate when the data are absolutely regular. 
Using the approach of Fan and Li (1999) to deal with the correlation in xt, our 
analysis can be extended to the case with weakly dependent covariates. 

We modify Assumption Al to Al' to allow for weak dependence in xt. 
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Assumption Al'. {x,} is a stationary absolutely regular process with coeffi- 
cient A3j satisfying /381(1+8) = Q(j2e) for some 0 < e < 1, 0 < < 2. 

Assumption Al' assumes that {x,} is absolutely regular with some restric- 
tions on the decay rate of the mixing coefficient so that summations such as 
E]2 1 j2,/8 /(1 +8) < o?. Many well-known time series, including stationary auto- 
regressive moving average (ARMA) processes (Pham and Tran, 1985), are abso- 
lutely regular with geometric decay rates and thus satisfy Assumption Al'. See 
Fan and Li (1999) for more discussion on this type of assumption and related 
references. Assuming that the stationary covariate is /8-mixing and using results 
of Yoshihara (1976) for ,/-mixing processes, we can extend the results in Sec- 
tion 3 to the case with weakly dependent covariates. 

THEOREM 4.1. Under Assumptions Al' and A2-A7, the partial linear re- 
gression estimator 8 has the same limiting distributions as that of (3.1) in 
Theorem 3.2. 

The preceding extension requires careful treatment of the nonstationarity intro- 
duced to the partially linear model framework as we have presented it. The 
mathematical complexity of the proofs is greatly increased in the presence of 
nonstationarity and nonparametric characteristics. For a sketch of a proof for 
this extension, the readers are referred to Appendix D (available from the authors 
upon request). 

If one allows for dependence in xt, as would be expected in most applica- 
tions, the estimation of p is based on a long-run variance estimator. That is, we 
use the analogue of equation (17) in Hansen (1995) given by 

(- 2r j=-)T+l T * it (fV 

where w(.) is a kernel function and bT is a bandwidth parameter. The param- 
eter p is estimated using these long-run variance estimates. 

The assumption about the errors may also be relaxed to the case that Et is a 
martingale difference sequence and allow for conditional heteroskedasticity as 
in Fan et al. (1995) and Fan and Li (1999). The condition proposed in Fan and 
Li (1999) is E(etIxt, Yt-i, St-l) = 0, where Ft-I is the sigma algebra generated 
by all past Yt- 1 and xt_ 1. This condition is much weaker than independence of 
xt and Et, and it allows for heteroskedasticty in addition to GARCH-type effects. 
We conjecture that our results still hold in the presence of this condition, and 
we investigate these extensions in Monte Carlo experiments in the next section. 

5. MONTE CARLO 

In this section, a small simulation study is conducted to examine the finite- 
sample performance of the nonstationary partially linear estimation and the 



PARTIALLY LINEAR MODELS WITH UNIT ROOTS 887 

associated unit root test. We consider several specifications of g(x), both linear 
and nonlinear, to compare the standard Dickey-Fuller test, the CADF test of 
Hansen (1995), and the new test t*(S) using the partially linear model, which 
we denote as partially linear model unit root (PLMUR). The data generating 
process is 

AYt = 16Yt- I + gj (Xt) + et, j=1, . .. ,5. 

The different functions are listed here: 

gl(x) = 0; g2(x)= 2x; g3(X)= 2xlX2; 

g4(X) = x21; g5(X) = X3-X. 

The x variables are all standard normal. When gl(x) is used, we expect the 
Dickey-Fuller test to perform the best as there is no x effect to detect. The 
function g2(x) gives the CADF test of Hansen the advantage because the covari- 
ates enter linearly. We include g3(X) for the purpose of checking the ability of 
the PLMUR test to use multiple covariates. As shown in the Monte Carlo exper- 
iment of Robinson (1988), the nonparametric estimates Ay and y are likely to 
worsen as the dimension of x increases. In addition, it is easy to check that the 
OLS coefficients on xl and x2 will converge to zero so that the CADF test 
should have similar performance to the Dickey-Fuller test for g3(x). The other 
specifications are also nonlinear, so the PLMUR tests should be more powerful 
if the nonlinearity is estimated reasonably. 

Given a density associated with x, smaller values of p are indicative of the 
effectiveness of covariates in explaining variation in Vt = g(xt) + Et. There- 
fore, we expect more powerful tests if p is small. Straightforward calculations 
show that 

2 2 2 2 1 1 1 1 
b2pi=1; b2p2= -; b2p3=-; b2p4=-; b2p5 

5 5 3 1 

where pJ2 is associated with gj(x) and b2 = E(f4)/(E(f2))2. 
For the PLMUR test, we need to select a kernel and a bandwidth. In our 

experiment, we chose a Gaussian kernel. The bandwidth is set to N-115 for all 
experiments. 

The PLMUR test and the CADF test both require estimates of p. We com- 
pute these using the residuals from each of the regressions and then use the 
resulting estimate to select a critical value from Table 1 in Hansen (1995). We 
explore size and power by changing the value of c in 8 = - (c/N). For each 
specification, we generate samples of size 100 and compute 10,000 replica- 
tions for models (2.3) and (2.4).3 The numerical results for size appear in Table 1, 
and we provide graphs of the power functions in Figures 1-3. In particular, 
Figures 1-3 correspond to gl, g2, and g5. The results for g3 and g4 are similar 
to g5 and are omitted to conserve space. 
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TABLE 1. Size 

Model (2.3) Model (2.4) 

DF CADF PLMUR DF CADF PLMUR 

g1 0.05 0.05 0.06 0.06 0.06 0.05 
g2 0.05 0.05 0.04 0.05 0.05 0.04 

c = 0 g3 0.05 0.05 0.05 0.05 0.05 0.04 
g4 0.05 0.05 0.04 0.05 0.05 0.04 
g5 0.05 0.05 0.04 0.05 0.05 0.03 

For c = 0, we have a unit root, and we compare the size for each of the tests. 
All three tests have reasonable size for all of the specifications, with no test 
being severely oversized. The size result for the PLMUR test indicates that the 
asymptotic theory provides an accurate approximation for the distribution of 
the statistic. This is remarkable given the choice of the same bandwidth for all 
of the widely different choices of g(x). 

For c 0 0, the departure from the unit root becomes apparent in the increased 
rejection frequencies. For gl(x) (Figure 1), the power of the CADF test is very 

0.6 - 

IPL PLMURI 
CADF 
OF 

0.4 - 

a. 

0.2 - 

0.0 - 

0 5 10 15 
c 

FIGURE 1. g1(X) = 0. 
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close to the Dickey-Fuller test for the range of local alternatives considered. 
However, the PLMUR test is not as powerful as either the Dickey-Fuller or the 
CADF test when there is no covariate effect. For g2 (Figure 2), the linear effect, 
the PLMUR test competes favorably with the CADF test, suggesting that when 
there is a linear effect, the loss in using the more general PLMUR test is small. 
The advantage of the PLMUR test becomes apparent when g5 (Figure 3) is 
considered. As expected, the covariate is successfully used to reduce the vari- 
ance of the estimator of 8. Using the cubic function, power is again much higher 
than the competing tests. The CADF test has more power than the Dickey- 
Fuller because using x linearly does help explain some of the variance of v, so 
that 8 is estimated with more precision. Simple calculations show that the esti- 
mated linear regression coefficient should converge to 2 so that the estimated 
value of p converges to j7. In all cases where covariates are correctly chosen, 
both the CADF and the PLMUR test dominate the standard Dickey-Fuller tests. 
In all cases where there is a nonlinear effect, the PLMUR test is the most pow- 
erful, with power increasing as p decreases. 

The preceding experiments were all conducted using i.i.d. x, and et. We relax 
these conditions and explore the effects on the PLMUR test. In all additional 
cases, we explore the function g4. First, we consider the effects of dependence 
in x, by employing the data generating process 

xt = 0.7xt- I + et, (5.1) 

where et is i.i.d. N(O, 1). In addition, we generate heteroskedasticity in et accord- 
ing to the following process: 

et = UIXtI, 

where ut is i.i.d. N(O, 1) and xt is generated according to (5.1). This implies 
that E(e2 xX) = x2 so that there is heteroskedasticity in addition to dependence 
in xt. Finally, we combine dependence in xt (via (5.1)) with ARCH(1) errors 
given by 

et = Ut(l + O.5e21)1/, 

where ut is again i.i.d. N(O,1) so that E(E e21) = 1 + O.5e21. 
For each of the final three experiments, we allow dependence in xt. As men- 

tioned in the previous section, dependence in x, causes dependence in vt so that 
we must use a long-run variance to estimate the parameters orv and oUef. We 
employ a kernel-based estimator using a quadratic spectral kernel and the data- 
dependent bandwidth of Andrews (1991) applied to the series vt. We present 
the output in Table 2. We denote the data generating processes as heteroskedas- 
ticity (HET), dependent (DEP), and autoregressive conditional heteroskedastic- 
ity (ARCH). We also list the size-adjusted power for each test in Table 2. We 
see that power is still higher for the PLMUR test in all cases. However, power 
for the PLMUR test varies slightly for the different data generating processes. 
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TABLE 2. Size and size-adjusted power for g4 

HET DEP ARCH 

c DF CADF PLMUR DF CADF PLMUR DF CADF PLMUR 

0 0.02 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 
3 0.02 0.05 0.96 0.02 0.05 0.84 0.03 0.05 0.68 
6 0.02 0.08 1.00 0.02 0.08 0.99 0.03 0.09 0.94 
9 0.04 0.16 1.00 0.03 0.14 0.99 0.05 0.16 0.99 

12 0.07 0.24 1.00 0.06 0.21 1.00 0.09 0.23 1.00 
15 0.13 0.35 1.00 0.10 0.30 1.00 0.15 0.34 1.00 

The main reason this is true is that given the new data generating processes, the 
value of p varies. As noted before, the lower the value of p, the higher the power. 

The results of the experiment indicate that power is indeed higher for the 
PLMUR test when there are nonlinear effects in the covariates. Moreover, the 
presence of heteroskedasticity, dependence in x,, and ARCH effects do not alter 
the size of the tests. 

6. EMPIRICAL ILLUSTRATION 

In this section, we demonstrate the use of PLMUR tests using monthly data for 
the United States from January 1970 to January 2001. The series of interest are 
the unemployment rate and total capacity utilization.4 As a preliminary analy- 
sis, we conduct a simple unit root test on the unemployment rate and include a 
constant and trend in the regression. We include four lags of Ay, where the 
number of lags was determined by the modified Akaike information criterion 
(AIC) criterion of Ng and Perron (2001). The Dickey-Fuller t-statistic is -2.86, 
which is not significant at the 10% level. Hence, we fail to reject the unit root 
hypothesis. Using the preceding notation, the unemployment rate is denoted Yt, 
and we take the lag of the first difference of total capacity utilization as x,. The 
model of interest is 

AYt = 9t +y't-l + Y1 AYt-I + Y24t-2 + Y3AYt-3 + Y4AYt-4 + 9(Xt) + Et 

For comparison purposes, we also calculate the CADF test of Hansen (1995), 
which assumes that g(xt) is a linear function. The estimated value of p2 for the 
CADF is 0.71, so that the appropriate conservative critical values at the 10% 
and 5% levels are -2.97 and -3.27, respectively. The CADF t-statistic for 
unemployment using the lag of the first difference of total capacity utilization 
as a covariate is -2.39, so we again fail to reject the null hypothesis of a unit 
root. The PLMUR test uses a nonparametric estimate of g(xt), so the estimate 
of 8 is semiparametric. We calculate the PLMUR test using three different 
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FIGURE 4. Estimated g(x,) for unemployment. 

choices of bandwidth parameter a, with a = dN-115 with d = 1,2,3. The tests 
and estimated p parameters associated with each bandwidth are then indexed 
by d. The corresponding estimates of p are 'I = 0.23, '2 = 0.29, and p3 = 

0.38. These estimates suggest that the parameter 8 will be estimated with 
increased precision, allowing for more powerful testing of the unit root hy- 
pothesis. The test statistics are PLMUR, = -3.22, PLMUR2 = -3.11, and 
PLMUR3 = -3.09. The 5% critical value associated with 'I and /2 is-2.73, 
and the 5% critical value for p3 iS -2.87. We see that in all cases the null 
hypothesis of a unit root is rejected. A graph of the estimated nonlinear func- 
tion g(x,) using a = 2 X N-115 is shown in Figure 4. This example illustrates 
how using a partially linear model with covariates can lead to a rejection of the 
unit root hypothesis when standard tests fail to reject. 

NOTES 

1. See, e.g., Hansen (1995) for alternative representations and more discussions on unit root 
models with a deterministic component. 

2. See Hamilton (1994, Ch. 17) for a discussion on inclusion of deterministic terms in tests for 
unit roots. The case with an estimated intercept when no intercept is present corresponds to case 2 
in Chapter 17 of Hamilton. 

3. The programs were written in Ox 2.0; see Doornik (1998). 
4. The series were extracted from the FRED II database at the St. Louis Federal Reserve. 
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APPENDIXES 

We define El(.) = E(* x1) and ExN(.) = E(.- IXN) where XN = (X1, X2, . . .,XN). Without 
loss of generality, we also assume that the initial value is yo = 0 and demonstrate the 
proofs for the demeaned case with c = 0 (unit root), other cases being similar (for some 
details of proofs and a discussion of the case with a deterministic trend, also see an 
early version of this paper, Juhl and Xiao, 2000). We give some useful propositions in 
Appendix A. Appendix B proves the main result using the results of Appendix A. Proofs 
of Lemma 3.1 and Propositions 1-14 are given in Appendix C. Appendix D (available 
from the authors upon request) extends the analysis to the weakly dependent covari- 
ate x,. We also define the following terms: 

N 
E Ktj Ayj-s 

j=1,jAt 
\Yt-s= Naq YtS 

-~~~~f 

N 
Ea Kti ei 

1 j=,Ket 

t Na q 

N 

E1 Ktj g(xj) 
j=l,j"=t 

9( t) Na q ft 

In addition, let e' be the vector of (et -t + g(xt) - g(xt)) and ey and eS be the vectors 
of residuals from nonparametrically regressing Yt-I and AY,-s on xt, respectively. 
Let B(L) = fl(L)-'; we have B(L) = B(l) + B*(L)(l - L) and Yt = y, + v -V* 

where Yt = B(l)l=ov1, v7 = B*(L)vt. Finally, define M = I - (es f ) x 

[(eS (f)i)T 0s ( i)] - 
I 

(e 0!) T 
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APPENDIX A: Useful Propositions 

PROPOSITION 1. For s = 1,.. .,p, 

N 

Yt- At- - )f2 = Op(N). 

PROPOSITION 2. 

(ef e)T(eS Of) = Op(N). 

PROPOSITION 3. 

N 

E (Ayt-s- AYt-s)(AYt-r - AYt-r)ft= Op(N). 
t=1 

PROPOSITION 4. 

(es ())( ! f ) = Op(N). 

PROPOSITION 5. 

(ey (f Tes Of [es Of Te (f ]les ()(ey 0f) =op(N2) 

PROPOSITION 6. 

es eV) (e Of) = op(N). 

PROPOSITION 7. 

(e (Df)T(e. O!)[(e- (Df)T(eS Of)(]-I(D O!)T(u (3f) = op(N). 
PROPOSITION 8. 

A f(*)f2 f (lwi (p fW,dW2), (A.1) 

where * = N- = t 

PROPOSITION 9. 

N 

- z( -Yt*-l ),Ef2- o 0 (A.2) 
Nt=l 

PROPOSITION 10. 

N 

~ (A - *)(* - A1 )f2 -4. N2 ya (Yt*- I- - Yt*- l tt ? 
Nt=l 

PROPOSITION 11. 

N 
( * _ yt)2g2 w n l ) -2E(( 2 ) Sv2f 

t A~- 5t- )t2= HYE (f 2)r]J (WI - W)2, (A.3) 
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where 

Naq (p:#P ) 

PROPOSITION 12. 

i N 

- 1:(Y I 51-)f -t 0. N t=1 (t-l t- ) tft 
0. 

PROPOSITION 13. 

i N 

- 1 (Y* Ix1)(g(Xt) g(xt))J2 2> 0. 

APPENDIX B: Proof of Theorem 3.2 

By definition 

= ((ey Gf)TM (D of))-1((- ! )TM( d Of)) 

= 8 + ((- o!)TM(eY ODf))-1((- Of)TM(e^ of)). 

Notice that 

(e- (D )TM(- G2)j) = (e Of)T (e Of) o f 
- (e C3) )T (e^ Df) )[(e^5 C f )T (e^ (D )] -l (D Of) T (e^ (D ); 

we have, by Proposition 5, 

(Y (D f ) TM(^ (Df) = (,) ) T (eY of) + o(N2). 

Similarly, notice that 

(e^y Oft)TM(ev (Of) = (e^O! P)T(e s (D f) 

- (^ of)T( (f) [(f^ of)T(e^ Of)] - (D )T(^ f). 

We obtain, by Proposition 7, 

(y O! )TM(eV O;3f ) = (ey O)T (e Of f ) + op(N). 

Thus, 

N(3 8) = (I ) )f)(e of)) (+ (i Of)T(e Of)) + o(l (). 
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Notice that Yt 
B(1)20=ov, 

+ v7 
-v 

= Y + v7 - v*; then 

tE (Yt t it l ~ i t t ? 0 tt[Pt o)f)t 
T (ytI ytX t+E(V- O a4(EKpV_ o)t) 

((Vt_ 1 +o)N4(EKP[p vL v- ]) /f -1) -p() 

N~~~ 

N N 

=N (t=1 Yt-1;ytt2e1s +O p#t)g(t / 

, t zY-- v)- ( a (KtpK[vp[* I )2 0() 

N N I Yt-- + /N I - (Xt))q t 0 

t=1 pot 

- '-i - t - r 0 + g(xt 

Nt=1 t= Na qa (po p 8-l 0] t ) e-t+g(t -(t)gt 

N 

+ t L it-v-Yt- l) (t-\ 0K Naq l *t] ) - + + (x). 

- 1~~~ - 0~)e f4+gx)-tx~)2+o() 
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The theorem holds because 

aE (Y-yt* I 1)2f2 >E(f2)2f (W1 - )2/rl(1)2 N 2 - 97-1)t2=~Ef2)0, 

by Proposition 11, and 

N 

- (y* I 1)(t + g(Xt )-(Xt))f2 o N t= 

by Propositions 12 and 13, and 

N O' O- N 
E 

(y,*-, Y - I 
'2 > () p IV'dWl + V-1dwp2 2 

by Proposition 8. U 

APPENDIX C: Proofs of Lemmas 
and Propositions 

Proof of Lemma 3.1. Using a BN (Beveridge and Nelson, 1981) decomposition for 
B(L) = Hl(L)-1 we have B(L) = B(1) + B*(L)(I - L), where B*(L) has all roots out- 
side the unit root circle; then 

t t 

Yt= Y B(L)vl = B(1) Y v1 + v* -v* 
1=0 1=0 

and 

I 
(Y- - I)t=8w(t- - y-),+ op(l). 

1N_ -)f' 
= N 

We next show that 

1 t- -Y *)i = 
op(l). 

Let 

A = E( - (5*-1 y*)2f2) = B(1)2E( (d + h- dt- - 2f2 
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where d, = el2OE1 and h,t Yt=og(x1), and we verify the order of magnitude of A. 
First, 

- (d - d 1)2) 

N 
= N-3a-2qE E Kt2 (d _d_1)2 

p*t 

+ N -3a-2qE I KtpKtP(d-dp_ )(d-dp _j) 
p#p'*t 

=A1 +A2- 

Using Cauchy-Schwarz, A1 = O(N-la) because E(d-dp = O(N) and E(K P)2 = 

O(a4) by a direct verification of moment. For A2, condition on XN = (XO, . . XN) so that 

A2 = N 3a (Ka2 Ktp,l , ExN(d-dp_1)(d-dp_1)) 
pop'*t/ 

From the identity E( $(d, - d ))2--0 we find that lj*,mt E(d - d- 11)( din) = 

O(N2), so A2 =O(N-1) because E(KtPKP/) =0(a = ) 

Next, 

E - (h -ht_ I t 

N 

= N-3a-2qE , K2p(h -hp-, )2 

p*i 

+ N -3a-2qEj KtpKrp(h-hp_j)(h-hpl_1) 
pop,#t 

=A3 +A4. 

Here A3 = 0(N -'a-) by the same argument used for A1. Now we consider the sum- 
mands in A4. First, 

E(KtpKtp h (N2 r 2)E(KtpKtp'g(XS)2) + (N- E)(KtKtp,g(X)2) 

(N -p)2 (N -p')2 
+ N 2P E(KtP K,P g(XP)2) + N 2 E(KtP KtpF g(XP ) 

2 

If p' < p and t < p, 

Ih = ( 1(N r))E(KtPKtPg(XS)2) + (N P ) E(K 
+ Nr=O E(KtPN 

+(N-t) EKK,gX)) + N pt 
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If p' > p, then the second term is not present in the preceding equation, and if t > p, the 
third term is zero. Similarly, if t < min(p - 1,p' - 1), 

E(Ktp Ktp, hp_ hp,)= min(p -1, p' - 1)E(Ktp Ktp, g(x)2) + E(Ktp Ktp, g(xt) 

Therefore, 

|A4 | N -3a -2qE(|KtPKtP, I g(xj)2 ) IA411 + C(Naq) lE(| Ktp Ktp, 
I 
g(xP)2), 

where 

N1 1 P-1 1 P- 

A41 = r - N r - (N-r)- - , (N-r) + min(p--1,p'-1)O. 
p*P, N\Nr== ON r= =ON r= / 

However, A41 is equivalent to the expectation we find in EE,Ep (h-hp- ) X 

(h - hp,-,), which is O(N2). The expression E(lKtpKtpI |g (X2) = Q(a2q) and 

E(IKtpKtpIg(Xp)2) = O(aq). Thus, we have IA41 = O(N-') + O(N-la-q). Using 
Cauchy-Schwarz, we can show that 

I ( dI - ht_l)ft2) = O(N-la-q) 

so that A = O(N- la-q) and N- 12( - = Op(Nl- /2a -q/2). 

Proof of Proposition 1. Notice that 

N 

(Yt- I -Yt-)t- I Ay t-s 
t=1 

N N t-( p-1 

=E (Naq)-2 1 Ktp E B(L)[g(xi) + ,e] - B(L)[g(xi) + Ei] 
t=1 pt i=K i=1 

/N 

X E Kt,K(B(L)[g(xt-,) + E, ]-B(L)[g(xr,s) + Ers])) 

N N t-1 oo p-I oo 

= (Naq)-2 E Ktp E E bl[g(xi-1) + Ei-l] - 'Y E bl[g(xi-1) + Ej-1]J 
t=1 p _t i=_ 1=0 i=I 1=0 

X Ktr E b,[g(xt-,-,) + et_s_j - : bv[g(xr-,-,) + Er-s-vJ 
rOt V=O v=O 

For the term 

N N 
t- 

I oo \ o \ 

, (Naq)-2 E Ktp E E bl g(xi-1)) Ktr E bv g(Xt-s-v)) 
t=1 p t i= 1=0 rt z=O 

N N N x oo t-I 

= E (Naq)-2 E E E > KtpKtrbib,g(xi-I)g(xt-s-), (C.1) 
t=1 p*t rt 1=0 P=O i= I 
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the second moment of (C.1) is 

(l\\4NN N N oo o t-I N N N m oo a-1 

NWa t= I pz#t r*t 1=0 v=O i= I a= I j:Aa k:fka/3=0 ,u=O T=I 

Ktp Ktr Kaj Kak blb bX b,, g(xi1g )g( X )g(X,-,3)9(Xa-,-u) 

whose leading term (when i = t - s + I - v and r = a - s + f3 - u) 

4N N N oo oo N N N oo oo 

Na t= 1 p=#t r:*t 1=0 v=O a=I j=Aa k#a ,/=0 ,u=O 

b, b, b1bfib Ktp Ktr Kaj Kkg(Xt_,S_)2g(xa-s-u) 

is of order O(N2) because Y1=E0 =ol= blb bb= 0(1) and 

E[Ktp Ktr Kj Kakg(xt--v )2g(xga-,-,)2] O(a4q). 

Thus, (C.1) is of order Op(N). By similar methods, we can verify that the remaining 
terms are Op(N). Consequently, ,t= I (Yt- I-Yt-y1) (Yt-s Ay)t-s is Op(N). 

Proof of Proposition 2. This is a direct result from Proposition 1. U 

Proof of Proposition 3. First we use the BN decomposition to write f'2. 1(Ayt_,- 
AYt-s)(L\Yt-r - AYt-r)ft into summation of the following terms: 

1 N oo oo N N 

P1 = N2a2q E E b, E bv E E KtpKtr'[g(Xt-s-l) -(Xp-s-1)] 
t= I 1=0 P=0 p*t r oIt 

X [g(Xt-r-,) -(Xr'-r-v)] 

1 N oo x N N 

P2 = N22q E E b, E b, E E KtpKtr'g(Xts-I) - g(Xp-s-1)][e6t-r-,-Er'-r-v a t= 1=0 v=0 p*t r'#t 

1 N oo oo N N 

P3 = N2a2q E b1 E b, E E KtpKtr'[Et-s - ep-s-1][g(Xt-r-,) - (Xr-r-v)]i 
t=l I=O v=0 p#t r'#t 

1 N oo co N N 

P4 = 
N2 a2q E b, E b, E E KtpKtr'[6t-s- -p-s-i][Et-r-v- Er'-r-v]. 

t=l 1=0 V==0 p*t r'*t 

Then, similarly to the proof of Proposition 1, we verify that all these terms are Op(N). 
. 

Proof of Proposition 4. This is a direct result from Proposition 3. U 

Proof of Proposition 5. This can be obtained by using the results of Propositions 2 
and 4. U 
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Proof of Proposition 6. Similarly to the proofs of Proposition 3, we write 

N 6 

2 (Ayt-s - AYt-S)(t- et + g(xt) - x = 
t=l I= 

where Q, - zN !2B(L)vt-SEt, Q2 = tKtB(L)v,_jEt, Q3 = 

Et= f, B(L)v t, Q4 = = Qf = t=f B(L) X 
Vt-s(g(Xt) - (x)) Q6 = pB(L)vps)(g(x) - (xt)). By 
straightforward but tedious moment verification, we can show that all of the preceding 
terms are of order op(N). U 

Proof of Proposition 7. The results can be obtained by the results of Propositions 2, 
4, and 6. U 

Proof of Proposition 8. We write N` t =(A- y*)Ef,2 into the summation of 
Cl + C2 + C3, where C1 = IN t= y*)E,ft2, C2 = tIN = (yt- y*) x 

et(ft-ft)ft, C3 = 1/NE, ' (y* t-y*)Et( J t)2* Notice that C1 converges to the 
expression given in (A.1) by Lemma 3 of Hansen (1995). We show that the remaining 
parts converge to zero in mean square. First, 

1 N 

EC22 = N2 E E (Yt*- 1-y*)2,E2( 2-ft) ft 

+ -2 B(1)2EE, 2 (dt_ - )d_- d)ete3( ft-fr)(tj-f1)fJt 
t*1~ ~ )2 

+ N2 B(1)2EE E (ht_ - h)(h11 - h)e,e,(f, -f,)Q -f1)f41 

E t~~~~~~~# 

+ N2 B(1)2EE (hyt -fh)(dj_ t -d)ete1(f.-f,)(j-f)fJt 

1 ) 

t:#j 
+ B B(1)2E Y, (ht_- I h)(hj- I-h),Etej f-g) (fj- fj)fttj 

= C21 + C22 + C23 + C24 + C25 

and C21 = O(a2A + N-'a-) because E(f1 ft)2 = O(a2A + N-'a-) from a direct 
calculation of expectation. The term C23 = 0 because E(se1e) = 0. Conditioning on XN 
gives 

C22 = N ( f(-f)(j -ft)fJ - (d,_ -d)(dj_ - 

The inner expectation is 0(N2) and E((ft -ft)(J)-fi)ftf4) = O(a2A + Nf a ) by 
Cauchy-Schwarz so that C23 = 0(a2A + N-'a-). Next, 

C24 = B(1)2E(y~ N2 z -h,_i)(ft-fI) %( I- d)tEj f( fj)ftfj )E 
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The inner expectation is zero so that C24 = 0 and C25 = 0. The proof of EC32 is similar 
except that we use E(gf -fi)4 = O(a4A + N-2a-2q). A 

Proof of Proposition 9. 

i N \2 N 4 
E N ( -Y = + E ( y*-lEt*1 ) 2 i2 4 

~~~~~~~~~ 2B(1)E Y (-t_ )(-h I ),E ft El t t t 

+2B h hj ft E E (d-dt- l ) (d-dj l)2 tej 

+ NB(1)2 E ,(hh_ )(-_ 2 ' 
2et, 

+ - B ( dt-d, 1 ) (d - dj 1 )f fi j5 

= 1 + 2 I D3 +2 D42+DS 

D5~~~~~~~ ~~~~ = eas E:(-#jl),e O o 3 

E(d-dt_1)(d-dj_l~~~~~~~ ~~~~~~~~~ dt hjft( -t-6: -) t 6 

NN 

D5= (Nbeaus )-Ex, (d-dt- K1(dp et )Ej 
= .Fo 3 

pot* + 

Taq)-2E (K ( 2E (d- d -)(d- d -)etEj )) 

p =,& P 0 t#j 

= a -2qE (Kip Kjp)D31 + a -2qE (Ktp Kjp+ )D3 + 

We find that 

D =2 
(N -t) (N-ij) +- 2 malx(t,j)2 _ 2 mtax(t'j) + 2 min(t j ) 

(N -max (t, j)) (N -min (t, j)) 2(N -max (t, j)) (N -max (t, j)) 

N 2 N 2 

+ 
tj 

N2 

After algebra, N jD32 = O(N-'), and similarly NK2 )D D31 
that D3 = O(N-1). m 
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Proof of Proposition 10. Notice that 

1 N 

N2E | ,(Y-- )(Y - t- )2| N 2 - 

1 N 1 - 

-N3/2 iE(yt 1- y*)2f2 - t 

by Cauchy-Schwarz. Because E(yt*_- = O(N) and E(1/N)(y-*- 57 = 

O(N-la-q), thus the right term is O(N-1/2a-q/2). 

Proof of Proposition 11. 

N t=1 N t=1 

N 

+ E (Y--Y 1-)2t2. 

The second and third terms on the right-hand side converge to zero by Propositions 10 
and a proof similar to that of Lemma 3.1. Using the method in the proof of Proposi- 
tion 8, the first term converges to the right-hand side of (A.3). U 

Proof of Proposition 12. 

i N i N i N 

- E ( - 57-1tt f 1 ) 2 = - ( Y- - )ft + - (Y t- 5 )* t) = F1 + F2. 

Note that E(27f2) = (N-'a-q) so that E(F2) = O(N-ia-2q) from Loeve's 

inequality. Now 

E(F2) = E (A I - Y*)2 2f4) 

(N2 E2 (Yt- I1- Y*) (YJ*- 1Y* )jf f22) 

= F,1 + F12; 

Fl = O(N-la-q) because E(y*1 - -*) = O(N). Consider the summands in F12. It is 
easy to verify that 

Y -1 Y*)(YJ-1- ?*)Ejf22 =(1)2 j2f2V2 

y ~ ~~~ B(1)E (et,tj ,t2s)Fl 

+ + 

+ B(l)E(~, tfj7 vj)F15 + o (1) 
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where s * t 0 j, s' # t /zj, and i f i f t 0 j. In addition, 

I t- 1j-i 1 N 

F = min(t - l,j - 1) - - ( (N - r) - - N r2r 1 3 
~Nr= N r= 0 N r=~O 

F14 =(N-t) (1- Nt -) N ) + (N-j) I-( N N 1) 

N 
- + min(t -1,j - 1), 
2 

F1 )(i (t-1)(N + 1) (j-1)(N + 1) + (N + 1)2 F -F 
2 2 4 

As a result of cancellations, we have 

2 zF13 = 0(1) - ,F14 = 0(1), E 2 2 15 O(N). 
N t:* N t:jN o 

Using f, = f, + (ft - ), it is easy to see that E(etejft J)2v) has the same order 
of magnitude as E(e' 'EftjfV v2) (which has only two summations), and it can 
be verified that E( tEjft fft fv = O(N-la). Similarly, E(et1jft J7v'vj) and 
E(Et j vi) have the same order of magnitudes as E(EtEftfjftfjvs'vj) and 

E(Etejft viIvi), respectively, and it can be verified that E(E = 

O(N-la) and E( tfi = O(N2a2) by Cauchy-SchwarzsothatFl2= 
O (N-'a-2q), and thus 

N 

NE (y* I 1*-)etft2 = 1p(-/2 -q). 

Proof of Proposition 13. Let 5 = min(A + 1, v). The proof follows Proposition 12. 

1 N i N 

- z (yt -I l 1)(g(Xt) - g(Xt))ft = - (y 7Y - y*)(g(Xt) -(Xt)) 

i N 

N-E (Y*-yt*- 1)(g(xt) -g(X))f2. N t=1 

However, we need to find the order of E(g(xt) - g(xt))2ft2 and 

E((g(xt) - g(xt))(g(xj) - ( t fi 

First, E (g (xt) t-g(xt))27 = O(N la + a2 ), from the proof of Proposition 1 in 
Robinson. Next, we again use ft = ft + (ft -ft) and that E((g(xt) - (xt)) (g(xj) - 

g(Xt))f2J 2Vj vi) has the same order of magnitude as 
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E((g(x) - -(x))f,(g(x )-g(xj))fiftfivi vi), 

which is O(N-2a-2q). Combining these results and using the proof of Proposition 12, 
we find 

i N 

- I (Y* I- -,1)(g(Xt)-g(X,)) '2 = O (N-1/2a-q + ac-(q/2)). 
Nt=1 
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