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Abstract

Using the first estimable dynamic programming model of retirement behavior that

accounts for both savings and uncertain medical expenses, we assess the importance of

employer-provided health insurance and Medicare in determining retirement behavior.

Including both of these features allows us to determine whether workers value employer-

provided health insurance because the subsidy contained in the insurance lowers their

average medical expenses, or because health insurance also reduces their medical expense

risk. Using data from the Health and Retirement Study, we find that the reduction in

expected medical expenses explains about 60% of a typical individual’s valuation of health

insurance, with the reduction in volatility explaining the remaining 40%. We find that

for workers whose insurance is tied to their job, shifting the Medicare eligibility age to

67 will significantly delay retirement. However, we find that the plan to shift the Social

Security normal retirement age to 67 will cause an even larger delay.
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1 Introduction

One of the most important social programs for the rapidly growing elderly population is

Medicare; in 2002, Medicare had 41 million beneficiaries and $266 billion of expenditures.1

Medicare provides health insurance to individuals that are 65 or older. Prior to receiving

Medicare, many individuals receive health insurance only if they continue to work. An im-

portant question, therefore, is whether Medicare significantly affects the labor supply of the

elderly, especially around age 65. This question is particularly important to those considering

changes to the Medicare eligibility age; the fiscal impact of such changes depends critically

on their labor supply effects.

Several studies have developed structural models that can be used for such policy ex-

periments. These studies of retirement behavior, however, have arrived at very different

conclusions about the importance of Medicare. The different conclusions seem to result from

differences in how the studies treat market incompleteness and uncertainty, which affect how

much individuals value Medicare. In this paper, we construct and estimate a structural retire-

ment model that includes not only medical expense risk and risk-reducing health insurance,

but also a saving decision that allows workers to self-insure through asset accumulation. In-

cluding both of these features—to our knowledge, ours is the first paper to do so—yields a

more general model that can reconcile the earlier results.2

Assuming that individuals value health insurance at the cost paid by employers, both

Lumsdaine et al. (1994) and Gustman and Steinmeier (1994) find that health insurance has

a small effect on retirement behavior. One possible reason for their results is that the average

employer contribution to health insurance is relatively modest—Gustman and Steinmeier

(1994) find that the average employer contribution to employee health insurance is about

$2,500 per year before age 65—and it declines by a relatively small amount after age 65.3 In

short, if health insurance is valued at the cost paid for by employers, the work disincentives

1Figures taken from 2003 Medicare Annual Report (The Boards of Trustees of the Hospital Insurance and
Supplementary Medical Insurance Trust Funds, 2003).

2van der Klaauw and Wolpin (2002) and Rust, et al. (2003) are currently engaged in similar projects.
3Data are from the 1977 NMES, adjusted to 1998 dollars with the medical component of the CPI.
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of Medicare are fairly small.

If individuals are risk-averse, however, and large out-of-pocket Medical costs are possible,

individuals could value health insurance well beyond the cost paid by employers. If individuals

are uninsured, they could face volatile medical expenses, which in turn could lead to volatile

life-cycle consumption paths. If individuals are risk-averse, they will value the consumption

smoothing that health insurance provides. Therefore, Medicare’s age-65 work disincentive

comes not only from the reduction in average medical costs paid by those without employer-

provided health insurance, but from also the reduction in the volatility of those costs.4

Addressing this point, Rust and Phelan (1997) estimate a dynamic programming model

that accounts explicitly for risk aversion and uncertainty about out-of-pocket medical ex-

penses. They find that because of health cost uncertainty, Medicare has large effects on

retirement behavior. Using newer and more inclusive data, Blau and Gilleskie (2003) find

similar, though smaller, effects. Rust and Phelan and Blau and Gilleskie, however, all assume

that an individual’s consumption equals his income net of out-of-pocket medical expenses. In

other words, these studies ignore an individual’s ability to self-insure against out-of-pocket

medical expenses through saving. Several empirical results suggest that savings might be

important. Smith (1999) finds that out-of-pocket medical expenses generate large declines

in wealth. Cochrane (1991) finds that short-term illnesses generate only small declines in

food consumption. To the extent that Rust and Phelan and Blau and Gilleskie overstate

the consumption volatility caused by out-of-pocket medical cost volatility, they overstate the

value of health insurance, and thus the effect of health insurance on retirement.

Lumsdaine et al. (1994) and Gustman and Steinmeier (1994) potentially underestimate

the effects of Medicare, while Rust and Phelan (1997) and Blau and Gilleskie (2003) poten-

tially overestimate it. A major goal of this paper, therefore, is to reconcile these results by

using a more general model of retirement behavior. In particular, we construct a life-cycle

model of labor supply that not only accounts for health cost uncertainty and health insurance,

4While individuals can usually buy private health insurance, high administrative costs and adverse selection
problems can make it prohibitively expensive. Moreover, private coverage often does not cover pre-existing
medical conditions, whereas employer-provided coverage typically does.
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but also has a savings decision. Moreover, we include the coverage provided by means-tested

social insurance, by assuming that the government guarantees each individual a minimum

level of consumption. All of this allows us to consider whether uncertainty and self-insurance

greatly affects the value of health insurance. We also model two other important sources of

retirement incentives, Social Security and private pensions, in some detail. Although Medi-

care, Social Security and pensions often generate contemporaneous incentives, our approach

allows us to disentangle their effects.

Estimating the model by the Method of Simulated Moments, we find that the model fits

the data well with reasonable parameter values. The model predicts that workers whose

health insurance is tied to their job leave the labor force about 0.47 years later than workers

whose coverage extends into retirement. This result, being consistent with several reduced-

form estimates, also supports the model.

Next, we measure the changes in labor supply induced by raising the Medicare eligibility

age to 67 and by raising the normal Social Security retirement age to 67. We find that

shifting the Medicare eligibility age to 67 will significantly increase the cumulative labor

force participation of workers whose insurance is tied to their job. We also find, however,

that the incremental effect of raising the Social Security retirement age is even bigger, even

for workers whose insurance is tied to their jobs. In order to understand why Social Security

is more important, we evaluate how much individuals value health insurance. We find that

around 60% of the value of health insurance comes from the reduction in average medical

expenses, with the remaining 40% coming from the reduction in medical expense uncertainty.

We then re-estimate the model with saving prohibited. We find that eliminating the ability

to self-insure through saving significantly increases the effects of Medicare and the value of

health insurance. We also find, however, that this restricted model provides a worse fit to

the data along several key dimensions. These results suggest that self-insurance significantly

reduces the effects of health cost uncertainty, so that the effects of Medicare are modest.

The rest of paper proceeds as follows. Section 2 develops our dynamic programming model

of retirement behavior. Section 3 describes how we estimate the model using the Method of
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Simulated Moments. Section 4 describes the Health and Retirement Study (HRS) data that

we use in our analysis. Section 5 presents life cycle profiles drawn from these data. Section 6

contains preference parameter estimates for the structural model and policy experiments. In

Section 7 we assess how allowing workers to save affects our results. In Section 8 we consider

a few important robustness checks. Section 9 concludes.

2 The Model

2.1 Preferences and Demographics

Consider a household head seeking to maximize his expected lifetime utility at age (or

year) t, t = 1, 2, .... Each period that he lives, the individual derives utility, Ut, from con-

sumption, Ct, hours worked, Ht, and health (or medical) status, Mt ∈ {good, bad}, so that

Ut = U(Ct, Ht,Mt). When he dies, he values bequests of assets, At, according to the bequest

function b(At). Let st denote the probability of being alive at age t conditional on being alive

at age t − 1, and let S(j, t) = (1/st)
∏j
k=t sk denote the probability of living to age j ≥ t,

conditional on being alive at age t. Let T = 95 denote the terminal period, so that sT+1 = 0.

The parameter β is the time discount factor. We assume that individuals maximize

U(Ct, Ht,Mt) + Et

(
T+1∑

j=t+1

βj−tS(j − 1, t)

[
sjU(Cj , Hj ,Mj) + (1 − sj)b(Aj)

])
, (1)

by choosing the contingency plans {Cj , Hj , Bj}T+1
j=t , subject to the constraints on {Cj , Hj , Bj}

described below. In addition to choosing hours and consumption, eligible individuals can

choose whether to apply for Social Security benefits; let the indicator variable Bt ∈ {0, 1}

equal one if the individual has applied for benefits.

The individual’s within-period utility function is of the form

U(Ct, Ht,Mt) =
1

1 − ν

(
Cγt (L−Ht − θPPt − φ× 1{Mt = bad})1−γ

)1−ν

, (2)

where the total time endowment per year is L and the quantity of leisure consumed is L −
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Ht − θPPt − φ × 1{Mt = bad}. The individual’s utility from leisure depends on his health

status through the 0-1 indicator 1{Mt = bad}, which equals one when his health is bad.

Participation in the labor force is denoted by Pt, a 0-1 indicator equal to zero when hours

worked, Ht, equals zero. The fixed cost of work, θP , is measured in hours worked per year.

Including fixed costs allows us to capture the empirical regularity that annual hours of work

are clustered around 2000 hours and 0 hours (Cogan, 1981).5 We treat retirement as a

form of the participation decision, and thus allow retired workers to reenter the labor force;

as stressed by Rust and Phelan (1997) and Ruhm (1990), reverse retirement is a common

phenomenon.

The parameter γ is between 0 and 1 if utility is increasing in leisure and consumption. The

parameter ν, the coefficient of relative risk aversion for total utility, is positive if individuals

are risk averse. ν has two purposes. First, as ν increases individuals become less willing

to substitute consumption and leisure across time. Second, ν measures the non-separability

between consumption and leisure. Under perfect foresight and interiority, ν > 1 implies that

consumption and leisure are Frisch substitutes (Low, 2003). French (2003) shows that with

his estimates of γ and ν, a model with this non-separable specification can replicate the

consumption declines that are observed at retirement.

The bequest function takes the form

b(At) = θB
(max{At, 0} +K)(1−ν)γ

1 − ν
, (3)

where K is a constant that affects the strength of the bequest motive across wealth levels.

In particular, as K grows, the marginal utility of bequests for poor, small-bequest individ-

uals decreases, absolutely and relative to the marginal utility of bequests for the rich. The

max{At, 0} term appears because debts cannot be bequeathed.

The individual’s utility depends on two random demographic variables. One is the indi-

5Outside the mass points at 0 and 2000 hours, work hours in our HRS data are more or less uniformly
distributed between 750 and 3300 hours (also see Rust and Phelan, 1997). We include fixed costs, rather than
discretize the choice set for hours (into, say, full-time, half-time and none), because it provides a better way
to capture this dispersion.
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vidual’s health status, Mt, which follows an exogenous Markov process. We assume that the

transition probabilities for health status depend on the individual’s current health status and

age, so that the elements of the health status transition matrix are

πij(t) = Pr(Mt+1 = j|Mt = i, t), i, j ∈ {good, bad}. (4)

A second source of uncertainty is mortality. Mortality rates depend upon age and previous

health status:

st+1 = s(Mt, t+ 1). (5)

2.2 Budget Constraints

The individual has several sources of income: asset income, rAt, where r denotes the

constant pre-tax interest rate; labor income, WtHt, where Wt denotes wages; spousal income,

yst; pension benefits, pbt; Social Security benefits, sst; and government transfers, trt. The

individual’s income is allocated between: taxes; consumption; health care expenses, hct; and

asset accumulation. This implies the following accumulation equation:

At+1 = At + Y (rAt +WtHt + yst + pbt, τ) + sst + trt − hct − Ct. (6)

where post-tax income, Y (rAt+WtHt+ yst+ pbt, τ), is a function of taxable income and the

vector τ , described in Appendix A, which captures the tax structure.

In addition to these “financial” assets (which include housing), the individual also accu-

mulates pension and Social Security benefits, which we discuss in some detail below.

Associated with this budget rule is the borrowing constraint

At + Yt + sst + trt − Ct ≥ 0. (7)

Because it is illegal to borrow against Social Security benefits and difficult to borrow against

most forms of pension wealth, individuals with low non-pension, non-Social Security wealth
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may not be able to finance their retirement before their Social Security benefits become avail-

able at age 62. It is worth noting that this borrowing constraint excludes medical expenses,

which we assume are realized after labor decisions are made. We view this assumption as

more reasonable than the alternative, namely that the time-t medical expense shocks are fully

known when workers decide whether to hold on to their employer-provided health insurance.6

Following Hubbard et al. (1994, 1995), government transfers provide a consumption floor:

trt = max{0, Cmin − (At + Yt + sst)}, (8)

Equation (8) implies that government transfers bridge the gap between an individual’s “liquid

resources” (the quantity in the inner parentheses) and the consumption floor. Equation (8)

also implies that if transfers are positive, Ct = Cmin. Our treatment of government transfers

implies that individuals can always consume at least Cmin, even if their out-of-pocket medical

expenses have exceeded their financial resources. With the government effectively providing

low-asset individuals with health insurance, these people may place a low value on employer-

provided health insurance. This of course depends on the value of Cmin; if Cmin is low enough,

it will be the low-asset individuals who value health insurance most highly. Those with very

high asset levels should be able to self-insure.

2.3 Medical Expenses, Health Insurance, and Medicare

Medical expenses, hct, which are the focus of this paper, are defined as the sum of out-

of-pocket costs and insurance premia. We assume that an individual’s health costs depend

upon: health insurance status, HIt; health status, Mt; age, t; whether the person is working,

Pt; and a person-specific effect ψt:

lnhct = hc(Mt, HIt, t, Pt) + σ(Mt, HIt, t, Pt) × ψt. (9)

6Given the timing of medical expenses, under this borrowing constraint an individual with extremely high
medical expenses this year could have negative net worth next year. Given that many people in our data still
have unresolved medical expenses, medical expense debt seems reasonable.
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Note that health insurance affects both the expectation of medical expenses, through hc(.)

and the variance, through σ(.). These differences across health insurance types usually shrink

at age 65, when Medicare becomes the primary insurer for most individuals.

Differences in labor supply behavior across categories of health insurance coverage, HIt,

are an important part of identifying our model. We assume that there are four mutually

exclusive categories of health insurance coverage. The first is retiree coverage, ret, where

workers keep their health insurance even after leaving their jobs.7 The second category is

tied health insurance, tied, where workers receive employer-provided coverage as long as they

continue to work. If a worker with tied health insurance leaves his job, however, he enters

the third category and receives “COBRA” coverage, COBRA, which allows him to purchase

insurance at his employer’s group rate. After one year of COBRA coverage, the worker’s

insurance ceases.8 The fourth category consists of individuals whose potential employers

provide no health insurance at all, or none.9 Workers move between these insurance categories

according to

HIt =






ret if HIt−1 = ret

tied if HIt−1 = tied and Ht > 0

COBRA if HIt−1 = tied and Ht = 0

none if HIt−1 = none or HIt−1 = COBRA

. (10)

In imposing this transition rule, we are assuming that people out of the work force are never

offered jobs with insurance coverage, and that workers with tied coverage never upgrade to

ret coverage. Restricting access to insurance in this way most likely leads us to overstate the

value of employer-provided health insurance.

7If they leave their job, however, their medical expenses may rise, as those with retiree coverage often pay
for their insurance, albeit at lower group rates, after they retire.

8Although there is some variability across states as to how long individuals are eligible for employer-provided
health insurance coverage, by Federal law most individuals are covered for 18 months (Gruber and Madrian,
1995). Given a model period of one year, we approximate the 18-month period as a one-year term.

9Workers in the none category buy insurance on their own, receive some sort of government coverage,
or simply go uncovered. For simplicity, we assume that the three groups share a common medical expense
distribution.
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An individual’s medical expenses depend not only on his private insurance coverage, HIt,

but also on his access to Medicare health insurance. Almost all individuals that are 65

or older are eligible for Medicare, which supplements the insurance coverage described in

equation (10).10 In particular, individuals without employer-provided insurance can receive

Medicare coverage once they turn 65.

Following Feenberg and Skinner (1994) and French and Jones (2004), we assume that the

idiosyncratic component of medical expenses ψt can be decomposed as

ψt = ζt + ξt, ξt ∼ N(0, σ2
ξ ), (11)

ζt = ρhcζt−1 + ǫt, ǫt ∼ N(0, σ2
ǫ ), (12)

where ξt and ǫt are serially and mutually independent. ξt is the transitory component of

health cost uncertainty, while ζt is the persistent component, with autocorrelation ρhc.

2.4 Wages and Spousal Income

We assume that the logarithm of wages at time t, lnWt, is a function of health status

(Mt), age (t), hours worked (Ht) and an autoregressive component, ωt:

lnWt = W (Mt, t) + α lnHt + ωt, (13)

The inclusion of hours, Ht, in the wage determination equation captures the empirical regu-

larity that, all else equal, part-time workers earn relatively lower wages than full time work-

ers. The autoregressive component ωt has the correlation coefficient ρW and the normally-

distributed innovation ηt:

ωt = ρWωt−1 + ηt, ηt ∼ N(0, σ2
η). (14)

10Individuals who have paid into the Medicare system for at least 10 years become eligible at age 65. A
more detailed description of the Medicare eligibility rules is available at http://www.medicare.gov/.
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Because spousal income can serve as insurance against medical shocks, we include it in

the model. In the interest of computational simplicity, we assume that spousal income is a

deterministic function of an individual’s age and the exogenous component of his wages:

yst = ys(W (Mt, t) + ωt, t). (15)

These features allow us to capture assortive mating and the age-earnings profile.

2.5 Pensions and Social Security

Because pensions and Social Security both generate potentially important retirement

incentives, we model the two programs in detail.

Pension benefits, pbt, are a function of the worker’s age and pension wealth. Pension

wealth in turn depends on pension accruals, which are themselves a function of a worker’s age,

labor income, and health insurance type. Computational concerns lead us to use a stylized

pension accrual formula, which we construct from HRS data. The formula is for a weighted

average of defined benefit, defined contribution, and combination plans. This pension accrual

formula captures the fact that: high income workers have higher pension accrual rates than

low income workers; accrual rates are higher for workers in their 50s than in other ages; and

workers with tied and (especially) retiree coverage tend to have higher accrual rates than

those without coverage. The last feature of our accrual formula is particularly important in

isolating the effects of employer-provided health insurance.11 When finding an individual’s

decision rules, we assume further that the individual’s existing pension wealth is a function

of his Social Security wealth, age, and health insurance type. Details are in Appendix B.

Individuals receive no Social Security benefits until they apply, i.e., sst = 0 until Bt = 1.

Individuals can first apply for benefits at age 62. Upon applying the individual receives

benefits until death, i.e., Bt+1 = 1 if Bt = 1. Social Security benefits depend on his Average

11After controlling for health insurance type and other factors, pensions still contain a fair bit of idiosyncratic
variation. The relevant issue, however, is not whether this omitted heterogeneity is important for retirement,
but whether it significantly affects the role of health insurance. We proceed under the assumption that it does
not.
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Indexed Monthly Earnings (AIME), which is roughly his average income during his 35

highest earnings years in the labor market.

There are three major incentives provided by the Social Security System, each of which

tend to induce exit from the labor market when old. First, while income earned by workers

with less than 35 years of earnings automatically increases their AIME, income earned by

workers with more than 35 years of earnings increases their AIME only if it exceeds earnings

in some previous year of work. Because Social Security benefits increase in AIME, this causes

work incentives to drop after 35 years in the labor market. We describe the computation of

AIME in more detail in Appendix C.

Second, the age at which the individual applies for Social Security affects the level of

benefits. Recall that individuals can first apply at age 62. For every year before age 65 the

individual applies for benefits, benefits are reduced by 6.67% of the age-65 level. This is

roughly actuarially fair. But for every year after age 65 that benefit application is delayed,

benefits rise by 5.0% up until age 70. This is less than actuarially fair, and encourages people

to apply for benefits by age 65.12

Third, the Social Security Earnings Test is imposed on beneficiaries younger than age 70.

For individuals aged 62-64, each dollar of labor income above the “test” threshold of $9,120

leads to a 1/2 dollar decrease in Social Security benefits, until all benefits have been taxed

away. For individuals aged 65-69, each dollar of labor income above a threshold of $14,500

leads to a 1/3 dollar decrease in Social Security benefits, until all benefits have been taxed

away. Although benefits taxed away by the earnings test are credited to future benefits, after

age 64 the crediting rate is less than actuarially fair, so that the Social Security Earnings

Test effectively taxes the labor income of beneficiaries aged 65-69.13 When combined with

the aforementioned incentives to draw Social Security benefits by age 65, the Earnings Test

12We use tax and benefit formulas from the Social Security Handbook Annual Statistical Supplement for the
year 1998. The Social Security crediting formula depends on the individual’s year of birth, with the formulae
for later birth years providing smaller incentives to retire at age 65. We use the formula for individuals born
in 1932, who turned 65 in 1997.

13If a year’s worth of benefits are taxed away between ages 62 and 64, benefits in the future are increased
by 6.67%. If a year’s worth of benefits are taxed away between ages 65 and 69, benefits in the future are
increased by 5.0%.
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discourages work after age 65. This incentive is incorporated in the calculation of sst, which

is defined to be net of the earnings test.

2.6 Recursive Formulation

In recursive form, the individual’s problem can be written as

Vt(Xt) = max
Ct,Ht,Bt

{
1

1 − ν

(
Cγt (L−Ht − θPPt − φ× 1{Mt = bad})1−γ

)1−ν

+ β(1 − st+1)b(At+1)

+ βst+1

∫
Vt+1(Xt+1)dF (Xt+1|Xt, t, Ct, Ht, Bt)

}
, (16)

subject to equations (7) and (8). The vector Xt = (At, Bt−1,Mt, AIMEt, HIt, ωt, ζt−1) con-

tains the individual’s state variables, while the function F (·|·) gives the conditional distribu-

tion of these state variables.14 In doing so, F (·|·) incorporates the budget constraints and

stochastic processes described in equations (4) through (15).

An individual’s decisions thus depend on his state variables, Xt, his preferences, θ, and

his beliefs, χ, where

θ =(γ, ν, θP , θB, φ, L, β),

χ =

(
r,W (Mt, t), α, σ

2
η, ρW , hc(Mt, HIt, t, Bt, Pt), σ(Mt, HIt, t, Bt), σ

2
ξ , σ

2
ǫ , ρhc,

{prob(Mt+1|Mt, t)}Tt=1, {St}Tt=1, Y (·, ·), {sst}Tt=1, {pbt}Tt=1, {trt}Tt=1

)
.

It follows that the solution to the individual’s problem consists of the set of consumption

{Ct(Xt, θ, χ)}1≤t≤T , work {Ht(Xt; θ, χ)}1≤t≤T and benefit application {Bt(Xt; θ, χ)}1≤t≤T

rules that solve equation (16). The labor force participation rule Pt(Xt; θ, χ) is a 0-1 indicator

equal to zero when Ht(Xt; θ, χ) = 0. Inserting these decision rules into the asset accumulation

equation yields next period’s assets, At+1(Xt, ψt; θ, χ).

Given that the model lacks a closed form solution, these decision rules are found numer-

14Spousal income and pension benefits (see Appendix B) depend only on the other state variables and are
thus not state variables themselves.
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ically using value function iteration. To reduce the computational burden, we assume that

all workers retire and apply for Social Security benefits by age 70: for t ≥ 70, Bt = 1 and

Ht = Pt = 0. Appendix D describes our numerical methodology.

3 Estimation

Our goal is to estimate preferences, θ, and beliefs, χ. Computational concerns lead us to

use a two-step strategy, similar to the ones used by Gourinchas and Parker (2002) and French

(2003). In the first step we estimate some belief parameters and calibrate others. In doing

this we assume that individuals have rational expectations, so that the belief parameters

can be found by estimating the data generating process for the exogenous state variables.

We describe the belief parameters in Section 4. In the second step we estimate preference

parameters using the method of simulated moments (MSM). In the next two subsections, we

describe our MSM methodology in more detail.

3.1 Moment Conditions

Because some of the variables in the state vector Xt are probably mismeasured, tradi-

tional estimators, such as maximum likelihood or non-linear least squares, are unlikely to

be consistent. For example, wages are notoriously mis-measured in virtually all datasets.15

Moreover, our data contain no measure of consumption.16 Although measurement error can

be incorporated into the standard maximum likelihood framework, doing so tends to be com-

putationally costly. We instead estimate the model by the MSM, an approach that places

fewer demands on the data.17

15Because we use earnings divided by hours as the wage measure, measurement error in hours affects both
measured wages and measured hours, creating the well-known “division bias” problem.

16Rust and Phelan (1997) point out that one could impute consumption using asset accumulation equations
and measures of assets and income, but imputed consumption is often negative, suggesting measurement error.

17Gourinchas and Parker (2002) develop this point in more detail in the context of a model of life-cycle
consumption. A related approach that explicitly incorporates measurement error is to use simulated age-
conditional likelihood functions, as in Keane and Wolpin (2001). By working with unconditional (or age-
conditional) distributions, rather than the conditional (on Xt) distribution used in traditional likelihood
estimation, Keane and Wolpin’s approach avoids problems caused by measurement error in Xt, in much the
same way as does the MSM.
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The objective of MSM estimation is to find the preference vector θ̂ that yields simulated

life-cycle decision profiles that “best match” (as measured by a GMM criterion function) the

profiles from the data. A key part of the MSM approach is selecting which features of the

data distribution—which profiles—to match. The model predicts that labor supply behavior

should differ by age, health insurance status, health status, medical expenses, and asset

level. We therefore require our model to match labor force participation conditional on asset

grouping and health insurance status. Moreover, because one’s ability to self-insure against

medical expense shocks depends critically upon one’s asset level, we match asset quantiles.

We also match participation rates and hours by overall health status.

Under the MSM approach, the matches between the model and the data are expressed as a

collection of moment conditions. To construct the moment conditions for the asset quantiles,

we assume that assets, Ait, have a continuous density. Let j ∈ {1, 2, ..., J} index quantiles,

and let gπj
(t; θ0, χ0) denote the value of the πj-th asset quantile predicted by the model. This

means, for example, that if π1 = 1/3 and gπ1
(53; θ0, χ0) = $50, 000, the model predicts that

1/3 of all individuals have assets of $50, 000 or less at age 53. In Appendix E we show that

the moment condition for the jth quantile can be written as

E
(
1{Ait ≤ gπj

(t; θ0, χ0)} − πj |t
)

= 0, (17)

for j ∈ {1, 2, ..., J}, t ∈ {1, ..., T}. Since J = 2, equation (17) generates 2T moment condi-

tions.

We compute gπj
(t; θ, χ) by finding the model’s decision rules for consumption, hours, and

benefit application, using the decision rules to generate artificial histories for many differ-

ent simulated individuals, and finding the quantiles of the collected histories. Equation (17)

therefore says that the data sample and the simulated sample have the same age-conditional

asset quantiles. It is worth stressing that the distribution used to derive gπj
is found by evalu-

ating the model-generated decision rule, At+1(Xit, ψit; θ, χ), over the simulated distributions

of the state vector Xit and health cost shock ψit, rather than the empirical distributions; this
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avoids the aforementioned problems in measuring Xit. This does not imply, however, that

Ait cannot vary for reasons, such as measurement error, that are not incorporated into the

simulations; the only requirement is that these effects on the data “average out,” so that the

expectation in equation (17), which is taken over the observed data, continues to hold.

Next, consider how a worker’s asset quantile and health insurance status affects his par-

ticipation. Let P j(HI, t; θ0, χ0) denote the model-predicted labor force participation rate

conditional upon assets being in the jth-quantile interval and health insurance being of type

HI. In Appendix E we derive the following moment condition:

E
(
Pit − P j(HI, t; θ0, χ0) | HIit = HI, gπj−1

(t; θ0, χ0) ≤ Ait ≤ gπj
(t; θ0, χ0), t

)
= 0, (18)

for j ∈ {1, 2, ..., J + 1} , HI ∈ {none, ret, tied}, t ∈ {1, ..., T}.18 Equation (18) says that

within each asset grouping, the data sample and the simulated sample have the same con-

ditional mean. With 2 quantiles (generating 3 quantile-conditional means) and 3 health

insurance types, equation (18) generates 9T moment conditions.

Finally, consider health-conditional hours and participation. Let lnH(M, t; θ0, χ0) and

P (M, t; θ0, χ0) denote the conditional expectation functions for hours (when working) and

participation generated by the model; let lnHit and Pit denote measured hours and partici-

pation. The model conditions are

E
(
lnHit − lnH(M, t; θ0, χ0) | Pit > 0,Mit = M, t

)
= 0, (19)

E
(
Pit − P (M, t; θ0, χ0) |Mit = M, t

)
= 0, (20)

for t ∈ {1, ..., T}, M ∈ {good, bad}. Equations (19) and (20) yield 4T moment conditions.

Combined with the 2T moment conditions for the asset quantiles and the 9T moment condi-

tions for asset- and insurance-conditional participation, this generates a total of 15T moment

18Because we are interested in participation given one’s opportunity set, we combine individuals who work
and receive tied insurance with those who do not work and receive COBRA coverage, as those two groups
had the same insurance opportunities.
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conditions.

3.2 Estimation Mechanics

The mechanics of our MSM procedure are as follows. First, we estimate life cycle profiles

from the data for hours, participation and assets. Second, using the same data used to

estimate the profiles, we generate an initial distribution for health, health insurance status,

wages, medical expenses, AIME and assets.19 We also use this data to estimate many of the

parameters contained in the belief vector χ, although we calibrate some of these parameters

as well. Using χ, we generate matrices of random health, wage and medical expense shocks.

The matrices hold shocks for 40,000 simulated individuals over their entire lives. Third, we

compute the decision rules for an initial guess of the parameter vector θ, using χ and the

numerical methods described in Appendix D.

The fourth step is to simulate profiles for the decision variables. Each simulated individual

receives a draw of assets, health, wages and medical expenses from an initial distribution,

and is assigned one of the simulated sequences of health, wage and health cost shocks. With

the initial distributions and the sequence of shocks, we then use the decision rules to generate

that person’s decisions over the life cycle. Each period’s decisions determine the conditional

distribution of next period’s states, and the simulated shocks pin the states down exactly.

Fifth, we aggregate the simulated data into profiles in the same way we aggregated the

true data. Sixth, we compute moment conditions, i.e., we find the distance between the

simulated and true profiles. Finally, we pick a new value of θ and repeat the whole process.

The value of θ that minimizes the distance between the true data and the simulated data, as

described in equations (17)-(20), θ̂, is the estimated value of θ0.
20 We discuss the asymptotic

distribution of the parameter estimates, the weighting matrix and the overidentification tests

in Appendix E.

19As described in Appendices B and C, the starting values for AIME and pension wealth are imputed from
the initial draws of assets and wages.

20Because the GMM criterion function is discontinuous, we search over the parameter space using a simplex
algorithm. It usually takes around 2 days to estimate the model on a 40-node supercomputer, with each
iteration (of steps 3-6) taking around 10 minutes.
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4 Data and Calibrations

4.1 HRS Data

We estimate the model using data from the first five waves of the Health and Retirement

Survey (HRS). The HRS is a sample of non-institutionalized individuals, aged 51-61 in 1992,

and their spouses. With the exception of assets and health costs, which are measured at the

household level, our data are for male household heads. The HRS surveys individuals every

two years, so that we have 5 waves of data covering the period 1992-2000. The HRS also asks

respondents retrospective questions about their work history that allow us to infer whether

the individual worked in non-survey years. Details of this, as well as variable definitions,

selection criteria, and a description of the initial joint distribution, are in Appendices F

and H.

With the exception of wages, we do not adjust the data for cohort effects. Because the

HRS covers a fairly narrow age range, this omission should not generate much bias.

4.2 Health Insurance Status and Health Costs

We assign individuals to one of four mutually exclusive health insurance groups: ret,

tied, COBRA, and none, as described in section 2. Because of small sample problems, the

none group includes those with no insurance as well as those with private insurance. Neither

type receives employer-provided coverage. Because the model includes a consumption floor to

capture the insurance provided by Medicaid, the none group also includes those whose only

form of health insurance is Medicaid. We assign those who have health insurance provided

by their spouse to the ret group, along with those who report that they could keep their

health insurance if they left their jobs. Neither of these types has their health insurance tied

to their job. We assign individuals who would lose their employer-provided health insurance

after leaving their job to the tied group.

Unfortunately, the HRS has information on health insurance outcomes, not choices. This

is an important problem for individuals out of the labor force with no health insurance; it

19



is unclear whether these individuals could have purchased COBRA coverage but elected not

to do so. To circumvent this problem we use health insurance in the initial wave and the

transitions implied by equation (10) to predict health insurance options. For example, if an

individual has health insurance that is tied to his job and was working in the previous wave,

that individual’s choice set is tied health insurance and working or COBRA insurance and

not working.

The HRS has data on self-reported medical expenses. Medical expenses are the sum of

insurance premia paid by the household, drug costs, and out of pocket costs for hospital,

nursing home care, doctor visits, dental visits, and outpatient care. We are interested in the

medical expenses that households face. Unfortunately, we observe only the medical expenses

that these households actually pay for. This means that the observed medical expense distri-

bution for low-wealth households is censored, because programs such as Medicaid pay much of

their medical expenses. Because our model explicitly accounts for government transfers, the

appropriate measure of medical expenses includes medical expenses paid by the government.

Therefore, we assign Medicaid payments to households that received Medicaid benefits. The

2000 Green Book (Committee on Ways and Means, 2000, p. 923) reports that in 1998 the

average Medicaid payment was $10,242 per beneficiary aged 65 and older, and $9,097 per

blind or disabled beneficiary. Starting with this average, we then assume that Medicaid pay-

ments have the same volatility as the medical care payments made by uninsured households.

This allows us to generate a distribution of Medicaid payments.

We fit these data to the health cost model described in Section 2. Because of small

sample problems, we allow the mean, hc(.), and standard deviation, σ(.), to depend only

on the individual’s Medicare eligibility, health insurance type, health status, labor force

participation and age. Following the procedure described in French and Jones (2004), hc(.)

and σ(.) are set so that the model replicates the mean and 95th percentile of the cross-

sectional distribution of medical expenses (in levels, not logs) in each of these categories. We

found that this procedure did an extremely good job of matching the top 20% of the medical

expense distribution. Details are in Appendix G.
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Table 1 presents some summary statistics, conditional on health status. Table 1 shows

that for healthy individuals who are 64 years old, and thus not receiving Medicare, average

annual medical costs are $2,950 for those with tied coverage and $5,140 for those with no

employer-provided coverage, a difference of $2,190. With the onset of Medicare at age 65, the

difference shrinks to $410. For individuals in bad health, the difference shrinks from $2,810

at age 64 to $530 at age 65.21

It is not just differences in mean medical expenses, however, that determine the value of

health insurance, but also differences in variance and skewness. If health insurance reduces

health cost volatility, risk-averse individuals may value health insurance at well beyond the

cost paid by employers. To give a sense of the volatility, Table 1 also presents the standard

deviation and 99.5th percentile of the health cost distributions. Table 1 shows that for

healthy individuals who are 64 years old, average annual medical costs have a standard

deviation of $7,150 for those with tied coverage and $19,060 for those with no employer-

provided coverage. With the onset of Medicare at age 65, average annual medical costs have

a standard deviation of $5,370 for those with tied coverage and $8,090 for those with no

employer-provided coverage. Therefore, Medicare not only reduces average health costs for

those without employer provided health insurance. It also reduces the volatility of health

costs.

The parameters for the idiosyncratic process ψt, (σ2
ξ , σ

2
ǫ , ρhc), are estimated in French

and Jones (2004). Table 2 presents the parameters, which have been normalized so that

that overall variance, σ2
ψ, is one. Table 2 reveals that at any point in time, the transitory

component generates almost 67% of the cross-sectional variance in medical expenses. The

results in French and Jones (2004) reveal, however, that most of the variance in cumulative

lifetime medical expenses is generated by innovations to the persistent component. Given

the autocorrelation coefficient ρhc of 0.925, this is not surprising.

21The pre-Medicare cost differences are roughly comparable to EBRI’s (1999) estimate that employers on
average contribute $3,288 to their employees’ health insurance.
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Retiree - Retiree -
Working Not Working Tied COBRA None

Age = 64, without Medicare, Good Health
Mean $2,930 $3,360 $2,950 $3,670 $5,140
Standard Deviation $6,100 $7,050 $7,150 $8,390 $19,060
99.5th Percentile $35,530 $41,020 $40,210 $47,890 $91,560

Age = 65, with Medicare, Good Health
Mean $2,590 $2,800 $3,420 $2,750 $3,830
Standard Deviation $4,700 $4,700 $5,370 $5,420 $8,090
99.5th Percentile $28,000 $28,240 $32,460 $31,880 $47,010

Age = 64, without Medicare, Bad Health
Mean $3,750 $4,300 $3,770 $4,690 $6,580
Standard Deviation $7,970 $9,220 $9,330 $10,960 $24,840
99.5th Percentile $46,240 $53,380 $52,210 $62,240 $118,400

Age = 65, with Medicare, Bad Health
Mean $3,310 $3,580 $4,380 $3,520 $4,910
Standard Deviation $6,150 $6,150 $7,040 $7,080 $10,570
99.5th Percentile $36,530 $36,890 $42,460 $41,520 $61,180

Table 1: Medical Expenses, by Medicare and Health Insurance Status

Parameter Variable Estimate

σ2
ǫ innovation variance of persistent component 0.04811
ρhc autocorrelation of persistent component 0.925
σ2
ξ innovation variance of transitory component 0.6668

Table 2: Variance and Persistence of Innovations to Medical Expenses

4.3 Wages

Recall from equation (13) that lnWt = α ln(Ht) + W (Mt, t) + ωt. Following Aaronson

and French (2004), we set α = 0.415, which implies that a 50% drop in work hours leads to

a 25% drop in the offered hourly wage. This is in the middle of the range of estimates of

the effect of hours worked on the offered hourly wage. Because the wage information in the

HRS varies from wave to wave, we take the second term, W (Mt, t), from French (2003), who

estimates a fixed effects wage profile using data from the Panel Study of Income Dynamics.

We rescale the level of wages to match the average wages observed in the HRS at age 53.

Because fixed-effects estimators estimate the growth rates of wages of the same individuals,

the fixed-effects estimator accounts for cohort effects—the cohort effect is the average fixed

effect for all members of that cohort. Moreover, the fixed-effects estimator avoids composition
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bias problems—questions of whether high wage or low wage individuals drop out of the labor

market—as long as wage growth rates for workers and non-workers are the same.22

The parameters for the idiosyncratic process ωt, (σ2
η, ρW ) are the non-measurement-error

component of the model estimated in French (2003). The results indicate that the auto-

correlation coefficient ρW is 0.977; wages are almost a random walk. The estimate of the

innovation variance σ2
η is 0.0141; one standard deviation of an innovation in the wage is 12%

of wages. These estimates imply a high degree of long-run wage uncertainty.

4.4 Remaining Calibrations

Proceeding analogously to Hubbard, Skinner and Zeldes (1994, Appendix A), we set the

consumption floor Cmin equal to $3,500. This figure is an estimate of the average benefits

available to a childless household with no members aged 65 or older. This value may well

be too low; in 1998 the Federal SSI benefit for elderly (65+) couples was nearly $9,000

(Committee on Ways and Means, 2000, p. 229). We have chosen to be conservative because,

as discussed below, consumption floors can drastically reduce the value of health insurance.

We also show below, however, that the model does match the data better when Cmin = $3, 500

than when Cmin = $100.

We set the anticipated component of the interest rate r equal to 0.03, although we allow

for rate of return shocks, as described below. Following De Nardi (2004), the value of K,

which determines the curvature of the bequest function, is $500,000. Spousal income depends

upon an age polynomial and the wage. Health status and mortality both depend on previous

health status interacted with an age polynomial. Estimates are available from the authors.

22However, if individuals leave the market because of a sudden wage drop, such as from job loss, then wage
growth rates for workers will be greater than wage growth for non-workers. This problem will bias estimated
wage growth upward. French (2003) estimates the extent of selection, and finds that it does not seriously
affect his results. The results shown below are based on wage profiles that do not account for selection.
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5 Data Profiles

The top panel of Figure 1 shows the 1/3rd and 2/3rd asset quantiles at each age for the

HRS sample. About one third of the men sampled live in households with less than $70,000

in assets, and about one third live in households with over $240,000 of assets.

Figure 1: Asset Quantiles, Data

The asset profiles show that assets grow rapidly with age. This rapid growth, which is

higher than that reported in other studies (for example, Cagetti, 2003), is partly due to a

run-up in asset prices during the 1990’s. Recall that the core HRS sample was aged 51-61

in 1992. Therefore, an individual who is observed at age 51 is likely to have been observed

in 1992, whereas an individual observed at age 67 is likely to have been observed in later

waves—in fact, the oldest individuals in the core sample do not turn 67 until 1998, when the

fourth wave is collected. Because older individuals are more likely to be observed in later

waves, they are more likely to have enjoyed rapid asset growth. Failure to account for this

will lead the econometrician to overstate the saving of sample members, which in turn will

likely lead him to overstate their patience (β).

To account for the rapid run-up in asset prices that occurred over our sample period, we

use the age-specific interest rate rt = r+ εt when simulating artificial life cycle histories. The
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estimates of the unanticipated component εt are described in Appendix I. When finding the

decision rules, however, computational concerns led us to set rt = r.23

The first panel of Figure 2 shows empirical job exit rates by health insurance type. Recall

that Medicare should provide the largest labor market incentives for workers that have tied

health insurance. If these people place a high value on employer-provided health insurance,

they should either work until age 65, when they are eligible for Medicare, or they should work

until age 63.5 and use COBRA coverage as a bridge to Medicare. The job exit profiles provide

some evidence that those with tied coverage do tend to work until age 65. While the age-65

job exit rate is similar for those whose health insurance type is tied (20.5%), ret (21.2%), or

none (21.2%), those with ret coverage have significantly higher exit rates at 62 (22.9%) than

those with tied (16.9%) or none (14.0%). Although the hypothesis that the three groups

have identical exit rates at age 65 cannot be rejected, the hypothesis that the three groups

have identical exit rates at 62 is rejected at the 99% percent level and the hypothesis that

the three groups have identical exit rates at all ages is rejected at the 99.5% level.24 At every

age between 56 and 64, those with retiree coverage have higher job exit rates than those with

tied or no coverage. These differences across health insurance groups, while large, are smaller

than the differences in the empirical exit profiles reported in Rust and Phelan (1997).

If individuals with tied coverage use COBRA coverage as a bridge to Medicare, we would

expect that those with tied coverage would be more likely to exit the labor market at age 63.5.

Those with tied coverage, however, have lower job exit rates at ages 63 and 64 than those

with retiree coverage. Because COBRA coverage is costly, this is not evidence that people

do not value retiree health insurance. It is evidence, however, that people place relatively

little value on the insurance aspect of health insurance, as the option to buy actuarially fair

insurance when not working appears to have a small effect on job exit rates.

The health insurance classifications generated by the HRS data probably contain measure-

23In applying this differential treatment, we are assuming both that the asset price run-up was unanticipated
and that interest rate uncertainly has little effect on saving behavior.

24The F-statistic for the hypothesis that all profiles are equal to one another is 1.95, versus the 95% critical
value of 1.41.
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Figure 2: Job Exit and Participation Rates, Data

ment error. Appendix H shows job exit rates generated under several alternative measures

of health insurance type. All of the measures generate similar sets of profiles.

The bottom panel of Figure 2 presents observed labor force participation rates. The

differences in participation across health insurance types are quite large. Even at age 53,

labor force participation of the uninsured is 60%, well below the participation rate of those

with either retiree or tied coverage. Moreover, the top panel of Figure 2 shows that before

age 56, those with no health insurance coverage have the highest job exit rates. Nevertheless,

when considering the bottom panel of Figure 2, it is useful to keep in mind the transitions
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implied by equation (10): retiring workers in the tied insurance category transition into

the none category. Because of this, the labor force participation rates for those with tied

insurance are calculated over a group of individuals that were all working in the previous

period. It is therefore unsurprising that the tied category has the highest participation rates.

Conversely, it is not surprising that the none category has the lowest participation rates,

given that category includes tied workers who retire. What is surprising, however, is the

magnitude of the differences.

6 Baseline Results

6.1 Preference Parameter Estimates

The goal of our MSM estimation procedure is to match the life cycle profiles for assets,

hours and participation rates found in the HRS data. In order to use these profiles to

identify preferences, we make several identifying assumptions, the most important being that

preferences vary with age only as a result of changes in health status. Therefore, age and

health insurance can be thought of as “exclusion restrictions”, which change the incentives

for work and savings but do not change preferences.

Table 3 presents preference parameter estimates under several different specifications. In

this section, we discuss the baseline specification, where Cmin = $3, 500 and the household

can use all of its wealth to insure against medical expense shocks. We return to the other

specifications in Section 8.25

Perhaps the most important parameter is ν, the coefficient of relative risk aversion for flow

utility. A more familiar measure of risk aversion is the coefficient of relative risk aversion for

consumption. Assuming that labor supply is fixed and the value of bequests is close to zero, it

can be approximated as − (∂2U/∂C2)C
∂U/∂C = −(γ(1−ν)−1) = 2.97. This value is within the range

of estimates found in studies of consumption/savings (Gourinchas and Parker, 2002, Cagetti,

25In the interest of space, we do not discuss the standard errors, which might appear to be rather small. A
complete analysis of this issue, as well as further insights into identification, can be found in French (2003).
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No Illiquid Cmin = Mismeasured
Baseline Saving Housing $100 Assets

Parameter and Definition (1) (2) (3) (4) (5)

γ: consumption weight 0.610 0.498 0.708 0.662 0.611
(0.0022) (0.0042) (0.0024) (0.0032) (0.0021)

ν: coefficient of relative risk aversion, 4.23 6.84 0.806 1.13 4.31
utility (0.054) (0.067 ) (0.013) (0.017) (0.064)

β: time discount factor 0.994 0.994 0.959 0.964 0.995
(0.0028) (NA) (0.0003) (0.0008) (0.0029)

L: leisure endowment 4,493 5,299 4,369 4,189 4,505
(25.8) (46.8) (17.6) (20.5) (26.0)

φ: hours of leisure lost, bad health 242 341 407 134 237
(12.7) (20.9) (10.8) (6.4) (13.6)

θP : fixed cost of work, in hours 1,261 1,334 1,530 1,272 1,279
(14.0) (13.1) (8.4) (7.8) (14.5)

θB: bequest weight 1.56 2.57×10−5 13.60 38.56 1.49
(0.035) (NA) (0.401) (0.523) (0.042)

GMM Criterion 2,239 1,316 6,358 3,089 2,221
χ2 statistic 1,876 744 7,655 2,106 1,766
Degrees of freedom 218 100 218 218 218

Standard errors in parentheses
NA indicates parameters were fixed during estimation

Table 3: Estimated Structural Parameters

2003), but it is larger than the values of 1.07 and 2.14 reported by Rust and Phelan (1997)

and Blau and Gilleskie (2003), respectively, in their studies of retirement. ν is identified

largely by the asset quantiles. The bottom quantile in particular depends on the interaction

of precautionary motives and the consumption floor. If the consumption floor is sufficiently

low, the risk of a catastrophic health cost shock, which over a lifetime could equal tens of

thousands of dollars, can generate strong precautionary incentives; we discuss this point in

the robustness checks below.

Turning to labor supply, we find that individuals in our sample are willing to intertempo-

rally substitute their work hours. In particular, simulating the effects of a 2% wage change

reveals that the wage elasticity of average hours is 1.38 at age 60. This relatively high labor

supply elasticity arises because the fixed cost of work generates volatility on the participation

margin. The participation elasticity is 1.15 at age 60, implying that wage changes cause rel-
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atively small hours changes for workers. For example, the Frisch labor supply elasticity of an

individual working 2000 hours per year is approximated as −L−Ht−θP

Ht
× 1

(1−γ)(1−ν)−1 = 0.27,

which is similar to MaCurdy’s (1981) estimate.

The fixed cost of work is identified by the life cycle profile of hours worked by workers.

Average hours of work (available upon request) do not drop below 1,000 hours per year (or

20 hours per week) even though labor force participation rates decline to near zero. In the

absence of a fixed cost of work, one would expect hours worked to parallel the decline in labor

force participation.

The parameter γ is identified by noting that the within-period utility function is Cobb-

Douglas between consumption and leisure, so that γ (roughly) gives the share of resources

spent on consumption rather than leisure. Therefore, the coefficient of relative risk aversion

for consumption, the labor supply elasticity at the both the intensive (hours) and extensive

(participation) margin, and the share of resources spent on consumption versus leisure identify

the structural parameters γ, ν, L, and θP . The parameter φ is identified by noting that

unhealthy individuals work fewer hours than healthy individuals, even after conditioning on

the wage.

Another important parameter is the time discount factor β, with a value of 0.994. It is

higher than most estimates of β for two reasons. The first reason is clear upon inspection of

the Euler Equation: ∂Ut

∂Ct
≥ βst+1(1 + r(1 − τt))Et

∂Ut+1

∂Ct+1
, where τt is the marginal tax rate.26

Note that this equation identifies the product βst+1(1 + r(1 − τt)), but not its individual

elements. Therefore, a lower value of st+1 or (1 + r(1 − τt)) results in a higher estimate of

β. Given that many studies omit mortality risk and/or taxes—implicitly setting st+1 and/or

1 − τt to one—it is not surprising that they find lower values of β. The second reason is

that β is identified not only by the intertemporal substitution of consumption, as embodied

in the asset profiles, but also in the intertemporal substitution of leisure, as embodied in the

labor supply profiles. Models of labor supply and savings, such as MaCurdy (1981) or French

26Note that this equation does not hold exactly when individuals value bequests. Also note that the Euler
Equation holds with equality when assets are positive.
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(2003), often suggest that agents are very patient.27

The bequest parameter θB is identified largely from the top asset quantile. It follows

from equation (3) that when the shift parameter K is large, the marginal utility of bequests

will be lower than the marginal utility of consumption unless the individual is rich. In other

words, the bequest motive mainly affects the saving of the rich; for more on this point, see

De Nardi (2004). The estimates of θB vary a great deal across specifications. However, the

marginal propensity to consume out of wealth in the final period of life, when any savings

will be bequeathed, is much more stable across specifications. For low-income individuals,

this marginal propensity to consume—which is a nonlinear function of θB, β, γ, ν, and K—is

1. For high-income individuals, the marginal propensity to consume ranges from a baseline

value of 0.155 to 0.29.

6.2 Simulated Profiles

The bottom of Table 3 displays GMM criterion values and overidentification test statistics;

the two differ because we use a diagonal weighting matrix (see Appendix E). Even though

the model is formally rejected, the life cycle profiles generated by the model for the most part

resemble the life cycle profiles generated by the data.

Figure 3 shows that the model fits both asset quantiles fairly well. The model is able to

fit the lower quantile in large part because of the consumption floor of $3,500; the predicted

lower quantile rises dramatically when the consumption floor is lowered. This is consistent

with the results found by Hubbard, Skinner, and Zeldes (1995). Hubbard, Skinner, and

Zeldes show that if the government guarantees a minimum consumption level, those with low

assets and income will tend not to save, because their consumption will never drop below a

certain level, even in the presence of a large negative health cost shock. Put differently, if an

individual is at the consumption floor, his savings will be taxed at a marginal rate of 100%.

It is therefore not surprising that within the model the consumption floor reduces saving by

27As a sensitivity analysis, we fixed β to 0.95 and θB to 0, and re-estimated the model. The restricted model
fits the data much more poorly: the χ2 test statistic rises from 1,880 to 5,460.
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Figure 3: Assets, Data and Simulations

individuals with low income and assets.

The three panels in the left hand column of Figure 4 show that the model is able to

replicate the two key features of labor force participation across age and health insurance.

The first key feature is that participation declines with age, and the declines are especially

sharp between ages 62 and 65. The model is also able to match the aggregate decline in

participation at age 65 (a 6.2 percentage point decline in the data versus a 8.1 percentage

point decline predicted by the model), although it underpredicts the decline in participation

at 62 (a 10.4 percentage point decline in the data versus a 5.4 percentage point decline

predicted by the model). We return to the age-62 decline in participation below.
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Figure 4: Participation and Job Exit Rates, Data and Simulations
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The second key feature is that there are large differences in participation and job exit

rates across health insurance types. The model is able to match the fact that exit rates for

those with tied coverage are low until age 65. Recall that in the data, exit rates are 3, 6,

and 0 percentage points higher at ages 54, 62, and 65 for those with retiree coverage than

for those with tied coverage. In the simulations, exit rates are 3, 8, and 4 percentage points

higher at ages 54, 62, and 65 for those with retiree coverage than for those with tied coverage.

Moreover, the model also matches the low participation levels of the uninsured. Turning to

the lower left panel of Figure 5, the data show that the group with the lowest participation

rates are the uninsured with low assets. Although the model is not fully able to replicate this

fact, the consumption floor greatly reduces participation of the uninsured with low assets.

Without a high consumption floor, the risk of catastrophic medical expenses, in combination

with risk aversion, would cause the uninsured to remain in the labor force and accumulate a

buffer stock of assets.

The panels in the right hand column of Figure 4 compare observed and simulated job exit

rates for each health insurance type. They show that the model over-predicts the job exit

rates of workers with either retiree coverage or no health insurance. The poor fit is in part

an artifact of our MSM estimation procedure: because participation contains information on

the level of labor supply as well as year-to-year changes, we match participation rates rather

than job exit rates. The model’s participation rate profiles, shown in the left hand column

of Figure 4, match the data much better. Taken together, the two columns imply that the

model over-predicts the amount of labor market exit and re-entry for workers in the ret or

none categories.28 In contrast, the model predicts very little exit and re-entry for workers

with tied health insurance. This reflects our assumption that once an elderly worker with

tied coverage leaves his job, he will never have a job with tied coverage again.

28The model lacks tenure effects, which would imply that workers who exited the labor market would usually
re-enter with a lower wage. Adding tenure effects would likely reduce the amount of exit and re-entry predicted
by the model. We omit tenure effects largely for computational reasons: adding them would require us to
include the worker’s previous employment status as a state variable.
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Figure 5: Labor Force Participation Rates by Asset Grouping, Data and Simu-

lations
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6.3 The Effects of Employer-Provided Health Insurance

The empirical profiles discussed above are informative, but do not identify the effects

of health insurance on retirement, for two reasons. First, the distributions of wages and

wealth in our sample differ across health insurance types; for example, workers with retiree

coverage tend to be wealthier. Second, holding everything else fixed, workers with retiree

coverage have the highest pension accrual rates, while workers with no health insurance

have the lowest accrual rates. Therefore, retirement incentives differ across health insurance

categories for reasons unrelated to health insurance incentives. Our model can disentangle

these different effects.

To isolate the effects of employer-provided health insurance, we conduct some additional

simulations. Retaining the parameter values shown in the first column of Table 3, we fix

pension accrual rates so that they are identical across health insurance types. We then

simulate the model three times, assuming first that all workers have no health insurance,

then retiree coverage, then tied coverage at age 53.

This exercise reveals that at age 54, the job exit rate would be 2.9 percentage points

higher if all workers had retiree coverage rather than tied coverage at age 53. The gap rises

to 5.8 percentage points at age 61 and 5.3 percentage points at age 62, then declines to -1.8

percentage points at age 65. These differences in exit rates across health insurance types are

similar to, but smaller than, the raw differences in exit rates observed in both the data and the

simulations. This indicates that not accounting for other observable differences in retirement

incentives leads the econometrician to slightly overstate the effect of health insurance on exit

rates.

The effect of health insurance can also be measured by calculating how it affects the

retirement age, defined here as the oldest age at which the individual worked. Moving from

retiree to tied coverage increases the average retirement age by 0.47 years.

A useful comparison appears in the reduced form model of Blau and Gilleskie (2001),

who study labor market behavior between ages 51 and 62 using waves 1 and 2 of the HRS

data. They find that having retiree coverage, as opposed to tied coverage, increases the job
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exit rate around 1% at age 54 and 7.5% at age 61. Given that they use the same data as

we do, this similarity is not surprising. Moreover, they find that accounting for selection

into health insurance plans modestly increases the estimated effect of health insurance on

exit rates. Other reduced form findings in the literature are qualitatively similar to Blau and

Gilleskie. For example, Madrian (1994) finds that retiree coverage reduces the retirement

age by 0.4 - 1.2 years, depending on the specification and the data employed. Karoly and

Rogowski (1994), who attempt to account for selection into health insurance plans, find that

retiree coverage increases the job exit rate 8 percentage points over a 21
2 year period. Our

estimates, therefore, lie within the range established by previous reduced form studies, giving

us confidence that the model can be used for policy analysis.

Structural studies that omit medical expense risk usually find smaller health insurance

effects than we do. For example, Gustman and Steinmeier (1994) find that retiree coverage

reduces years in the labor force by 0.1 year. Lumsdaine et al. (1994) find even smaller ef-

fects. In contrast, structural studies that include medical expense risk but omit self-insurance

usually find effects that are at least as large as ours. Our estimated effects are roughly sim-

ilar to Blau and Gilleskie’s (2003), who find that retiree coverage reduces participation 3.4

percentage points, but are smaller than the effects found by Rust and Phelan (1997).

6.4 Policy Experiments

The model allows us to analyze how changing the Social Security and Medicare rules would

affect retirement behavior. In particular, we increase both the normal Social Security retire-

ment age and the Medicare eligibility age from 65 to 67, and measure the resulting changes

in simulated work hours and exit rates. The results of these experiments are summarized in

Table 4.

The first column of Table 4 shows model-predicted labor market participation at ages 60

through 67 under the current (1998) retirement and eligibility ages. Under the current rules,

the average person works a total of 3.42 years over this eight-year period. The fifth column

of Table 4 shows that this is close to the total of 3.59 years observed in the data.
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1998 rules: 2030 rules:
SS = 65 SS = 67 SS = 65 SS = 67
MC = 65 MC = 65 MC = 67 MC = 67 Data

Age (1) (2) (3) (4) (5)

Participation rates, all health insurance types
60 0.633 0.648 0.641 0.651 0.657
61 0.574 0.590 0.578 0.594 0.617
62 0.520 0.530 0.527 0.535 0.513
63 0.474 0.485 0.476 0.492 0.450
64 0.394 0.475 0.398 0.484 0.404
65 0.313 0.372 0.349 0.400 0.342
66 0.273 0.304 0.305 0.322 0.308
67 0.239 0.411 0.243 0.410 0.295
Total 60-67 3.420 3.815 3.518 3.888 3.588

Participation rates, workers with tied coverage at age 60
60 0.912 0.925 0.920 0.927 0.921
61 0.842 0.848 0.845 0.858 0.833
62 0.773 0.773 0.775 0.788 0.704
63 0.698 0.698 0.697 0.714 0.609
64 0.576 0.648 0.592 0.672 0.567
65 0.417 0.492 0.519 0.575 0.468
66 0.355 0.409 0.434 0.460 NA
67 0.308 0.499 0.315 0.497 NA
Total 60-67 4.881 5.293 5.098 5.492 NA

SS = Social Security normal retirement age
MC = Medicare eligibility age
NA indicates insufficient number of observations

Table 4: Effects of Changing the Social Security Retirement and Medicare

Eligibility Ages: Baseline Parameters

The second column shows the average hours that result when the 1998 Social Security rules

are replaced with the rules planned for the year 2030. Imposing the 2030 rules: (1) increases

the normal Social Security retirement age, the date at which the worker can receive “full

benefits”, from 65 to 67; (2) significantly increases the credit rates for deferring retirement

past the normal age; and (3) eliminates the earnings test for workers aged 67 and older. The

second column shows that imposing the 2030 rules leads the average worker to increase years

worked between ages 60 and 67 from 3.42 years to 3.82 years, an increase of 0.4 years. It

is worth noting that in addition to changing the rate at which benefits accrue, raising the

retirement age effectively eliminates two years of Social Security benefits. Therefore, raising

the normal retirement age to 67 has both substitution and wealth effects, both of which cause
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participation to increase.29

The third column of Table 4 shows participation when the Medicare eligibility age is

increased 67.30 This change increases total years of work by only 0.1 years. The fourth

column shows the combined effect of raising both the Social Security retirement and the

Medicare eligibility age. The joint effect is an increase of 0.47 years, 0.07 more than that

generated by raising the retirement age in isolation. In short, the model predicts that raising

the normal Social Security retirement age will have a much larger effect on retirement behavior

than increasing the Medicare eligibility age.

One reason that Social Security has larger labor market effects than Medicare is that

only 21% of our sample have tied coverage at age 53 and only 8.2% have tied coverage at 64.

Medicare provides much smaller retirement incentives to workers in the ret or none categories.

To focus on the incentives facing workers with tied coverage, the lower half of Table 4 shows

labor force participation rates for those workers alone. These participation rates reveal that

the effects of Medicare are significant. Table 4 shows that increasing the Medicare eligibility

age from 65 to 67 in isolation increases total years worked by 0.22 years. This is not a

trivial change, as it implies an annual increase in participation of over 2.5 percentage points.

This amount is in fact larger than the changes found by Blau and Gilleskie (2003), whose

simulations show that increasing the Medicare age reduces the average probability of non-

employment by about 0.5 to 1 percentage points. Nevertheless, the effect of shifting forward

the Social Security retirement age is larger still—it would increase years worked by 0.41 years.

To understand better the incentives generated by Medicare, we compute the value that

individuals place on employer-provided health insurance, by finding the increase in assets that

would make an uninsured individual as well off as a person with retiree coverage. In other

29To measure the size of the wealth effect, we raise the retirement age to 67 while increasing annual benefits
at every age by 15.4%. The net effect of these two changes is to alter the Social Security incentive structure
while keeping the present value of Social Security wealth (at any age) roughly equivalent to the age-65 level.
Under this configuration, total years of work increase by 0.27 years, implying that 0.13 years of the 0.4-year
increase is due to wealth effects.

30By shifting forward the Medicare eligibility age to 67, we increase from 65 to 67 the age at which medical
expenses can follow the “with Medicare” distribution shown in Table 1.
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words, we find the compensating variation λt = λ(At, Bt,Mt, AIMEt, ωt, ζt−1, t), where

Vt(At, Bt,Mt, AIMEt, ωt, ζt−1, ret) = Vt(At + λt, Bt,Mt, AIMEt, ωt, ζt−1, none).

Table 5 shows the compensating variation λ(At, 0, good, $32000, 0, 0, 60) at several different

asset (At) levels.31 The first column of Table 5 shows the valuations found under the baseline

specification. One of the most striking features is that the value of employer-provided health

insurance is fairly constant. Even though rich individuals can better self-insure, they also

receive less protection from the government-provided consumption floor. In the baseline

case, these effects more or less cancel each other out. Relative to their wealth, however, poor

individuals do value health insurance more.

Baseline Specification
With Without

Uncertainty Uncertainty Cmin = $100

Asset Levels (1) (2) (3)

-$2,300 $24,100 $14,000 $22,500
$54,400 $23,000 $14,200 $21,600
$149,000 $23,600 $14,300 $20,500
$600,000 $23,400 $14,700 $19,300

Compensating variation between ret and none coverages
Calculations described in text

Table 5: Value of Employer-Provided Health Insurance

Part of the value of retiree coverage comes from a reduction in average medical expenses—

because retiree coverage is subsidized—and part comes from a reduction in the volatility of

medical expenses—because it is insurance. In order to separate the former from the latter,

we eliminate health cost uncertainty, by setting the variance shifter σ(Mt, HIt, t, Bt, Pt) to

zero, and recompute λt, using the same state variables and mean medical expenses as before.

Without health cost uncertainty, λt is approximately $14,000. Comparing the two values of

λt shows that about 60% of the value of health insurance comes from the reduction of average

31In making these calculations, we remove health-insurance-specific differences in pensions, as described in
section 6.3. It is also worth noting that for the values considered, the conditional differences in expected health
costs are smaller than the unconditional differences shown in Table 1.
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medical expenses, and 40% is due to the reduction of medical expense volatility. This explains

why Medicare has a small effect on retirement behavior. Individuals value health insurance

not too much beyond the cost paid by employers.

Another way to assess the importance of health cost uncertainty is to redo the controlled

experiments in Section 6.3 with health cost uncertainty eliminated. When workers face health

cost uncertainty, participation drops 5.8 percentage points between ages 64 and 65 when all

workers are presumed to have retiree coverage at age 53, and drops 11.3 percentage points

when all workers are presumed to have tied coverage at age 53. In the absence of health

cost uncertainty, the participation drop is 4.6 percentage points when workers are assumed

to have retiree coverage and 9.3 percentage points when workers are assumed to have tied

coverage. These results, too, suggest that workers value employer-provided health insurance

mainly because it reduces average expenses, rather than risk.

7 How Important Are Savings?

We have argued that the ability to self-insure through saving could significantly affect

the value of employer-provided health insurance. One test of this hypothesis is to modify the

model so that individuals cannot save, and examine how labor market decisions change. In

particular, we cap assets at $1,000, effectively requiring workers to consume their income net

of health costs, as in Rust and Phelan (1997) and Blau and Gilleskie (2003).

Eliminating the ability to save requires changing our estimation strategy. In the absence

of saving, β and θB are both very weakly identified. We therefore follow Rust and Phelan

and Blau and Gilleskie by fixing β, in this case to its baseline value of 0.994. Similarly, we

fix θB to replicate the baseline marginal propensity to consume out of wealth. Since the

asset distribution is effectively degenerate in this no-saving case, we no longer match asset

quantiles or quantile-conditional participation rates, matching instead participation rates for

each health insurance category. The second column of Table 3 shows the parameter estimates

for this specification.
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When individuals cannot save, it makes little sense to express the value of health insurance

as an asset increment, because any assets in excess of $1,000 must be spent immediately.32 We

therefore alter the compensating variation calculations used in Table 5 to express the value

of retiree coverage as a compensating annuity.33 By this measure, eliminating the ability to

save greatly increases the value of retiree coverage: when assets are -$2,300, the compensating

annuity increases from $3,600 in the baseline case to $15,800 in the no-savings case. When

there is no health cost uncertainty, the comparable figures are $1,820 in the baseline case and

$2,670 in the no-savings case. The ability to self-insure through saving appears to be quite

important.

Table 6 shows the effects of changing the Social Security and Medicare rules under the

no-saving specification. The first column of this table shows participation under the current

rules. One of the most striking results is that in the absence of saving, there is a pronounced

drop in participation rates—and spikes in the underlying job exit rates—at age 62. Unable

to hold assets, workers must save through Social Security and pensions. Because they cannot

borrow against their Social Security benefits, many workers that would otherwise retire earlier

cannot fund their retirement before age 62.34 Not surprisingly, workers with ret coverage have

the largest age-62 responses. Most tied workers are unwilling to forgo their coverage so early.

Although the no-saving specification better fits age-62 job exit rates, along several other

dimensions it fits worse than the baseline case with savings. For example, eliminating saving

significantly increases the participation of workers with tied coverage, relative to both the

baseline case and the data, even at ages beyond age 65. Because the baseline and no-savings

cases are estimated with different moments, the overidentification statistics shown in the first

two columns of Table 3 are not comparable. Additional calculations suggest, however, that

32When initial assets are -$2,300, compensating assets in the no-savings case are $250,000, a 10-fold increase
over the baseline value of $24,000.

33To do this, we first find the compensating AIME, λ̂t, where

Vt(At, Bt, Mt, AIMEt, ωt, ζt−1, ret) = Vt(At, Bt, Mt, AIMEt + λ̂t, ωt, ζt−1, none).

This change in AIME in turn allows us to calculate the change in expected pension and Social Security
benefits that the individual would receive at age 65, the sum of which can be viewed as a compensating
annuity. Because these benefits depend on decisions made after age 60, the calculation is only approximate.

34See Kahn (1988), Rust and Phelan (1997), and Gustman and Steinmeier (2002) for similar arguments.
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1998 rules: 2030 rules:
SS = 65 SS = 67 SS = 65 SS = 67
MC = 65 MC = 65 MC = 67 MC = 67 Data

Age (1) (2) (3) (4) (5)

Participation rates, all health insurance types
60 0.704 0.700 0.716 0.715 0.657
61 0.627 0.637 0.635 0.648 0.617
62 0.514 0.544 0.527 0.556 0.513
63 0.472 0.511 0.483 0.524 0.450
64 0.429 0.473 0.440 0.485 0.404
65 0.336 0.344 0.403 0.417 0.342
66 0.280 0.335 0.332 0.376 0.308
67 0.222 0.338 0.221 0.341 0.295
Total 60-67 3.584 3.882 3.757 4.063 3.588

Participation rates, workers with tied coverage at age 60
60 0.881 0.856 0.939 0.930 0.921
61 0.877 0.861 0.915 0.910 0.832
62 0.808 0.809 0.857 0.871 0.704
63 0.733 0.742 0.777 0.804 0.609
64 0.666 0.690 0.730 0.762 0.567
65 0.592 0.597 0.669 0.680 0.468
66 0.484 0.528 0.526 0.565 NA
67 0.371 0.555 0.379 0.565 NA
Total 60-67 5.414 5.638 5.792 6.087 NA

SS = Social Security normal retirement age
MC = Medicare eligibility age
NA indicates insufficient number of observations

Table 6: Effects of Changing the Social Security Retirement and Medicare

Eligibility Ages: No Saving

the model with no savings provides a poorer overall fit.35

Columns (2)-(4) of Table 6 show that eliminating the ability to save makes workers much

more sensitive to changes in Medicare. While raising the Medicare age leads to an additional

0.1 years of work in the baseline case, in the no-saving case the increase is 0.17 years. Although

the increased effect is in part due to bigger reactions by individuals with tied coverage, it

also reflects bigger reactions by individuals with retiree coverage. The supplemental effects of

Medicare on retiree coverage, as shown in Table 1, become more important when individuals

35Inserting the decision profiles generated by the baseline model into the moment conditions used to estimate
the no-savings case produces a GMM criterion value of 900 and an overidentification statistic of 600. In
contrast, the no-saving specification produces a GMM criterion value of 1,320 and an overidentification statistic
of 740, suggesting that the model fits better when saving is allowed.
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cannot save.

8 Robustness Checks

8.1 Illiquid Housing

It has often been argued (e.g., Rust and Phelan, 1997) that housing equity is considerably

less liquid than financial assets. Since housing comprises a significant proportion of most

individuals’ assets, its illiquidity would greatly weaken their ability to self-insure through

saving.

To account for this possibility, we re-estimate the model using “liquid assets”, which

excludes housing and business wealth.36 The third column of Table 3 contains the revised

parameter estimates. The most notable changes are that ν, the coefficient of relative risk

aversion, drops from 4.2 to 0.8, and that β, the discount rate, drops from 0.994 to 0.959. Both

changes—lower risk aversion and lower patience—help the model fit the bottom quantile of

liquid asset holdings, which averages less than $5,000. Even with these changes, the model

tends to overstate the bottom quantile, leading to a large overidentification statistic.

Table 7 shows the effects of changing the Social Security and Medicare rules when housing

assets are illiquid. The first column shows participation under the current rules. The most

notable result is that when housing assets are illiquid, simulated participation drops markedly

at age 62.37 The underlying asset-conditional profiles reveal that the drop is more pronounced

for workers in the bottom 1/3rd of the asset distribution. These workers accumulate so few

liquid assets that, unable to borrow against their Social Security benefits, they cannot fund

their retirement before age 62. This contrasts with the data, where the age-62 drops vary

across the asset quantiles to a much smaller extent.

36A complete analysis of illiquid housing would require us to treat housing as an additional state variable,
with its own accumulation dynamics, and to impute the consumption services provided by owner-occupied
housing. This is not computationally feasible. In this paper, we simply allow these effects to be captured in
the preference parameters.

37Because the definition of assets affects which observations are retained in our sample, the empirical par-
ticipation rates presented here differ slightly from those shown in earlier tables.
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1998 rules: 2030 rules:
SS = 65 SS = 67 SS = 65 SS = 67
MC = 65 MC = 65 MC = 67 MC = 67 Data

Age (1) (2) (3) (4) (5)

Participation rates, all health insurance types
60 0.685 0.690 0.686 0.691 0.660
61 0.605 0.611 0.606 0.613 0.616
62 0.480 0.459 0.479 0.458 0.508
63 0.460 0.416 0.458 0.413 0.460
64 0.352 0.514 0.355 0.515 0.420
65 0.254 0.312 0.279 0.346 0.352
66 0.203 0.232 0.236 0.255 0.298
67 0.184 0.444 0.186 0.442 0.298
Total 60-67 3.223 3.677 3.285 3.733 3.612

Participation rates, workers with tied coverage at age 60
60 0.864 0.873 0.869 0.874 0.931
61 0.778 0.779 0.783 0.791 0.861
62 0.680 0.673 0.681 0.680 0.699
63 0.587 0.596 0.592 0.600 0.637
64 0.460 0.580 0.487 0.592 0.587
65 0.313 0.374 0.390 0.458 0.455
66 0.237 0.293 0.293 0.343 NA
67 0.201 0.490 0.206 0.481 NA
Total 60-67 4.122 4.659 4.302 4.819 NA

SS = Social Security normal retirement age
MC = Medicare eligibility age
NA indicates insufficient number of observations

Table 7: Effects of Changing the Social Security Retirement and Medicare

Eligibility Ages: Illiquid Housing

Despite this strong liquidity effect, the policy experiments conducted with illiquid housing

yield the same conclusion as the baseline policy experiments: Social Security has stronger

effects than Medicare.

8.2 Lower Consumption Floor

The baseline results were based on a consumption floor (Cmin) of $3,500. Although quite

low, this total could still be too high. The total includes the average housing subsidy, but

many poor households receive no housing subsidy at all. Moreover, many eligible households

do not collect benefits, possibly because transactions or “stigma” costs outweigh the value of

public assistance.
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Therefore, we re-estimate the model with Cmin set to $100, a value that exposes workers

to considerably more risk.38 The revised parameter estimates appear in the fourth column

of Table 3. The most notable change is that ν, the coefficient of relative risk aversion, drops

from 4.2 to 1.1; the increase in risk exposure is offset by a decrease in risk aversion.

Although the baseline and revised models have similar chi-square statistics, along some

dimensions the revised model fits the data much more poorly. In particular, while the baseline

model over-predicts participation by low-asset workers—see the bottom panels of Figure 5—

the revised model over-predicts this participation to a much greater extent. Recall that in

the absence of a consumption floor, the model would predict that those with low assets and

without health insurance would have high participation rates, as they would face precau-

tionary motives to work and accumulate assets. It is thus not surprising that reducing the

consumption floor from $3,500 to $100 increases the participation of poor workers, even after

the preference parameters have been re-estimated.

This conclusion is reinforced by the insurance valuations shown in Table 5. Comparing

the first and third columns of Table 5 shows that even though the average valuation is higher

in the baseline case—because it utilizes a much larger value of the risk coefficient ν—in

the low-floor case poor workers have a higher relative valuation. If we retain the baseline

preference parameters, reducing Cmin to $100 increases the valuation as well: for example,

λ($149000, 0, good, $32000, 0, 0, 60), rises from its Table-5 value of $23,400 to $166,000. All of

this suggests that social insurance, as modelled by the consumption floor, significantly affects

precautionary motives.

Using the revised parameter estimates, we repeat the policy experiments shown in Table 4

with Cmin = $100. The results of these experiments are virtually identical to those for

the baseline case. Recall that in the baseline case, increasing the normal Social Security

retirement age leads to an additional 0.4 years of work during ages 60-67, and increasing the

38Our treatment of consumption floors differs markedly from that of Rust and Phelan (1997), who simply
impose a penalty when an individual’s implied consumption is negative. Although Rust and Phelan’s estimates
do not translate into a consumption floor, they find the penalty to be large, implying a fairly low floor. Since
Rust and Phelan assume that consumption equals income net of health costs, it is unclear what their penalties
imply for asset accumulation.
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Medicare eligibility age leads to an additional 0.1 years of work. When Cmin = $100, the

increases are 0.36 and 0.08 years, respectively, for Social Security and Medicare. Given that

changes in Cmin lead to offsetting changes in the estimated value of ν, these similarities are

not surprising.

8.3 Mismeasured Assets

Because the moments we match in estimation include asset quantiles and asset-quantile-

conditional participation rates, measurement error could affect our results. To explore this

possibility, we re-estimate the model while assuming that observed assets for individual i at

time t, A∗
it, relate to his actual assets, Ait, through

A∗
it = Ait exp(ϑit),

where ϑit is a normally-distributed, zero-mean measurement noise variable that is independent

across individuals and time and independent of Ait. In particular, we generate simulated asset

histories as before, multiply them by simulated sequences of exp(ϑit), and use the modified

asset histories to construct our moment conditions.39

The fifth column of Table 3 shows the parameter estimates that result when the standard

deviation of ϑit is 20%, an amount in the middle of the estimates discussed in Bound, et al.

(2001). These parameter estimates are very similar to the baseline estimates contained in

the first column. Moreover, the simulated profiles and the policy experiments are all very

similar to the baseline case, showing that our results are robust to a significant amount of

measurement error.

39We also modify the initial distribution of assets, which is based on the HRS data, to account for measure-
ment error, by taking logs and applying standard projection formulae.
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9 Conclusion

Prior to age 65, many individuals receive health insurance only if they continue to work.

At age 65, however, Medicare provides health insurance to almost everyone. Therefore, a

potentially important work incentive disappears at age 65. If individuals place a high value

on health insurance, the provision of Medicare benefits may have a large effect on retirement

behavior. To see if this is the case, we construct and estimate a retirement model that includes

health insurance, uncertain medical costs, a savings decision, a non-negativity constraint on

assets and a government-provided consumption floor. Including all these features produces a

general model that can reconcile previous results.

Using data from the Health and Retirement Study, we find that Medicare has limited

effects. Empirically, we find that workers whose employer-provided coverage continues after

they leave their jobs are more likely to exit the labor force at age 62. This suggests that tied

access to employer-provided health insurance might compel some workers to stay on the job.

We also find, however, that age-65 job exit rates differ little across health insurance types.

The results from our model yield a similar conclusion. Although we find that changing

the Medicare eligibility age does have a fairly significant effect on workers whose health

insurance is tied to their jobs, we find that changing the Social Security rules has an even

bigger effect. Moreover, we find that workers that can save value employer-provided health

insurance mainly because it reduces average medical expenses, not because it reduces health

cost uncertainty. Given that the actuarial value of employer-provided health insurance is

fairly small, this result also suggests that the retirement incentives of employer-provided

health insurance, although important, are modest.
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Appendix A: Taxes

Individuals pay federal, state, and payroll taxes on income. We compute federal taxes on

income net of state income taxes using the Federal Income Tax tables for “Head of Household”

in 1998. We use the standard deduction, and thus do not allow individuals to defer medical

expenses as an itemized deduction. We also use income taxes for the fairly representative

state of Rhode Island (27.5% of the Federal Income Tax level). Payroll taxes are 7.65% up to

a maximum of $68,400, and are 1.45% thereafter. Adding up the three taxes generates the

following level of post tax income as a function of labor and asset income:

Pre-tax Income (Y) Post-Tax Income Marginal Tax Rate

0-6250 0.9235Y 0.0765
6250-40200 5771.88 + 0.7384(Y-6250) 0.2616
40200-68400 30840.56 + 0.5881(Y-40200) 0.4119
68400-93950 47424.98 + 0.6501(Y-68400) 0.3499
93950-148250 64035.03 + 0.6166(Y-93950) 0.3834
148250-284700 97515.41 + 0.5640(Y-148250) 0.4360
284700+ 174474.21 + 0.5239(Y-284700) 0.4761

Table 8: After Tax Income

Appendix B: Pensions

The fundamental equation behind our calculation of pension benefits is the accumulation

equation for pension wealth, pwt:

pwt+1 =






(1/st+1)[(1 + r)pwt + pacct − pbt] if living at t+ 1

0 otherwise
(21)

where pacct is pension accrual and pbt is pension benefits. Two features of this equation bear

noting. First, workers cannot bequeath their pensions. It immediately follows that in order

to be actuarially fair, surviving workers must receive an above-market return on their pension

balances. Therefore, we should divide next period’s pension wealth by the survival probability

st+1 in equation (21). Note that E[pwt+1|pwt, pacct, pbt] = [(1 + r)pwt + pacct− pbt] because

with probability st+1, pwt+1 = 0. Second, since pension accrual and pension interest are not

directly taxed, the appropriate rate of return on pension wealth is the pre-tax one. Pension
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benefits, on the other hand, are included in the income used to calculate an individual’s

income tax liability.

We calculate pension benefits by assuming that at age k, the worker receives the frac-

tion pft of the actuarially fair annuity, pbmax
t . pft is estimated as the fraction of respon-

dents receiving pensions at each age; the fraction increases fairly smoothly, except for a

23-percentage-point jump at age 62. To find the annuity pbmax
t , note first that recursively

substituting equation (21) and imposing pwT+1 = 0 reveals that

pwt =
1

1 + r

T∑

k=t

S(k, t)

(1 + r)k−t
(pfkpb

max
t − pacck),

where S(k, t) = (1/stψ

)  

∏k
jψ=tψ

sjψ

gi  ve  s  the pr obabi l i ty of sur v i v i ng to age kψ, c ondi ti onal on

hav  i  ng  sur  v  i  ve  d  to  ti  me  tψ.  I  f  we  assume fur the r that the r e i s no mor e p e nsi on ac c r ual, so

that pacck = 0 k = t, t + 1, ..., T , and that the maximum pension benefit is constant from

time t forward, so that pbmax
k = pbmax

t , k = t, t+ 1, ..., T , this equation reduces to

pwt = Γtpb
max
t , (22)

Γt ≡ 1

1 + r

T∑

k=t

S(k, t)

(1 + r)k−t
pfk. (23)

Pension benefits are thus given by

pbt = pftΓ
−1
t pwt. (24)

Pension accrual is given by

pacc = α0(HIt,WtHt, t) ×WtHt, (25)

where α0(.) is the pension accrual rate as a function of health insurance type, labor income,

and age. To construct α0(.), we first find α1(pent, t), which gives the pension accrual rate as

a function of pension type, pent, and age. We then find the distribution of pension types for
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each health insurance type and labor income level. The function α0(.) is simply the average

of α1(pent, t) across this distribution:

α0(HIt,WtHt, t) =
∑

pen∈PT

α1(pen, t) × Pr(pent = pen|HIt,WtHt, t)

where PT = {none, defined benefit, defined contribution, combined defined benefit and

defined contribution} is the set of possible pension types. The function α1(.) is taken

from Gustman and Steinmeier’s (1999) analysis of HRS data.40 The function Pr(pent =

pen|HIt,WtHt, t), which measures the probability that pension type is pen, is estimated

using the regression function

Pr(pent = pen|HIt,WtHt, t) = γ0,pen+γ1,pent+γ2,pen ln(WtHt)+
∑

k

γk,pen1{HIt = k} (26)

and HRS data. Note that equation (26) is estimated separately for each pension type.

Figure 6 shows pension accrual by health insurance type. Those with retiree coverage are

the most likely to have a defined benefit pension plan or a combined plan. As a result, those

with retiree coverage have the highest pension accrual in their 50s and the sharpest drops

in pension accrual at ages 62 and 65. Figure 6 also shows the effect of having log income

one standard deviation above the mean. Note that the effect of income on pension accrual is

relatively small, once health insurance is accounted for.

To recapitulate, pension wealth follows equation (21), with pension accrual given by

equation (25) and pension benefits given by equation (24). Using these equations, it is

straightforward to track and record the pension balances of each simulated individual. To

start the simulations, we assume that initial pension balances are a function of assets and

wages:

pw53 = η1 + η2A53 + η3A
2
53 + η4W53 + η5W

2
53 + η6A53W53, (27)

40We first adjust their pension accrual profile by their assumed rate of wage growth so that pension accrual
is measured in rates. We then smooth their pension accrual profile using a 20th order polynomial with dummy
variables for age greater than 61, 62, 63, 64 and 65. Predicted accrual rates that are negative are set to zero.
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age

 Fitted values  Fitted values
 Fitted values  accearnpredsd

50 60 70 8062 65

0

.05

.1

� = no health insurance © = retiree health insurance △ = tied health insurance coverage
− = log earnings one standard deviation above the mean

Figure 6: Pension Accrual Rates, by Age and Health Insurance Type

using a regression on data generated by the model in French (2003), where the simulated life

histories begin at age 30. The combination of equations (25) and (27) appears to work fairly

well; simulated mean pension wealth is roughly $115,000 in 1998 dollars at age 57, which

roughly coincides with Gustman and Steinmeier’s (1999, Table 5) estimate for male heads of

households of $113,000.

But even though it is straightforward to use equation (21) when computing pension wealth

in the simulations, it is too computationally burdensome to include pension wealth as a

separate state variable when computing the decision rules. Our approach is to impute pension

wealth as a function of age and AIME. In particular, we impute a worker’s annual pension

benefits as a function of his Social Security benefits:

p̂bt(PIAt, HIt, t) =
∑

k

γ0,k1{HIt = k} + γ1t+ γ2 max{0, t− 70} + γ3PIAt + (28)

γ4 max{0, P IAt − 14, 359.9} + γ5tPIAt + γ6 max{0, t− 70}PIAt,
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where PIAt is the Social Security benefit the worker would get if he were drawing benefits

at time t; as shown in Appendix C below, PIA is a simple monotonic function of AIME.

Applying equation (22) yields imputed pension wealth, p̂wt = Γtp̂bt. The coefficients of this

equation were estimated with a regression on data generated by the model in this paper.

Since these simulated data depend on the γs—p̂wt affects the decision rules used in the

simulations—the γs solve a fixed-point problem. Fortunately, estimates of the γs converged

after a few iterations.

This imputation process raises two complications. The first is that we use a different

pension wealth imputation formula when calculating decision rules than we do in the simula-

tions. If an individual’s time-t pension wealth is p̂wt, his time-t+1 pension wealth (if living)

should be

̂̂pwt+1 = (1/st+1)[(1 + r)p̂wt + pacct − pbt].

This quantity, however, might differ from the pension wealth that would be imputed using

PIAt+1, p̂wt+1 = Γt+1p̂bt+1 where p̂bt+1 is defined in equation (28). To correct for this,

we increase non-pension wealth, At+1, by st+1(1 − τt)(̂̂pwt+1 − p̂wt+1). The first term in

this expression reflects the fact that while non-pension assets can be bequeathed, pension

wealth cannot. The second term, 1 − τt, reflects the fact that pension wealth is a pre-tax

quantity —pension benefits are more or less wholly taxable—while non-pension wealth is

post-tax—taxes are levied only on interest income.

A second problem is that while an individual’s Social Security application decision affects

his annual Social Security benefits, it should not affect his pension benefits. Recall, however,

that we r e duc e PI A i f an i ndi v i dual dr aws b e ne fits b e for e age . The p e nsi on i mputati on

procedure we use, however, would imply that it does. We counter this problem by recalculat-

ing PIA when the individual begins drawing Social Security benefits. In particular, suppose

that a decision to accelerate or defer application changes PIAt to remtPIAt. Our approach

is to use equation (29) find a value PIA∗
t such that

(1 − τt)p̂bt(PIA
∗
t ) + PIA∗

t = (1 − τt)p̂bt(PIAt) + remtPIAt,
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so that the change in the sum of PIA and imputed after-tax pension income equals just the

change in PIA, i.e., (1 − remt)PIAt.

Appendix C: Computation of AIME

Social Security benefits are based on the individual’s 35 highest earnings years, relative

to average wages in the economy during those years. The average earnings over these 35

highest earnings years are called Average Indexed Monthly Earnings, or AIME. It immediately

follows that working an additional year increases the AIME of an individual with less than

35 years of work. If an individual has already worked 35 years, he can still increase his AIME

by working an additional year, but only if his current earnings are higher than the lowest

earnings embedded in his current AIME. To account for real wage growth, earnings in earlier

years are inflated by the growth rate of average earnings in the overall economy. For the

period 1992-1999, real wage growth, g, had an average value of 0.016 (Committee on Ways

and Means, 2000, p. 923). This indexing stops at the year the worker turns 60, however, and

earnings accrued after age 60 are not rescaled. 41 Lastly, AIME is capped. In 1998, the base

year for the analysis, the maximum AIME level was $68,400 in 1998 dollars.

Precisely modelling these mechanics would require us to keep track of a worker’s entire

earnings history, which is computationally infeasible. As an approximation, we assume that

(for workers beneath the maximum) annualized AIME is given by

AIMEt+1 = (1 + g × 1{t ≤ 60})AIMEt (29)

+
1

35
max

{
0, WtHt − αt(1 + g × 1{t ≤ 60})AIMEt

}
,

where 1 − αt is the probability that time t earnings increases AIMEt. We assume that 20%

of the workers enter the labor force each year between ages 21 and 25, so that αt = 0 for

workers aged 55 and younger. For workers aged 60 and older, earnings only update AIMEt

if current earnings replace the lowest year of earnings, so we estimate αt by simulating

wage (not earnings) histories with the model developed in French (2003), calculating the

41After age 62, benefits increase at the rate of inflation.
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sequence {αt}t≥60 for each simulated wage history, and taking averages at each age. Linear

interpolation yields α56 through α59.

For the simulations, each person’s AIME history is initialized as a function of assets and

wages:

AIME53 = η1 + η2A53 + η3A
2
53 + η4W53 + η5W

2
53 + η6A53W53 + νAIME ,

where νAIME is drawn from a random number generator. The η’s and the standard deviation

of νAIME are taken from a regression on 1996 PSID data where AIME53 is calculated using

PSID earnings histories, rescaled to real wage levels in 1992.

AIME is converted into a Primary Insurance Amount (PIA) using the formula

PIAt =






0.9 ×AIMEt ifAIMEt < $5, 724

$5, 151.6 + 0.32 ×AIMEt if $5, 724 ≤ AIMEt < $34, 500

$14, 359.9 + 0.15 ×AIMEt ifAIMEt ≥ $34, 500

. (30)

Social Security benefits sst depend both upon the age at which the individual first receives

Social Security benefits and the Primary Insurance Amount. For example, pre-Earnings Test

benefits for a Social Security beneficiary will be equal to PIA if the individual first receives

benefits at age 65. For every year before age 65 the individual first draws benefits, benefits

are reduced by 6.67% and for every year (up until age 70) that benefit receipt is delayed,

benefits increase by 5.0%.42

Appendix D: Numerical Methods

Because the model has no closed form solution, the decision rules it generates must be

found numerically. We find the decision rules using value function iteration, starting at time

T and working backwards to time 1. We find the time-T decisions by maximizing equation

42The effects of early or late application can be modelled as changes in AIME rather than changes in PIA,
eliminating the need to include age at application as a state variable. For example, if an individual begins
drawing benefits at age 62, his adjusted AIME must result in a PIA that is only 80% of the PIA he would
have received had he first drawn benefits at age 65. Using equation (30), this is easy to find.
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(16) at each value of XT , with VT+1 = b(AT+1). This yields decision rules for time T and the

value function VT . We next find the decision rules at time T −1 by solving equation (16) with

VT . Continuing this backwards induction yields decision rules for times T − 2, T − 3, ..., 1.

The value function is directly computed at a finite number of points within a grid, {Xi}Ii=1;
43

we use linear interpolation within the grid and linear extrapolation outside of the grid to

evaluate the value function at points that we do not directly compute. Because changes in

assets and AIME are likely to cause larger behavioral responses at low levels of assets and

AIME, the grid is more finely discretized in this region.

At time t, wages, medical expenses and assets at time t + 1 will be random variables.

To capture uncertainty over the persistent components of medical expenses and wages, we

convert ζt and ωt+1 into discrete Markov chains, and calculate the conditional expectation of

Vt+1 accordingly.44 We integrate the value function with respect to the transitory component

of medical expenses, ξt, using 5-node Gauss-Hermite quadrature (see Judd, 1999).

Because of the fixed time cost of work and the discrete benefit application decision, the

value function need not be globally concave. This means that we cannot find a worker’s opti-

mal consumption and hours with fast hill climbing algorithms. Our approach is to discretize

the consumption and labor supply decision space and to search over this grid. Experimenting

with the fineness of the grids suggested that the grids we used produced reasonable approxi-

mations.45 In particular, increasing the number of grid points seemed to have a small effect

43In practice, the grid consists of: 32 asset states, Ah ∈ [−$55,000, $1, 200,000]; 5 wage residual states,
ωi ∈ [−0.99, 0.99]; 16 AIME states, AIMEj ∈ [$4,000, $68,400]; 3 health cost states, ζk, over a normalized
(unit variance) interval of [−1.5, 1.5]. There are also two application states and two health states. This requires
solving the value function at 30,720 different points for ages 62-69, when the individual is eligible to apply for
benefits, and at 15,360 points before age 62 or after age 69 (when we impose application).

44Using discretization rather than quadrature greatly reduces the number of times one has to interpolate
when calculating Et(V (Xt+1)).

45We use two search grids. Initially, the consumption grid has 100 points, and the hours grid is broken into
300-hour intervals. When this initial, coarser, grid is used, the consumption search at a value of the state
vector X for time t is centered around the consumption gridpoint that was optimal for the same value of X at
time t + 1. (Recall that we solve the model backwards in time.) If the search yields a maximizing value near
the edge of the search grid, the grid is reoriented and the search continued. We begin our search for optimal
hours at the level of hours that sets the marginal rate of substitution between consumption and leisure equal
to the wage. We then try 6 different hours choices in the neighborhood of the initial hours guess. Because
of the fixed cost of work, we also evaluate the value function at Ht = 0, searching around the consumption
choice that was optimal when Ht+1 = 0. The second grid centers the search for Ct and Ht around the values
of Ct and Ht that were optimal in some earlier search, and looks over a finer grid.
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on the computed decision rules.

We then use the decision rules to generate simulated time series. Given the realized state

vector Xi0, individual i’s realized decisions at time 0 are found by evaluating the time-0

decision functions at Xi0. Using the transition functions given by equations (4) through (6),

we combine Xi0, the time-0 decisions, and the individual i’s time-1 shocks to get the time-1

state vector, Xi1. Continuing this forward induction yields a life cycle history for individual

i. When Xit does not lie exactly on the state grid, we use interpolation or extrapolation

to calculate the decision rules. This is true for ζt and ωt as well. While these processes

are approximated as finite Markov chains when the decision rules are found, the simulated

sequences of ζt and ωt are generated from continuous processes. This makes the simulated

life cycle profiles less sensitive to decision rules at particular values of ζt and ωt than when

ζt and ωt are drawn from Markov chains.

Appendix E: Moment Conditions and the Asymptotic Distribution of Pa-

rameter Estimates

We assume that the “true” preference vector θ0 lies in the interior of the compact set

Θ ⊂ R
7. Our estimate, θ̂, is the value of θ that minimizes the (weighted) distance between

the estimated life cycle profiles for assets, hours, and participation found in the data and

the simulated profiles generated by the model. We match 15T moment conditions. They

are, for each age t ∈ {1, ..., T}, two asset quantiles (forming 2T moment conditions), labor

force participatipon rates conditional on asset quantile and health insurance type (forming 9T

moment conditions), labor force participation rates conditional upon health status (forming

2T moment conditions), and mean hours worked conditional upon health status (forming 2T

moment conditions).

Consider first the asset quantiles. As stated in the main text, let j ∈ {1, 2, ..., J} index

asset quantiles, where J is the total number of asset quantiles. Assuming that the age-

conditional distribution of assets is continuous, the πj-th age-conditional quantile of measured
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assets, Qπj
(Ait, t), is defined as

Pr
(
Ait ≤ Qπj

(Ait, t)|t
)

= πj .

In other words, the fraction of individuals with less than Qπj
in assets is πj . Therefore,

Qπj
(Ait, t) is the data analog to gπj

(t; θ0, χ0), the model-predicted quantile. Using the indi-

cator function, the definition of πj-th conditional quantile can be rewritten as

E
(
1{Ait ≤ Qπj

(Ait, t)}|t
)

= πj . (31)

I  f the mo de l i s tr ue the n the data q uanti l e i n e q uati on (31) c an b e r e pl ac e d by the mo de l

quantile, so that equation (31) can be rewritten as:

E
(
1{Ait ≤ gπj

(t; θ0, χ0)} − πj |t
)

= 0, j ∈ {1, 2, ..., J}, t ∈ {1, ..., T}. (32)

Equation (32) is merely equation (17) in the text. While equation (32) is a departure from

the usual practice of minimizing a sum of weighted absolute errors in quantile estimation, the

quantile restrictions just described are part of a larger set of moment conditions. This means

that we can no longer estimate θ by minimizing weighted absolute errors, if only because we

are considering multiple quantiles.46

The next set of moment conditions use the quantile-conditional means of labor force

participation. Let P j(HI, t; θ0, χ0) denote the model’s prediction of labor force participation

given asset quantile interval j, health insurance type HI, and age t. If the model is true,

P j(HI, t; θ0, χ0) should equal the conditional participation rates found in the data:

P j(HI, t; θ0, χ0) = E[Pit | HI, t, gπj−1
(t; θ0, χ0) ≤ Ait ≤ gπj

(t; θ0, χ0), (33)

46A slightly different approach to handling multiple quantiles is the minimum distance framework developed
in Epple and Seig (1999). Buchinsky (1998) shows that one could include the first-order conditions from an
absolute value minimization problem in the moment set. However, his approach involves finding the gradients
of gπj

(t; θ, χ) at each step of the minimization search.
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with π0 = 0 and πJ+1 = 1. Equation (33) is equivalent to equation (18) in the text. Us-

ing indicator function notation, we can convert the conditional moment equation given by

equation (33) into an unconditional one:

E([Pit − P j(HI, t; θ0, χ0)] × 1{HIit = HI}

× 1{gπj−1
(t; θ0, χ0) ≤ Ait ≤ gπj

(t; θ0, χ0)} | t) = 0, (34)

for j ∈ {1, 2, ..., J + 1} , HI ∈ {none, ret, tied}, t ∈ {1, ..., T}. Note that gπ0
(t) ≡ −∞ and

gπJ+1
(t) ≡ ∞.

Lastly, the moment conditions for labor force participation and hours worked conditional

upon health status and age are those described in equations (19) and (20) of the text, con-

verted into unconditional moment equations with indicator functions. Combining all the

moment conditions described here is straightforward: we simply stack the moment condi-

tions and estimate jointly.

Suppose we have a data set of I independent individuals that are each observed for T

periods. Let ϕ(θ;χ0) denote the 15T -element vector of moment conditions that was described

in the main text and immediately above, and let ϕ̂I(.) denote its sample analog. Note that

we can extend our results to an unbalanced panel, as we must do in the empirical work, by

simply allowing some of the individual’s contributions to ϕ(.) to be “missing”, as in French

and Jones (2003). Letting ŴI denote a 15T × 15T weighting matrix, the MSM estimator θ̂

is given by

arg min
θ

I

1 + τ
ϕ̂I(θ, χ0)

′ŴI ϕ̂I(θ, χ0),

where τ is the ratio of the number of observations to the number of simulated observations.

Under the regularity conditions stated in Pakes and Pollard (1989) and Duffie and Single-

ton (1993), the MSM estimator θ̂ is both consistent and asymptotically normally distributed:

√
I(θ̂ − θ0) N(0,V),
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with the variance-covariance matrix V given by

V = (1 + τ)(D′WD)−1D′WSWD(D′WD)−1,

where: S is the variance-covariance matrix of the data;

D =
∂ϕ(θ, χ0)

∂θ

∣∣∣∣
θ=θ0

(35)

is the gradient matrix of the population moment vector; and W = plim→∞{ŴI}. Moreover,

Newey (1985) shows that if the model is properly specified,

I

1 + τ
ϕ̂I(θ̂, χ0)

′R−1ϕ̂I(θ̂, χ0) χ2
15T−7,

where R−1 is the generalized inverse of

R = PSP,

P = I − D(D′WD)−1D′W.

The asymptotically efficient weighting matrix arises when ŴI converges to S−1, the

inverse of the variance-covariance matrix of the data. When W = S−1, V simplifies to

(1 + τ)(D′S−1D)−1, and R is replaced with S. But even though the optimal weighting

matrix is asymptotically efficient, it can be severely biased in small samples. (See, for example,

Altonji and Segal, 1996.) We thus use a “diagonal” weighting matrix, as suggested by Pischke

(1995). The diagonal weighting scheme uses the inverse of the matrix that is the same as S

along the diagonal and has zeros off the diagonal of the matrix.

We estimate D, S and W with their sample analogs. For example, our estimate of

S is the 15T × 15T estimated variance-covariance matrix of the sample data. That is, a

typical diagonal element of ŜI is the variance estimate 1
I

∑I
i=1[1{Ait ≤ Qπj

(Ait, t)} − πj ]
2,

while a typical off-diagonal element is a covariance. When estimating preferences, we use
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sample statistics, so that Qπj
(Ait, t) is replaced with the sample quantile Q̂πj

(Ait, t). When

computing the chi-square statistic and the standard errors, we use model predictions, so

that Qπj
is replaced with its simulated counterpart, gπj

(t; θ̂, χ̂). Covariances between asset

quantiles and hours and labor force participation are also simple to compute.

The gradient in equation (35) is straightforward to estimate for hours worked and partici-

pation conditional upon age and health status; we merely take numerical derivatives of ϕ̂I(.).

However, in the case of the asset quantiles and labor force participation, discontinuties make

the function ϕ̂I(.) non-differentiable at certain data points. Therefore, our results do not

follow from the standard GMM approach, but rather the approach for non-smooth functions

described in Pakes and Pollard (1989), Newey and McFadden (1994, section 7) and Powell

(1994). We find the asset quantile component of D by rewriting equation (32) as

F (gπj
(t; θ0, χ0)|t) − πj = 0,

where F (gπj
(t; θ0, χ0)|t) is the c.d.f. of time-t assets evaluated at the πj-th quantile. Differ-

entiating this equation yields:

D′
jt = f(gπj

(t; θ0, χ0)|t)
∂gπj

(t; θ0, χ0)

∂θ′
. (36)

In practice we find f(gπj
(t; θ0, χ0)|t), the p.d.f. of time-t assets evaluated at the πj-th quantile,

with a kernel density estimator.

To find the component of the matrix D′ for the asset-conditional labor force participation

rates, it is helpful to write equation (34) as

Pr(HIt = HI) ×
∫ gπj

(t;θ0,χ0)

gπj−1
(t;θ0,χ0)

[
E(Pit|Ait, HI, t) − P j(HI, t; θ0, χ0)

]
f(Ait|HI, t)dAit = 0,
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which implies that

D′
jt =

[
− Pr(gπj−1

(t; θ0, χ0) ≤ Ait ≤ gπj
(t; θ0, χ0)|HI, t)

∂P j(HI, t; θ0, χ0)

∂θ′

+ [E(Pit|gπj
(t; θ0, χ0), HI, t) − P j(HI, t; θ0, χ0)]f(gπj

(t; θ0, χ0)|HI, t)
∂gπj

(t; θ0, χ0)

∂θ′

− [E(Pit|gπj−1
(t; θ0, χ0), HI, t) − P j(HI, t; θ0, χ0)]f(gπj−1(t; θ0, χ0)|HI, t)

∂gπj−1
(t; θ0, χ0)

∂θ′

]

× Pr(HIt = HI), (37)

with f(gπ0
(t; θ0, χ0)|HI, t)∂gπ0

(t;θ0,χ0)
∂θ′ = f(gπJ+1

(t; θ0, χ0)|HI, t)
∂gπJ+1

(t;θ0,χ0)

∂θ′ ≡ 0.

Appendix F: Data Appendix

Our data are drawn from HRS, a sample of non-institutionalized individuals aged 51-61

in 1992. With the exception of assets and health costs, which are measured at the household

level, our data are for male household heads. The HRS surveys individuals every two years;

we have 5 waves of data covering the period 1992-2000.

The variables used in our analysis are constructed as follows. Hours of work are the

product of usual hours per week and usual weeks per year. To compute hourly wages, the

respondent is asked about how they are paid, how often they are paid, and how much they

are paid. If the worker is salaried, for example, annual earnings are the product of pay per

period and the number of pay periods per year. The wage is then annual earnings divided by

annual hours. If the worker is hourly, we use his reported hourly wage. We treat a worker’s

hours for the non-survey (e.g. 1993) years as missing.

For survey years the individual is considered in the labor force if he reports working over

300 hours per year. The HRS also asks respondents retrospective questions about their work

history. Because we are particularly interested in labor force participation, we use the work

history to construct a measure of whether the individual worked in non-survey years. For

example, if an individual withdraws from the labor force between 1992 and 1994, we use the

1994 interview to infer whether the individual was working in 1993.

The HRS has a comprehensive asset measure. It includes the value of housing, other real
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estate, autos, liquid assets (which includes money market accounts, savings accounts, T-bills,

etc.), IRAs, stocks, business wealth, bonds, and “other” assets, less the value of debts. For

non-survey years, we assume that assets take on the value reported in the preceding year.

This implies, for example, that we use the 1992 asset level as a proxy for the 1993 asset level.

Given that wealth changes rather slowly over time, these imputations should not severely

bias our results.

To measure health status we use responses to the question: “would you say that your

health is excellent, very good, good, fair, or poor?” We consider the individual in bad health

if he responds “fair” or “poor”, and consider him in good health otherwise.47 We treat the

health status for non-survey years as missing. Appendix H describes how we construct the

health insurance indicator.

Problems of missing information on health insurance and on retrospective labor force par-

ticipation are severe in the HRS. When estimating labor force participation by asset quantile

and health insurance, we lose 1,734 person-year observations due to missing participation,

6,317 observations due to missing health insurance data, and 292 observations due to missing

asset data. Of a potential sample of 39,701 person-year observations for those between ages

51 and 69, we keep 31,358 observations.

To generate the initial joint distribution of assets, wages, AIME, pensions, health status

and health costs, we draw random vectors from the empirical joint distribution of assets,

wages,48 and health status for individuals aged 51-53. Given an initial distribution of health

costs, we construct ζt, the persistent health cost component, by first finding the normalized log

deviation ψt, as described in equations (9) and (10), and then applying standard projection

formulae to impute ζt from ψt. The way in which we construct the initial distributions for

pensions and AIME is described in Appendices B and C.

47Bound et al. (2003) consider a more detailed measure of health status.
48We impute wages of non-workers using education and (if it exists) the most recent wage.
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Appendix G: The Health Cost Model

Recall from equation (9) that health status, health insurance type, labor force partici-

pation and age affect health costs through the mean shifter hc(.) and the variance shifter

σ(.). Health status enters hc(.) and σ(.) through 0-1 indicators for bad health, and age enters

through linear trends. On the other hand, the effects of Medicare eligibility, health insurance

and labor force participation are almost completely unrestricted, in that we allow for an

almost complete set of interactions between these variables. This implies, for example, that

mean health costs are given by

hc(Mt, HIt, t, Pt) = γ0 × 1{Mt = bad} + γ1t+
∑

h∈HI

∑

P∈{0,1}

∑

a∈{t<65,t≥65}

γhPa.

The one restriction is that γnone,0,a = γnone,1,a,∀a. This implies that there are 10 γhPa

parameters, for a total of 12 parameters apiece in the hc(.) and the σ(.) functions.

To estimate this model, we group the data into 10-year-age (55-64, 65-74, 75-84) × health

status × health insurance × participation cells. For each of these 60 cells, we calculate both

the mean and the 95th percentile of medical expenses. We estimate the model by finding

the parameter values that best fit this 120-moment collection. One complication is that the

medical expense model we estimate is an annual model, whereas our data are for medical

expenses over two-year intervals. To overcome this problem, we first simulate a panel of

medical expense data at the one-year frequency, using the dynamic parameters from French

and Jones (2004) shown in Table 2 and the empirical age distribution. We then aggregate the

simulated data to the two-year frequency; the means and 95th percentiles of this aggregated

data are comparable to the means and 95th percentiles in the HRS. Our approach is similar

to the one used by French and Jones (2004), who provide a detailed description.

Appendix H: Measurement of Health Insurance Type

Recall that much of the identification in this paper comes from differences in medical

expenses and job exit rates between those with tied health insurance coverage and those

with ret (retiree) coverage. Unfortunately, identifying these health insurance types is not
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straightforward. The HRS has rather detailed questions about health insurance, but the

questions asked vary from wave to wave. Moreover, in no wave are the questions asked

consistent with our definitions of tied or ret coverage.

In all of the HRS waves (but not AHEAD waves 1 and 2), the respondent is asked whether

he has insurance provided by a current or past employer or union, or a spouse’s current or

past employer or union. If he responds yes to this question, we code him as having either

ret or tied coverage. We assume that this question is answered accurately, so that there is

no measurement error when individual reports that his insurance category is none. All of

the measurement error problems arise when we allocate individuals with employer-provided

coverage between the ret and tied categories.

If an individual has employer-provided coverage in waves 1 and 2 he is asked “Is this

health insurance available to people who retire?” In waves 3, 4, and 5 the analogous question

is “If you left your current employer now, could you continue this health insurance coverage

up to the age of 65?”. For individuals younger than 65, the question asked in waves 3 through

5 is a more accurate measure of whether the individual has ret coverage. In particular, a

“yes” response in waves 1 and 2 might mean only that the individual could acquire COBRA

coverage if he left his job, as opposed to full, ret coverage. Thus the fraction of individuals

younger than 65 who report that they have employer-provided health insurance but who

answer “no” to the follow-up question roughly doubles between waves 2 and 3. On the other

hand, for those older than 65, the question used in waves 3, 4, and 5 is meaningless.

Our preferred approach to the misreporting problem in waves 1 and 2 is to assume that a

“yes” response in these waves indicates ret coverage. It is possible, however, to estimate the

probability of mismeasurement in these waves. Consider first the problem of distinguishing

the ret and tied types for those younger than 65. As a matter of notation, let HI denote an

individual’s actual health insurance coverage, and let HI∗ denote the measure of coverage

generated by the HRS questions. To simplify the notation, assume that the individual is

known to have employer-provided coverage—HI = tied or HI = ret—so that we can drop

the conditioning statement in the analysis below. Recall that many individuals who report
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retiree coverage in waves 1 and 2 likely have tied coverage. We are therefore interested in the

misreporting probability Pr(HI = tied|HI∗ = ret, wv < 3, t < 65), where wv denotes HRS

wave and t denotes age. To find this quantity, note first that by the law of total probability:

Pr(HI = tied|wv < 3, t < 65) =

Pr(HI = tied|HI∗ = tied, wv < 3, t < 65) × Pr(HI∗ = tied|wv < 3, t < 65) +

Pr(HI = tied|HI∗ = ret, wv < 3, t < 65) × Pr(HI∗ = ret|wv < 3, t < 65). (38)

Now assume that all reports of tied coverage in waves 1 and 2 are true:

Pr(HI = tied|HI∗ = tied, wv < 3, t < 65) = 1.

Assume further that for individuals younger than 65 there is no measurement error in waves

3-5, and that the share of individuals with tied coverage is constant across waves:

Pr(HI = tied|wv < 3, t < 65) = Pr(HI = tied|wv ≥ 3, t < 65)

= Pr(HI∗ = tied|wv ≥ 3, t < 65).

Inserting these assumptions into equation (38) and rearranging yields the mismeasurement

probability:

Pr(HI = tied|HI∗ = ret, wv < 3, t < 65)

=
Pr(HI∗ = tied|wv ≥ 3, t < 65) − Pr(HI∗ = tied|wv < 3, t < 65)

Pr(HI∗ = ret|wv < 3, t < 65)

=
Pr(HI∗ = ret|wv < 3, t < 65) − Pr(HI∗ = ret|wv ≥ 3, t < 65)

Pr(HI∗ = ret|wv < 3, t < 65)
. (39)

To estimate the mismeasurement in waves 1 and 2 for those aged 65 and older, we make

the same assumptions as for those who are younger than 65. We assume that all reports of

tied health insurance are true and the probability of having tied health insurance given a

report of ret insurance is the same as for individuals in waves 1 and 2 who are younger than
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65. We can then use equation (39) to estimate this probability.

The second misreporting problem is that the “follow-up” question in waves 3 through 5

is completely uninformative for those older than 65. Our strategy for handling this problem

is to treat the first observed health insurance status for these individuals as their health

insurance status throughout their lives. Since we assume that reports of tied coverage are

accurate, older individuals reporting tied coverage in waves 1 and 2 are assumed to receive

tied coverage in waves 3 through 5. (Recall, however, that if an individual with tied coverage

drops out of the labor market, his health insurance is none for the rest of his life.) For

older individuals reporting ret coverage in waves 1 and 2, we assume that the misreporting

probability—when we choose to account for it—is the same throughout all waves. (Recall

that our preferred assumption is to assume that a “yes” response to the follow-up question

in waves 1 and 2 indicates ret coverage.)

A related problem is that individuals’ health insurance reports often change across waves,

in large part because of the misreporting problems just described. Our preferred approach

for handling this problem is classify individuals on the basis of their first observed health

insurance report. We also consider the approach of classifying individuals on the basis of

their report from the previous wave, analogous to the practice of using lagged observations

as instruments for mismeasured variables in an instrumental variables regression.

Figure 7 shows how our treatment of these measurement problems affects measured job

exit rates. The top two graphs in Figure 7 do not adjust for the measurement error problems

described immediately above. The bottom two graphs account for the measurement error

problems, using the approached described by equation 39. The two graphs in the left column

use the first observed health insurance report whereas the graphs in the right column use

the previous period’s health insurance report. Figure 7 shows that the profiles are not very

sensitive to these changes. Those with ret coverage tend to exit the labor market at age 62,

whereas those with tied and no coverage tend to exit the labor market at age 65.
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Figure 7: Job Exit Rates Using Different Measures of Health Insurance Type
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Another, more conceptual, problem is that the HRS has information on health insurance

outcomes, not choices. This is an important problem for individuals out of the labor force with

no health insurance; it is unclear whether these individuals could have purchased COBRA

coverage but elected not to do so.49 To circumvent this problem we use health insurance in

the previous wave and the transitions implied by equation (10) to predict health insurance

options. For example, if an individual has health insurance that is tied to his job and was

working in the previous wave, that individual’s choice set is tied health insurance and working

or COBRA insurance and not working.

A final measurement issue is the treatment of the self-employed. Figure 8 shows the impor-

tance of dropping the self-employed on job exit rates. The top panel treats the self-employed

as working, whereas the bottom panel excludes the self-employed. The main difference caused

by dropping the self-employed is that those with no health insurance have much higher job

exit rates at age 65. Nevertheless, those with ret coverage are still most likely to exit at age

62 and those with tied and no health insurance are most likely to exit at age 65.

Our preferred specification, which we use in the analysis, is to include the self-employed,

to use the first observed health insurance report, and to not use the measurement error

corrections.

49For example, the model predicts that all HRS respondents younger than 65 who report having tied health
insurance two years before the survey date, work one year before the survey date, and are not currently
working should report having COBRA coverage on the survey date. However, 19% of them report having no
health insurance.
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Figure 8: The Effect of Dropping the Self-Employed on Job Exit Rates
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Appendix I: Estimating Age-Specific Rates of Return

During the sample period of 1992-2000, asset prices grew rapidly. This creates a problem

because most of our observations come from the HRS core sample, who were ages 51-61 in

1992, 53-63 in 1994, and so on. Therefore, a 63-year old is more likely to be observed in

1994 than in 1992, whereas a 51-year old is more likely to be observed in 1992 than 1994.

In other words, older individuals were typically interviewed in later years, when asset prices

were considerably higher. This means that in our data, older individuals have more assets

not just because of high savings rates, but because of high realized rates of return. These

rates of return were likely unexpected. In order to control for this, we estimate the ex-post

rate of return that individuals faced as they aged.

Let rt be the year-specific interest rate faced by a household and let ageit be the age of

individual i in year t. The average interest rate faced by households headed by an individual

of age k is rk ≡ E[rt|ageit = k]. We estimate this object as

r̂k =
1

Ik

Ik∑

i=1

T∑

t=1

rt × 1{ageit = k}, (40)

where 1{ageit = k} is a 0-1 indicator equal to one when the age of individual i in year t

is equal to k, and Ik is the number of households of age k. The goal of this appendix is to

estimate r̂k, which means that we must estimate rt.

We use two approaches to estimating the year-specific interest rate rt. In both cases, the

idea is to first estimate the historical growth rates in asset prices (we use data over the 1952-

2001 period), then take the difference in asset price growth in the 1990s and the historical

growth rates. Let rt = E[rt] + εt, where εt represents the the unanticipated component of

asset returns, which is white noise. We estimate the anticipated component of asset returns

E[rt] using the sample mean 1
T

∑T
t=1 rt. The goal of this appendix is to estimate εt.

Our first approach to estimating asset returns is to combine estimates of the rate of return

on stocks and housing with the shares of household wealth invested in stocks and housing.

Let Alit be the amount of household assets in asset l, l ∈ {1, ..., L}, and let rlt be the return

73



on that asset. The total return on assets at time t is

rtAit =
L∑

l=1

Alitrlt,

which implies that the average rate of return at time t is

rt =
L∑

l=1

Alit
Ait

rlt.

We can then obtain εt by estimating

εt = rt − E[rt] =
L∑

l=1

[Alit
Ait

]
(rlt − E[rlt]).

We estimate Alit

Ait
using the sample means of shares in different assets.

Most of the unanticipated component of the rate of return over the sample period came

from high rates of return in stocks and housing. Assuming that rlt −E[rlt] = 0 for all assets

other than stocks and housing, we estimate the share of all assets in stocks (19% in our

HRS-AHEAD sample) and housing (32% in our sample) and multiply that by the difference

between stock returns in year t, rlt, less their sample average, 1
T

∑T
t=1 rlt. We estimate the

share of stocks in different assets, such as IRAs, using data from the Flow of Funds. The Flow

of Funds shows, for example, that in 1995 50% of wealth in Defined Contribution pension

plans was in stocks. We estimate rates of return on stocks using data from the Center for

Research in Security Prices (CRSP) for the period 1952-2001. Therefore, we multiply .5 by

the share of wealth in IRAs to give the share of wealth in stocks held in IRA accounts. We

estimate rates of return on housing using data from the Office of Federal Housing Enterprise

Oversight for the period 1975-2001. (Earlier data are not available.) These estimated growth

rates use data on repeat sales of single family housing that were originated by or subsequently

purchased by either Freddie Mac or Fannie Mae.

Our second approach to estimating rates of return is to use aggregate data on savings and
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asset growth. Aggregate wealth grows according to

At+1 = (1 + (rt(1 − τ))At + St,

where St is savings between time t and time t+ 1 and τ is the average tax rate. Rearranging

this equation yields

rt =
At+1 −At − St

(1 − τ)At
.

We take values of aggregate assets and savings (where savings are defined as personal savings

plus undistributed corporate profits) from the Flow of Funds for the period 1952-1991. We

assume that τ = 0.2.

The second, aggregate data approach is potentially better than the first one because it

accounts for the fact that other forms of wealth, such as business wealth, also grew rapidly

over the sample period. Moreover, estimating the share of stocks held by households is

difficult because it is difficult to infer what share of a household’s IRA wealth is in stocks.

Data from the Flow of Funds indicate that we are potentially understating the share of total

wealth in stocks by over 25% (6.3 percentage points). This would lead us to underestimate

the wealth gains from holding stocks over our sample period and thus underestimate εt.

The drawback to the second approach is that it is very difficult to measure savings.

For example, the Flow of Funds measure of savings is income minus consumption, where

income includes rent, dividends and interest. Ideally, the savings measure would be free of

rent, dividends and interest. Because firms reduced the share of earnings going to dividends

between 1992 and 2000 (leading to higher growth in the value of firms), the data tend to

overstate the decline in the savings rate over the sample period. In other words, part of

the run-up in assets not explained by savings rates is merely firms buying new equipment

instead of paying dividends. This will lead us to overstate the growth in assets not explained

by savings and thus εt over the sample period. Therefore, the two procedures likely provide

bounds on εt, which leads us to use the average of the two measures in our analysis. Figure

9 shows estimates of εt, by age, over the sample period. The approach using aggregate asset
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Figure 9: Unanticipated Component of Rate of Return, by Age

growth results in considerably higher rates of return than does the approach using stock and

housing returns.
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