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LIKELIHOOD-BASED INFERENCE IN 
TRENDING TIME SERIES WITH 

A ROOT NEAR UNITY 

ZHIJIE XIAO 
University of Illinois at Urbana-Champaign 

This paper studies likelihood-based estimation and tests for autoregressive time 
series models with deterministic trends and general disturbance distributions. In 
particular, a joint estimation of the trend coefficients and the autoregressive pa- 
rameter is considered. Asymptotic analysis on the M-estimators is provided. It is 
shown that the limiting distributions of these estimators involve nonlinear equa- 
tion systems of Brownian motions even for the simple case of least squares re- 
gression. Unit root tests based on M-estimation are also considered, and extensions 
of the Neyman-Pearson test are studied. The finite sample performance of these 
estimators and testing procedures is examined by Monte Carlo experiments. 

1. INTRODUCTION 

In the past decade, econometricians have focused a great deal of attention on 
the development of estimation and hypothesis testing procedures in autoregres- 
sive time series models where the largest root is near unity. Most of these pro- 
cedures are based on least square methods in linear regression models and have 
likelihood interpretations when the data are Gaussian. In the absence of Gauss- 
ianity, asymptotic results of these procedures generally still hold, but these meth- 
ods are less efficient than methods that exploit the distributional information. 
Monte Carlo evidence indicates that the least squares estimator can be very 
sensitive to certain type outliers and that inference procedures based on the 
least square estimation may have poor performance (see, e.g., Lucas, 1994). In 
empirical analysis, many applications in nonstationary time series involve fi- 
nancial data such as exchange rates whose distributions are heavy-tailed. It is 
therefore important to consider estimation procedures that are robust to depar- 
tures from Gaussianity and can be applied to nonstationary time series. The 
present paper addresses some of these issues. 

This paper was presented at the Cowles Conference "New Developments in Time Series Econometrics" at Yale 
University in October 1999. Special thanks go to Peter Phillips for his encouragement and guidance. My thanks 
also go to Katsuto Tanaka, Anil Bera, Ted Juhl, Roger Koenker, Lung-Fei Lee, Francesc Marmol, Joon Park, and 
the referee for their helpful comments. The paper was partially supported by the Hong Kong Research Grants 
Council under grant No. CUHK 4078/98. Address correspondence to: Zhijie Xiao, Department of Economics, 
University of Illinois at Urbana-Champaign, 1206 South Sixth Street, Champaign, IL 61820, USA; e-mail: 
zxiao@uiuc.edu. 

1082 ( 2001 Cambridge University Press 0266-4666/01 $9.50 



LIl(ELIHOOD INFERENCE IN TRENDING TIME SERIES 1083 

There has been some study on nonstationary time series regression with non- 
normal innovations, including Cox and Llatas (1991), Knight (1991), Phillips 
(1995), Lucas (1995), Rothenberg and Stock (1997), and Juhl (1999), among 
others. In particular, Phillips (1995) studies robust cointegrating regressions and 
develops fully modified least absolute deviations (LAD) and M-estimators for 
cointegrating regressions. Lucas (1995) considers unit root tests based on 
M-estimators. Cox and Llatas (1991) and Rothenberg and Stock (1997) study 
robust estimation and inference for nearly integrated autoregressive models with- 
out deterministic trends. In the multivariate case, Juhl (1999) proposes a test 
for cointegration using M-estimators based on singular value decomposition. 

Many macroeconomic time series, such as real gross national product (GNP), 
consumption, money, and prices, display a tendency toward growth over time. 
Consequently, most empirical analyses in nonstationary time series literature 
consider unit root or near unit root processes with deterministic trends. One 
traditional way (see, e.g., Park and Phillips, 1988, 1989) of modeling trending 
time series is to consider regressions of the following form: 

Yt = Y'Xt + ayt-I + ut, (1.1) 

where xt is a deterministic trend of known form. The high persistency in mac- 
roeconomic time series indicates that the autoregression coefficient a is close 
to 1, and there have been many empirical applications that test the null hypoth- 
esis of a unit root (a = 1) against the alternative of stationarity (a < 1). How- 
ever, as argued in Schmidt and Phillips (1992), the parameterization in (1.1) is 
not convenient in interpreting the deterministic component. For instance, con- 
sidering the leading case that x, = (1, t)', we have 

Yt = Yo + y1 t + ayt-1 + ut. (1.2) 

Such an equation has the property that the meanings of the parameters yo and 
yi differ under the null and the alternative. Under the null of a unit root, the 
parameters yo and yi represent trend and quadratic trend, respectively. How- 
ever, under the alternative, yo and yi determine level and trend. This problem 
also surfaces in the unit root tests, and an "extra" deterministic trend compo- 
nent has to be introduced to remove the nuisance parameters. The introduction 
of surplus trend variables results in some inefficiency in the regression and re- 
duces the power of the corresponding unit root test from its already low level. 
To avoid the problem caused by the confusion over the meanings of param- 
eters, researchers have considered as an alternative to (1.1) the following data 
generating process: 

Yt Y'Xt?Y, t1,...,n, (1.3) 

yts ay ?Ys- t 1, t=l..n. (1.4) 

This parameterization allows for the same trend component under both the null 
and the alternative hypothesis and is now widely used in time series analysis. 
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Combining (1.3) and (1.4) gives the nonlinear regression model (Phillips and 
Xiao, 1998) 

y x = y'Axt + (1- a)y'xt-, + ayYt-I + ut. (1.5) 

Compared with (1.1), regression (1.5) incorporates both the null and the alter- 
native models in a nonlinear equation. 

This paper considers likelihood-based estimation and hypothesis tests for 
autoregressive time series model (1.3) with deterministic trends and general 
disturbance distributions. In particular, we consider a joint estimation of the 
trend coefficients and the autoregressive coefficient based on the nonlinear re- 
gression (1.5). Asymptotic analysis of the M-estimators, including the maxi- 
mum likelihood estimators, for both the trend and autoregression coefficients 
is provided. It is shown that the asymptotic distributions of these estimators 
are complicated and involve nonlinear equation systems of Brownian motions 
even for the simple case of least squares regression. We also consider unit 
root tests against local alternatives based on these estimators. Local power analy- 
sis is conducted to show that these tests have nontrivial power against n-local 
alternatives. In addition, as a natural extension of the Neyman-Pearson test, 
the likelihood ratio test for a unit root against a point alternative is studied, 
and asymptotic power functions and power envelopes are derived. Parallel to 
the existing study on the Gaussian case, unit root tests based on M-estimation 
coupled with quasi-differencing are analyzed. A Monte Carlo experiment is 
conducted and shows that these estimators display rather good finite sample 
properties when the data density has a heavy tail. 

The paper is organized as follows. Section 2 describes estimation. The joint 
estimation of the trend coefficients and the local parameter is discussed, and as- 
ymptotic analysis of the M-estimators is given. Section 3 describes unit root tests 
based on these M-estimators, including likelihood ratio tests for a unit root against 
a general local alternative, the case with a point alternative, and the quasi- 
differencing M-detrended unit root tests. Monte Carlo results on the finite sam- 
ple performance of the nonlinear estimators and associated tests are reported in 
Section 4, and Section 5 concludes. All of the proofs appear in the Appendix. 

A word on notation: the symbol =* signifies weak convergence, signifies 
equality in distribution, and := signifies definitional equality. L denotes lag op- 
erator. The expression A = 1 - L is the difference operator, and A, signifies quasi- 
difference, which is defined by A, 1 - (1 + c/n)L. The term I(k) denotes 
integration of order k. All limits are taken as T -< oo, unless otherwise specified. 

2. ESTIMATION 

2.1. Joint Estimation of the Trend and the AR Coefficient 

Consider the autoregression model introduced in Section 1 in which the ob- 
served time series y, can be written as the sum of a deterministic trend d, and a 
stochastic component y7: 
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yt=d+Y , t=l..n, (2.1) 

y' ay Irt- + Ut, t = l, ... ,n. (2.2) 

The deterministic trend dt depends on unknown parameters and is specified as 

d y = ' xt, (2.3) 

where y is a vector of the trend coefficient and xt is a deterministic trend of 
known form. The leading case of the deterministic component is the linear time 
trend where xt = (1, t). In general, the trend function xt may be more complex 
than a simple time polynomial. For example, time polynomials with sinusoidal 
factors and piecewise time polynomials may be used. The latter corresponds to 
a class of models with structural breaks in the deterministic trend. The term yt7 
is the stochastic component of Yt and can be represented by an autoregressive 
process. The expression {utj is the unobserved innovation process, which is 
assumed to be stationary with mean zero. We also assume for convenience that 
the initial observation y' is a constant (more generally, without affecting the 
asymptotic results, we can assume that it is a random variable of finite variance). 

Our purpose is to study likelihood based inference in this model when the 
autoregressive parameter a is closed to one. To obtain large sample approxima- 
tions, we employ the local-to-unity asymptotic theory investigated by Phillips 
(1987, 1988), Chan and Wei (1987), and others. Thus we consider the param- 
eter space in a shrinking neighborhood of unity and reparameterize a so that 

c 
a = 1+-. (2.4) 

n 

Combining (2.1)-(2.4), we have the following nonlinear regression: 

Ay == Ax -Cy' ] + c +ut (2.5) 

To simplify the exposition, we consider the simple case that ut are unob- 
served independent and identically distributed (i.i.d.) errors with mean zero and 
unit variance (for discussions, see Remark 6, which follows). If we denote the 
log density of u as f(u), then the conditional log density of Yt is given as follows: 

f(Ayt - C(yt I/ln) - y'Axt + Cy'(xtI/ln)), 

and the joint log density of the random sample is 

n 

f(Ayt - C(yt_IlIn) - y'AXt + cy'(xtI/ln)). 
t=2 
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Writing it as a function of the parameters, the preceding expression delivers the 
log likelihood function, and we denote it as L(c, y): 

n 

L(c,y) f E(Ay - c(yt-Iln) - y'Ax, + cy'(xt-I/n)). 
t==2 

The maximum likelihood estimators of c and y can then be found by maximiz- 
ing L(c, y) with respect to c and y. More generally, if we consider some crite- 
rion function q', the so-called M-estimators of c and y are obtained from a similar 
optimization problem with f replaced by p. 

Lucas (1995) considers unit root tests based on the M-estimator of model 
(1.1). Cox and Llatas (1991) study the asymptotic behavior of the M-estimator 
of c for the case without a deterministic trend, and Rothenberg and Stock (1997) 
consider model (1.3), but the asymptotic analysis was only conducted for the 
simple case without deterministic trends. However, in the presence of an un- 
known deterministic component, the system that determines the maximum like- 
lihood estimator becomes more complicated and is generally nonlinear. 

2.2. Asymptotic Analysis of the M-Estimators 

We are interested in the asymptotic behavior of the M-estimators of c and y in 
regression (2.5), defined as the solution of the following extreme problem: 

[ = arg max [E , (AYt - c (Yt I /n) - y'Axt + cy'(x,t l /n)) (2.6) 

for some criterion function cp. Taking sv (u) - u2, (2.6) gives the ordinary 
least squares (OLS) estimator of c and y. The maximum likelihood estimator 
corresponds to the case when sp is the true log density function. Although we 
pay particular attention to the maximum likelihood estimator, our analysis in 
this section will be given in a general way so that the M-estimator is covered, 
treating the maximum likelihood estimator as a special case of particular inter- 
est (notice that some simplifications happen in the asymptotic results when D is 
the true log density). 

We want to examine the asymptotic distribution of the estimator (c, j). Un- 
der regularity conditions, the estimator (c, j) can also be defined as a solution 
to the following equation system, which is the first-order condition of the ex- 
tremum problem (2.6): 

n 

S'(Ayt - c(Yt 1/ln) - y'Axt + cy'(xt-I/n)) A, x, = 0, 

(NL) i n 

E (Ayt - c(ytI/In) - y'Axt + Cy'(Xt-I/n))Ys I = 0. 
t 2 
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The expression (NL) is a nonlinear equation system and generally has no ana- 
lytic solution even for the simple case when fp is the log density of a normal 
distribution. Indeed, as will become clear later, in a n-shrinking neighborhood 
of unity, the limiting distributions of the M-estimators are jointly determined 
by a nonlinear equation system of Brownian motions and the limiting trending 
functions. 

To study the asymptotic distributions of the M-estimators, it is convenient 
for us to make the following assumptions on u, and the criterion function 'p. 

Assumption A. u, are i.i.d. with mean zero and variance one. The term '(Q) 
possesses derivatives 'p' and 'p". Here [u, cp'(u)] has kth moments for some 
k > 2, E[cp'(ut)] = 0, and p" is Lipschitz continuous. 

Assumption A is a standard condition in asymptotic analysis of maximum 
likelihood estimators or M-estimators. The assumption that ut has unit vari- 
ance is just for simplicity of exposition and brings no loss of generality. (In 
the general case with variance o , a similar result can be obtained. The analy- 
sis given in this paper remains valid after a simple restandardization by a2; 

see Remark 6 for a discussion on the more general case.) The moment condi- 
tions on u and 'p'(u) are needed to establish the weak convergence results. We 
may also replace the moment condition on 'p'(u) by boundedness conditions 
of the derivatives of 'p, because the latter and the moment condition on u im- 
ply the corresponding condition on p'. 

Denote [*] as the greatest lesser integer function; then under Assumption A, 
as n goes to oo, nl/2 Enr] Ut converges weakly to a standard Brownian motion 
WI (r), and thus n-1/2Y'r] converges weakly to the corresponding Ornstein- 
Uhlenbeck process J,(r) = ' ec(rs)dWI(s). The limiting distributions of c 
and j will also be dependent on the weak limit of the partial sums of 'p'(U,). 
We denote W2 = var[qc'(ut)], 8 = -E['p"(Ut)], and p = -E[ut(p'(ut)]; then 
n-1/2[nr]4'(ut) =* B,(r) W= wW,(r), where W,. is a standard Brownian 
motion. 

Notice that W1(r) and W,(r) are correlated Brownian motions. To deal with 
the correlation between W1 and W,. explicitly, following the previous literature, 
we construct the random variable vt = 'p'(Ut) + put. Then, by construction, vt 
are i.i.d. with variance (wD2 - p2) and are uncorrelated with ut. The partial sum 
process n l/2 nr] t converges weakly to N2 - p2W2(r), where W2(r) is a 
standard Brownian motion independent of W1(r). The Brownian motion B, (r) 
then has the following decomposition: B,(r) - coW,(r) = rw.2 - p22W2(r) - 

pWI(r). 
For asymptotic analysis of the deterministic trend, we assume that there are 

standardizing matrices Dn and Fn = n- Dn such that D` -X[nr] - X(r) and 
Fn-I JAX[nr] -> g(r), as n -* oo, uniformly in r E [0,1], where X(r) and g(r) 
are limiting trend functions. In the case of a linear trend, Dn = diag[l,n] 
and X(r) = (1, r)'. If xt is a general pth order polynomial trend, Dn 
diag[l, n,..., nP] and X(r) = (1, r,..., rP). 
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The limiting distributions of j and a will be dependent on asymptotic be- 
havior of the random variables n -, l E tp'y(Ay - 'z xt ) (y I - j'xt- 1) and 

n' - t=I c'(Ayt - y'xt) Aext. To derive the limiting distribution of (c,), 
we assume that the following conditions hold. 

Assumption B. c = c + op(n"/4) and n-'/2D (D - y) = op (n1/4) 

Assumptions similar to Assumption B are standard in the development of 
M-estimator asymptotics. It is related to Assumption (b) in Theorem 5.1 of Phil- 
lips (1995) and the assumption on Et - et in Theorem 1 of Lucas (1995). No- 
tice that 

it = \yt- a(yt_I/n) - T Axt + aT'(xt-I/n) 

= - (a - c)(ys1/n) - (T - y)'Acxt + (c - c)Q- y)'(xt-I/n). 

Under Assumption B, t - ut satisfies the conditions in Lucas (1995) and Phil- 
lips (1995). The results of this paper can be obtained under different types of 
regularity conditions (for a discussion on consistency of M-estimators, see, e.g., 
Wooldridge, 1994). To cover a wide range of models, we simply assume that 
Assumption B holds. Denoting the limit of n-1/2Dn(j - y) by (c and the limit 
of a by rjc, the asymptotic distributions of the M-estimators a and j are given 
in the following theorem. 

THEOREM 1. Given models (2.1)-(2.4), for all c in a compact set, under 
Assumptions A and B, the limiting distributions of nonlinear regression 
M-estimators T and a are jointly determined by the following equations: 

c[ fX,(r)X,(r)'drl fx,(r)d?, (r), 

7qc= [fjc(r)2dr1 fce(r)d3c(r), 

where 

X,(r) = g(r) - qX(r), Jq(r) = J(r) - X(r), 

rr rr 

Sc()= SO(r) +fJc (s)ds, S9,(r) = So(r) + (c - Y7) JC (s)ds, 
2 2 

So(r) = p 
W4(r) - W2(r), Jc(r) = cJc(r) - (r) 8 8 

Remark 1. If p is the true log density for ut, we have p = 1 and W2 = > 1. 
The departure from Gaussianity in the data is completely determined by the 
parameter wt2. When the data are generated by a Gaussian process, W2 = 1 and 
the W2(.) terms disappear from the limiting distribution. As W2 increases, the 
underlying distribution becomes more and more non-Gaussian. 



LIKELIHOOD INFERENCE IN TRENDING TIME SERIES 1089 

Remark 2. In the stationary case, similar nonlinear regression estimators can 
be obtained from (1.5). However, under regularity conditions, closed-form so- 
lutions of the limiting distributions for these estimators can be derived, and it 
can be shown that they are first-order equivalent to the one-step Newton- 
Raphson estimators. 

Remark 3. The maximum likelihood estimation based on this nonlinear re- 
gression generally provides a more efficient estimator than the OLS regression 
for the deterministic trend; this is also confirmed in the Monte Carlo experi- 
ment in Section 4. Because the true value of the local parameter c is unknown, 
this maximum likelihood estimator of the deterministic trend can not achieve 
the efficiency level that applies when the local parameter is known. 

Remark 4. In practice, even if the exact distribution of the innovations is 
unknown, as long as the data have similar tail behavior as the density function 
used in the estimation, inferences based on these methods still have good sam- 
pling performance. Thus, we may consider adaptive (Hansen and Lee, 1994; 
Seo, 1996; Beelders, 1998) or partially adaptive (Bickel, 1982, p. 664; Potscher 
and Prucha, 1986; Xiao, 1999) estimation methods so that the data density can 
be approximated. For example, to capture the feature of heavy tails in eco- 
nomic and financial data, we may consider a partially adaptive estimator based 
on the Student-t distributions, which has wide applications in economic analy- 
sis. In case of t-distributed innovations, the log-likelihood is given by 

n 
L(y, c) = constant + - ln E 

2 

V V+1 n {14 CYt- I cyxt 1] 
2 

2 t=2 V n n 

Thus we consider a two-step partially adaptive estimator of (y, c) in which the 
first step involves a preliminary estimation of the parameters v and Yi. In the 
presence of general disturbance distributions, v and E may lose their original 
meaning. However, when vi ' 0 and E 2 0, iv and E still can be interpreted as 
estimators of measures of the tail thickness and the spread of the disturbance 
distribution, and the partially adaptive estimator can still have good sampling 
properties. 

Remark 5. From the proof of Theorem 1, it can be derived that the 
M-estimator for c has the following representation: 

n 

n-I Ep'(Ayt - f'Ax)(yt_1 - x,_,) 

n + oP(l). 
n-2 ( CP"(Ayt - 'AX')(Yt_1 - Xt_) 

t=1 
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Remark 6. For simplicity we have assumed in this paper that u, has unit 
variance. In the general case where the variance of u, is o2, the analysis and 
results are parallel to those given in the paper, but the corresponding quantities 
n-112Dn(y - y), t2, and p need to be standardized by the scale parameter 

2*. If we modify Assumption A so that u, are i.i.d. with mean zero and vari- 
ance o-2, then under the modified Assumption A, the partial sum process 
of u, converges weakly to a Brownian motion with variance f 2, i.e., 
n-1/2 E nr]ut = B1(r) = o-W1(r), where W1(r) is still defined as a standard- 
ized Brownian motion. Thus, n -12y'r] converges weakly to the corresponding 
Ornstein-Uhlenbeck process J,*(r) = fr ec(r-s)dBi(s) = oJ(r), and JJ(r) = 
fjec(r-s)dW1(s). We standardize (w2 and p by o.2 as follows: 

(t) (P =t)r 2/- 2, Po = p /a 

and deal with the correlation between Bl(r) and B,,(r) explicitly by con- 
structing random variable v,* ='(ut) + pout. It can be verified that v7 are 
i.i.d. with variance o-2(W2O, - po) and are uncorrelated with ut. The partial 

-1/2 [nr] V* 2 W sum process nvt converges weakly to o -CO )2p W2(r), where 
W2(r) is a standard Brownian motion independent of W1(r). Thus B,(r) = 
o { iwJ2u - p2W2(r) - poW1(r)}. If we standardize n'-12D(J - -y) by o--' 
and denote the limiting variates of n-112of-'Dn(j - y) and c by ec and q, 
respectively, then, under the assumptions of Theorem 1 (with the modified 
Assumption A), the limiting distributions of the nonlinear regression 
M-estimators j and c are jointly determined by the following equations: 

(c = X, ( r)X,7 ( r) 'dr ] X, ( r) d5 ( r), 

T,c = 
[fLce(r)2dr1 fce(r)d5*(r), 

where 

X,(r) = g(r) - qcX(r), ice(r) = Jc(r) - (cX(r), 

Rr rr 

38(r) = SO(r) +fJ c(s)ds, 9*(r) = So(r) + (c-Y7 J- (s)ds, 

Po o 2 2 

S*(r) = W1(r) - PO W2 (r), Jc (r) = cJc (r) -4g (r). 8 8 

We can see that the only difference between the preceding results and those of 
Theorem 1 is that, in the general case, o 2 and p2 in Theorem 1 are replaced by 
their standardized versions w2 and po2 
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If we take Sc (u) = - u2, the estimators are least squares regression estimators 
and Theorem 1 gives the results in Phillips and Xiao (1998). These estimators 
have likelihood interpretations when the process is actually Gaussian. How- 
ever, even if the time series are not normal, the asymptotic results still hold. 
Denoting the nonlinear least squares regression estimators as yls and cls, we 
summarize the limiting distribution of the nonlinear least square estimators in 
the following corollary for convenience of later analysis. 

COROLLARY 1. Given models (2.1)-(2.4), for all c in a compact set, the 
limiting distributions of nonlinear least squares regression estimators yi1s and 
il, are jointly determined by the following equations: 

(c- JX (r) X, (r) dr] JX,(r)d V,(r)] 

7C [I ce(r)2drX [fjc(r)dUe(r)1 

where 

Xc (r) =g (r) - cX (r), V,,(r) = W(r) - ( -c) fJC(s) ds, 

Ue(r) =W(r) - fc c(s s 

and W(r) is a standard Brownian motion. 

3. HYPOTHESIS TESTS 

3.1. Unit Root Tests against Local Alternatives Based 
on M-Estimators 

This section considers unit root tests based on M-estimators proposed in the 
previous section. We are interested in the alternative hypothesis that a is less 
than unity. For alternatives that are distant from unity, the proposed tests will 
be consistent and will reject Ho with probability close to one in large samples. 
Thus we are interested in local alternative hypothesis H1: c < 0. 

In our discussion, we assume that sD is the true log density when likelihood 
ratio tests are considered. In other cases, qp can be a more general criterion 
function satisfying Assumption A. We start with the likelihood ratio test. Let 'y 
be the restricted maximum likelihood estimator of y under the null hypothesis 
of c = 0 and let c and j be the unrestricted maximum likelihood estimators of 
c and y analyzed in Section 2; then the likelihood ratio test for the null hypoth- 
esis of a unit root rejects Ho for small values of L(0, 5) - L(j, j). The limiting 
distribution of the likelihood ratio statistic depends on the limiting distribu- 
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tions of both the unrestricted maximum likelihood estimator and the restricted 
maximum likelihood estimator. Under the null hypothesis, n-l1/2y'r] converges 
weakly to WI(r), and, by Theorem 1, the limiting distributions of the un- 
restricted nonlinear regression estimators j and c are jointly determined by the 
following equations: 

I 7o0 fXO(r)W6O(r)dr X,= o(r)dSo(r), 

r,ofwVO(r)2dr fW&(r)d?o(r), 

where 

LV&(r) = W1(r) - 6'X(r), S0(r) = S0(r) - e0X(r). 

For the restricted estimator, notice that, under Ho, the log likelihood is sim- 
ply L(0, y) = YSO(Ay, - y'z\x). The restricted MLE of y satisfies the follow- 
ing first-order condition: 

n 

E f (AY, - V'AX,)Ax, = 0. 
t=1 

When xt contains a constant term, the corresponding element in zXxt is zero, 
and, as a result, the regressor in the restricted model is actually of smaller di- 
mension than xt. To avoid the singularity problem in deriving the limiting dis- 
tributions of y', we express this explicitly by rewriting the trend component in 
the restricted model as y'Axt =3'x, where xt = Sxt for some eliminator matrix 
S that eliminates redundant rows of xt. Therefore Xt is usually of smaller dimen- 
sion than x,, and the log likelihood can be rewritten as 

E n(pyt - I3xt). 

Assume that G, lxy1&r] e X(r) as n -> oc, uniformly in r E [0,1]. Then, under 
the null of a unit root, ,3 has the following asymptotic distribution: 

n1/2G( X- /) => [ X(r)X(r)'dr fX (r)dSo(r). (3.1) 

Remark 7. If xt does not contain a constant term, say, xt = t, then xt is actu- 
ally of the same dimension as xt, and X(r) = g(r). 

Remark 8. If Sv is the log density of normal distribution, SO(r) is simply Wl(r), 
and the limit distribution (3.1) reduces to the standard result of OLS detrending. 

The asymptotic null distribution of the likelihood ratio statistic is summa- 
rized in Theorem 2. 
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THEOREM 2. Under Assumptions A and B and the null hypothesis Ho: 
c = 0, 

2[L(O, 5)-L(j, j)] 

> 6f [n0 WV0(r) + (og(r)]2dr-28f L[-q0! 0(r) +? g(r)]dSo(r) 

+ b dSo(r)X(r)' [X(r)X(r)'drl JX(r)dSo(r). (3.2) 

Remark 9. Likelihood ratio tests for the null hypothesis c = c0 vs. the alter- 
native c # c0 can also be constructed. The principles of the proofs are the same, 
and the asymptotic results are similar to those of Theorem 2. 

We may also construct test statistics directly based on the M-estimator of the 
unknown parameter. A natural candidate is simply the M-estimator of c. This 
can be treated as a generalization of the Dickey-Fuller (Dickey and Fuller, 1979) 
or Phillips-Perron (Phillips, 1987; Phillips and Perron, 1988) tests under 
M-estimation. From the result in Section 2, this is asymptotically equivalent to 
rejecting Ho if 

n 

n E (P'(zy, - y'Ax,)(y,I - jxt, ) 
t=1 

ZM = < CV (3.3) 

E "(Ayt - r'Axt)(yt- - Xt_1) 
t=1 

for some critical value CV7. The asymptotic distribution is given in the follow- 
ing corollary. 

COROLLARY 2. Under Assumptions A and B and the null hypothesis, the 
statistic ZM defined by (3.3) converges weakly to 

[ W~0(r)2dr] fWV0(r)dSo(r). (3.4) 

To obtain asymptotically valid tests for a unit root, we need to know the 
distributions given in (3.2) of Theorem 2 or (3.4) of Corollary 2. In the case 
that cp is the log density function, we can calculate the critical values by simu- 
lating WI and W2. Notice that the departure from normality is characterized 
by w2, C )2 =1 when the data is Gaussian. As w2 increases, the underlying dis- 
tribution becomes more and more non-Gaussian. Thus, we may estimate and 
tabulate the asymptotic critical values for selected values of Cw2, say, w2 = 
1,2,3,..., 10, and so forth. For intermediate values of a)2, critical values could 
be approximated by interpolation (for a discussion on related issues, see Hansen, 
1995, p. 1155). 

More generally, the distribution of ut may not be known, so that W22, p, and 8 
must be estimated. The asymptotic null distribution is unaffected if the param- 



1094 ZHIJIE XIAO 

eters are replaced by their consistent estimates. Thus, a robust estimate of the 
null distribution can be obtained by simulating the distribution with the un- 
known parameters replaced by their consistent estimates. Such robust tests could 
be inconvenient in practical analysis because the critical values will have to be 
calculated each time. An alternative way (see, e.g., Lucas, 1997) is to generate 
conservative critical values based on normal innovations. 

Now we consider the power properties of the likelihood ratio statistic. -The 
limiting distribution of (3.2) can be derived using the results of Theorem 1, and 
thus the power function can be obtained. We summarize the asymptotic results 
in the following theorem, which shows that the likelihood ratio test has non- 
trivial power against the local alternative. 

THEOREM 3. Under Assumptions A and B and the local alternative, 

2[L (0, y)-L (j,y) 

= )2 [(77c - c)Jce(r) + 5tXc (r)]2dr 

+ 2wf2 [(-qc - c)Jic(r) + 6'Xc(r)] dWs,(r) + 2cwO2fJc(r)dWq,(r) 

+ w 2 fdSc(r)X(r)' [X(r)X(r)'drl X(r)dSc(r) 

-c 2& 2 fJc(r)2dr 

+ 2cw2 fJc(r)X(r)'dr[fX(r)X(r)'dr1 X(r)dSc(r), 

where 

rr rr 

SC(r) = SO(r) + c J J, Sj(r) = So(r) - Jc 

Remark 10. Similar results can be obtained for the test ZM. 

Remark 11. Under the normality assumption, the likelihood ratio test can be 
constructed based on the least squares regression. It can be shown that, after 
dropping the asymptotically negligible terms, the likelihood ratio test rejects 
Ho for small values of 

n 

[Ayt - nl(Yt-1 /n) - 
nl,Axt + jnl zylI (Xt_1 /n)]2 

t=2 

LRC = ,n 

/Yt - A'Axtt]2 
t-2 
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where the restricted maximum likelihood estimator 5 is simply the least squares 
estimator of the following regression on the differenced data: 

Ay, = y Axt + Ayt. (3.5) 

Using xt defined earlier in this section, (3.5) can be rewritten as Ayt = 3'x + 
AY. The least squares estimator 63s has the following asymptotic distribution: 

n /2G(8s 
- /3) X [ X(r)X(r)'drl JX(r)dJc(r). (3.6) 

The asymptotic distributions of LR, are given in the following theorem. 

THEOREM 4. 

(1) Under Ho, 

n(LRc - 1) 

J[rioro(r) + e'g(r)]2dr- 2 [noW0(r) + eg(r)]dW(r)2dr 

+ fdW(r)X(r)' [fX(r)X(r)'drj fX(r)dW(r). (3.7) 

(2) Under Hc, 

n(LR - 1) => g(r) [X 7(r) -qc + c)X'(r)] dr} ec + fRC(r)2dr 

+ fdSc(r)X(r)' [ X(r)X(r)'drl JX(r)dSc(r) 

-26 fXr,(r)dW(r) - 2c JfJC(r)dWV(r) 

- c J,(r)dW(r) - c Jc(r)dSc(r), 

where 

?c(r) = r,cJ,(r)-(-(, + c)X'(r)ec, and Wr(r) = W(r)-6$X(r). 

Remark 12. In the special case that e is the nonlinear least squares estima- 
tor, the limiting null distribution of ZM is [f WVo(r)2dr] -1f WV0(r)dWV0(r). 
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3.2. Unit Root Test against a Point Alternative 

Even for the simplest case where x, = 0 (or d, is known) and thus y' is observ- 
able, there is no uniformly optimal estimator for c or uniformly optimal test for 
Ho. Under regularity conditions, the random variables EJt I c' (Ays) (y-s In) 
and 2t=l s"(Ays) (y-s IIn)2 have a nondegenerate limiting distribution and are 
asymptotically jointly sufficient statistics for the local parameter c. Notice that 
the asymptotic sufficient statistic is two dimensional and we can not find a 
uniformly best estimate for c or a uniformly most powerful test for Ho even 
asymptotically. Cox and Llatas (1991) studied the optimality of the maximum 
likelihood estimator for this case and showed that the optimal criterion func- 
tion is a linear combination of the least squares score and the true score func- 
tion, and the linear combination depends on the unknown parameter c. Because 
cp is the log density of ut, asymptotic admissible tests could be constructed based 
on a linear combination of , 

(Ay' sy)(ysUI/n) and En 1 c(Ays)y In)'. 

If we consider a unit root test against the simple point alternative c = c < 0, 
then, in the case d, is known, a most powerful test can be constructed based on 
the likelihood ratio statistic L(O) - L(c) by the Neyman-Pearson lemma (e.g., 
King, 1988; Dufour and King, 1991). As a result, the asymptotic local power 
function can be calculated and a power envelope can be obtained as we change 
the values of c (Rothenberg and Stock, 1997). 

When dl is unknown, the trend coefficient y has to be estimated to construct 
a feasible test. However, the use of an estimated y changes the limiting distri- 
bution, and there is no most powerful test for the unit root hypothesis. In this 
case, a natural generalization of the Neyman-Pearson test for the null of c = 0 
against the point alternative c - c is to reject for small values of the likelihood 
ratio L(O, ') - L(c, j), where 9 and j are the maximum likelihood estimators 
for y under the null and the alternative hypothesis, respectively. Elliott, Roth- 
enberg, and Stock (1996) studied this test for the Gaussian case with a linear 
trend and constructed a power envelope based on such tests. In this section, we 
explore the asymptotic properties of such tests for cases with general distur- 
bance distributions. 

The asymptotic behavior of L(O, ') has been analyzed in Section 3.1. For , 
it can be shown that 

n1' DnD(j - y) = X [JXc(r)X,(r)'dr1 fX,(r)dsc(r), (3.8) 

where 

rr 

S3(r) = So(r) - (c - c) fJcI Xc(r) = g(r) - jX(r). 

By an asymptotic expansion and using the results of (3.1) and (3.8), the as- 
ymptotic distribution of the likelihood ratio statistic can be derived. 
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THEOREM 5. For all c in a compact set, 

2[L (O, ') - L(c 

8f L[c- c)Jc(r) + X5(r)' Lx (r)Xi(r)'drl 1X.(r)d?c(r)1 dr 

- 28f ( - c)Jc (r) ? X,r) L XJ(r)X(r)'drl fX,(r)dSc(r)1 dSo(r) 

+ 8 dSc(r)X(r)' X(r)2(r)'drt fX(r)dSc(r) -c2 8Jc(r)2dr 

- 2c f Jc (r) dSo (r) + 2 c Jc (r) X (r)'dr [ X(r)X(r)'drl (r) dSc (fr) 

Under the null of c -0 and the point alternative c = c, we obtain the follow- 
ing limiting distributions. 

COROLLARY 3. 

(1) Under c 0, 

2[L(0, 7)L(c-, o 

= 81 W (r) + XJ(r)' [fX(r)XJ(r)'drl JX,(r)dSo(r)2 dr 

- 28 Jwl (r) + X, (r)' L1X(r)Xr(r)'dr1 fX(r)dSo(r)l dSo(r) 

+ 8 fdSo(r)X(r)' LX(r)X(r)'drl fx(r)dSo(r). 

(2) Under c =, 

2[L(O, ) -L(J, j)] 

-8 dS0(r)Xc(r)' L1X,(r)X,(r)'dr1 fXi(r)dSo(r) 

+ 8 dS([r)X(r)' L rXr'dr1 X(r)dS,(r) - c28 J (r)2dr 

- 2c5 fJr(r)dSo(r) ? 258 f J,(r)X(r)'dr X(r)X(r)'dr1 
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Remark 13. In the special case that fp is the log density of normal distribu- 
tion, the likelihood ratio test rejects Ho for small values of 

n 

I [Ay, - -(yjn) - 'Axt + Sj'(xtII/n)]2 
t=2 

LR =n (3.10) 

E [Ayt - Y'AXt]2 
t=2 

The limiting distributions of (3.10) can be derived as a corollary of Theorem 5. 
In particular, when xt is a linear trend, the results reduce to the distribution 
given by Elliott et al. (1996). They also derive the power envelope based on 
distribution (3.9) for the case where so is log normal and x, is a linear trend. 
Obviously, in the case of non-Gaussian innovations, this distribution depends 
on the parameter a2. Given the value of w2, the power envelope can be derived 
similarly. Monte Carlo evidence indicates that substantial power increase oc- 
curs as the parameter o 2 increases. This suggests a potential efficiency gain 
from using the distributional information in the unit root tests. 

3.3. QD M-Detrended Unit Root Tests 

The M-estimation can be coupled with quasi-differencing (QD) to construct a 
nearly efficient M-detrended unit root test. Again, like the tests considered in 
the previous sections, different types of unit root tests based on the efficient 
M-detrended data can be constructed. We analyze the coefficient based test in 
this section; other tests can be analyzed in a similar way. 

For some appropriate choice c, we calculate the maximum likelihood estima- 
tors for y under the hypothesis c =, 

n 

= arg max E gc(AEY, - y'A xt), (3.11) 
t=1 

and construct the detrended Yt based on , 

s = Y -'x 

Reestimating c based on the M-estimator of the autoregressive coefficient of 
Yt , i.e., 

n 

S = arg max E c (\yt - c (yt/fIn) - jAxt + cj' (xt- 1 /n)), 
t=l 

the efficient M-detrended unit root test can then be constructed based on 
M = C. 
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Notice that the partial sum process based on Y' has the following asymptotic 
behavior: 

Y[nr] s J (r) - X(r)' [fX xc fX dSC :=J (r). 

We can derive the limiting null distribution and the power function of ZM C. 

THEOREM 6. 

(1) Under c 0, 

L LV 
[ J dS LXI JXX 

X dSo (3.12) 

(2) Under the alternative hypothesis, 

c= + [2 [ dSo - JCXC A X^] do] 

Remark 14. In the case that cp (u) =-u2, it can be easily verified that under 
the null 

which is exactly the limit distribution of the quasi-differencing detrended Phil- 
lips Z,, test (see, inter alia, Phillips and Xiao, 1998). If we choose x, to be a 
constant term or a linear trend, we obtain the limiting result of Elliott et al. 
(1996). 

Remark 15. For time series with general serially correlated residuals, a non- 
parametrically modified estimator, say, c', can be used, and the same limiting 
results follow. 

4. MONTE CARLO RESULTS 

We conducted some limited Monte Carlo experiments to examine the sampling 
performance of the nonlinear joint estimation of the trend coefficients and the 
local parameter and testing procedures based on them. In particular, we com- 
pared the finite sample performance of the nonlinear joint estimator of the de- 
terministic trend coefficient with other conventional estimators and compared 
the power properties of unit root tests based on different detrending proce- 
dures. The model used for data generation was the following model: 
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where the true value of y is 0 and {uj is an i.i.d. sequence of t-distributions 
with three degrees of freedom. We standardized ut so that it has unity variance. 
Two sample sizes were considered: n = 100, n = 200. The number of iterations 
is 2,000 in each case, and the initial value of yS is set at 0. 

We first examined the estimation of deterministic trends, i.e., y. We consid- 
ered the leading case of a linear time trend, i.e., x, = (1, t). Notice that because 
the intercept term is not consistently estimable, we focused our attention on the 
estimation of the coefficient of t. The following estimators of the deterministic 
trend coefficient were compared: 

(1) Ordinary least squares estimator of the trend coefficient, denoted as OLS. 
(2) Least squares estimator of the trend coefficient based on the quasi-differenced 

data, denoted as QDLS. 
(3) M-estimator of the trend coefficient based on the quasi-differenced data, i.e., j in 

(3.11), denoted as QDM. 
(4) Maximum likelihood estimator of the trend coefficient based on the nonlinear 

regression, i.e., j in (2.6), denoted as NLM. 

We considered different data sets generated by (DGP) with a = 1, 0.95, 0.9, 
0.85, and 0.8 and sample sizes of 100 and 200. The prespecified c in quasi- 
differencing is -10 for the case n = 100 and -20 for the n = 200 case (other 
choices of prespecified c were also tried). Table 1 reports the estimation bias 
for the four estimators in different cases, and Table 2 reports the variances of 
these estimators. Notice that these estimators are unbiased and the mean squared 
errors are dominated by the variances. We also depicted the (kernel smoothed) 
simulation densities of these estimators corresponding to different data sets. 
The information about these graphics is given here: 

TABLE 1. Estimation of the deterministic trend (bias) 

OLS QDLS QDM NLM 

n = 100 
a 1 -0.0010215 -0.0006520 -0.00100501 -0.0010499 
a 0.95 0.0003870 0.0003634 0.00010376 0.0000627 
a 0.90 0.0004275 0.0003949 -0.00000908 -0.0000471 
a 0.85 0.0003171 0.0002694 -0.00006837 -0.0000662 
a 0.80 0.0002477 0.0001965 -0.00007931 -0.0000246 

n = 200 
a 1 0.0004712 0.0004742 -0.0015339 -0.0007481 
a 0.95 0.0001856 0.0001727 0.0000656 -0.000102 
a = 0.90 0.0000221 0.0000161 0.0000122 0.00000251 
a - 0.85 0.0000179 0.0000153 -0.0000459 -0.0000664 
a - 0.80 0.0001281 0.0000954 -0.0000559 -0.0000325 
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TABLE 2. Estimation of the deterministic trend (variance) 

OLS QDLS QDM NLM 

n = 100 
a = 1 0.1158501 0.1104706 0.1056588 0.0090731 
a = 0.95 0.0295969 0.0271542 0.0202029 0.0189686 
a = 0.90 0.0159903 0.0141669 0.0100533 0.0106364 
a = 0.85 0.0108151 0.0099818 0.0066257 0.0070036 
a = 0.80 0.0081582 0.0078926 0.0054088 0.0052918 

n = 200 
a = 1 0.0763741 0.0751235 0.0731166 0.0618703 
a = 0.95 0.0145821 0.0133685 0.0096584 0.0092456 
a = 0.90 0.0057442 0.0055467 0.0036155 0.0038017 
a = 0.85 0.0038246 0.0035625 0.0021288 0.0023156 
a = 0.80 0.0024754 0.0022922 0.0017279 0.0016296 

(1) Figure 1: simulation densities of these estimators when the sample size is 100 
and the true a = 1. 

(2) Figure 2: simulation densities when n = 100 and the true a is 0.9. 
(3) Figure 3: simulation densities when n = 200 and the true a = 1. 
(4) Figure 4: simulation densities when n = 200 and the true a is 0.9. 

Some general conclusions can be drawn from these Monte Carlo results. The 
estimators QDM and NLM, which use the distributional information, have much 
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FIGURE 1. Simulation densities, n 100, a = 1. 
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FIGURE 2. Simulation densities, n = 100, a = 0.9. 

better sampling performance than OLS and QDLS. Comparing QDM and NLM, 
we can treat NLM as the M-estimator using a nonlinearly estimated c, but QDM 
uses a prespecified c. (The one-step estimator was also examined and was found 
to be worse than the nonlinear estimator.) The Monte Carlo results indicate that 
the nonlinear joint estimator y (using a jointly estimated c in quasi-differencing) 
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FIGURE 3. Simulation densities, n = 200, a 1. 
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FIGURE 4. Simulation densities, n =200, a = 0.9. 

has in general pretty good sampling performance and has avoided the addi- 
tional issue of choosing a prespecified 5. As we can anticipate, when the true c 
value is close to the prespecified c, QDM has slightly better performance over 
NLM. However, in other cases, NLM gives relatively better results. The evi- 
dence is quite clear in the four figures. 

We also examined the effect of these estimation procedures on the power 
properties of unit root tests. In particular, we considered the coefficient-based 
unit root tests using these four different detrending procedures and the likeli- 
hood ratio test (3.2) based on the nonlinear joint estimation. Thus, the five tests 
examined in the Monte Carlo are 

(1) the Dickey-Fuller coefficient test based on OLS detrending, denoted by OLS; 
(2) the QD detrended DF test (based on least square regression on the quasi-differenced 

data), denoted by QD; 
(3) the ZM (3.12) test based on M-estimation plus quasi-differencing, denoted by QDM; 
(4) the ZM (3.3) test based on the nonlinear M-estimation, denoted by NL; 
(5) the likelihood ratio test (3.2) based on the nonlinear M-estimation, denoted by 

LR. 

To provide a power comparison among the different tests, size-corrected power 
is reported (for discussions on the use of size-corrected power, also see Stock, 
1995; Cheung and Lai, 1997). The corresponding critical values were calcu- 
lated from a direct simulation using 20,000 replications. Both the demeaned 
test and the detrended test are examined. In particular, Table 3 reports the em- 
pirical power of the demeaned tests, and Table 4 reports the power of the tests 
when a linear time trend is removed. Figure 5 depicts the power functions of 
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TABLE 3. Size-adjusted empirical power (demeaned case) 

OLS QD QDM NL LR 

a = 0.975 0.0976 0.1002 0.1260 0.1266 0.1362 
a = 0.95 0.1792 0.1822 0.2544 0.2540 0.2970 
a = 0.925 0.2982 0.3076 0.4682 0.4660 0.4900 
a = 0.90 0.4546 0.4688 0.7086 0.7082 0.6676 
a =0.875 0.6278 0.6416 0.8896 0.8898 0.8101 
a = 0.85 0.7874 0.7962 0.9672 0.9666 0.8918 
a = 0.825 0.8968 0.9016 0.9908 0.9912 0.9502 
a= 0.80 0.9578 0.9606 0.9980 0.9982 0.9799 

the demeaned tests, and Figure 6 depicts those of the detrended tests. A general 
conclusion that can be drawn immediately from the simulation results is that 
the testing procedures using distributional information have substantially im- 
proved power properties. These Monte Carlo results indicate that the empirical 
power functions of tests QDM, NL, and LR are well above the power functions 
of least-square-based tests. Tests based on the joint estimation have reasonably 
good performance. 

5. CONCLUDING REMARI(S 

We studied likelihood-based estimation and tests in a nonstationary autoregres- 
sive time series model with unknown deterministic trends and general distur- 
bance distributions. In particular, a joint estimation based on a nonlinear 
regression was studied. Asymptotic analysis on the M-estimators and related 
testing procedures were presented. The finite sample performance of these es- 
timators and testing procedures was examined in Monte Carlo experiments. In 

TABLE 4. Size-adjusted empirical power (detrended case) 

OLS QD QDM NL LR 

a = 0.975 0.0624 0.0638 0.0786 0.0778 0.1266 
a = 0.95 0.1048 0.1068 0.1592 0.1584 0.2654 
a = 0.925 0.1936 0.1950 0.3166 0.3160 0.4462 
a = 0.90 0.3192 0.3222 0.5434 0.5406 0.6228 
a = 0.875 0.4804 0.4822 0.7684 0.7690 0.7776 
a = 0.85 0.6474 0.6522 0.9134 0.9126 0.8728 
a = 0.825 0.7974 0.8024 0.9736 0.9726 0.9336 
a = 0.80 0.8982 0.9006 0.9926 0.9918 0.9676 
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FIGURE 5. Size corrected power of unit root tests (demeaned case). 

practice, even if the exact distribution of the innovations is unknown, if the 
data have similar tail behavior as the density function used in the estimation, 
inference based on these methods should have good sampling properties. 

Our analysis may be extended in different directions of possible econometric 
interest. The approach of this paper readily extends to M-estimation with gen- 
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FIGURE 6. Size corrected power of unit root tests (linear time trend). 



1106 ZHIJIE XIAO 

erally serial correlated innovations, in which case the one-sided long-run vari- 
ance enters the limiting distribution; Structural breaks in the deterministic trend 
may be incorporated into the model. Adaptive or partially adaptive methods 
using approximations of the data densities may be investigated. It is also of 
considerable interest to extend this analysis to vector autoregressive time series 
with cointegrated variables. 
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APPENDIX: PROOFS 

Proof of Theorem 1. By definition, the estimators (5, j) solve the following equa- 
tion system: 

n 

(i): I cp'(Ay, - 5(y,-I/n) - j'A x, + jy'(xt- 1/n))Acx, 0, 
t=1 

n 

(ii): E 4'(Ayt - j(y,_j/n) -f'Ax, + jy'(xt_j/n))%Us = 0, 
t=1 

where -1 = Yt- 1 - 'xt_j. For simplicity, we denote that 

't = Ayt - 5(yt-/n) - 'WAxt + jy'(xt_ /n); 

then 

Ut = t- 
(5-c)(yts_I/n) 

- y)'Ax ? (C- c)( 
y-)'(xt-IIn) 

Under Assumption B, for all c in a compact set, the left-hand side of equation (i) is 
asymptotically equivalent to 

(i>): f ~'(Ut)Axt - (C-C) E f0"(Ut) Acxt 
t=1 t=1 n 

(Y -y) E iC (Ut)ACx,A0x, + ( C)(- y) E "(Ut ) Aoxt . 
t=1 t= i\fn 



1108 ZHIJIE XIAO 

Under the assumptions of Theorem 1, the following asymptotics hold: 

F,-' A, X[nr, g (r) -r- X(r) X, (r), 

1 [nr] 

X r( B, (r) wW,(r) BM(w) 

1 
Y[nr] > J,(r) - eX(r) = Je (r) 

where Jc(r) = forec(r-s)dWi(s) and WI(r) is the weak limit of n-1/2 Enr] ut. As a re- 
sult, it can be verified that 

in I1 
E 9(put)A,,xtFn=- 8(r dB,-X)J, , (A.1) 

'I7~~~~~~~t 

I n FL 

- 
, " 
I 

(Ut)(e -C) ( n) A,' xtxF1 >-6 (c-C) Jj c XX (A.2) 

in~~~~ 
,\;ySI(ut ) y-) lA, xtAt Qxt Fn l >(5 XC X77 (A.3) 

y)' 
X'-1 

A,, t Fn-' (-qc c) XX(A.4) 
,\I-n t. ID(l)C-)77 n )ctl -(1-cJx A4 

Notice that 

p,(Ut) = ,[q'(ut) + pUt] -pu = Vt - PUt. 

Thus 

B,(r) = Aw2p2W2(r) - pW1(r). (A.5) 

Denote 

rr rr 

3c(r) = SO(r) 
+j 

(S)dS, 9,(r) = SO(r) + (c - ) fJ Jc(S)dS 

2 2 

SI(r) = - W1 (r)- 14W2(r), Jc(r) = cJC(r) -eg(r); 16 c~~~~~' 
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then, by the results of (A.1)-(A.5) and (i'), we have 

ec= L[ Xc(r)X, (r)'dr ] X (r) dS, (r)- 

Similarly, under the given assumptions, the left-hand side of equation (ii) is asymp- 
totically equivalent to 

(ii): 
i 

u)t1 ( )E f (ut) 
I 

) 
s 

t=1 t= \ n 

-(- ) 
f - 

(ut)A\x 1 + (7 - y)' ) 
t=1 t=1 n 

and by calculations of weak limits of the sample covariances (I/n) t= ' (ut)VtsN 1 

(,/n2)t1 I p"(Ut)y7s 1us 1, (1/n)( - _' In = p "(u)A c xts 1, and (1/n)(j-y) X 

Et=j "(ut)(xt_j/n)33U1, following a similar argument as the previous proof, we 

get 

qcfJcf (r)2dr = fJc (r) dc (r). U 

Proof of Theorem 2. Notice that the likelihood ratio statistic is 

L(O, ') -L(e, 7 

- o(Ayt - x-t)E --(p ytA-e(yt_ /n)-'Axt + ey'(xt IIn)). 
t t 

By an asymptotic expansion, it can be shown that, under Ho and the given assumptions, 
the likelihood ratio statistic has the following approximation: 

Cn e n 

- ( P(Ut)(Yt- - Xt-1) - - a 9"(ut)(Yt,i - Vxtx1)(y - y)'Axt 
n t=1 n t=1 

-2 n n 

-2 2 E 

, 
(Ut)(yt_ - j,X'_1)2 + y -(uy)(j- Xt 

n t=1 t=t 

n n 
- E 9 ( t)(-) X-2 E 9f(Ut)[(q - y)fAXt]2 

t=1 t=1 

i n 

+ - z 9'"(ut)[Q - 
fl)'XVt]2 + op(l). (A.6) 

2 t=j 
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It can be derived that the components in (A.6) have the following limits: 

nr 
- f -(U')(Y_-, x'_1) LV i,of fo(r)dB,(r), 

nl t=1 

nr 
- E (U)(Yt- -Y Xt-j)(Y - y)'AXt -8cqoof g(r)WeO(r)dr, 
n t=i 

~2 nr 

n2 z f (t)(Yt-l-ytxt_l)2 >-6 fw0 WVo(r)2dr, 

nr 
E 9 (u t) Y-), A\x,l g (r) dB, (r), 

t=i 

(Ut) -13)'- 1 =) f dB(0K' [f XX'dr JXdSo, 

nr 
O if(u y),AX,]2 --8= gf(r)g(r)'dreo, 

t=1 

E - [I XX'dr JXdSo. 

Thus 

2(L(0 ) -L(e, 

converges weakly to 

277ofXWeo(r)dB,(r) 
+ 2 

7o4f7 g(r)WTo(r)dr 
- 8o2 IfWV(r)2dr 

+ 2fo tg(r)dBq,(r) - 
6fo'g(r)g(r)'dreo 

-2 dB,,(r)X(r)' X(r)X(r)'dr1 fX(r)dSo(r) 

- 8fdSo(r)X(r)' JX(r)X(r)'drl fx(r)dSo(r), 

and the preceding summation equals 

[f7oWLVo(r) 
+ 

6'g(r)]2dr-23 
f 

L-qoWV0(r) 
+ 

e'g(r)]dSO(r) 

+ fdSo(r)X(r)' LX(r)X(r)'drl JX(r)dSo(r). U 
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Proof of Theorem 3. The proof follows similar steps to that of Theorem 2. Notice 
that under the local alternative hypothesis and the given assumptions, the likelihood 
ratio L(O, 5) - L(e, T) has the following asymptotic expansion: 

(5C) (n-C)n 
E (pD (U') (Y,- T Xt- 1) - TD'Ut( )X -)(T / D/),A- n t=i n t=1 

( 
25-c)t - n2 ( p"(Ut)(Yt-1 - _ xt1)2 + 

( 
-(Ut)(- y),A,Xt_1 

2n t= 1 t=1 

n C n n 
+ E (p (ut) - Yt-1 - 

s p'(ut) - /3 - - I (p"(uUt)[( ) X - ) ] 
t=1 n t=1 2 t=j 

C n n 
2 

- 
i 

Ef (UtY-( -,3Xt + 
if 

E D t) [(,8 - ,B)Yxt] 
n t=1 2 t- I 

2 tE (if (Ut) n yt_) + oP(l). (A.7) 
2 n 

By a calculation of limits of the components in (A.7), we obtain the results of Theorem 3. 
. 

Proof of Theorem 5. Notice that 

L(c, Y) = E '(Ajyt - Y'Aext) 

= (ut -(C- - c)(ys /n) - y('A-xt); 

under Assumption B, for all c in a compact set, the likelihood ratio L(O, 5)-L(c, j) has 
the following asymptotic expansion: 

n 
+~ 
f 

(ut CYt-I)LCtl ( p/ 

- E sDf (Ut) [ 
y- 

- \1-n ( ) /\- 

t= n 

n F 1 
+ 0 (ut) 

(c - 
)yt-l- Y)AXt 

no(u) (c - 5)ytr-1 -2 )'ct 

+ oP(l). 
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It can be verified that 

( po'(Ut) - Yts- I = C /3Yi- 1 
( 

1 GU7A J dB 

=m fdscx'Lfxx'<'fxdB9, 

- E p (ut)yl( B-X T J C{- In Y(-itG-1lf l/2Gn(o-)} 
n L= n Wn1 Xnj~flnut 

~~~~p ~ > c (Ut) (18 -) (8 11)R I G-[litX r dr r c(r 

n 1 ~~~~~n \- t=1~~~~~~~~~~~~~~~ 

't(u)()x]-(- p)'nl2 n"( )n (xtx' G 1 [8/Gn1 - 

t=1 n t=1 

c5dSc(r)X(r)' X(r)X(r)'drl fX(r)dSc(r), 

E 9e(~ -Ut ( ? (j7 =C - Y)'zM" (t ) (,t >cbJc()2 

~ ~"(u~) ( > - [(C-Yi + (;c ? JxcLfxcx fxeiScI dB9, 

n- n 

Notice that Bnt(r) ==-8S(r) and thus 

-2fJdScX 'Lf JXX'If JXdB - fdSrX' LfXX 'drI fXdSr 

= fJdSc X' LI JXX' ]1 Xd [2S - Sc] 

= 2 dSCn X LX2XdSC . 

Theresult of Theorem5canthen beobtained. 
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