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Testing Unit Root Based on Partially Adaptive
Estimation

Luiz Renato Lima and Zhijie Xiao

Abstract

This paper proposes unit root tests based on partially adaptive estimation. The proposed tests
provide an intermediate class of inference procedures that are more efficient than the traditional
OLS-based methods and simpler than unit root tests based on fully adaptive estimation using
nonparametric methods. Taking into account the well documented characteristic of heavy-tail
behavior in economic and financial data, we consider unit root tests coupled with a class of
partially adaptive M-estimators based on the student-t distributions, which includes the normal
distribution as a limiting case. Monte Carlo experiments indicate that, in the presence of heavy tail
distributions, the proposed test is more powerful than the traditional ADF test. We apply the
proposed test to several macroeconomic time series that have heavy-tailed distributions. The unit
root hypothesis is rejected in U.S. real GNP, supporting the literature of transitory shocks in
output. However, evidence against unit root is not found in real exchange rate and nominal interest
rate even when heavy-tail is taken into account.
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1 Introduction

In the past decade, econometricians have focused a great deal of attention on the de-
velopment of estimation and testing procedures in autoregressive time series models
where the largest root is unity. Most of these procedures are based on least square
methods and have likelihood interpretations when the data are Gaussian. In the ab-
sence of Gaussianity, these methods are less ef�cient than methods that exploit the
distributional information. Indeed, Monte Carlo evidence indicates that the least
square estimator can be very sensitive to certain type of outliers and that inference
procedures based on least squares estimation may have poor performance.
Many applications in nonstationary economic time series involve data that are

affected by infrequent but important events such as oil shocks, wars, natural dis-
asters, and changes in policy regimes, indicating the presence of nonGaussian be-
havior in macroeconomic time series (see Balke and Fomby, 1994). It is well-
documented that �nancial time series such as interest rate and exchange rate have
heavy-tailed distributions. In such cases, it is important to consider estimation and
inference procedures that are robust to departures from Gaussianity and can be ap-
plied to nonstationary time series.
For this reason, in the recent 10 years, researchers have devoted a lot of effort in

the development of more ef�cient and robust inference procedures in nonstationary
time series. One way to achieve asymptotic ef�ciency and robustness is the use of
adaptive estimation based on nonparametric technique, see, e.g. Seo (1996) and
Beelders (1998). Under appropriate regularity assumptions, tests based on adaptive
estimation using nonparametric kernel methods can be constructed, although these
procedures may be complicated and thus practically dif�cult to use.
An alternative approach is the use of M estimation. A partial list along this

direction includes: Cox and Llatas (1991), Knight (1991), Phillips (1995), Lucas
(1995a), Lucas (1995b), Rothenberg and Stock (1997), Juhl (1999), Xiao (2001),
Koenker and Xiao (2003) and Thompson (2004) among others. In particular, Phillips
(1995) studies robust cointegration regressions. Cox and Liatas (1991), Lucas
(1995a and 1995b), Rothenberg and Stock (1997), Xiao (2001) and Thompson
(2004) studied M-estimation and likelihood-based inference for various models of
unit root (or local unit root) time series. In the aforementioned studies, the criterion
functions in M-estimation are assumed to be known and the associated inferences
are generally ef�cient only when the true likelihood functions are used.
In computing critical values, Lucas (1995b) simulates the data by generating a

time series from the data generating process with i.i.d. standard normal innovations.
More recently, Thompson (2004) showed that the Lucas' approach is asymptotically
incorrect unless the errors are in fact normal. Based on this �nding, Thompson
(2004) proposed a new method to compute critical values based on a polynomial
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approximation which leads to correct critical values, but one still needs to specify
the error distribution. In practice, the error distributions are unknown and, therefore,
it is important to use a criterion function (or a density function) that has similar
characteristic to the data distribution. In this paper, we compute critical values
using the same polynomial approximation as in Thompson (2004), but instead of
sticking on a particular criterion function, we consider a class of density functions
that captures a wide range of distributions used in economic applications, and select
a density function using a data-dependent approach and propose a unit root test
based on this (partially) adaptive estimation.
The present paper is somehow related to the work of Shin and So (1999) where

a fully adaptive (nonparametric) method is used to identify the criterion function.
Although fully adaptive estimators has the theoretically attractive property of as-
ymptotic ef�ciency, as suggested by Bickel (1982, p.664), Shin and So (1999)
recognize that "the adaptive method is not necessarily easy to implement" ( Shin
and So, 1999, page 8). Moreover, the model studied in Shin and So (1999) assumes
that there is no serial correlation in the error term, which turns out to be a very
restrictive assumption. On the other hand, partially adaptive estimation is a more
practical goal because it avoids the dif�culty of nonparametric estimation of score
functions. (also see similar arguments in Potscher and Prucha (1986), Hogg and
Lenth (1984), McDonald and Newey (1988), and Phillips (1994)).
Thus, this paper tries to provide an intermediate class of unit root testing pro-

cedures that are more ef�cient than the traditional OLS-based methods in the pres-
ence of heavy-tailed distributions without the need of specifying a density func-
tion and, on the other hand, simpler than unit root tests based on fully adaptive
estimation using nonparametric methods. In particular, we propose a test based
on partially adaptive estimation of the augmented Dickey-Fuller (ADF) model. A
data-dependent procedure is used to select an appropriate criterion function for es-
timation and computation of critical values.
Giving the well documented characteristic of heavy-tail behavior in economic

and �nancial data, we consider a partially adaptive estimator based on the fam-
ily of student-t distributions (Postcher and Prucha 1986). The family of student-t
represents an important dimension of the space of distributions, including the nor-
mal distribution as a limiting case and the Cauchy distribution as a special case.
Its adaptation parameter will depend on the scale and thickness parameters, which
can be easily estimated from the data using the approach proposed by Potscher and
Prucha (1986). There is no doubt that other classes of distributions can also be an-
alyzed similarly. For example, one may consider the Pearson type IV distribution
[Pearson (1895)], which also incorporates excess kurtosis in a simple way. (See,
e.g. Premaratne and Bera (2005) for studies on the Pearson type IV distributions).
Monte-Carlo experiments are conducted to investigate the �nite-sample perfor-
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mance of the partially adaptive test. Comparing to the conventional ADF test and
some robust tests, the Monte Carlo results indicate that there is little loss in using
the proposed unit root test when the innovations are Gaussian, and the power gains
from using our partially adaptive test is substantial when there are non-Gaussian
innovations.
We apply the proposed test to several important macroeconomic time series that

exhibit non-Gaussian features. In particular, we re-examined the unit root property
of nominal interest rate, real exchange rate, and real GDP. Traditional OLS-based
tests, such as the ADF test, cannot reject the unit root hypothesis in these series. On
the other hand, non-Gaussian behavior in interest rate, real exchange rate, and real
GNP has been largely reported in the literature as being caused by asymmetric inno-
vations or presence of outliers (e.g., Falk and Wang, 2003; Blanchard and Watson,
1986; Bidarkota, 2000; Balke and Fomby, 1994; and Scheinkman and LeBaron,
1989). A descriptive analysis of our data also con�rms that U.S. nominal interest
rate, real GNP, and real exchange rate are featured with nonGaussian character-
istics. When we apply the partially adaptive test to these series, we rejected the
unit root hypothesis in real GNP, supporting the literature of transitory �uctuations
about trend. We were unable to reject the null of unit root in real exchange rates,
implying that, as reported in Falk and Wang (2003), the purchasing power parity
hypothesis may not hold in the long run even if tail heaviness are accounted for. We
also found no evidence against unit root in nominal interest rate, which supports the
�ndings in Rose (1988) and raises doubt about economic results predicted by the
CCAPM and optimal monetary policy models.
The outline of the paper is as follows. Section 2 gives some important pre-

liminaries. In particular, we study an ADF-type test for a unit root based on M
estimation. Limiting distributions of the estimator and it t-statistic are derived. The
partially adaptive unit root test is introduced in Section 3. Section 4 presents the
results of our Monte Carlo simulations. In section 5, we discuss the relevance of the
test and conduct an empirical study. Section 6 concludes. Proofs are provided in the
Appendix. For notation, we use) to signify weak convergence, L for lag operator,
� for equality in distribution, := for de�nitional equality, and [nr] to signify the
integer part of nr.

2 The Model, Assumptions, and Preliminary Limit Theory

The subject of this paper is a time series yt represented by the following model:

yt = αyt�1+ut : (1)

where α is the largest autoregressive root, and the residual term ut is serially cor-
related. In the above model, the autoregressive coef�cient α plays an important
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role in measuring persistency in economic and �nancial time series. Under regu-
larity conditions, if α = 1; yt contains a unit root and is persistent; and if jα1j< 1;
yt is stationary. The high persistency in many economic and �nancial time series
suggests that the coef�cient α is near unity.
Following Dickey and Fuller (1979), we parameterize ut as a stationary AR(k)

processs
A(L)ut = ε t ; (2)

where A(L) =∑ki=0 aiLi is a k-th order polynomial of the lag operator L, a0 = 1, and
ε t is an iid sequence. Combining (1) and (2), we obtain the well-known Augmented
Dickey-Fuller (ADF) regression model

∆yt = ρyt�1+
k

∑
j=1

ψ j∆yt� j+ ε t : (3)

In the presence of a unit root (α = 1), ρ = 0 in the ADF regression (3).
More generally, we may include a deterministic trend component in the ADF

regression, and study the estimation in the following regression

∆yt = γ
0xt+ρyt�1+

k

∑
j=1

ψ j∆yt� j+ ε t : (4)

where xt is a deterministic component of known form and γ is a vector of unknown
parameters. The leading cases of the deterministic component are (i) a constant
term xt = 1; and (ii) a linear time trend xt = (1; t)0:
We want to test the unit root hypothesis (ρ = 0, or α = 1 ) based on estimators

of ρ (or α). In the simple case where εt is normally distributed, given observations

on yt ; the maximum likelihood estimators of ρ (or α) and ψ j

n ok
j=1
are simply the

least squares estimators obtained by minimizing the residual sum of squares. In the
absence of Gaussianity in ε t , it is possible to follow the idea of Huber (1964) for the
location problem in order to obtain more robust estimators. In this direction, Relles
(1968), Huber (1973) introduced a class of M estimators which generally have good
properties over a wide range of distributions. The M-estimators are obtained from
solving the extreme problem by replacing the quadratic criterion function in OLS
estimation with some general criterion function ϕ . In the case that ϕ is the true
log density function of the residuals, the M-estimator is the maximum likelihood
estimator.
To introduce the proposed unit root test based on partially adaptive estimation,

we �rst consider M estimation of the ADF model in this section. In section 3, we
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study the problem of selecting the criterion function adaptively. The M-estimator

for (γ;ρ;
n

ψ j

ok
j=1
) is de�ned as the solution of the following extreme problem:

(bγ;bρ;nbψ j

ok
j=1
) = argmaxQ(γ;ρ;

n
ψ j

ok
j=1
) (5)

where

Q(γ;ρ;
n

ψ j

ok
j=1
) =

n

∑
t=k+1

ϕ ∆yt� γ
0xt�ρyt�1�

k

∑
j=1

ψ j∆yt� j

!

for some criterion function ϕ:When ϕ is the true log density function of ε;Q(γ;α;
n

ψ j

ok
j=1
)

is the log likelihood function and the estimator (bγ;bρ;nbψ j

ok
j=1
) given by (5) is the

maximum likelihood estimator.
Lucas (1995b) studied similar regression models. Since those models do not in-

clude a deterministic trend in the regression and thus have slightly different limiting

distributions, we give the limiting distribution of (bγ;bρ;nbψ j

ok
j=1
) in this section for

completeness only.
For convenience of asymptotic analysis, we assume that there is a standardizing

matrix Fn such that F�1n x[nr]! X(r) as n!∞, uniformly in r 2 [0;1];where X(r) is
a vector of limiting trend functions. In the case of a linear trend, Fn = diag[1;n] and
X(r) = (1;r)0: If xt is a general p-th order polynomial trend (i.e. xt = (1; t; � � �; t p)),
Fn = diag[1;n; ::::;np] and X(r) = (1;r; :::;rp).
Following the previous literature in M estimation, we make the following as-

sumptions on ε t and the criterion function ϕ for the convenience of asymptotic
analysis.

ASSUMPTION A1 The roots of A(L) all lie outside the unit circle, and fε tg are
i.i.d. random variables with mean zero and variance σ2 < ∞.

ASSUMPTION A2 ϕ(�) possesses derivatives ϕ 0 and ϕ 00. [ε;ϕ 0(ε)] has k-th mo-
ments for some k > 2; E[ϕ 0(ε t)] = 0, 0 < E[ϕ 00(ε t)] = µψ < ∞, and ϕ 00 is
Lipschitz continuous.

ASSUMPTION A3 eε t� ε t = op(1) uniformly for all t.

Assumptions A1 - A3 are standard conditions in asymptotic analysis of M es-
timators. These assumptions are needed to establish the weak convergence results.
Assumption A3 is a consistency requirement as in Knight (1989,1991) and it is not
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needed if ϕ 0 is the derivative of a convex function with a unique minimum. Assump-
tions similar to A3 are also standard in the development of M estimator asymptotics.
It is related to Assumption (b) in Theorem 5.1 of Phillips (1995), Assumption C in
Xiao (2001), and the same as the assumption on eε t � ε t in Theorem 1 of Lucas
(1995).
We denote [�] as the greatest lesser integer function. Then under Assump-

tions A1-A3, as n goes to ∞; n�1=2∑[nr]1 ut converges weakly to a Brownian motion
Bu(r) =ωuW1(r) = BM(ω2u);where ω2u= σ2=A(1)2 is the long run variance1 of ut ;

denoted as lrvar(ut). The limiting distributions of (bγ;bρ;nbψ j

ok
j=1
) will also be de-

pendent on the weak limit of the partial sums of ϕ 0(ε t): Denoting ω2ϕ =var[ϕ 0(ε t)];
and δ = �E[ϕ 00(ε t)], then n�1=2∑[nr]1 ϕ 0(ε t)) Bϕ(r) = ωϕWϕ(r) = BM(ω2ϕ). In
fact, under Assumption A1, the partial sums of the vector process (ut ;ϕ 0(ε t)) follow
a bivariate invariance principle (see, e.g., Phillips and Durlauf (1986, Theorem 2.1,
474-476, and 486-489); Wooldridge and White (1988, Corollary 4.2); and Hansen
1992):

n�1=2
[nr]

∑
t=1
(ut ;ϕ 0(ε t))> ) (Bu(r);Bϕ(r))> = BM(Σ)

where
Σ=

�
ω2u σuϕ
σuϕ ω2ϕ

�
is the (long-run) covariance matrix of the bivariate Brownian motion.
Denote (γ;ρ)0 = θ , (γ;ρ;ψ1; � � �;ψk)0 = Π, and (x0t ;yt�1;∆yt�1; � � �;∆yt�k)

0 =
Zt , then we can re-write the regression (4) in matrix form as

∆yt =Π0Zt+ ε t ;

and the M estimator bΠ maximizes
Q(Π) =∑

t
ϕ
�
∆yt�Π0Zt

�
:

Finally we introduce the standardization matrix: Dn= diagf
p
nFn;ng, andGn=

diagfDn;
p
nIkg, where Ik is a k-dimensional identity matrix, the limiting distribu-

tions of the M estimators (bγ;bρ;nbψ j

ok
j=1
)0 are given in the following theorem.

1The long run variance of a time series ut is de�ned as lrvar(ut) = ∑∞
h=�∞E(utut+h). It equals to

2π multiply the spectral density of ut at zero frequency.
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Theorem 1 Given model (1), (2), under Assumptions A1-A3 and the unit root as-
sumption, the limiting distribution of M-estimator bΠ = (bγ;bρ;ψ1; � � �;b bψk)0 is given
by

Gn(bΠ�Π)) 1
δ

� R
Bu(r)Bu(r)0dr 02�k
0k�2 Γ

��1� R
Bu(r)dBϕ(r)

Φ

�
:

where , Bu(r) = (X(r)0;Bu(r))0, Φ= [Φ1; � � �;Φk]> is a k-dimensional normal vari-
ate that is independent of

R
Bu(r)dBϕ(r), and

Γ=

264 γu(0) � � � γu(k�1)
... . . .

γu(k�1) γu(0)

375
where γu(h) is the autocovariance function of ut .]

Theorem 1 indicates that the limiting distribution of the parameters bψ1; � � �; bψk
are independent with the limiting distribution of bγ;bρ . In particular,

Dn
� bγ� γbρ

�
) 1

δ

ωϕ

ωu

�Z
W 1(r)W 1(r)0dr

��1 Z
W 1(r)dWϕ(r):

The unit root hypothesis corresponds to H0 : ρ = 0. We consider testing H0
based on the t-statistic of ρ , and estimate the covariance matrix2 byb

bΩ= " n

∑
t=1

ϕ
00 (bε t)ZtZ0t

#�1" n

∑
t=1

ϕ
0 (bε t)2ZtZ0t

#"
n

∑
t=1

ϕ
00 (bε t)ZtZ0t

#�1
: (6)

This is a heteroskedasticity consistent type covariance matrix estimator as in White
(1980).
If we consider the t-ratio statistic of bρ :

tbρ = bρ
se(bρ) (7)

2Notice that in the special case when ϕ is the true log density function of ε; Q(Π) is the log
likelihood function and the estimator bΠ is the maximum likelihood estimator. In this case, ω2ϕ = δ ,
and we may use the following covariance matrix estimator"

n

∑
t=1

ϕ
0 (bε t)2ZtZ0t

#�1
:
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then tbρ is simply the M regression counterpart of the well-known ADF (t-ratio) test
for the unit root hypothesis. The limiting distribution of tbρ is given in the following
theorem.

Theorem 2 Under the assumptions of Theorem 1, the limiting distribution of the
t-ratio statistic tbρ is given by�

e0
�Z
W 1(r)W 1(r)0dr

�
e
��1=2

e0
Z
W 1(r)dWϕ(r)

where W 1(r) = (X(r)0;W1(r))0, e is a collecting vector, that is, there is one coordi-
nate equal to one that picks the element corresponding to the asymptotic distribu-
tion of tbρ , and all the other coordinates equal zero. The above limiting distribution
can also be rewritten as�Z

W 1(r)
2dr
��1=2 Z

W 1(r)dWϕ(r)

W 1(r) =W1(r)�
R 1
0 W1(s)X 0(s)ds

�R 1
0 X(s)X(s)0ds

��1
X(r) is the Hilbert projec-

tion in L2[0;1] of W1(r) onto the space orthogonal to X.

Notice thatW1 andWϕ are correlated Brownian motions, the limiting distribu-
tion of tbρ is not standard and depend on nuisance parameters. However, we can de-
compose

R
Bu(r)dBϕ(r) (see, e.g. Hansen and Phillips (1990) and Phillips (1995))

as Z
BudBϕ:u+λ ωψ

Z
BudBu;

where λ uϕ = σuϕ=ω
2
u and Bϕ:u is a Brownian motion with variance

σ
2
ϕ:u = ω

2
ϕ �σ

2
uϕ=ω

2
u

and is independent with Bu. Using the above decomposition, the limiting distribu-
tion of the t-statistic tbρ can be decomposed as a simple combination of two inde-
pendent well-known distributions. In addition, related critical values are tabulated
in the literature and thus are ready for us to use in applications. We summarize this
result in the following corollary.

Corollary 3 Under the assumptions of Theorem 1, the limiting distribution of the
t-ratio statistic tbρ can be decomposed into a mixture of the Dickey-Fuller (DF)
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distribution and a standard normal distribution that is independent with the DF
distribution, i.e.

tbρ )
q
1�λ

2N(0;1)+λ

�Z
W 1(r)

2dr
��1=2 Z

W 1dW1, (8)

where the weights are determined by λ :

λ
2 =

σ2uϕ

ω2ϕω2u
:

The standard normal distribution comes from�Z
W 1(r)

2dr
��1=2 Z

W 1(r)dWϕ:1(r);

sinceW1(r) andWϕ:1(r) (σ�1ϕ:uBϕ:u(r)) are standard Brownian motions and are in-
dependent with each other. Notice that ω2u is the long-run (zero frequency) variance
of futg, ω2ϕ is the long-run variance of fϕ 0(ε t)g, and σuϕ(τ) is the long-run co-
variance of futg and fϕ 0(ε t)g, thus λ is simply the long-run correlation coef�cient
between futg and fϕ 0(ε t)g.

Remark 1 One interesting case is obtained when λ
2 = 1, which implies that

ϕ 0(ut) = ε t . In this simple case, the criterion function is quadratic in ε t and tbρ
converges to the Dickey-Fuller limiting distribution. Recall that a quadratic cri-
terion function corresponds to the Gaussian log-likelihood. Notice that when λ

2

increases from 0 to 1, the corresponding, say, 5% quantile of the limiting variate
(8) shifts to the left, indicating that the traditional Dickey-Fuller test will be less
powerful than the proposed test in the absence of Gaussianity.

2.1 Obtaining critical values

Given the parameter λ , the limiting distribution of tbρ can be approximated by a
direct simulation or using a polynomial approximation. The limiting distribution is
the same as that of the covariate-augmented Dickey-Fuller (CADF) test of Hansen
(1995). Tables of 1%, 5% and 10% critical values for the statistic tn(τ) obtained via
simulation are provided in Hansen (1995, page 1155). Thompson (2004) suggested
a computationally more convenient approach which consist in approximating crit-
ical values by a third order polynomial in 1� λ . The estimated coef�cients for
the third order polynomial approximation to the quantiles of the asymptotic null
distribution are provided in Thompson (2004, page 9). It is important to mention
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that Lucas (1995b) obtained critical values by computing the distribution of the test
statistic from realizations of simulated data. He considered only data generating
process with i.i.d. standard normal innovations. We have just shown that the para-
meter λ depends on the error density and, therefore, the Lucas' method will give
incorrect asymptotic critical values for the robust test unless the errors are in fact
normal. Likewise, the approach developed by Thompson (2004) gives incorrect
critical values unless the true innovation distribution is equal to the assumed distri-
bution. For example, if the true distribution is a student-t with 9 degrees of freedom
(t-9) and one computes critical values assuming a student-t with 3 degrees of free-
dom (t-3), then the Thompson approach will give imprecise critical values since its
polynomial approximation will be based on the value of λ for t-3 rather than for t-9
distribution. As we will show in the next section, our partially adaptive approach
tends to give correct critical values because it approximates the true distribution by
the data distribution and uses the latter to estimate λ and then the critical values.

3 A Unit Root Test Based on Partially Adaptive Estimation

The M estimator is asymptotically ef�cient when it is the maximum likelihood es-
timator. In practice, even if the exact distribution of the innovations is unknown,
if the data has similar tail behavior as the density function used in the estimation,
then inference based on these method still have good sampling performance. Thus,
it is important to select a criterion function that has similar characteristic as the data
distribution. In this section, we consider a data-dependent approach to select an ap-
propriate criterion function and propose a unit root test based on partially adaptive
estimation.
The partially adaptive M estimation considers a parametric family of distribu-

tions. Each member of this family is indexed by some adaptation parameters. Giv-
ing the observed sample, it is possible to estimate the adaptation parameters so
that the density function that best approximates the data distribution (within the
parametric family) is selected. In the literature, different classes of distributions
has been studied for the purpose of partially adaptive estimation (see, inter alia,
Postcher and Prucha (1986), McDonald and Newey (1988), and Phillips (1994)).
Taking into account of the well documented characteristic of heavy-tails in eco-
nomic and �nancial data, we consider a partially adaptive estimator based on the
student-t distributions (Postcher and Prucha 1986), although other classes of distri-
butions may be analyzed similarly. The student-t distribution is an important class
of distributions (see more discussion in, say, Hall and Joiner 1982) that contains
the Cauchy distribution as a special case and the normal distribution as a limit case,
and has wide applications in economic analysis. Its adaptation parameter depends
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on the scale and thickness parameters, which can be easily estimated from the data
using the approach proposed by Potscher and Prucha (1986). Partially adaptive
estimator based on this class of distribution is reasonably robust.
Giving the ADF model (4), in the presence of t-distributed innovations, the log-

likelihood is given by

L = constant+
n
2
lnΘ

�ν+1
2

n
∑

t= j+2
ln

8<:1+ Θ
ν

"
∆yt� γ

0xt�ρyt�1�
k

∑
j=1

ψ j∆yt� j

#29=;
where the parameter Θ measures the spread of the disturbance distribution and ν

is the degree of freedom that measures the tail thickness. Large values of ν corre-
sponds to thin tails in distribution. For given parameters ν and Θ; denoting Θ=ν as

θ ; the MLE of (γ;ρ;
n

ψ j

ok
j=1
) is the solution of the following optimization prob-

lem

min∑
t
ln

8<:1+θ

"
∆yt� γ

0xt�ρyt�1�
k

∑
j=1

ψ j∆yt� j

#29=; :
Following Potscher and Prucha (1986), let eΠ be the least squares estimator ofΠ

and θ = Θ
ν
be the adaptation parameter of the t-distribution, we have the following

one-step partially adaptive M estimator for the ADF model:

bΠ = eΠ+�1
n∑
t
Z0t(wt�2θw2t eε2t )Zt��1 1n∑

t
Z0twteε t (9)

where
wt = (1+θeε2t )�1 and eε t = ∆yt�Zt eΠ.

In practical analysis, the parameters ν and Θ are not known and has to be es-

timated. We consider a two-step partially adaptive estimator of (γ;ρ;
n

ψ j

ok
j=1
) in

which the �rst step involves a preliminary estimation of the parameters ν and Θ
(and thus θ ). We then replace θ in (9) by its estimator and perform a second step

estimation for (γ;ρ;
n

ψ j

ok
j=1
): In the presence of general disturbance distributions,

ν and Θ lose their original meaning. However, in the cases where �ν � 0 and �Θ� 0,
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�ν and �Θ still can be interpreted as estimators of measures of the tailthickness and
the spread of the disturbance distribution, and partially adaptive estimator (9) still
have good sampling properties.
Potscher and Prucha (1986) discussed the estimation of the adaptation parame-

ters ν and Θ: In particular, if we denote E(jut jk) as σ k, then for ν > 2; we have

σ2

σ21
=

π

ν�2
Γ[ν=2]2

Γ[(ν�1)=2]2 = ρ(ν) (10)

and

Θ=
1
π

νΓ[(ν�1)=2]2

σ21Γ[ν=2]2
= q(ν ;σ1): (11)

Potscher and Prucha show that ρ(:) is analytic and monotonically decreasing
on (2;∞) with ρ(2+) =∞ and ρ(∞) = π=2: Thus, given estimator of σ1 and σ2; ν

can be estimated by inverting ρ(ν) in 10 and thus an estimator of θ can be obtained
from

�θ =
q( �ν ; �σ1)
�ν

=
1
π

Γ[( �ν�1)=2]2

�σ21Γ[ �ν=2]2
: (12)

For the estimation of σ1 and σ2, we may use the sample moments

�σ k =
1
n∑
t
j �ut jk :

Notice that ρ(:) is monotonically decreasing, ν and thus θ can be estimated numer-
ically.
We incorporate the partially adaptive estimation into the testing procedure in

Section 2 and propose the following unit root test based on partially adaptive esti-
mation:
1. We estimate the residuals eε t from a preliminary ADF regression:

∆yt = eγ 0xt+ eρyt�1+ k

∑
j=1
eψ j∆yt� j+eε t

2. Estimating the adaptation parameters. We consider the class of student-t
distributions and estimate the parameters ν and Θ as described above using the
residuals obtained from step 1. Denote the estimators as �ν and �Θ, we obtain �θ =
�Θ= �ν .
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3. Selecting the criterion function. Giving the estimated adaptation parameter,
we choose the following criterion function

ϕ(ε) = ln
n
1+ bθ [ε]2o ;

and calculate the correspondingM-estimator for (γ;ρ;
n

ψ j

ok
j=1
) in model (4) based

on

max
n

∑
t=2

ϕ ∆yt� γ
0xt�ρyt�1�

k

∑
j=1

ψ j∆yt� j

!
Denote the corresponding t-statistic as tbρ .
4. Calculate estimate of λ

2. First we estimate the variance estimator of ε and
ϕ 0(ε t) by

bσ2 = 1
n� k�1∑

t
bε2t , and bω2ϕ = 1

n� k�1
n

∑
t=k+1

ϕ
0(bε t)2

respectively, and let

dcov(ε t ;ϕ 0(ε t)) =
1

n� k�1
n

∑
t=k+1

bε tϕ 0(bε t);
we then estimate ω2u and σ2uϕ by bω2u = bσ2=bA(1)2, and bσuϕ = dcov(ε t ;ϕ 0(ε t))=bA(1),
where bA(1) = 1�∑ψ j, λ

2 can then be estimated byb
bλ 2 = bσ2uϕbω2ϕ bω2u :

Using the estimate of λ
2, we compute the critical values using the polynomial ap-

proximation proposed by Thompson (2004).

4 Monte Carlo Experiments

In this section, we compare our partially adaptive unit root test (PADF test) with the
OLS based test of Dickey and Fuller (1979) (ADF test) and the M-estimator-based
tests with critical values obtained using the Lucas (1995b) and Thompson (2004)
approaches, respectively. We selected the following four innovation distributions:
D1: N(0,1),
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D2: t-3,
D3: t-5,
D4: t-9,
where N(a,b) denotes the normal distribution with mean a and variance b; t(k)

denotes the t-distribution with k degrees of freedom.
From the construction of the tests, it is apparent that its �nite sample perfor-

mance will be affected by the sample size, the distribution of the innovations ε t , the
autoregressive coef�cient α; and the I(0) dependence in ut : Thus, special attention
is paid here to the effects of these elements on the performance of the unit root tests.
The data generating process (DGP) in our Monte Carlo is given by the following

model

yt = αyt�1+ut ; (13)
y0 = 0: (14)

where we assume the following serial correlation structures for the error term:
(i) ut = 0:0 � ut�1 + ε t ; (ii) ut = 0:5 � ut�1 + ε t , and (iii) ut = ε t � 0:5ε t�1 with
ε t � N(0;1). In (i) and (ii), we assume u0 = 0 and fε tg is a sequence of i.i.d.
observations drawn from the distribution Di, i= 1;2;3;4: Therefore, the �rst struc-
ture corresponds to i.i.d innovations, the second to a AR(1) process and the third
one represents a MA(1) process. The asymptotic size of each test is 5%.
The power of the test was evaluated by considering α = 0:90;0:95 and 0:99.

The size of the test is obtained by setting α = 1: We estimate the ADF regression
(4) including intercept and intercept plus trend. We generated 2000 time series of
size 200 and 500, but we only report results for n = 200 because they are close to
the results obtained with n= 500.
We compute �ve test statistics. The �rst one is the "Augmented Dickey-Fuller"

(ADF) t-ratio which is obtained estimating equation (4) by least squares and com-
puting the t-ratio by (7) using the traditional covariance matrix bΩ = eσ2(xtx0t)�1
where eσ2 = eε 0eε=(n� k� 1). The 5% critical value for the ADF test with inter-
cept is -2.86 for the regression with intercept and -3.41 for the intercept and trend
speci�cation. We also computed four robust tests which are described below:
1) the L3 test:
This test consists in estimating equation (4) by maximum likelihood (ML) as-

suming a t-3 distribution and then computing the t-ratio by using (7) with the covari-
ance matrix being estimated by (6). Critical values are coming from the polynomial
approximation suggested in Thompson (2004) with λ = 0:983. This robust test was
�rst suggested by Lucas (1995b).

3When the innovations are Gaussian ( as assumed by Lucas,1995.b) the estimated value of the
parameter λ is equal to 0.98. This same result was obtained by Thompson (2004).
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2) the T3 test:
Likewise the L3 test, T3 estimates the ADF equation (4) by ML assuming a t-3

distribution and compute the t-ratio by using (7) with the covariance matrix being
estimated by (6). Unlike the L3 test where critical values are computed assum-
ing Gaussianity, we compute critical values assuming a t-3 distribution. Thus, we
are basically following the idea developed in Thompson (2004) for computation of
correct asymptotic critical values.
3) the T9 test:
This is just like the T3 test with the t-3 distribution replaced by the t-9 distribu-

tion.
4) the PADF test
We compute our PADF test estimating the ADF regression (4) using expressions

given in (9), (10), (11) and (12). For the PADF t-test, we use covariance matrix (6)
and its corresponding element in constructing the t-ratio (7). The critical values are
also coming from the polynomial approximation suggested in Thompson (2004).
Note, however, that we are not assuming any degree of freedom for the t-distribution
since it is being estimated from the data (equations 10, 11 and 12).
For all tests aforementioned, we employed the Schwartz criterion to choose the

number of lags k.

4.1 Results

Table 1 shows the results for the case where ut = ε t : When the innovations are
Gaussian, results in Table 1 suggest that: (i) all tests have similar empirical size with
T3 being slightly oversized; (ii) the L3 and T3 tests have less power than the other
tests for distant alternatives, say α = 0:95 and α = 0:90; (iii) the overal performance
of the PADF test under Gaussianity is as good as the ADF test and better than the
others robust test, L3, T3 and T9.
When the innovation distribution is a student-t with 3 degrees of freedom, t-3,

the robust test suggested by Lucas (1995b) is undersized. This happens because the
critical values computed in Lucas (1995b) are incorrect unless the errors are in fact
normal. Since the t-3 distribution characterizes a large departures from Gaussianity,
this result does not come as a surprise. Indeed, this same �nding has also been
reported in Thompson (2004). We notice, on the other hand, that both the T3 and
PADF tests have correct size and are much more powerful than the other tests.
Finally, when the error distribution is a student-t with 9 degrees of freedom, t-9, we
notice that the T3 test seems to be slightly oversized. The PADF test has good size
and, along with T9, is more powerful than the other tests.
The above results tell us that when the likelihood function is correctly speci�ed,

the T3 and T9 tests performs as well as the PADF test, but if they are misspeci�ed
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(and thus quasi-MLE), the PADF test performs better. To emphasized this, we
now consider the t-5 innovation distribution. With t-5 distribution, the criterion
function used in the computation of T3 and T9 and their respective critical values is
misspeci�ed. Thus, in this case of misspeci�cation, we should not expect that quasi-
maximum-likelihood tests present the best relative performance. Indeed, results in
Table 1 show that when we consider the t-5 distribution, the PADF test has good
size and more power than the quasi-MLE based tests.
In sum, the above results suggest that the partially adaptive test has relatively

pretty good �nite-sample performance: there is little loss in using the proposed test
when the innovations are Gaussian, and the power gains from using the partially
adaptive test is substantial when there are non-Gaussian innovations. The PADF test
also peforms better than other robust tests under misspeci�cation of the criterion
function and performs as good as when the criterion function coincides with the
true likelihood function. This happens because the PADF test is based on a data-
dependent procedure that select an appropriate criterion function for estimation and
computation of critical values.4

4However, the power of all tests is low when α is close to one, which indicates that long-memory
processes may be more appropriate to model high persistence in economic time series. We thank an
anonymous referee for pointing this out.

The calculations in Table 1 assume that the errors are independent. To inves-
tigate the impact of serially correlated errors, Table 2 provides evidence about the
small sample behavior of the test statistics decribed above. Table 2 shows results
for the case where (i) ut = 0:5ut�1+ ε t and fε tg is a sequence of i.i.d. observa-
tions drawn from a distribution Di, i= 1;2;3;4 and (ii) ut = ε t�0:5ε t�1 and ε t has
N(0,1) distribution.
Size is generally accurate for AR errors, but is less accurate for MA errors. As

in the case with independent errors, most of the time the "robust" L3 test has less
power than the T3, T9 and PADF tests when the distribution of the fundamental
innovation in the AR(1) error is fat-tailed. The L3 test is again undersized under
t-3 distribution and has the lowest power for MA(1) errors. The PADF test again
performs relatively well in terms of power and size for both AR(1) and MA(1)
errors although, as occur in the other tests, it does not have accurate size for MA(1)
errors. The T3 and T9 have a good relative performance only if the true distribution
of the fundamental innovation is t-3 or t-9, respectively.
Table 3 and 4 display the results for the model with intercept and trend. As

expected, the inclusion of time trend causes a reduction of power in all tests. Apart
this difference, the results below are qualitatively similar to what we showed in
Table 1 and 2, which were obtained estimating a model with intercept only.
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Table 1: Size and Power of 5% Tests - intercept only
Distribution (Di) ADF L3 T3 T9 PADF

α = 1
N(0;1) 0.051 0.058 0.066 0.062 0.055
t-3 0.047 0.029 0.046 0.049 0.050
t-5 0.052 0.043 0.057 0.051 0.054
t-9 0.051 0.055 0.066 0.056 0.058

α = 0:99
N(0;1) 0.065 0.073 0.085 0.076 0.071
t-3 0.057 0.086 0.129 0.106 0.126
t-5 0.062 0.076 0.084 0.076 0.092
t-9 0.067 0.081 0.082 0.088 0.088

α = 0:95
N(0;1) 0.320 0.272 0.299 0.317 0.320
t-3 0.306 0.597 0.679 0.596 0.676
t-5 0.321 0.421 0.480 0.460 0.490
t-9 0.312 0.341 0.381 0.390 0.400

α = 0:90
N(0;1) 0.820 0.636 0.666 0.786 0.793
t-3 0.822 0.947 0.969 0.969 0.967
t-5 0.823 0.833 0.860 0.910 0.910
t-9 0.817 0.737 0.776 0.848 0.849

As discussed in Section 2, The M estimator is asymptotically ef�cient when
it is equal to the maximum likelihood estimator. In practice, however, even if the
exact distribution of the innovations is unknown, if the data has similar tail behavior
as the density function used in the estimation, then inference based on this partial
adaptation method still have good sampling performance.
In order to illustrate the above point, we added a new monte-carlo experiment

to assess the performance of the PADF test when the true distribution of the inno-
vations is not a t-distribution, but instead, a mixture of normal distributions. In this
simulation, we consider the following model

yt = αyt�1+eε t (15)
y0 = 0: (16)
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Table 2: Size and Power of 5% Tests - intercept only
Distribution (Di) ADF L3 T3 T9 PADF

α = 1
N(0;1) 0.051 0.057 0.065 0.059 0.056
t-3 0.049 0.027 0.045 0.046 0.048
t-5 0.052 0.038 0.055 0.047 0.051
t-9 0.055 0.055 0.068 0.057 0.057
MA(1) 0.143 0.130 0.145 0.151 0.145

α = 0:99
N(0;1) 0.064 0.069 0.078 0.074 0.073
t-3 0.062 0.084 0.124 0.104 0.121
t-5 0.061 0.073 0.095 0.081 0.095
t-9 0.071 0.080 0.091 0.090 0.090
MA(1) 0.228 0.196 0.214 0.234 0.225

α = 0:95
N(0;1) 0.285 0.257 0.279 0.300 0.291
t-3 0.270 0.567 0.660 0.610 0.657
t-5 0.288 0.395 0.450 0.430 0.460
t-9 0.290 0.318 0.356 0.365 0.370
MA(1) 0.687 0.572 0.593 0.680 0.653

α = 0:90
N(0;1) 0.712 0.555 0.592 0.703 0.697
t-3 0.742 0.908 0.943 0.950 0.951
t-5 0.748 0.770 0.810 0.850 0.860
t-9 0.743 0.669 0.707 0.780 0.780
MA(1) 0.971 0.881 0.892 0.955 0.940

where the variable eε t equals ε t � iid N(0;1) when υ t < 0:05;where υ t � iid
Uni f orm(0;1), and eε t = ε t +wt , otherwise.; Here, wt is a contaminating random
variable that is being drawn from a N(0,30).
The results are displayed in Table 5. In particular, we notice that the ADF test

has lower power and higher size distortion than the P-ADF test. There seems to
be no doubt that the P-ADF test performs much better than the ADF test in cases
where the distribution of the innovations is a mixture of normals rather than a t-
distribution.
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Table 3: Size and Power of 5% Tests - intercept and trend.
Distribution (Di) ADF L3 T3 T9 PADF

α = 1
N(0;1) 0.056 0.064 0.080 0.066 0.062
t-3 0.060 0.021 0.043 0.048 0.047
t-5 0.060 0.037 0.055 0.054 0.055
t-9 0.061 0.055 0.070 0.063 0.064

α = 0:99
N(0;1) 0.058 0.072 0.079 0.076 0.077
t-3 0.060 0.048 0.098 0.090 0.100
t-5 0.063 0.049 0.080 0.073 0.085
t-9 0.064 0.065 0.078 0.081 0.086

α = 0:95
N(0;1) 0.198 0.193 0.222 0.237 0.233
t-3 0.191 0.400 0.528 0.482 0.530
t-5 0.191 0.270 0.350 0.321 0.360
t-9 0.199 0.218 0.266 0.271 0.273

α = 0:90
N(0;1) 0.610 0.461 0.508 0.594 0.583
t-2 0.594 0.950 0.965 0.970 0.953
t-3 0.603 0.840 0.910 0.886 0.910
t-5 0.608 0.671 0.740 0.771 0.780
t-9 0.609 0.554 0.620 0.676 0.673
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Table 4: Size and Power of 5% Tests - intercept and trend included

Distribution (Di) ADF L3 T3 T9 PADF
α = 1

N(0;1) 0.052 0.063 0.078 0.066 0.062
t-3 0.057 0.026 0.044 0.049 0.047
t-5 0.058 0.035 0.058 0.053 0.057
t-9 0.058 0.051 0.070 0.057 0.061
MA(1) 0.175 0.164 0.190 0.197 0.192

α = 0:99
N(0;1) 0.058 0.072 0.085 0.078 0.077
t-3 0.061 0.048 0.094 0.085 0.092
t-5 0.066 0.052 0.080 0.067 0.080
t-9 0.065 0.067 0.081 0.078 0.079
MA(1) 0.220 0.195 0.221 0.245 0.229

α = 0:95
N(0;1) 0.181 0.194 0.213 0.216 0.210
t-3 0.175 0.368 0.514 0.452 0.506
t-5 0.178 0.252 0.331 0.290 0.342
t-9 0.189 0.210 0.238 0.245 0.248
MA(1) 0.593 0.475 0.510 0.595 0.570

α = 0:90
N(0;1) 0.528 0.392 0.445 0.524 0.501
t-3 0.498 0.770 0.871 0.851 0.870
t-5 0.514 0.595 0.672 0.696 0.711
t-9 0.524 0.486 0.543 0.598 0.599
MA(1) 0.917 0.802 0.826 0.898 0.881

Table 5. Power and Size of 5% test.
α 0.85 0.90 0.95 0.975 0.99 1
n= 200
ADF 0.987 0.827 0.295 0.113 0.064 0.057
P-ADF 0.996 0.971 0.747 0.392 0.159 0.052
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5 Empirical Analysis

5.1 The uncertain unit root in real GNP

Existence of heavy-tailed distributions in real GNP has been largely documented in
economics and econometrics. In effect, Blanchard and Watson (1986) concluded
that �uctuations in economic activity are characterized by a mixture of large and
small shocks. Other references includes Bidarkota (2000), Balke and Fomby (1994)
and Scheinkman and LeBaron (1989) who advocates that real GNP is mostly con-
taminated by outliers. In parallel, since the seminal work of Nelson and Plosser
(1982), there has been an intense debate about the presence of stochastic trend in
real GNP . Whether trend is better described as deterministic or stochastic is an
important issue for point forecasting, because the two models imply very different
long-run dynamics and hence different long-run forecasts. Cochrance (1988) �nds
little evidence of stochastic trend in GNP whereas Campbell and Mankiw (1987)
claims that output �uctuations are permanent. There also be the �we don´t know�
literature (Rudeebush, 1993, Christiano and Eichenbaum, 1990,) which correctly
concludes that traditional ADF unit root test is unlikely to be capable of discrimi-
nating between deterministic and stochastic trend because its well known low power
against distant alternatives.

5Both series are expressed in logarithmic terms.

5.1.1 Empirical results based on the PADF test

We used two series of real GNP (RGN)5. The �rst one (RGNPNP) was collected
from the Nelson and Plosser database and it has 81 annual observations (1909-
1980). The second database (RGNP2) were collected from the U.S. Department of
Commerce, Bureau of Economic Analysis. RGNP2 are measured in billions of �xed
1996 Dollars and are seasonally adjusted annual values and quarterly observed. Its
�rst observation corresponds to the �rst quarter of 1967, totalizing 141 observa-
tions. The table below presents some descriptive information about our dataset.

Table 6. Descriptive Statistics
Series sample size thickness parameter Kurtosis� Jarque-Bera�
RGNPNP 81 5.31 5.00 24.75**
RGNP2 141 6.91 4.10 11.40**

�The symbol (**) represents rejection of the null hypothesis at 1% level of signi�cance

Table 6 shows two measures of tails. The standard one is the kurtosis. It is
well known that whenever this quantity exceeds 3, we say that the data feature
excess kurtosis, or that their distribution is leptokurtic, that is, it has heavy tails.
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One can see that, after prewhitening the process6, both RGNPNP and RGNP2 have
excess kurtosis. Another measure of heavy tails is the thickness parameter of the
student-t distribution, ν : Small ν corresponds to heavy tails and the limiting case,
ν !∞, corresponds to the normal distribution. Again, we notice that RGNPNP and
RGNP2 have very small thickness parameters, suggesting the existence of heavy-
tailed distribution for those series. Thus, our data suggest that post-war US real
GNP behavior is inconsistent with linear Gaussian models.
We now turn to the unit root analysis. We employed the non-robust ADF test and

the robust P-ADF test. The number of lags was chosen according to the Schwartz
criterion and λb2 , as usual, was estimated parametrically. We also included a linear
trend in the ADF regression. The results are displayed in Table 7. If one conducts
unit root inference by using the non-robust ADF test, then the null of unit root could
not be rejected at 5% level of signi�cance, suggesting the presence of a stochastic
trend in real GNP. This results support the literature of permanent shocks in output.
As showed by our Monte Carlo simulations, the ADF test do not perform well (it
has low power) when innovations are drawn from fat-tailed distributions. Results
in Table 6 reveal the presence of heavy-tailed distributions and, therefore, we had
better conduct unit root inference using the robust version of the ADF test, that is,
the PADF test. In doing so, we reject the null of unit root for both RGNPNP and

6The data were pre-whitened using a linear trend and the number of lags shown in Table 7.

RGNP2:This �nding gives support to the literature of transitory shocks in output
and suggest that the failure of rejecting the null of unit root in U.S real GNP series
may be due to the use of estimation and hypothesis testing procedures that do not
consider the presence of fat-tail distributions in the data. We believe that this re-
sult may be useful to investigate convergence of international (or regional) output,
among other hypotheses involving real GNP.

Table 7. Unit Root Analysis
Series Lags Deterministic Component ADF PADF
RGNPNP 1 linear trend -3.44 -4.62��
RGNP2 2 linear trend -2.81 -3.47�

The symbol (**) represents rejection of the null hypothesis at 1% level of signi�cance
The symbol (*) represents rejection of the null hypothesis at 5% level of signi�cance

5.2 Nominal interest rate and real exchange rate

In this section, we investigate the presence of unit root in other �nancial time se-
ries. In particular, we consider nominal interest rate and real exchange rate. We
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used nominal interest rate with 12-month and 3-month maturity7, with �rst obser-
vation corresponding to April of 1953 and ending observation to May of 2000. As
for the data on real exchange rate (RER), we used monthly data of US-dollar and
UK-pound sterling based bilateral real exchange rates, that is : United kingdom-
USA (UK-US), Japan-USA (JPN-US), France-US (FRA-US), Germany-US (GER-
US), Japan-UK (JPN-UK), France-UK (FRA-UK), and Germany-UK (GER-UK).
To construct the real exchange rate, the data on the nominal exchange rate and the
price level (Consumer Price Index) are collected from the International Financial
Statistics CD-Rom, which is made by the International Monetary Fund (IMF). The
sample covers the Post-Bretton Woods period that runs from April 1973 to March
2001.
Table 8 presents the descriptive statistics8. All series seems to show evidence

of deviations from Gaussianity, with the series of nominal interest rate presenting
high excess kurtosis as compared to real exchange rate time series. Despite the
presence of nonnormal innovations, the unit root analysis in Table 9, carried out by
using the robust P-ADF test, does not suggest that the null hypothesis of unit root
is rejected. This result brings out very practical consequences. For example, the

7Three-month and twelve-month Treasury Bill Rate: Board of Governors of the Federal Reserve
System, http://www.stls.frb.org/fred/

8The data were pre-whitened using the deterministic speci�cation and number of lags shown in
table 9.

presence of unit root in RER implies that PPP hypothesis does not hold in the long
run even if we account for heavy tails in real exchange rates. In a recent paper,
Falk and Wang (2003) reached the same conclusion by considering the effects of
fat tails on critical values of cointegrating tests. In particular, they �nd that the
Johansen´s likelihood-ratio based test are less supportive of PPP when Gaussian-
based critical values are replaced by heavy-tailed-based critical values. Using a
different approach, our results provide additional support to the �ndings of Falk
and Wang.
The presence of unit root in the US nominal interest rate has puzzling the

economic theory for long. In effect, Rose (1988) showed that the presence of
unit root in nominal interest rate is inconsistent with the results predicted by the
consumption-based capital asset pricing model (CCAPM ). Furthermore, unit root
in nominal interest rate is incompatible with the results predicted by optimal mon-
etary policy models, as in Friedman (1969). These models suggest the existence of
stable (constant) nominal interest rate in the long run as the result of a monetary
authority that maximizes steady-state welfare. Our results indicate the presence
of unit root in US nominal interest rate even when heavy tails are accounted for.
Hence, we provide support for the �ndings in Rose (1988), which contradict the
theoretical results predicted by the CCAPM and optimal monetary policy models.
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Table 8. Descriptive Statistics
Series sample size thickness parameter kurtosis Jarque-Bera�
nominal interest rate (12M) 566 3.31 9.40 950.40**
nominal interest rate (3M) 566 2.71 15.10 3429.94**
RER (UK-US) 336 6.31 6.13 145.13**
RER (JPN-US) 336 6.91 5.09 80.64**
RER (GER-US) 336 9.11 3.90 13.07**
RER (FRA-US) 336 6.51 4.64 37.68**
RER (FRA-UK) 336 6.51 4.35 25.71**
RER (GER-UK) 336 5.91 5.94 147.02**
RER (JPN-UK) 336 7.51 4.43 28.78**

�The symbol (**) represents rejection of the null hypothesis at 1% level of
signi�cance.

Table 9. Unit root Analysis
Series Lags Deterministic Component ADF P-ADF
nominal interest rate (12M) 6 constant -2.05 -1.16
nominal interest rate (3M) 6 constant -2.07 -0.11
RER (UK-US) 1 constant -2.59 -1.01
RER (JPN-US)� 1 linear trend -2.09 -1.27
RER (GER-US) 1 constant -1.66 -0.65
RER (FRA-US) 1 constant -1.52 -0.21
RER (FRA-UK) 1 constant -1.79 -1.20
RER (GER-UK) 1 constant -1.88 -2.15
RER (JPN-UK)� 1 linear trend -2.48 -1.69

�In order to control the possible forces that move the real exchange rate to a
direction in the long run (such as Balassa-Samuleson effect), and to be consis-
tent with past studies such as Cheung and Lai (2001), we decided to include
a deterministic trend in the speci�cation of Japanese-yen based real exchange
rates.

6 Conclusion

This paper proposes a unit root test based on partially adaptive estimation. ADF
type of regression is considered without assuming Gaussian innovations. Monte
Carlo results indicate that the partially adaptive test has relatively pretty good �nite-
sample performance: there is little loss in using the proposed test when the inno-
vations are Gaussian, and the power gains from using our partially adaptive test is
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7 APPENDIX

Proof of Theorems 1 and 2. The �rst order condition correspond to the M-
estimator in section 2 is given by:

FOC: ∑
t

ϕ
0
�

∆yt� bΠ0Zt
�
Zt = 0

or let ψ = ϕ 0;
n

∑
t=1

ψ

�
∆yt� bΠ0Zt

�
Zt = 0

Taking a Taylor expansion with respect to bε t = ∆yt � bΠ0Zt around ε t = ∆yt �Π0Zt
we have

n

∑
t=1

ψ (ε t)Zt�
n

∑
t=1

ψ
0 (ε t)ZtZ0t(bΠ�Π)+RT = 0;

where RT is the remainder term.
We now introduce the standardization matrix:

Dn = diagf
p
nFn;n;

p
n; � � �;

p
ng

From the above Taylor expansion and the de�nition of the standardization matrix
Dn, we derived the expression below, where op (1) term refers to the standardized
RT which is op (1) under Assumption A2. Thus,.under our regularity conditions
(i.e., assumptions of Theorem 1) we have

Dn(bΠ�Π) =

"
n

∑
t=1

ψ
0 (ε t)D�1n ZtZ0tD�1n +op(1)

#�1 n

∑
t=1

ψ (ε t)D�1n Zt

substantial when there are non-Gaussian innovations. The PADF test also performs
better than other robust tests under misspeci�cation of the criterion function and
performs as good as when the criterion function coincides with the true likelihood
function. This happens because the PADF test is based on a data-dependent proce-
dure that select an appropriate criterion function for estimation and computation of
critical values.
As an empirical example, we apply the proposed test to some macroeconomic

time series with heavy-tailed distributions. It is shown that US real GNP are fea-
tured with heavy-tailed distribution and that the traditional ADF test does not reject
the null of unit root. However, this hypothesis is rejected when we use the PADF
test, supporting the literature of transitory shocks in output. We also reported ev-
idence for unit root in real exchange rate and nominal interest rate even when tail
heaviness is accounted for.
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n

∑
t=1

ψ
0 (ε t)D�1n ZtZ0tD�1n

=
n

∑
t=1

ψ
0 (ε t)

0BBBBBBB@
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n∆yt�1
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1CCCCCCCA
�
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1p
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�

=
n

∑
t=1

ψ
0 (ε t)

0BBBBBBBBB@

1
nF

�1
n xtx0tF�1n

n�3=2yt�1x0tF�1n n�2y2t�1
1
n∆yt�1x0tF�1n 1

n3=2∆yt�1yt�1 1
n (∆yt�1)

2

� � �� . . .
1
n∆yt�kx0tF�1n 1

n3=2∆yt�kyt�1 1
n∆yt�k∆yt�1 1

n (∆yt�k)
2

1CCCCCCCCCA
) δ

� R
By(r)By(r)0dr 0
0 Γy

�
where

Γy =

264 γy(0)
. . .

γy(k�1) γy(0)

375 , By(r)0 = (X(r)0;By(r))0.
Under Assumption A1, the partial sums of the vector process (ut ;ψ(ε t) ;∆yt �1ψ(ε t) ;��
�;∆yt�kψ(ε t))> follow a multivariate invariance principle (see, e.g., Phillips and
Durlauf (1986, Theorem 2.1, 474-476, and 486-489):

n�1=2
[nr]

∑
t=1
(ut ;ψ(ε t);∆yt�1ψ(ε t); ���;∆yt�kψ(ε t))>) (Bu(r);Bϕ(r);Bϕ1(r); ���;Bϕk(r))>:

In particular, the bivariate Brownian motion (Bu(r);Bϕ(r)) ahs Covariance matrix
Σ, and is independent with (Bϕ1(r); � � �;Bϕk(r)). Thus, by continuous mapping
theorem,

n

∑
t=1

ψ (ε t)D�1n Zt =
n

∑
t=1

ψ (ε t)

0BBBBBBB@
n�1=2F�1n xt
n�1yt�1
1p
n∆yt�1
� � �
1p
n∆yt�k

1CCCCCCCA)
� R

By(r)dBψ(r)
Φ

�

the following asymptotics hold:
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where Φ= (
1R
0
Bϕ1(r)dr; � � �;

1R
0
Bϕk(r)dr)> is an k-vector of normal variates.

Thus,

Dn(bΠ�Π)) δ
�1
� R

By(r)By(r)0dr 0
0 Γy

��1� R
By(r)dBψ(r)

Φ

�
:

In particular,�
(n�1=2F�1n (bγ� γ)

nbρ
�
) δ

�1
�Z

By(r)By(r)0dr
��1 Z

By(r)dBψ(r)

To construct a t-statistic, we estimate the covariance matrix by

bΩ= " n

∑
t=1

ψ
0 (bε t)ZtZ0t

#�1" n

∑
t=1

ψ (bε t)2ZtZ0t
#"

n

∑
t=1

ψ
0 (bε t)ZtZ0t

#�1
:

This is a heteroskedasticity consistent type covariance matrix estimator as in White
(1980). If we consider the t-ratio statistic of ρb

tbρ = bρ
se(bρ)

"
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ψ
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∑
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ψ
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=

1
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Thus the t-ratio

tbρ =
bρ

se(bρ)
)

ωϕ

ωϕ

�
e0
Z
W 1(r)W 1(r)0dre

��1=2
e0
Z
W 1(r)dWϕ(r)

=

�Z
WX(r)2dr

��1=2 Z
WX(r)dWϕ(r)

where WX(r) = W1(r)�
R 1
0 W1(s)X 0(s)ds

�R 1
0 X(s)X(s)0ds

��1
X(r) is the Hilbert

projection in L2[0;1] ofW1(r) onto the space orthogonal to X .
Notice that tbρ is simply the M regression counterpart of the well-known ADF

t-ratio test for a unit root.
The limiting distribution of tbρ is not standard and depend on nuisance para-

meters since W1 and Wϕ are correlated Brownian motions. However, the limiting
distribution of the t-statistic tbρ can be decomposed as a simple combination of two
(independent) well-known distributions. In addition, related critical values are tab-
ulated in the literature and thus are ready for us to use in applications. Notice that
we can decompose Z

Bu(r)dBϕ(r)

(see, e.g. Hansen and Phillips (1990) and Phillips (1995)) asZ
BudBϕ:u+λ uψ

Z
BudBu;

where λ uϕ = σuϕ=ω
2
u and Bϕ:u is a Brownian motion with variance

σ
2
ϕ:u = ω

2
ϕ �σ

2
uϕ=ω

2
u
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and is independent with Bu.
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The limiting distribution of tbρ can then be decomposed into
tbρ =

bρ
se(bρ) )
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