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This paper studies power functions and envelopes for covariate augmented unit 
root tests. The power functions are calculated by integrating the characteristic 
function, allowing accurate evaluation of the power envelope and the power func- 
tions. Using the power functions, we study the selection among point optimal 
invariant unit root tests. An "optimal" point optimal test is proposed based on 
minimizing the integrated power difference. We find that when there are covari- 
ate effects, optimal tests use a local alternative where the power envelope has an 
approximate value of 0.75. 

1. INTRODUCTION 

Testing for the presence of unit roots is now a common practice in empirical 
macroeconomic and financial time series analysis. Although the unit root hy- 
pothesis has been tested in hundreds of time series, it is widely recognized that 
the discriminatory power of unit root tests is generally low. In addition, often- 
times practitioners do not know whether a trend is deterministic or stochastic, 
so it is necessary in empirical analysis to include deterministic terms in the 
model when estimating the hypothesized unit root parameter. This inclusion of 
"extra" deterministic components in the model reduces power from its already 
low level. 

One of the mechanisms for increasing the power of unit root tests is related 
to point optimal testing procedures. The point optimal procedures, which are 
optimal only for a specific point alternative, can also be used to test for a unit 
root against more complex alternative hypotheses, although it is no longer op- 
timal for alternatives at other points. Actually, a point optimal test based on an 
"appropriately chosen" value of the local parameter may have higher power 
than the conventional unit root tests. Because there is no uniformly most pow- 
erful test for the unit root hypotheses, a point optimal test using some plausible 
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choice of local parameter value is a reasonable choice. Notice that a point op- 
timal test will touch the power envelope at the corresponding local parameter 
value, so that there is an infinitely large class of tests, all of which are asymp- 
totically admissible. A natural question to ask is: How should we choose an 
"optimal" point optimal test? We attempt to address this issue for a class of 
unit root tests in the current paper. 

When ordinary least squares (OLS) is used (with no covariates), point opti- 
mal unit root tests have been studied by Elliott, Rothenberg, and Stock (1996) 
and Saikkonen and Luukkonen (1993). Elliot et al. (1996) show that the power 
of point optimal tests is not sensitive to the choice of the alternative so long as 
the point optimal test has a tangency between power 0.25 and 0.75. Elliott and 
Jansson (2000) propose point optimal invariant tests when covariate effects are 
estimated. We show that there are interesting differences that arise when using 
covariates so that the choice of a point optimal invariant test magnifies the fa- 
miliar trade-off between alternatives close to the null and more distant alterna- 
tives. In this paper, we derive characteristic functions for covariate augmented 
unit root tests to accurately evaluate power envelopes and power functions for 
point optimal tests. Using power envelopes and power functions calculated from 
our characteristic functions, one can evaluate differences between point opti- 
mal tests and the envelope. This allows, perhaps, formulation of an "optimal" 
point optimal test. 

The paper is organized as follows. In Section 2, we present the asymptotic 
power functions derived for invariant unit root tests developed by Elliott and 
Jansson (2000). Section 3 provides the characteristic functions for the power 
functions. Section 4 studies the selection of optimal point optimal unit root tests 
and reports new critical values used for a feasible version of the test. Section 5 
concludes. 

2. UNIT ROOT TESTS USING COVARIATES 

Elliott and Jansson (2000) extend the covariate augmented unit root tests de- 
veloped by Hansen (1995) to form point optimal tests invariant to deterministic 
terms. Because our focus is on the evaluation of the asymptotic power curves 
and envelopes, we take the asymptotic distributions as given and proceed with 
a strategy for evaluation. 

Suppose that a time series Yt can be decomposed into a deterministic compo- 
nent and a stochastic component, Yt = dt + st, where dt = Y'zt, with z, a deter- 
ministic trend of known form. The stochastic part is represented as Ast = 8st- 1 + 
vt. We also assume 8 =-(c/T). Suppose we wish to test the null hypothesis 
Ho: c = 0 versus He: c = c where c - 0. The limiting distributions of the like- 
lihood ratio test depend on the parameters c, c-, and R2. The parameter c is the 
true value of the local parameter, whereas c is the hypothesized local param- 
eter. The term R2 indicates the correlation between covariates and the quasi- 
difference of the local to unit root process (for a more detailed description of 
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the unit root model with covariates, see Hansen, 1995; Elliott and Jansson, 2000). 
We consider three cases with emphasis on the two empirically relevant cases 
where a constant is estimated and a constant and trend are estimated. In partic- 
ular, case 1 represents the distribution when there are no deterministic compo- 
nents estimated or when they are treated as known. In case 2, an intercept is 
included for both the covariates and the local to unit root process, whereas case 3 
includes a constant and trend in both. Our cases 1,~ 2, and 3 correspond to the 
cases 1, 3, and 5, respectively, in Elliott and Jansson (2000). Denoting the lim- 
iting distributions corresponding to these three cases as LRj1(c, 5), j =1, 2, 3, 
the limiting distributions are as follows: 

LR1(c5) =(j2 - c)(Wc) 2 + S 1d + (2- 2c5(1~2 

LR I(c,5C) =(2-2c-)f (Wc2+ 2Sf W1cdW1 + 5 - 2c-)( 1 R2) 

2 R R C - 

x J(WlC - Wi c) I - 25 (W2, ()d2 

1 - R2 J ~ ~ R 

LR3(c,5) (-2 -c)(WT) 2 + 2C W1dW (52 -25(1~2 

><fWIC2 + Wvc()2 - mR( )1(l 2sc 

-25 l-R2 fw1cTdw2, ~ ~ R 

wher m1= 1(1 - 2/2 Wl), W2 () sanOntenUhebekpocs sts 

and li/Cr(s) = W c(s) + (6s 4) Wic( dW, (2 - 2c6)frIc(Rdr 2 

fWf(r) dr.1~~~~~~~~~~~~~~~~~~~~ 

whriigte imiting distriution of OLSr estimatOrnstfornaUtornegkroessiv param- 

onniac aaeters. Wenexplorecusingmsimilar methods fo h oait ase inte nextll usetion 
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3. CHARACTERISTIC FUNCTIONS 

We find the characteristic functions of the limiting distributions and use them 
to find probabilities based on numerical integration. The probabilities are used 
to find critical values for a range of point alternatives that are then used to find 
the power envelope. 

Evaluating the distributions using numerical integration has certain advan- 
tages over the traditional Monte Carlo based approximation. First, as docu- 
mented in Nabeya and Tanaka (1990), accuracy is improved using numerical 
methods. For our purposes, this is important as we plan to use the derived power 
envelopes to find a class of optimal point optimal tests. Second, the computa- 
tional time decreases substantially. This is important as we must evaluate and 
compare multiple power curves for point optimal tests. 

The characteristic function of the random variable LRj(c, c) is defined as 
E(ei0LRJ) and we denote this by &LRj(O, Cc),-), j = 1, 2, 3. We give an expression 
for the characteristic function in the following theorem.2 

THEOREM 3.1. 

OLRj(0;C,C) = e((c/2 i) X g (0) -1/2 j = 1,2,3 

with 

sin A 
gI(0) = (c-2c-0i) + cosA, 

A 

g2(6) = (4C-20i - 8C2 -i + 85-302 -165303i -24c202)r 
1 

+ 2C-202 + -303i - 8j302 + 8C2C-0i -4 20i) COSA + (2c 4c c + 16i-8C56+ c - 4c52iC)r A4 

+8-203i + C120i )r eo sin2 A 
+ (2c52i - 4cc-0i - 2c2+ 4c - 4 - 4 

sin A 
+ 85-363i + 120526rA 

-20i -20 2 ~cos A 
+ (-2 56 + 4cc0i + 4526)r A2 

sin A 
+ (c-2c-5i) + cosA, 

g3 (0) eiA I I- A, 
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where 

e_-2iA _ e- _ iA - I + (iA + I)e2 
e- ( eiA + 2i) 

2iA -A 2 2 -2i 

_ _ _ _ _ _ _ _ _ _ _ _ __ _ _ ( i A 1 ) iA ) 2 
E =iA + ei) 

I 
(i-iA - - 

- A 
-A (iA + 1)(_ 

- 
e, 

-i3 2 
-A 2 2\iA2, 

2 

iA - I + (iA + )e-2iA -A2 - (iA + 1)( -e-eiA)2 -2iA3 + 3A2 + 3- 3(iA + 1)2e-2iA 

-2iA3 2A4 6 iA 

|iA-c + 2iOc- + 2i6-2im1(1 + C)2 0 -2i6ml(1 +C)2 

A 0 -8m2 12m2 

-2i0ml (I + c-)c 12m2 -2iml C-4 - 24m2/ 

A - 2652i + 20(c2 - 2cc-)ri - 4c 22r - 

ml = 1/(1 + c-2/3 + 5), 

M2 = iC-( 2cc-)2 r - 22c2r, 

r= 2 1-R 

Once we have obtained the characteristic function, calculating probabilities 
is based on numerical integration using Gurland's (1948) formula: 

P(LRj(c, C) ? x) - - Im(e ixLR (0; c, c)) d, (3.1) 2 I 

where Im is the imaginary part of the complex number. 
Using the preceding formula, it is possible to calculate critical values for 

specific alternatives, which can then be used to obtain power envelopes and 
power functions for point optimal tests of the null hypothesis, Ho: c = 0. We 
compare these point optimal tests for several cases of the nuisance parameter 
R2 in the next section. 

The power envelope was calculated by first finding critical values for the 
test indexed by c-. That is, a critical value must be found for each alternative 
hypothesis and each value of the nuisance parameter R2 considered. After crit- 
ical values are generated for each of the alternatives, the power is calculated by 
numerical integration with x x0.05 so that P(LRj(O,e) ? x0.05) = 0.05. The 
power functions are denoted 

1 (c, c-) = P(LRj (c, e) < X0.05) 

so that the power envelope is fl (, c). For the numerical integration using char- 
acteristic functions, we found 2,500 values of the characteristic function and 
used a simple application of Simpson's rule to find the integral. The truncation 
of the integral was determined where the integrand consistently took a value of 
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less than 10-20 in absolute value. The power envelopes for cases 2 and 3 appear 
in Figures 1 and 2 and correspond to Figures lb and ld in Elliott and Jansson 
(2000). 

4. OPTIMAL POINT OPTIMAL UNIT ROOT TESTS 

A point optimal test for Ho: c = 0 against He: c = 5 > 0 also naturally provides 
a test for alternative Hc: c > 0. Although, strictly speaking, such a test is only 
optimal for the specified alternative, a point optimal test with an appropriate 
selection of c can be nearly optimal in the sense that the power function is very 
close to the power envelope. Because there is no uniformly most powerful 
test, point optimal tests (against the alternative of c) are of interest and may 
provide a power gain relative to tests based simply on estimated autoregressive 
parameters. 

Given the different behavior of tests based on different values of c, an obvi- 
ous question is which of these tests has the best overall power properties. As 
suggested in King (1988), one possibility is to choose c so that the test is more 
powerful over certain ranges of the parameter space. A natural criterion for 
measuring the closeness of a power curve to the power envelope is the integral 
of the difference between a power curve and the power envelope, so that we 
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FIGURE 1. Case 2 envelopes. 
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FIGURE 2. Case 3 envelopes. 

may select the optimal point optimal test by minimizing the integrated power 
differences; i.e., we choose c by 

Jx 

min f[(c,c) - H(c,5)]dc. (4.1) 

Because the power envelope is above the power function H (c, 5), the differ- 
ence between H (c, c) and H (c, C) is always nonnegative. Notice that criterion 
(4.1) is equivalent to maximizing the power function n (c, 5) integrated over c 
and the suggested criterion can be treated as an application of Cox and Hinkley 
(1974) to the unit root model.3 For general hypothesis tests against composite 
alternatives, Cox and Hinkley (1974) suggest selecting an alternative point that 
maximizes a weighted power average. Our criterion chooses the Lebesgue mea- 
sure (corresponding to their k(6) in equation (26), p. 102) and the power func- 
tion of covariate augmented unit root tests. 

We apply the results developed in Section 3 to select an optimal point opti- 
mal test. The optimal choices of c (and thus the corresponding test) are found 
for representative R2 values. The integral is evaluated over the range from zero 
to 30 because the difference between the point optimal test and the envelope is 



POWER FUNCTIONS AND ENVELOPES 247 

negligible at this point. Point optimal tests indexed by c from .01 to 20 are 
considered because the integral is decreasing and then increasing in c. The in- 
tegral is evaluated using Simpson's rule with 3,000 points, starting at 0.01 and 
0.01 increments. The integral is evaluated for R2 = 0.1,...,0.9. 

The output from searching for a class of optimal c is given in Table 1. First, 
we point out that the minimized integral of the difference between the power 
envelope and the power function of the point optimal test initially increases 

TABLE 1. Optimal c and critical values for different R2 

R 2 Optimal c Critical value fo [H(c,c) - V1(c,5)]dc 

Case 1 

0.9 1.81 2.3686 0.1198 
0.8 2.88 2.5714 0.1744 
0.7 3.84 2.7362 0.2101 
0.6 4.77 2.8717 0.2304 
0.5 5.65 3.0023 0.2363 
0.4 6.55 3.1110 0.2274 
0.3 7.42 3.2190 0.2032 
0.2 8.32 3.3116 0.1625 
0.1 9.20 3.4049 0.1034 

Case 2 

0.9 2.45 -0.0441 0.0815 
0.8 3.66 1.0267 0.1131 
0.7 4.59 1.8035 0.1348 
0.6 5.54 2.6641 0.1483 
0.5 6.40 3.4255 0.1542 
0.4 7.15 4.0574 0.1518 
0.3 7.88 4.6768 0.1399 
0.2 8.60 5.2921 0.1169 
0.1 9.45 6.0756 0.0795 

Case 3 

0.9 3.33 -1.0960 0.0929 
0.8 5.11 -0.0383 0.1558 
0.7 6.80 1.1300 0.2096 
0.6 8.24 2.1255 0.2509 
0.5 9.67 3.1675 0.2785 
0.4 11.15 4.0179 0.2881 
0.3 12.55 5.1058 0.2753 
0.2 13.99 6.5002 0.2324 
0.1 15.46 7.4248 0.1518 
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and eventually decreases as R2 increases. In fact, when R2 is nearly zero, the 
differences in the power envelope and the point optimal test are trivial. This is 
in agreement with the simulation evidence in Elliott et al. (1996) and the nu- 
merical evidence presented in Tanaka (1996). In addition, we found that the 
point optimal tests were tangent to the power envelope at approximately 0.75 
regardless of the value of R2. For a wide range of R2 (except close to zero), 
these different choices of c are important. However, this is not of practical im- 
portance when R2 = 0 (or close to 0) as the difference in point optimal tests is 
very small. 

To illustrate the choice of tests, we plot the difference between the power 
envelope and several cases of point optimal invariant tests for the empirically 
relevant cases. Figure 3 presents the power differences for case 2 when R2 = 

0.8. The optimal point optimal invariant test is denoted OPO and is compared 
with the point optimal invariant tests associated with power at 0.5 and 0.25. In 
addition, the case where c = 7 was suggested by Elliott and Jansson (2000) and 
is included for comparison.4 None of the tests has the lowest power loss over 
the range of alternatives because each test is asymptotically admissible. How- 
ever, the optimality criteria used in this paper dictate that we should minimize 
the area under the curve, and the OPO curve corresponds to that test. Figure 4 
represents case 2 with R2 0.9. The power loss is similar to the R2 = 0.8 case 

0.12 
-,\ , -, cbar = 7 

....... power = .5 
......... OPO 

0.08 

0 

0~ 

0.04 

0.00 I.= 

I 'I I I I I I I I 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Local Alternative 

FIGURE 3. Case 2: R2 = 0.8. 
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FIGURE 4. Case 2: R2 = 0.9. 

for all of the tests except when c = 7. This is, of course, due to the fact that 
holding c = 7 now forces the tangency to the envelope to lie at a higher power 
level because the envelope for R2 = 0.9 is steeper. Hence, the power loss at 
more local alternatives is greater. Figures 5 and 6 repeat the analysis for case 3, 
but we include a test based on c = 13.5 because a constant and trend are esti- 
mated.5 Similar conclusions hold with the power loss associated with c = 13.5 
being even greater. When the point optimal test associated with power = 0.25 
is examined, we see that the power loss for the middle range of alternatives is 
substantial, so that the area under the curve is large. This effect is magnified if 
we consider locally most powerful tests where c X 0.6 In all cases, it is easy to 
see that the OPO test has the minimum area under the curve. 

5. CONCLUSION 

We have developed expressions for characteristic functions for the limiting dis- 
tribution of point optimal invariant tests for the unit root hypothesis using co- 
variates. Using these characteristic functions, we are able to find power envelopes 
and power functions by numerical integration in the manner proposed in Na- 
beya and Tanaka (1990) and Perron (1991) for OLS based unit root tests. 
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FIGURE 5. Case 3: R2 0.8. 
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Employing the power envelopes and power functions for point optimal 
tests, we find the "optimal" point optimal tests, in the sense that the integrated 
difference between the envelope and the point optimal tests is minimized. Re- 
markably, the tangency occurs where the power envelope takes a value of ap- 
proximately 0.75 regardless of the magnitude of the covariate effect. The power 
gains from using these optimal tests (relative to the choice of alternative when 
there is no covariate effect) are greater as the covariate is more effective in 
explaining variation. The values of c and the critical values associated with the 
optimal point optimal invariant tests can be used in conjunction with Elliott 
and Jansson (2000). 

NOTES 

1. The parameters c and c are taken as positive, which is the opposite of Elliott and Jansson 
(2000) but the same as in Hansen (1995). 

2. Case 3 has a representation using sin A and cos A. However, this representation is several 
pages long, and we use the determinant representation to conserve space. 

3. We thank an anonymous referee for pointing out this connection. 
4. When c- = 7, the point optimal test is tangent to the power envelope at 0.5 if there are no 

covariate effects. This is the same alternative used in Elliott et al. (1996). 
5. For case 3, c = 13.5 is tangent to the power envelope at power = 0.5 when there is no 

covariate effect and a constant and trend are estimated. 
6. See Figure 1 in Elliott et al. (1996) for a comparison of tests when R2 = 0. 
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Appendix 
Proof of Theorem 3.1. The theorem follows Nabeya and Tanaka (1990) and Perron 

(1991) closely. We prove the result for case 2 because the other cases are similar. The 

proof is completed by finding E(eOLR2) and then replacing 0 by i6. First, 

LR(c,c) = (c2 -2c) f(wL)2 + 2cf wC d ? (C2 - 2cc)) ? J (wic- l)2 

R 
- 2c5 WC -f Wc)dW2. 

1- - R7 

Condition on W1c so that we have 

OL ( 2 
)] 

E(eLR E Eexp (OIL + ~ 2u) 

where 

(-52 c) f(Wc)2 + 2c W(dW1 + (2-22cc) 1 R2 f(WC - c)2 

and 

452 
= 4C- R2 

fw,c - 
WI)2 

Following Perron (1991), use Girsanov's (1960) theorem to eliminate the f(WIc)2 terms, 

setting 

3 = c- 20C - 206(c - 2cc-) - 4c262 
1 -R 2 1 -R 2 

The moment generating function becomes 

e (cJ38)12>Gc)ELexp{/ c + 65)(W13 (1)) 2 

[~~~~ ~ {2 ( 2(- W) 

-1 -R2 (205 + (C2 - 2cc-)) (fw1) }I. 

Let X = WI (1) and Y = f W,". Then V = (X, Y)T N(0, ) where 

Ie2, 82 2 e 2 2 

< 
(2 2 2) 23 

3 
2 2) 

(see Tanaka, 1996, p. 234). 
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Then 

E(e OLR) = exp (c; - _) E Lexp ( VT Av), 

where 

(}!8 - c) + 20c- 0 

A 
~~~~65 2 R 2 

O ~ ~~~~ -4 RC- 2-2 
1 -2c R 2 

Then 

ELex( 2 ) I 

21I 1/2 exp(-- V2T (J- A) dV 

A simple change of variables gives us 

E(eOLR) e (c;' 165) E ex 
2 ) 

I A 

After algebra, we have 

E(e6L) = exp(2 - 65) X g(6) /, 

where 

g()=(C-20 -8C2 -0 - 8 -02- 6-303 +4Cj-202)- g(6) = (4c52 8c2 - 56 - 165C6 + 24c5r62) 

cosh 3 
+ (-24cC262 + 16C536 + 85362 + 8c2c - 4cc2)r 84 

+(c -220 + C-20-4C2 -0 4-202 _4-302 8-30 3 +1C-2 2) + (4c560 - 252 + 2c52 -4 4c2 -4526 - 4536 - 85c6 + 12c5262 

sinh/83 2 -0 cosh/8 
X r p3: + (2C2-4cc- + 4c22 )r 2 

sinh ,B 
+(c-2c-6) 

s 
+cosh/3. 

13 

Substituting i6 for 6 and noting that 8 = iA gives the result.U 
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