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This paper studies efficient detrending in cointegrating regression and develops 
modified tests for cointegration that use efficient detrending procedures. Asymp- 
totics for these tests are derived. Monte Carlo experiments are conducted to eval- 
uate the detrending procedures in finite samples and to compare tests for cointegration 
based on different detrending procedures. The limit theory allows for increasingly 
remote initial condition effects as the sample size goes to infinity. 

1. INTRODUCTION 

There is a large body of work on the theory of unit root tests and their multivariate 
versions in cointegrated time series. One of the directions in which the subject is 
presently moving is the development of tests with improved asymptotic proper- 
ties (Schmidt and Phillips, 1992; Elliot, Rothenberg, and Stock, 1996; Hansen, 
1995). Monte Carlo results (see, e.g., Phillips and Perron, 1988; Schwert, 1989; 
DeJong, Nankervis, Savin, and Whiteman, 1992) indicate that unit root tests of- 
ten have low power against plausible trend stationary alternatives, and, in con- 
sequence, much recent effort has been devoted to the construction of more efficient 
tests. 

One of the mechanisms for increasing the efficiency of these tests is related to 
point optimal test procedures. When the time series model is a Gaussian AR(1) 
with unit error variance, the Neyman-Pearson lemma can be used to construct the 
most powerful test of a unit root against a simple point alternative. King (1988) 
provided a general discussion of such point optimal invariant tests, and Dufour 
and King (1991) developed the family of exact most powerful invariant tests. 
Elliot et al. (1996) applied this idea in the context of unit root tests. When the 
times series involves a deterministic component, Elliot et al. (1996) showed that 
power gains can be obtained by detrending under the alternative hypothesis be- 
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fore constructing the unit root tests. This detrending procedure is sometimes called 
generalized least squares (GLS) detrending in the literature. It is more accurate to 
describe it as detrending after quasi-differencing (QD) (see Phillips and Lee, 
1996; Canjels and Watson, 1997) because full GLS is not used in the detrending 
regression. An analysis of the efficiency gains from QD detrending and its effects 
on the power of unit root tests has been given by Phillips and Lee (1996). 

It is of considerable interest to extend the method of QD detrending to tests for 
cointegration in multivariable systems. The concept of cointegration was intro- 
duced by Granger (1981) and Granger and Weiss (1983) and more systematically 
studied in Engle and Granger (1987). In the last 10 years, a new body of statistical 
theory has developed for the analysis of cointegration (see, e.g., Stock, 1987; 
Stock and Watson, 1988; Phillips and Ouliaris, 1990; Phillips and Hansen, 1990; 
Phillips, 1991; Johansen, 1988, 1991; Johansen and Juselius, 1990; Sims, Stock, 
and Watson, 1990). For hypothesis testing, Engle and Granger (1987) suggested 
testing cointegration by examining whether or not the residuals from the cointe- 
grating regression are stationary, and Phillips and Ouliaris (1990) studied asymp- 
totic properties of the residual based tests. Stock and Watson (1988) proposed the 
"common trends" approach based on the fact that a vector time series cointe- 
grated with order r can be written as the sum of n - r common trends and an I(0) 
component. Using the reduced rank regression technique, Johansen (1988, 1991, 
1996) has studied likelihood inference based on a Gaussian error correction model 
and shown that the asymptotic distribution of the likelihood ratio tests for cointe- 
gration is determined by a generalized eigenvalue problem and has the form of a 
multivariate unit root distribution. 

This paper applies the idea of QD detrending to tests in cointegrated systems. 
The key feature of efficient tests for a unit root is that the trend parameters be 
estimated under the alternative or, more specifically, some plausible alternative 
hypothesis. Applying the same idea in a cointegration test framework, we per- 
form the detrending procedure under the alternative. Consider an n-dimensional 
VAR model 

'AYt =FYt-I + I' I AYt- I+ + ')kAYt-k+l + BXt + St, 

where xt is a deterministic trend. The null hypothesis of interest is Ho: there 
are s = n - r unit roots in the system, where r is the dimension of the cointe- 
gration space. For alternatives that are distant from unit roots (i.e., yt is trend 
stationary), ordinary least squares (OLS) detrending is asymptotically efficient 
by the Grenander and Rosenblatt (1957) theorem. For alternatives closer to 
unit roots, such as the local alternative H, there are s = n - r roots that are 
local to unity of the form 1 + (c/n), QD detrending is more efficient (see 
Phillips and Lee, 1996; Canjels and Watson, 1997). When QD detrending is 
performed under Hc, we need to estimate the trend coefficients based on quasi- 
differencing in the n - r directions where the data have roots that are local to 
unity and estimate the trend coefficients in other directions (i.e., stationary di- 
rections) by OLS regression. 
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Because the directions with unit roots and roots less than unity are not imme- 
diately distinguishable in the n-dimensional coordinate system in which the time 
series Yt is observed, we have to transform or rotate the coordinate system so that 
the I(1) and I(0) components are separated. The first step in our procedure there- 
fore involves a preliminary estimate of the directions of stationarity so that the 
rotation matrix can itself be estimated. We next run the QD detrending regression 
on the transformed data. The final test statistics are then constructed based on a 
reduced rank regression with the detrended data. 

The outline of this paper is as follows. The next section presents the model 
structure. Section 3 develops an efficient detrending procedure for cointegrated 
systems and gives the limit distribution of the efficient detrended time series. A 
modified test for cointegration against a local alternative hypothesis is proposed 
in Section 4, and its asymptotic theory is developed. Section 5 discusses some 
additional issues concerning the effects of alternative initializations. The results 
of a small Monte Carlo experiment are reported in Section 6. Section 7 concludes. 
Proofs are given in Section 8. 

A word on notation before we begin. We use the symbol => to signify weak 
convergence, and to signify equality in distribution. The term I(k) denotes 
integration of order k. All limits are taken as T -* oo, unless otherwise specified. 

2. STRUCTURE OF THE MODEL 

Consider the following VAR process Yt: 

I-I(L)yt = Bxt + -et, t-=1, ...,IT, 

where xt is a deterministic trend, say, xt (1, t ... ., t P)', and B = (Bo, .. ., Bp), with 
Bp = 0. The error st is an n-dimensional independent and identically distributed 
(i.i.d.) random vector with zero mean, variance matrix A, and finite fourth cu- 
mulant. The initial observations of Yt are taken to be Op(l). The VAR can be 
rewritten in the following form using a finite order BN (Beveridge and Nelson, 
1981) decomposition: 

-rYt + 1 *(L)(I - L)yt = xt + st (1) 

If yt is a cointegrated system of order r, then rank(I1) = r and the matrix 1I can be 
decomposed as H = a,3', where a, ,8 are n X r matrices of rank r. 

Generalize the time series Yt by replacing the difference operator I - L in (1) 
with a quasi-difference (QD) operator I - AL, giving 

- Yt + H* (L)(I - AL)yt = Bxt + st (2) 

or 

fl(L)yt- Bxt + et, 
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where A =,3,/' + /3j exp(T' C)/13', C is a constant matrix of dimension s X s, and 
exp(.) is the matrix exponential. (For some subsequent results, more specific 
assumptions will be made about the localizing parameter matrix C.) The matrix A 
in the QD operator in (2) can be written 

A = I + 8/31[exp(T'C) - I],/ = I + T-1/3 C/8 + O(T-2), 

and therefore the QD operator I - AL has a form that is locally different from the 
operator I - L in the nonstationary directions, i.e., directions other than the co- 
integrating directions /. 

Using the BN decomposition again, we obtain the following representation of 
(2): 

- Yt + T *(L)Ayt = Bxt + t, (3) 

where T = a3,' + 11l*(A - I) a/3' + T 1l *,8C/l_, He = H*(1), T*(L) = 

H*(L)A + H**(L)(I - A), and H**(L) is defined as H*(L) = H*(1) + 
17**(L)(I - L). 

To fix ideas for our analysis, we make the following assumptions on Yt. 

Assumption RRR. 

(Al) {st} is a sequence of i.i.d. Gaussian vectors with variance matrix A. 
(A2) The determinantal equation II (L) 0 = O has roots on or outside the unit circle. 
(A3) A =,3j exp(T- lC)/81 + /3, where a and:8 are orthonormalized matrices of full 

column rank r, 81j is n X s matrix of full column rank that is normalized and 
orthogonal to /, s = n - r. 

(A4) a' fl*/3? has full rank s, where a1 is n X s matrix of full rank that is normalized 
and orthogonal to a. 

In this model, the n-dimensional time series yt has s large autoregressive 
roots that are near unity with localizing parameters that arise from the matrix 
I - A = -T1-1,3L C,/, whose rank is at most s. This is the multivariate version 
(see Phillips, 1987b, 1988, 1998) of the common univariate local-to-unit roots 
model. It generalizes the concept of cointegration to cases where individual 
time series in yt are highly persistent, with roots close (but not necessarily 
equal) to unity, but certain linear combinations of the series are stationary. In 
particular, when C = 0, it reduces to the conventional cointegration model with 
the usual error correction representation. For simplicity, we assume in Assump- 
tion A3 that a and /3 are already orthonormalized. Otherwise we have to or- 
thonormalize them and use another notation in constructing the rotation matrix. 

Let H = (/,138) and G = (a,aL). Transforming Yt by H', we get 
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Notice that A I + T -1,_l C/3{ and rewrite (2) as 

-Ylt + fl*(L)f3(I - L)ylt + n*(L)P AcY2t = VXt + Et, 

where AcY2t = Y2t - (I + C/T)y2 t_-1 Multiplying the preceding system by G', 
we then have 

[I + a'fl*(L)(I - L) a H (L)i I Yit I = G' (Bx + y). 

L al_ (L)8(I - L) af1 *(L)18jLAcY2t 

Let 

aj'r 
?aH* (L)/3(I - L) 

a'I`*(L)I1 N aiFI*(L)3(I - L) aiFl*(L)f3u1 

Under Assumption RRR, 1 (L) is invertible. Let K(L) = 1(L)'G' and partition 
this matrix into blocks as 

( K1(L) r 

K2(L) n - r. 

Then 

ylt = K1(L)(Bxt + st), (4) 

AcY2t = K2(L)(Bxt + et). (5) 

Thus, yt can be decomposed into the sum of a deterministic component, Ext, and 
a stochastic component yj' as follows: 

Yt =Ys + Fxt, 

or, in its partitioned representation, as 

Yit =yit + Ftxt, 

Y2t Y2t + F2Xt, 

where Y't = K1(L)Et and As,Y2t = K2(L)st. In the original coordinate system, 

Yt = Hyt = ys + Fxt. (6) 

Remark 1. In the transformed time series yt, the stationary component and 
nonstationary component are separated so that the first r elements, ylt, are 1(0) 
and the next s elements, Y2t, are nearly I(1) and not cointegrated. 

Remark 2. When C = 0, the time series has the following conventional Gauss- 
ian error correction representation: 

K-1 

AYt = aP'yt- 1 + ,I)i Ayt-i + Bxt + st. 
i=l 
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Remark 3. If the model satisfies the condition that /F = 0, then the same 
cointegrating vector that eliminates stochastic nonstationarity also eliminates de- 
terministic nonstationarity. The random vector Yt is said to be deterministically 
cointegrated in this case. Otherwise, Yt is stochastically cointegrated, to use the 
terminology of Park (1992). 

3. EFFICIENT DETRENDING IN A COINTEGRATED SYSTEM 

We consider two detrending procedures for time series Yt = Y7 + Fx, defined by 
(2) in Section 2. In this section, we assume that the matrix C = diag[c, ... c], 
where c is a constant. The first detrending regression is the OLS regression of 
time series Yt on the deterministic trend x,: 

Yt = Fx, + residual. (7) 

The estimated trend coefficient matrix is F = Y'X(X'X)1, where Y' = 

(Y, *...., Yt, ... , YT), X' = (XI, ... ,Xt , X,XT), and the OLS detrended time series 
iS Yt Yt _ rxt. 

The second detrending procedure, which we call QD detrending, is based on 
the following regression of the transformed time series Yt: 

F it 1 O xtl 
LAC Y2tJ 0 0 r2 [o xJ[ ]j+ residual. (8) 

The estimated trend coefficient matrices are 

ri = YI'X(X'X)-l, (9) 

r2 = AcY2 AcX(AcX'zX)-1, (10) 

where 

Y,' = (Yll, e-,Ylt, .,Y1T) =3Y, 

Ac Y2 = (Acy21l,.. Acy2t,..,Acy2T) =p1 AcY', 

ACXI = (AcX1 **..,ACXt,.**,kAcXT). 

The QD detrended time series can then be constructed as follows: 

y= Yt- xt, (11) 

where 

r= F = rHr. 
f29 

Remark 4. The second detrending procedure, which uses the quasi-differenced 
data for the nonstationary component of the time series, is asymptotically more 
efficient than OLS detrending. An analysis of efficiency gains from QD under 
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nonstationarity is given in Phillips and Lee (1996). To understand the efficiency 
gain of the detrending regression procedure that leads to the detrended time se- 
ries, we can make a simple comparison between these two detrending procedures. 
Suppose Ylt-Uit 1(0) and A, y', = U2t I(O). Assume that T-1/2 [ ut = 

B(r) = (Bl(r)', B2(r)')', where ut = (yjt, u't)', and suppose that Dx[Tr] =* X(r) 
and FACX[Tr] == Xjr), where F and D are the corresponding standardizing ma- 
trices with F = TD, and formulae for Xc(r) are given in Theorem 1, which fol- 
lows. Notice that the OLS detrending procedure is equivalent to the detrending 
regression 

[Yit 1 F['i 
I - Ixt + residual. (12) 

LY2t J L*(12) 

The estimates of F1 are identical for the two procedures. The difference occurs in 
the estimation of i2. The asymptotic distributions of these two estimators are 

T-1/2 -F2)D-1 f J2c(r)X(r)' [fSX(r)X(r)' 

(1/2( - F2)D-1 f dB2(r)Xc(r)' [f Xc(r)Xc(r)' 

where J2j(r) = f exp{(r - s)C} dB2(s). 

As shown in Phillips and Lee (1996), an efficiency gain is achieved in the 
QD estimator because f2 has smaller variance than F2. For instance, when s = 
n - r = 1 and xt = t, the variance of the limit variates of F2 is Vgls = 3o2/(3- 
3c + c2), whereas that of the OLS estimator is Vols = 3 U2[3e2c(c - 1)2 + 

2c3 + 3 C2 - 3]/2c5 . The relative efficiency, Rc = Vols/Vgls, is greater than 1 
for all finite c. 

Remark 5. The QD estimators we propose here ignore the I(0) serial correla- 
tion associated with the stationary operator K(L). This brings no loss of asymp- 
totic efficiency by virtue of the Grenander-Rosenblatt theorem. 

The asymptotics for 's and 5s are as follows. 

THEOREM 1. 

T1 Y2j[Tr]=> Jc(r) = J (r) -f dB(s)XC(s) LTXC(s)Xc(s)' X(r), 

where X(r) = (1, r,..., rP), g(r) = (0,1,2r,..., prP-1), Xc(r) = g(r) - cX(r), 
Jc(r)- fexp{(r - s)C}dB(s), B(r) /3L(aiFI*p,hl_)-1aiBe(r), B8(r) is vector 
Brownian motion with covariance matrix A, and T-1/2 'TrJ, t =* BE(r). 
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4. A MODIFIED TEST OF n - r UNIT ROOTS AGAINST 
A LOCAL ALTERNATIVE 

A key feature of the efficient unit root tests in Elliot et al. (1996) is that the trend 
parameters are estimated under a plausible local alternative hypothesis. The same 
idea can be used in tests for cointegrated systems, where the detrending proce- 
dure can be performed under a plausible local alternative. However, in this case, 
the formulation is not as straightforward because of the multivariate nature of the 
procedure. 

For the vector time series Yt defined by (2) (or (3)) in Section 2, we consider the 
null hypothesis of r cointegration vectors, Ho: rank(t) = r, or equivalently, 
Ho: there are n - r unit roots, i.e., C = 0. When the alternative is "T is of full 
rank," then Yt is (trend) stationary, and OLS detrending is asymptotically efficient 
under the alternative (Grenander and Rosenblatt, 1957). 

Next consider the following local alternative, H, there are n - r roots local to 
unity and C = diag [Cr+,.. ., c j. In this case, when we perform efficient detrend- 
ing under Hc, we estimate the trend coefficients based on quasi-differenced data 
in the n - r directions that are local to unity and estimate the trend coefficients in 
other directions by OLS. Under the null hypothesis 

k-i 

\Yt = -43 Yt-I + Di Ayt-i + Bxt + et, 
i1= 

where a, ,/ are n X r matrices of rank r. As described in Section 2, we rotate1 the 
coordinate system by premultiplying the preceding time series by H' and get the 
transformed data yt = (yAt, yAt)'. Here yit I(0), yt =I(1) under Ho. 

Under the local alternative H,, the components of y', are nearly integrated, 
y=t I(0), and we can write 

yt - (I + C/T)y t- I 1(0). 

Consider the following detrending regression: 

Yit1 -2t LF O rJ ][5K1 + residual, (8') 

where A,c denotes the QD operator I - (I + C/T)L, with C = diag[e ........ c] 
for some c. Then, Fl = Y1'X(X'X)<, F2 = A,\Y21AeX(Aj1X'ZjX)X. Notice that 
if Cr+1 C Cr+2 = = cn = c, and we set c = c, then, under the alternative 
hypothesis, Aky5t I(0), and the detrending procedure is asymptotically effi- 
cient because we are now estimating the trend coefficient F2 with a stationary 
error. 

The detrended time series is yt = Yt - Fxt, and, in original coordinates, 5t = 

HYt = Yt- Fxt, with 
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r = Hfr r H , 

THEOREM 2. Under the null hypothesis, 

T-1/2-[Tr] =>BE(r) =B(r)- dBj(s)Xj(s)'[f Xc(s)X(s)] X(r), 

where Xc(r) g(r) -c5X(r), Bj(r) = B(r) - 
rfO B(s). 

Consider the following reduced rank regression based on the detrended data 
Yt: 

k- 1 

aYt 8'v t-l + EDiA\Y't-i + St. 
i_ 

To remove the nuisance parameters (Pi, i - 1, .. ., k - 1, let Rot - residual from the 
regression of A 5t on A' ,. ,A -kW1 and RIt residual from regression of 

Yt1 on AY-'1, o,AYt-k+1. Then we can estimate a,f3 from a reduced rank re- 

gression of Rot on Rl t, 

Rot = aI3Rlt + error. (13) 

The likelihood ratio type test for the null 

Ho: there are n - r unit roots 

against 

H: there are n - r roots local to unity 

is given by LR5 =-T IYnr+1 ln(l - Ai), where Al,..., A, are the ordered squared 
canonical correlations in the regression (13). 

Following Johansen (1988, 1991), define S00 T-' ljt=RotRbt, Sol 
I t=I Rot R't, SloT t=,RltR't, SI,= -T1 I -RI, R't. Then, Arl 

An can be found by solving the determinantal equation 

IAS11 -s10 So 1 SO1 I 0 (14) 

leading to the ordered eigenvalues A1 > > An 
The asymptotic properties of this test statistic are given in the following theorem. 

THEOREM 3. Under the null hypothesis that there are n - r unit roots, the 

test statistic LR - T FJl ln( I-Ai) is asymptotically distributed as the sum 
of the roots of the determinantal equation 

A f Wc(r)WV(r)' - Wjr) dTW(r)' f dWT(r) W(r)' = 0, 
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i.e., LRj = tr{f0 dWc(r) Wc(r)' [fo Wj(r) WV(r)' ] -lfo' W(r) dWT(r)' }, where 

W(r) = W(r) -| 
dWj(s)Xe(s)' 

[ f Xc(s)Xc(s)] X(r), 

W,(r) = W(r) - iE W(s), 

and W(r) is a standard Brownian motion. 

Remark 6. The derivation of the limit theory depends on the asymptotic be- 
havior of the product moment matrices of the detrended data. These asymptotic 
properties are verified and the proof of Theorem 3 is given in Section 8. 

Remark 7. In the detrending regression, we used OLS regressions based on 
quasi-differenced data. Joint estimation of the trend coefficients from a seem- 
ingly unrelated (SUR) regression on (8') could also be used, and whether or not 
there is a further efficiency gain from the use of SUR regression depends on the 
form of the deterministic trend. For the polynomial trend given in Section 2, no 
gain is obtained from the SUR regression because the space spanned by xt is the 
same as the space spanned by A5xt. 

Remark 8. If we consider another alternative H': there are n - r - 1 unit roots 
and one root local to unity, then an efficient detrending procedure under this 
alternative would estimate the trend coefficients based on fully differencing in 
the n - r - 1 directions that have unit roots and QD in the direction that is local 
to unity. In this case, the detrending procedure treats different directions in dif- 
ferent ways, which is reflected in the limit distribution of the detrended data. 
More generally, we can consider local alternative H": there are n - r - s (s > 0) 
unit roots and s roots local to unity. This is the localized version of the model 
considered in Johansen (1996, chap. 14) in which there are r cointegrating vec- 
tors under the null and r + s cointegrating vectors under the alternative. Again, to 
apply the idea of efficient detrending under the alternative, we should fully dif- 
ference the n - r - s directions that have unit roots and quasi-difference the s 
directions that are local to unity. 

The same idea can be employed for the alternative Hc in the way that we per- 
form QD by using different local parameters cj(j = r + 1, .-. , n) in the different 
directions. This is efficient under Hc. Let H = [/3, /8_] = [h1, . . , hr, hr+i . . . * hn]. ; 
then, under the null, the detrended time series y7 has the following asymptotic 
behavior: 

T' 2Y[Tr] B(r)- E hj hj' dBcj(s)Xcj(s)[ f Xcj(s)Xcj.(s) IX(r). 

Note that this limit not only depends on the cj values used in QD but also depends 
on the directions hj. 
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The preceding procedure requires knowledge of the cointegrating vectors /3. 
When ,/ is unknown we can use a preliminary estimate of /3, obtained from a 
reduced rank regression in the usual way, to construct a rotation of the coordinate 
system. Then, we reestimate ,8 and calculate the modified test from a new reduced 
rank regression with the efficiently detrended data. Hence, we suggest the fol- 
lowing three-step algorithm for testing in a cointegrated system. 

Step 1. Obtain consistent estimates of a and 13 by running a reduced rank regression in 
the usual way on the system 

k-1 

Ayt = a/P'yt-1 + E A" AY,-j + Bxt + st. 
j-l 

Step 2. Using the estimated ,8 from step 1, transform the system by premultiplying by 
H' = ( /,/ _)' and calculate 

Yt = Hy Yt-[( yt)',(: Yt) ]' -y't, Y2t] . 

Run detrending regressions based on the quasi-differences of Y2t (for some appro- 
priate c) as in 

?2) (~~) = + residual. 
\^cY2t1 V O 21 \AcXt/ 

Construct the detrended time series and transform both back to original coordinates 
as follows: 

Yt Yt - Xt, 

Yt =HYt =Yt- Fxt 

F HF= H[ . 
J2_ 

Step 3. Reestimate a, /8 by running a new reduced rank regression on the detrended data 
Y, namely, 

k-i 

AYt Ya3't-, + (Di AYt-i + ?t 

and calculate the likelihood ratio (LR) test statistic 
n 

LR -= -T E ln(l-Ai). (15) 
i=r+1 

Remark 9. When a preliminary estimate of the cointegrating vector is used, 
the estimation error from /3 figures in the transformed data as we rotate the co- 
ordinate system. As a result, the asymptotic validity of the LR test statistic in the 
preceding algorithm depends on the magnitude of the error term and the form of 
the deterministic trend. Because the reduced rank regression estimate of the co- 
integrating vector converges at the rate T, for the leading cases of a constant term 
(xt = y) and a linear trend (xt = yo + zYi t), it can be verified that the detrended 
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data 5, in the preceding three-step procedure have the same limiting behavior 
given by Theorem 2, and the likelihood ratio test statistic LRI? (15) has the same 
asymptotic distribution as that given in Theorem 3. A proof of this result is given 
in Section 8. 

Remark 10. Obviously, this procedure could be iterated further in the hope of 
some finite sample advantage. 

5. ADDITIONAL ISSUES ON INITIALIZATION 

We assumed in previous sections that the initial values of Yt have finite variance 
and are Op(l) as T -- oo. However, in nonstationary models when the initial 
conditions are allowed to go into the remote past, this no longer holds, and in- 
formation on the initial condition plays a role in the limit distributions. The fol- 
lowing construction for the initial conditions of the nonstationary part allows for 
this possibility and is used in Canjels and Watson (1997) and Phillips and Lee 
(1996): 

[OT] 

Y20o K2(L) -i 
i=O 

The variance Y20 is determined by the new "remote past" initialization param- 
eter 0. When 0 = ?, Y20 = Op(l), whereas for 0 > 0, Y20 = OP(T). To make this 
initial condition consistent with the structure of the model described in Section 2, 
we transform to original coordinates using 

[OT] 

yo = K1 (L) go + / IK2(L) E - *. (16) 
i=o 

In stationary directions, the initial conditions do not influence the asymptotic 
theory, so these initializations can be ignored here. 

Initial conditions of this type change the limit distributions of our test statis- 
tics in two ways. First, they change the limit of T- V2Y Tr]. Second, and more 
importantly, they can affect the asymptotic properties of the trend coefficient 
estimator F. 

When the initial condition is given by (16), under the null hypothesis Ho, we 
have 

ys = Hy[,3yl t + A ?/2?t 
[ST] t - 

= 3K1(L)8t +I31K2(L) I 6-i + E 611. 
i=O j=O 

Thus 

[OT] [Tr] 

T -1l/2ysTr] =81 K2(L) T- 1/2 E s_i + T- 1/2 8 + o( l) 
i=o j=O 

B8 (0) + B() 



DETRENDING IN COINTEGRATING REGRESSION 531 

where 

B * (0) -,31 (a' 1 *,81) -'a' B(0), 

B(r) =,81 (aoelI*,8w)-1 aB_ (r), 

B*(O) = A'/2W*(0), 

B. (r) A'12W(r). 

Here, W *(0) and W(r) are independent standard Brownian motions. 
The effect of the new initial values on the estimated trend coefficients depends 

on both the form of deterministic trend and the type of estimation procedure 
employed. Without loss of generality, we will study the case of a linear trend x, = 

(1, t) here to illustrate how initial conditions and different estimators can affect 
the asymptotic results. In this case, D = diag(1,T1), F = TD = diag(T, 1), and 
then 

Dx[Tr] -4 (1, r)' =X(r), 

FA/J X[Tr] -* (-c,, I-r)' = X, (r). 

Partition the coefficient matrix F as 

( Yl Y12 
_ = 

Y21 Y22 

so that 

Ylt = Y I + Y12t + Yst = F1Xt + Ylt, 

Y2t = Y21 + Y22t + YAt = F2Xt + YAt 

As in Canjels and Watson (1997), we consider the following four estimators for 
F. Because the estimate of F1 in all of these procedures is the same OLS estimate, 
we focus our discussion on the estimation of F2. The estimate of 12 are as follows. 

El. OLS estimation of 12: 

Y2t = f2OLSx + y25t t 1,2,... ,T. 

E2. Cochrane-Orcutt (1949) GLS estimation of F2: 

AI\ Y2t = P2CTOA,xt + A5Ylt, t = 2, ..., T. 

E3. QD estimation including the levels information in the first observation: 

y GLSX - s Y21 = f2 xI + Y212 

Ai 2t 2- t =2,..T. 
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E4. Prais-Winsten (1954) estimation of F2: 

(8Y21) = f2fW(8x) + error, t 1, 

AeY2t = FfWAxt + error, t=2,...,T, 

where 52 =1- (1 + 5/T)2 21sI/T+ o(T-1). 

The limit distributions of the preceding estimators are given in the following 
theorem. 

THEOREM 4. 

Tl/2((f2oLs 1F2)D 1 = J (B(0)* + B(r))X(r) [{l X(r)X(r)' 

T 2 F 2)D dBj(r)X5(r)' [f1 Xj(r)Xj4r)' 

T / W- F2)D-I [(2 l lK2 (1)B, (6), 0) + ,BJ f dBcT(r)X(r)'] 

[(2151 O ) +fJxc(r)Xc(r)'1] 

When 0} > 0, 

T-l/2(FkLs - F2)D 1 (K2(1)B*(0), K2(1)B( 0) + /1f dBjr)(r)-r)) 
O 1l - (1 - ) ](c 

When 0 > 0, 

(T-f12G F2)GL - 12 1- (1 C)3 hf1) dB r() - d r) 

where G = diag(1,T--2). 

Remark 11. In all of these cases, the estimator for the intercept term Y21 iS 

inconsistent. In most of the cases, the estimator of Y2 1 iS of order T'1/2, However, 
for the estimation procedure (E3), when there is finite variance, the rate of di- 
vergence in the estimator of Y21 iS lower than that of the other estimators and we 
have to use another scaling matrix G. As a result, the variance of 721 in this case 
is lower than that of the other cases. 

Remark 12. The invertibility of fXthX depends on c not equaling 0 because 
the constant term and the coefficient of the linear trend t are unidentified when 
c = 0. For values of c close to zero, the trend coefficients will be poorly estimated. 
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Remark 13. The limit distribution of the Cochrane-Orcutt GLS estimator is 
invariant to initial conditions because the estimator ignores the levels informa- 
tion of the first observation. Consequently, the asymptotics for F CO are the same 
as those obtained in Section 4. The effect of the initial condition on the tests 
comes from the limit of T-'/2YyTr]. Specifically, 

T 1/ 2[Tr] T 12YsTr] - T1/2(F F)X[Tr] 

>B (0)+ B(r)-f dBj(s)Xj(s)' [ X(s)X(s)' X(r) 

=-BY(r), say, 

and the test statistic for the null hypothesis Ho against H,, namely, 
-TJUnr+i ln(1 - Ai), is asymptotically distributed as the trace statistic from the 
following determinantal equation: 

A (r) W (r)' -f (r) d (r)'f d (r) Wo(r)' = 0, (17) 

where W7*(r) = W*(0) + W(r) - f' dW5(s)X5(s)'[fo X(s)Xj(s)']-'X(r). 

Remark 14. The limit distribution of the trend coefficient estimator (E3) is 
dependent on the initial observation. The initial condition affects the distribu- 
tion of the test statistic through both Y(TrI and P. As a result, the test statistic 

-TEU=r?1 ln(1 - Ai) is asymptotically distributed as the trace statistic from 
the following determinantal equation: 

W*(r) We7*(r)' -f WV*(r) d W*(r) f dW*(r) 9*(r)' = 0, (18) 

where WLV**(r) W*(6) + W(r) - [W*(O)h' + f0'dWj(s)Xj(s)'] X 

[f0Xj(s)X5(s)' ]1X(r) and h is a vector dependent on the first observation. 

Remark 15. When 0 = 0, our results reduce to the case of Op(l) initial obser- 
vations, WVO(r), WV**(r) reduce to W(r), and the limits are the same as those 
obtained in Section 4. 

6. MONTE CARLO RESULTS 

A small Monte Carlo experiment was conducted to evaluate the efficient detrend- 
ing procedures on tests for cointegration and to provide a comparison of the QD 
detrended tests with the OLS detrended test. The data generating processes (DGP's) 
are 

Yit PY1=t-1 + 1t, 

Y2t = 0.2yi,t-i + 82t, 
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where s1t and 82t are both i.i.d. N(0, 1) variates and are independent of each other. 
The sample size considered is T = 100, and p 1 + cIT. The null hypothesis is 
Ho : there is one cointegration vector, i.e., there is one unit root in the system. The 
alternative considered here is Hc there is one root local to unity. 

We consider the following detrending procedures: 

1. OLS detrending, 
2. QD detrending with a choice of c =-7.5, and 
3. QD detrending with a choice of c = -13.5. 

These values of c were chosen because in tests for a unit root, the c values for 
which local asymptotic power is 50% are approximately - 13.5 for the case with 
a linear trend and -7 for the demeaned case. Readers are referred to Elliot et al. 
(1996) for further discussion on this matter. 

Two kinds of deterministic trends were considered: 

Case 1: x, = t, and 
Case 2: x, = (1, t)'. 

About generating the random variables and calculating the test statistics, pseudo- 
random normal variates are generated using the GAUSS subroutine RNDN, and 
trace statistic LR, is calculated using COINT 2.0, the software developed for unit 
root and cointegration testing (Ouliaris and Phillips, 1994). The power of the LR 
test based on these detrending procedures is examined. The finite sample critical 
values of the tests are calculated from simulations based on 10,000 replications 
(Table 1). We also calculated the approximated critical values for the asymptotic 
distribution based on a Monte Carlo simulation using Gaussian random variates 
and T = 400 (Table 2). Table 3 reports the empirical size of these tests using the 
critical values given in Table 2. To compare the power of different tests, we 
calculated the size corrected power, i.e., the Monte Carlo rejection rates when the 
actual 5% critical value computed for that model is used to calculate the rejec- 
tions. Table 4 reports the empirical power of the cointegration tests for Case 1, 
and Table 5 reports the corresponding results for Case 2. Figures 1 and 2 depict 
the power functions. 

For the time series considered here, the efficient detrending procedures per- 
form reasonably well. Although the relative performance of different detrend- 

TABLE 1. Finite sample critical values, size = 5% 

Case 1: x, = t Case 2: x, = (1, t) 

OLS detrended test 8.230238 11.580656 
QD detrended test, c = -7.5 8.157201 8.4625046 
QD detrended test, c -13.5 8.259264 8.9291147 
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TABLE 2. (Approximated) asymptotic critical values, size = 5% 

Case 1: x, = t Case 2: xt = (1, t) 

OLS detrended test 7.9738310 11.745856 
QD detrended test, c -7.5 8.0059878 9.5076413 
QD detrended test, c = -13.5 7.9915987 10.588673 

ing procedures depends on the distributional form of the process, more efficiency 
gain is generally achieved in Case 2, which is consistent with the Monte Carlo 
results in unit root tests. An explanation of this phenomenon in unit root testing 
is given by Phillips and Lee (1996). A choice of c value around -13.5 has 
been found in simulations to be a generally good default choice, whereas choices 
of c closer to 0 provide less favorable results. One of the reasons for this phe- 
nomenon is that the constant term and the coefficient of the trend t are uniden- 
tified when c = 0, as discussed earlier. As a result, for c close to 0, the inverse 
matrix [fX5Xf] l1 is unstable and the trend coefficients are poorly estimated. 

7. CONCLUSION 

This paper analyzes efficient detrending procedures in cointegrated time series 
regression. Tests for cointegration based on these detrending procedures are de- 
veloped, and the limit distributions of these new tests are derived. Some limited 
Monte Carlo evidence indicates that the efficient detrending procedures and the 
efficiently detrended tests for cointegration perform reasonably well in finite 
samples. 

Because the directions of nonstationarity and stationarity are usually not known 
a priori in multivariate time series, some preliminary estimation and transforma- 
tion of the system need to be performed before detrending. The LR test statistics, 
which are constructed from a reduced rank regression with the detrended data, are 
functions of certain eigenvalues of the product moment matrices corresponding 
to the smallest squared canonical correlations. The asymptotics of these tests are 

TABLE 3. Empirical size of the tests 

Case l:xx = t Case2:xt = (l,t) 

OLS detrended test 0.0562 0.0422 
QD detrended test, c- -7.5 0.0540 0.0276 
QD detrended test, c-- 13.5 0.0568 0.02 13 
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TABLE 4. Power of tests for cointegration: Case 1, x, = t 

QD detrending, QD detrending 
True p OLS detrending c = -7.5 = - 13.5 

1 0.05 0.05 0.05 
0.975 0.0647 0.0646 0.0652 
0.95 0.108 0.1081 0.1089 
0.925 0.18 0.181 0.1819 
0.9 0.2867 0.2884 0.2884 
0.875 0.4148 0.4161 0.4156 
0.85 0.5467 0.5475 0.5485 
0.825 0.6733 0.6714 0.6743 
0.8 0.7785 0.7796 0.7782 
0.775 0.8606 0.8586 0.8614 
0.75 0.9122 0.9104 0.9138 
0.725 0.9491 0.9467 0.9493 
0.7 0.9709 0.9683 0.9712 

generally dependent on the specific directions in which the QD is performed, and 
the cancellation of nuisance parameters in the limit distributions depends cru- 
cially on the asymptotic behavior of these product moment matrices of the de- 
trended data. Certain relationships among the limiting product moment matrices 
have been verified in this paper to validate these tests for cointegration. 

TABLE 5. Power of tests for cointegration: Case 2, x, = (1, t)' 

QD detrending, QD detrending 
True p OLS detrending c=-7.5 c - 13.5 

1 0.05 0.05 0.05 
0.975 0.0594 0.0624 0.0647 
0.95 0.0859 0.1036 0.1073 
0.925 0.1244 0.1679 0.1732 
0.9 0.1834 0.2573 0.2653 
0.875 0.2596 0.3589 0.3719 
0.85 0.3523 0.4641 0.4797 
0.825 0.4493 0.5674 0.5863 
0.8 0.5545 0.6598 0.6868 
0.775 0.6533 0.7359 0.7697 
0.75 0.7434 0.7965 0.8324 
0.725 0.8159 0.8456 0.8854 
0.7 0.8697 0.8796 0.9204 
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FIGURE 1. Empirical power of tests for cointegration, trend = t. 

When the initial observation has variance that grows with the sample size, the 
initial value plays a role in the asymptotic theory of the estimate of the trend 
coefficients and can influence the limit distribution of the test statistics, as in unit 
root tests. Some differences between models with and without intercepts are also 
found in the analysis, and, again, this extends earlier findings on unit root tests. 
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FIGURE 2. Empirical power of tests for cointegration, trend = (1, t). 
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8. PROOF OF THEOREMS 

8.1. Proof of Theorem 1 

T-1/25ijTr] T1/2Y[Tr]=- T2 rX[Tr] 

= T 1/ yT] - / Fr- F)X[Tr] 

= T 1/2Y[Tr] [4f $iXD1[7 FDXtX'D DX[Tr] 

=J,(r) - J, (s)X(s)' [JX(S)X(S)'] X(r) 

T-1/2iTs] = T 1/2Y[Tr] - T 12X[Tr 

=[Tr P/2y[sTr]- F)X[Tr] 

- T- 2y[s -- - Fl)x[Tr] - - F2)X[Tr] 

= T 1/2yTr]-T-1[ I X;D1[ Dx X;D DX[Tr] 

- 
A;FI ~ FACxtACxt;F1Dx[Tr] V-3 [ t ][T E tct] [r 

=> J (r) -dB(s)X,(s)' [ fXc(s)Xc(s)' X(r) 

-Jjr). U 

8.2. Proof of Theorem 2 

Under the null hypothesis, C = O,TT2y1Tr] 2 B(r). Notice that 

yt = yt- Fxt ys - (X - F)xt = ys -8(Xl - Xl)xt - 8L(F2 - F2)xt 

_s yt-Sl'(' lxt -,l3 -\IS c(Zct\x xt 

and 

[Tr] [Tr] T _ r = 

T -1/2 1 A,ys = T- 1/2 t Ys- yt-L I B (r)- B B(s) = B(r), 
t=1 t=1 o 

FA cX[Tr] = FAX[Tr] - 5Dx[Tr] > g(r) - cX(r) = Xj(r). 

By a similar argument to that in Theorem 1, we get 

T'-/25[Tr] B(r) - dB5(s)XF(s)' Xf(s)X5(s)' X(r) =B(r). U 
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To prove Theorem 3, we need some preliminary lemmas. 

8.3. Lemma 1 

T 

T-1 I t t+i -->O. 
t=1 

8.4. Proof of Lemma 1 

Because &t = Bt - (F - F) Axt + Ej_=2 %>j(F - F)Axt j + a/3'(F - F)xt_1, we 
substitute it into the product and get the following representation: 

T 

T g t ?,t+i 

T T 

= ~~ - (F - F)T' -T-1 E?'-(r-)- 1 E Axt-t'+ 
t-1 t=1 

T k-i T 

+a,8'(F - F)T'1 tx+i?~ + , (r -~ 7 r)t- I x-, tf+i + E (Dj(f F ) T-' E Axt-j,-'+ 
t=1 j=1 t=l 

T 

- St Axthi(P - F)' + (F; - F)(T1 E Axt Ax'+i?)(i - F)' 
t=l t 

k-I 

ac8(F - F)(T1 I Xt-, Axt'?i)(F - F)' - j (f -F) 
t j=l 

x (T-1 E Axt_ Ax;?+i )(f - F)' 
T 

+ T-' - txt,+i 1(f - F)'/8a- (F - F) 

t- 
x (T-1 E Axtxt'?i1)(F - )' 

+ a,8'(F - F)(Tl Ext_lXt4)i_I - F)8' 

k-I 

+ Ej(Fy( - F) T-1 EAlxt-jxtt+i-,( F )',8' 
j=1 t 
k-I T_ 

+ T-K E(t ?xx+i)j() - r)F)j 
j=l t-l _ 

k-1 T\ (F - F) T-1 A E xtx?t1-) (F - F)Pj1 
j=l- t= l 
kIk-I T\ 

j=1 t= IV , V _ (D KF - F)(T-1 {, Axt-,A4? -)(F - r)PPIj 
+ ki e=i He ) t' xext?i(F F' 
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It can be verified that all these terms go to zero in probability as T -> oo. In 
particular, because T"12(Fj -l)D = Op(1) and T'12(-r2)F-1 Op(l), we 
have 

T 

(r~ ~~~~~~~~~~~~- St r) +- i 24?f o 
t=1 

-=er - F1) + 131072 - F2)](T1 E -X?t+i 0 , 

T 

=( -/ ( tF+i 

t=l 

= a13'13.T-12(Tl -2( F) -1)D1 ) (T- t - 0, 

2 F)(T1 Axtsj6?i) - 0, 

j=l ~~~~~t= 1 

(T-1 E ?t Axt'+1)(F - F)' -4 0, 

r( - F)(T- E AxtAlx;i)(F - F)t 

= [13(I'l -Fr1) + /3?(I'2 - F2)](T1 I z At xtztx+) 

x [(F1 - F1)'f3'+ (F2- 2)'/3] -o 0 

,tr- F)(T-1 Ext-1zAx?1)(F - F)' 

a=3'/ (Fl - 1) (T xt- IAx'+i 

x [(J7l- l)'/3'+ (F2 - 2)fl] * 0 

k-1 

E(- F)(T' l Axt 1Ax;+1)(F - )' -? , 

T 

a-8 kx T (+T F(- - D)'T1 x ' - 0, 
t=l 
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(F - F)(T-1 E Axxtxt+il )(F - F)'/a' -:4 0, 

/3'(r' - F)(T-1 
- xt-lx;+i-l)( - F)/3af 

a '/3(Fj - F1)(T- Ext-Xt1+i- )(F - Fl)'/'8a' - 0, 

k-1 

E bj(r - F)(Tl E Axt1x;t+i1)(F - F)'/3a' 4 o, 

-F)(T~ { Axt xt'?w)(F a 0 
k-1 T 

T-'E8 tAx',j,(F -Fr)(Dj' 2->O, 
i-l t=l 

a F - F)(T- 1E XtiAx'+wj)(f - F)'Ij1 20, 

j-l t-l 

and 

k-I k-I T 

[v- F)(T1 A Ax?1)F - F) 1Jl 2-110. E E @f( )T1E Axt_t Axt'+i-i r-rtjAo 
j=1 'e=1 Lt=l 

Following Johansen (1988), we define the matrices 

qI(j) = 
Var(A3tlAj<+j), ,ou = 

E[Ayt A"], 

00 

boz =E[AYtZ1], fZZ = E[ZtZt], L} : = r(i), 
i=-j 

f-Lzi 

and use the following limits and notation: 

T = I + af' -E - i, 
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T 

Moo = T-1 LYtAYt' -?4 -oo, 
t=l 

T 

Moz = T-1 E \Y-t *Zt, 24 /Ltoz, 
t=l 

T 

M = T- Zt *Z z,2- /Lz 
t=1 

T r 

MO, = T-1 E At =-1- f dBj(r)BY(r)' + I-o,, 
t=1 

T 

Mzl T 1 Zt-1 t dBj(r)B(r)' + /-czl, 
t=1 

T 

Ml,=T- Yt-i Y5t'-i Op(T), 'a Ml (3 1 ? f> pt 1 t, 
t=l 

Mzo = Mo/z -4 /-LzO 
= 

mo = MO,M t Alo +f Bjr) dB5(r)', 10 = 01, 

Miz = Mzl 7 .. , B r)dB>.r) .. + /+LIz, [li z =4/z1l 

Also 

S00 = Moo - Moz Mz1Mzo ? -4 /t /o Az/ozzL /Lzo o0o, 

Sol = Mo - Moz Mz-z Mzi 

> f dBe(r)BY(r)' + Ao, - AO zLz z + f dB(r)B (r)'l1) 

T-'S -T-1 (Mll - MzMz-z1 Mzl) = fBj(r)B3(r)', 

pS'sllp -? p l'Xl1 p, 

So1 -? (AoI - A0z ZtZ1 lZ1)8 = Yopl.8 

We have the following results for the product moment matrices. 
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8.5. Lemma 2 

0oo = a/3 10 + A, 

Y. P = a/8' 11, 

8.6. Proof of Lemma 2 

The proof of these two relationships uses the following limits: 

T 

T-1'XD =T1 T sx'D 4 O, 
t=1 

T 

T-1ys'XD = T-1 , y Stx 'D -L> 0, 
t=1 

T 

T-Ay s'A XF = T Ays'4 A X'F L-> 0, 
t=1 

which hold because y t - K1(L)st and Ay2t = K2(L) s. t 

8.7. Proof of Theorem 3 

Under the null hypothesis, 

k-i 

Ayt = aI3'Yt_1 + , D'i Pyt-i + Bxt + st. 

For the QD detrended time series, the following properties hold: 

T 

lim T-1 Y, ?yt_= O, i = 2 12...,~k- 1, 
t=1 

T T T 

lim T 8t = lim T , t ?t = lim T1 et = A, 
T-4oo t 

t 
T- oo t1 T-> oo 

T 

lim T' etYt'-1P= 0. 
T-oo t= 

By an argument similar to that in Johansen (1988), it can be shown that the test 
statistic - T Inr?i ln(1 - Aj) depends on the limit in the eigenvalues of deter- 
ministic equation 
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fl B1f (r) B(r)'Pi - gL3'IS oaI(aaIa 1 -a'Sol = , (19) 

and we can show that the ?t are asymptotically uncorrelated (Lemma 1). Then 

T 

w lim a'Sol= w lim a{T-1 "tt- 
T- oo Tc->o t=1 

= a,f' dBC(r)BC(r)', 

where "w lim" signifies the limit in weak convergence as T - oc. Thus (19) 
simplifies as 

13f B5Bf '- 431f BY (r) dB.5 (r)a-L (a Aa_) -'af dB,,(r)BY(r)f,8 

= 0. 

Because 

(aAa_)L)-12aB? 
c(r) =Wcr), 

deterministic equation (19) can be further simplified to 

i,B1J BCB3C1 - A3Jf B&(r)dW(r)' dWe(r)BY(r) ,81 = 0, 

where 

B&(r) = I (a1Y,61)-1 (a 
f Aa )1/2 

- X [W(r) - dWj(s)Xj(s)'0 XjXf- X(r)] 

=18 (aC1 P,8) - 1 (ajf Aa 1) 1/2 LV,-(r). 

Thus, we have 

313 1(a 'P13_)-' (a{Aaj) 1/2 

X L [J WI (r)V- f W T(r)dWV(r)'f dW -(r) We(r)' 

X ( o AAaj )1/2 (f,l a a) - 1/,3) = 0. 
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The test statistic -T +1 ln(1 - Ai) = T r+?I Ai + op(l) is then asymptoti- 
cally distributed as the sum of the eigenvalues of the equation 

Af d(r)Wg(r)'-f (r)d(r)'f dW5(r)WT(r)' =0. U 

8.8. Proof of Remark 9 

In the three-step algorithm suggested in Section 4, we may use a preliminary 
estimate of the cointegrating vector in constructing the rotation. To obtain a 
uniquely determined representative of the cointegrating vector, we may use the 
normalization b' = [Ir, -Y] of /. As discussed in Phillips (1994, p. 76), this 
normalization corresponds to the priori requirement that there be r structural 
relations of a form that explicitly recognizes a subvector of full rank integrated 
regressors and is sufficient for the unique determination of P. Once the matrix of 
cointegrating vectors is estimated from a first stage reduced rank regression, ex 
post estimation of Y can be accomplished, and it is shown (Phillips, 1991) that Y 
converges to Y at rate T. We may then reparameterize this estimator as 

A= [ + )-1/2 

so that it is orthonormalized, and the corresponding estimator of /_L is 

y 
A1 

[ Inr (In-r ? Y'y 

We then have /3A- /3 Op(T-1) and,8j -Pj3= Op(T-'). The transformed time 
series are 

Ylt = 'Yt= P'Yt+ (I - P)'Yt=Ylt + (I - P)'Yt, 

Y2t = lYt I3iYt + (L- f?)'Yt = Y2t + (81 - 81 YYt 

Next, we run detrending regressions based on the quasi-differences of Y2t as in 

( It \ r (1 0 \7 t 
~ A~27 0 D9~A~x~) + residual. 
( cY2t) 0 F2 )(icxt) 

In the following analysis, we use the affix * to signify the feasible versions of the 
estimators. For example, 17* represents the estimate of gi based on the transformed 
data 't using /3, and F1 and F2 correspond to the infeasible version of them using 
the true cointegrating vector /3. Thus, we have 
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= 
[{Ylt(t 

?(-'Yt}x;1 

L 
xtxt1- - E yltx;1L[xtxt1 + L Ytx:1[xtx;< 

= F1 + ( - )'y 

= F1 + d1, 
[ t ] [ 

r2 + (O1 - / 1)' LE .cY2t Acx;1F ACXttcx 1I 

=2 ? d2, 

V ~ ~~~~~ V 

where F1 and r2 are the infeasible version of [78. 
The QD detrended data then have the following decomposition: 

Yt* =yt- *xt 
=Yt - (f, A + t31I7)xt 

-Yt- (3 + F2)x -[ - )1A + -1t)c2Xxt - ( dc + XtcXd2)x 

= [(i3-/)F1 + (/ d-11)]- + 

where F, is the infeasible QD detrended data. 
We need to show that Th1e2YTr] and T'n25[Tr] have the same limit distribu- 

tion. This will be so if 

T= t[( /3 )F + (1 3 /31) 21]X[Tr] (20) 

T112(f3d1 + 181d2)X[Tr] o (1). (21) 

Notice that 

T / -sdlX - TF 3(13 -X/3)' ( + 8xtdx1Lxt 1x[T 

+ T2l(- / ) / F[ [ (txf1) Lt ] x[E Tr] 

=t T 1,3 (/3 - /A ) L YtXt 8d [ L d2xt1X[Tr 

+ Tsho f3(ha T- (11 ) andr ]T [ 

+ T8- eB _i ) F2 X[Tr] =0( ,(0 
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The first term, T-1/2/( , -p)' [itytxt][Itxtxt;l x[Tr], goes to zero as Tgoes 
to infinity. The order of magnitude of the second term, T 1/3(,3 - P)'FX[Trl, 
is determined by the convergence rate of /8 and the form of xt. Because 
/3-,/ = Op(T-1), when xt- (1, t)' is a linear trend, T -1/2p 

A 

- /)'FX[Tr] = 

Op(T 2), (When there is deterministic cointegration, the order of magnitude for 
T- /8,(3(,(-,8)'Fx[Tr] is further reduced.) Thus 

T - 8/2dlX[Tr] = Op (1) . 

Similarly, 

T- A2Pd2X[Tr] = Op(l), 

T-1/2 - _,l3-,) FX[Tr] = Op(l), 

T -1/2(18,l-,8lI)F2X[Tr] = OpM, 

and (20) and (21) follow. U 

NOTE 

1. To simplify the presentation of our approach, we proceed here as if H (and hence j3) were 
known. Later on in this section, we provide a feasible stepwise RRR procedure that utilizes prelim- 
inary estimates of ,B and H at this stage. 
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