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Abstract
Background: Caloric restriction (CR) has long been recognized as a dietary therapy that improves
health and increases longevity. Little is known about the persistent effects of CR on plasma
biomarkers (glucose, ketone bodies, and lipids) following re-feeding in mice. It is also unclear how
these biomarker changes in calorically restricted mice relate to those observed previously in
calorically restricted humans.

Results: Three groups of individually housed adult female C57BL/6J (B6) mice (n = 4/group) were
fed a standard rodent chow diet either: (1) unrestricted (UR); (2) restricted for three weeks to
reduce body weight by approximately 15–20% (R); or (3) restricted for three weeks and then re-
fed unrestricted (ad libitum) for an additional three weeks (R-RF). Body weight and food intake
were measured throughout the study, while plasma lipids and levels of glucose and ketone bodies
(β-hydroxybutyrate) were measured at the termination of the study. Plasma glucose,
phosphatidylcholine, cholesterol, and triglycerides were significantly lower in the R mice than in the
UR mice. In contrast, plasma fatty acids and β-hydroxybutyrate were significantly higher in the R
mice than in the UR mice. CR had no effect on plasma phosphatidylinositol levels. While body
weight and plasma lipids of the R-RF mice returned to unrestricted levels upon re-feeding, food
intake and glucose levels remained significantly lower than those prior to the initiation of CR.

Conclusion: CR establishes a new homeostatic state in B6 mice that persists for at least three
weeks following ad libitum re-feeding. Moreover, the plasma biomarker changes observed in B6
mice during CR mimic those reported in humans on very low calorie diets or during therapeutic
fasting.

Background
Caloric restriction (CR) has long been recognized as a nat-
ural therapy that improves health and extends longevity
in humans and rodents [1-7]. CR diminishes inflamma-
tion and oxidative stress that occurs from aging by
decreasing the production of reactive oxygen species
[1,8,9]. In rodents and primates, CR lowers plasma insu-
lin, cholesterol, triglycerides, and insulin-like growth fac-

tor (IGF-1) levels, while elevating plasma high-density
lipoprotein (HDL) levels [10-14]. These changes in
plasma metabolites reduce risk for atherosclerosis, diabe-
tes, and obesity [15]. Additional health benefits of CR
likely result from reduced glucose levels and elevated
ketone bodies (β-hydroxybutyrate), which reduce oxygen
free radicals and increase the ∆G' of ATP hydrolysis
[6,14,16,17].
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Numerous studies in humans have used fasting as a treat-
ment for obesity, diabetes, and cancer [18-21]. Therapeu-
tic fasting differs from starvation in mobilizing fat rather
than protein for energy. Very low calorie diets (approxi-
mately 300 kilocalories per day) often produce effects that
are similar to those seen during therapeutic fasting [22-
24]. During the initial stages of a full food fast (water
only), blood glucose levels are initially maintained by the
mobilization of stored glycogen (glyogenolysis). As glyco-
gen stores become depleted, the body gradually transi-
tions to fatty acids and ketone bodies for additional
energy. Although gluconeogenesis also increases, this is
insufficient alone to provide enough energy, especially for
the brain [21,25-28]. Continued fasting decreases total
plasma cholesterol, low-density lipoprotein (LDL) levels,
and triglycerides, while elevating fatty acids [20,29,30].
Since the brain does not generally metabolize fatty acids
for energy [31], ketone bodies provide the largest source
of energy for the brain during prolonged fasting [32].
Ketone bodies are a more efficient energy source than
either glucose or fatty acids because they are more reduced
(a greater hydrogen/carbon ratio) than pyruvate and do
not uncouple the mitochondrial proton gradient as occurs
with fatty acid metabolism [17].

Few studies have examined the longer-term effects of CR
or fasting on the concentration of plasma metabolites fol-
lowing ad libitum re-feeding. Most previous studies exam-
ined biomarker changes following brief periods of re-
feeding (approximately 4 days) [33-35]. In general, re-
feeding restored levels of cholesterol, triglycerides, glu-
cose, ketone bodies, fatty acids, and body weight to the
levels seen prior to the initiation of CR or fasting
[15,18,34-37]. No prior studies, to our knowledge, have
determined to what extent CR-induced plasma biomarker
changes persist in mice following ad libitum re-feeding for
several weeks. It is also unclear how plasma biomarker
changes in mice under CR relate to those observed in
humans under food restricted diets.

In this study, we found that three weeks of moderate CR
in adult female C57BL/6J (B6) mice significantly reduced
plasma glucose, cholesterol, triglycerides and body
weight, while elevating fatty acids and ketone bodies.
Although ad libitum re-feeding for three weeks restored
body weight and most CR-induced biomarker changes,
food intake and glucose levels remained lower in the R-RF
mice than in the UR mice. These findings suggest that the
health benefits of CR persist for at least three weeks in B6
mice thus producing a physiological state more energy
efficient than that prior to CR. Moreover, the plasma
biomarker changes found in B6 mice during three weeks
of CR mimic those reported in humans during a very low
calorie diet or therapeutic fasting.

Results
Compared to the UR mice, the R mice were healthier and
more active as assessed by ambulatory and grooming
behavior. There were no signs of vitamin or mineral defi-
ciency in the R mice according to standard criteria [38].
These findings are consistent with the well-established
health benefits of mild to moderate CR in rodents and
why it is unnecessary to supplement with vitamins and
minerals during short-term (up to 12 weeks) CR studies
[3,4,39-41].

Influence of caloric restriction and re-feeding on food 
intake and body weight
Adult virgin female mice were used for this study because
their food intake and body weights are relatively stable
from about 120 to 170 days of age (Figs. 1, 2A and 2B).
The average total food intake for the UR group during
weeks 2–4 was 86.9 ± 2.2 g (n = 4), and over the next three
weeks was 87.5 g (n = 2). The amount of food provided
for the R mice was initially 60% (40% restriction) of that
eaten prior to the initiation of CR (pretrial period). The
amount of food given to the R mice was then adjusted
each day (± 5%) to achieve a final body weight reduction
of approximately 15%. The average total food intake for
all restricted mice (n = 8) during the three week restriction
period was 52.2 ± 1.5 g. This represents an overall average
total food restriction of approximately 40% over the three
week period. Body weight was chosen as an endpoint for
CR rather than food intake because body weight is a more
stable variable than food intake, which differs signifi-
cantly among mice, even within the same strain. [4,16]. A
15% body weight reduction achieved by a 40% restriction
in food represents a moderate caloric restriction for adult
mice [4]. Body weight was reduced in the R group at day
15 and remained significantly lower than that of the UR
group (p < 0.01) until day 30. On the day of re-feeding,
the R-RF mice binge ate and consumed approximately
twice as much food (8.5 g/day/mouse) as they did during
the pretrial period (about 4.2 g/day/mouse). Food intake
in the R-RF mice decreased rapidly, but remained greater
than that of the UR mice until day 33 (Fig. 2A). The aver-
age total food intake for the R-RF group (n = 4) for the
three week re-feeding period, including the three day
binge period, was 76.9 ± 2.0 g. Interestingly, the food
intake following the binge period (from day 38 through
the end of the study) was less in the R-RF mice (3.35 g/
day/mouse (n = 4)) than in the UR mice (4.17 g/day/
mouse (n = 2) (Fig. 2A)). The R-RF mice also ate signifi-
cantly less food per day during this period than they did
during the pretrial period (4.08 g/day/mouse (n = 4) (p <
0.05)) as determined by the paired t-test. Despite reduced
food intake, the body weights of the R-RF mice returned
to the levels observed during the pre-trial period and were
similar to the body weights of the UR mice (Fig. 2B).
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Influence of CR and re-feeding on plasma glucose and β-
hydroxybutyrate levels
Glucose levels were 41% less in the R mice than in the UR
mice (Table 1). Although the glucose levels increased fol-
lowing re-feeding in the R-RF mice, the levels remained
significantly lower than those in the UR mice. Plasma β-

hydroxybutyrate levels were 367% greater in the R mice
than in the UR mice (Table 1). Once re-fed, the plasma β-
hydroxybutyrate levels for the R-RF mice returned to those
measured in the UR mice. These findings are consistent
with our previous studies that β-hydroxybutyrate levels
are increased under CR and that circulating β-hydroxybu-

Flow chart of the study designFigure 1
Flow chart of the study design. Body weight and food intake were measured every other day over the seven day pre-trial 
period. All mice received food ad libitum during the pre-trial period. After the pre-trial period, the mice were divided into 
three groups (n = 4 mice/group) where the average body weight of each group was similar. The mice in each group were then 
fed the same diet in different amounts: 1) the standard chow diet unrestricted (UR), 2) the standard chow diet restricted to 
achieve an approximate 15–20% body weight reduction from the pre-trial weight (R), or 3) the standard chow diet restricted 
to achieve an approximate 15–20% body weight reduction from the pre-trial weight for a period of three weeks, followed by 
unrestricted re-feeding for a period of three weeks (R-RF). Each mouse in the R and the R-RF groups served as its own control 
for body weight reduction as previously described [16]. Based on food intake and body weight during the pre-trial period, food 
in the R and the R-RF groups was reduced until each mouse achieved the target weight reduction of approximately 15–20%. 
The study was terminated and plasma was collected for two UR mice and four R mice on day 30, and for the remainder of the 
mice on day 51.
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Influence of CR and re-feeding on food intake (A) and body weight (B)Figure 2
Influence of CR and re-feeding on food intake (A) and body weight (B). Values are expressed as means and 4–8 mice were ana-
lyzed in each group. The black arrow indicates the initiation of CR on day 8. The white arrow indicates the initiation of ad libi-
tum re-feeding on day 30. The * indicates that the food intake average of the days 38 to 50 of re-feeding for the R-RF mice was 
significantly less than their food intake prior to initiation of CR, as determined by the paired t-test.
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tyrate levels are inversely related to circulating glucose lev-
els [4,7,16].

Influence of CR and re-feeding on neutral and acidic lipids
The influence of CR and re-feeding on the qualitative and
quantitative distribution of plasma neutral lipids and
acidic lipids in B6 mice is shown in Figs. 3 and 4, respec-
tively, and in Table 1. Triglycerides, cholesterol, and phos-
phatidylcholine were significantly reduced, while fatty
acids were significantly elevated in the R mice when com-
pared to the UR mice. All plasma lipids in the R-RF mice
returned to the levels seen in the UR mice. In contrast to
phosphatidylcholine, which was reduced in the R mice
and returned to normal levels in the R-RF mice, CR and re-
feeding had no effect on plasma levels of phosphatidyli-
nositol. Although sphingomyelin and lysophosphatidyl-
choline were detected in the plasma of all groups (Fig. 3),
no statistically significant differences were found among
the groups for these lipids due to sample variability. It is
important to mention that the solvent front (SF) does not
include lipids, but contains slight impurities from the
organic solvents used in the developing system.

Discussion
Reliable biomarkers can be useful for gauging the degree
and efficacy of CR as a therapy for a variety of diseases to
include: aging, neurological and neurodegenerative dis-
eases, and cancer. Our data show that reductions in
plasma glucose, cholesterol, phosphatidylcholine, and
triglycerides, combined with elevations of ketone bodies
(β-hydroxybutyrate), and fatty acids, are robust biomarker
changes for CR in the B6 mouse. Similar changes in glu-
cose and ketone bodies have been observed in other
mouse strains and rodent models under CR [6,7,16,42].

Cholesterol esters, sphingomyelin, and lysophosphatidyl-
choline are less reliable plasma biomarkers of CR due to
variability between individual mice. It is interesting to
note that phosphatidylinositol levels were unchanged as a
result of CR and re-feeding, suggesting that this lipid
might serve as an internal control for assessing the degree
of change in other plasma biomarkers of CR.

Little is known about the persistent effects of CR on
plasma biomarkers (glucose, ketone bodies, and lipids)
following re-feeding in mice. Previous studies showed
that CR-induced biomarker changes return to levels seen
prior to CR following brief periods of ad libitum re-feeding
(approximately 4 days) [34,35]. Our results showed that
all biomarkers in the R-RF mice returned to the levels seen
prior to CR with the exception of food intake and glucose
levels. Since blood glucose levels are directly related to
food intake, the persistent reduction in blood glucose
reflects the reduction in food intake. These findings sug-
gest that the R-RF mice have established a new, more effi-
cient homeostatic state, in which reduced food intake can
maintain body weight similar to that seen during the pre-
trial period.

Our results are in agreement with those of other investiga-
tors [43-45] who observed an energy conservation mech-
anism due to a decrease in thermogenesis, allowing less
energy to be lost as heat and more accumulated as protein,
fat, and glycogen. This increase in metabolic efficiency
could be the result of several factors involved in homeos-
tasis, but most likely is the result of a decrease in total heat
production of the thermoregulatory system. In addition to
increasing ATP production, while reducing oxygen con-
sumption, ketone body metabolism also reduces produc-

Table 1: Influence of Caloric Restriction and Re-feeding on Plasma Metabolites in B6 Micea

Metabolites UR R Difference(%) R-RF Fd(2,9)

Glucoseb 15.5 ± 0.86 9.1 ± 1.83** 41 12.5 ± 1.61* 18.3

β-hydroxybutyrateb 0.3 ± 0.12 1.4 ± 0.13** 367 0.3 ± 0.05 141.4

Neutral lipids c

Triglycerides 2.4 ± 0.63 1.0 ± 0.16* -58 2.5 ± 1.00 6.1
Cholesterol 0.5 ± 0.23 0.2 ± 0.06* -60 0.4 ± 0.14 3.7

Phosphatidylcholine 2.8 ± 0.53 1.7 ± 0.25** -39 2.8 ± 0.30 10.3

Acidic Lipids c

Fatty acids 0.3 ± 0.08 0.8 ± 0.05** 167 0.3 ± 0.05 69.7
Phosphatidylinositol 0.2 ± 0.03 0.2 ± 0.01 0 0.2 ± 0.03 1.2

a Values represent the mean ± 95% CI. Four independent samples were analyzed per group.
b Values are expressed as mM.
c Determined from densitometric scanning of HPTLC as shown in Figures 3 and 4. Values are expressed as mg lipid/ml plasma.
d /F/ ratio and degree of freedom (df) obtained from one way analysis of variance.
Astericks indicate that the value is significantly different from that of the control at the * p < 0.05 and ** p < 0.01 as determined by ANOVA 
followed by Fisher's PLSD
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tion of damaging free radicals [17,46]. For these and other
reasons, Veech has described ketone bodies as "super fuel"
[17]. We suggest that the health benefits of CR result in
part from a bioenergetic mechanism made more efficient
through an increase in ketone body metabolism coupled
with a decrease in glucose metabolism. Further studies
will be needed to identify those physiological changes
within the mitochondria that contribute to or underlie the
more efficient metabolic state.

The physiological relationship between CR in mice and
humans is unclear. Although rodents and other animals
can be maintained on calorie-restricted diets for pro-
longed periods [47], this draconian dietary practice is
impractical in humans. Since the basal metabolic rate of
mice is about seven times that of humans [48], it is
unlikely that similar degrees of CR will have similar phys-
iological effects in man and mouse. Indeed, a review of
the literature generally shows that the plasma biomarker
changes we observed in B6 mice, which received approxi-
mately 60% of the food given to the UR mice on a daily

basis, are generally similar to those observed previously in
humans during very low calorie diets or during "water
only" therapeutic fasting (Table 2). While prolonged ther-
apeutic fasting (for one to three weeks) can be healthy for
some humans [49], severe food deprivation beyond a few
days is unhealthy in rodents due to increased oxidative
stress [50]. Our findings indicate that moderate CR in B6
mice mimics very low calorie diets or therapeutic fasting
in humans. Hence, the numerous health benefits docu-
mented in mice following CR may be experienced in
humans on very low calorie diets or during periodic ther-
apeutic fasting.

Conclusion
CR establishes a new homeostatic state in B6 mice that
persists for at least three weeks following ad libitum re-
feeding. Moreover, the plasma biomarker changes
observed in B6 mice during CR mimic those reported in
humans on very low calorie diets or during therapeutic
fasting.

Table 2: Influence of Fasting/Very Low Calorie Diet on Plasma Metabolites in Humansa

Metabolites Length (days) Unrestricted Fasted Difference (%) References

Glucose 21 7.06 4.39 -38 Owen et al. 1998 [19]
21–35 5.11 3.89 -24 Streja et al. 1977 [58]

β-hydroxybutyrate 2 0.03 1.67 5.E+03 Pan et al. 2000 [59]
3 0.03 3.15 1.E+04
21 0.19 4.60 2.E+03 Owen et al. 1998 [19]

21–35 0.11 4.56 4.E+03 Streja et al. 1977 [58]

Neutral lipids
Triglycerides 7 3.46 2.50 -28 Balazsi et al. 1983 [29]

14 3.46 1.77 -49
28 1.13 0.95 -16 Shoji et al. 1992 [30]

Cholesterol 7 4.90 6.73 37 Savendahl and 
Underwood 1999

[20]

7 5.48 5.16 -6 Balazsi et al. 1983 [29]
14 5.48 4.36 -20
14 5.14 4.01 -22 Schouten et al. 

1981
[60]

15 5.39 4.43 -18 Cominacini et al. 
1991

[61]

28 5.22 4.21 -19 Shoji et al. 1992 [30]

LDL Cholesterol 7 2.91 2.96 2 Balazsi et al. 1983 [29]
14 2.91 2.43 -16

Phosphatidylcholin
e

7 2.21 2.39 8 Savendahl et al. 
1997

[62]

Acidic Lipids
Fatty acids 21 0.84 1.19 42 Owen et al. 1998 [19]

21–35 0.51 0.85 67 Streja et al. 1977 [58]

a Values are expressed as mM.
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HPTLC of plasma neutral lipids in B6 miceFigure 3
HPTLC of plasma neutral lipids in B6 mice. The amount of neutral lipids spotted per lane was equivalent to 2.5 µl of plasma. 
The plate was developed as described in the Methods. CE, cholesterol esters; TG, triglycerides; IS, internal standard; C, choles-
terol; Cer, ceramide; CB, cerebrosides (doublet); PE, phosphatidylethanolamine; PC, phosphatidylcholine; SM, sphingomyelin; 
LPC, lysophosphatidylcholine; O, origin; and SF, solvent front of the first developing solvent system.
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Methods
Mice
C57BL/6J (B6) mice were obtained from the Jackson Lab-
oratory (Bar Harbor, ME, USA) and were propagated in
the Boston College Animal Care Facility. Adult female

mice were used and were housed individually in plastic
cages with filter tops containing Sani-Chip bedding (P.J.
Murphy Forest Products Corp., Montville, NJ, USA. Cot-
ton nesting pads were provided to all mice for warmth for
the duration of the experiment, and room was maintained

HPTLC of plasma acidic lipids in B6 miceFigure 4
HPTLC of plasma acidic lipids in B6 mice. The amount of acidic lipids spotted per lane was equivalent to 15 µl of plasma. The 
plate was developed as described in the Methods. FA, fatty acids; IS, internal standard; CL, cardiolipin; PA, phosphatidic acid; 
Sulf, sulfatides (doublet); PS, phosphatidylserine; PI, phosphatidylinositol; O, origin; and SF, solvent front of the first developing 
solvent system.
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at 22°C on a 12 h light – 12 h dark cycle. The procedures
for animal use were in strict accordance with the NIH
Guide for the Care and Use of Laboratory Animals and
were approved by the Institutional Animal Care Commit-
tee.

Caloric restriction, body weight and food intake 
measurements
All mice received PROLAB RMH 3000 chow (LabDiet,
Richmond, IN, USA). This contained a balance of mouse
nutritional ingredients and delivers 4.4 kcal g-1 gross
energy, where fat, carbohydrate, protein, and fiber com-
prised 55, 520, 225, and 45 g kg-1 of the diet, respectively.
A total of 12 singly caged, adult female B6 mice were used
for the study. The mice were matched for age (120 ± 8
days), sex (virgin females), and body weight (22.0 ± 1.0
g). The experimental design for implementation of CR
and re-feeding is outlined in Fig. 1. Body weight and food
intake measurements were taken at approximately the
same time of day (11:00 AM – 1:00 PM) for all mice. Body
weight was measured every two days for the UR and R
mice. The R-RF mice were weighed daily during the binge
period, and every two days thereafter. Food intake for the
UR mice was determined daily by subtracting the weight
of the food pellets remaining in the food hopper after two
days from the initial amount given (approximately 80 g)
and dividing the difference by two. For mice in the R and
R-RF groups, weighed food pellets were dropped directly
into each cage for easy access. Water was provided ad libi-
tum for all mice.

Glucose and β-hydroxybutyrate measurements
Mice were sacrificed with isofluorane (Halocarbon Labo-
ratories, River Edge, NJ, USA) and blood was collected
into heparinized tubes from either the retro-orbital sinus
or the heart. The blood was centrifuged at 6,000 × g for 10
min, the plasma was collected, and aliquots were stored at
-80°C until analysis. Plasma glucose concentration was
measured spectrophotometrically using the Trinder Assay
(Sigma-Aldrich, St. Louis, MO, USA). The ketone body β-
hydroxybutyrate was measured enzymatically using the
Stanbio β-Hydroxybutyrate LiquiColor® assay kit (Stan-
bio, Boerne, TX, USA).

Lipid isolation and purification
Acidic and neutral lipids were isolated and purified from
plasma using modifications of previously described pro-
cedures [51-53]. Briefly, total lipids were extracted by add-
ing chloroform (CHCl3) and methanol (CH3OH) to an
aliquot of plasma to produce a ratio of CHCl3 : CH3OH :
aqueous plasma (30:60:8 by vol). The plasma volume was
used to calculate the volume of CHCl3 and CH3OH
needed to achieve the ratio. Solvent A (CHCl3 : CH3OH :
dH20; 30:60:8 by vol) was added to increase the total vol-
ume of each sample. The solution was placed on a mag-

netic stirrer at room temperature overnight and then
centrifuged for 20 min at 1200 × g. The supernatant was
collected and the pellet was washed with solvent A, placed
on the stirrer for 30 min, and centrifuged as before. The
supernatants were combined.

The neutral lipids and acidic lipids were purified using
DEAE-Sephadex (A-25, Pharmacia Biotech, Upsala, Swe-
den) column chromatography as previously described
[52,53]. The total lipid mixture was applied to a DEAE-
Sephadex column with a bed volume of 1.2 ml that had
been equilibrated prior with solvent A. Neutral lipids were
eluted from the column by washing two times with 20 ml
of solvent A. Acidic lipids were then eluted from the col-
umn with 30 ml of solvent B (CHCl3 : CH3OH : 0.8 M Na
acetate, 30:60:8 by vol). The neutral lipid fraction was
dried using rotary evaporation, washed with 1 ml dH20
and 4 ml CHCl3:CH3OH (2:1 by vol), and centrifuged at
1200 × g to partition neutral lipids into the Folch lower
phase [54,55]. The upper phase was removed and the
lower phase was washed once with the Folch pure solvent
upper phase [PSUP] (CHCl3:CH3OH:dH20, 3:48:47 by
vol) and centrifuged again at 1200 × g for 15 min. The
upper phase was removed and the lower phase was then
evaporated under a stream of nitrogen, re-suspended in 5
ml of CHCl3:CH3OH (2:1 by vol), and stored at 4°C.

The acidic lipid fraction was evaporated under vacuum
and 7 ml of CHCl3:CH3OH (1:1 by vol) was added.
CHCl3 (3.5 ml) and dH20 (2.6 ml) were added, and the
mixture was inverted, vortexed, and centrifuged to parti-
tion acidic lipids into the lower phase. The upper phase
was removed and the lower organic phase was washed
once with 4.5 ml of the Folch PSUP and centrifuged. The
upper phase was removed and the lower phase was evap-
orated under a stream of nitrogen, re-suspended in 5 ml
of CHCl3:CH3OH (2:1 by vol), and stored at 4°C.

Qualitative and quantitative analysis of plasma lipids
Neutral and acidic lipids were analyzed qualitatively by
high-performance thin-layer chromatography (HPTLC)
following modifications of previously described methods
[7,51,52,56]. Lipids were spotted on 10 × 20 Silica gel 60
HPTLC plates (E. Merck, Darmstadt, Germany) using a
Camag Linomat III auto-TLC spotter (Camag Scientific
Inc., Wilmington, NC, USA). The amount of plasma per
lane was equivalent to 15 µl for acidic lipids and 2.5 µl for
neutral lipids. To enhance precision, an internal standard
(oleoyl alcohol) was added to the neutral and acidic lipid
standards and the plasma samples as previously described
[52]. Purified lipid standards were purchased from
Matreya, Inc. (Pleasant Gap, PA, USA), Avanti Polar Lip-
ids, Inc. (Alabaster, AL, USA), and Sigma (St. Louis, MO,
USA).
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For neutral and acidic lipids, the plate was developed to a
height of 4.5 and 6.0 cm, respectively, with chloroform :
methanol : acetic acid : formic acid : water (35:15:6:2:1 by
vol), and was then developed to the top with hexanes :
diisopropyl ether : acetic acid (65:35:2 by vol). Neutral
and acidic lipids were visualized by charring with 3%
cupric acetate in 8% phosphoric acid solution, followed
by heating in an oven at 160–170°C for 7 min as previ-
ously described [7,51,52,56].

The density and percentage distribution of the individual
lipid bands was determined by scanning the plate on a
Personal Densitometer SI with ImageQuant software
(Molecular Dynamics, Sunnyvale, CA, USA) for neutral
and acidic lipids. The density values for each neutral and
acidic lipid were fit to a standard curve of the respective
lipid and used to calculate individual concentrations as
described previously [52]. All plasma lipid concentrations
are expressed as milligram of lipid per milliliter of plasma.

Statistical analysis
Analysis of variance (ANOVA) followed by a Fisher's pro-
tected least significant difference (PLSD) test were used to
evaluate the significance of differences between the UR, R,
and R-RF groups. A paired t-test was used to analyze dif-
ferences within the R-RF group (Statview, v. 5.0) [57]. In
each figure, n designates the number of individual mice
analyzed.
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