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1 Introduction

There is a large literature in time series econometrics on the debate about whether
economic time series are best characterized as trend stationary processes or differ-
ence stationary processes. Since the influential article by Nelson and Plosser (1982),
hundreds of economic time series have been examined by unit root tests and empir-
ical evidence has accumulated that many economic and financial time series contain
a unit root (Meese and Singleton, 1982; Perron, 1988; Christano, 1992; Banerjee, et
al., 1990; Gil-Alana and Robinson 1997; among others). However, as argued else-
where (see for example Kwiatkowski et al., 1992), most standard testing procedures
consider the null hypothesis of a unit root which ensures that the null hypothesis is
accepted unless there is strong evidence against it. Monte Carlo evidence (Schwert,
1989; Diebold and Rudebusch, 1991; Dejong, et al., 1992; Ng and Perron, 1995;
Stock, 1995) show that the discriminatory power of unit root tests is often low,
indicating standard unit root tests are not very powerful against trend stationary
alternatives. Indeed, different results have been obtained from other approaches.
By allowing for structural breaks in the deterministic trend, Perron (1989) rejected
the unit root hypothesis at the 5% level of significance for eleven out of fourteen
of the Nelson-Plosser series. Using a flat prior Bayesian technique, DeJong and
Whiteman (1989b) challenged the classical unit root tests results in many cases.
Phillips (1991) provided an alternative Bayesian approach using a Jeffrey’s prior
and found support for a unit root in five of the series (also see, inter alia, Zivot and
Andrews, 1992; Schotman and van Dijk, 1990; Zivot and Phillips, 1994; Phillips and
Ploberger, 1994; Stock 1994).

Given these empirical results and Monte Carlo evidence, to decide whether a
time series is trend stationary or difference stationary, it would be useful to perform
tests for the null hypothesis of stationarity as well as tests for a unit root. However,
although the literature on testing the null hypothesis of a unit root is huge (see, in-
ter alia, Dickey and Fuller 1979; Phillips 1987; Phillips and Perron 1988; Robinson
1994), there have been only several attempts on testing stationarity (Park and Choi,
1988; Rudebusch, 1988; Kwiatkowski et al., 1992; Leybourne and McCabe, 1994;
Fukushige, Hatanaka, and Koto, 1994). In particular, Kwiatkowski et al. (1992)
(hereafter KPSS, see also King, 1980; King and Hiller, 1985; Nyblom and Make-
lainen, 1983; Nyblom, 1986; Saikkonen and Luukkonen, 1993; and Tanaka, 1990)
considered a time series model that can be decomposed as the sum of a deterministic

trend, a random walk, and a stationary error, and proposed an LM test for the null
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hypothesis of stationarity. Leybourne and McCabe (1994) suggested a similar test
which differs from the KPSS test in its treatment of autocorrelation and applies
when the null hypothesis is an AR(k) process.

We believe that fluctuation tests for structural stability can provide another way
to distinguish between stationary and unit root processes. Testing for structural
stability has long been an important topic in statistics and econometrics (Hawkins,
1977; Andrews, 1993; Andrews and Ploberger, 1994; Chu, et al., 1995; Perron, 1991;
Kuan and Hornik, 1995; Bai, 1996; Kuan 1998). This paper provides a straight-
forward test for the null hypothesis of stationarity (or trend stationarity) by an
application of fluctuation tests. The driving force behind the proposed test is as
follows: If y; is a stationary time series, it has a fixed mean, finite variance and
cannot grow indefinitely. However, a unit root process has unbounded variance and
grows in a secular way over long period of time. As a result, the fluctuation of a
unit root process is much larger than that of a stationary process. This suggests
that we can test whether or not ¥, is stationary by looking at the fluctuation in the
time series. If a time series displays too much fluctuation, we should reject the null
hypothesis of stationarity. More generally, if a time series y; can be represented as
the summation of a deterministic trend 7'z; and a stochastic component y;, we can
test the hypothesis of trend stationarity against difference stationarity by looking
at the fluctuation in the detrended time series.

Notice that the KPSS test can be derived as a special case of the test by Nabeya
and Tanaka (1988) for random coefficients, and thus it can also be treated as an
application of structural stability test. Our test provides an alternative to the KPSS
test in this sense. However, in our test, instead of decomposing the stochastic process
into a random walk and a stationary component and deriving an LM multiplier test
under the Gaussian assumption, we simply look at the fluctuation in the time series
and provide a straightforward test for stationarity. Our test is an asymptotic test.
It is shown that the suggested test is consistent and can be applied to general time
series models. Limiting distribution of the test is derived under both the null and the
unit root alternative, and critical values for the leading cases are provided based on
simulation experiments. Size and power properties of these tests in a finite sample
are also examined.

The paper is organized as follows: in Section 2 below, we propose the test
statistic for stationarity and derive its limiting distribution. Tables of critical values
are also provided. Section 3 discusses the asymptotic properties of the test under

the unit root alternative. Section 4 reports its finite sample size and power based on
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a Monte Carlo experiment. A small empirical application of the test to some U.S.
macroeconomic time series is given in Section 5, and Section 6 concludes. Proofs are
provided in the Appendix. For notation, we use “=" to signify weak convergence,

and [nr] to signify the integer part of nr.

2 Testing the Null Hypothesis of Stationarity

Suppose that the observed time series z; can be written as the sum of a deterministic

trend d; and a stochastic component g, :

zZt = dt+yt,t:1,....,n, (1)
Y = QY1+ ug. (2)

The deterministic trend d; depends on unknown parameters and is specified as d; =
vz, where v = (7g, ....,7,)" is a vector of trend coefficient and x; is a deterministic
trend of known form, say, z; = (1,t¢,...,t”)". The leading cases of the deterministic
component are (i) a constant term x; = 1; and (ii) a linear time trend x; = (1,t)’. y; is
the stochastic component in time series z;. For convenience in deriving asymptotic
theory, we assume that the disturbances u; follow a general linear process whose

coefficients satisfy the summability conditions given in the following Assumptions.

AssuMPTION L; (LINEAR PROCESS): u; = C(L)es, where &; is an ii.d. process
with zero mean and finite variance o2, and C(L) = >0 ¢;L7, where L is the lag

operator defined as Le; = &1, C(1) # 0, 372, j2c? < 0.

The linear process assumption facilitates a straightforward asymptotic analysis
by applications of the methods of Phillips and Solo (1992). Similar results could be
obtained under strong mixing conditions (e.g. Phillips and Perron, 1988) which also
ensure invariance principles for the partial sums of w;. Notice that the asymptotic
analysis of linear processes holds under a variety of conditions, and the limiting re-
sults of our test can also be generalized to different classes of time series innovations.
For example, with a strengthening of the moment and the summability condition,
our results can be generalized to time series with stationary martingale difference

sequence innovations.

ASSUMPTION Lg: uy = C(L)et, where g, is a stationary martingale difference se-

quence with respect to the natural filtration, E(s?Jm) < oo for some 1 > 0, and

O(L) = T2y L, C(1) £ 0, Y5 jle| < oo.
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The linear process includes quite general classes of time series models like the
ARMA process. Assumptions L; and Lg ensure that u; is covariance stationary and
has positive spectral density at the origin, thereby ensuring that the unit root in
y¢ does not cancel (as it would if u; had a moving average unit root, in which case
the spectral density would be zero at the origin). The summability conditions are

useful in validating the following expansion of the operator C'(L)
C(L) = C(1) + C(L)(L - 1), (3)

where C(L) = >0 L and ¢ = > 741 ¢s- This expansion gives rise to an explicit

martingale difference decomposition of wu;
wp = C(Dey + 841 — &, with & = C(L)ey, (4)

This decomposition is sometimes called the martingale decomposition in the prob-
ability literature (see Hall and Heyde, 1980) because the first term of (4) is a mar-
tingale difference and the partial sums 22:1 ug correspondingly have the leading
martingale term C(1) >'_, &5. The decomposition (4) was justified by Phillips and
Solo (1992), and can be used to prove that the partial sums of the time series u;
satisfy a functional central limit theorem (see Phillips and Solo, 1992, Theorem 3.4
and Theorem 3.15, for a demonstration), i.e., n=1/2 1[;:1} up = By(r),0 < r <1,

where B, (r) is a Brownian motion with variance C(1)%02,

[nr| signifies the integer
part of nr and r € [0, 1] represents some fraction of the sample data. If we denote
the corresponding standardized Brownian motion as W (r), then B,(r) = wW (r),
where w? = C(1)%02 is called the long-run variance of the process u;, and equals
27 fuu(0), where fy,(+) is the spectral density of the process us. If || < 1, y; is a
stationary process, and when o = 1, 4; has an autoregressive unit root.

We want to test the hypothesis that y; is stationary, or in another word, z; is
trend stationary, corresponding to Hy : |a| < 1, against the unit root alternative
H, : a = 1. Under Assumption L and Hy, y; is stationary and n—1/2 27[52"1} Y =
By(r) = (1 — a) ' By(r), where the limiting process B, (r) is a Brownian motion
of variance w? = w?/(1 — a)® Under Hi, y; is an integrated process such that

Y = Z§:1 uj + Op(1), and n_l/Qy[m] = B,(r).

As mentioned in the previous section, an important difference between a unit
root process and a stationary time series is that a unit root process has unbounded
variance and wanders around in a random way with no fixed mean. Thus, to test

whether or not y; is stationary, we look at the fluctuation in the data and reject
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the null hypothesis of stationarity whenever there is excessive fluctuation. If y; were
observable and w, were known, consider the following quantity as a measurement

of fluctuation in time series y; (Sen, 1980; Ploberger, Kramer, and Kortrus, 1989),

k n

%Zyt*%zyt .

t=1 t=1

k
max ———=
k=1,...,n wy\/ﬁ

()

This is the recursive-estimates test statistic for fluctuation. Ploberger, Kramer,
and Kortrus (1989) use a similar statistic to test the structural stability in linear
regression models. Under Hy, it can be shown that the statistic (5) converges weakly
to supp<,<; ‘/V[V/(r)‘ , where W (r) = W(r) — rW(1) is a standard Brownian bridge
which is tied down to the origin at the end of the [0, 1] interval. Under the alternative
hypothesis, y; is a unit root process and it is easy to verify that the statistic (5) has
much larger order of magnitude, diverging to co at rate n.

Notice that in practical analysis the long-run variance parameter w, is unknown

2
Yy

consistently estimated (Phillips, 1987; Andrews, 1991). In this paper, we consider

and thus (5) can not be used directly for testing stationarity. However, w? can be

the following nonparametric kernel estimator for wg given by fuz = 27?]%,(0), where

0 =5 3 KGDCw(h (©

is the conventional spectral density estimator. In formula (6), Cy,(h) is the sample
variance defined as =" G541, where > signifies summation over 1 < t,t+h <
n, k(-) is the lag window defined on [—1,1] with £(0) = 1, and M is the bandwidth
parameter satisfying the property that M — co and M/n — 0 (say M = O(n!/3)
as in Andrews, 1991) as the sample size n — oo. Then, @12/ is a consistent estimator
of wg under Hy. Candidate kernel functions can be found in standard texts (e.g.
Hannan, 1970; Brillinger, 1980; and Priestley, 1981). For example, when we use
k(x) =1 —|z|, we get the Bartlett estimator.

However, y; is generally unobservable since the deterministic component 'z is
unknown. In order to test Hy, we need to estimate y; (detrend z;) first and then
test stationarity by looking at the fluctuation in the detrended data. Assume that
there is a standardizing matrix D such that Dilx[m} — X(r) as n — oo, uniformly
in r € [0, 1]. For the case of a linear trend, D = diag[l,n] and X (r) = (1,r)". More
generally, if x; is a polynomial trend D = diag[1,n, ....,n?], then X (r) = (1,r,...,rP).

We detrend z; by least squares regression

Zt = *A/xt + §t7 (7)
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and denote the detrended time series as §; = z,—7 x4, where ¥ = [>_, z42}] ! > w2 .

The following statistic can then be used in testing (trend) stationarity in time series

(1)

n

T 18
k;yt—nzyt

t=1

k
S, = max
o) =
k=1,...n wy\/ﬁ

: (8)

Under Hy, the partial sum of the detrended time series converges to the following

limiting process:

[nr]

n—l/QZlgt ~ B, x(r) = B,(r) [ /0 1dBy(s)X(s)’] [ /0 1X(s)X(s)’ds} B /0 " X(s)ds

- wy{W(r)— [/OldW(s)X(s)’} [/OIX(S)X(S)'dS]I /OTX(s)ds}

= wywx(r).
where Wx (r) = W (r) — [fol dW(s)X(s)’] {fol X(s)X(s)'ds}_1 Jo X (s)ds.

The limiting process, Ey,X(r) = wyWX(r), is a generalized Brownian bridge
process. When z; has a constant element, the process W (r) (or E’y, x(r)) is tied
down to the origin at the ends of the [0,1] interval just like a Brownian bridge. In
the case that x; is a constant, WX(T) = W(r) — rW(1) is a standard Brownian

bridge. If x; is a linear trend, i.e. z; = (1,¢),

1

W (r) = [W(r) — rW(1)] + 6r(1 — r) [ZW(l)_/o W(s)ds],

which is the sum of a standard Brownian bridge plus another factor

1 1
6r(1—r) [QW(l) —/ W(s)ds] ,
0
brought by the addition of a time trend ¢. This process is usually called a second-
level Brownian bridge (MacNeill, 1978).

We summarize the asymptotic results in the following Theorem.

THEOREM 1: Under Hy and Assumption Ly (or L), when x; has a constant ele-
ment, as n — 090,

S, = sup ‘WX(T)
0<r<1

where W (r) = W(r) — [ 5 dW(s)X(s)'} [ folX(s)X(s)’dsrl I X (s)ds.

6
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Similar to many other testing procedures in the unit root context, the asymptotic
distribution of S,, depends on the limiting function of the deterministic trend. For
the leading cases where x; equals a constant and a linear trend, we denote the test
statistics as SJ, and ST respectively, with the superscripts u and 7 indicating that
Sty uses the demeaned data and ST uses the detrended data.

REMARK 1: In the case that z; equals a constant, Wx(r) = W(r) — rW(1)
is a standard Brownian bridge. As shown in Billingsley (1968), the correspond-

ing distribution function of this limiting variate supg<,<q ’Wx(r)’ has the clas-

sical Kolmogoroff-Smirnoff form that F(x) = Pr(supg<,<; ‘W(r)‘ <z =1+
2 Z?’;l(—l)j exp(—2j22?), for x >0, and 0, for x < 0. As a comparison, notice that
by using a different measure (Cramer-von Mises) of the fluctuation in time series
yt, we can immediately derive the (demeaned) KPSS test, which has the Cramer-
von Mises limiting distribution and can be represented as an infinite weighted sum
of independent central chi-squared random variables. In this sense, both the S,, test
and the KPSS test can be obtained by testing the fluctuations in the detrended time
series. Our procedure corresponds to the Kolmogoroff-Smirnoff test and the KPSS
approach is of Cramer-von Mises type.

REMARK 2: If there is no deterministic trend in zy, y; is observable and the
test statistic can be constructed by simply using y; in the formula of (8). It is easy
to show that under the conditions in Theorem 1, the test statistic converges to a

standard Brownian bridge.

Table 1 gives critical values for the test statistics Si, and S7. The critical values
of S] are calculated by a direct simulation using a sample size of 3,000 and 50,000

replications.

TABLE 1. Upper tail critical values for S/ and S;,
Sh Sh
Critical level 0.1 0.06 0.01 0.1 0.05 0.01
Critical value 122 1.36 1.63 0.827 0901 1.041
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3 Consistency

It is critical that a statistical test be able to discriminate between the null and the
alternative in large sample. Under the alternative hypothesis and Assumption L,
n_l/zy[m] = B,(r), and

w2 = Bux(r) = Bu(r) — [ /0 1 Bu(s)X(s)’ds] [ /0 1 X(s)X(s)’ds] " X,

Thus, n~! Z[W] (Ut/v/n) = [; Bux(s)ds, and we have from the fact that [nr]/n — r

and the continuous mapping theorem that, as n — oo,

NG % Zle U — % Yoy ’y}‘ diverges at rate n under Hj.

Thus maxg—1,.»

However, under Hi, the nonparametric spectral density estimate fyy(O) diverges
as well. In order to show the consistency of the test, we need to prove that &,

diverges at a slower rate. This is confirmed by the following Lemma.

LEMMA 1: Under Hy and Assumption Ly (or L), as n — oo,

1 1
— &% = 271K (0 )/ By x(r)*dr,
0

nM Y
-1
where By, x (1) [fo } [fo ds] X(r) is a detrended
Brownian motion, cmd K\ = 217r fooo k(x)e Z’\xda: is the spectral window.

In consequence, we obtain the following Theorem on the consistency of the test.

THEOREM 2: Under Hy and Assumption L, as n — oo, Pr[S,, > By,] — 1, for any
nonstochastic sequence B, = o(n*/2M~1/2).

REMARK: Here we get a similar result as in Kwiatkowski et al. (1992) that the

divergence rate of S,, under Hy is dependent on the bandwidth parameter.
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4 Finite Sample Performance

A Monte Carlo experiment was conducted to examine the finite sample performance
of these tests. We considered the leading cases where the deterministic components
are a constant term and a linear time trend, i.e., the S}, and S7 tests. From the con-
struction of these test statistics, the finite sample performance of S}, and S” depends
on the sample size n and the bandwidth parameter M that is used to calculate @3
Thus, special attention was paid to the effects of the bandwidth and sample sizes
on the performance of these tests. We considered the following sample sizes in our
experiment: n = 50,80, 100, 120, 150, 200, 300, 500. These sample sizes were chosen
because they represent the most relevant range of sample sizes in many empirical
analyses. Four bandwidth choices were considered, the first two bandwidth values,
M1 =1, M2 = 2, are small and fixed, while the third and fourth bandwidth,
M3 = [4(n/100)/4], M4 = [12(n/100)'/4], are functions of the sample sizes and are
increasing with n. These bandwidth values were used because similar choices had
been used in Schwert (1989), Kwiatkowski et al. (1992), and other simulations. In
the presence of serial correlation, we need the bandwidth increase with n in esti-
mating the long-run variance. Thus, we expect that small fixed bandwidth will have
relatively better effect for the iid case and cases of small serial correlation, and M3
and M4 will work better for cases with high serial correlation. All experiments used
10,000 replications. For the kernel function, following Kwiatkowski et al. (1992),
we used the Bartlett window k(x) = 1 — |z| so that the nonnegativity of Z\uz was
guaranteed.

We examined the size and power of the S and S? tests. For the purpose
of comparison, we also calculated the empirical size and power of demeaned and
detrended KPSS tests. In each iteration, S, and the KPSS test were calculated
based on the same data. First, we consider the size of these tests when the process
Y is a sequence of i.i.d. random variables. Table 2 reports the size of S}, and the
demeaned KPSS test corresponding to different n and M values at the 5% level,
and Table 3 gives the results for S] and the detrended KPSS test. We can see
that these tests have reasonable size except for the cases with a small sample and
large M. Since y; is an iid sequence, we expect that a small M will produce better
performance, and this is confirmed in the simulation. We can also see that as sample
size increases, size distortion reduces even for large M, corroborating the asymptotic

theory.
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TABLE 2: Size of Demeaned Tests, 5% level, iid case
Sk KPSS

n M1 M2 M3 M1 M2 M3
50 0.030 0.026 0.016 0.044 0.042 0.037
80 0.036 0.030 0.024 0.046 0.043 0.039
100 0.038 0.033 0.027 0.046 0.045 0.043
120 0.041 0.035 0.033 0.045 0.044 0.040
150 0.042 0.039 0.034 0.048 0.049 0.047
200 0.044 0.042 0.036 0.045 0.045 0.043
300 0.046 0.044 0.041 0.052  0.050 0.048
500 0.048 0.048 0.046 0.049 0.048 0.048

TABLE 3: Size of Detrended Tests, 5% level, iid case

ST KPSS
n ML M2 M3 MI M2 M3
50 0.024 0.019 0.013  0.047 0.042 0.036
80 0.026 0.021 0.017 0049 0.048 0.045

100 0.029 0.025 0.021 0.055 0.052 0.047
120 0.032 0.029 0.024 0.047 0.045 0.044
150 0.033 0.031 0.027 0.054 0.049 0.046
200 0.036 0.034 0.032 0.048 0.047 0.046
300 0.040 0.037 0.037 0.049 0.049 0.048
500 0.044 0.043 0.043 0.054 0.053 0.053

We next examined the size properties of S§ and S7 in the presence of serial
correlation. The data were generated from y; = ay;—1 + u, where u; = 19dN(0, 1).
In this model, the AR coefficient « is a convenient nuisance parameter to investigate.
It measures the distance of the null from the alternative. As « approaches unity,
behaves more and more like a random walk. In consequence, it is anticipated that
the tests will overreject the null hypothesis for positive a;, and that as « increases,
the empirical rejection rate of these tests will also increase, depending on how close
« is to unity (see Tables 4a&b and Tables 5a&b for the cases of large o values).
We examined the empirical rejection rates for cases with a = 0.1,0.5,0.8, 0.85, 0.9,
0.95. Our choices of o put a particular emphasis on those values close to unity
because many macroeconomic time series contain a large autoregressive root. The
values 0.95, 0.9, 0.85, and 0.8 are typical values used in the “unit root” Monte Carlo

experiments in literature.

10
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Notice that the bandwidth parameter M corresponds to the number of lags used
to calculate @z Intuitively, for o > 0, the larger « is, the longer lags we need. In
the case that o = 0, y; is an independent sequence and the long-run variance of 1
equals the variance of ;. Thus, for small o, we expect that a small bandwidth value
can provide reasonably good finite sample performance. As « increases, we need a
larger M to estimate wz. These are confirmed in the simulation. In cases of large
« values the problem of overrejection is severe for both the KPSS test and the S,
test when M is small (M = M1 =1, and M = M2 = 2) because, according to the
asymptotic theory, the validity of the tests requires M to increase with n in this
circumstance. However, as will become clear in Tables 6 and 7, a large value of M
reduces the power of these tests and a trade off has to be made. Tables 4a&b report
the empirical size of the S}, and the demeaned KPSS test for the cases with AR(1)
errors, corresponding to different choices of AR coefficient, at the 5% level. Results
of the detrended tests are provided in Tables 5a&Db.

Tables 6 and 7 report the empirical rejection rates for the case of o = 1, giving
the power of these testing procedures. In particular, Table 6 gives the result of
demeaned tests and Table 7 gives those of the detrended tests. Again, we consider
the effects of the bandwidth and the sample size on the power of the tests. The tests
have reasonable power in most cases (except for those with small sample and large
bandwidth). As we can anticipate from the consistency, for each bandwidth choice,
power usually increases as n increases. Also, according to the asymptotic analysis,
the distribution of our test under the alternative hypothesis depends on n/M; a
large M will generally reduce the power. This is also confirmed by the results in
Tables 6 and 7.

A word on the comparison between S, and the KPSS test. Although results
differ across a values and sample sizes, it can be seen that the bandwidth choice
and the value of a have similar effects on these tests. It is clear from the Monte Carlo
evidence that in general these two tests have very similar finite sample behavior,
corroborating Remark 1 that both the S,, and the KPSS tests can be derived from

fluctuation tests, but using different matrics.

11
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TABLE 4a : Size of Demeaned Tests, 5% level, AR(1) Errors
Sh KPSS
o n M1 M2 M3 M4 M1 M2 M3 M4

0.8 50 0.458 0.270 0.052 0.015 0.487 0.350 0.128 0.069
80 0.503 0.349 0.072 0.023 0.537 0.380 0.162 0.065
100 0.528 0.391 0.109 0.028 0.556 0.409 0.181 0.084
120 0.584 0.408 0.121 0.033 0.563 0.414 0.177 0.091
150 0.563 0.425 0.140 0.038 0.579 0.427 0.189 0.095
200 0.582 0.428 0.162 0.042 0.599 0.435 0.190 0.097
300 0.597 0.438 0.198 0.048 0.602 0.447 0.210 0.107
500 0.606 0.452 0.210 0.049 0.638 0.475 0.212 0.103

0.5 50 0.271 0.135 0.042 0.037 0.319 0.165 0.074 0.065
80 0.310 0.166 0.044 0.012 0.368 0.186 0.066 0.045
100 0.362 0.180 0.050 0.019 0.383 0.190 0.072 0.047
120 0.398 0.192 0.053 0.028 0.414 0.197 0.070 0.049
150 0.411 0.197 0.062 0.029 0.428 0.202 0.078 0.051
200 0.412 0.221 0.067 0.032 0.431 0.224 0.077 0.052
300 0.432 0.227 0.072 0.039 0.449 0.251 0.082 0.055
500 0.436 0.242 0.080 0.044 0.461 0.264 0.088 0.062

0.1 50 0.058 0.036 0.020 0.011 0.071 0.052 0.040 0.065
80 0.062 0.041 0.026 0.029 0.072 0.054 0.044 0.035
100 0.065 0.045 0.030 0.021 0.074 0.057 0.049 0.038
120 0.068 0.049 0.036 0.025 0.072 0.055 0.045 0.039
150 0.070 0.051 0.038 0.025 0.075 0.059 0.054 0.038
200 0.072 0.055 0.042 0.032 0.071 0.055 0.049 0.039
300 0.078 0.055 0.046 0.038 0.077 0.061 0.053 0.043
500 0.081 0.058 0.049 0.041 0.082 0.060 0.052 0.051
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TABLE 4b: Size of Demeaned Tests, 5% level, AR(1) Errors

ST KPSS

a n ML M2 M3 M4 ML M2 M3 M4
0.95 50 0.707 0.537 0.232 0.012  0.759 0.616 0.445 0.076
80 0.734 0.58% 0.361 0.022  0.752 0.629 0537 0.196

100 0.787 0.659 0.456 0.051 0.818 0.713 0.525 0.231
120 0.819 0.701 0.506 0.052 0.811 0.715 0.554 0.259
150 0.836 0.742 0.564 0.106 0.826 0.779  0.592 0.277
200 0.863 0.790 0.605 0.174 0.851 0.807 0.612 0.286
300 0.889 0.827 0.626 0.242 0.887 0.841 0.622 0.302
500 0.912 0.859 0.649 0.273 0.918 0.866 0.664 0.297

0.90 50 0.623 0.401 0.153 0.013 0.665 0.516 0.340 0.045
80 0.639 0.517 0.231 0.021 0.668 0.529 0.404 0.118
100 0.687 0.626 0.299 0.034 0.706 0.633 0.378 0.137
120 0.722  0.657 0.337 0.046 0.779 0.655 0.382 0.150
150 0.745 0.686 0.385 0.053 0.792 0.671 0.405 0.161
200 0.784 0.674 0.407 0.082 0.809 0.689 0.425 0.162
300 0.810 0.728 0.404 0.114 0.816 0.721  0.391 0.165
500 0.838 0.732 0.411 0.132 0.835 0.736  0.410 0.157

0.85 50 0.517 0.351 0.084 0.018 0.574 0.426 0.264 0.052
80 0.538 0.359 0.133 0.014 0.635 0.479 0.305 0.084
100 0.585 0.405 0.205 0.025 0.663 0.506 0.277 0.095
120 0.611 0.462 0.229 0.036 0.678 0.513  0.275 0.102
150 0.638 0.515 0.263 0.045 0.689 0.532 0.288 0.111
200 0.671 0.557 0.291 0.052 0.701 0.538 0.301 0.111
300 0.711 0.581 0.254 0.072 0.724 0.559 0.266 0.114
500 0.745 0.616 0.284 0.087 0.731 0.575 0.280 0.109
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TABLE ba: Size of Detrended Tests, 5% level, AR(1) Errors
Sy KPSS
a n M1 M2 M3 M4 M1 M2 M3 M4

0.8 50 0.406 0.141 0.021 0.020 0.642 0.456 0.242 0.037
80 0.597 0.346 0.079 0.024 0.732 0.546 0.319 0.065
100 0.652 0.407 0.074 0.025 0.757 0.569 0.271 0.075
120 0.692 0.462 0.112 0.032 0.781 0.596 0.292 0.079
150 0.739 0.513 0.160 0.036 0.802 0.624 0.311 0.087
200 0.781 0.570 0.211 0.048 0.822 0.638 0.328 0.088
300 0.835 0.631 0.202 0.054 0.845 0.661 0.283 0.088
500 0.861 0.693 0.259 0.056 0.863 0.698 0.303 0.088

0.5 50 0.310 0.103 0.024 0.013 0.454 0.259 0.086 0.026
80 0.358 0.158 0.042 0.013 0.483 0.281 0.104 0.026
100 0.447 0.180 0.042 0.016 0.492 0.285 0.096 0.039
120 0.468 0.204 0.046 0.029 0.504 0.290 0.094 0.041
150 0.498 0.229 0.053 0.033 0.512 0.300 0.101 0.051
200 0.521 0.245 0.067 0.036 0.535 0.299 0.102 0.050
300 0.556 0.278 0.066 0.045 0.582 0.302 0.095 0.053
500 0.583 0.314 0.079 0.051 0.637 0.316 0.103 0.056

0.1 50 0.038 0.023 0.014 0.004 0.063 0.054 0.041 0.022
80 0.051 0.030 0.016 0.006 0.070 0.061 0.051 0.015
100 0.059 0.035 0.021 0.018 0.073 0.65 0.054 0.029
120 0.064 0.037 0.025 0.022 0.072 0.058 0.051 0.031
150 0.068 0.039 0.029 0.028 0.080 0.063 0.053 0.039
200 0.071 0.046 0.034 0.033 0.081 0.062 0.053 0.039
300 0.082 0.052 0.038 0.042 0.084 0.064 0.053 0.045
500 0.086 0.054 0.042 0.046 0.092 0.070 0.0539 0.052
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TABLE 5b: Size of Demeaned Tests, 5% level, AR(1) Errors

Sy KPSS
o n M1 M2 M3 M4 M1 M2 M3 M4
0.95 50 0.650 0.3034 0.038 0.047 0.823 0.700 0.469 0.112
80 0.759 0.676  0.257 0.035 0.847 0.805 0.660 0.221

100 0.812 0.774  0.269 0.058 0.885 0.836 0.638 0.249
120 0.846 0.842 0.451 0.071 0.906 0.882 0.665 0.296
150 0.867 0.886  0.546 0.083 0.915 0.908 0.756 0.316
200 0.907 0.899  0.667 0.094 0.914 0917 0.770 0.350
300 0.926 0914 0.707 0.144 0.938 0.926 0.782 0.396
500 0.948 0.932 0.722 0.254 0.949 0.935 0.804 0.424

0.90 50 0.571 0.239 0.028 0.027 0.788 0.629 0.378 0.081
80 0.682 0.563  0.168 0.025 0.789 0.756  0.426 0.139
100 0.746 0.652  0.165 0.037 0.823 0.807 0.461 0.156
120 0.785 0.717  0.252 0.040 0.841 0.820 0.5337 0.174
150 0.816 0.767  0.286 0.054 0.852 0.833 0.551 0.181
200 0.849 0.809  0.345 0.063 0.870 0.851 0.573 0.193
300 0.905 0.862 0.355 0.077 0.914 0.873 0.582 0.208
500 0.928 0.888  0.458 0.105 0.929 0.892 0.580 0.213

0.85 50 0.483 0.184 0.022 0.011 0.720 0.485 0.199 0.067
80 0.690 0.333 0.081 0.018 0.806 0.516 0.309 0.098
100 0.754 0.444  0.106 0.028 0.805 0.538 0.315 0.108
120 0.775 0.521  0.124 0.033 0.814 0.618 0.328 0.118
150 0.804 0.580  0.203 0.032 0.828 0.651 0.359 0.125
200 0.836 0.637  0.257 0.042 0.870 0.686 0.381 0.129
300 0.877 0.697  0.286 0.056 0.891 0.717  0.403 0.139
500 0.903 0.766  0.350 0.065 0.911 0.752 0.405 0.138
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TABLE 6: Power of Demeaned Tests, 5% level

Sh KPSS
n M1 M2 M3 M4 M1 M2 M3 M4
50 0.934 0.820 0.586 0.201 0.944 0.866 0.655 0.341
80 0.964 0.913 0.754 0.272 0.969 0.919 0.765 0.534

100 0977 0.936 0.775 0.375 0.979 0.949 0.782 0.591
120 0.989 0.964 0.818 0.439 0.989 0.969 0.826 0.636
150 0.996 0.981 0.887 0.551 0.995 0.983 0.905 0.669
200 1.000 0.997 0.921 0.682 1.000 0.996 0.923 0.725
300 1.000 1.000 0.948 0.792 1.000 1.000 0.957 0.813
500 1.000 1.000 0.997 0.886 1.000 1.000 0.997 0.897

TABLE 7: Power of Detrended Tests, 5% level

Sh KPSS
n M1 M2 M3 M4 M1 M2 M3 M4
50 0.925 0.682 0.440 0.180 0.960 0.756  0.523 0.289
80 0.946 0.886 0.541 0.212 0.979 0.895 0.710 0.353

100 0.973 0.935 0.580 0.305 0.989 0.946 0.739 0.416
120 0.989 0.965 0.716 0.341 0.997 0.971 0.785 0.495
150 0.996 0.980 0.813 0.415 1.000 0.982 0.868 0.563
200 1.000 0.992 0.894 0.546 1.000 0.994 0.938 0.663
300 1.000 1.000 0.951 0.712 1.000 1.000 0.973 0.807
500 1.000 1.000 0.986 0.882 1.000 1.000 0.995 0.909

5 Application to the U.S. Economy

The test was also applied to several post-war quarterly U.S. macroeconomic time
series. The data set in our empirical analysis consists of Real GDP, Real Investment,
Real Consumption, and Employment. All these variables are from Citibase, over
the period 1947:1 - 1993:4. The number of observations for these time series is 188.
Because of the obvious tendency of growth presented in these series, we tested the
null hypothesis of stationarity around a linear trend. Thus, S] is the appropriate
statistic. (Testing for the null of level stationarity using S}, has also been performed.
Despite of the fact that the values of the test statistics are sensitive to the bandwidth
choice, we can reject the null hypothesis of level stationarity for all these series, as
expected.)

For comparison, we also calculated the Augmented Dickey-Fuller (ADF) tests
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for a unit root on these series (we used the BIC criterion of Schwarz, 1978 and
Rissanen, 1978 in selecting the appropriate lag length of the autoregression). Table
8 presents the ADF' coefficient (ADF,) and t-ratio (ADF}) statistics for the unit
root hypothesis. The critical values at 5% level of significance for the ADF tests
are —21.20 and —3.44 respectively. We can not reject the null hypothesis of a
unit root in the series of Real GDP, Real Consumption, and Employment in both
the coefficient and ¢-ratio tests. For the series of Real Investment, the unit root

hypothesis is rejected in both tests.

TABLE 8. ADF tests applied to U.S. Macro data

Series ADF, ADF;

Real GDP -8.5 -1.94
Real Investment -37.28 -3.84
Real Consumption -14.77 -3.07
Employment -18.58 -3.11

TABLE 9. S] test applied to U.S. macro data

Series M=2 M=4 M=6 M=8 M=10

Real GDP 1.688 1.335 1.152 1.038  0.960
Real Investment 1.254 0.998 0.869 0.791 0.738
Real Consumption 1.458 1.174 1.036 0.956  0.904
Employment 1.696 1.345 1.166 1.058 0.983

Table 9 gives the ST test statistic for the null hypothesis of stationarity around
a linear trend. We consider bandwidth choices from two to ten since the values
of the test statistics are sensitive to bandwidth. The empirical results seem to
be in accord with those in Kwiatkowski et al. (1992). It is clear from Table 9
that the test statistics decline monotonically as M increases. If we choose a small
bandwidth, say M = 2, we would reject the null hypothesis of trend stationarity
for all these series. However, these series are obviously temporally dependent and
such a serial dependence should be taken into account when we estimate the long-run
variance. For bandwidth choices M = 6, 8, 10, we find that we cannot reject the null
hypothesis of trend stationarity at the 5% level for the series of real investment. But
we can reject trend stationarity in the other three series. Combining the results from
Table 8 and Table 9, we reach the following conclusion: the series Real GDP, Real
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Consumption, and Employment appear to have unit roots and, the Real Investment

series is likely to be trend stationary.

6 Conclusion

We have proposed statistical tests for the null hypothesis of stationarity (or trend
stationarity) by looking at the fluctuation in a (detrended) time series. The results
apply to a wide class of time series models. Asymptotic distributions of these tests
are derived under both the null hypothesis and the unit root alternative. These
limiting distributions are nonstandard and are functions of Brownian motions, in-
volving higher order Brownian bridges. The principle of the approach is general and
can be applied to other types of alternatives. Table of critical values is provided
based on the asymptotic null distributions. The consistency of the tests are proved
in this paper. The asymptotic behavior of the proposed test is similar to that of the
KPSS test and the divergence rate of the statistics under H; depends on the band-
width parameter. A Monte Carlo experiment was conducted to examine the finite
sample performance of these tests. In particular, finite sample size and power were
studied. As do other tests for stationarity, these tests provide a useful complement

to the conventional unit root tests.
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7 Appendix: Proofs
7.1 Proof of Theorem 1

By definition
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Notice that

[nr] [nr]

frr]
Z Ui = Z w——=( =) D
t=1

where Y, (r) = n~1/2 El[t:l] y; is a stochastic process in D0, 1], the space of functions
on r € [0,1] that are right continuous with left-hand limits. We endow the space
DJ0, 1] with the Skorohod topology (Billingsley, 1968). Under the null of stationarity
and Assumption L, the partial sum process n~ /2 nyl] y; satisfies the following
invariance principle (Phillips and Solo, 1992, Theorem 3.4)

[nr]

V/ij:yt:><B

Thus, by the continuous mapping theorem,
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Thus, by the fact that [nr]/n — r and the continuous mapping theorem,
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Notice that WN/X (r) is a generalized Brownian bridge, when z; has a constant element
it is tied down to the origin at the ends of the [0,1] interval just like a Brownian
bridge, thus Wx (1) = 0, and

S, = sup ‘WX(T)’ .

0<r<1
7.2 Proof of Lemma 1
Notice that

. 1 &y

fyy(o) = % h_z_:Mk?(M)ny(h)a

where

1 n
==Y Gfieyn, 1<t+h<n.
1

:3

Under the alternative hypothesis and Assumption L, n~/ 2y[w] ~n Y2 ZL rl] U =
B,(r), and thus

02 G = Bux(r) [/ Bu( )’ds] [/OIX(S)X(S)’ds]_lX(r).

Following the same argument as in Phillips (1991), notice that M = O(n'/3) as

n — oo, we have

ig@ = ﬁé [ yﬂm]

= 271'(21/ ds)/BuX dr

= QWK(O)/O By x(r)%dr.
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7.3 Proof of Theorem 2

By the result of Lemma 1,

/MS M k
— = max —
n " k=1,...n n @yvﬁi

1 1 Vi [n7] x~ U
t t

= sup 2 Z

0<r<1 n‘lM_lwy A vn A VR

1 —1/2 r 1
= |:27TK(0)/ Bu,X(r)er] sup / Bu,X(s)ds—r/ By, x(s)ds|.
0 0 0

0<r<1

Thus the result of Theorem 2 follows immediately.
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